School choice tiebreaking: How competition guides design

Afshin Nikzad

joint work with Itai Ashlagi

School choice mechanisms and tiebreaking rules

- School choice mechanisms have been adopted in NYC, Boston, Amsterdam, ...
- In practice, many students belong to the same priority group and schools ration supply using lotteries (tiebreaking rules)
- What are the welfare and equity effects of tiebreaking rules?

Applying for High Schools in NYC

80,000 students participate in NYC School Assignment

Factors involved in admissions

- Priority groups
- Eligibility
- Selection Criteria of the schools

A central mechanism takes students' and schools' preference lists as input and generates an assignment

School choice programs based on the Deferred Acceptance (DA) algorithm

Gale-Shapley's Deferred Acceptance (DA) Algorithm (since 2003):

Repeat:

1. Unassigned students apply to their next top choice
2. Schools tentatively accept if a seat is available; otherwise reject the least preferred students

- Student-proposing DA finds a stable assignment
- Stability: if a student s prefers a school c to her current assignment, then school c is full and prefers any of the students assigned to it to student s
- Used in NYC, Boston, Amsterdam,...

Ties and Tiebreaking rules

- Schools often have coarse preferences over students
- Tiebreaking rules are used to resolve the indifferences and ration supply

School choice and Tiebreakings

- Two common tiebreaking rules are:
- Single Tiebreaking rule (STB)
- Multiple Tiebreaking rule (MTB)
- Boston - STB, New York - STB, Amsterdam - MTB in their first year
- STB and MTB do not harm students' incentives
- Intuitively because they do not depend on students' preferences

STB vs MTB example

- Two students: A, B
- Two schools, indifferent between A,B

STB

MTB

Differences between STB and MTB

- Why MTB?
- "It is more fair"
- "In MTB, the pain [of not getting the top choice] is distributed more equitably" ["School Fight in Amsterdam", http://www.kennislink.n/]]
- Why STB?
- "Using [STB] might be a better idea [...] since this practice eliminates part of the inefficiency" [Abdulkadirouglu and Sonmez, AER'03]
- Confusion about tiebreakings in NYC, Amsterdam, etc.

This work: revisits these findings

 the market supply and demand
NYC: Different effects in "popular" and "non-popular" schools

- NYC: Abdulkadiroglu, Pathak, Roth (AER 09)
- E.g. STB stochastically dominates MTB in popular schools
- Amstęrdam: De Haan, Pgautier, Oosterbeek, Kaauw (15)
- The aggregated rank distribution misses important information
- Towards refined guidelines by studying submarkets
NYC

Choice

DA-STB
(1)

$32,105.3$	$29,849.9$
$14,296.0$	$14,562.3$
$9,279.4$	$9,859.7$
$6,112.8$	$6,653.3$
$3,988.2$	$4,386.8$
$2,628.8$	$2,910.1$
$1,732.7$	$1,919.1$
$1,099.1$	$1,212.2$
761.9	817.1
526.4	548.4
348.0	353.2
236.0	229.3
$5,613.4$	
	$5,426.7$

Amsterdam

No stochastic dominance between rank distributions

Outline

- Related work
- Model and results
- Intuition and proof ideas
- Robustness check: school choice data from NYC

Related work

- Empirical studies
- Abdulkadiroglu, Pathak, Roth (AER 09), De Haan, PGautier, Hessel Oosterbeek, Klaauw (15)
- Sophisticated tiebreaking rules:
- Erdil, Ergin (AER 08), Che, Tercieux (15), Kesten and Unver (TE 15)
- Properties of the rank distribution in random matching markets:
- Ashlagi, Kanoria, Leshno (JPE 15), Ashlagi, Nikzad, Romm (EC’15), Arnosti (EC'15)

Motivating example

- s students
- c schools with unit capacities
- p "popular" schools, c-p "non-popular" schools
- Students prefer any popular school to any non-popular school
- Students have private strict preferences over schools
- They rank popular schools uniformly at random
- They rank non-popular schools uniformly at random
- Schools are indifferent between students
- There are enough seats for all students, but not in popular schools ($p<s<c$)

Motivating example

Define two new markets:

- Over-demanded market
- \#students=s, \#schools=p (i.e. shortage of seats)
- Students rank schools uniformly at random
- Under-demanded market
- \#students=s-p, \#schools=c-p (i.e. excess of seats)
- Students rank schools uniformly at random
- The (expected) rank distribution in the over-demanded market is identical to the rank distribution in popular schools
- The same holds for the under-demanded market and non-popular schools

The model

- n students, m schools
- Students rank schools independently and uniformly at random
- A student's preference list is a random permutation of schools
- Schools are indifferent between students
- We compare STB and MTB when
- $n>m$: over-demanded market ("popular" schools)
- $n<m$: under-demanded market ("non-popular" schools)

Notions of comparison

- Rank efficiency
- Number of Pareto-improving pairs
- Equity

Rank efficiency

STB stochastically dominates MTB

Pareto-improving Pairs

A pair of students (s, t) form a Pareto-improving pair under the matching μ if
s and t prefer to swap positions under μ

- Under STB there are no Pareto-improving pairs
- Does MTB generate many Pareto-improving pairs?
- Amsterdam 2015: families who wanted to swap schools filed a law suit

Equity

- Variation in students' ranks
- Let μ be a matching of students to schools
- Let r_{s} denote the rank that student s gets in μ
- Let r be the average rank of assigned students:

$$
r=\frac{1}{\# \text { Assigned }} \cdot \sum_{s} r_{s}
$$

- Define the social inequity in μ as

$$
\operatorname{Si}(\mu)=\frac{1}{\# \text { Assigned }} \cdot \sum_{s}\left(r-r_{s}\right)^{2}
$$

- We compare expected social inequity under STB and MTB
- The expectation is taken over students' preferences and tiebreaking
- A measure for (ex-post) equal treatment of (ex-ante) equals

Notions of comparison

- Rank efficiency (stochastic dominance)
- Number of Pareto-improving pairs
- Equity (variance of the rank)

The imbalance between demand and supply is the determinant factor

Overview of main findings

In an over-demanded market

- STB "dominates" MTB in terms of rank efficiency
- MTB has many Pareto-improving pairs
- STB has a lower social inequity (variance) than MTB
- In an under-demanded market
- No stochastic dominance relation between STB and MTB
- MTB has almost no Pareto-improving pairs
- STB has a higher social inequity (variance) than MTB

Results

Theorem (Over-demanded market)

When $\mathrm{n}=\mathrm{m}+1$,
i. STB "almost stochastically" dominates MTB

Almost stochastic domination

Conjecture:

STB stochastically dominates MTB when $n=m+1$
We prove that the conjecture "almost holds":
\#Students=100
It holds when the bottom $\log n$ students are removed

Results

Theorem (Over-demanded market)

When $\mathrm{n}=\mathrm{m}+1$,
i. STB "almost stochastically" dominates MTB
ii. The number of Pareto-improving pairs that contain a fixed student is of the order of $n / \ln 2+\varepsilon n$, whp.

Results

Theorem (Over-demanded market)

When $\mathrm{n}=\mathrm{m}+1$,
i. STB "almost stochastically" dominates MTB
ii. The number of Pareto-improving pairs that contain a fixed student is of the order of $n / \ln ^{2+\varepsilon} n$, whp.
iii. Expected social inequity under STB is of the order of n, and under MTB is of the order of $n^{2} / \ln ^{2} n$

Results

Theorem (Over-demanded market)
When $\mathrm{n}=\mathrm{m}+1$,
i. STB "almost stochastically" dominates MTB
ii. The number of Pareto-improving pairs that contain a fixed student is of the order of $n / \ln ^{2+\varepsilon} n$, whp.
iii. Expected social inequity under STB is of the order of n, and under MTB is of the order of $n^{2} / \ln ^{2} n$

Theorem (Under-demanded market)
When $\mathrm{n}=\mathrm{m}-1$,
i. Neither STB or MTB stochastically dominate the other.
ii. The number of Pareto-improving pairs that contain a fixed student is 0 , whp.
iii. Expected social inequity under STB is of the order of n, and under MTB is of the order of $/ n^{2} n$

Implications from the main results

- There is no tradeoff in an over-demanded market
- If MTB is used in popular schools:
- Students will be assigned to worse ranks in popular schools
- There will be many Pareto-improving pairs (e.g. in Amsterdam)
- Using STB in popular schools resolves the above issues
- We need to identify popular schools
- Amsterdam has four "over-subscribed" schools [de Haan et al]
- If MTB is used in non-popular schools:
- There will be very few Pareto-improving pairs
- There will be lower social inequity
- Possible use of a hybrid tiebreaking rule

Outline

- Related work
- Model and results
- Intuition and proof ideas
- Robustness check: school choice data from NYC

Intuition: over-demanded market

- STB "dominates" MTB in terms of rank efficiency
- Example: the first two rounds of Deferred Acceptance

Intuition: over-demanded market

- STB "dominates" MTB in terms of rank efficiency

STB:

- All assigned students get
their top choice

MTB:

- Not all assigned students get their top choice

Intuition: over-demanded market

- STB "dominates" MTB in terms of rank efficiency
- In the course of Deferred Acceptance
- There is always an unassigned student
- The unassigned student is more likely to be rejected under STB, because her lottery number is not redrawn
- Under STB, student with the worst lottery number keeps getting rejected
- Under MTB, there is no such student. Competition for not being unassigned is harsher: the resulting rejections are endured collectively by all students

Intuition: over-demanded market

- STB "dominates" MTB in terms of rank efficiency
- STB is an early coin-flip
- MTB is a delayed coin-flip

\%

Intuition: under-demanded market

- Stochastic dominance does not happen
- MTB assigns fewer students to their bottom ranks, but also fewer to their top ranks.

Why?

- Under STB, students with low lottery numbers get bad ranks
- They get better ranks under MTB by displacing other students (with their redrawn lottery numbers)
* The "rejection chain" under MTB ends sooner in an underdemanded market, so stochastic dominance does not happen

Expected social inequity: idea

Theorem (Over-demanded market)
When $n=m+1$,
iii. Expected social inequity under STB is of the order of n, and under MTB is of the order of $n^{2} / n^{2} n$

Steps:

μ - student-optimal stable matching,
η - school optimal stable matching
(1) $E[S i(\mu)]=\operatorname{Var}[$ rank of $\sin \mu]$, for any student s
(2) Var[rank of $\sin \mu] \approx \operatorname{Var[rank}$ of $\sin \eta]$ (core is "smal"" [AKL 2015])
(3) $\operatorname{Var}[$ rank of $\sin \eta] \approx n^{2} / l n^{2} n$

Expected social inequity: proof sketch

(3) $\operatorname{Var}[$ rank of $\sin \eta] \approx n^{2} / / n^{2} n$

Proof:

1) Claim A. Whp, any student receives at most $d \approx \ln n$ proposals from schools
2) Rank of a student is the first order stochastic of the proposals that it receives:

$$
\text { rank of } \sin \eta=\min \left\{X_{1}, \ldots, X_{d}\right\}
$$

3) X_{i}^{\prime} s are "almost independent and uniformly distributed"
4) $\operatorname{Var}[$ rank of $\sin \eta] \approx(n / d)^{2}$

$$
\approx n^{2} / / n^{2} n
$$

Expected social inequity: proof sketch

Claim A.

Whp, any student receives at most $d \approx \ln n$ proposals

Proof Idea:

- Coupling the DA process with a simpler stochastic process, P.
- In the process P, about n In n coins with success probabilities carefully chosen
- The coupling (DA, P) is defined such that the number of successful coin-flips becomes an upper bound on d, in almost all sample paths
- It is easy to compute the number of successful coin flips

Expected social inequity: takeaways

Why variance is "large" in over-demanded markets?

- Each student receives "few" proposals in school-proposing DA

Why variance is "small" in under-demanded markets?

- Each student receives "many" proposals in school-proposing DA

Experiments with New York city data

- Year 2007-2008
- 73000 students
- 670 programs
- Students' preference lists include at most 12 schools
- Assumption: submitted lists are the true preferences

Experiments with New York city data

Define the popularity of school s to be:

$$
\alpha_{s}=\frac{\text { \#students listing } s \text { as first choice }}{\text { capacity of } s}
$$

- "Popular schools": schools with popularity above a fixed α

STB vs MTB in NYC in schools with popularity level at least α

STB vs MTB in NYC in schools with popularity level at most α

Pareto improving pairs

Popularity level (α)	\% of students in Pareto improving pairs	
	in popular schools	in non-popular schools
1	20	0.9

Pareto improving pairs

Popularity level (α)	\% of students in Pareto improving pairs	
	in popular schools	in non-popular schools
1	20	0.9
1.25	21.5	1.9
1.5	23.7	2.6

Expected social inequity

	α		STB	MTB
	1	Social inequity	2.10	2.99
Popular	1.5	Average rank	1.83	2.21
Schools		Social inequity	1.47	2.87
	2	Average rank	1.65	2.18
		Social inequity	1.27	2.99
	2.5	Average rank	1.59	2.19
		Average rank	1.09	2.81
		1.51	2.21	

Non-Popular

α		STB	MTB
1	Social inequity	4.22	3.69
	Average rank	2.52	2.50
1.5	Social inequity	3.90	3.58
	Average rank	2.41	2.44
2	Social inequity	3.76	3.52
	Average rank	2.34	2.42
	Social inequity	3.64	3.47
2.5	Average rank	2.31	2.40

Another measure for popularity

Define the popularity of school s to be:

$$
\beta_{S}=\frac{\# \text { students listing } s}{\text { capacity of } s}
$$

\% of popular schools	α	β	\% of popular schools common between the two measures
33%	1	9	75%
20%	1.5	12	70%
14%	2	14.8	65%

NYC High school directory:

- Applicant-seat ratio > 9: high demand
- Applicant-seat ratio < 9: average or low demand

Stochastic dominance in popular schools

Summary

- The balance between demand and supply plays a crucial role in the comparison between the tiebreaking rules
- Over-demanded markets (popular schools)
- No tradeoff: STB is "better" than MTB under all measures
- Under-demanded markets (non-popular schools):
- A real tradeoff between MTB and STB
- Possible use of a hybrid rule
- More to be done on defining popular schools...

Appendix

Hybrid tiebreaking rule with $\alpha=2$ compared to STB and MTB

