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School choice mechanisms and tiebreaking rules
} School choice mechanisms have been adopted in NYC, Boston, 

Amsterdam, ...

} In practice, many students belong to the same priority group  

and schools ration supply using lotteries (tiebreaking rules)

} What are the welfare and equity effects of tiebreaking rules?



Applying for High Schools in NYC



80,000 students participate in  NYC School 
Assignment

Factors involved in admissions
} Priority groups
} Eligibility 
} Selection Criteria of the schools

A central mechanism takes students’ 
and schools’ preference lists as input 
and generates an assignment



School choice programs based on the Deferred 
Acceptance (DA) algorithm

Gale-Shapley’s Deferred Acceptance (DA) Algorithm  (since 
2003):

Repeat:

1. Unassigned students apply to their next top choice

2. Schools tentatively accept if a seat is available; otherwise 
reject the least preferred students

} Student-proposing DA finds a stable assignment

• Stability: if a student s prefers a school c to her current assignment, then 
school c is full and prefers any of the students assigned to it to student s

} Used in NYC, Boston, Amsterdam,… 



Ties and Tiebreaking rules 
} Schools often have coarse preferences over students

} Tiebreaking rules are used to resolve the indifferences and 

ration supply



School choice and Tiebreakings
} Two common tiebreaking rules are:  

• Single Tiebreaking rule (STB)
• Multiple Tiebreaking rule (MTB) 
• Boston - STB,  New York - STB,  Amsterdam - MTB in their first year

} STB and MTB do not harm students’ incentives

• Intuitively because they do not depend on students’ preferences



STB vs MTB example

A > B
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B > A
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A > B
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B > A

B > A

A > B

B > A

A > B

MTB

STB

• Two students:  A,B
• Two schools, indifferent 

between A,B



Differences between STB and MTB

} Why MTB?

• “It is more fair”
• “In MTB, the pain [of not getting the top choice] is distributed more 

equitably” [“School Fight in Amsterdam”, http://www.kennislink.nl/]

} Why STB?

• “Using [STB] might be a better idea [...] since this practice eliminates 
part of the inefficiency” [Abdulkadirouglu and Sonmez, AER’03]

} Confusion about tiebreakings in NYC, Amsterdam, etc.



This work: revisits these findings
• The welfare and equity effects of tiebreaking rules depend on 

the market supply and demand

• Different effects in “popular” and “non-popular” schools

• E.g., STB stochastically dominates MTB in popular schools

• The aggregated rank distribution misses important information

• Towards refined guidelines by studying submarkets

Empirical work on STB and MTB

} NYC:  Abdulkadiroglu, Pathak, Roth (AER 09)

} Amsterdam: De Haan, Pgautier, Oosterbeek, Klaauw (15)

No stochastic dominance between rank distributions

AmsterdamNYC



Outline
} Related work

} Model and results

} Intuition and proof ideas

} Robustness check: school choice data from NYC



Related work
} Empirical studies

• Abdulkadiroglu, Pathak, Roth (AER 09),  De Haan, PGautier,  Hessel 
Oosterbeek, Klaauw (15)

} Sophisticated tiebreaking rules:

• Erdil, Ergin (AER 08), Che, Tercieux (15), Kesten and Unver (TE 15)

} Properties of the rank distribution in random matching 

markets:

• Ashlagi, Kanoria, Leshno (JPE 15), Ashlagi, Nikzad, Romm (EC’15), 
Arnosti (EC’15)



Motivating example 
} s students

} c schools with unit capacities

} p “popular” schools, c-p “non-popular” schools 

• Students prefer any popular school to any non-popular school

} Students have private strict preferences over schools

• They rank popular schools uniformly at random
• They rank non-popular schools uniformly at random

} Schools are indifferent between students

} There are enough seats for all students, but not in popular 

schools (p < s < c)



Motivating example
Define two new markets:

} Over-demanded market

• #students=s,  #schools=p (i.e. shortage of seats)
• Students rank schools uniformly at random

} Under-demanded market

• #students=s-p,  #schools=c-p (i.e. excess of seats)
• Students rank schools uniformly at random

} The (expected) rank distribution in the over-demanded market 

is identical to the rank distribution in popular schools

• The same holds for the under-demanded market and non-popular 
schools



The model
} n students, m schools

} Students rank schools independently and uniformly at random 

} A student’s preference list is a random permutation of schools

} Schools are indifferent between students

} We compare STB and MTB when

• n>m : over-demanded market (“popular” schools)
• n<m : under-demanded market (“non-popular” schools)



Notions of comparison

} Rank efficiency

} Number of Pareto-improving pairs

} Equity



Rank efficiency
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STB stochastically dominates MTB No stochastic dominance



Pareto-improving Pairs
A pair of students (s,t) form a Pareto-improving pair under the 

matching μ if 
s and t prefer to swap positions under μ

} Under STB there are no Pareto-improving pairs
} Does MTB generate many Pareto-improving pairs?

} Amsterdam 2015:  families who wanted to swap schools filed a law 
suit



Equity

} Variation in students’ ranks

} Let μ be a matching of students to schools

} Let rs denote the rank that student s gets in μ
} Let r be the average rank of assigned students:

! = 1
#%&&'()*+ ,-!

!!

} Define the social inequity in μ as 

.' / = 1
#%&&'()*+ ,-!

! − !! "

} We compare expected social inequity under STB and MTB 

• The expectation is taken over students’ preferences and tiebreaking

} A measure for (ex-post) equal treatment of (ex-ante) equals



Notions of comparison

} Rank efficiency (stochastic dominance)

} Number of Pareto-improving pairs

} Equity (variance of the rank)

The imbalance between demand and supply is the 
determinant factor



Overview of main findings

In an over-demanded market
} STB “dominates” MTB in terms of rank efficiency 

} MTB has many Pareto-improving pairs

} STB has a lower social inequity (variance) than MTB

} In an under-demanded market
} No stochastic dominance relation between STB and MTB

} MTB has almost no Pareto-improving pairs

} STB has a higher social inequity (variance) than MTB



Results
Theorem (Over-demanded market)

When n = m+1, 

i. STB “almost stochastically” dominates MTB



Almost stochastic domination

#Students=100
#Seats=99
Capacity=1

Conjecture:
STB stochastically dominates MTB when n=m+1

We prove that the conjecture “almost holds”:
It holds when the bottom log n students are removed
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Results
Theorem (Over-demanded market)

When n = m+1, 

i. STB “almost stochastically” dominates MTB

ii. The number of Pareto-improving pairs that contain a fixed 

student is of the order of n / ln2+εn, whp.



Results
Theorem (Over-demanded market)

When n = m+1, 

i. STB “almost stochastically” dominates MTB

ii. The number of Pareto-improving pairs that contain a fixed 

student is of the order of n / ln2+εn, whp.

iii. Expected social inequity under STB is of the order of n, and 

under MTB is of the order of n2 / ln2n



Results
Theorem (Over-demanded market)
When n = m+1, 
i. STB “almost stochastically” dominates MTB
ii. The number of Pareto-improving pairs that contain a fixed student 

is of the order of n / ln2+εn, whp.
iii. Expected social inequity under STB is of the order of n, and under 

MTB is of the order of n2 / ln2n

Theorem (Under-demanded market)
When n = m-1, 
i. Neither STB or MTB stochastically dominate the other.
ii. The number of Pareto-improving pairs that contain a fixed student 

is 0, whp.
iii. Expected social inequity under STB is of the order of n, and under 

MTB is of the order of ln2n



Implications from the main results

} There is no tradeoff in an over-demanded market 

} If MTB is used in popular schools:

• Students will be assigned to worse ranks in popular schools
• There will be many Pareto-improving pairs (e.g.  in Amsterdam)

} Using STB in popular schools resolves the above issues

• We need to identify popular schools
• Amsterdam has four “over-subscribed” schools [de Haan et al]

} If MTB is used in non-popular schools:

• There will be very few Pareto-improving pairs
• There will be lower social inequity

} Possible use of a hybrid tiebreaking rule



Outline
} Related work

} Model and results

} Intuition and proof ideas

} Robustness check: school choice data from NYC
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Intuition: over-demanded market
} STB “dominates” MTB in terms of rank efficiency

} Example: the first two rounds of Deferred Acceptance

✔

✖

✔

Key fact: 
Bob is more likely to be rejected 
under STB than under MTB

Alice

Bob

Carol

✔

David



✖

} STB “dominates” MTB in terms of rank efficiency

✔
✖

Intuition: over-demanded market

✔

✖

✔

Alice

Bob

Carol

✔

David

STB:
• All assigned students get 

their top choice

✔

✖

✖

Alice

Bob

Carol

✔

David

MTB:
• Not all assigned students 

get their top choice

✔



Intuition: over-demanded market
} STB “dominates” MTB in terms of rank efficiency

} In the course of Deferred Acceptance

• There is always an unassigned student
• The unassigned student is more likely 

to be rejected under STB, because her 
lottery number is not redrawn 

• Under STB, student with the worst 
lottery number keeps getting rejected

• Under MTB, there is no such student. 
Competition for not being unassigned 
is harsher: the resulting rejections are 
endured collectively by all students 



Intuition: over-demanded market
} STB “dominates” MTB in terms of rank efficiency

} STB is an early coin-flip  
} MTB is a delayed coin-flip 



Intuition: under-demanded market

} Stochastic dominance does not happen

} MTB assigns fewer students to their bottom ranks, but also fewer to 
their top ranks. 

Why? 

} Under STB, students with low lottery numbers get bad ranks

} They get better ranks under MTB by displacing other students 

(with their redrawn lottery numbers)

} The “rejection chain” under MTB ends sooner in an under-

demanded market, so stochastic dominance does not happen



Expected social inequity: idea
Theorem (Over-demanded market)

When ! = # + 1, 

iii. Expected social inequity under STB is of the order of n, and 
under MTB is of the order of n2 / ln2n

Steps:  

μ - student-optimal stable matching, 

η - school optimal stable matching

① E[Si(μ)] = Var[rank of s in μ], for any student s

② Var[rank of s in μ] ≈ Var[rank of s in η]  (core is “small” [AKL 2015])

③ Var[rank of s in η] ≈ n2/ln2n 



Expected social inequity: proof sketch 

③ Var[rank of s in η] ≈ n2/ln2n 

Proof:

1) Claim A. Whp, any student receives at most d ≈ ln n proposals 

from schools

2) Rank of a student is the first order stochastic of the proposals 

that it receives:

rank of s in η = min{ X1,…, Xd }

3) Xi’s are “almost independent and uniformly distributed”

4) Var[rank of s in η] ≈ (n/d)2

≈ n2/ln2n



Expected social inequity: proof sketch 
Claim A. 

Whp, any student receives at most d ≈ ln n proposals

Proof Idea: 

} Coupling the DA process with a simpler stochastic process, P. 

} In the process P, about n ln n coins with success probabilities 

carefully chosen

} The coupling (DA, P) is defined such that the number of 

successful coin-flips becomes an upper bound on d, in almost 

all sample paths

} It is easy to compute the number of successful coin flips



Expected social inequity: takeaways 
Why variance is “large” in over-demanded markets?

} Each student receives “few” proposals in school-proposing DA

Why variance is “small” in under-demanded markets?

} Each student receives “many” proposals in school-proposing 

DA



Experiments with New York city data
} Year 2007-2008

} 73000 students

} 670 programs

} Students’ preference lists include at most 12 schools

} Assumption: submitted lists are the true preferences



Define the popularity of school s to be:

&! =
#students listing 1 as 3irst choice

capacity of 1

} “Popular schools”: schools with popularity above a fixed &

Experiments with New York city data
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STB vs MTB in NYC in schools with popularity level at 
least α
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27000 assigned
to 33% of schools 

14000 assigned
to 20% of schools 

8000 assigned
to 15% of schools 



STB vs MTB in NYC in schools with popularity level at 
most α
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45000 assigned to
67% of schools 



Pareto improving pairs

Popularity level (α)
% of students in Pareto improving pairs

in popular schools in non-popular schools

1 20 0.9



Pareto improving pairs

Popularity level (α)
% of students in Pareto improving pairs

in popular schools in non-popular schools

1 20 0.9
1.25 21.5 1.9
1.5 23.7 2.6



Expected social inequity

Popular 
schools

Non-Popular 
schools



Another measure for popularity
Define the popularity of school s to be:

;! =
#students listing 1

capacity of 1

# $ % of popular schools common 
between the two measures

1 9

1.5 12

2 14.8

75%

70%

65%

% of popular 
schools

33%

20%

14%

NYC High school directory:
• Applicant-seat ratio > 9:  high demand
• Applicant-seat ratio < 9: average or low demand



Stochastic dominance in popular schools
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Summary
} The balance between demand and supply plays a crucial role in 

the comparison between the tiebreaking rules

} Over-demanded markets (popular schools)

• No tradeoff:  STB is “better” than MTB  under all measures

} Under-demanded markets (non-popular schools):

• A real tradeoff between MTB and STB

} Possible use of a hybrid rule

} More to be done on defining popular schools…



Appendix



Hybrid tiebreaking rule 
with ! = 2 compared 
to STB and MTB 

Non-popular

Popular


