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1 Introduction

In their influential paper, Autor, Dorn, and Hanson (2013) (henceforth ADH) show that

commuting zones more exposed to the “China shock” experienced significant increases in un-

employment and decreases in labor force participation relative to less exposed regions. In

contrast, the standard quantitative trade model assumes full employment and a perfectly in-

elastic labor supply curve (e.g., Costinot and Rodriguez-Clare, 2014), implying that all the ad-

justment takes place through wages rather than employment. In this paper, we show how

adding downward nominal wage rigidity (DNWR) and home production allows the quantita-

tive trade model to generate changes in unemployment and nonemployment that match those

uncovered by ADH during a transition period. We can then use the augmented model with

DNWR to study the welfare effects of the China shock for the U.S. on aggregate, as well as the

distribution of welfare changes across individual states.

We start from the standard gravity model of trade with multiple sectors and an input-

output structure as in Caliendo and Parro (2015). We further assume that there are multiple

regions inside the U.S., that there is no labor mobility across regions, and that labor supply is

upward sloping because workers decide whether to engage in home production or participate

in the labor market. The way in which the China shock affects employment here is clear: re-

gions with positive net exports in sectors experiencing the strongest productivity increases in

China (i.e., more exposed to the China shock) suffer a worsening of their terms of trade relative

to less exposed regions. This leads to a relative decline in their real wage and employment,

as some workers exit the labor force to engage in home production. This model, however, re-

quires an extremely large elasticity of substitution between employment and home production

in order to replicate the strong increases in nonemployment in the U.S. regions most exposed to

the China shock documented by ADH. Additionally, this model cannot generate any changes

in unemployment.

We then add DNWR as in Schmitt-Grohe and Uribe (2016), so that the wage in each region

has to be greater or equal that δ times the wage in the previous period (implying that the wage

can fall by no more than 100(1 − δ) percent each year).1 The exact implications of DNWR

1While the empirical literature studying the presence of DNWR is vast and sometimes conflicting, several recent
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depend on our assumptions regarding monetary policy and the exchange rate system, but our

results are broadly robust to a range of different assumptions for these features. Our baseline

model assumes that all countries have flexible exchange rates vis-á-vis the dollar, and that the

world nominal GDP in dollars grows at a constant and exogenous rate which we set equal

to zero without loss of generality. A region that is more exposed to China suffers a negative

terms-of-trade shock relative to a less exposed region. In turn, a negative terms-of-trade shock

implies a contraction in labor demand, and if the DNWR is stringent enough (i.e., δ is high

enough) then this leads to a temporary increase in unemployment that subsequently dies out

as nominal wages can adjust downwards. If home production is available to workers, then the

DNWR leads to even bigger declines in employment as more workers prefer to engage in home

production rather than face the possibility of unemployment.

We quantify the effects of the China shock in our model using the “exact-hat algebra” ap-

proach to counterfactual analysis popularized by Dekle et al. (2007) and extended to a dynamic

context by Caliendo et al. (2019). This methodology ensures that our model perfectly matches

the sector-level input-output and trade data at the beginning of the period of analysis (year

2000), and allows for a transparent calibration. Specifically, we only need to calibrate the trade

elasticity and the parameters governing the elasticity of labor supply (κ) and the importance

of the DNWR (δ). We select a value of the trade elasticity from the literature, and we calibrate

κ and δ so that the model matches two key moments from ADH. These moments correspond

to the relative increases in unemployment rates and decreases in labor-force participation rates

experienced by commuting zones that were more exposed to imports from China.

Our quantitative analysis requires data for sector-level input-output flows as well as trade

flows across all pairs of regions in our sample, which includes U.S. states as local labor mar-

kets. We construct such a dataset by combining multiple data sources, a set of proportionality

assumptions, and implications from the gravity model. The resulting dataset contains 14 sec-

tors (12 of them in manufacturing, one service sector, and one agricultural sector) for 50 U.S.

states plus 36 additional countries and an aggregate rest of the world region during the years

papers have found support for its existence (e.g. Dickens et al., 2007; Daly and Hobijn, 2014; Grigsby et al., 2019;
Hazell and Taska, 2019). We fully acknowledge that labor-market frictions in the real world are significantly
more complex than our simple DNWR. However, we hope to show that the DNWR in our model is a powerful
yet parsimonious way to capture such frictions, which so far have been under-explored in the trade literature.
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2000 to 2007, the period used in ADH.

As is common in the literature, we treat the China shock as a productivity improvement

that varies across sectors in China, and we follow Caliendo et al. (2019) in calibrating these

sector-level productivity shocks so that the model-implied changes in imports from China

match those in the data. We do this each year so that we can trace out the dynamic response

of the economy to the China shock as it unfolded over the period of analysis. Our calibration

leads to a value of δ = 0.984, which implies that wages can fall up to 1.6% annually without the

DNWR becoming binding. This value is similar to the one used by Schmitt-Grohe and Uribe

(2016). Our calibration also leads to a value of κ = 5.9, implying a labor supply elasticity of

around 2. Despite the fact that labor supply elasticity is the only mechanism in our model to

generate the large effects of the China shock on labor-force participation, our estimate still falls

within a reasonable range.

The calibrated model generates a significant temporary decline in employment in the re-

gions most exposed to the China shock. For example, Ohio experiences a decline in employ-

ment of 3.5% in 2004, but eventually goes back to a level of employment above the one before

the shock. This is the typical dynamic response we see for the most exposed states, and it

arises from the combination of three forces. First, the China shock that we introduce in the

model (calibrated for the 2001-2007 period) is not constant but grows in strength, peaking in

2004. Second, a shock that requires a decline in the nominal wage to maintain full employ-

ment increases unemployment in the short run under a DNWR, but then this unemployment

erodes quickly as the nominal wage can fall around 1.6% each year. Third, the China shock

leads to increases in the real wage for almost all regions, including most of the ones for which

full employment would require a decline in the nominal wage.2 Since the real wage governs

labor supply, and since there is no unemployment in the long run, this implies an increase in

employment after the economy fully adjusts to the China shock.

For the U.S. as a whole, the calibrated model implies that the China shock is responsible for

around 0.8 percentage points of unemployment in the U.S. in 2004. Combined with a decline

in labor supply, this leads to an overall decline in the employment to population ratio of 1.8%.

2This implies that most states experience both an increase in the real wage and an increase in unemployment. This
may seem paradoxical, but it is a natural consequence of a shock that implies both an improvement in the terms
of trade and a decline in the export price index. In Section 4.3, we come back to this and provide more intuition.
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However, in parallel to what happens at the state level, by 2008 the employment to population

rate is slightly higher than it was before the shock.

One benefit of our approach is that we can study the effect of the China shock on welfare,

and in particular explore how this is affected by DNWR. We compute welfare as the present

discounted value of the utility flow in the future, with a discount rate of 0.95 and a utility flow

given by the average real wage across all households in an economy (employed, unemployed,

and in home production). We find that welfare increases in most regions, including many that

experience unemployment during the transition. For the U.S. as a whole, although the China

shock remains beneficial in the presence of nominal frictions, those benefits are smaller with

these frictions. Specifically, DNWR reduces the average U.S. welfare gain from 0.32% to 0.22%

(and the reduction is even larger in some of our extensions). Additionally, there are 10 states

that suffer welfare losses with DNWR but would have experienced welfare gains without it. To

see how DNWR matters for welfare in some of the most affected states, consider again Ohio.

If we compute the welfare effect under the same China shock and the same parameter values

except that we switch off the DNWR (i.e., δ = 0), we see that welfare increases by 8 basis points

in Ohio, rather than decreasing by 8 basis points as in the model with DNWR.

We study how varying some of the key assumptions in the baseline model affects the above

conclusions, as well as the fit of the model with the non-targeted moments in ADH. Specifically,

we develop four separate extensions where we: introduce mobility frictions between sectors,

consider some of the increases in trade surpluses that occurred in China, use a different ex-

change rate regime for other countries, and examine a different nominal anchor. The most

interesting conclusion that emerges from this analysis is that the model benefits from the ad-

dition of frictions to the mobility of workers between manufacturing and non-manufacturing,

jointly with the assumption that there is DNWR only in manufacturing. These modifications

allow the model to more closely match ADH’s results on how exposure to the China shock

affects employment and wages in the manufacturing and non-manufacturing sectors. Interest-

ingly, this variant of the model implies that DNWR leads to an even larger reduction in the

overall U.S. gains from the China shock, which fall from 0.22% in the baseline model to 0.12%.

Our extensions also show that taking a broader perspective of the China shock so that

it also includes an increase in the U.S. trade deficit (instead of solely an increase in Chinese
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productivity) makes the DNWR less binding and weakens the implied employment effects, al-

though the welfare effects do not change much. In addition, when we assume that other coun-

tries have fixed exchange rates vis-a-vis the dollar, the calibration leads to a more stringent

DNWR, with δ increasing from 0.984 to 0.989, but the conclusions regarding employment and

welfare do not change. In contrast, if we assume that the nominal anchor is a constant growth

rate of the U.S. nominal GDP instead of the world’s nominal GDP, then the model cannot fully

match the ADH findings.3 This last result indicates that taking a narrow view of nominal

frictions that focuses entirely on the U.S. might not be enough to properly capture how the

economy reacts to real trade shocks (we discuss this in Section 5.3).

We wish to highlight one finding that is relevant for how we think about the exposure mea-

sures that have been used in empirical work. ADH measure a region’s exposure to the China

shock using the region’s sectoral employment shares as weights for the sector-level shocks. In

the absence of nominal rigidities, however, the theoretically correct exposure measure would

weight the sector-level shocks by the region’s sector-level net exports rather than employment.

We find that the ADH employment-weighted measure becomes relevant in a standard multi-

sector gravity model of trade once we add DNWR, since now labor demand has a direct effect

on welfare above and beyond those that go through the standard terms-of-trade channel. This

is suggestive that DNWR, or other frictions that deliver similar effects, should feature more

prominently in trade models, at least when the goal is to understand the adjustment dynamics

associated with trade shocks.

Our paper follows in the footsteps of a large literature that analyzes the impacts of trade

shocks on different regions or countries. Papers such as ADH, Caliendo et al. (2019), Galle et al.

(2020), and Adao et al. (2019) focus on the effect of the China shock on regions of the U.S. Our

model incorporates nominal rigidities as a mechanism to deliver involuntary unemployment,

which is an uncommon feature in this literature despite its prominence in the empirical papers

studying the China shock. To focus on the role of nominal rigidities on employment dynamics,

our model does not feature costs of switching sectors, which are explored in Caliendo et al.

(2019). We expand on the possible consequences of including such costs in Section 6.5.

3Although this extension cannot perfectly match the ADH findings, the overall pattern of results is broadly similar
to the one under the baseline calibration, with the exception that the mean welfare change is smaller.
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Another literature explores the effect of trade on unemployment in models with search and

matching frictions, see e.g. Davidson and Matusz (2004), Helpman et al. (2010), Hasan et al.

(2012) and Heid and Larch (2016). Most recently, Kim and Vogel (2020a,b) introduce search fric-

tions and a labor-leisure choice into a multi-sector trade model where each commuting zone is

treated as a small-open economy affected by the China shock. They study how this model can

match the ADH findings for the effect of the China shock on income per capita decomposed

into the effect on wages, labor supply, and unemployment. We instead focus on DNWR as the

friction that generates unemployment, and emphasize the employment and welfare implica-

tions of the China shock in a model that allows for intermediate goods and general-equilibrium

implications across U.S. states and between these and the rest of the world.4

More closely related to our paper is Eaton et al. (2013), which studies the extent to which

unmodeled cross-country relative wage rigidities can explain the increases in unemployment

and decreases in GDP observed in countries undergoing sudden stops. Relative to this paper,

our contribution is to show how DNWR can lead to such relative wage rigidities, to extend

the analysis to terms-of-trade shocks in a multi-sector model, and to quantify the effect of the

China shock on unemployment and nonemployment across U.S. states between 2000 and 2007.

On the side of open-economy macroeconomics, classic contributions such as Clarida et al.

(2002), or various papers by Gali and Monacelli (2005, 2008, 2016), have introduced nominal

rigidities in models with a simplified trade structure. Schmitt-Grohe and Uribe (2016) uses a

downward nominal wage rigidity to study the effects of trade shocks on a small open economy,

Choudhri et al. (2011) studies the implications of nominal rigidities for the gains from trade in

a two-country model, and Nakamura and Steinsson (2014), Beraja et al. (2016), or Chodorow-

Reich and Wieland (2017) deal with multiple heterogeneous regions in models with nominal

rigidities. None of these papers connect to actual sector-level trade flows and hence cannot be

used for the quantitative analysis of an event like the China shock.

The rest of the paper proceeds as follows: Section 2 introduces the general framework

that incorporates a rich trade structure with dynamic aspects and nominal rigidities. Section

4Dix-Carneiro et al. (2020) allow for search and matching frictions in a fully dynamic multi-sector model and
explore the effects on workers originally employed in sectors differently exposed to the China shock. The paper
does not explore the aggregate effects on employment and unemployment, or how such effects matter for welfare
relative to a model without unemployment.
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3 describes the data, our calibration of the China shock, and the exposure measure that we

use. Section 4 describes the calibration of parameters δ and κ, and the main results under our

baseline specification. Section 5 discusses different extensions of the baseline model, such as

incorporating mobility frictions between manufacturing and non-manufacturing, incorporat-

ing changes in deficits as part of the China shock, or changing the nominal anchor or exchange

rate regime. In Section 6, we discuss several miscellaneous topics. Finally, Section 7 concludes.

2 A Quantitative Trade Model with Nominal Rigidities

We present a multi-sector quantitative trade model with an input-output structure as in

Caliendo and Parro (2015) but extended to allow for multiple periods, an upward sloping la-

bor supply, and downward nominal wage rigidity. In this section, we present an abridged

description of the model, focusing on its non-standard elements and relegating some of the

details to Appendix B.

2.1 Basic Assumptions

We assume that the United States is composed of multiple economies or “regions.” There

are M regions in the U.S., plus I − M regions (countries) outside of the U.S. (for a total of I

regions). To focus on the role of nominal rigidities on employment, we assume that there is

no labor mobility across these regions. This is a reasonable assumption given our focus on the

short to medium term.

There are S sectors in the economy (indexed by s or k). In each region (indexed by i or j)

and each period t, a representative consumer devotes all income to expenditure Pj,tCj,t, where

Cj,t and Pj,t are aggregate consumption and the price index in region j in period t, respectively.

Aggregate consumption is a Cobb-Douglas aggregate of consumption across the S different

sectors with expenditure shares αj,s. As in a multi-sector Armington trade model, consumption

in each sector is a CES aggregate of consumption of the good of each of the I regions, with an

elasticity of substitution σs > 1 in sector s.

We allow for the possibility of “broad sectors,” indexed with b ∈ 1, ..., B. We assume that all

individual sectors within a given broad sector have the same wage, and there is free mobility of

7



workers across the sectors belonging to a broad sector. In contrast, there are mobility frictions

and hence potentially different wages across different broad sectors. We use the function b(k)

to denote the broad sector b that a given sector k belongs to. The concept of broad sectors

allows us to write a single parsimonious model that can still capture different levels at which

mobility frictions might occur. Our baseline specification assumes free mobility between all

market sectors (i.e., b(k) = 1 ∀k, a single broad sector), but in the extensions we explore the

consequences of having two broad sectors (one comprising manufacturing and the other one

comprising services and agriculture).

Each region produces good k with a Cobb-Douglas production function, using labor with

share φj,k and intermediate inputs with the shares φj,sk, where φj,k + ∑s φj,sk = 1. Additionally,

region j has a total factor productivity in sector k and time t equal to Aj,k,t. We assume perfect

competition, and that regions trade with iceberg trade costs τij,k,t ≥ 1 for exports from i to j in

sector k. We also assume that intermediates from different origins are aggregated in the same

way as consumption goods (i.e., CES with elasticity σs). Let Wi,b(k),t denote the wage in region

i, in the broad sector b(k) that sector k belongs to, at time t. The previous assumptions imply

that the price in region j of good k produced by region i at time t is τij,k,t A−1
i,k,tW

φi,k
i,b(k),t ∏s Pφi,sk

i,s,t ,

where Pi,s,t is the price index of sector s in region i at time t, and that

P1−σk
j,k,t =

I

∑
i=1

(
τij,k,t A−1

i,k,tW
φi,k
i,b(k),t

S

∏
s=1

Pφi,sk
i,s,t

)1−σk

. (1)

For future purposes, note also that

Pi,t =
S

∏
s=1

Pαi,s
i,s,t. (2)

2.2 Labor Supply

We denote the total population of region i with Li, which we assume to be time-invariant

given the brief period we consider in our analysis. Agents can either engage in home produc-

tion or look for work in the labor market. If they engage in home production, they receive a

utility flow of µi. If they participate in the labor market, they can be employed in any of the
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B broad sectors. The expected real income from participating in broad sector b is denoted by

ωi,b,t. We denote the number of agents that look for work in broad sector b by `i,b,t and we let

πi,t ≡ ∑b `i,b,t/Li and πi,b,t ≡ `i,b,t/ ∑b′ `i,b′,t denote the labor force participation rate and the

participation rate in broad sector b, respectively. This implies that

`i,b,t = πi,tπi,b,tLi. (3)

Each agent has utility parameters zb for b ∈ {0, 1, ..., B} so that agent’s utility is ln µi +

z0 if choosing home production and ln ωi,b,t + zb if choosing broad sector b ∈ {1, ..., B}. We

assume that these utility parameters are drawn from a nested Type-I Extreme Value distribution

involving parameters κ and η (satisfying η ≥ κ), so that the cumulative distribution of Z =

(Z0, Z1, ..., ZB) is

H (z) = exp

− exp (−κz0)−
(

B

∑
b=1

exp (−ηzb)

)κ/η
 .

In Appendix B.2 we show that with this setup the following conditions hold

πi,t =
ωκ

i,t

µκ
i + ωκ

i,t
, (4)

and

πi,b,t =
ω

η
i,b,t

ω
η
i,t

, (5)

where

ωi,t ≡
(

B

∑
b=1

ω
η
i,b,t

)1/η

. (6)

Our welfare function will be the exponential of the ex-ante instantaneous utility (before the

utility shocks are realized), which satisfies

ui,t ∝
(
µκ

i + ωκ
i,t
)1/κ .
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We consider the exponential of the ex-ante instantaneous utility so that welfare is homogeneous

of degree one with respect to wages (and µi).

2.3 Downward Nominal Wage Rigidity

We denote the number of agents that are actually employed in region i and broad sector

b at time t with Li,b,t. In the standard trade model, labor market clearing requires that the

labor used in a broad sector in a region be equal to labor supplied to that broad sector, i.e.

Li,b,t ≡ ∑s∈b Li,s,t = `i,b,t. We depart from this assumption and instead follow Schmitt-Grohe

and Uribe (2016) by allowing for a downward nominal wage rigidity, which might lead to an

employment level that is strictly below labor supply,

Li,b,t ≤ `i,b,t. (7)

All prices and wages up to now have been expressed in U.S. dollars. In contrast, a given region

faces DNWR in terms of its local currency unit. Letting WLCU
i,b,t denote wages in local currency

units, DNWR takes the following form:

WLCU
i,b,t ≥ δbWLCU

i,b,t−1, δb ≥ 0.

Denote the exchange rate between the local currency unit of region i and the local currency unit

of region 1 (which is the U.S. dollar) in period t with Ei,t (in units of dollars per local currency

of region i). This implies that Wi,b,t = WLCU
i,b,t Ei,t, and hence the DNWR in dollars entails

Wi,b,t ≥
Ei,t

Ei,t−1
δbWi,b,t−1.

Since all regions within the U.S. share the dollar as their local currency unit, then Ei,t = 1 and

WLCU
i,b,t = Wi,b,t ∀ i ≤ M. This means that the DNWR in states of the U.S. takes the familiar form

Wi,b,t ≥ δbWi,t−1. For the I −M regions outside of the U.S., the LCU is not the dollar and so the

behavior of the exchange rate impacts how the DNWR affects the real economy. The DNWR in
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dollars can then be captured using a country-specific parameter δi,b for each broad sector, i.e.:

Wi,b,t ≥ δi,bWi,b,t−1, δi,b ≥ 0. (8)

In our baseline specification we assume that all regions outside of the U.S. have a flexible ex-

change rate and so the DNWR never binds. We capture these assumptions by setting δi,b =

δb ∀ i ≤ M and δi,b = 0 ∀ i > M. In an extension, we consider an alternative scenario in which

other countries have fixed exchange rates to the U.S. so that δi,b = δb ∀ i.

Besides equations (7) and (8), we additionally have the complementary slackness condi-

tion:

(`i,b,t − Li,b,t)(Wi,b,t − δi,bWi,b,t−1) = 0. (9)

Since we know that people in broad sector b get the real wage of Wi,b,t/Pi,t with probability

Li,b,t/`i,b,t we can express the real income from working in broad sector b as

ωi,b,t =
Wi,b,tLi,b,t

Pi,t`i,b,t
. (10)

This assumes that the income generated in a broad sector is equally shared between all peo-

ple participating in that broad sector, instead of giving zero to unemployed workers and a full

wage to employed workers. This simplifies the calculations and represents a form of risk shar-

ing between households in a given broad sector. It is also worth noting that our setup does not

allow unemployed workers to engage in home production. As we discuss below, this implies

that the threat of unemployment discourages labor force participation, which is a desirable fea-

ture that allows the model to match the ADH targets with a reasonable labor supply elasticity.

2.4 Nominal Anchor

So far, we have introduced nominal elements to the model (i.e., the DNWR), but we have

not introduced a nominal anchor that prevents nominal wages from rising so much in each

period as too make the DNWR always non-binding. Roughly speaking, we now assume that

each country has a central bank that is unwilling to allow inflation to be too high because of
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associated costs that are left out of the model. In traditional macro models, this is usually

implemented via a Taylor rule, where the nominal interest rate reacts to inflation in order to

keep price growth in check. Instead, we use a nominal anchor that captures the same idea in a

way that naturally lends itself to quantitative implementation in our trade model.

In particular, we assume that world nominal GDP in dollars grows at a constant rate γ

across years,

I

∑
i=1

B

∑
b=1

Wi,b,tLi,b,t = γ
I

∑
i=1

B

∑
b=1

Wi,b,t−1Li,b,t−1. (11)

Although this nominal anchor might seem simplistic, it nonetheless has some desirable proper-

ties. First, it is flexible enough to allow for unemployment even in the context of two countries

that have a single region each. Second, it can be seen as capturing a given level of world ag-

gregate demand in the context of a global savings glut (or zero lower bound), in the spirit of

papers like Caballero et al. (2015). We further discuss the advantages of this rule as a modeling

device in Section 5.3, where we also discuss the consequences of changing the nominal anchor

to a constant growth of nominal GDP for the U.S. rather than the whole world.

Consider a shock that requires the relative wage of some region i in broad sector b to fall

in order to maintain full employment in that sector-region. The cause could be, for example, a

negative productivity shock, an increase in productivity in that sector abroad, or a decline in

transfers to the region. If δb is low enough, or the exchange rate can depreciate (e.g., δi,b is low),

then wages can adjust downwards in the required magnitude to avoid unemployment. Alter-

natively, if γ is high enough then again there would be no unemployment, since no downward

adjustment is needed in the wage. However, there are combinations of parameters δi,b and γ

that can lead to unemployment after the shock, although there would then be a gradual decline

in unemployment as the DNWR and the nominal anchor allow for adjustment year after year.

We clarify that having multiple regions is not critical for the shock to lead to unemploy-

ment, given our nominal anchor. To see this, imagine that the U.S. were composed of a single

region and that there was a positive productivity shock in the rest of the world. If γ was high

enough, then the adjustment could take place without unemployment in the U.S., since wages

in dollars in the rest of the world could increase enough to generate the necessary relative wage
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adjustment. However, if γ is low and δ is high, this full adjustment would not be possible, and

there would be (temporary) unemployment in the U.S.

2.5 Equilibrium

Let Ri,s,t denote total revenues in sector s of country i. Noting that the demand of industry

k of country j of intermediates from sector s is φj,skRj,k,t and allowing for exogenous deficits as

in Dekle et al. (2007), the market clearing condition for sector s in country i can be written as

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
B

∑
b=1

Wj,b,tLj,b,t + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
, (12)

where Dj,t are transfers received by region j, with ∑j Dj,t = 0, and where sector-k trade shares

in period t are given by

λij,k,t ≡
(τij,k,t A−1

i,k,tW
φi,k
i,b(k),t ∏S

s=1 Pφi,sk
i,s,t )

1−σk

∑I
r=1(τrj,k,t A−1

r,k,tW
φr,k
r,b(k),t ∏S

s=1 Pφr,sk
r,s,t )

1−σk
. (13)

In turn, labor market clearing in each region and broad sector b requires that

Wi,b,tLi,b,t = ∑
s∈b

φi,sRi,s,t. (14)

Given last-period wages {Wi,b,t−1} and last period employment {Li,b,t−1}, the period t equilib-

rium is a set of wages {Wi,b,t}, employment {Li,b,t}, trade shares {λij,s,t}, country and sector-

country prices indices {Pi,t} and {Pi,s,t}, revenues {Ri,s,t}, and additional labor market vari-

ables (i.e., `i,b,t, ωi,b,t, ωi,t, πi,b,t, and πi,t) such that equations (1) - (14) hold.

2.6 Hat Algebra

Our goal is to use a calibrated version of the model above to compute the employment

and welfare effects of a trade shock. We do this using data for U.S. states as well as other coun-

tries, but without calibrating technology levels and iceberg trade costs along the transition and

without requiring data on nominal wages or available labor (since this would require taking a

13



stance on what efficiency units we measure labor in). To do so, we follow the exact hat algebra

methodology of Dekle et al. (2007) and the extension of that methodology to dynamic settings

proposed in Caliendo et al. (2019). Consequently, our counterfactual exercises only require data

on revenues Ri,s,t, value added Yi,b,t ≡ Wi,b,tLi,b,t, trade deficits Di,t, the fraction of workers in

each broad sector πi,b,t, and trade shares λij,s,t in period zero (t = t0), whatever shocks we are

interested in, and the model’s parameters, namely δi,b, γ, κ, η, {σs}, {αj,s}, {φi,s}, and {φi,sk}.
We use x̂t to denote xt/xt−1 for any variable x. To express the equilibrium system in hats

and only leave it in terms of observable data in period zero, we assume that the economy starts
from a point where every region had full employment.5 The equilibrium system is given by:

R̂i,s,tRi,s,t−1 =
I

∑
j=1

λ̂ij,s,tλij,s,t−1

(
αj,s

(
∑
b

Ŵj,b,t L̂j,b,tYj,b,t−1 + D̂j,tDj,t−1

)
+

S

∑
k=1

φj,skR̂j,k,tRj,k,t−1

)
∀ i, ∀ s

λ̂ij,s,t =
(τ̂ij,s,t Â−1

i,s,tŴ
φi,s
i,b(s),t ∏S

k=1 P̂φi,ks
i,k,t )

1−σs

∑I
r=1 λrj,s,t−1(τ̂rj,s,t Â−1

r,s,tŴ
φr,s
r,b(s),t ∏S

k=1 P̂φr,ks
r,k,t )

1−σs
∀ i, ∀ s

P̂1−σs
i,s,t =

I

∑
j=1

λji,s,t−1

(
τ̂ji,s,t Â−1

j,s,tŴ
φj,s
j,b(s),t

S

∏
k=1

P̂
φj,ks
j,k,t

)1−σs

∀ i, ∀ s

Ŵi,b,t L̂i,b,tYi,b,t−1 = ∑
s∈b

φi,sR̂i,s,tRi,s,t−1 ∀ i, ∀ b

t

∏
q=1

L̂i,b,q ≤
t

∏
q=1

ˆ̀ i,b,q , Ŵi,b,t ≥ δi,b , Complementary Slackness ∀ i, ∀ b

ˆ̀ i,b,t =
ω̂κ

i,t

1− πi,t−1 + πi,t−1ω̂κ
i,t

ω̂
η
i,b,t

ω̂
η
i,t

∀ i, ∀ b

ω̂i,b,t =
Ŵi,b,t L̂i,b,t

P̂i,t ˆ̀ i,b,t
∀ i, ∀ b

ω̂
η
i,t = ∑

b
πi,b,t−1ω̂

η
i,b,t ∀ i

P̂i,t =
S

∏
s=1

P̂αi,s
i,s,t, ∀ i

I

∑
i=1

∑
b

Ŵi,b,t L̂i,b,tYi,b,t−1 = γ
I

∑
i=1

∑
b

Yi,b,t−1. single

For each period t, we use this system of equations to solve for the quantities of interest (R̂i,s,t,

λ̂ij,s,t, and P̂i,s,t for all i and s; Ŵi,b,t, L̂i,b,t, ω̂i,b,t, and ˆ̀ i,b,t for all i and b; and P̂i,t and ω̂i,t for

5Assuming that the U.S. had full employment in the year 2000 is not problematic, since that year was the peak
of a business cycle, with an unemployment rate of just 4%. This is the lowest unemployment rate observed in
the U.S. in the last 40 years (except for the period from 2018 onward). The existence of 4% unemployment is
consistent with our assumption of “full employment” because the concept of unemployment in our model is that
of “cyclical” unemployment, i.e., the unemployment in excess of the natural rate of unemployment.
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all i) given the objects that we already know from the previous period (Yi,b,t−1, λij,s,t−1, Di,t−1,

Ri,s,t−1, πi,t−1, πi,b,t−1, { ˆ̀ i,b,q}t−1
q=1 and {L̂i,b,q}t−1

q=1 for all i, j, s) and the time t shocks (Âi,s,t, D̂i,t

and τ̂ij,s,t for all i, j, s). Thus, starting at t = 1 we can solve this system with information on Yi,0,

λij,s,0, Di,0, Ri,s,0, πi,0 and πi,b,0 for all i, j, s, b (assuming that we depart from a steady state where

Li,0 = `i,0) and the shocks (Âi,s,1, D̂i,1 and τ̂ij,s,1 for all i, j, s). We obtain Ŵi,b,1, L̂i,b,1 and `i,b,1 for

all i and b. From the previous elements we can also obtain Yi,b,1, λij,s,1, Di,1, Ri,s,1, πi,1, and πi,b,1

for all i, j, s, b. We can proceed like this for all other periods to solve the system forward while

requiring only period zero information and the shocks hitting the economy.

Our general equilibrium model also allows us to compute the welfare effects of the shock.

From ui,t ∝
(

µκ
i + ωκ

i,t

)1/κ
and πi,t = ωκ

i,t/(µ
κ
i + ωκ

i,t) we can express the change in instanta-

neous utility as ûi,t = π̂1/κ
i,t ω̂i,t. To provide our welfare calculations, we combine this expression

for instantaneous utility with a standard lifetime utility function which is time-separable with

discount factor β.

3 Data, Calibration and Exposure to the China Shock

3.1 Data Description

We use trade and production data for 50 U.S. states, 36 additional countries, and an aggre-

gate rest of the world region, for a total of 87 regions from 2000 to 2007. We consider 14 sectors:

12 manufacturing sectors, one service sector, and one agricultural sector. All sectors are clas-

sified according to the North American Industry Classification System (NAICS). We provide a

brief description of the data here and relegate additional details to Appendix A.

For each region j and each sector k, our model requires data to compute the share of labor

in production φj,k, the share of intermediates from all other sectors φj,sk ∀s, and the aggregate

consumption shares αj,k. We use data from the BEA (for U.S. states) and from WIOD to calculate

the share of value-added in gross output of region j, which in our model is equivalent to φj,k.

We also scale the relative importance of each U.S. state in the total value added of the U.S.

so that the sum of value added across states matches the aggregate value-added of the U.S.

according to WIOD. We compute φj,sk as the share of purchases of sector k coming from sector
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s (the input-output coefficient) using WIOD data.6

Our model also requires data on bilateral trade flows for all sectors and all regions in our

sample in order to compute deficits, revenue, and trade shares for the year 2000. We also

require the bilateral trade flows (combined with the input output coefficients) to infer the αj,k’s.

We construct the bilateral trade flow dataset in four steps. In the first step, we take sector-level

bilateral trade between countries directly from WIOD.

In the second step, we use the Import and Export Merchandise Trade Statistics, a dataset

compiled by the U.S. Census Bureau, to compute – for manufacturing and agriculture – the

sector-level bilateral trade flows between each U.S. state and each of the other countries in our

sample. The U.S. Census data on sector-by-state-by-country exports starts in 2002, and the data

on imports starts in 2008. We use these starting years to project our bilateral trade matrix for

previous years until 2000 by assuming that the importance of each state in the total exports

(imports) to (from) other countries in each sector remains constant at the 2002 (2008) levels. We

use a proportionality rule for the bilateral trade flows between the U.S. and other countries to

match the values from WIOD in each sector. We provide more details on this in Appendix A.3.

In the third step, we follow Caliendo et al. (2019) to calculate the bilateral trade flows in

manufacturing among U.S. states by combining WIOD and the Commodity Flow Survey (CFS).

We first compute the bilateral expenditure shares across regions and sectors from the CFS, and

then we use a proportionality rule to assign the total U.S. domestic sales from WIOD according

to those bilateral shares. The bilateral trade flows matrix for the 50 U.S. states then match the

total U.S. domestic sales from WIOD in each sector.

In the fourth and last step, we combine data for region-level production and expenditure

in services from the Regional Economic Accounts of BEA, WIOD data, and data on bilateral

distances to construct the trade flows in services among all regions consistent with a gravity

structure. We follow a similar gravity approach for the case of trade flows in agriculture using

data from the Agriculture Census, the National Marine Fisheries Service Census, and WIOD.

By construction, the bilateral trade flows in services and agriculture match the aggregates of

trade in services and agriculture between all countries (including the U.S.) and the total pro-

duction of U.S. services and agriculture consumed by the U.S. The details of this procedure are

6We assume a common input-output matrix for all U.S. states, which is equal to the one of the U.S. as a whole.
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explained in Appendix A.2.4.

3.2 Calibration of the China Shock and Exposure Measure

We focus on the effect of the China shock as captured by a set of productivity shocks in

China given by {ÂChina,s,t} for the manufacturing sectors (i.e. s ≤ 12).7 Inspired by ADH, and

following Caliendo et al. (2019) and Galle et al. (2020), we calibrate these productivity shocks

to match the changes in U.S. imports from China predicted from the changes in imports from

China to other high-income countries.8

We decompose the total productivity shock in sector s and time t into a component coming

from a sector-level productivity increase that is constant from 2000 to 2007 and a component

coming from a productivity increase over time that is constant across sectors, i.e. ÂChina,s,t =

Â1
China,t Â2

China,s. This means we have to estimate 19 parameters. We choose {Â1
China,t} and

{Â2
China,s} to match two targets. The first target is the vector of annual predicted changes in U.S.

imports from China in all manufacturing sectors combined. We obtain the predicted changes

from the following regression:

∆XC,US,t = a + b1∆XC,OC,t + εt,

where ∆XC,US,t is the change in U.S. imports from China between year t− 1 and year t in all

manufacturing sectors, ∆XC,OC,t is the change in imports from China by the other high-income

countries between year t− 1 and year t in all manufacturing sectors, and b1 is the coefficient of

interest. We denote the predicted values from this regression by { ̂∆XC,US,t}.9

The second target is the vector of predicted changes in U.S. imports from China between

2000 and 2007 across sectors. We obtain this vector from the following regression

∆X2007−2000
C,US,s = b2∆X2007−2000

C,OC,s + εs,

7For the service and agriculture sectors, we assume that there was no change in Chinese productivity.
8We use the subset of ADH countries that are also present in the 2013 version of the WIOD, namely Australia,
Germany, Denmark, Spain, Finland, and Japan. New Zealand and Switzerland are included in the “other high-
income countries” category of ADH but are not included in WIOD.

9This regression only has seven data points, but it still has a high R2 of 0.87.
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where ∆X2007−2000
C,US,s is the change in U.S. imports from China between 2000 and 2007 in sector s,

∆X2007−2000
C,OC,s is the change in imports from China by the other high-income countries between

2000 and 2007 in sector s, and b2 is the coefficient of interest. The predicted values from this

regression are denoted { ̂∆X2007−2000
C,US,s }.10

We choose {Â1
China,t} and {Â2

China,s} such that the total productivity changes in China

{ÂChina,s,t} deliver changes in imports in our model that simultaneously match the 7 values

of { ̂∆XC,US,t} and the 12 values of { ̂∆X2007−2000
C,US,s }.11

Besides the China shock, there are some other parameters that we still need to set. We

assume that the trade elasticity σs is constant across sectors and takes the value of 6, consistent

with the trade literature (e.g. Costinot and Rodriguez-Clare, 2014). For inter-temporal compar-

isons when computing welfare, we use a discount factor β of 0.95 (at the annual level).

The calibration of the key model parameters below is based on matching moments that

capture the relative effect of the China shock on labor force participation and unemployment.

These moments come from regressions of changes in these variables across regions differen-

tially exposed to the China shock, as captured by an exposure measure that is analogous to the

one proposed by ADH. Specifically,

Exposurei ≡
S

∑
s=1

VAi,s,2000

VAi,2000

̂∆X2007−2000
C,US,s

RUS,s,2000
, (15)

where RUS,s,2000 is total U.S. production in sector s in the year 2000, VAi,s,2000 is value-added

of region i in sector s in year 2000 (corresponding to φi,sRi,s,2000 in the model), VAi,2000 ≡

∑s VAi,s,2000, and ̂∆X2007−2000
C,US,s is the predicted 2000-2007 change in U.S. imports in sector s from

10We exclude the constant in this regression because it can lead to negative predicted imports from China, which
is impossible. While the regression only has 12 observations, it has an R2 of 0.99.

11The multiplicative nature of our decomposition, ÂChina,s,t = Â1
China,t Â2

China,s, implies that their level is not iden-
tified. For example, if we multiply all the Â2

China,s by a constant c and we divide all the Â1
China,t by c, then we

would have the same ÂChina,s,t. Thus, to proceed, we use the normalization ∑S
s=1 Â2

China,s = 1. Correspondingly,

the model is only able to produce changes in imports that satisfy ∑2007
t=2001 ∆Xmodel

C,US,t = ∑S
s=1 ∆X2007−2000,model

C,US,s .
This condition is automatically satisfied by the actual changes, i.e. ∑2007

t=2001 ∆XC,US,t = ∑S
s=1 ∆X2007−2000

C,US,s , but
not necessarily by the predicted changes, due to the lack of a constant in the second regression. We adjust the

predicted changes in manufacturing so that they satisfy: ∑2007
t=2001

̂∆XC,US,t = ∑S
s=1

̂∆X2007−2000
C,US,s , this adjustment

is very small. In all of our applications we are able to match our targets with an accuracy greater than 99.9%.
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China as in ADH and explained above.12 Besides the calibration, we will also use this exposure

measure to present the results of the model for non-targeted variables such as manufacturing

and non-manufacturing employment, as well as for welfare, so that we can see how these pre-

dictions vary across states differentially exposed to the China shock.

4 Effects of the China Shock under the Baseline Specification

4.1 Calibration of DNWR and Labor Supply Elasticity

For our baseline specification, we assume that there is a single broad sector in the labor

market. This implies that we do not need to calibrate the parameter η, which governs the

degree of mobility between different broad sectors, although we do need to take a stand on κ,

which governs labor supply choice. We also assume that that all countries outside the U.S. have

a flexible exchange rate that adjusts in such a way that they retain full employment, implying

that δi = 0 for all i > M. We do not calibrate γ and δ separately – since only their relative value

matters – and instead assume that γ is 1, so that the burden of adjustment falls entirely on δ, as

in Schmitt-Grohe and Uribe (2016).

We choose δ and κ simultaneously to match two critical empirical estimates obtained by

ADH. The first one is that a $1,000 per worker increase in import exposure to China increases

the unemployment to population rate by 0.22 percentage points. The second one is that the

same rise in import exposure increases the labor force non-participation to population rate by

0.55 percentage points.13 In broad terms, δ governs the amount of unemployment generated

by exposure to China for a given κ, while κ governs the fall in the labor force generated by

exposure to China for a given δ.

The calibration results in values of δ = 0.984 and κ = 5.9. Figure 1 provides an illustration
12One difference between our exposure measure and the one in ADH is the use of value-added instead of

employment shares as weights. However, note that in our model, labor is the factor of value added, and
hence VAi,s,2000 = Wi,b(s),2000Li,s,2000. If there is a single broad sector then Wi,b(s),2000 = Wi,2000 ∀s and hence
VAi,s,2000
VAi,s,2000

=
Li,s,2000
Li,s,2000

. We re-normalize our exposure measure to have the same mean as the ADH measure for
comparability purposes.

13These results correspond to the ones in Panel B of Tables 5 in ADH. Following ADH, we also take the 2006-2008
averages of unemployment and labor force participation in our estimation. We note that although ADH run
their regressions at the level of commuting zones rather than states, when we run the same regressions at the
state level we get very similar results – see discussion in Section 6.4.
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of how the identification of δ and κ works. Panel (a) of that figure shows a scatter plot of the

increase in unemployment against the exposure to China for the calibrated level of κ = 5.9

and different levels of δ. We see that a higher δ leads to a steeper slope in the regression of

unemployment on exposure to China (the coefficient is reported in the legend for convenience).

For the calibrated parameter value of δ = 0.984, the coefficient obtained in the regression is 0.22,

which is the target that we obtained from ADH. Similarly, panel (b) of Figure 1 shows a scatter

plot of the decrease in labor force participation against the exposure to China for the calibrated

level of δ = 0.984 and different levels of κ. We see that a higher κ leads to a steeper slope in the

regression of labor force participation on exposure to China (the coefficients are also reported

in the legend). For the calibrated parameter value of κ = 5.9, the coefficient obtained in the

regression is 0.55, which is the target that we obtained from ADH.

Our estimate for δ falls squarely in the range advocated by Schmitt-Grohe and Uribe (2016)

who coincidentally also obtain an annual δ of 0.984 (after “normalizing” γ to one as we do).14

This estimate implies that wages can fall up to 1.6% annually. On the other hand, since the

labor force participation is around 2/3, our estimate for κ implies a labor supply elasticity of

approximately 2.15 This elasticity is relatively high compared to the common intertemporal

micro estimates in the literature (Chetty et al., 2012; Martinez et al., 2019; Tortarolo et al., 2019).

More recently and for the case of the U.S., Mui and Schoefer (2020) nonparametrically measure

the global extensive-margin aggregate labor supply curve. They find non-constant elasticities

along the curve, with smaller values of around 0.6 for large perturbations (consistent with the

micro evidence), but larger values of around 3 for minor deviations. Overall, they find that for

the case of local fluctuations, the curve appears well approximated by elasticities that are well

above the micro-estimates and much closer to our calibrated value.

14Using a set of countries that excludes the U.S., Schmitt-Grohe and Uribe (2016) obtain a quarterly value of
δ = 0.996. This value corresponds to an annual δ of 0.984. However, they end up using a δ of 0.96 in their paper
to be conservative.

15Here we have used the fact that, in our model, labor force participation is l
L = ωκ

ωκ+µκ , implying that ∂ ln(l/L)
∂ ln ω =

κ (1− l/L) .
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Figure 1: Illustration of the Identification of κ and δ
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4.2 Comparison of Cross-Sectional results with ADH

We now use the calibrated model to study the effects of the China shock across the different

U.S. states. We first obtain the changes in wages, employment, unemployment, labor force

participation, and real wages for all the 87 regions included in our model. Then we run OLS

regressions across U.S. states of the changes in the variables of interest on the exposure measure

in Equation (15). We present the resulting coefficients in Table 1, along with the analogous

coefficients from ADH.

Column (1) of Table 1 reports the results of ADH.16 The first two rows correspond to our

targeted regression coefficients. As mentioned above, these coefficients indicate that an ad-

ditional $1,000 of exposure to the China shock leads to an increase in the unemployment to

population share by 0.22 percentage points and an increase the labor force non-participation

to population ratio by 0.55 percentage points. The coefficients in the third and fourth rows

imply that additional exposure to China decreases the manufacturing employment to popu-

lation share by 0.59 percentage points and the non-manufacturing employment to population

share by 0.18 percentage points (this result is not significantly different from zero). Finally,

the coefficients in the fifth and sixth rows show that additional exposure to China lowers non-

manufacturing wages by 0.76 percent and increases manufacturing wages by 0.15 percent (this

result is not significantly different from zero).

Column (2) of Table 1 presents the results of our baseline model. We focus on the results

related to employment and wages in this section, and discuss the welfare effects in Section 4.4.

Columns (3) and (4) present results for versions of the model that incorporate mobility frictions

between manufacturing and non-manufacturing, which we discuss in Section 5.

Our results in column (2) show that exposure to China measured as in ADH leads to a

fall in manufacturing and non-manufacturing employment of 0.32 percentage points and 0.45

percentage points, respectively. These are moments that we did not target in our calibration.17

Our results from the baseline model understate the fall in manufacturing employment and

overstate the fall in non-manufacturing employment. As we discuss in Section 5, the model can

16Specifically, we use the ADH estimates presented in their panel B of Table 5, and panel B of Table 7.
17The only restriction is that the coefficients have to add up to 0.77 since this is the sum of the targeted unemploy-

ment and NILF coefficients.
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Table 1: Employment, wage, and welfare effects of exposure to China across U.S. regions
and associated parameters generating them

ADH Baseline MF DNWRM
(1) (2) (3) (4)

Change in Population Shares
Unemployment (targeted) 0.221∗∗∗ 0.221 0.221 0.221
NILF (targeted) 0.553∗∗∗ 0.553 0.553 0.553
Mfg Employment -0.596∗∗∗ -0.320 -0.269 -0.555
Non-mfg Employment -0.178 -0.453 -0.505 -0.219

Percentage Changes
Mfg Wage 0.150 -0.577 -0.397 -0.027
Non-mfg Wage -0.761∗∗∗ -0.577 -0.652 -1.201

Welfare
Welfare vs exposure -0.091 -0.096 -0.109
Mean welfare change 0.218 0.267 0.120
Mean welfare change no DNWR 0.315 0.367 0.355

Parameters
κ 5.898 5.642 5.623
η Inf 5.642 5.623
δMfg 0.984 0.982 0.992
δNon-Mfg 0.984 0.982 0.000

Notes: The changes for the first four coefficients (the employment results) are measured
from 2000 to an average of 2006-2008, multiplied by 10/7 to turn into decadal changes, and
the shares of employment are measured as percentage of the population. Wages are sim-
ply measured in percentage change (between 2000 and 2006-2008), still turned into decadal
changes. Welfare is the present value of per period utility change. κ is the parameter that
governs substitution between home and market production, η is the one that governs sub-
stitution between manufacturing and non-manufacturing and the δ’s govern the DNWR.
Column 1 reproduces the ADH results from their Tables 5 (panel B, first row) and 7 (Panel
B, columns 1 and 4), stars denote significance, one star for 10%, two for 5%, and three for
1%. Column 2 gives the results in our baseline model with no mobility frictions. Column
3 incorporates mobility frictions and has the same delta in both broad sectors. Column 4
keeps mobility frictions but imposes the DNWR only in manufacturing. In column (2) η is
reported as “Inf” because the baseline model does not incorporate mobility frictions, which
can be interpreted as implying that the elasticity between broad sectors is infinite.

match these two ADH moments better if we allow for mobility frictions across manufacturing

and non-manufacturing, and assume that the DNWR only applies to the manufacturing sector.

Regarding the effect of exposure to China on wages, our baseline model without mobility

frictions displays the same impact on manufacturing and non-manufacturing wages by design.

However, given this restriction, the model still performs relatively well, since the fall in wages
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of 0.57 percent that we find in our model is very close to the weighted average of the ADH

results using employment shares as weights.

4.3 Aggregate Employment Effects

One of the advantages of our general equilibrium model is that we can go beyond cross-

sectional estimates to obtain the aggregate effects of the China shock on employment and other

variables. In Figure 2, we plot three variables related to the labor market as an average across

all U.S. states. The top panel plots the cumulative change in employment over population.

This variable falls by 1.8% from 2000 to 2004 and subsequently recovers to end roughly 1%

higher in 2010. In the middle panel, we plot the cumulative change in labor force participation

over population. This variable falls by 1% from 2000 to 2004 before recovering to end the

period roughly 1% higher.18 Finally, in the bottom panel, we plot the cumulative change in

unemployment. This variable increased by 0.8 percentage points from 2000 to 2004, falling

back to zero in 2010, a result of the fact that in our calibration there are no shocks after 2007.19

It is interesting to note that the effect of the China shock on labor force participation re-

verses sign throughout the transition. On impact, the shock leads to a temporary decline in

participation, stemming from the fact that unemployment discourages participation due to the

risk of participating in the labor market but not being able to obtain a job. However, when the

China shock stops hitting the economy, and the nominal wage has room to fully adjust, labor

force participation ends up increasing. This increase happens because, in the absence of nom-

inal rigidities, the China shock is a positive terms-of-trade shock for the U.S., which translates

to a higher real wage and an increase in labor supply.

The results imply that most states experience both a long-run increase in the real wage

and a temporary increase in unemployment. This may seem paradoxical, but it is a natural

consequence of a shock that implies both an improvement in the terms of trade and a decline

in the export price index. To see this more clearly, consider a small open economy and imagine

that the price index of its exports falls while the price index of its imports falls even more.

18The final cumulative change in employment and labor force participation must be the same because all unem-
ployment disappears in the long run.

19We view this feature of the model as desirable, since it is hard to square a permanent unemployment effect of
the China shock with the historically low levels of unemployment observed in the U.S. between 2016 and 2019.
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Figure 2: Paths of changes in different employment-related variables for the U.S. average
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Since the terms of trade have improved, the real wage and employment would increase in the

absence of nominal frictions. However, the fact that the price index of its exports has fallen

requires the nominal wage to decline, and if this decline is higher than 1− δ, there would be

temporary unemployment.

We illustrate this mechanism via Figure 3. Both panels in the figure have the nominal

wage in the vertical axis and employment in the horizontal axis.20 Panel (a) illustrates the

situation when there is no DNWR. The China shock leads to a fall in labor demand illustrated

by a movement from LD to LD′ . However, the China shock also leads to a fall in prices, which

increases the real wage and leads to an increase in labor supply from LS to LS′ . The final result

is a fall in the nominal wage from W0 to W∗, a fall in prices from P0 to P∗ (not illustrated), an

increase in the real wage from W0/P0 to W∗/P∗ (prices fall more than wages), and an increase

in the amount of labor supplied from L0 to L∗.

Panel (b) of Figure 3 shows the adjustment in the presence of DNWR assuming that δ3W0 <

W∗ < δ2W0. In the first year, the wage only falls from W0 to W1 ≡ δW0 and employment falls

from L0 to L1, as determined by the demand curve. Since the wage does not fully adjust in

the first year, the fall in prices is also smaller than in the frictionless case, and hence the labor

supply curve only moves from LS to LS
1 . The gap between the labor supplied at point A and

labor demanded L1 is the level of unemployment. In the second year wages adjust further

down (to W2 ≡ δW1 = δ2W0), the labor supply curve moves to LS
2 , employment increases from

L1 to L2, labor supplied moves from point A to point B, and unemployment decreases. In the

third year, wages finally adjust fully and there is no longer unemployment. Notice that the

final equilibrium of the economy is the same with and without DNWR, and it involves higher

labor supply, a higher real wage, and no unemployment.

4.4 Welfare Effects

We find that U.S. states more exposed to the China shock experience lower model-implied

welfare gains: a $1,000 per worker increase in exposure to China decreases welfare by around

9 basis points (this is the coefficient displayed in Table 1, column (2), row 7). Figure 4 presents

a scatter plot of the percentage change in welfare across states against exposure to China, while
20Since the nominal wage is in the vertical axis, movements in prices lead to a shift in the labor supply curve.
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Figure 3: Illustration of wage and employment effects, with and without DNWR. The nom-
inal wage is in the vertical axis, hence price movements results in shifts in the labor supply
curve. Employment is in the horizontal axis.
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Figure 5 displays a welfare map across the 50 U.S. states. There are 37 states that gain from the

China shock while 13 states experience losses. Of these 13 states, only 3 experience a worsening

of their terms of trade, which imply a lower steady state real wage. The other 10 states that

suffer losses actually experience improvements of their terms of trade, but these are dominated

by large temporary increases in unemployment due to the DNWR.

The unemployment and labor-force participation margins play very different roles in de-

termining these welfare changes: increases in unemployment due to a binding DNWR lead to

worse welfare outcomes, while changes in labor-force participation allow regions to mitigate

negative shocks and benefit more from positive shocks. To understand the role of DNWR, we

use a model that has no DNWR but where we still match the overall effect of the China shock

on employment (i.e., the sum of the first two rows of column 1 of Table 1, amounting to 0.77).

This implies a halving of the effect of exposure to China on welfare (from 9 basis points to 4.5

basis points). To understand the role of the labor-force participation margin, we can set κ = 0

(which implies that households cannot reallocate from home production to employment), and

recalibrate δ so as to match the effect of exposure to China on unemployment (i.e., the 0.22 in

the first row of column 1 of Table 1). This leads to an increase in the effect of exposure to China

on welfare from 9 basis points to 11 basis points.

When we consider the U.S. as a whole, and measure overall welfare by the population-

weighted average across U.S. states, we see that the China shock leads to an increase in welfare

of 22 basis points. This is true even though we match the unemployment effects captured by

ADH, which have sometimes been interpreted as implying that the China shock had adverse

overall welfare effects.

It is interesting to compare the results of our baseline model against those from a model

without nominal rigidity (i.e., with δ = 0) and with κ recalibrated in order to match a 0.77 effect

of exposure on the share of the population that is not employed. In this alternative version of

the model, all but 3 states experience welfare gains from the China shock, and the U.S. as a

whole experiences gains of 32 basis points. This is comparable to the gains obtained in recent

papers studying the same setting (Caliendo, Dvorkin, and Parro, 2019; Galle, Rodriguez-Clare,

and Yi, 2020). However, to match our 0.77 target, the model without DNWR requires a value

of κ of approximately 46, implying an unrealistically high labor supply elasticity of around 15.
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Figure 4: Welfare change vs exposure to China across U.S. states

Finally, Table 2 shows the different welfare changes in the model with and without DNWR,

for several values of the discount factor β. For β = 0.95, the model without DNWR overesti-

mates the welfare gains by approximately 33% relative to our baseline model. For β = 0.99 this

overestimation is just 8%, while for β = 0.91 it is 56%.

5 Extensions

In this section we discuss several extensions of the baseline model. First, we introduce

mobility frictions between manufacturing and non-manufacturing. Second, we discuss how to

introduce some of the increases in trade surpluses that happened in China between 2000 and

2007 as an integral part of the China shock. Finally, we analyze how our baseline results change

under a different exchange rate regime for other countries, or a different nominal anchor. For

each of these alternative models we recalibrate the China shock, {ÂChina,s,t}, following the

procedure described in Section 3.
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Figure 5: Welfare across U.S. states for calibrated parameter values in the baseline model

5.1 Mobility Frictions between Manufacturing and Non-Manufacturing

Our baseline specification assumes a single broad sector, which implies free mobility be-

tween all sectors and a single wage for all workers, as shown in column (2) of Table 1. We now

explore the implications of mobility frictions in our model, by allowing for two broad sectors

with costly mobility between them. The first broad sector is composed of all manufacturing

sectors, and the second one is composed of the remaining non-manufacturing sectors.21

Besides the parameters κ and δ, we now also need to calibrate the parameter η governing

the elasticity of switching between the two broad sectors. We could also calibrate two different

δ parameters, one for each broad sector. We perform two separate exercises in the model with

mobility frictions, where we make different assumptions regarding the additional parameters

to be calibrated.

In the first exercise, the manufacturing (Mfg) and non-manufacturing (Non-Mfg) broad

sectors have the same DNWR parameter, i.e., δM f g = δNon−M f g, while in the second one only

the broad manufacturing sector faces DNWR, (i.e., δM f g > 0 and δNon−M f g = 0). For parsi-

mony, we impose that η = κ in both exercises, which represents a natural benchmark where

21This means that b(s) = 1 ∀ s ≤ 12, and b(s) = 2 ∀ s > 12. Manufacturing sectors (1-12) are part of the broad
manufacturing sector, while services and agriculture (13 and 14) make up the non-manufacturing broad sector.
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Table 2: Welfare gains from the China shock across different discount factors

δ = 0 calibrated δ % decrease
β (1) (2) (3)

0.99 0.381 0.349 8.48
0.97 0.351 0.279 20.59
0.95 0.324 0.218 32.61
0.93 0.298 0.166 44.46
0.91 0.274 0.120 56.12

Notes: This table displays the average welfare gains from the China shock, for the U.S. as
a whole, across different values of the discount factor β. Column (1) displays the gains in
percent when the DNWR is inactive (δ = 0). Column (2) displays the gains in percent for
our calibrated δ value of 0.984. Finally, column (3) displays the percentage decrease in the
welfare gain when going from δ = 0 to the calibrated δ.

mobility frictions across sectors are the same as those between home and market production.

We thus calibrate two parameters in each exercise: the labor elasticity parameter (η = κ) and

the DNWR parameter (δM f g = δNon−M f g in the first exercise and δM f g in the second one). We

use those parameters to match the same two ADH targets as in the baseline calibration.

Column (3) of Table 1 presents the results of the first exercise. Relative to our baseline

model, we find that δ falls to 0.982 while κ remains relatively similar, at 5.64. As expected, the

presence of mobility frictions results in different wage responses in the different broad sectors.

In particular, we find that the impact of exposure to China on the wage in non-manufacturing is

almost twice the one in manufacturing (approaching the ADH empirical pattern). However, the

sectoral employment changes move in the wrong direction: the coefficient of exposure to China

on non-manufacturing employment becomes more negative and the one for manufacturing

gets closer to zero (moving away from the ADH pattern). The welfare results in this exercise are

overall more favorable than in the baseline model: both with and without DNWR the economy

experiences more welfare gains from the China shock.

Intuitively, mobility frictions lead to a stronger required decline in the manufacturing

wage, since manufacturing is the sector most negatively affected by the China shock. This

leads the manufacturing wage to hit the lower bound imposed by the DNWR in most U.S.

states (in 44 states in 2007), limiting the variation in the manufacturing wage across states more

and less exposed to the China shock. In contrast, the non-manufacturing wage hits the DNWR
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less often (in 30 states in 2007) and this allows for a higher slope in the relationship between

exposure and the wage change in non-manufacturing.

Column (4) of Table 1 presents the results of the second exercise. The calibrated κ is almost

the same as in column (3), but the calibrated δ of 0.992 is higher than before. A higher value

of δ is intuitive, because the DNWR only applies to the manufacturing sector. Consequently,

it needs to bind more strongly in order to match the required response of unemployment to

exposure. In this exercise the responses of the employment shares to exposure in each broad

sector are very close to the ones in ADH, even though these moments were not targeted in

the calibration. The wage responses are also similar to ADH, with the manufacturing wage

exhibiting a coefficient that is very close to zero and the non-manufacturing wage responding

strongly to exposure (actually this responds too much relative to ADH). Overall, the results

in column (4) of Table 1 are very close to the results obtained by ADH and hence this model

provides a good benchmark to understand the effects of trade shocks on unemployment, labor

force participation, wages, and welfare. Using this version of the model, we find that the U.S.

experiences an average welfare gain of 12 basis points (weighing each state by its population),

which is only around one-third of what the model without DNWR would predict.

Given the improved performance of the version of the model in which there is DNWR only

in the manufacturing sector, it is worth discussing whether this is a realistic assumption. There

are a few papers documenting a substantial degree of heterogeneity in wage rigidity across

sectors and occupations for different contexts (Radowski and Bonin, 2010; Du Caju et al., 2012).

More recently and for the U.S., Hazell and Taska (2019) explore this heterogeneity using a

dataset containing wages for new vacancies with specific job descriptions for each establish-

ment. Their paper finds that production workers face a higher degree of DNWR than workers

in non-production occupations. Several elements could explain this fact, for example stronger

unionization in manufacturing relative to services. However, we prefer to interpret the model

with DNWR only in manufacturing as a rough way to capture forces pushing for reallocation

of labor from manufacturing to services. Even with the same DNWR in the two sectors, these

forces would make the DNWR in manufacturing more likely to be binding.
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Table 3: Employment, wage, and welfare effects of exposure to China across U.S. regions
and associated parameters generating them (continued)

Baseline Def. Low Def. High Fixed ER U.S. NA
(2) (5) (6) (7) (8)

Change in Population Shares
Unemployment (targeted) 0.221 0.221 0.221 0.221 0.142
NILF (targeted) 0.553 0.553 0.553 0.553 0.553
Mfg Employment -0.320 -0.331 -0.376 -0.299 -0.260
Non-mfg Employment -0.453 -0.443 -0.398 -0.474 -0.435

Percentage Changes
Mfg Wage -0.577 -0.553 -0.442 -0.582 -0.634
Non-mfg Wage -0.577 -0.553 -0.442 -0.582 -0.634

Welfare
Welfare vs exposure -0.091 -0.088 -0.075 -0.086 -0.129
Mean welfare change 0.218 0.232 0.299 0.216 0.011
Mean welfare change no DNWR 0.315 0.333 0.419 0.299 0.236

Parameters
κ 5.898 6.034 6.761 5.992 8.639
η Inf Inf Inf Inf Inf
δMfg 0.984 0.985 0.988 0.989 1.000
δNon-Mfg 0.984 0.985 0.988 0.989 1.000

Notes: All definitions are the same as the ones in Table 1. Column 2, which contains the re-
sults from the baseline specification, repeats Column 2 from Table 1 to facilitate comparison.
Column 5 gives the results from our baseline model where we introduce a modest increase
in Chinese surplus as part of the China shock, while in column 6 this increase is larger. Col-
umn 7 gives the results when other countries have fixed exchange rates relative to the U.S.
and column 8 gives the results when the baseline nominal anchor is replaced by a nominal
anchor which indicates that U.S. GDP grows at a constant rate.

5.2 Changing Deficits as Part of the China Shock

In the previous versions of our model, we kept the deficits for all regions constant in terms

of world GDP. However, it is plausible that part of the increase in Chinese surpluses that oc-

curred between 2000 and 2007 could be part of the China shock. In this section, we explore what

happens if, besides a Chinese productivity increase, the China shock also entails an increase in

the Chinese surplus, which has to be offset by a rise in the deficits of other regions. In particu-

lar, we perform two separate exercises where we explore different assumptions regarding how

we treat the increase in the Chinese surplus.

In the first exercise, we only incorporate the increase in Chinese surpluses that occurred
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because China’s GDP increased relative to world GDP (i.e., we keep the surplus to GDP ratio

constant in China), while in the second exercise we incorporate the changes in the Chinese

surplus observed in the data. An increase in the surplus of China implies an equal change in

the combined deficits of the other countries, since total deficits must always sum to zero. We

keep the deficits of all other countries besides the U.S. unchanged in terms of world GDP in

both exercises, thus having the U.S. deficit offset the whole increase in China’s surplus. We

distribute this increased deficit across U.S. states according to their shares in U.S. GDP.

The results for these two exercises are shown in Table 3, which has the same structure as

Table 1 (the first column repeats Column (2) in Table 1, to facilitate comparisons of the new

results with those in the baseline). Column (5) presents the results of the first exercise, while

column (6) shows the results from the second exercise. Column (5) is labeled “Def. Low”, be-

cause the U.S. deficit increases moderately (i.e., around 10% in total over the 2000-2007 period),

while column (6) is labeled “Def. High”, because the U.S. deficit rises substantially (i.e., around

57% in total over the 2000-2007 period).

The results in column (5) are very similar to those of our baseline calibration, although

manufacturing employment falls slightly more, wages fall marginally less, and κ and δ both

increase slightly. We also find that welfare reacts less to exposure and that the welfare increase

is higher compared to our baseline model.22 The higher gain happens because, in the presence

of trade costs, a transfer from abroad leads to a worldwide shift in demand towards domestic

goods and this in turn improves the recipient’s terms of trade. The changes from the base-

line model to column (5) are amplified in column (6), because the U.S. deficit grows more in

response to the China shock, but the overall pattern is the same.

More importantly, the changes in trade imbalances in both exercises require an increase in

the wage in U.S. states relative to China, thereby relieving the pressures caused by the pro-

ductivity increase in China and making the DNWR less binding. This is reflected in a smaller

increase in U.S. unemployment: whereas the U.S. 2007 unemployment rate corresponding to

column 2 is 0.95%, the one corresponding to column 5 is 0.9% and the one corresponding to

column 6 is 0.7%.

22As in Costinot and Rodriguez-Clare (2014), we measure welfare as real income rather than real expenditure.
This avoids attributing a positive direct gain to the foreign transfer. Taking into consideration the direct gain
would risk treating deficits as a gift and assuming away their future costs.
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5.3 Other Exchange Rate Regimes and Nominal Anchors

So far, we have assumed that all countries outside of the U.S. have a fully flexible ex-

change rate with respect to the U.S. dollar. Adjustments in their exchange rate then ensure that

the DNWR never binds, and hence countries outside of the U.S. never experience any unem-

ployment. Additionally, our nominal anchor assumed that the world nominal GDP grows at a

constant rate. In this section, we consider the consequences of making different assumptions

for these features, presenting two exercises. The first exercise imposes that all other countries

have a fixed exchange rate with respect to the U.S. dollar. Thus, compared to the baseline, we

will no longer have countries devaluing their currencies relative to the U.S. dollar, implying

less of a need for the wage to fall in the U.S., and hence lower unemployment in U.S. labor

markets. The second exercise modifies the nominal anchor, assuming that U.S. nominal GDP

(instead of world nominal GDP) grows at a constant rate. Here the DNWR will only prevent

the necessary adjustments in the relative wages across U.S. states, but not between U.S. states

and China, implying weaker effects.

In the first exercise, a fixed exchange rate implies that now all countries face a potentially

binding DNWR, Wi,b,t ≥ δbWi,b,t−1 ∀i. The nominal anchor is still the one in our baseline

model, implying that world GDP grows at a rate γ = 1. Column (7) of Table 3 presents the

results of this exercise. Overall, our results are remarkably robust to the new assumption re-

garding the exchange rate regime. The most notable change is that δ increases from 0.984 to

0.989. This increase in δ occurs because the other countries “absorb” part of the China shock,

so a higher δ is needed in the U.S. to match the target response of unemployment to exposure.

All other results are very close to the ones in our baseline model.

In the second exercise, the new nominal rule, in changes, is given by

M

∑
i=1

Ŵi,t L̂i,tYi,t−1 = γ
M

∑
i=1

Yi,t−1.

Column (8) of Table 3 presents the results of the model with this nominal rule. In this case, it is

not possible to match both ADH targets simultaneously, even when setting δ = 1. The reason

is that now the DNWR only imposes limits to the adjustments in relative wage changes across
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U.S. states, and the China shock only requires mild changes in such relative wages.23

At first pass, a U.S. nominal anchor might seem like a more natural approach than the

world nominal anchor used in our baseline specification. However, the fact that the baseline

specification works better to explain the effects of the China shock, indicates that perhaps some

nominal features cannot be captured by the U.S. nominal anchor. For example, suppose that

China wanted to avoid large nominal wage increases to control inflation and also wanted to

avoid appreciations to preserve competitiveness (a practice they are widely regarded as having

pursued during the 2000-2007 period). Such a scenario would require a fall in the U.S. wage in

dollars that would then hit the DNWR. This is something that can be parsimoniously captured

(albeit in a reduced form) with the world nominal anchor, but not with the U.S. nominal anchor.

Another type of nominal features that are not present with the U.S. nominal anchor, but are

captured in a reduced-formed but parsimonious manner by the world nominal anchor, are

those related to the “Dominant Currency Paradigm” described by Gopinath et al. (2020).

6 Discussion

6.1 Different Exposure Measures

The measure of exposure to China that we have been using throughout the paper (defined

in Equation 15) follows the one in ADH. This measure is a Bartik instrument where the “shift

component” is given by the predicted change in imports from China to the U.S. in a sector and

the “share component” is given by the share of employment (or value-added) in that sector in

that region. This exposure measure cannot fully capture the welfare effects of the China shock,

because it misses the impact through consumer prices.24

As we show in Appendix C, in a simple neoclassical environment with an upward slop-

ing labor supply curve but without nominal rigidities, a sufficient statistic for the first-order

23It is also worth noting that, with δ = 1, the unemployment generated by the China shock stays in the respective
states forever, so in this case, the model displays “permanent” unemployment effects. Consequently, the welfare
gains from the China shock are much lower, as the DNWR leads to the loss of over 90% of the gains that would
accrue without rigidities.

24Consider for example a region that did not produce a good at all (and hence would have a zero value-added
share) but consumed it in a positive amount. This region would benefit from an increase in Chinese productivity
in that sector, even though the ADH measure would imply a zero exposure of that sector to the shock.
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changes in employment resulting from the China shock would use net exports as the “share”

component, as in

ExposureNX
i ≡

S

∑
s=1

TXi,s,2000 − TMi,s,2000

Ri,2000

̂∆X2007−2000
C,US,s

RUS,s,2000
, (16)

where TXi,s,2000 are the total sales of region i in sector s in year 2000, and TMi,s,2000 is total

expenditure of region i on sector s in year 2000. This captures the effect of the shock on the

economy’s terms of trade, which in turn affects the equilibrium real wage and employment

according to labor demand and supply elasticities. In contrast, when the wage does not adjust

because of the DNWR, the labor or value-added shares become relevant, since the change in

employment is determined entirely by the shift in the demand curve. Of course, in a more

realistic situation where wages are sometimes fixed due to the DNWR but can eventually adjust

to their frictionless level, then both measures of exposure are expected to be relevant.

To illustrate this point, we regress the state-level changes in welfare and employment gen-

erated by the model on both exposure measures (and a constant), with and without the DNWR.

When there is no DNWR, we expect that only the net export exposure measure would be sig-

nificant, while when there is DNWR we expect both exposure measures to be significant.

The results are reported in Table 4. Columns (1) and (3) reveal that, without DNWR, only

the net export exposure measure is significant (at the 1% level) for employment and welfare,

while ADH exposure is not significant. In contrast, columns (2) and (4) show that in the model

with DNWR both the ADH exposure measure and the net export exposure measure are signifi-

cant. These results indicate that a mechanism similar to DNWR is likely to be active in the U.S.

economy, and this is what leads to the ADH exposure measure being relevant.25

6.2 Quantifying Job Losses

In this section we attempt to put some numbers to the employment changes that we have

documented in previous sections of the paper. Recall that ADH find a cross-sectional estimate

25In our framework, nominal rigidities lead to a separate effect of labor demand on employment over and above
those that would come through terms-of-trade effects. Adao et al. (2019) obtain similar effects through a more
general reduced-form specification of the labor market where labor supply is a function of the wage and the
consumption price entering separately rather than through the real wage.
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Table 4: ”Horse race” between different exposure measures in the baseline model with and
without DNWR

(1) (2) (3) (4)
Welf. No DNWR Welf. DNWR Empl. No DNWR Empl. DNWR

Constant 0.539*** 0.564*** 1.799*** 3.305***
(0.059) (0.069) (0.200) (0.808)

ADH Exposure −0.022 −0.046** −0.048 −0.855***
(0.019) (0.022) (0.064) (0.261)

NX Exposure −0.088*** −0.107*** −0.312*** −0.879***
(0.019) (0.022) (0.064) (0.261)

N 50 50 50 50
R squared 0.408 0.473 0.409 0.444
Mean dep. var. 0.247 0.159 0.849 −1.255

Notes: This table shows the results of regressing several variables of interest on a constant,
ADH exposure, and net export exposure. The exposure variables are described in the text.
The dependent variables are: welfare change from the China shock in the baseline model
without DNWR (column 1), welfare change from the China shock in the baseline model
with DNWR (column 2), percentage change in total employment between 2000 and 2007 in
the baseline model without DNWR (column 3), and percentage change in total employment
between 2000 and 2007 in the baseline model with DNWR (column 4).

indicating that a $1,000 per worker increase in import exposure to China leads to a decrease

in the employment to population ratio of 77 basis points (22 basis points from increased un-

employment and 55 basis points from reduced labor force participation). We start by using

the ADH estimate in a naive calculation that assumes that a U.S. region with zero ADH ex-

posure would have no employment changes (meaning that the cross-sectional regression has

an absolute intercept of zero). This calculation implies that the China shock generated em-

ployment losses of 0.77 · 2.63 · 220 million = 4.4 million jobs (where 2.63 is the mean exposure,

and 220 million is approximately the U.S. population over 16 years between 2000 and 2007).

However, according to our model, U.S. states with zero ADH exposure to the China shock in-

crease their employment because they experience a positive terms-of-trade shock. This means

that the cross-sectional regression of employment on exposure to China has a negative inter-

cept. In particular, the intercept in the regression is approximately -1.5. A back-of-the-envelope

calculation would add 1.5 · 220 = 3.3 million jobs because of the intercept. Combining the inter-

cept number of 3.3 million jobs gained with the cross-sectional estimate of 4.4 million jobs lost,
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would indicate that the net effect is a loss of 1.1 millions jobs.

The previous discussion is based on a simple regression in order to compare with ADH

and discuss the importance of the intercept in the regression. However, with our full general

equilibrium model we do not need to perform such simplified calculations, and we can com-

pute the actual G.E. effects of the China shock in 2007. Our model implies that 1.28 millions

jobs were lost by 2007 due to the China shock. This number is similar to the 1.1 million estimate

obtained from our back-of-the-envelope calculations incorporating a non-zero intercept.

It is important to point out that in all of these estimates we stop the accounting of job losses

in 2007. If we continue the analysis into further years, we would obtain that the China shock

actually led to a net job gain in the U.S., since labor force participation is roughly 1% higher

once the China shock completely dissipates.

6.3 Search and Matching vs. DNWR

While we have focused on DNWR as a way to generate unemployment in an otherwise

standard quantitative trade model, we acknowledge that another approach would be to add

search and matching frictions in the labor market. This has been done by papers like Kim and

Vogel (2020a), Kim and Vogel (2020b), Galle et al. (2020) and Dix-Carneiro et al. (2020). As

shown in Kim and Vogel (2020b), if the cost of posting vacancies is in terms of the final good,

then a deterioration of the terms of trade leads to a decline in the real wage and an increase

in unemployment. Broadly speaking, this is as if the economy moved downwards along an

upward sloping ”pseudo labor-supply curve.” The problem with this approach, however, is

that – as shown above – only three U.S. states experience a deterioration of their terms of trade,

implying that unemployment would actually fall in most states (see Galle et al., 2020). In con-

trast, DNWR can lead to temporary increases in unemployment even in states that experience

improving terms of trade

6.4 States vs. Commuting Zones

As discussed in previous sections of the paper, we have used the 0.22 and 0.55 response-

to-exposure coefficients from ADH when calibrating our model. One concern is that the cross-
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sectional regressions in ADH are done at the commuting-zone level, while our analysis is at

the state level. The different sources of variation might lead to different response-to-exposure

coefficients. To alleviate this concern, we ran the same ADH regressions but at the state rather

than the commuting-zone level. Using actual (not model-based) data on state-level unemploy-

ment and labor force participation, we regressed the change in unemployment and the change

in the fraction of the population not-in-the-labor-force between 2000 and 2007 (where 2007 is

measured as an average between 2006 and 2008 like in ADH and turned into decadal changes)

on exposure to China. We obtain a response-to-exposure coefficient on unemployment of 0.25

at the state level, compared to the 0.22 obtained in ADH at the commuting-zone level. The 95%

confidence interval for the 0.25 estimate is between 0.15 and 0.35, which comfortably includes

the 0.22 point estimate obtained in ADH. These two estimates are very close, indicating that

the usage of the ADH targets for the state-level analysis does not seem to be problematic.

For the fraction of the population not-in-the-labor-force, we obtain a response-to-exposure

coefficient of 0.37 at the state level, compared to the 0.55 obtained in ADH at the commuting-

zone level. The two estimates are not as close as in the unemployment case, but the 95% con-

fidence interval for the 0.37 estimate is between 0.16 and 0.58, which includes the 0.55 point

estimate obtained in ADH. Given these results, we decided to use the ADH results as targets

for our calibration rather than our own (necessarily less precise) state-level estimates. Our

analysis would not change substantially if we used the state-level estimates instead.

6.5 Costs of Mobility Across Sectors

Workers do not incur in any costs of reallocation between home production and work

in our baseline model, or between sectors in our extension with mobility frictions. Allowing

for such costs would imply that agents’ reallocation decisions would now depend on their

expectations about future shocks. If agents where myopic and never expected the China shock

to hit (even after it has already occurred in past years), our conclusions would not change.

On the other extreme, if (as in Caliendo et al., 2019) agents had perfect foresight, then some

workers would preemptively leave the manufacturing sector at the beginning of the 2000-2007

period. For a given value of δ, this would decrease unemployment in manufacturing, and so a

higher δ would be required to match the same ADH coefficients.
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7 Conclusion

In this paper we have added downward nominal wage rigidity to an otherwise standard

quantitative trade model to study the path of adjustment in employment after a trade shock.

Qualitatively, even a trade shock that improves an economy’s terms of trade can lead to unem-

ployment if it leads to a contraction in the economy’s labor demand relative to overall nominal

demand.

We calibrate the model to match the reduced-form evidence in Autor et al. (2013), and find

that the China shock is responsible of up to 0.9 percentage points of the increase in unemploy-

ment in the U.S. over the period 2000-2007. This unemployment increase can go as high as 3

percentage points for the states affected the most. In spite of this increase in unemployment,

the U.S. as a whole still gains from the China shock. However, such gains amount to between

one third and two thirds of the gains without nominal rigidities, and there are 10 states that

experience welfare losses despite the improvement in their terms of trade.

We acknowledge that the way we have captured nominal forces and trade imbalances in

our model is simplistic relative to the state of the art in macroeconomics. A more satisfac-

tory approach from a macroeconomic perspective would model monetary policy by adding a

Taylor Rule with a zero lower bound, forward-looking agents making savings and investment

decisions, and international financial flows affecting exchange rates, among other features. We

have instead chosen to capture these forces via simple mechanical rules so that we can have a

rich trade structure with many countries and sectors while still being able to conduct the quan-

titative analysis in a transparent way. Our hope is that this serves to identify the key elements

that future models need to incorporate.

It is also important to emphasize that our welfare analysis is conducted at a fairly aggregate

level. In particular, we do not capture the possibly large losses accruing to households expe-

riencing unemployment spells in the absence of an appropriate safety net. Such large losses

have been documented by many authors recently, for example Autor et al. (2014) and Pierce

and Schott (2020). Thus, our results should be interpreted with caution; the decline in the gains

from the China shock could be larger if our analysis were conducted at a more granular level.
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For Online Publication

Appendix

A Data Construction

In this appendix section, we provide details on the construction of the data we briefly

described in Section 3.1. We divide this appendix into three parts. Appendix A.1 describes all

data sources. Appendix A.2 discusses how we combine the different data sources to compute

an internally consistent bilateral trade-flow matrix for all sectors for the years when all the data

is available. There is limited availability for the state×sector-level trade data coming from the

CENSUS. Data for exports at the state×sector-level starts in 2002 and data for imports starts

in 2008. Finally, Appendix A.3 discusses how we use the previous step to construct a bilateral

trade-flows for the years before full data availability.

A.1 Data Description and Sources

List of sectors: We use a total of 14 sectors. The list includes 12 manufacturing sectors,

one catch-all services sector, and one agriculture sector. We follow Caliendo et al. (2019) in the

selection of the 12 manufacturing sectors. These are: 1) Food, beverage, and tobacco products

(NAICS 311-312, WIOD sector 3); 2) Textile, textile product mills, apparel, leather, and allied

products (NAICS 313-316, WIOD sectors 4-5); 3) Wood products, paper, printing, and related

support activities (NAICS 321-323, WIOD sectors 6-7); 4) Mining, petroleum and coal products

(NAICS 211-213, 324, WIOD sectors 2, 8); 5) Chemical (NAICS 325, WIOD sector 9); 6) Plastics

and rubber products (NAICS 326, WIOD sector 10); 7) Nonmetallic mineral products (NAICS

327, WIOD sector 11); 8) Primary metal and fabricated metal products (NAICS 331-332, WIOD

sector 12); 9) Machinery (NAICS 333, WIOD sector 13); 10) Computer and electronic products,

and electrical equipment and appliance (NAICS 334-335, WIOD sector 14); 11) Transportation

equipment (NAICS 336, WIOD sector 15); 12) Furniture and related products, and miscella-
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neous manufacturing (NAICS 337- 339, WIOD sector 16). There is a 13) Services sector which

includes Construction (NAICS 23, WIOD sector 18); Wholesale and retail trade sectors (NAICS

42-45, WIOD sectors 19-21); Accommodation and Food Services (NAICS 721-722, WIOD sec-

tor 22); transport services (NAICS 481-488, WIOD sectors 23-26); Information Services (NAICS

511-518, WIOD sector 27); Finance and Insurance (NAICS 521-525, WIOD sector 28); Real Es-

tate (NAICS 531-533, WIOD sectors 29-30); Education (NAICS 61, WIOD sector 32); Health

Care (NAICS 621-624, WIOD sector 33); and Other Services (NAICS 493, 541, 55, 561, 562, 711-

713, 811-814, WIOD sector 34).26

List of countries: We use data for 50 U.S. states, 37 other countries including a constructed

rest of the world. The list of countries is: Australia, Austria, Belgium, Bulgaria, Brazil, Canada,

China, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece,

Hungary, India, Indonesia, Italy, Ireland, Japan, Lithuania, Mexico, the Netherlands, Poland,

Portugal, Romania, Russia, Spain, the Slovak Republic, Slovenia, South Korea, Sweden, Tai-

wan, Turkey, the United Kingdom, and the rest of the world.

Data on bilateral trade between countries: World Input-Output Database (WIOD). Re-

lease of 2013. We use data for 2000-2007. We map the sectors in the WIOD database to our

14 sectors in the following way: 1) Food Products, Beverage, and Tobacco Products (c3); 2)

Textile, Textile Product Mills, Apparel, Leather, and Allied Products (c4-c5); 3) Wood Products,

Paper, Printing, and Related Support Activities (c6-c7); 4) Petroleum and Coal Products (c8); 5)

Chemical (c9); 6) Plastics and Rubber Products (c10); 7) Nonmetallic Mineral Products (c11); 8)

Primary Metal and Fabricated Metal Products (c12); 9) Machinery (c13); 10) Computer and Elec-

tronic Products, and Electrical Equipment and Appliances (c14); 11) Transportation Equipment

(c15); 12) Furniture and Related Products, and Miscellaneous Manufacturing (c16); 13) Con-

struction (c18), Wholesale and Retail Trade (c19-c21), Transport Services (c23-c26), Information

Services (c27), Finance and Insurance (c28), Real Estate (c29- c30); Education (c32); Health Care

(c33), Accommodation and Food Services (c22), and Other Services (c34); 14) Agriculture and

Mining (c1-c2). We follow Costinot and Rodriguez-Clare (2014) to remove the negative values

in the trade data from WIOD.

26The only difference with respect to Caliendo et al. (2019) in the definition of manufacturing sectors is that we
include Mining (NAICS 211-213) together with Petroleum and Coal Products (NAICS 324) in our sector 4.
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Data on bilateral trade in manufacturing between U.S states: We combine the 2002 and

2007 Commodity Flow Survey (CFS) with the WIOD database. The CFS records shipments

between U.S states for 43 commodities classified according to the Standard Classification of

Transported Goods (SCTG). We follow Caliendo et al. (2019) and use CFS 2007 tables that cross-

tabulate establishments by their assigned NAICS codes against commodities (SCTG) shipped

by establishments within each of the NAICS codes. These tables allow for mapping of SCTG to

NAICS.

Data on bilateral trade in manufacturing and agriculture between U.S states and the rest

of the countries: We obtain sector-level imports and exports between the 50 U.S. states and

the list of other countries from the Import and Export Merchandise Trade Statistics, which is

compiled by the U.S. Census Bureau. This dataset reports imports and exports in each NAICS

sector between each U.S. state and each other country in the world. Data for exports at the

state×sector level starts in 2002. Data for imports at the state×sector level starts in 2008.

Data on sectoral and regional value added share in gross output: Value added for each of

the 50 U.S. states and 14 sectors can be obtained from the Bureau of Economic Analysis (BEA)

by subtracting taxes and subsidies from GDP data. In the cases when gross output was smaller

than value added we constrain value added to be equal to gross output. For the list of other

countries we obtain the share of value added in gross output using data on value added and

gross output data from WIOD.

Data on services expenditure and production: We compute bilateral trade in services us-

ing a gravity approach explained in Appendix A.2.4. As part of this calculations we require

data on production and expenditure in services by region. We obtain U.S. state-level services

GDP from the Regional Economic Accounts of the Bureau of Economic Analysis (BEA). We ob-

tain U.S. state-level services expenditure from the Personal Consumption Expenditures (PCE)

database of BEA. Finally, for the list of other countries we compute total production and ex-

penditure in services from WIOD.

Data on agriculture expenditure and production: We also compute bilateral trade in agri-

culture using a gravity approach explained in Appendix A.2.4. To get production in agricul-

ture for the U.S. states we combine the 2002 and 2007 Agriculture Census with the National

Marine Fisheries Service Census to get state-level production data on crops and livestock and
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seafood. We infer state-level expenditure in agriculture from our gravity approach explained

in Appendix A.2.4. Finally, for the list of other countries we compute total production and

expenditure in agriculture from WIOD.

Data on population and geographic coordinates: As part of the gravity approach to com-

pute bilateral trade in services, we also need to compute bilateral distances between regions.

We follow the procedure used in the GeoDist dataset of CEPII to calculate international (and

intranational) bilateral trade distances. We thus require data on the most populated cities in

each country, the cities’ coordinates and population, and each country’s population. We obtain

this information from the United Nations’ Population Division website. In particular, we use

the population of urban agglomerations with 300,000 inhabitants or more in 2018, by country,

for 2000-2007. For Austria, Cyprus, Denmark, Estonia, Hungary, Ireland, Lithuania, Slovakia

and Slovenia we use the two most populated cities.27 For the case of U.S. states, we use pop-

ulation and coordinates data for each U.S county within each U.S state. The data for the U.S.

counties comes from the U.S. CENSUS.

A.2 Construction of Bilateral Trade Flows Between Regions

We follow the notation from Costinot and Rodriguez-Clare (2014) and omit the time sub-

scripts t that are relevant in our quantitative model. Define Xij,ks as sales of intermediate goods

from sector k in region i to sector s in region j, and Xij,kF as the sales of sector k in region i to

the final consumer of region j. Our final objective is to construct a bilateral trade flows matrix

between all regions in our sample with elements equal to Xij,k = ∑s Xij,ks + Xij,kF. This matrix

allows us to compute the trade shares λij,k, and the sector-level revenues Rj,k = ∑l Xjl,k for each

region, which are crucial elements in our hat algebra described in Section 2.6.

As additional definitions, take Ej,k = ∑i Xij,k as the total expenditure of region j in sector

k, Fj,k = ∑i Xij,kF as the final consumption in region j of sector k, Fj = ∑k Fj,k as the total final

consumption of region j, and Xj,ks = ∑i Xij,ks as the total purchases that sector s in region j

makes from sector k. We construct the matrix of Xij,k in four parts explained below. With some

abuse of notation, we refer to a region i as a U.S. state (country) by using the notation i ∈ US

(i /∈ US).
27For the specific case of Cyprus, the cities’ information comes from the country’s Statistical Service.
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A.2.1 Part 1: Bilateral Trade between Countries

In the first part we focus on the case where both i and j are countries. Thus, we simply take

Xij,k = XWIOD
ij,k , where XWIOD

ij,k are the bilateral trade flows that come directly from the WIOD

database without any further calculations.

A.2.2 Part 2: Manufacturing Trade between U.S. States and Countries

For the second part, we combine Census and WIOD data to calculate the trade flows be-

tween each of the 50 U.S. states and the other 37 country regions. We scale state-level imports

and exports data from the Import and Export Merchandise Trade Statistics to match the U.S.

totals in WIOD. More precisely, the exports (imports) of state i to (from) country j in manufac-

turing sector k are computed as a proportion of WIOD’s U.S. export (imports) to (from) country

j in sector k. This proportion is equal to the exports (imports) of state i to (from) country j in

sector k relative to the total U.S. exports (imports) to (from) country j in sector k.

Mathematically, let Xcensus
ij,k be the bilateral trade flows between regions i and j, in sector k,

according to the Import and Export Merchandise Trade Statistics database. Define the share of

sector k exports of state i to country j relative to the total U.S. exports of sector k as:

ycensus
ij,k ≡

Xcensus
ij,k

∑h∈US Xcensus
hj,k

.

Analogously, define the share of sector k imports of state j to country i as:

ecensus
ij,k ≡

Xcensus
ij,k

∑l∈US Xcensus
il,k

,

then we define our object of interest:

Xij,k =

ycensus
ij,k XWIOD

US j,k ∀i ∈ US, ∀j /∈ US

ecensus
ij,k XWIOD

i US,k ∀i /∈ US, ∀j ∈ US
.
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A.2.3 Part 3: Manufacturing Trade among U.S. States

In the third part we focus on manufacturing bilateral trade between U.S. States. For this,

we combine WIOD Data for the total trade of the U.S. with itself, and the closest Commodity

Flow Survey (CFS) for each year. We first compute the shares that each state i exports to state j

in sector k represent in the total trade of sector k according to CFS. Then, we calculate the total

exports of state i to state j in sector k as WIOD’s U.S. trade with itself in sector k multiplied by

the share computed in the previous step.

Mathematically, define XCFS
ij,k as the bilateral trade flows between state i and state j, in

manufacturing sector k, according to the CFS. We first construct:

xCFS
ij,k ≡

XCFS
ij,k

∑h ∑l XCFS
hl,k

∀(i ∈ US, & j ∈ US),

then we define our object of interest: Xij,k = xCFS
ij,k XWIOD

US,US,k ∀(i ∈ US, & j ∈ US).

A.2.4 Part 4: Trade in Services and Trade in Agriculture

We compute bilateral trade flows for services and agriculture separately using a gravity

structure that matches WIOD totals for trade between countries (including the U.S.).

Theory. Start with the standard gravity equation (for simplicity, we remove the subscript of

the sector):

Xij =

(
wiτij

Pj

)−ε

Ej,

where P−ε
j = ∑i

(
wiτij

)−ε. We know that ∑j Xij = Ri and hence ∑j

(
wiτij

Pj

)−ε
Ej = Ri. This

implies w−ε
i Π−ε

i = Ri, where Π−ε
i = ∑j τ−ε

ij Pε
j Ej. Let P̃j ≡ P−ε

j and Π̃i ≡ Π−ε
i , and τ̃ij ≡ τ−ε

ij .

Given
{

Ej
}

, {Ri}, and
{

τ̃ij
}

, one we can get
{

P̃j
}

and
{

Π̃i
}

for all regions from the following

system:

P̃j =∑
i

τ̃ijΠ̃−1
i Ri

Π̃i =∑
j

τ̃ijP̃−1
j Ej (17)
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The solution for
{

P̃j, Π̃i
}

is unique up to a constant (Fally, 2015). This indeterminacy requires a

normalization. We thus impose P̃1 = 100 in each exercise. Then one can compute our outcome

of interest
{

Xij
}

from

Xij = τ̃ijΠ̃−1
i P̃−1

j RiEj. (18)

Computation of the bilateral resistance τ̃ij. To solve the gravity system, we must first compute

τ̃ij ∀i, j. We proceed by assuming the following functional form:

τ̃ij = β
ιij
0 distβ1

ij exp
(
ξij
)

,

where ιij is an indicator variable equal to 1 if i = j, and ξij is an idiosyncratic error term. β1

captures the standard distance elasticity and β0 captures the additional inverse resistance of

trading with others versus with oneself.

To calculate distij, we follow the same procedure used in the GeoDist dataset of CEPII to

calculate international (and intranational) bilateral trade distances. The idea is to calculate the

distance between two countries based on bilateral distances between the largest cities of those

two countries, those inter-city distances being weighted by the share of the city in the overall

country’s population (Head and Mayer, 2002).

We use population for 2010 and coordinates data for all U.S. counties, and all cities around

the world with more than 300,000 inhabitants. For those countries with less than two cities of

this size, we take the largest cities. Coordinates are important to calculate the physical bilateral

distances in kms between each county r in state i and county s in state j (drs ∀r ∈ i , s ∈

j and ∀i, j = 1, ..., 50), and define dist (ij) as:

dist (ij) =

(
∑
r∈ i

∑
s∈ j

(
popr

popi

)(
pops

popj

)
dθ

rs

)1/θ

, (19)

where poph is the population of country/state h. We set θ = −1.

Given our definition of τ̃ij we can write the gravity equation between countries in the
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following way.

Xij = β
ιij
0 distβ1

ij exp
(
ξij
)

Π̃−1
i P̃−1

j RiEj.

Taking logs we can write the previous equation as:

ln Xij = δo
i + δd

j + β̃0ιij + β1 ln distij + ξij, (20)

where β̃0 = ln β0 and the δs are fixed effects. We first estimate the equation above separately

for services and agriculture using a 2000-2011 panel of bilateral trade flows between countries

from WIOD. We present our OLS estimation results in Table 5. Columns (1) and (2) refer to

the estimated coefficients for the case of services and agriculture, respectively. Both regres-

sions include year-by-origin and year-by-destination fixed effects. We take these estimates and

compute the bilateral resistance term in each sector as ˆ̃τij = exp( ˆ̃β0ιij + β̂1 ln distij).

Table 5: Estimation of Own-Country Dummy and Distance Elasticity

(1) (2)
Dep. Var.: ln Xij,t Services Agriculture

ιij 7.357 ∗∗∗ 4.143∗∗∗

(0.126) (0.145)
ln distij -0.376∗∗∗ -1.745∗∗∗

(0.037) (0.020)

Year×Orig. Yes Yes
Year×Dest. Yes Yes

Observations 17,328 17,328
Adjusted R2 0.66 0.76

Notes: This table displays the OLS estimates of specifications analogous to the one in equa-
tion (20). The outcome variable ln Xij,t is the log exports of country i sent to country j. The
own-country dummy ιij is defined as an indicator function equal to one whenever country i
is the same as country j. Finally, ln distij is the log distance between country i and country j.
This variable is computed according to equation (19). Robust standard errors are presented
in parenthesis. *** denotes statistical significance at the 1%.
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Trade in Services: As inputs, we need total expenditures in services for each region (Ei), as well

as total production in services (Ri). For the case of countries we take this directly from WIOD.

For the case of U.S. states we take these variables from the Regional Economic Accounts of the

Bureau of Economic Analysis. We scale the state-level services production and expenditures so

that they aggregate to the U.S. totals in WIOD.

We incorporate the information on bilateral trade in services between countries (including

the U.S.) that comes from WIOD to the gravity system of equation (17) by first writing the

system as:

P̃j = ∑
i/∈US

τ̃ijΠ̃−1
i Ri + ∑

i∈US
τ̃ijΠ̃−1

i Ri

Π̃i = ∑
j/∈US

τ̃ijP̃−1
j Ej + ∑

j∈US
τ̃ijP̃−1

j Ej.

Then, we define λ̃j ≡ 1− ∑i/∈US Xij
Ej

for j /∈ US (the share of imports of region j /∈ US coming

from the U.S.) and λ̃∗i ≡ 1− ∑j/∈US Xij
Ri

for i /∈ US (total exports of region i /∈ US to other regions

not in the U.S.). Using these two definitions and substituting τ̃ij = XijΠ̃iP̃jY−1
i X−1

j whenever

i, j /∈ US in the previous system of equations we have the final system we solve for services:

P̃j = ∑
i

τ̃ijΠ̃−1
i Ri j ∈ US

Π̃i = ∑
j

τ̃ijP̃−1
j Ej i ∈ US

λ̃jP̃j = ∑
i/∈US

τ̃ijΠ̃−1
i Ri j /∈ US

λ̃∗i Π̃i = ∑
j/∈US

τ̃ijP̃−1
j Ej i /∈ US

Once we find solutions for
{

P̃j, Π̃i
}

, we compute the final bilateral trade matrix according

to equation (18).

Trade in Agriculture: As inputs, we need total expenditures in services for each region (Ei),

as well as total production in agriculture (Ri). For the case of countries we take this directly

from WIOD. For the case of U.S. states we compute total production (Ri) by combining data

from the Agriculture Census and the National Marine Fisheries Service Census. We scale the
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state-level agriculture production so that it aggregates to the U.S. total in WIOD. However,

it is not possible to find state-level agriculture expenditure for U.S. states. To overcome this

data unavailability, we combine the U.S. input-output matrix (φj,ks) together with the shares of

value-added in gross production (i.e., the labor share) (φj,k) in order to compute a value of (Ei)

that is consistent with the full bilateral trade matrix for all regions and all sectors.

In order to describe our procedure, note that the total expenditure of region j in sector k

(Ej,k) could be written as:

Ej,k = ∑
s

φ̃j,ksRj,s + Fj,k,

where φ̃j,ks = φj,ks(1− φj,s). We make two assumptions. First, we assume that φ̃j,ks = φ̃US,ks

∀j ∈ US, which means that we assume common input-output matrix and value-added shares

across U.S. states and equal to the ones of the U.S. as a whole. Second, when j ∈ US we assume

that Fj,k =
Fj

FUS
FUS,k = Fjγk, where γk ≡

FUS,k
FUS

. This second assumption relies on the identical

Cobb-Douglas preferences across U.S. states. Using these two assumptions we get that:

Fj = Ej,k −∑
s

φ̃j,ksRj,s + ∑
r 6=k

(
Ej,r −∑

s
φ̃j,rsRj,s

)
.

Substituting the previous equation in the definition of Ej,k for the agriculture sector (k = AG),

and j ∈ US we find:

Ej,AG = ∑
s

φ̃j,AG sRj,s +
γAG

1− γAG
∑

r 6=AG

(
Ej,r −∑

s
φ̃j,rsRj,s

)
,

which can be computed using state-level production of all sectors and state-level expenditure

data of all other sectors (excluding agriculture), combined with the U.S.-level input-output

matrix, value-added shares, and sector-level consumption shares.

Once we obtain the state-level expenditure values in agriculture, we can proceed with the

gravity system in equation (17). As in the case of services, we incorporate the information on

bilateral trade in agriculture between countries (including the U.S.) that comes from WIOD.

We also incorporate the bilateral trade in agriculture between U.S. states and other countries

coming from the Import and Export Merchandise Trade Statistics. Thus, we only need to focus
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on
{

P̃j
}

j∈US and
{

Π̃i
}

i∈US.

Define χ∗i = 1−∑j/∈US
Xij
Ri

for i ∈ US (the share of sales of state i that stay in the U.S.) and

χj = 1− ∑i/∈US
Xij
Ej,k

for j ∈ US (the share of purchases of state i that come from the U.S.). The

final system we solve for agriculture becomes:

χjP̃j = Σi∈USτ̃ijΠ̃−1
i Ri, ∀j ∈ US

χ∗i Π̃i = Σj∈USτ̃ijP̃−1
j Ej, ∀i ∈ US

As before, once we find solutions for
{

P̃j, Π̃i
}

, we compute the bilateral trade in agriculture

between U.S. states according to equation (18).

A.3 Projection of Bilateral Trade Flows between Regions

Since the Import and Export Merchandise Trade Statistics data for exports starts in 2002

and for imports starts in 2008, the bilateral trade flows between regions for the years before the

data starts cannot be computed directly from the data. In this section, we adapt our computa-

tion method to take into account this issue. All previous procedures with the exception of the

manufacturing, agriculture, and mining trade between U.S. states and countries remains the

same. For the exception case we proceed as follows. Denote Xbase
ij,k as the matrix Xij,k for the first

year where the exports or imports data is available (the base year). Define the share of exports

of U.S. State i in sector k, going to country j in the base year as:

ybase
ij,k ≡

Xbase
ij,k

∑h∈US Xbase
hj,k

∀i ∈ US , j /∈ US.

Similarly, define the share of imports of U.S. state j in sector k, coming from country i in the

base year as:

ebase
ij,k ≡

Xbase
ij,k

∑l∈US Xbase
il,k

∀i /∈ US , j ∈ US.
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Finally for each sector k in manufacturing or agriculture; and any year before the base year

define:

Xij,k =

ebase
ij,k XWIOD

i US,k ∀i /∈ US, ∀j ∈ US

ybase
ij,k XWIOD

US j,k ∀i ∈ US, ∀j /∈ US
.

B Model Details

B.1 Production

Here we elaborate on the way the Input-Output loop works. There are I regions and S sec-

tors, and to produce output in each region and sector firms need to combine labor with all the

sectoral aggregates (the version of them available in that region). Specifically, the technology

to produce the differentiated good of industry s in region i at time t is

Yi,s,t =

(
φ
−φi,s
i,s

S

∏
k=1

φ
−φi,ks
i,ks

)
Ai,s,tL

φi,s
i,s,t

S

∏
k=1

Mφi,ks
i,ks,t,

where Mi,ks,t is the quantity of the composite good of industry k used in region i to produce

in sector s at time t, φi,s is the labor share in region i, sector s, φi,ks is the share of inputs that

sector s uses from sector k in region i, and 1− φi,s = ∑S
k=1 φi,ks. The resource constraint for the

composite good produced in region j, sector k, at time t is

Mj,k,t = Cj,k,t +
S

∑
s=1

Mj,ks,t.

In turn, the resource constraint for good s produced by region i at time t is

Yi,s,t =
I

∑
j=1

τij,s,tYij,s,t.

The composite in sector k is produced according to

Mj,k,t =

(
I

∑
i=1

Y
σk−1

σk
ij,k,t

) σk
σk−1

.
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Now let’s move to the equations in terms of the prices and values. Let’s start with prices. Let

Pi,s,t be the price of Mi,s,t and pij,s,t be the price of Yi,s,t in j at time t. Recall that the wage can

vary between different sectors in the same region because of mobility frictions, so let Wi,s,t be

the nominal wage in region i, sector s, at time t. We know that

pii,s,t = A−1
i,s,tW

φi,s
i,s,t

S

∏
k=1

Pφi,ks
i,k,t ,

pij,s,t = τij,s,t pii,s,t,

Pj,s,t =

(
I

∑
i=1

p1−σs
ij,s,t

)1/(1−σs)

,

Combining the last three equations we obtain:

P1−σs
j,s,t =

I

∑
i=1

(
τij,s,t A−1

i,s,tW
φi,s
i,s,t

S

∏
k=1

Pφi,ks
i,k,t

)1−σs

,

which, for each time period t, is a system of I × S equations in I × S unknowns that can be

used to solve for the Pj,s,t’s given the trade costs (τij,s,t’s), technologies (Ai,s,t’s), wages (Wi,s,t’s),

labor shares (φi,s’s) and input output coefficients (φi,ks), note that we do not allow the labor

shares and input output coefficients to vary with time. This system of I × S equations in I × S

unknowns is well behaved and can be solved using contraction mapping techniques, where

you start with a guess for the I × S prices (denoted PIj,s,t), and obtain a new guess (denoted

PEj,s,t) as follows:

PEj,s,t =

 I

∑
i=1

(
τij,s,t A−1

i,s,tW
φi,s
i,s,t

S

∏
k=1

PIφi,ks
i,k,t

)1−σs
 1

1−σs

We iterate until the difference between PE and PI is very small and this provides a solution to

the system. This is a similar method to the one followed in Caliendo and Parro (2015). Getting

back to the description of the setup of the model, the price of final output in region j at time t
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is given by

Pj,t =
S

∏
s=1

P
αj,s
j,s,t.

Now let’s move on to resource constraints in value. Multiplying the resource constraint for

Mj,k,t by Pj,k,t we get

Zj,k,t = Pj,k,tCj,k,t +
S

∑
s=1

Pj,k,tMj,ks,t,

where Zj,k,t ≡ Pj,k,tMj,k,t denotes the total expenditure of region j in industry k at time t. Let

λij,k,t be the share of that expenditure spent on imports from i,

λij,k,t ≡
pij,k,tYij,k,t

Zj,k,t
.

We know that

λij,k,t =
p1−σk

ij,k,t

∑l p1−σk
l j,k,t

=
p1−σk

ij,k,t

P1−σk
j,k,t

=

(
τij,k,t A−1

i,k,tW
φi,k
i,k,t ∏S

s=1 Pφi,sk
i,s,t

)1−σk

∑I
r=1

(
τrj,k,t A−1

r,k,tW
φr,k
r,k,t ∏S

s=1 Pφr,sk
r,s,t

)1−σk
.

Let Ri,k,t = pii,k,tYi,k,t represent the sales of good k by region i at time t. Multiplying the resource

constraint for Yi,k,t above by pii,k,t we get

pii,k,tYi,k,t =
I

∑
j=1

τij,k,t pii,k,tYij,k,t,

and hence

Ri,k,t =
I

∑
j=1

λij,k,tZj,k,t.

Plugging in from the resource constraint above for Zj,k,t we then have

Ri,k,t =
I

∑
j=1

λij,k,t

(
Pj,k,tCj,k,t + ∑

s
Pj,k,tMj,ks,t

)
.
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Note that

Pj,k,tMj,ks,t = φj,ksRj,s,t.

Additionally, the total amount available for consumption in region j at time t is the sum of three

things, total labor income which includes rebates from the government (denote it Ij,t) and the

deficit (denoted Dj,t). So we get

Pj,k,tCj,k,t = αj,k
(

Ij,t + Dj,t
)

,

hence

Ri,k,t =
I

∑
j=1

λij,k,t

(
αj,k
(

Ij,t + Dj,t
)
+ ∑

s
φj,ksRj,s,t

)
.

For each time period t, this is a linear system of I × S equations in I × S unknowns that can

be used to solve for the Ri,k,t’s given the trade shares (λij,k,t’s), Cobb-Douglas shares (αj,k’s),

labor incomes (Ij,t’s), deficits (Dj,t’s), government revenues (Gj,t’s), and input output coeffi-

cients (φj,ks). Since this is a linear system in the R’s, it is relatively easy to solve. Of this total

production (Ri,k,t), we know that a fraction φi,k is payed to labor, so we can write:

Wi,b,tLi,b,t = Wi,b,t ∑
s∈b

Li,s,t = ∑
s∈b

φi,sRi,s,t

B.2 Labor Supply

We ignore region and time subscripts here, so that we are effectively focusing on a single

region and period. Each agent has a discrete choice between home production with utility flow

µ and work in broad sector b ∈ {1, ..., B} with real wage ωb. For ease of notation, we think

of home production as broad sector 0, so that the set of broad sectors is now {0, 1, ..., B}, and

we use ω0 = µ. Each agent has utility parameters zb for b ∈ {0, 1, ..., B} so that agent’s utility

is ln ωb + zb if she chooses broad sector b. We assume that these utility parameters are drawn

from a nested Gumbel distribution so that the cumulative distribution of Z = (Z0, Z1, ..., ZB) is

H (z) = exp

− exp (−κz0)−
(

B

∑
b=1

exp (−ηzb)

)κ/η
 , (21)
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with 0 ≤ κ ≤ η.28

Imagine that an agent is maximizing ln ωb + zb (over choice of b). Below we show that the

probability that the agent chooses b ∈ {1, ..., B} is given by

π̃b =
ω

η
b

∑B
b′=1 ω

η
b′

(
∑B

b′=1 ω
η
b′

)κ/η

ωκ
0 +

(
∑B

b′=1 ω
η
b′

)κ/η
. (22)

Moreover, the exponential of the expectation of the maximized value is

exp (E(max ln ωb + Zb)) = eγ

ωκ
0 +

(
B

∑
b=1

ω
η
b

)κ/η
1/κ

, (23)

where γ is the Euler-Mascheroni constant.

The result in Equation (22) further implies that the probability of choosing b ∈ {1, ..., B} is

π ≡
B

∑
b=1

π̃b =

(
∑B

b=1 ω
η
b

)κ/η

ωκ
0 +

(
∑B

b=1 ω
η
b

)κ/η

while the probability of choosing b ∈ {1, ..., B} conditional on not choosing b = 0 is

πb ≡
π̃b
π

=
ω

η
b

∑B
b′=1 ω

η
b′

.

This implies that π̃b = π · πb. Of course, we also have that the probability that the agent

chooses b = 0 is

π̃0 = 1−
B

∑
b=1

π̃b =
ωκ

0

ωκ
0 +

(
∑B

b′=1 ω
η
b′

)κ/η
.

We now prove the result in Equation (22). Without loss of generality, we derive the proba-

bility that 1 = arg maxb ln ωb + Zb. This is the same as the probability that zb ≤ ab + Z1 for all

28This conditions is sufficient to ensure that the density function is positive everywhere in z ∈ RB+1
+ .
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b, where ab ≡ ln (ω1/ωb). Thus,

π̃1 =
∫ ∞

−∞
H1(a0 + z, z, a2 + z, ..., aB + z)dz. (24)

From (21) we get

H1(z0, z1, ..., zB) = κ

(
B

∑
b=1

exp (−ηzb)

)κ/η−1

exp (−ηz1)

· exp

− exp (−κz0)−
(

B

∑
b=1

exp (−ηzb)

)κ/η
 ,

and hence

H1(a0 + z, z, a2 + z, ..., aB + z) = κAκ−η exp (−κz) exp (−ηa1)

· exp (− [exp (−κa0)− Aκ] exp (−κz)) , (25)

where

A ≡
(

B

∑
b=1

exp (−ηab)

)1/η

.

Plugging into (24) and integrating we get

π̃1 =
Aκ−η

exp (−κa0) + Aκ
=

(
∑B

b=1 exp (−ηab)
)κ/η−1

exp (−κa0) +
(

∑B
b=1 exp (−ηab)

)κ/η
.

Plugging in for ab ≡ ln ω1/ωb and simplifying we get

π̃1 =
ω

η
1

∑B
b=1 ω

η
b

(
∑B

b=1 ω
η
b

)κ/η

ωκ
0 +

(
∑B

b=1 ω
η
b

)κ/η
.

Generalizing to b ≥ 1 leads to the result in Equation (22).

To establish the result in Equation (23), we again assume that the choice is b = 1. The prob-

ability that maxb ln (Zbωb) ≤ x and 1 = arg maxb Zbωb is
∫ (1/ω1) exp x

0 H1(a0z, z, a2z, ..., aBz)dz.
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Using (25) and integrating we then have

∫ (1/ω1) exp x

0
H1(a0z, z, a2z, ..., aBz)dz =

Aκ−η

a−κ
0 + Aκ

exp
(
− (exp x)−κ ωκ

1
[
a−κ

0 + Aκ
])

.

This implies that

E(max ln (Zbωb) | arg max Zbωb = 1) =
1

π̃1

Aκ−η

a−κ
0 + Aκ

∫ ∞

−∞
xκ (exp x)−κ−1 ωκ

1
[
a−κ

0 + Aκ
]

· exp
(
− (exp x)−κ ωκ

1
[
a−κ

0 + Aκ
])

dx,

and hence, using π̃1 = Aκ−η

a−κ
0 +Aκ , we have

E(max ln (Zbωb) | arg max Zbωb = 1) =
∫ ∞

−∞
xκ (exp x)−κ−1 ωκ

1
[
a−κ

0 + Aκ
]

· exp
(
− (exp x)−κ ωκ

1
[
a−κ

0 + Aκ
])

dx.

So we need to know

∫ ∞

−∞
xκT (exp x)−κ−1 exp

(
−T (exp x)−κ

)
dx =

∫ ∞

−∞
xd exp

(
−T (exp x)−κ

)
.

But note that

T (exp x)−κ =
(

T−1/κ exp x
)−κ

=

(
exp

(
−1

κ
ln T

)
exp x

)−κ

=
(

exp
(

x− ln T
1
κ

))−κ
.

This is the Gumbel distribution with location parameter µ = ln T1/κ and scale parameter β = 0.

But we know that the expectation of a variable distributed Gumbel with µ and β is µ + βγ,

where γ is the Euler-Mascheroni constant, hence we have

∫ ∞

−∞
xd exp

(
−T (exp x)−κ

)
= ln T

1
κ + γ.

This implies that

∫ ∞

−∞
xκ (exp x)−κ−1 ωκ

1
[
a−κ

0 + Aκ
]

exp
(
− (exp x)−κ ωκ

1
[
a−κ

0 + Aκ
])

dx
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= ln
[
ω1
(
a−κ

0 + Aκ
)1/κ

]
+ γ

and hence

E(max Zbωb| arg max Zbωb = 1) = ln
[
ω1
(
a−κ

0 + Aκ
)1/κ

]
+ γ.

Substituting for A and ab, we then have

E(max Zbωb| arg max Zbωb = 1) = ln

ω1

(ω1/ω0)
−κ +

(
B

∑
b=1

(ω1/ωb)
−η

)κ/η
1/κ

+ γ

and hence

E(max Zbωb| arg max Zbωb = 1) = ln


ωκ

0 +

(
B

∑
b=1

ω
η
b

)κ/η
1/κ

+ γ

Of course, this implies that

exp (E(max Zbωb)) = eγ

ωκ
0 +

(
B

∑
b=1

ω
η
b

)κ/η
1/κ

.

B.3 Equilibrium and Utility

In this model, the equilibrium system in each period t is described by equations (1) - (14).

After introducing equations (4) and (5) into equation (3), we can express the equilibrium as

follows:

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
∑
b

Wj,b,tLj,b,t + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
∀ i, ∀ s

λij,s,t =
(τij,s,t A−1

i,s,tW
φi,s
i,b(s),t ∏k Pφi,ks

i,k,t )
1−σs

∑I
r=1(τrj,s,t A−1

r,s,tW
φr,s
r,b(s),t ∏k Pφr,ks

r,k,t )
1−σs

∀ i, ∀ s

P1−σs
i,s,t =

I

∑
j=1

(
τji,s,t A−1

j,s,tW
φj,s
j,b(s),t

S

∏
k=1

P
φj,ks
j,k,t

)1−σs

∀ i, ∀ s
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Wi,b,tLi,b,t = ∑
s∈b

φi,sRi,s,t ∀ i, ∀ b

Li,b,t ≤ `i,b,t, Wi,b,t ≥ δi,bWi,b,t−1, CS ∀ i, ∀ b

`i,b,t =
ωκ

i,t

µκ
i + ωκ

i,t

ω
η
i,b,t

ω
η
i,t

Li ∀ i, ∀ b

ωi,b,t =
Wi,b,tLi,b,t

Pi,t`i,b,t
∀ i, ∀ b

ω
η
i,t = ∑

b
ω

η
i,b,t ∀ i

Pi,t =
S

∏
s=1

Pαi,s
i,s,t ∀ i

I

∑
i=1

∑
b

Wi,b,tLi,b,t = γ
I

∑
i=1

∑
b

Yi,b,t−1 single

The equilibrium in changes is then the one described in the main text. Recall that in our setup

we can express instantaneous utility as:

ui,t ∝
(
µκ

i + ωκ
i,t
)1/κ

= (ωκ
i,t/πi,t)

1/κ = ωi,tπ
−1/κ
i,t .

The change in utility can then be expressed as:

ûi,t = ω̂i,tπ̂
−1/κ
i,t = ω̂i,t

(
ω̂κ

i,t

1− πi,t−1 + πi,t−1ω̂κ
i,t

)−1/κ

=
(
1− πi,t−1 + πi,t−1ω̂κ

i,t
)1/κ .

C Exposure measures

Consider an economy producing a set of homogeneous goods across sectors s = 1, ..., S

with prices ps. Labor is the only factor of production that is mobile across sectors, and there

are decreasing returns to labor in each sector so that qs = Fs(ls) with F′s(·) > 0 and F′′s (·) < 0.

Preferences are given by U(c)−V(l), where l ≡ ∑s ls, U(c) is homogeneous of degree one, and

V′(·) > 0 and V′′(·) > 0. We are interested in the effect of a foreign shock on employment in

two different cases. In the first case the wage w is fixed and labor is fully determined by labor

demand (we assume that labor supply is higher than labor demand at the fixed wage w), while
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in the second case the wage is fully flexible and clears the labor market. Below we show that

further assuming that ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

= ε for all s and µ(l) ≡ V′′(l)l
V′(l) = µ, then in the case of a

fixed wage we have

d ln l =
1
ε ∑

s

( psqs

I

)
d ln ps (26)

while in the case of flexible wages we have

d ln l =
1

ε + µ ∑
s

(
psqs − pscs

I

)
d ln ps, (27)

where I ≡ ∑s psqs. Thus, if the wage is fixed and if we know the log changes in prices result-

ing from the foreign shock then we can interact them with revenue shares, psqs
I , to construct

a Bartik-style sufficient statistic for the first order effect on employment. In contrast, if the

wage fully adjusts to equalize labor supply and demand, then the appropriate weights (share

components in the Bartik measure) for the price changes are instead given by net exports as a

share of GDP, to capture the implied terms-of-trade effects. If the economy is small, then prices

are exogenous and one could further replace d ln ps by the underlying Chinese productivity

shocks.

Let’s start with the case where w is fixed. Fully differentiating the equilibrium condition

psF′s(ls) = w implies

d ln ls =
d ln ps

εs(ls)
,

where ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

. We then have

d ln l = ∑
s

ms
d ln ps

εs(ls)

where ms ≡ ls
∑s ls

. Assuming that εs(ls) = ε we know that psqs/I = ms and hence we get (26).

Now let’s consider the case with a flexible wage. The equilibrium is given by w, l, λ and

{ls, cs}s such that the following equations hold

psF′s(ls) = w (28)
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∂Us

∂cs
= λps (29)

V′(l) = λw (30)

∑
s

ls = l (31)

∑
s

pscs = ∑
s

ps fs(ls). (32)

Differentiating equation (30) yields

µ(l)d ln l = d ln λ + d ln w,

where µ(l) ≡ V′′(l)l
V′(l) . This implies that

d ln l =
d ln (w/P)

µ(l)
, (33)

with P ≡ 1/λ. Next, totally differentiating equations (28) and (31) yields

d ln ps − εd ln ls = d ln w

∑
s

msd ln ls = d ln l.

Combined, the previous two equations imply

∑ msd ln ps − εd ln l = d ln w,

which combined with (33) implies (after some rearranging)

d ln (w/P) =
µ

µ + ε

(
∑ msd ln ps − d ln P

)
. (34)

But equation (29) implies that

∑
s

∂Us

∂cs
cs = λ ∑

s
pscs.
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Since U(c) is h.d.g. 1 this implies U(c) = λ ∑s pscs. Totally differentiating this equation yields

∑
s

∂Us

∂cs
dcs =

(
∑

s
pscs

)
dλ + λ ∑

s
psdcs + λ ∑

s
csdps.

Using equation (29) this implies

∑
s

λpsdcs =

(
∑

s
pscs

)
dλ + λ ∑

s
psdcs + λ ∑

s
csdps,

which, after simplifying, implies

d ln P = d ln (1/λ) = ∑
s

θsd ln ps, (35)

where θs ≡ pscs
∑s pscs

. Plugging into (34) and combining with (33) we get

d ln l =
1

µ + ε ∑ (ms − θs) d ln ps.

Finally, note that ms ≡ ls
∑s ls

= wls
∑s wls

= psF′s(ls)ls
∑s psF′s(ls)ls

. Using ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

= ε, we know that

Fs(ls) ∝ l1−ε
s and F′s(ls) ∝ (1− ε) l−ε

s , hence

ms =
psFs(ls)

∑s psFs(ls)
=

psqs

∑s psqs
=

psqs

I
.

On the other hand, using (32) we have

θs ≡
pscs

∑s pscs
=

pscs

I
.

Combined, the last three displayed equations imply (27).
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