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Abstract. The celebrated Heckman selection model yields a selection correction func-

tion (control function) proportional to the inverse Mills ratio, which is monotone. This

paper studies a sample selection model that does not impose parametric distributional

assumptions on the latent error terms, while maintaining the monotonicity of the control

function. We show that a positive (negative) dependence condition on the latent error

terms is sufficient for the monotonicity of the control function. The condition is equiva-

lent to a restriction on the copula function of latent error terms. Using the monotonicity,

we propose a tuning-parameter-free semiparametric estimation method and establish root

n-consistency and asymptotic normality for the estimates of finite-dimensional parame-

ters. A new test for selectivity is also developed in the presence of the shape restriction.

Simulations and an empirical application are conducted to illustrate the usefulness of the

proposed methods.
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1. Introduction

The sample selection problem arises frequently in economics when observations are not

taken from a random sample of the population. Understanding the self-selection process

and correcting selection bias is a central task in empirical studies of the labor supply be-

havior of females (Heckman, 1974; Gronau, 1974), the determinants of schooling choices

(Willis and Rosen, 1979), unionism status (Lee, 1978), and migration decisions (Borjas,

1987), among others. Recently, there has been revived interest in this classical topic by

extending the framework to non-separable models (Arellano and Bonhomme, 2017; Cher-

nozhukov, Fernandez-Val, and Luo, 2018; Maasoumi and Wang, 2019) and settings with

discrete excluded variables (Brinch, Mogstad, and Wiswall, 2017) or without any exclusion

restriction (Honoré and Hu, 2020), further broadening its scope.

A prototypical sample selection model consists of the outcome and selection equations:

Y ∗i = X ′iβ0 + εi,(1.1)

Di = I{W ′
iγ0 + νi > 0},

Yi = Y ∗i Di, for i = 1, · · · , n,

where (Yi, Di, X
′
i,W

′
i ) are observed variables and (εi, νi) are latent error terms. The condi-

tional mean function of the observed dependent variable Yi is equal to

(1.2) E[Yi|Xi,Wi, Di = 1] = X ′iβ0 + λ0(W ′
iγ0),

where λ0(W ′
iγ0) = E[εi|νi > −W ′

iγ0,Wi] corrects for the sample selection bias and is known

as the control function1 (Heckman and Robb, 1985). Since the seminal work of Heckman

(1979), his two-step method has been the default choice for estimating the sample selection

model (1.1). Its original setup assumes the joint normality on the error terms (ε, ν). As

a result, the control function has a parametric form: λ0(W ′
iγ0) is proportional to the

inverse Mills ratio φ(W ′
iγ0)/Φ(W ′

iγ0), where φ(·) and Φ(·) are the density and cumulative

distribution functions of the standard normal distribution. An interesting, yet somewhat

neglected, property of the inverse Mills Ratio is its monotonicity.

In this paper, we consider a semiparametric sample selection model where the control

function is monotone. We show that a positive (or negative) dependence condition on

(ε, ν), formally known as the right tail increasing (decreasing) (Esary and Proschan, 1972),

is sufficient for the monotonicity of the control function. The right tail increasing (RTI)

1In some alternative formulation (Heckman and Vytlacil, 2007a,b), the control function κ0(·) is defined
as a function of the propensity score Pi = Pr{Di = 1|Wi}. Therefore, for the model (1.1), one has
λ0(v) = κ0(F̄ν(−v)) where F̄ν is the survivor function of ν. However, this does not affect our discussion
regarding the monotonicity of the control function, as it is straightforward to see that λ0 and κ0 are
equivalent up to a monotone transformation.
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represents the positive selection, i.e., the probability that ε takes large values increases

with the value of ν. This condition only depends on the copula function without restricting

the marginal distributions of the latent errors in the outcome or selection equation. For

instance, in the generalized selection model of Lee (1983), a non-negative correlation coef-

ficient of the Gaussian copula entails a decreasing control function,2 regardless of marginal

distribution specifications. In practice, the choice between a positive and negative depen-

dence can be determined by the researcher a priori, when it is possible to postulate whether

one gets positive or negative sorting for specific applications. In addition, the comparison

of the model fitting associated with imposing a decreasing or an increasing control function

is informative about the direction.

Maintaining the monotonicity assumption of the control function, we propose a new

semiparametric estimator and a new test for selectivity. Our method is fully data-driven and

is free of any tuning parameter to be determined by practitioners. The resulting estimators

of the finite-dimensional parameters β0 and γ0 are root-n consistent and asymptotically

normal. Compared with existing semiparametric procedures using kernel or sieve, our

method circumvents the choice of bandwidths in kernel smoothing, penalization parameters

in smoothing splines, the order of polynomials in series estimation, and the trimming

parameters. To the best of our knowlege, the only existing tuning-parameter-free method

for the sample selection model was proposed by Cosslett (1991). His estimator is different

from ours and its convergence rate and asymptotic distribution remain unknown3.

Our estimation method consists of two stages. The first stage focuses on the binary

choice data (Di,Wi) in the selection equation and uses the likelihood function in terms of

the coefficient γ and distribution function Fν of the latent error ν:

(1.3) L1n(γ, Fν) = Πn
i=1

{
Fν(−W ′

iγ)1−Di [1− Fν(−W ′
iγ)]

Di
}
,

to obtain estimates (γ̂n, F̂nν(·; γ̂n)) following from Groeneboom and Hendrickx (2018).

In the second stage, we obtain the estimator β̂n and λ̂n by estimating a partial linear

model with a monotone nonparametric component (Huang, 2002) and generated regressors

(W ′
i γ̂n)ni=1:

(1.4) (β̂n, λ̂n) = arg min
β,λ

n∑
i=1

Di [Yi −X ′iβ − λ(W ′
i γ̂n)]

2
,

where λ is restricted to be either a decreasing or increasing function. Note that our estima-

tion method uses two monotonicity restrictions: one on the distribution function Fν and

the other on the control function λ. The nonparametric estimation of Fν and λ are based on

2Throughout this paper, a “decreasing function” refers to a “non-increasing function.”
3See Remark 3.1 for a detailed comparison between our approach and Cosslett (1991).
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the nonparametric maximum likelihood estimator (NPMLE) and isotonic regression. The

resulting estimates F̂ and λ̂ are piecewise constant functions with random jump locations

and sizes determined by the data itself. Within our framework, the presence of the sample

selection bias can be formally tested by testing the constancy of the control function λ

against a non-constant monotone function. For this purpose, we adapt the likelihood ratio

type test of Robertson, Wright, and Dykstra (1988), i.e., their test statistic Ē2
01, to our

setting. Extensions of our methodology to a panel selection model and to settings with

convex restriction are also studied. Both the Monte Carlo simulation and the real data

application demonstrate the robust performance of our procedures.

Our main contributions are three-fold. First, we find a sufficient condition for the mono-

tone control function, which is related to an intuitive dependence concept of two latent

errors. This demonstrates that the monotonicity of the inverse Mills ratio in the original

Heckman model is shared by a much larger family without requiring any parametric as-

sumptions. Therefore, our model with a monotone control function nests some existing

parametric generalizations (Olsen, 1980; Lee, 1983; Smith, 2003; Marchenko and Genton,

2012) of the Heckman’s model as special cases. Second, our estimation/testing method

complements the existing semiparametric approaches (Ahn and Powell, 1993; Das, Newey,

and Vella, 2003; Newey, 2009; Li and Wooldridge, 2002) in the sense that it frees practition-

ers from specifying tuning parameters. The proposed method will be particularly appealing

in the scenarios where researchers have certain prior knowledge regarding the dependence

between latent errors. For example, Zhou and Xie (2019) noted that individuals who ben-

efit more from college are more motivated than their peers to attend college, exhibiting

a pattern of positive selection. Last but not least, from a theoretical perspective, our

work contributes to the literature of two-stage estimation and testing that involves shape-

restricted nonparametric components. A distinction from the statistics literature (Huang,

2002; Cheng, 2009; Groeneboom and Hendrickx, 2018) is that we have to handle a two-step

estimation with the generated regressors (W ′
i γ̂n)ni=1. Unlike the sieve or kernel approach

adopted by Newey (2009) or Li and Wooldridge (2002), our estimator for the control func-

tion is only a piecewise constant function. As a consequence, the estimated control function

cannot be simply differentiated to determine the asymptotic influence of γ̂n from the first

stage estimation. Taking aim at those challenges, our proofs, which make novel use of the

empirical process theory and the characterization of isotonic regression, are also of inde-

pendent interest. Another notable feature is that we only impose mild moment restrictions

on the latent errors without requiring sub-Gaussian or sub-exponential tails, in line with

the recent development on the nonparametric least squares estimation with heavy-tailed

errors (Han and Wellner, 2018, 2019; Kuchibhotla and Patra, 2019).
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Referring to the kernel-based estimation of the sample selection model, which consists of

estimating a single-index model (the selection equation) and a partially linear model (the

outcome equation), the crucial tuning parameter is the kernel bandwidth. We summarize

the existing concepts of optimal bandwidths in three categories; also see the discussion in

Section 6.3 of Ichimura and Todd (2007). First, Härdle, Hall, and Ichimura (1993) proposed

to jointly minimize the finite dimensional parameter and the kernel bandwidth with respect

to the sample criterion function such as the sum of squared residuals. For sample selection

models, Escanciano and Zhu (2015) emphasized the optimality of tuning parameters in

the sense that the estimation error for the semiparametric conditional mean function in

(1.2) is minimized. Second, one can directly aim for the nonparametric components such

as E[Y |D = 1,W ′γ0],E[X|D = 1,W ′γ0] in the intermediate step of Robinson (1988), after

plugging in some first-stage estimate for γ0 (Powell, 2001). Even for the same oracle optimal

bandwidth, its feasible estimator can be obtained either by the plug-in or cross-validation

method. Both approaches have their advantages and limitations, which explains the great

variety of choices that are found in the literature (Härdle, Wolfgang, Hall, and Marron,

1988; Ruppert, Sheather, and Wand, 1995; Li and Racine, 2007). Third, when the finite di-

mensional parameter is of primary interest, a higher-order expansion is necessary, since the

bandwidth does not affect the first-order root-n asymptotics. Targeting the mean squared

error of the linear coefficient in a partial linear model, Linton (1995) shows that the optimal

bandwidth is of order O(n−2/9), which differs from the usual one as O(n−1/5) in a plain non-

parametric model. In light of various bandwidth selectors mentioned above, for practicing

empirists, making the right choice among them can be a skillful task. The paucity of this

skill may have impeded a broader appreciation and adoption of semiparametric methods

in applications. We are not claiming any theoretical superiority of the proposed approach

over the existing methods in which tuning parameters are carefully chosen; instead, our

work provides applied researchers with an alternative path to circumvent such a delicate

choice.

1.1. Related Literature

This paper joins a rich and evolving literature on shape-restricted estimation and in-

ference, where the underlying criterion function can be meaningfully maximized (or mini-

mized) without additional penalization or smoothing under the maintained shape restric-

tion (Cosslett, 1983; Matzkin, 1991; Banerjee, Mukherjee, and Mishra, 2009; Groeneboom

and Hendrickx, 2018; Horowitz and Lee, 2017). See Groeneboom and Jongbloed (2014)

and Chetverikov, Santos, and Shaikh (2018) for comprehensive reviews in statistics and

econometrics. In this paper, we take a major step to introduce the shape restriction to the
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control function in sample selection models by converting an intuitive concept regarding

the dependence between latent errors into a precise condition known as right tail increasing

(decreasing).

The copula function, which we utilize to establish the monotonicity of control functions,

has been an essential tool in the sample selection or generalized Roy models. It has been

employed to estimate sample selection models with non-normal errors (Lee, 1983; Smith,

2003), obtain bounds on distributional treatment effects (Fan and Wu, 2010; Fan, Guerre,

and Zhu, 2017), and aid in identification and inference for non-separable models (Arellano

and Bonhomme, 2017; Chernozhukov, Fernandez-Val, and Luo, 2018; Maasoumi and Wang,

2019). The copula function plays a different role in our context: the proposed sufficient

condition for the monotonicity of the control function only depends on the copula function

of the latent errors. In addition, this condition is easy to check for commonly used copula

families.

The joint normality assumption on (ε, ν) is more for convenience than necessity for the

sample selection model. Indeed, misspecification of distributions leads to inconsistent esti-

mates and invalid inference, motivating the development of non-normal parametric selection

models (Olsen, 1980; Lee, 1983; Smith, 2003; Marchenko and Genton, 2012) and more flex-

ible semi and non-parametric estimation methods. Substantial theoretical advances have

been made where either a kernel or sieve type of estimator is used to estimate nonparamet-

ric components of the selection model (Gallant and Nychka, 1987; Newey, 2009; Robinson,

1988; Ahn and Powell, 1993; Andrews and Schafgans, 1998; Chen and Lee, 1998; Das,

Newey, and Vella, 2003). As noted by Heckman and Vytlacil (2007a, p.4783), “progress in

implementing these procedures in practical empirical problems has been slow and empir-

ical applications of semiparametric methods have been plagued by issues of sensitivity of

estimates to choices of smoothing parameters, trimming parameters, and the like.”

Our paper improves on Cosslett (1991) who was among the first to propose a tuning-

parameter-free semiparametric estimator for the sample selection model. The work of

Cosslett (1991) has been highlighted by a number of influential reviews (Heckman, 1990;

Vella, 1998; Pagan and Ullah, 1999; Heckman and Vytlacil, 2007a) and its convenient fea-

ture continues to attract applied researchers in empirical studies (Francesconi and Nicoletti,

2006; Berman, Rebeyrol, and Vicard, 2019). However, Cosslett (1991) only presented the

consistency proof based on a sample-splitting argument, whereas the rate of convergence

and the asymptotic distribution remain unknown. Our work is inspired by Cosslett (1991),

but the key distinction between our approach and his is that by imposing the monotonicity

restriction on the control function, our second stage sets a well-posed minimization problem

with fully data determined jump locations in the nonparametric estimator of the control
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function. Furthermore, building on Groeneboom and Hendrickx (2018) and Sen and Meyer

(2017), we establish the complete asymptotic theory.

1.2. Organization and Notation

The rest of our paper is organized as follows. Section 2 characterizes a sufficient condition

for the monotonicity of the control function. Section 3 proposes an automatic semipara-

metric estimation method and a test for the presence of sample selection bias. Section 4

establishes the asymptotic results. Section 5 extends our methodology to a two-period panel

selection model and to the convex restriction. Section 6 conducts Monte Carlo simulations.

Section 7 applies our method to a real data-set. The last section concludes. Proofs of main

theorems are presented in the Appendix; detailed analysis of examples, proofs of technical

lemmas, and additional simulation results are collected in the supplementary notes.

Throughout the paper, we work with the i.i.d. data Zi = (Yi, Di, X
′
i,W

′
i ) for i = 1, ..., n.

It is convenient to introduce the indicator D̄i, defined by D̄i = 1 − Di for i = 1, · · · , n.

Let p denote the dimensionality of covariates X and write β0 ≡ (β01, β02, ..., β0p)
′. The

covariates X do not contain the constant term as the intercept term is absorbed into the

control function for identification purposes (Andrews and Schafgans, 1998). Let q denote

the dimensionality of covariates W and we write γ0 ≡ (γ01, γ02, ..., γ0q)
′. Following Ichimura

(1993) and Klein and Spady (1993), a normalization by taking γ01 = 1 is adopted, and the

vector W is partitioned as W = (W1,W
′
−1)′ accordingly. We also write γ0 = (1, γ′0−)′ and

denote our estimator by γ̂n = (1, γ̂′n−)′. We use the standard empirical process notations

as follows. For a function f(·) of a random vector Z that follows distribution P , we let

Pf =
∫
f(z)dP (z),Pnf = n−1

∑n
i=1 f(Zi), and Gnf = n1/2 (Pn − P ) f . To simplify the

notations for the outcome equation, we write P1nf = Pn(Df(Z)), P1f = P (Df(Z)), and

G1nf = Gn(Df(Z)).

2. Monotonicity of the Control Function

The sample selection bias arises when the latent error terms ν and ε in selection and out-

come equations are dependent, which leads to a non-constancy control function λ(W ′γ0) =

E[ε|ν > −W ′γ0,W ]. In Heckman’s original set up (Heckman, 1974, 1979), the control

function is proportional to the well-known inverse Mills ratio φ(·)/Φ(·), which is a decreas-

ing function due to the log-concavity of normal distribution. It is natural to ask whether

monotonicity of the control function is a more general feature shared by other families

of distributions of (ε, ν). This section provides an affirmative answer by showing that a

specific positive (negative) dependence condition between the latent error terms ν and ε
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is sufficient to induce a monotone control function. Beyond the standard correlation coef-

ficient, there exists a wealth of notions characterizing the positive (negative) dependence

between two random variables (Nelsen, 2006, Chapter 5.2). Among them, the dependence

condition for our purpose is right tail increasing (decreasing), first defined by Esary and

Proschan (1972) as follows.

Definition 2.1. A random variable ε is right tail increasing (decreasing) in ν, which we

denote as RTI(ε|ν) or RTD(ε|ν), if P{ε > s|ν > t} is an increasing (decreasing) function

of t for all s.

Intuitively, RTI(ε|ν) is a positive dependence condition in the sense that ε is more

likely to take on large values as ν increases.The following result establishes the precise link

between the positive (negative) dependence and the monotonicity of the control function.

Theorem 2.1. If ε is right tail increasing (decreasing) in ν, then the control function

λ(t) = E[ε|ν > −t] is decreasing (increasing).

In the sample selection problem, it is natural to expect certain positive (negative) de-

pendence between errors in the selection and outcome equations. Consider a simple Roy

model (Heckman and Vytlacil, 2007a). The outcomes Y1 and Y0 are wages earned in two

sectors (for example, formal and informal sectors) with following specifications:

Y1 = X ′β1 + u1 and Y0 = X ′β0 + u0.

Assume there is a switching cost C = W̃ ′βC , and let u1 and u0 be independent.4 An

optimizing agent self-selects into the sector with a higher wage net of the switching cost:

D = I{X ′(β1 − β0)− W̃ ′βC + (u1 − u0) > 0}.

This gives rise to a sample selection model where the researcher only observes the wage in

sector 1 (the formal sector), i.e., Y = D×Y1. Using the notation of model (1.1), two latent

errors are ε = u1 and ν = u1 − u0. It is intuitive that the positive dependence between ε

and ν stems from the common part u1. Heuristically speaking, when u1 − u0 is larger, it

is more likely that u1 is large as well. The supplementary notes (Section S1.1) verify that

RTI(ε|ν) holds for various continuous distributions of original errors u1 and u0.

Next, we present several parameterized joint distributions of (ε, ν) that yield monotone

control functions. By Theorem 5.2.5 of Nelsen (2006), RTI/RTD is a dependence concept

that relates the ranks of random variables, so it only depends on the copula function C(·, ·)
of (ε, ν), regardless of marginal distributions. To avoid repetition, we focus on the version

of positive dependence and thus a decreasing control function.

4The dependence structure of (u1, u0) is only partially identified in the Roy model (Fan and Wu, 2010).
The independence assumption herein is merely for illustration purpose.
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Example 2.1. (Gaussian Copula) The monotonicity of the control function in Heckman’s

model resides in the Gaussian copula C(u, v; ρ) = Φρ(Φ
−1(u),Φ−1(v)), where ρ denotes

the correlation coefficient. Without restricting the marginal distribution to be Gaussian,

Lee (1983) proposed a generalized selection model with arbitrary (but known) marginal

distributions coupled with the Gaussian copula. For Gaussian copula models, it is straight-

forward to check that RTI is equivalent to ρ ≥ 0, see the supplementary notes (Section

S1.2) for details.

Example 2.2. (Archimedean Copula) Smith (2003) embedded Archimedean copulas to the

sample selection model and developed the corresponding maximum likelihood estimation.

An Archimedean copula C(u, v) can be expressed as

C(u, v) = ψ[−1] (ψ(u) + ψ(v)) ,

where ψ is the generator function and ψ[−1] represents its generalized inverse. Spreeuw

(2014) showed that the RTI of an Archimedean copula is equivalent to the cross-ratio

function5 being greater or equal to 1. A popular family of Archimedean copula is the

Clayton copula:

(2.1) C(u, v;α) = (u−α + v−α − 1)−1/α, 0 ≤ u, v ≤ 1,

where the parameter α ≥ 0. Its generator function is ψ(u;α) = u−α− 1 and the cross-ratio

function becomes α + 1. Hence, the whole Clayton copula family satisfies RTI.

Example 2.3. (Generalized FGM Copula) A copula function belongs to the generalized

Farlie-Gumbel-Morgenstern (FGM) family if C(u, v; τ) = uv + τϕ(u)ϕ(v) for a scale pa-

rameter τ ∈ [−1, 1] (Amblard and Girard, 2002), where ϕ is the generator function. By

Theorem 3 of Amblard and Girard (2002), when τ > 0, this family is RTI if and only if

ϕ(u)/(u − 1) is monotone. The original FGM copula specifies ϕ(u) = u(1 − u) so that

C(u, v; τ) = uv + τuv(1 − u)(1 − v). Then ϕ(u)/(u − 1) = u, which confirms RTI for the

FGM copula when τ > 0.

Theorem 2.1 states RTI(ε|ν) as a sufficient condition for the monotonicity of the control

function λ(t). On some occasions, it might be easier to directly verify the monotonicity

of λ(t) rather than going through the sufficient condition; the following normal mixture

model, which was used by Cosslett (1991) in the Monte Carlo simulation, serves as an

example.

5 The cross-ratio function is defined by CR(u) = −uψ
(2)(u)

ψ(1)(u)
for u ∈ [0, 1], where ψ(j) denotes the j-th order

derivative of the generator ψ, for j = 1, 2.
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Example 2.4. (Normal Mixture) Let g(·, ·;σ1, σ2, ρ) be the joint density function of the

bivariate normal distribution N

([
0

0

]
,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
. The latent error (ε, ν) is a mix-

ture of two bivariate normals mixing “small” and “large” variances with the following joint

density function:

(2.2) fε,ν(s, t) = πg(s, t;σ1, σ2, ρ) + (1− π)g(s, t; kσ1, kσ2, ρ),

where the second normal component has a covariance matrix amplified by k > 1. The

supplementary notes (Section S1.2) prove that the resulting control function is decreasing

in t.

Figure 1 displays profile plots of control functions λ(t) = E[ε|ν ≥ −t] for various joint

distributions of the error terms (ε, ν); (a) and (b) represent the Gaussian copula (Example

2.1 with ρ = 0.9): (a) has standard normal marginals and (b) has t(3) marginals (a t-

distribution with the degree of freedom equal to 3). Fixing the t(3) margin, (c) corresponds

to the Clayton copula (Example 2.2, equation (2.1) with α = 50) and (d) to the FGM

copula (Example 2.3 with τ = 1). In addition, (e) represents a normal mixture described

in Example 2.4 with ρ = π = 0.9, σ1 = σ2 = 1, and k = 5. Our framework also allows

for discrete errors that lead to non-smooth control function, as (f) corresponds to the

scenario where ν has a Poisson distribution and ε remains standard normal. All the control

functions depicted in Figure 1 are decreasing by construction, but their shapes differ by

copula functions and by marginal distributions. Apart from the aforementioned cases, the

sample selection model with an imposed linear control function (Olsen, 1980; Newey, 1999)

and the Heckman t-selection model from Marchenko and Genton (2012) (see their Figure

1) also satisfy our monotone restriction.

Remark 2.1. Besides RTI, the stochastic increasing (SI) is another popular measure of

positive dependence that has been used in sample selection models.6 Recently, Honoré and

Hu (2020) show that SI(ε|ν) sharpens the partial identification results of a selection model

without any exclusion restriction. SI is stronger than RTI (Nelsen, 2006, Theorem 5.2.12).

The following scenario illustrates the connection and difference between RTI and SI. Con-

sider a typical selection problem in the labor market where ε stands for the unobservable

in the wage equation (call it “productivity”) and ν stands for the willingness to work (call

it “motivation”). Suppose that the motivation positively contributes to the productivity in

a linear additive form ε = θν + u (for an independent random error u). For a positive

constant coefficient θ, both RTI(ε|ν) and SI(ε|ν) hold, following Lehmann (1966, Example

6The random variable ε is stochastic increasing in ν, denoted as SI(ε|ν), if P{ε > s|ν = t} is an increasing
function of t for all s.
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Figure 1. Plots of the control function λ(t) = E[ε|ν ≥ −t] for different
joint distributions of (ε, ν).

5). However, if θ (the rate that motivation transforms to productivity) is decreasing with ν,

then SI(ε|ν) is likely to fail, but RTI(ε|ν) can still hold. A numerical example is provided

in the supplementary notes (Section S1.3). In addition, SI requires differentiability of the

copula function; see Nelsen (2006, Exercise 5.32) for another example that satisfies RTI

but not SI.

3. Shape-restricted Estimation and Testing

In this section, we propose a shape-restricted two-stage semiparametric estimation method

of (β, γ, λ(·), Fν(·)) that sidesteps any user-specified tuning parameter. We also develop a

new sensitivity test for the presence of sample selection bias.
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3.1. A Shape-restricted Two-stage Estimator

Our approach is inspired by Cosslett (1991) in the sense that we obtain a two-stage semi-

parametric estimation method making use of a shape-restricted estimation of nonparametric

components, i.e., the estimators F̂nν and λ̂n are step functions with data-determined jump

locations, so that users do not need to provide tuning parameters. The differences are

mainly two-fold. First, we adapt the important breakthrough by Groeneboom and Hen-

drickx (2018) to estimate the linear index in the selection equation, which delivers root-n

consistent and asymptotically normal estimators γ̂n, unlike the profile maximum likelihood

estimator (Cosslett, 1983), which is only known to be consistent. More importantly, we

also impose the shape restriction on the control function in the second stage and use the

isotonic regression technique (Robertson, Wright, and Dykstra, 1988). Although Cosslett

(1991) did not require the monotonicity of λ0, his method restricts the jump locations in

the estimated control function to be the same as those of NPMLE from the first stage.

The detailed procedure is described as follows. Fixing the parameter γ, we consider

the values of V̄
(γ)

1 = −W ′
1γ, · · · , V̄

(γ)
n = −W ′

nγ. Denote V̄
(γ)

(1) ≤ · · · ≤ V̄
(γ)

(n) as the order

statistics with corresponding indicators D̄
(γ)
(i) for i = 1, · · · , n. Let D and I be the spaces

of decreasing and increasing functions, respectively.

Stage 1(i). For any γ, we compute the NPMLE for Fν(·) in the selection equation:

(3.1) F̂nν(·; γ) = arg max
F

n∑
i=1

[
D̄i logF (−W ′

iγ) + (1− D̄i) log(1− F (−W ′
iγ))

]
,

where D̄i ≡ 1 − Di. The resulting estimate F̂nν(·; γ) is the left derivative of the convex

minorant of a cumulative sum diagram consisting of the points (0, 0) and
(
i,
∑i

j=1 D̄
(γ)
(j)

)
for i = 1, · · · , n.

Stage 1(ii). Given F̂nν(·; γ), our estimator γ̂n for the coefficients is the zero-crossing point

of the estimating equation:7

(3.2)
1

n

n∑
i=1

Wi,−1

[
D̄i − F̂nν(−W ′

i γ̂n; γ̂n)
]

= 0.

Stage 2. Given γ̂n from Stage 1, we estimate β and λ(·) by the least squares estimator:

(3.3) (β̂n, λ̂n) = arg min
β∈B,λ∈G

n∑
i=1

Di [Yi −X ′iβ − λ(W ′
i γ̂n)]

2
,

7For the identification purpose, we simply normalize the first coordinate of γ̂n to be 1 and solve for the
other coordinate values γ̂n− from the estimating equations.
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where G = D or I, depending on the monotonicity restriction on λ0 is decreasing or

increasing.

The computation of each step is straightforward and can be implemented through the

existing R packages. The NPMLE F̂nν(·; γ) in Stage 1(i) is a piece-wise constant function

and it is obtained via the standard pool adjacent-violators algorithm (PAVA); see Chapter

1 of Robertson, Wright, and Dykstra (1988). Despite the discreteness of F̂nν(·; γ), Groene-

boom and Hendrickx (2018) showed the global uniqueness of the zero-crossing point of the

estimating equation (3.2) asymptotically, which facilitates the computation of Stage 1(ii).

Here we resort to the (modified) Barzilai-Borwein (BB) method, which is efficient in solving

the zero-crossing points in large-scale nonlinear systems of equations. The corresponding

R package BB (Varadhan and Gilbert, 2009) is also available. The optimization problem

(3.3) in Stage 2 involves minimizing a convex function over a convex set; therefore, (β̂n, λ̂n)

exist and are well-defined (Huang, 2002; Meyer, 2013). The efficient single-cone-projection

algorithm available in the R package “coneproj” (Liao and Meyer, 2014) can be directly

applied to obtain (β̂n, λ̂n).

Now we provide a heuristic discussion of each step. The first stage NPMLE F̂nν(·; γ)

and its characterization date back to Ayer, Brunk, Ewing, Reid, and Silverman (1955).

Within the context of binary choices models, the NPMLE is used by Cosslett (1983) to

define the profile maximum likelihood estimator. However, only the consistency result is

available for Cosslett’s estimator. The key modification to achieve a root-n consistency and

asymptotic normality for γ0 while maintaining the tuning-parameter-free feature is to use

the Z-estimator from Groeneboom and Hendrickx (2018) in Stage 1 (ii); see their discussion

on [p.1420] about the difficulty of Cosslett’s profile MLE. Essentially, one makes use of the

population-level moment condition:

(3.4) E[W−1(D̄ − Fν(−W ′γ0))] = 0,

and plug in the first-step estimator F̂nν(·; γ) in the sample analog. In comparison, the

efficient score function derived from the smoothed maximum likelihood estimator of Klein

and Spady (1993) is

(3.5) E
[

fν(−W ′γ0)

Fν(−W ′γ0)(1− Fν(−W ′γ0)))
W−1(D̄ − Fν(−W ′γ0))

]
= 0,

which involves the additional weighting factor fν
Fν(1−Fν)

. In practice, the trimming is in-

evitable (as specified in Condition C.7 of Klein and Spady (1993)) for the Klein-Spady

estimator or the efficient shape-restricted estimator in Section 4.2 of Groeneboom and

Hendrickx (2018) due to the instability of the denominator Fν(1 − Fν), whereas it can be
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dispensed with in the estimating equation (3.2).8 Referring to Stage 2, assuming a mono-

tone control function, it becomes straightforward to run the partial linear isotonic regression

(Huang, 2002) after the inclusion of W ′γ̂n to control for the selection bias. In analog with

the sieve type estimator (Newey, 2009) that searches for the best possible fit of the model

once the approximating basis is determined, the NPMLE or isotonic regression also seeks

to minimize the estimation error within the monotone class. The imposed monotonicity is

sufficiently regular to make the maximization/minimization problem well-defined without

additional smoothing or penalization.

Remark 3.1. Cosslett (1991) proposed an ingenious two-step procedure in which no tuning

parameter is needed and proved the consistency property. He first estimated γ0 and Fν0(·)
by the profile maximum likelihood estimator from Cosslett (1983). His estimators γ̃n and

F̃nν(·) are different from the ones in Groeneboom and Hendrickx (2018) that we adopt in

our first stage. The estimated marginal distribution function F̃nν(·) is a step-wise function

that is constant on a finite number Kn of intervals Ij = [ci−1, cj), for j = 1, ..., Kn and c0 =

−∞, cKn = +∞. In the second stage, Cosslett (1991) estimated the outcome equation by

approximating the control function λ(·) based on Kn indicator variables {I(W ′γ̃n ∈ Ij)}Knj=1.

The optimization in his second stage can be viewed as finding the sieve type approximation

by step-wise functions with predetermined window widths (Ij)
Kn
j=1. There is arguably certain

degree of arbitrariness to force the set of jump locations (or window widths) to be the

same for nonparametric components in both stages, which also complicates the subsequent

asymptotic analysis. The most important distinction of our method is that we impose the

monotonicity restriction on the control function λ(·), so that the second stage minimization

problem is well posed without specifying the jump locations a priori. Although our estimated

λ̂n(·) is also a piecewise constant function, it is monotone and the jump locations are

automatically determined by the shape-restricted optimization in the second stage. The

resulting estimate λ̂n (together with the linear part x′β̂n) provides the best possible fit among

the monotone class for the semiparametric model (1.2) in the same spirit of Härdle, Hall,

and Ichimura (1993); Escanciano and Zhu (2015).

3.2. A Shape-restricted Test for Selectivity

Under the null hypothesis of no selectivity bias, Heckman (1979) proposed a t-test on

the regression coefficient attached to the inverse Mill’s ratio. The t-test in Heckman (1979)

is the Lagrange multiplier (LM) test statistic in this context (Vella, 1998).

8On one hand, if a fixed trimming is specified using an a priori chosen set, it yields a loss of efficiency.
On the other hand, a data-dependent trimming that expands the whole support asymptotically requires
additional assumptions about the tail behavior of ν and there is no consensus on the optimal trimming;
see Section 6.4 of Ichimura and Todd (2007).
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Within our framework, one does not face selection bias if the control function λ0 is con-

stant, whereas it becomes a non-constant decreasing (increasing) function in the presence of

selection bias. Based on that, we have developed a new test to detect the sample selection,

which does not require user-determined tuning parameters . To focus on the main idea, we

consider the case where there is a decreasing control function λ0. The cases with increasing

control functions can be dealt with analogously. Let D be the space of decreasing functions

and C be the space of constant functions for λ0. The null hypothesis is H0: λ0 ∈ C and the

alternative is H1: λ0 ∈ D \ C.
The following notations facilitate our presentation. Denote Y = (Y1, · · · , Yn)′ and X as

the n×p matrix of covariates in the outcome equation. Let X be the linear space spanned by

the column vectors of X. The testing for selectivity regards the conditional mean function

E[Y |D = 1, X,W ]. We write the null space as S0 = X ⊕ C and the alternative space as

S1 = X ⊕ D. For any vector Y = (Y1, · · · , Yn)′, define the following norm ‖ Y ‖n,D as√∑n
i=1Di(Yi)2. Given the norm ‖ · ‖n,D, we write Π(Y|Sj) as the projection of Y on the

null and alternative spaces for j = 0, 1, respectively.9

Our test statistic resembles the likelihood ratio type test in Robertson, Wright, and

Dykstra (1988) and it essentially compares the sum of squared residuals (SSR) under the

null and alternative hypotheses:

(3.6) Tn =
‖ Π(Y|S0)− Π(Y|S1,γ̂n) ‖2

n,D

‖ Y − Π(Y|S0) ‖2
n,D

,

where the additional subscript γ̂n on the space S1 signifies the fact that the linear index

v = w′γ0 has to be estimated by w′γ̂n. Note that under the null hypothesis, Y − Π(Y|S0)

is simply the residual vector from the ordinary least squares (OLS) estimation over the

subsample with D = 1.

The asymptotic distribution of Tn under the null hypothesis is very complicated (see

Section 2.3 of Robertson, Wright, and Dykstra (1988)). Sen and Meyer (2017) shows that

the null critical value for this type of test statistic can be approximated by the bootstrap

method. Because the control function boils down to a constant term under H0 in our

context, a centered residual bootstrap suffices. Let An ≡ {i = 1, 2, ...n : Di = 1} and

n1 ≡
∑

i∈An Di. Let ε̂i, i ∈ An be the OLS residual obtained from regressing Yi on the

constant term and covariates Xi for the subsample with Di = 1, and ε̄n =
∑

i∈An ε̂i/n1. In

each bootstrap sample (b = 1, 2, ...B), one obtains ε∗i,b for i ∈ A by re-sampling the centered

residuals ε̂i − ε̄n. One then generates Y ∗i,b = α̃n + X ′iβ̃n + ε∗i,b for i ∈ An, where α̃n and β̃n

9Considering the norm ‖ · ‖n,D, only those observations in the selection subsample matter i.e., the values
of Yi where its corresponding Di = 1. Therefore, the projection Π(Y|Sj) only depends on the observed
dependent variables Yi for which Di = 1 and the coordinate values for which Di = 0 can be defined
arbitrarily. Similar remarks apply to Π(ε|Sj) for j = 0, 1 in Section 4.2.
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denote the OLS estimate for the intercept and slope coefficient, respectively. Finally, by

letting Y∗b = (Y ∗1,b, · · · , Y ∗n,b)′, the bootstrap version of our test statistic is

(3.7) T ∗n,b =
‖ Π(Y∗b |S0)− Π(Y∗b |S1,γ̂n) ‖2

n,D

‖ Y∗b − Π(Y∗b |S0) ‖2
n,D

.

One can easily repeat the above process B times and obtain the desired critical value by

tabulating (T ∗n1, · · · , T ∗nB).

Remark 3.2. The monotone restriction on λ0(·) is testable in principle, as one can compare

the global difference (say in terms of the L1-norm) between our shape-restricted estimator

λ̂n versus an unrestricted kernel-type estimator λ̄nh with its smoothing bandwidth denoted

by h. Section 13.2 of Groeneboom and Jongbloed (2014) developed the asymptotic theory of

this type of test for purely nonparametric problems. It is interesting to observe that the test

statistic can be asymptotically normal with proper centering and rescaling. It is expected

that the centering and normalization terms might change due to additional complications

from the first-stage estimation in our setup for this test statistic. We leave a rigorous

investigation for future work.

4. Main Theoretical Results

In this section, we establish root-n consistency and the asymptotic normality of our

estimator of γ̂n and β̂n. The nonparametric estimates for λ0 and Fν0 converge at the cubic

root rate (modulo some log n term). We also justify the bootstrap procedure in Section 3.2

to approximate the null sampling distribution and show the consistency of our test.

4.1. Asymptotic Properties of the Semiparametric Estimation

We start with some preliminary notations borrowed from Newey (2009). Denote Vi =

W ′
iγ0 and Ui = Di(Xi − E[Xi|Di = 1, Vi]). We assume Hβ ≡ E[UiU

′
i ] is non-singular.

Moreover, we define the centered error term as

(4.1) εi = Di(Yi −X ′iβ0 − λ0(Vi))

with Σ ≡ E[ε2iUiU
′
i ] and Hγ ≡ E[Ui

∂λ0(vi)
∂vi

Wi,−1]. Regarding the first-stage estimation, the

NPMLE F̂nν in Cosslett (1983) provides an estimate of

(4.2) Fν(u; γ) ≡ P
{
D̄(γ)| − V (γ) = u

}
=

∫
Fν0(u−w′(γ0− γ))fW |W ′γ(w| −W ′γ = u)dw,
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for any fixed γ; see Groeneboom and Hendrickx (2018). In the sequel, we also denote its

density by fν(u; γ) and its inverse by Qν(t; γ). Fν0(u) and fν0(u) are used for Fν(u; γ0) and

fν(u; γ0).

The following regularity conditions will be assumed throughout the paper.

Condition 1. The latent error terms (ε, ν) are independent of (X,W ). The probability

Pr{D = 1} is bounded away from zero.

Condition 2. The random variable Y and each coordinate of X have bounded sec-

ond moments. We also assume the centered error term ε satisfies the moment bound

E[ε2|X,W ] ≤ σ2
0 a.s., and there exists a finite r > 3 such that E|ε|r ≤ ∞.

Condition 3. There exists a local neighborhood N0 around γ0 such that for any γ ∈ N0,

W ′γ is a non-degenerate random variable conditional on X.

Condition 4. The true regression parameters β0 and γ0− belong to the interior of some

compact sets in Rp and Rq−1, respectively.

Condition 5. The true monotone control function λ0 is continuously differentiable with

its derivative denoted by λ̇0(·).

Condition 6. The function Fν(·; γ) has a continuous positive derivative for all γ. More-

over, the function Fν(u; γ) is twice continuously differentiable with respect to u on the

interior of its support for all γ in the parameter space. The density fν(u; γ) and con-

ditional expectations E[W−1|W ′γ = u] and E[W−1W
′
−1|W ′γ = u] are twice continuously

differentiable with respect to u. The functions γ 7→ fν(u; γ), γ 7→ E[W−1|W ′γ = u], and

γ 7→ E[W−1W
′
−1|W ′γ = u] are continuous functions for u in the definition domain and all

γ in the parameter space. The matrices E[XX ′|D = 1] and Hγ are of full rank.

Condition 7. Denote the conditional mean functions by χ(u) ≡ E[X|D = 1,W ′γ0 = u]

and $(u; γ) ≡ E[W−1|W ′γ = u]. Assume that χ ◦ λ−1
0 (s) is Lipschitz continuous and

Ψ(t; γ) = $ ◦ Qν(t; γ) is Lipschitz continuous for any γ with the Lipschitz constant inde-

pendent of γ.

Most of our assumptions are standard and adapted from Ichimura (1993), Klein and

Spady (1993), Huang (2002), Heckman and Vytlacil (2007b), Groeneboom and Hendrickx

(2018), and Newey (2009). The main novelty is that we do not require sub-exponential

tails on the centered errors, compared with Mammen and Yu (2007) and Cheng (2009).

The weaker moment restriction in Condition (2) brings two extra steps in establishing

the convergence rate. First, we rely on the Montgomery-Smith inequality to establish

the stochastic boundedness of λ̂n (Han and Wellner, 2018) instead of using the rough
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union bound under sub-exponential tails. Second, employ a truncation argument similar

to Chen and Shen (1998) and Kuchibhotla and Patra (2019) in the peeling argument for the

empirical process involved. In order to handle the unbounded part, we need a precise control

on the local envelope for the monotone function from Giné and Koltchinskii (2006); Han

and Wellner (2018). The uniform bound on the conditional heteroskedasticity in Condition

(2) allows us to convert the entropy integral for the underlying partial linear function to

the one that works for the process involving the multiplier ε. This condition cannot be

easily dispensed with, considering the impossibility result in Han and Wellner (2019). The

imposed (higher than the third-order) moment condition on the error term guarantees a

cubic root (modulo the logarithm term) rate for the monotone function, otherwise the rate

can be slower depending on the tail; see Han and Wellner (2018); Kuchibhotla and Patra

(2019). Another condition that we want to emphasize concerns the exclusion restriction

of W in Condition (3). We strengthen the identification condition (A-2) in Heckman and

Vytlacil (2007b) to ensure that any linear combination W ′γ is a non-degenerate random

variable conditional on X for γ in a local neighborhood N0 around γ0, not just for the

true linear index W ′γ0. Recall the estimated λ̂n is not differentiable, so this technical

requirement is needed to obtain the consistency and convergence rates for the parameters

in the outcome equation given the first stage estimate γ̂n; see the details in our proof of

Lemma S6.

As our first step estimation follows from Groeneboom and Hendrickx (2018), we state

asymptotic results of γ̂n and F̂nν(·; γ) in the following lemma . We provide a separate proof

in the supplementary notes that allows for the large support of V = W ′γ0. This is made

possible under the global Lipschitz condition, which is similar to condition (A3) in Huang

(2002). The large support condition is important for the identification purpose regarding

the first-stage binary choice model10.

Lemma 4.1. Under Conditions 1 to 7, we have

(4.3) n1/2 (γ̂n− − γ0−)⇒ N(0, Vγ),

where Vγ is equal to A−1BA−1 with

A = E
[
fν0(−W ′γ0) {W−1 − E[W−1|W ′γ0]}⊗2

]
and(4.4)

B = E
[{

(Fν0(−W ′γ0)− D̄)(W−1 − E[W−1|W ′γ0])
}⊗2
]
.(4.5)

Also, one gets

(4.6)

(∫ (
F̂nν(−w′γ̂n; γ̂n)− Fν0(−w′γ0)

)2

dFW (w)

)1/2

= Op(log n× n−1/3).

10We want to thank one anonymous referee for suggesting this extension.
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Our first main theorem in this section shows the consistency of (β̂n, λ̂n) and gives a

crude yet fast enough rate to establish the asymptotic normality in Theorem 4.2. For the

nonparametric component, we use the following L2 norm to metrize its convergence:

(4.7) ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖≡
(∫ (

λ̂n(w′γ̂n)− λ0(w′γ0)
)2

fW |D=1(w)dw

)1/2

,

where fW |D=1(·) is the conditional density of W given D = 1.

Theorem 4.1. Suppose Conditions 1 to 7 hold, then one has the following result:

(4.8) |β̂n − β0|+ ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖= Op(n
−1/3 log n).

The preceding result regarding the convergence of the control function is stated de-

pending on the estimated γ̂n. The next statement decouples λ̂n and γ̂n, so it implies the

uniform convergence of λ̂n to λ0 over a given compact set within the interior of the support.

The proof follows from the same argument as in Corollary 5.3 of Baladbaoui, Durot, and

Jankowski (2019) with proper adjustment on the range for ωn, as the first-stage estimator

γ̂n converges at the root-n rate.

Lemma 4.2. Let [v, v̄] denote a given bounded interval in the support of V = W ′γ0. Assume

the conditional density function of W given D = 1 is uniformly bounded from below by a

positive constant q in [v, v̄]. Then we get

(4.9)

(∫ v̄−ωn

v+ωn

(
λ̂n(v)− λ0(v)

)2

dv

)1/2

= Op(n
−1/3 log n)

for all sequences of ωn such that n1/2ωn →∞ and v + ωn ≤ v̄ − ωn.

Remark 4.1. There are general results on establishing consistency and rate of convergence

for two-step semiparametric estimation methods (Chen, Linton, and Van Keilegom, 2003;

Chen, Lee, and Sung, 2014); however, these results are not directly applicable to our sce-

nario mainly because the estimated control function is not smooth. Specifically, Theorem

2 in Chen, Linton, and Van Keilegom (2003) focused on the case where the second stage

estimates converge at the root-n rate. Furthermore, since our estimated control function is

not differentiable and cannot be directly separated from the first stage estimation, Condi-

tion (B.4) in Lemma B.1 of Chen, Lee, and Sung (2014) is hard to verify in our context.

To exemplify the challenge from a different perspective, the consistency proof in Cosslett

(1991) relied on the sample-splitting trick in which the selection and outcome equations are

estimated using separate subsamples. A rigorous proof based on the full sample is absent in

Cosslett (1991).
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Remark 4.2. The cubic-root rate in Lemma 4.2 seems to suggest that the control function is

estimated with a slower rate than the kernel competitor; refer to Pagan and Ullah (1999) and

Li and Racine (2007). In standard sample selection problems, the primary interest is on the

regression coefficient β0, whereas the control function λ0 is included only to control for the

selection bias, as its name suggests. We emphasize that the cubic-root rate for the control

function is obtained without assuming its second-order differentiability, which is needed

for kernel/sieve estimators to achieve the rate of Op(n
−2/5). In fact, the shape-restricted

estimators match the minimax rate for the first-order differentiable monotone functions;

see Chapter 6 in Groeneboom and Jongbloed (2014). Also, the smoothness conditions on

the marginal distribution Fν or the control function λ0 in Conditions 5 and 6 are only used

for establishing the asymptotic normality of finite dimensional parameters and they are not

required for the consistency of our estimator. In contrast, the smoothness assumption is

the foundation of any kernel smoothing method. Finally, we show that a rate like Op(n
−2/5)

can be achieved under the convex constraint for the extension in Section 5.2.

The next corollary states that the SSR associated with a decreasing or increasing control

function is informative about the direction of the selection bias.11The comparison of two

SSRs therefore provides a data-driven way to check whether the control function is de-

creasing or increasing, which complements the prior knowledge of the researcher about the

selection direction. Naturally, one would pick the model that fits the data better. When

the selection pattern is completely unknown, the kernel or sieve approach without shape

restrictions is probably more suitable.

Corollary 4.1. For the true control function being decreasing, i.e., λ0 ∈ D, let (β̃In , λ̃
I
n)

be the estimated regression coefficient and control function obtained from (3.3) with (β ∈
B, λ ∈ I), i.e., λ is restricted to be an increasing function in that optimization problem.

Let SSRD and SSRI be

SSRD ≡
n∑
i=1

Di[Yi −X ′iβ̂n − λ̂n(W ′
i γ̂n)]2, SSRI ≡

n∑
i=1

Di[Yi −X ′iβ̃In − λ̃In(W ′
i γ̂n)]2,

under the correct specification and misspecification, respectively. Then we have SSRI ≥
SSRD with probability approaching 1 as n→∞.

The large sample property of β̂n is more complicated and is our main focus. Unlike the

setup in Newey (2009) or Li and Wooldridge (2002), where the nonparametric control func-

tion is subject to certain smoothness restrictions, the control function is estimated using

the monotonicity restriction in the outcome equation for our model. As a consequence, the

estimated control function λ̂n(·) is piecewise constant with random jump locations and it

11We would like to thank Yu-chin Hsu for this point.
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is not differentiable. The crux of our proof is to determine the asymptotic contribution of

the estimated γ̂n to β̂n based on the characterization of the isotonic regression for partial

linear models (Huang, 2002; Mammen and Yu, 2007; Cheng, 2009) and the empirical pro-

cess theory (Groeneboom and Hendrickx, 2018; Han and Wellner, 2018).

Theorem 4.2 (Asymptotic Normality). Suppose Conditions 1 to 7 hold, then we get

(4.10)
√
n
(
β̂n − β0

)
⇒ N(0, Vβ),

where

Vβ ≡ H−1
β

(
Σ +HγVγH

′
γ

)
H−1
β

and Vγ is the asymptotic covariance matrix for γ̂n− in Lemma 4.1.

Remark 4.3. The asymptotic variance matrix for β̂n takes the generic form of the two-step

estimator in Newey (2009). The first part, H−1
β ΣH−1

β , is the asymptotic covariance of an

oracle estimator assuming that γ0 is known (the shape restriction on λ0 does not alter this

part), whereas H−1
β HγVγH

′
γH
−1
β captures the effect from estimating γ0 in the first stage. The

use of Groeneboom and Hendrickx (2018) in the first stage estimation results in a larger Vγ

than the efficient Klein-Spady estimator. Apart from the trimming issue related to the effi-

cient score function (3.5), our Monte Carlo results in Section S.4 show that the efficiency

gain from the Klein-Spady estimator only actualizes with the cross-validated bandwidth from

Härdle, Hall, and Ichimura (1993) in very large sample, which unfortunately incurs sig-

nificant computation burden. Note that the generic two-step procedures fail to achieve the

semiparametric efficiency bound for sample selection models. A fully efficient method has

to be based on maximizing the (smoothed) joint likelihood function combining both selection

and outcome equations or the one-step update of the efficient score function using a pilot

root-n consistent estimator (Chen and Lee, 1998). Nonetheless, the inefficiency does not

hinder the popularity of two-step procedures in applications.

4.2. Validity of the Selectivity Test

Let Hn be the distribution function of Tn and H∗n be the (conditional) distribution func-

tion of T ∗n,b given the observations (Yi, Di, X
′
i,W

′
i )
n
i=1. Furthermore, we define the vector

ε = (ε1, · · · , εn)′. For two distribution functions, F1 and F2, the Lévy distance dL is defined

as

dL(F1, F2) ≡ inf{η > 0 : F1(x− η)− η ≤ F2(x) ≤ F1(x+ η) + η, ∀x ∈ R}.

The Lévy distance metrizes the weak convergence (Shorack and Wellner, 2009).
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Theorem 4.3. Assume Conditions 1 to 7 hold. Also, suppose the centered error term ε

satisfies that σ2
1 ≡ E[ε2|D = 1] > 0 and the moment bound in Condition 2 holds with r ≥ 4,

then we have

(4.11) dL(Hn, H
∗
n)→ 0 a.s..

A direct consequence of the above theorem is the validity of using the bootstrap crit-

ical value (Lemma 23.3 in Van Der Vaart (1998)). The lower p-th quantile of bootstrap

distribution is denoted by the quantity cnp.

Corollary 4.2. Under the null hypothesis, for any α ∈ (0, 1), we have

(4.12) Pr{Tn > cn,1−α} → α, as n→∞.

We analyze the power property of our test against the alternative hypothesisH1 : λ0 ∈ D\
C. To facilitate the presentation, we denote ξ ≡ (ξ1, · · · , ξn)′ ≡ (X ′1β+λ(W ′

1γ), · · · , X ′nβ+

λ(W ′
nγ))′. Let the projections to the null and alternative spaces be ξS0 and ξS1 , respectively.

Theorem 4.4. For any sequence {λ0,n} ∈ D \ C, if the following conditions hold:

(4.13) lim
n→∞

‖ Y − ξS0 ‖2
n,D

n
= c0 and lim

n→∞

‖ ξS0 − ξS1 ‖2
n,D

n
= c1,

for some positive constant terms c0 and c1, then

(4.14) Pr{Tn > cn,1−α} → 1, as n→∞.

When the control function is constant, the isotonic estimator is still consistent. In fact,

the rate of convergence is almost close to the parametric root-n rate as demonstrated by

Example 3 from Kuchibhotla and Patra (2019) when the underlying function is (piecewise)

constant, leading to Tn = op(1) under the null hypothesis. On the other hand, the Tn is

bounded away from zero under the alternative hypothesis for functions deviating from the

constant in a non-trivial way. The latter condition is formalized by the second equation in

(4.13), which is also needed in studying the power properties of related tests in Sen and

Meyer (2017).

5. Extensions

To demonstrate the versatility of the methodology, we discuss extensions in two direc-

tions: a two-period panel selection model and the convex restriction on the control func-

tion. Both extensions can be implemented by the algorithm of Groeneboom and Hendrickx

(2018) as Stage 1 and that of Meyer (2013) as Stage 2. Therefore, no additional complica-

tion occurs in terms of the computation. The precise regularity conditions and proofs are

relegated to the supplementary notes for space restriction.
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5.1. The Panel Selection Model

We consider a simple two-period panel data model in Kyriazidou (1997):

Y ∗it = X ′itβ0 + αi + εit;(5.1)

Dit = I{W ′
itγ0 + ηi + νit > 0}.

We only observe the dependent variable for the selected sample with Dit = 1,; i.e., Yit =

Y ∗itDit for i = 1, · · · , n and t = 1, 2. There is no parametric assumption on any unobserved

error term in our model. In order to use the control function approach, we make the

following assumptions regarding the latent errors (εit, νit) and unobserved heterogeneity

terms (αi, ηi).

Condition 8. For t = 1, 2, RTI(εit|νit) holds for all i = 1, 2, ..., n. The individual hetero-

geneity ηi in the selection equation is independent of Wi and νit. The latent error εit is

independent of νit′ given νit for t 6= t′.

Thereafter, we have the following identity:

(5.2) E[Yi1 − Yi2|Di1 = 1, Di2 = 1,Wi] = (Xi1 −Xi2)′β0 + λ01(W ′
i1γ0)− λ02(W ′

i2γ0),

where

(5.3) λ0t(W
′
itγ0) =

∫
E[εit|νit > −W ′

itγ0 − ηi]dFη(ηi) for t = 1, 2,

where Fη(·) stands for the distribution of ηi. By Condition 8 and Theorem 2.1, E[εit|νit >
−W ′

itγ0 − ηi] is decreasing in W ′
itγ0 for any ηi. Integrating out ηi does not alter the

monotonicity, so the exact same monotone restriction is inherited by the control functions

λ0t(W
′
itγ0) for t = 1, 2.

Our assumptions regarding the heterogeneity terms are stronger than Kyriazidou (1997),

but weaker than Wooldridge (1995) in the sense that αi in the outcome equation is a fixed

effect that can depend on covariates and ηi in the selection equation is a random effect that

is independent of covariates and other error terms. In comparison, the model considered

by Kyriazidou (1997) imposes no restriction on the dependence structure of latent error

terms (nor on the relationship between error and covariates), whereas the heterogeneity ηi

is excluded from the selection equation in the model of Wooldridge (1995).

Our estimation procedure can be easily adapted to the panel data setting as follows. In

the first stage, we once again apply the method from Groeneboom and Hendrickx (2018)

to selection equations in both time periods separately to obtain γ̂nt with t = 1, 2. Given
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γ̂nt, we estimate β0 and λ0t(·) under the shape restriction for λt:

(5.4) (β̂n, λ̂n1, λ̂n2) = arg min
β∈B,λ1,λ2∈D

∑
Di1=Di2=1

[∆Yi −∆X ′iβ − λ2(W ′
i2γ̂n2) + λ1(W ′

i1γ̂n1)]
2
,

where ∆Yi ≡ (Yi2 − Yi1) and ∆Xi ≡ (Xi2 −Xi1) denote differenced random variables.

The following theorem explores the additive structure in (5.2) to establish the root-n

consistency and asymptotic normality of our estimator for the outcome equation, in line

with the work on additive isotonic regression (Cheng, 2009; Mammen and Yu, 2007; Han

and Wellner, 2018). Although the assumption about latent errors in Kyriazidou (1997) is

weaker, her estimator converges slower than the standard root-n rate.

Theorem 5.1. Suppose Conditions P.1-P.7 in the supplementary notes hold, then we get

(5.5)
√
n
(
β̂n − β0

)
⇒ N(0, V P

β ),

where the asymptotic covariance matrix V P
β is found in Section S3.

5.2. The Convexity Restriction

Convexity (or concavity) frequently arises as a consequence of economic models (Matzkin,

1991; Chetverikov, Santos, and Shaikh, 2018). The class of convex control functions is more

regular (in terms of the model complexity or its entropy bound) than the monotone class,

which leads to the improved convergence rate. A complete characterization of the convexity

of control functions is beyond our scope and deserves a thorough investigation in a separate

paper. Nonetheless, leading examples of this class include the original Heckman selection

model with joint normal errors, the t-selection model in Marchenko and Genton (2012, see

their Figure 2), and a quadratic extension of Olsen (1980) in the spirit of Brinch, Mogstad,

and Wiswall (2017); see Example 1 in Brinch, Mogstad, and Wiswall (2017).

Referring to the semiparametric estimation, we only have to modify Stage 2, i.e., equation

(3.3) by running the least squares estimator under the convexity restriction for λ:

(5.6) (β̃n, λ̃n) = arg min
β,λ

∑
Di=1

[Yi −X ′iβ − λ(W ′
i γ̂n)]

2
.

Although the algorithm for (5.6) exists in Meyer (2013), to the best of our knowledge, the

asymptotic property for the convex restricted partial linear model has not been established

even for the case without the generated regressors from Stage 1. Theorem 5.2 establishes

the asymptotic result that takes into account the effect of Stage 1.

Theorem 5.2. Suppose Conditions C.1-C.7 in the supplementary notes hold, then we get

(5.7)
√
n
(
β̃n − β0

)
⇒ N(0, Vβ),
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where the asymptotic variance Vβ is the same as in Theorem 4.2.

Typically, the shape restriction on the nonparametric component, such as monotonicity

or convexity, does not change the influence function or the efficiency bound for the finite

dimensional parameter in the model (Tripathi, 2000). However, the characterization of the

least squares estimator under the convex restriction is more complicated (Groeneboom,

Jongbloed, and Wellner, 2001) and requires considerable effort in the proof. See Section

S3.2 of the supplementary notes for details.

6. Monte Carlo Simulations

In this section, Monte Carlo simulations are conducted to evaluate the finite sample

performances of the proposed estimator assuming a monotone control function. We refer to

it as the “MCF” estimator. Two alternative procedures are considered for comparison: the

Heckman’s two-step estimator (Heckit) and a kernel-based estimator that treats the control

function as completely unknown and does not impose any monotonicity restriction. We

consider the kernel-based estimator that combines the estimator of Klein and Spady (1993)

for the selection equation and Robinson (1988) for the outcome equation, as empirical

researchers often do; see Schafgans (1998, 2000).

We consider the following simulation design:

Y ∗i = βXi + εi, Di = I{−1 + W̃1i + γ2W̃2i + γ3Xi + νi > 0}, Yi = Y ∗i Di,(6.1)

where β = 1, γ2 = −2, and γ3 = 0.25. Let Xi follow the standard normal distribution, W̃1i

follow the uniform distribution on [−
√

3,
√

3], and W̃2i follow the exponential distribution

with a unit variance. Three different joint distributions of (ε, ν) are considered: DGP

I sets a bivariate normal distribution with standard normal margins and the correlation

coefficient ρ = 0.9. DGP II and III specify (ε, ν) in the form of a normal mixture according

to Example 2.4:[
ε

ν

]
∼ πN

([
µ1

µ1

]
,

[
σ2 ρσ2

ρσ2 σ2

])
+ (1− π)N

([
µ2

µ2

]
,

[
σ2 ρσ2

ρσ2 σ2

]
× 152

)
,

where π = 0.9, σ = 0.25, and ρ = 0.9. DGP II sets µ1 = µ2 = 0 while DGP III sets µ1 = 0.1

and µ2 = −0.9, which generates skewed distributions of ε and ν. Simulation results are

based on 1, 000 replications with sample size n = 1, 000, 2, 000, and 5, 000.
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For the kernel-based estimator, we examine its performance using various bandwidth

selectors. In the first stage, we implement Silverman’s rule of thumb12 and the cross-

validation bandwidth selector (Härdle, Hall, and Ichimura, 1993). For the second stage,

in addition to the rule of thumb and cross-validation bandwidth selectors (applied to local

linear regressions to obtain the estimates of E[Y |D = 1,W ′γ0] and E[X|D = 1,W ′γ0]

prior to the OLS step in Robinson (1988)), we also include Ruppert, Sheather, and Wand

(1995)’s plug-in estimate of the MSE-optimal bandwidth (for local linear regressions) and

Linton (1995)’s optimal bandwidth based on the second order approximation to the partial

linear model. In terms of the computation time, the MCF estimator is considerably faster

than the kernel estimator with the cross-validation bandwidth selector. For example, one

replication in DGP II with sample size n = 2, 000 takes about 6 seconds on a 2.10-GHz

Intel Xeon-E5 processor with 32 GB of RAM when using the former. On the other hand,

it takes 50 seconds when using latter. The respective computation time becomes about 35

and 320 seconds when the sample size increases to 5, 000. We refer interested readers to

Section S.4 in the supplementary notes for more explanations regarding the computation

gap.

Table 1 reports the bias, standard error (SE), and root mean square error (RMSE) of

estimators for the second stage coefficient β, which is the main focus of the sample selection

model.13 The following observations are made. First, both MCF and kernel estimators

perform reasonably well in all three DGPs. Heckman’s two-step estimator dominates other

methods when the joint normality assumption holds, as in DGP I. However, it yields

substantially larger bias and MSE than the other estimators in DGPs II and III, once the

error distributions deviate from the joint normality. Second, in DGP I, the finite sample

SE and RMSE of the MCF estimator are only marginally larger than Heckman’s two-

step estimator, suggesting that the efficiency loss of MCF is fairly small when Heckit is

correctly specified. Third, the MCF estimator yields smaller SE and RMSE than all kernel

estimators in DGPs II and III. In DGP I, the MCF estimator yields similar SE and RMSE

as most kernel estimators, except for the one using rule-of-thumb bandwidths. However, the

performance of the MCF estimator dominates the rule-of-thumb in all aspects when it comes

to DGPs II and III. Fourth, in terms of bias, the MCF estimator is comparable to the kernel

estimator with the plug-in bandwidth in DGPs II and III. Its bias is also similar to the one

using the cross-validation bandwidth when n = 1, 000, whereas the bias of the latter greatly

decreases for larger sample sizes. In DGP I, on the other hand, kernel estimators generally

12For (γ2, γ3) taking the value (c2, c3), the bandwidth is 2.78σ̂1n
−1/5, where σ̂1 is the sample standard

deviation of {W̃1i + c2W̃1i + c3Xi}ni=1.
13The supplementary notes (Section S4) discuss the first stage estimators for γ2 and γ3 and confirms the
robust performance of the NPMLE-based estimator (Groeneboom and Hendrickx, 2018) used in the first
stage of the MCF.
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exhibit smaller bias than the MCF estimator. Finally, there is no clear-cut winner among

different bandwidth selectors. For instance, the rule-of-thumb bandwidth outperforms the

others in DGP I, but its performance deteriorates significantly when it comes to DGPs II

and III. In particular, for DGPs II and III, rule-of-thumb bandwidth yields the largest MSE

among all semiparametric estimators when sample sizes n = 2, 000 and 5, 000. In addition,

although the cross-validation bandwidth selector is frequently adopted in empirical studies

(Schafgans, 1998, 2000), Table 1 finds it being outperformed by the plug-in bandwidth in

terms of SE and RMSE on several occasions, such as in DGPs II and III when n = 1, 000

and 2, 000. This is consistent with the evidence from Ruppert, Sheather, and Wand (1995)

for estimating the conditional means. It is worthwhile highlighting that Linton (1995)’s

second-order optimal bandwidth constantly produces smaller bias than all other estimators

including our MCF, although its overall RMSE is on a par with other methods. One

possible explanation is that the original focus of Linton (1995) is the partial linear model

without generated regressors from the first stage estimation.

In sum, the simulation results demonstrate encouraging performances of the MCF esti-

mator, which incorporates the monotonicity restriction into the estimation procedure. This

echoes one of the main drives of embedding shape restrictions in estimation with improved

finite sample behaviors (Chetverikov, Santos, and Shaikh, 2018). In the same vein, it is

also beneficial to incorporate shape restrictions in addition to the smoothness conditions

for kernel or sieve estimators; see Case 2.2 of Chen and Shen (1998) and Chapter 8 in

Groeneboom and Jongbloed (2014). For instance, Coppejans (2007) found notable im-

provement in simulation performance when the monotonicity restriction was incorporated

into the B-spline estimator for other semiparametric models. In comparison, the relative

performance of the kernel-based estimator depends on the bandwidth selector and also

varies with underlying DGPs and sample sizes. In theory, the root-n consistency and as-

ymptotic normality for the finite dimensional parameters hold for a wide range of tuning

parameters (Robinson, 1988; Newey, 2009; Li and Wooldridge, 2002); however, the set of

tuning parameters obviously matters regarding the finite sample performance. There is no

unanimously dominating choice when it comes to the optimal version. It will not be sur-

prising if the ranking among different choices changes under some other DGPs. Free from

this type of bandwidth selection, the reliable performance of the MCF estimator shows its

potential as a viable tool for applied researchers.

7. An Empirical Application: US Female Wage Equation

This section applies our method to estimate the female wage equation, using the Merged

Outgoing Rotation Groups (MORG) of the CPS for the year 2013. We focus on white
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Table 1. Finite sample performances of the MCF, Heckman’s two-step
(Heckit), and kernel-based semiparametric estimators for the second stage
coefficient β0 (true value = 1). DGP I: jointly normal errors; DGP II & DGP
III: non-normal errors.

Methods Heckit MCF Kernel-based (Klein-Spady + Robinson)
(bandwidths) (CV,CV ) (CV, PI) (CV, 2ord) (ROT,ROT )

DGP I
n = 1000 Bias .0024 .0076 -.0019 -.0026 .0005 .0007

SE .0487 .0502 .0508 .0512 .0507 .0495
RMSE .0487 .0507 .0509 .0513 .0507 .0495

n = 2000 Bias -.0010 .0054 -.0019 -.0020 -.0006 .0007
SE .0337 .0346 .0352 .0353 .0348 .0342

RMSE .0337 .0350 .0353 .0354 .0348 .0342
n = 5000 Bias .0008 .0037 -.0008 -.0008 -.0004 .0004

SE .0220 .0225 .0228 .0228 .0227 .0223
RMSE .0220 .0228 .0228 .0228 .0227 .0223

DGP II
n = 1000 Bias .0660 .0152 -.0146 -.0196 .0110 .0397

SE .1773 .1523 .1700 .1634 .1638 .1649
RMSE .1892 .1531 .1706 .1646 .1642 .1696

n = 2000 Bias .0765 .0162 -.0040 -.0089 .0125 .0374
SE .1251 .1061 .1131 .1117 .1125 .1156

RMSE .1467 .1073 .1131 .1120 .1132 .1215
n = 5000 Bias .0681 .0091 -.0040 -.0092 .0042 .0197

SE .0735 .0626 .0656 .0663 .0651 .0646
RMSE .1002 .0633 .0658 .0669 .0652 .0675

DGP III
n = 1000 Bias .0649 .0153 -.0187 -.0238 .0092 .0360

SE .1724 .1468 .1628 .1546 .1574 .1603
RMSE .1843 .1476 .1639 .1565 .1577 .1643

n = 2000 Bias .0763 .0163 -.0038 -.0097 .0108 .0334
SE .1216 .1009 .1119 .1100 .1097 .1108

RMSE .1436 .1022 .1119 .1105 .1103 .1157
n = 5000 Bias .0676 .0086 -.0046 -.0100 .0036 .0173

SE .0722 .0607 .0639 .0639 .0638 .0634
RMSE .0989 .0613 .0641 .0646 .0639 .0657

Note: CV : cross-validation bandwidth; PI: Ruppert, Sheather, and Wand (1995)’s plug-in
estimate of the MSE-optimal bandwidth; 2ord: Linton (1995)’s optimal bandwidth based on the
second order approximation; ROT : rule-of-thumb bandwidth.

married women in the southern region of the United States who are between 25 and 54

years old and have at least a high school education. The dependent variable Yi represents

the i-th woman’s hourly wage (in logarithms) and Di indicates whether she works at least 35

hours a week (full-time worker). Exogenous variables, Wi, entering the selection equation
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are: potential experience (divided by 10) and its square, four education level dummies

for some college, associate degree, bachelor degree and advanced degree, and number of

children in three age ranges (0 to 2, 3 to 5 and 6-13). The construction of variables follows

from Huber and Melly (2015). The last three variables concerning number of children are

excluded from the wage offer equation. The sample size is 8,327, among which 2,285 are

full-time workers.14

Table 2 presents the estimated coefficients in the wage equation and the p-values for the

selection bias tests using three methods: Heckit, MCF, and the kernel-based semiparamet-

ric estimator. For the kernel estimator, we consider bandwidths chosen by cross-validation

(KernelCV ) and plug-in (KernelPI) methods, respectively. In the current setup, it is rea-

sonable to assume that the motivation to work positively contributes to the earnings. Then

by the example in Remark 2.1, the errors in the selection and outcome equations are likely

to satisfy RTI, which motivates the application of the MCF estimator with the decreasing

control function. This assumption is also supported by inspecting Figure 2, which plots

the estimates of the control function given by three approaches (the kernel estimator in

Figure 2 refers to KernelCV ). It shows that the kernel estimate of the control function

exhibits a decreasing shape and lies very closely to the MCF estimate. In addition, the

comparison of SSRs associated with the increasing and decreasing control functions (Corol-

lary 4.1) also favors the decreasing direction. In particular, the SSR associated with an

increasing control function is 680.0, whereas its decreasing counterpart is 674.6. In Table

2, the point estimates of the MCF approach are similar to the kernel-based estimators,

and both differ from the Heckit to some extent. This suggests that the joint normality

may be too restrictive for the dataset. To check the validity of Heckit, we conduct the

LM-type test for the normality assumption in the Probit model (Bera, Jarque, and Lee,

1984) of the selection equation. It strongly rejects the marginal normality of ν (with the

p-value ≈ 0), and hence refutes the Heckit specification. When comparing MCF with the

two kernel estimates, on one hand, we find that in terms of the point estimation, MCF is

closer to KernelCV (which exhibits smaller bias in large sample in our Monte Carlo) than

to KernelPI , especially for the coefficients on Exp and Exp2. On the other hand, where

the length of the bootstrap confidence interval is concerned, MCF is similar to KernelPI

and both are shorter than KernelCV . This agrees with our simulation findings with the

relatively small SEs of MCF and KernelPI . In particular, the confidence interval of MCF is

the shortest among the three semiparametric methods. The coefficients on Exp, Exp2, and

Associate are significant at 5% level in the MCF and KernelPI estimates, which implies an

increasingly concave experience-earning relationship and the significantly positive effects

14For our sample and variable choices, the independence assumption between (εi, νi) and Wi in model (1.1)
is not rejected by the quantile-based test of Huber and Melly (2015).
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Table 2. Wage equation for married women. Total number of observed =
8,327; number of working observed =2,285. 95% confidence intervals are in
the brackets.

Heckit MCF KernelCV KernelPI

Exper -.107 .281 .300 .434
[-.392, .178] [.089, .408] [ -.023, .776] [.142, .555]

Exper2 .026 -.051 -.059 -.085
[-.041, .093] [-.079, -.010] [-.168 , .030] [-.110, -.023]

Some college .275 .214 .247 .212
[.122, .428] [.161, .284] [.027 .444] [.149, 288]

Associate -.011 .153 .151 .164
[-.191, .168] [.083, .222] [-.032, .473] [.084, .239]

Bachelor .271 .295 .299 .290
[.109, .434] [.229, .366] [.054, .530] [.202, .374]

Advanced .394 .284 .300 .265
[.230, .559] [.179, .375] [.054, .617] [.086, .395]

Selection bias test (p-value) .002 .023 .041 .021

Note: The MCF estimation and testing assume a decreasing control function. Bandwidths for the

kernel estimators are chosen by cross-validation in KernelCV , and by plug-in method (Ruppert,

Sheather, and Wand, 1995) in KernelPI . The 95% confidence intervals in the last two columns

and the p-value for the MCF are calculated from 1, 000 bootstrap replications.

of all four education level dummies. To test for the presence of labor market selection, we

conduct the t-test based on Heckman’s selection model, our selectivity test in Section 3.2,

and a kernel-based test in the spirit of Christofides, Li, Liu, and Min (2003). As the last

row of Table 2 shows, all methods unanimously reject the null hypothesis of no sample

selection. Overall, this example illustrates that the bandwidth choice matters in the esti-

mation and inference using the kernel-based method. In the same spirit of the literature

on shape restriction (Chetverikov, Santos, and Shaikh, 2018), our method yields a fitted

model that is more amenable to the interpretation of a positive selection bias in women’s

labor market participation.

8. Conclusion

This paper proposes a semiparametric sample selection model with a monotonicity con-

straint on the selection correction function. Non-random selection is both a source of bias

in empirical research and a fundamental aspect of many social processes. The popularity of

Heckman’s two-step procedure to correct selectivity bias is witnessed by its profound im-

pact on all of these fields; Heckman (1979) has received more than 32,200 Google Scholar
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Figure 2. The estimated control function λ̂(γ̂′W )

citations at the time of writing. Lying between the original Heckman selection model

and the semiparametric selection model (Robinson, 1988; Newey, 2009; Das, Newey, and

Vella, 2003; Ahn and Powell, 1993) where the control function is completely unknown, our

new sample selection model imposes no parametric distributional assumptions and deliv-

ers automatic semiparametric estimation and testing. Therefore, the proposal shares the

generality of semiparametric approaches while keeping the main convenience of parametric

methods as its implementation is free from any tuning parameter selection.

9. Appendix: Proofs of Main Results

For two sequences an, bn, we write an . bn if an ≤ bn for some positive finite M indepen-

dent of n. We denote an � bn if both an . bn and bn . an hold.

Proof of Theorem 2.1. Let the conditional distribution Fε|ν>t(s) and conditional survivor

function F̄ε|ν>t(s) denote Pr{ε ≤ s|ν > t} and Pr{ε > s|ν > t}, respectively. The defini-

tion of RTI directly states that F̄ε|ν>t(s) is an increasing function of t and Fε|ν>t(s) is a

decreasing function for any s. Therefore,
∫ +∞

0
F̄ε|ν>t(s)ds is increasing and

∫ 0

−∞ Fε|ν>t(s)ds
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is decreasing with respect to t. The following formula is the key for our purposes:

(9.1) E[ε|ν > t] =

∫ +∞

−∞
sdFε|ν>t(s) =

∫ +∞

0

F̄ε|ν>t(s)ds−
∫ 0

−∞
Fε|ν>t(s)ds.

See Shorack (2000, Chapter 6, Proposition 4.2) for the second equality. Combining the

results attached to those two terms on the right hand side of equation (9.1), it is evident

that the control function λ(t) = E[ε|ν > −t,W ] is decreasing with respect to t. �

Proof of Theorem 4.1. We use the short-hand notations θ0 = (β0, λ0(·)) and θ̂n = (β̂n, λ̂n(·)).
Regarding the outcome equation, we denote the function fθ,γ = x′β + λ(w′γ), with β ∈ B

and λ ∈ D and we abbreviate fθ0,γ0 as f0 = x′β0 + λ0(w′γ0).

By definition of (β̂n, λ̂n), we get P1n[Y −X ′β̂n−λ̂n(W ′γ̂n)]2 ≤ P1n[Y −X ′β0−λ0(W ′γ̂n)]2,

which leads to

P1

[
(Yi −X ′iβ0 − λ0(W ′

i γ̂n))
2 −

(
Yi −X ′iβ̂n − λ̂n(W ′

i γ̂n)
)2
]

(9.2)

≤(P1n − P1)

[
(Yi −X ′iβ0 − λ0(W ′

i γ̂n))
2 −

(
Yi −X ′iβ̂n − λ̂n(W ′

i γ̂n)
)2
]
.

Thereafter, we prove in Lemma S6 that the left-hand side (l.h.s.) of inequality (9.2) can

be bounded below by (modulo some constant multiplier)

(9.3) |β̂n − β0|2+ ‖ λ̂n(w′γ̂n)− λ0(w′γ0) ‖2 −Op(n
−1).

The right-hand side (r.h.s.) of inequality (9.2) is op(1) by the Glivenko-Cantelli property

of the corresponding empirical process. The combination of (9.2) and (9.3) concludes the

consistency.

Considering the rate of convergence, we let Mnfθ,γ ≡ 2
n

∑n
i=1(fθ,γ−f0)Diεi− 1

n

∑n
i=1(fθ,γ−

f0)2Di, and Mf ≡ E[Mnf ]. Accordingly, we set d(θ, θ0; γ) ≡ −Mfθ,γ = E[D(fθ,γ − f0)2] to

be the pseudo-norm employed in the peeling argument. Also, we denote

(9.4) ζn = P1n

[
2ε(λ0(W ′γ0)− λ0(W ′γ̂n)) + (λ0(W ′γ0)− λ0(W ′γ̂n))2

]
.

It is clear that ζn = Op(n
−1) by the root-n consistency of γ̂n and standard argument, given

the first-order differentiability of λ0.

For any j ∈ N, let Fn,j ≡ {fθ,γ : 2j−1tηn ≤ d(θ, θ0; γ) < 2jtηn} ∩ Bn, where Bn is a

properly localized set that contains the estimates (β̂n, λ̂n, γ̂n) with probability approaching

1; see equation (S.8) in the supplementary notes. Then by the peeling/slicing argument,

we get

Pr
{
d(θ̂n, θ0; γ̂n) ≥ tηn

}
≤
∑
j≥1

Pr{ sup
f∈Fn,j

(Mn(f)−M(f)) ≥ 22j−2t2η2
n − |ζn|}+ o(1).
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We rely on an appropriate truncation device that depends on the envelope of the empirical

process. For this purpose, we denote the local envelope that varies on each slice by

(9.5) sup
f∈Bn:d(θ,θ0;γ)≤η

|2ε(f − f0)− (f − f0)2| ≤ U(Z; η).

Given the negligibility of ζn, we can focus on the sum of each probability term into two

parts:

PI,n ≡
∑
j≥1

Pr{ sup
f∈Fn,j

∣∣(Mn −M)(fI{U(Z; 2tjηn) ≤ Bj})
∣∣ ≥ 22j−4t2η2

n},

PII,n ≡
∑
j≥1

Pr{ sup
f∈Fn,j

∣∣(Mn −M)(fI{U(Z; 2tjηn) ≥ Bj})
∣∣ ≥ 22j−4t2η2

n},

in which the bounded part can be dealt with by the maximal inequality from Lemma 3.4.2

of Van Der Vaart and Wellner (1996):

PI,n .
∞∑
j=1

(log n)3/2

n1/2(2jtηn)3/2
+
∞∑
j=1

Bj log n

n(2jtηn)3
;

see Lemma S4. An elementary Markov inequality in Lemma S5 is applied to the unbounded

remainder with a precise control on the local envelope function by the argument in Giné

and Koltchinskii (2006) and Han and Wellner (2018):

PII,n .
nr/9

t2η2
n

∞∑
j=1

(2jtηn log n)r logr/2(1/2jtηn)

22jBr−1
j

.

By taking ηn � log n× n−1/3, Bj � 2jt, and r > 3, one gets

Pr
{
d(θ̂n, θ0; γ̂n) ≥ tηn

}
.t−3/2

∞∑
j=1

2−j/2 + t−2(log n)−2

∞∑
j=1

2−2j +
log(5r/2−2)(n)

n2r/9−2/3

∞∑
j=1

logr/2(2−jt−1)2−jt−1.

The stated rate of convergence follows by letting t→ +∞ together with Lemma S6. �

Proof of Theorem 4.2. The solution (β̂n, λ̂n) of the shape-restricted optimization is charac-

terized by a set of equality and inequality restrictions; see Robertson, Wright, and Dykstra

(1988) or Groeneboom and Jongbloed (2014). For our purposes, we only need the equality

restriction expressed via the following score functions:

Pn
[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))X

]
= 0,

Pn
[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))gn(W ′γ̂n)

]
= 0,
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where gn(·) is any piecewise constant function that has the same jump locations with λ̂n(·).
Therefore, we start with the following characterization condition for our estimator (β̂n, λ̂n):

(9.6) Pn
[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]

= 0,

as in Equations (3.3) and (3.4) of Huang (2002). Hence, one obtains

√
nE
[
D(X ′(β̂n − β0) + λ̂n(W ′γ̂n)− λ0(W ′γ0))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]

(9.7)

= Gn

[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]
,

given the fact that E[ε|W,D = 1] = 0. Regarding the r.h.s. of Equation (9.7), we use the

P-Donsker property in Lemma S7 to show that

Gn

[
D(Y −X ′β̂n − λ̂n(W ′γ̂n))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]

(9.8)

Gn

[
D(Y −X ′β0 − λ0(W ′γ0))(X − E[X|D = 1, λ−1

0 ◦ λ0(W ′γ0)])
]

+ op(1)

= Gn [ε(X − E[X|D = 1,W ′γ0])] + op(1).

Furthermore, we decompose the l.h.s. of Equation (9.7) into two terms, J1n and J2n, defined

as follows:

J1n =
√
nE
[
D(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])X ′
]

(β̂n − β0),(9.9)

J2n =
√
n
[
D(λ̂n(W ′γ̂n)− λ0(W ′γ0))(X − E[X|D = 1, λ−1

0 ◦ λ̂n(W ′γ̂n)])
]
.(9.10)

In our Lemmas S8 and S9, we prove that

(9.11) J1n = E [D(X − E[X|D = 1,W ′γ0])X ′]
√
n(β̂n − β0) + op(1 +

√
n|β̂n − β0|),

and

(9.12) J2n = E
[
D(X − E[X|D = 1,W ′γ0])λ̇0(W ′γ0)W ′

−1

]√
n(γ̂n− − γ0−) + op(1).

The linear representation for β̂n follows after collecting the leading terms in J1n, J2n:

E [D(X − E[X|D = 1,W ′γ0])X ′]
√
n(β̂n − β0)

(9.13)

=Gn [ε(X − E[X|D = 1,W ′γ0])]− E
[
D(X − E[X|D = 1,W ′γ0])λ̇0(W ′γ0)W ′

−1

]√
n(γ̂n− − γ0−)

+ op(1 +
√
n|β̂n − β0|).

Finally, referring to the linear representation of γ̂n and the fact that E[ε|D = 1,W ] = 0,

the two leading terms on the r.h.s. of Equation (9.13) are uncorrelated, which gives rise to

the particular form of the asymptotic covariance matrix in Theorem 4.2. �
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The proof of Theorem 4.3 uses the p-Mallows’ distance dp for p = 1, 2 between two

distribution functions F1 and F2, which is defined by:

dp(F1, F2) ≡ inf
J

{
[E(S,T )∼J |S − T |p]1/p : J has marginal distributions (F1, F2)

}
.

In the sequel, we make use of the fact that dL(F1, F2) ≤
√
d1(F1, F2).

Proof of Theorem 4.3. The proof follows the route in Mammen (1993) for bootstrapping

the F-type statistics. In particular, we show the numerators of test statistics in (3.6) and

(3.7) converging by the d1(·, ·) (1-Mallows’ distance), which implies the convergence in the

Lévy metric. Also, their denominators converge in probability to the same limit.

Let Ĝn be a sequence of random distribution functions of the bootstrap residuals ε∗,

where ε∗ is obtained by re-sampling the centered residual ε̂. Under the null hypothesis, the

centered error term ε has zero conditional mean given X and D = 1. By Condition 2 with

r ≥ 4, we have

‖ ε− Π(ε|S0) ‖2
n,D /n1 = E[ε2|D = 1] +Op(n

−1/2
1 ),(9.14)

‖ ε∗ − Π(ε∗|S0) ‖2
n,D /n1 = E[ε2|D = 1] +Op(n

−1/2
1 ),(9.15)

where (9.15) is obtained by the fact E∗[ε∗|D = 1] =
∑n1

i=1 ε̂
2/n1, with E∗ being the condi-

tional expectation given the data. By the projection nature of the operation, we have

(9.16) Π(Y|S0)− Π(Y|S1,γ̂n) = Π(ε|S0)− Π(ε|S1,γ̂n)

under the null hypothesis. To emphasize the dependence on the residual terms, we write

the numerators of statistics (3.6) and (3.7), our test statistics, as Wn(ε) and Wn(ε∗), so

that we have

Wn(ε) =‖ Π(ε|S0)− Π(ε|S1,γ̂n) ‖2
n,D /n1 and Wn(ε∗) =‖ Π(ε∗|S0)− Π(ε∗|S1,γ̂n) ‖2

n,D /n1.

Thereafter, one can bound n
1/2
1 Wn(ε)1/2 by

‖ Π(ε|S0)− Π(ε∗|S0) ‖n,D + ‖ Π(ε∗|S0)− Π(ε∗|S1,γ̂n) ‖n,D + ‖ Π(ε∗|S1,γ̂n)− Π(ε|S1,γ̂n) ‖n,D
≤ 2 ‖ ε− ε∗ ‖n,D +n

1/2
1 Wn(ε∗)1/2.

The analogous argument yields n
1/2
1 Wn(ε∗)1/2 ≤ 2 ‖ ε− ε∗ ‖n,D +n

1/2
1 Wn(ε)1/2. Therefore,

(9.17)
∣∣W 1/2

n (ε)−W 1/2
n (ε∗)

∣∣ ≤ 2 ‖ ε− ε∗ ‖n,D /n
1/2
1 .
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Letting L(·) denote the distribution, we have

d1(L(Wn),L(W ∗
n)) ≤ E|Wn(ε)−Wn(ε∗)|

≤
√

E
∣∣∣W 1/2

n (ε)−W 1/2
n (ε∗)

∣∣∣2 E ∣∣∣W 1/2
n (ε) +W

1/2
n (ε∗)

∣∣∣2
≤ C

√
E ‖ ε− ε∗ ‖2

n,D /n1 = Cd
1/2
2 (Ĝn, G)→ 0, a.s.,(9.18)

where the first inequality follows from the definition of the 1-Mallows’ distance (see page

64 of Shorack and Wellner (2009)), the third inequality from (9.17) and Condition 2, the

equality from Shorack and Wellner (2009, equation (2) on page 63 and Theorem 2 on page

65 therein), and the last convergence from Freedman (1981, Lemma 2.6). Note that (9.18)

implies dL(L(Wn),L(W ∗
n)) → 0, which in turn leads to the desired result when combined

with (9.14) and (9.15). �

Proof of Theorem 4.4. Under the null hypothesis that the control function is a constant

term, one can combine the proof of our Theorem (4.1) and Example 3 from Kuchibhotla

and Patra (2019) to get Tn = Op(log n/n), which leads to cn,α = o(1). Under the alternative

hypothesis, Tn converges to a positive constant in probability, giving the desired claim that

Pλ0,n{Tn > cn,α} → 1 for H1 : λ0,n ∈ D. Regarding the power property, one has

‖ ξS1 − ξS1,γ̂n ‖
2
n,D

n
→p 0,

by the Glivenko-Cantelli property of the corresponding functional, which leads to Tn →p

c1/c0, as n→ +∞, combining with the two conditions stated in Theorem 4.4. �
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Honoré, B. E., and L. Hu (2020): “Selection without exclusion,” Econometrica, 88,

1007–1029.

Horowitz, J. L., and S. Lee (2017): “Nonparametric estimation and inference under

shape restrictions,” Journal of Econometrics, 201, 108–126.

Huang, J. (2002): “A note on estimating a partly linear model under monotonicity con-

straints,” Journal of Statistical Planning and Inference, 107, 345–351.

Huber, M., and B. Melly (2015): “A test of the conditional independence assumption

in sample selection models,” Journal of Applied Econometrics, 30, 1144–1168.

Ichimura, H. (1993): “Semiparametric least squares (SLS) and weighted SLS estimation

of single-index models,” Journal of Econometrics, 58, 71–120.

Ichimura, H., and P. E. Todd (2007): “Implementing nonparametric and semipara-

metric estimators,” Handbook of Econometrics, 6B, 5369–5468.

Klein, R. W., and R. H. Spady (1993): “An efficient semiparametric estimator for

binary response models,” Econometrica, 61, 387–421.

Kuchibhotla, A. K., and R. K. Patra (2019): “On Least Squares Estimation under

Heteroscedastic and Heavy-Tailed Errors,” arXiv preprint, arXiv:1909.02088.

Kyriazidou, E. (1997): “Estimation of a panel data sample selection model,” Economet-

rica, 65, 1335–1364.



40

Lee, L. F. (1978): “Unionism and wage rates: a simultaneous equation model with qual-

itative and limited dependent variables,” International Economic Review, 19, 415–433.

(1983): “Generalized econometric models with selectivity,” Econometrica, 51,

507–512.

Lehmann, E. (1966): “Some concepts of dependence,” Annals of Mathematical Statistics,

37, 1137–1153.

Li, Q., and J. Racine (2007): Nonparametric econometrics: theory and practice. Prince-

ton University Press.

Li, Q., and J. Wooldridge (2002): “Semiparametric estimation of partially linear mod-

els for dependent data with generated regressors,” Econometric Theory, 18, 625–645.

Liao, X., and M. C. Meyer (2014): “coneproj: An R package for the primal or dual cone

projections with routines for constrained regression,” Journal of Statistical Software, 61,

1–22.

Linton, O. (1995): “Second order approximation in the partially linear regression model,”

Econometrica, 63, 1079–1112.

Maasoumi, E., and L. Wang (2019): “The gender earnings gap: Measurement and

analysis,” Journal of Political Economy, forthcoming.

Mammen, E. (1993): “Bootstrap and wild bootstrap for high dimensional linear models,”

The Annals of Statistics, 21, 255–285.

Mammen, E., and K. Yu (2007): “Additive isotone regression,” in Asymptotics: particles,

processes and inverse problems, pp. 179–195. Institute of Mathematical Statistics.

Marchenko, Y. V., and M. G. Genton (2012): “A Heckman selection-t model,”

Journal of the American Statistical Association, 107, 304–317.

Matzkin, R. L. (1991): “Semiparametric estimation of monotone and concave utility

functions for polychotomous choice models,” Econometrica, 59, 1315–1327.

Meyer, M. (2013): “Semi-parametric additive constrained regression,” Journal of Non-

parametric Statistics, 25, 715–730.

Nelsen, R. B. (2006): An Introduction to Copulas, 2nd Edition. Springer.

Newey, W. (1999): “Consistency of two-step sample selection estimators despite misspec-

ification of distribution,” Economics Letters, 63, 129–132.

(2009): “Twostep series estimation of sample selection models,” Econometrics

Journal, 12, 217–229.

Olsen, R. (1980): “A least squares correction for selectivity bias,” Econometrica, 48,

1815–1820.

Pagan, A., and A. Ullah (1999): Nonparametric Econometrics. Cambridge University

Press.



41

Powell, J. L. (2001): “Semiparametric estimation of censored selection models,” in

Nonlinear Statistical Modeling: Proceedings of the Thirteenth International Symposium

in Economic Theory and Econometrics: Essays in Honor of Takeshi Amemiya, vol. 13,

pp. 165–196. Cambridge University Press.

Robertson, T., F. Wright, and R. Dykstra (1988): Order Restricted Statistical

Inference. Wiley.

Robinson, P. (1988): “Root-n consistent semiparametric regression,” Econometrica, 56,

931–954.

Ruppert, D., S. J. Sheather, and M. P. Wand (1995): “An effective bandwidth se-

lector for local least squares regression,” Journal of the American Statistical Association,

90, 1257–1270.

Schafgans, M. M. (1998): “Ethnic wage differences in Malaysia: parametric and semi-

parametric estimation of the ChineseMalay wage gap,” Journal of Applied Econometrics,

13, 481–504.

Schafgans, M. M. (2000): “Gender wage differences in Malaysia: parametric and semi-

parametric estimation,” Journal of Development Economics, 63, 351–378.

Sen, B., and M. Meyer (2017): “Testing against a linear regression model using ideas

from shape-restricted estimation,” Journal of Royal Statistical Society Series B, 79, 423–

448.

Shorack, G. (2000): Probability for Statisticians. Springer.

Shorack, G. R., and J. A. Wellner (2009): Empirical Processes with Applications to

Statistics. SIAM.

Smith, M. D. (2003): “Modelling sample selection using Archimedean copulas,” The

Econometrics Journal, 6, 99–123.

Spreeuw, J. (2014): “Archimedean copulas derived from utility functions,” Insurance:

Mathematics and Economics, 59, 235–242.

Tripathi, G. (2000): “Local semiparametric efficiency bounds under shape restrictions,”

Econometric Theory, 16, 729–739.

Van Der Vaart, A. (1998): Asymptotic statistics. Cambridge University Press.

Van Der Vaart, A., and J. A. Wellner (1996): Weak Convergence and Empirical

Processes. Springer.

Varadhan, R., and P. Gilbert (2009): “BB: An R package for solving a large system of

nonlinear equations and for optimizing a high-dimensional nonlinear objective function,”

Journal of Statistical Software, 32, 1–26.

Vella, F. (1998): “Estimating models with sample selection bias: a survey,” Journal of

Human Resources, 33, 127–169.



42

Willis, R., and S. Rosen (1979): “Education and self-selection,” Journal of Political

Economy, 87, 7–36.

Wooldridge, J. (1995): “Selection corrections for panel data models under conditional

mean independence assumptions,” Journal of Econometrics, 68, 115–132.

Zhou, X., and Y. Xie (2019): “Marginal treatment effects from a propensity score

perspective,” Journal of Political Economy, 127, 3070–3084.


	1. Introduction
	1.1. Related Literature
	1.2. Organization and Notation

	2. Monotonicity of the Control Function
	3. Shape-restricted Estimation and Testing
	3.1. A Shape-restricted Two-stage Estimator
	3.2. A Shape-restricted Test for Selectivity

	4. Main Theoretical Results
	4.1. Asymptotic Properties of the Semiparametric Estimation
	4.2. Validity of the Selectivity Test

	5. Extensions
	5.1. The Panel Selection Model
	5.2. The Convexity Restriction

	6. Monte Carlo Simulations
	7. An Empirical Application: US Female Wage Equation
	8. Conclusion
	9. Appendix: Proofs of Main Results
	References

