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Abstract

In this paper, we reconsider the assumptions that ensure the identification of the
production function in Olley and Pakes (1996). We show that an index restriction plays a
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1 Introduction

Production functions are a central component of economics. For that reason, their estimation
has a long history in applied econometrics. To our knowledge, the most prominent estimator
used in modern empirical analysis is due to Olley and Pakes (1996, OP hereafter).ﬂ

The econometric analysis of the OP estimator is a challenge, and a correct asymptotic
variance is currently not avaﬂableﬂ Pakes and Olley (1995) derive an expression for the variance
matrix. However their derivation does not address the generated regressor problem correctly,
because they ignore the variability of the conditional expectation given the generated regressor
(see their (28a)). Their asymptotic variance formula is therefore incorrect. | The OP estimator
is a two-step estimator. The first step is a partially linear regression, in which the output
elasticity of the variable production factor labor, and a non-parametric index that captures the
contribution of capital and factor neutral productivity to log output are estimated. The second
step in which the productivity of capital is estimated, is a variant of a partial linear regression
as described in Section 2.

The OP estimator has some similarity to the class of estimators considered by Hahn and
Ridder (2013, HR hereafter), although there is an important difference. In both HR and OP’s
first step, a variable is estimated and is used as a generated regressor in the second step. The
second step is in the case of OP a variant of a partial linear regression, and in the case of HR
a non-parametric regression with the generated regressor as an independent variable. In HR,
the last step involves a moment that is a known functional of the second step non-parametric
regression. The second step in OP can be thought of as having two sub-steps: (i) the estimation

of a non-parametric function by partial linear regression treating the coefficient on capital as

! Ackerberg et al. (2007) discuss the innovation that OP introduced in production function estimation, and

Ackerberg, Caves and Frazer (2015) give a partial list of the many applications of the estimator.
2The challenge in characterizing the influence function is due to the semiparametric estimation in the second

step of OP. The difficulty disappears if the second step is completely parametric, which is not the specification in
OP. Cattaneo, Jansson and Ma (2018) adopt such a parametric specification in their second step. The influence
function can then be derived as a straightforward application of Newey (1994). Their primary contribution is

therefore the analysis and characterization of the higher order bias for a fully parametric specification.
3 Another attempt at a correct asymptotic variance of the OP estimator is in the working paper by Mammen,

Rothe, and Schienle (2014). Inspection of their proof reveals that the derivation is not complete. In particular,
the derivative of the key conditional expectation with respect to the capital coefficient is mentioned on p. 32,
but an expression for this derivative that appears in the influence function is not provided. This derivative is
not obvious (see our Proposition 1) and is the reason that the derivation of the OP influence function is not just
an application of the three-step semiparametric framework in Hahn and Ridder (2013) and Mammen, Rothe,

and Schienle (2016). The published version omits the proposed asymptotic variance of the OP estimator.



known and with the generated regressor as independent variable, and (ii) the estimation of
the capital coefficient as the solution to the first-order condition of a non-linear least squares
problem assuming the function estimated in (i) is known. Because the first-order condition in
(ii) depends on the function in (i) and in addition, the capital coefficient also appears in the
non-parametric function in (i) OP does not directly fit into the HR framework. The step (ii) is
more complicated, than the final step in HR, and requires special attentionE]

In practice, the standard error of the OP estimator can be calculated without an explicit
expression for the asymptotic variance if some regularity conditions are satisfied, and if the
nonparametric regressions in the OP procedure are estimated using the method of sieves. Hahn,
Liao and Ridder (2018, HLR hereafter) show that under these assumptions the standard error
of the OP estimator can be calculated as if the finite dimensional sieve approximation is in fact
exact, i.e., as the standard error of a parametric estimator.

Despite the convenience, HLR’s result is useless when nonparametric estimation is done by
local methods, such as kernel estimation. It is therefore useful to have an explicit characteriza-
tion of the asymptotic variance. Moreover, HLR is predicated under the assumption that the
parameters are (locally) identified by the moments that OP use. One of the contributions of
this paper is that we verify the local identification and find that the output elasticity of capital
is only identified if an index/conditional independence assumptionﬂ holds that is implicit in OP.
The index restriction also makes it possible to derive the asymptotic variance. We show that
the index restriction is not necessary for identification if the capital stock is measured directly
and not by the perpetual inventory method (PIM). If plants can close down, then the index
restriction is not sufficient for the identification of the production function and the survival
probability.

The rest of the paper is organized as follows. In Section [2, we discuss the identification of
the production function and the implicit index restriction. Section |3| shows that identification
depends on how the capital stock is measured. We also consider identification of the production
function and the survival probability, if plants can close down. In Section [ we derive the
influence function of the OP estimator. Section [5| concludes. The Appendix offers proofs of the
main results in the paper. Additional theoretical results are in the Supplemental Appendix to

this paper.

4See more discussion on this in Section
5This assumption seems to be known to IO economists, but not to econometricians.



2 Identification of the Production Function and the In-

dex Restriction

In this section, we review and discuss the production function estimator developed by OP. We
argue that given their other assumptions, one particular additional assumption is necessary
for the identification of the productivity of capital. This assumption has not received much
attention from econometricians. The assumption was called the first order Markov assumption
in Ackerberg, Caves and Frazer (2015, p.2416), although econometricians would call it a con-
ditional independence or index restriction] We will discuss its necessity for identification in
this section, and its implication for the influence function and hence the asymptotic variance
of OP’s estimator in Section {4} For simplicity, we will begin with the case that plants survive

forever and next consider identification if plants can close down and do so selectively.

2.1 Model and Estimator

We will begin with the description of OP’s model. We simplify their model by omitting the age
of the plant[] The production function takes the formf

Yri = Bo + Brokei + Biolei + wei + e (OP 6)

where y;; is the log of output from plant ¢ at time ¢, k;; the log of its capital stock, [;; the
log of its labor input, w;; its productivity, and 7 ; is either measurement error or a shock to
productivity which is not forecastable. Both w;; and 7;,; are unobserved, and they differ from
each other in that w;; is a state variable in the firm’s decision problem, while 7, ; is not. To
keep the notation simple, we will omit the ¢ subscript below when obvious.

It is assumed that

]{ft+1 - (1 - 5) k't + it. (OP 1)

This is the perpetual inventory method (PIM) of capital stock measurement as discussed on
p-1295 of OP. It requires only an initial estimate of the capital stock and investment data.
It assumes that the depreciation rate is the same across plants and over time. We discuss its

implications for identification of 3¢ in Section [3] A second assumption is that

'it = it (wt, kt) . (OP 5)

SOP themselves did not name the assumption.
"We will present only the most salient aspects of their model and estimation strategy. See OP for details.
8(OP 6) is equation (6) in OP with the variable age of the plant omitted.
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with 4; (wy, ki) monotonically increasing in w; for all k; (OP, p. 1274). The investment choice

follows from the Bellman equation

Vi(wy, ki) = max {(I)v sup(my (W, ki) — c(ir) + BE(Vip1 (w1, kt+1|Jt))} (OP 3)

1¢>0

where ® denotes the liquidation value, m;(wy, k¢) is the profit function as a function of the
state variables and c(i;) is the cost of investment, the information at time ¢, .J; contains at the
minimum the state variables wy, ki, and as do OP, we take J; = {w;, b }. In , we can set
the liquidation value ® = —oo to ensure that the plant is not liquidated. We shall discuss the
model with possible liquidation in Section [3]

By the monotonicity assumption, we can invert and write

Wt = ht (it, kt) s (OP 7)
which allows us to rewrite
Y = Brole + ¢ (r, ke) + s (OP 8)
where
& (ie, ki) = Bo + Broke +wi = Bo + Broke + he (ir, kt) - (OP 9)

The assumption that a firm never liquidates a plantﬂ implies by the first expression on p.
1276 of OP , that g (wy,q(kes1),wr) = Elwi|wd] + B = g(wi) (substitute w, (k) = —o0).
Therefore their equations (11) and (12) can be rewritten]]

E [yt+1 — Broles1] k1] = Brokesr + g (we) (OP 11)
Yer1 — Brolisr = Brokiyr + 9 (01 (ies k) — Broke) + g1 + Mes1, (OP 12)

where
Sr41 = W1 — Ewipr|wi] - (1)

OP’s estimator is based on the following multi-step identification strategy:

9Because w, (k;) in their equation (4) is understood to be equal to —oo, the P; in their equation (10) is equal
to 1.

0Tn view of the definition of ¢; (is, k¢) in (OP 9), (OP 12)) should be written as
Yir1 — Brolerr = Brokerr + G (o (e, ki) — Broke) + 1 + M

where §(v) = g(v — Bp). Since g(+) is nonparametrically specified and fy is not of interest, we write g(-) for g(-)

for notational simplicity in the rest of the paper.



1. In the first step, B0 and ¢, in (OP §) are identified by standard methods for partially
linear models, where 3; and ¢; are identified as the solution| to

gllgtlE [(yt — Bily — ¢ (i1, ki) } . (2)

2. The By and g in (OP 12)) are identified as the solution to

min £ [(yt+1 - Bl,oltﬂ - 5kkt+1 -9 (th (ita kt) - ﬁkkt))g} ’

Bk’g

where we substitute 5o and ¢, (i, k;) that were identified in the first step. E

2.2 Index restriction

Equation (OP 11)) above is a simplified version of equation (11) in OP, where the simplification
is due to the fact that we omit the age variable and have no sample selectivity. Except for these
simplifications, it is a direct quote from OP. We argue that (i) it should be derived rigorously
under the same (but simplified) assumptions as in OP; and (ii) that derivation will uncover
an implicit assumption that needs to be made explicit in order to understand the source of
identification.

Equation (OP 11]) equates a conditional expectation given k;;; to a function of k;; and
w = hy(iy, k). Note that the right-hand side (RHS) is not a function of k;;; only, but a function
of ki1 and 44, or equivalently because of the PIM, of k;, 1 and k;. Superficially, this would mean
that the arguments in the left-hand side (LHS) and the RHS of are not the same, which
cannot be mathematically correct. For this purpose, we start with the derivation of the LHS,
under the OP’s assumptions.

On p.1275, OP state that is “the expectation of y; 11 — £;l;11 conditional on informa-
tion at t”. The information at ¢t includes the state variables wy, k;. Therefore, the LHS of
must be E [yi11 — Bioles1| Ji]. Now consider the RHS. By the monotonicity of investment
demand the information at t is equivalent to i, k;. If the capital stock is measured by the PIM,
then

Elktr1]wr, ki) = Elkga iz, ke] = kg (3)

' This minimization itself can be understood to consist of two substeps: For given j3; the function is minimized
at @r (ie, ki) = E [ye] e, kt] — BiE [l¢] i, kt]. Substitution and minimization over §; identifies that parameter. The

second step below also has a two-step interpretation.
12Because 3 appears both in the linear part and in the nonparametric function, this is not a standard partially

linear regression.



By (OP 6)
Yer1 — Brolesr = Bo + Brokiy1 + Wir1 + Moyt
so that, if we, as did OP, assume E [n44]| J;] = 0,

E [ye+1 — Bioles1] Ji] = Bo + BioE [kega| Jt] + E [wega| Ji] + E [me41] Ji]
= Bo + Brokir1 + E [wipr| we, ke - (4)

This suggests that (OP 11)) should be read as

E [Z/t+1 - 5l,olt+1| i, k't] = ﬁo + Bk,oktJrl +E [wt+1| it, kt] (5)

Comparing with (OP 11]) we conclude that OP make an additional assumption

Bo + E[wipi] i, ki) = Bo + E [wigr| wy, k] = g(wr). (6)

This is either an index restriction with w; an index for i; and k;, or a conditional mean inde-
pendence assumption.

OP make the conditional independence assumption implicitly in their equation (2). They
state that the distribution of w;,; conditional on the information at ¢ has a distribution function
that belongs to the family F, = {F (-|w),w € Q}. This is consistent with w; being an index or
with w;, 1 being conditionally independent of k; given w;. The assumption in OP’s equation (2)
is also made in Ackerberg, Caves and Frazer (2015, p.2416) who call it the first order Markov
assumption.

The index restriction plays a crucial role in the identification of 8;. Under a mild full rank
condition, ;¢ and ¢, (i, k;) are identified by the partial linear regression in the first step of the
OP procedure. So we can assume that ;o and ¢ (i, k;) are known, and examine identification of
Bro by in the second step. Suppose that the index/conditional independence restriction
@ is violated. In that case

Bo + E [wiy1| we, k] = glwy, Ky). (7)

There are economic reasons why the evolution of productivity can depend on the capital stock,
an example being learning-by-doing.

By , and , for all g,
E [yer1 = Brolesi| we, ke] = Bekir + g (wi, ke) + (Bro — Br) ke
= Brkii1 + g (Wi, ki) + (Bro — Br) (1 — 0) ke + i)
= Brkii1 + g (Wi, ki) + (Bro — Bi) (1 — 0) ke + iy (wi, ke))
= Brkiy1 + g (wi, kt)

(8)



for g (we, k) = g (we, k) +(Bro — Br) (1 — 9) ke + 3¢ (wy, ke)). Because both g and g are nonpara-
metric, we conclude that (50, 9) and (Bk, g) are observationally equivalent, so that S and g

are not identified.

3 Discussion

3.1 Perpetual Inventory Method

The non-identification of Sy, if the index restriction is not satisfied, is a consequence of
which in turn is implied by the measurement of the capital stock by the PIM as in (OP 1J).
We argue that it is possible to identify 8o without the index restriction if the capital stock
satisfies

ki1 = (1 —06) ke + i + wy (9)

with u; a shock to the value of the capital stock, e.g., because of technological progress that
makes part of the capital stock obsolete. For the purpose of identification, we further assume
that (i) u¢ € J;, but u, is not correlated over time so that it is not a state variable in (OP 3),
and (ii) E [wiy1| we, ki, ug] = E [wig | wy, K-

Under these assumptions and with the updated J;, becomes

E [y1+1 — Broles1| we, ke, ue] = Bo + Brokirr + E [wigr| we, ke, ]
= Bo + Brokir1 + E [wip1]| we, k]
= Brokis1 + g (wi, k)

since E[kyi1|wy, ki, ug) = k1. Because ki = (1 — 0) ky+ig+uy # E [k | ir, k] = E [k | wy, K,
we can estimate o by regressing y1— Brole41 —E [ye1 — Brolesa| e, ke] on by —E [k | gy, k).
Therefore if the capital stock is measured by a method that does not involve an exact relation
between k; 1 and 1, k;, then we can relax the index restriction, or even test the restriction by
comparing estimates of S o with and without the index restriction.

If the capital stock data are constructed using the PIM then u; = 0 and [ ¢ is not identified.
The accounting identity k;11 = k;+1; —d; with d; the depreciation in period ¢ implies that in @
dy = 0ky — u;. Therefore the depreciation depends on other variables than the current capital
stock. For instance a machine is scrapped because a technologically more advanced one has
become available. To identify 3 without the index restriction, plant level data on k; or d; are

required, as available in the Compustat®) database. With the subsample from the Compustat



data used by Imrohoroglu and Tiizel (2014) it is easily checked that the depreciation rate d;/k

differs between firms and over time[5]

3.2 Sample Selection

The preceding analysis of the PIM raises concerns regarding the identification of 3y, if firms
can close down plants. In fact, it can be shown that fj o is not identified with sample selectivity
if is satisfied, which contradicts OP’s claim.

In their equation (4), OP specify a threshold model for plant survival (see OP, p.1273):
xt = 1iff wy > w, (ki) with w, (k;) the value that makes the firm indifferent between scrapping
and continuing the plant. Therefore their equation (11) that accounts for the scrapping of

plants is (if we additionally condition on the information at ¢ as stated by OP)

E Y1 — Brolesa| kesr, we, ke, Xew1r = 1] = Brokesr +9 (%H(ktﬂ)awt) . (OP 117)

Note that we impose the index restriction. OP (p.1276) define g (w,,;(ke+1), w:) by

F(dwt—l-l‘wt)
F(dwt+1|wt)

=E [wir1|wepr > wipg (Bign), wr] -

g (%H(ktﬂ)awt) = 504‘/

W41 f
Wyt g (k1)

Wyt g (k1)

The problem is that w, (ki1) is a function of kypq, which raises the question of under-
identification.

Note that g (w1 (kes1),w:) is a strictly increasing function of w,, (kiy1) for any given wy.
Also w, (ki41) is a strictly decreasing function of k¢, 1, so that g (ws, k1) = ¢ (gtﬂ(k‘tﬂ), wt)
is strictly decreasing in k1.

As in the previous section, there are observationally equivalent parameters. By
and the PIM

E [Yr41 — Bilesa| wr, ke, xe = 1] = Bekers + g (wp, k) + (ﬁk - Bk) ki1
= Bikeer + 9 (wr, kiga)

for g (wi, kiy1) = G (wi, k1) + (ﬁk — Bk) k1, which is strictly decreasing in kyy1 if By > Bi.

Because both g and g are nonparametric, we conclude that S is not identified.

13 Among others, Brynjolfsson and Hitt (2003) and Imrohoroglu and Tiizel (2014) have used the Compustat
capital stock and depreciation data with the adjustments suggested by Hall (1990). imrohoroglu and Tiizel
(2014) use the OP estimator. Piketty and Zucman (2014) criticize the use of the PIM for the measurement of
the capital stock. Hulten (1990) discusses practical aspects of the measurement of capital. We thank Monica

Morlacco for discussions on this topic.



This issue can be seen slightly differently. First we note that by the third and fifth lines of

their equation (10), we have for the survival probability

Py =py (%H(ktﬂ); Wt) = pe(ie, k).

If we read for p; the conditional survival function of w;,; given w;, then we can invert the
relation to obtain w, (k:+1) as a function of P, and w,. OP (p. 1276) therefore obtain for the

truncated conditional mean
9 (@i (k1) wi) = g (Prywr) -
As in our discussion of the index restriction above, we rewrite (OP 11| as conditional on the

state variables and survival

E [yt+1 - 5l,olt+1| we, ki, Xt = 1] = 5k,0kt+1 +g (Pt, Wt) )

where the equality follows from the PIM.

Because P, is strictly increasing in k;y; given w;, we can invert the relationship and write
kiyq as a function of (P, w;). Therefore, the partially linear regression of 4,11 — Silyy1 on kyyq
(using (P}, w;) as an argument of the nonparametric component) fails to identify /.

The problem disappears if k;,; cannot be written a a function of (P;,w;). For example,
Wy i1 (kip1) = max (kep1, C) may eliminate the under-identification problem. However, it is not
clear if that choice is consistent with the optimal scrapping rule in (OP 3). Also note that the
PIM was used to find an observationally equivalent model. Whether the model with attrition is

identified if the capital stock is not measured using the PIM is beyond the scope of this paper.

4 The Influence Function of the Estimator

In this section, we discuss how the asymptotic distribution of the OP estimator can be charac-
terized using recent results on inference in semi-parametric models with generated regressors.
We argue that the index restriction not only plays a crucial role in the identification, but it
also makes it possible to characterize the influence function.

As discussed in the previous section, the OP estimator is based on a two-step identification
strategy. Our derivation of the asymptotic distribution is based on an alternative characteri-
zation of the minimization in the second step. It is convenient to start with the case that ;¢

and ¢;(-) are known. We characterize the second step as consisting of two sub-steps:
1. For given [, we minimize the objective function
E [(yt+1 — Brolesr — Bikiyr — g (0 — ﬁkkt))2] (10)

10



with respect to g, where wetet ¢, = ¢ (i¢, k;). The solution that depends on [y is equal

to (note that we omit the conditioning variables in ¢;)
E[yi41 — Brolera| o0 — Brke] — BE [kiya] ¢r — Brki] (11)

2. Upon substitution of in the objective function ([10]), we obtain a concentrated objec-

tive function, that we minimize with respect to Sx.

To keep the notation simple, we write Y1 = yir1 — Biole1, Yo = kiyr, and 5 (¢ — Bieke) =
E[Y;| ¢+ — Bik:] for j = 1,2. With this notation, we can write

9 (b — Brke) = 71 (01 — Brke) — Brva (01 — Brkr) - (12)
The minimization problem in the second sub-step is
) 1
mink | = (Vi = 71 (0 = Bike) = B (Va = 72 (& — Bika))”| (13)
k

For the first-order condition we need the derivative of the concentrated objective function with
respect to 8. There are two complications. First, we note that even if 3,y and ¢; are known,
the conditional expectations E [Y;| ¢; — Biki] depend on . This means that the derivative of

the function under the expectation

M (Y1,Ya, ¢y, ks Br) = % (Y1 — 71 (¢ — Bike) — B (Yo — 72 (¢ — Bikr)))?

has to take account of this dependence. Second, the ¢, is in fact estimated, so that its sampling
variation affects the conditioning variable in v; and ~s.

A nice feature is that the estimation of 7; and 5 has no contribution to the influence
function, i.e. we can consider their estimates as the population parameters. This follows from
Newey (1994, p. 1357—58)@ Newey shows that if an infinitely dimensional parameter as g, and
therefore (71,72), is the solution to a minimization problem as , then its estimation does
not have a contribution to the influence function of the estimator of ;. By the same argument
there is no contribution to the influence function of Bl from the estimation of ¢; that is the
solution to the minimization problem (2.

Even with this simplification, the derivative of M (Y1, Y5, ¢, ki; Bx) with respect to S is not
a trivial object. Consider E [Y]| v (8x)] with

Ve (Br) = ¢ — Bk

14We are referring to the argument that leads to Proposition 2 on p.1358. Unfortunately, there is a typo

there; the proposition actually refers to equation (3.11) instead of equation (3.10).

11



The conditional expectation E [Y;|v; (Bx)] depends on S in two ways. First, the dependence
is directly through its argument v; (fx). Second, f affects the entire shape of the conditional
distribution of Y; given 14 (%) and therefore its conditional mean. So a better notation for the

conditional mean is
E [Y;| v (Bk)] = 5 (ve (Br) 5 Br)

This notation emphasizes the two roles of 3 in this conditional expectation. The total derivative
is the sum of the partial derivatives with respect to both appearances of ;. Of these the
derivative 0v; (v; Bx)/ OBk is not obvious. Hahn and Ridder (2013) characterized the expectation
of such derivatives, but not the derivatives themselves.

To find the derivative we use a result in Newey (1994, p.1358), who shows how to calculate
the derivative if the parameter enters in an index as is the case in OP. In the previous section,
it was argued that an index restriction is crucial for identification. We now exploit the index
restriction for the first order condition for (13)). As noted above, Hahn and Ridder (2013) do
not derive the derivatives of the conditional expectations. On the other hand, Newey (1994, p.
1358, 1. 19)@ derives an expression for such a derivative under the index restriction. Although
the index restriction does not necessarily hold for v; and 7, it does hold for g by the discussion
in the previous section. This means that we can apply Newey’s result to characterize the
derivative of g, and obtain the first order condition below in Proposition H This is the third
important implication of the index restriction.

Proofs of the following results are collected in the appendix.

Proposition 1 The first-order condition for the minimization problem 1S given by

0= E | (61 + o) (b~ Bhab) = 422 (- BlRIn) ) | ()

where vy = v (Bro), n and & are defined in and respectively.

Newey’s (1994) result that is based on an index restriction, can be utilized to verify the
(local) identification of B;. Proposition 2 gives the second derivative T of with respect to
Br. The second derivative T > 0 in general, so that [ is locally identified.

Proposition 2 The second order derivative of with respect to By s

((km ~E (kb)) - 22 1~ B [k vtn) ] | (15)

15See the working paper version of Hahn and Ridder (2013) for more detailed analysis.
16Specifically, the term —%:) (k¢ — E[k¢|v¢]) on the RHS of is the result of applying Newey’s argument.

T=E

12



The next proposition gives the influence function of Bk

Proposition 3 The influence function of Bk 15 the sum of the main term that is the normalized

sum of the moment functions in in the Appendiz:

Z Yit+1 — 5l,oli,t+1 - 5k,0ki,t+1 ‘ ki,t+1 -E [ki,t+1’ l/z',t}
\/_ [?/z t+1 — 5l,oli,t+1 - 5k,0/€z’,t+1’ V’i,t] —%If’:) (ki,t —E [kzt| Vi,t])

(16)
and the adjustment
1 « .
— T_lﬁ Z (Avi + Aoi) (i — Brolin) — Elyie — Broliel i, ki), (17)
i—1
where
0q (v 0g (v
Ay = % ((ki,tJrl —E[kii|vig) — ga(y”t) (kit — E ki Vi,t])> )
T
Ay = : (lig — Eligliig, Kidl) »
E [(lig — E[Ligline, ked)?] Hoe
and

(s = Ellial ) - 2B (1] i, ]
(ke = B [k 1]) = %522 (ke — B [l )

Remark 1 Our decomposition of the influence function is helpful in case Bl 15 not estimated
by the partially linear regression method, which is useful because Ackerberg, Caves, and Frazer
(2015) raised concerns about identification of B by such strategy. If so, it may be desired to
estimate it by some other method. If the alternative method is such that the influence function

is €14, a straightforward modification of our proof indicates that should be replaced by
Ll ¢
=T 1% Z At ((ir — Biolie) — Elyie — Biolit] tit, ki) IF— Z el
i=1

Remark 2 We derived the influence function directly by Newey’s (1994) results. A derivation
of the asymptotic distribution by stochastic expansion is included in the Supplemental Appendix

of this paper, which is available from the authors upon request.

5 Summary

In this paper, we examined the identifying assumptions Olley and Pakes (1996). We argued

that an index restriction plays a crucial role in identification, especially if the capital stock

13



is measured by the perpetual inventory method. We argued that the index restriction is not

sufficient for identification under sample selectivity. Finally, we exploited the index restriction

to derive the influence function of the OP estimator.
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Appendix

A Proof of Proposition

Recall that v4(8x) = ¢ — ek and vy = 14(Bro) = ¢ — Broks. If we interchange expectation
and differentiation, then the first-order condition for involves the derivative

0 (Y1 — v (pr — Brke) — B (Yo — 72 (¢ — Brkr)))
OBk

= — (Y2 — 72 (¢r — Brokt)) —

Br=Bk,0
9 (m (¢r — Brke) — Br,ov2 (¢ — Brkye))

)
aﬁk Br=Bk,0

In the second line of , the derivative is with respect to [, that appears in the common
argument ¢, — Bk, of 1, 2. If we take the conditional expectation of Y;— B 0Y2 = Bo+wit1+mi41

with respect to v4(5), we obtain

T((Pr)) = E[Po + wirr + nep| v (Br)] = 71 ((Br) = Brova (e(Br)) -

If evaluated at B = B0, the above equations yield

(1) = E[Bo + w1 + mg1| ve] = E[Bo + wigr| wie — Bo] = g(v1)

because v; = [y + w; and the index restriction holds. We now apply the derivative formula in
Newey, (1994, Example 1 Continued, p.1358)

9 (m (¢¢ — Brke) — Br,o72 (¢ — Brke))
OBk

Br=Bk,0
_ ot (1) (8%(&) B [8%(&) V])
Iy 9B e t Br=Bk,0
= -2 1, — B [k ). (19

Combining and , we obtain

O (Y1 — 71 (pr — Biks) — B (Yo — 72 (91 — Biky)))
OBk

(ke — E[ke] v4])

Br=Bk,0
Gg(yt)

Vi

=Yy — 7 (Vt)) -

16



and hence, we may write
. oM (Yiy Y27 ¢ta kta /Bk)
9By
0
= (=2 (00) = B (Y2 = 2 () (Yo =2 () = 252~ B ) )

= (§t+1 + 7)t+1) <kt+1 - E[kt+1|7/t] - 898(:) (kt —E [kt‘ Vt])) ) (20)

Br=Bk,0

with the corresponding first-order condition for :

9g9(vi(Bk))

0=E |:<€t+1 + 1) ((ktH ~ Elkealn(80) = vy (Br)

(ko= Bl (D)) |

that holds if 8 = B.o.

B Proof of Proposition

We calculate the second order derivative for as well. The first derivative is by the second
line of the product of two factors. Minus the derivative of the first factor Y7 — vy (1) —
Br (Yo — 2 (1)) is equal to the second factor, so that the second derivative is

dg ()

E (%—w(w»— 0, <’ft—E[kt’”tD)2]

0 (V2 — EYalin(81))) — 2520 (ky — B[] m(50)))
O

—E [ (&1 + m41) (21)
Br=Bk,0

Note that the component in the second term on the right

0 (Y2 — EYalin(8))) - 2520 (ky — E [kl m(50)))

0By
Br=Bk,0
9g(vt)
o) OCEE) 00 O [l
0Bk 0B o 0Pk

is a function in (¢, k), which in turn is a function of (i, k;). Because E [&41 4+ neya] e, k] = 0,

we get the desired conclusion.
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C Proof of Proposition

C.1 Main Term

In Section 4, we argued that the estimation of v; and 7, does not require an adjustment of
the influence function. This follows from Newey’s (1994) Proposition 2 that states that if
the parameter (here (i) and the non-parametric function (here v, and ~,) are estimated by
minimizing an objective function, then the estimation errors of 7; and 7, can be ignored in
the influence function. In other words we can consider v; and v, as known in our analysis of
the first order condition. The main term follows directly from the moment function in ([24)

multiplied by T=. We now turn to the adjustment.

C.2 Impact of the First Step Estimation on the Distribution of Bk
We recall that
s (it k?t) =E [yt| it kt] — BE [lt| it, kt]

We apply Newey (1994, Proposition 4) to find the adjustment for the estimation of E[y|i;, k],
E[l;|i¢, k) and ;. We conclude the followingm

1. The adjustment for estimating (I [v| i, k], E[l;] i, ki]) can be calculated separately:

(a) The adjustment for estimating E [y;| i, k] is

1, :
T (% Z O (iigs ki) (Yir — E (Wil G, kzt])) ’
i=1

where

09 (1) <(kt+1 —E k| 1)) — 89(9](/Itjt) (ky — E [k Vt])) :

(51 (it, kt) = — ay
t

(b) The adjustment for estimating E [I;| i, k] is

1 . . ‘
1! <% Z 02 (iie, Kie) (Lig — B [Lie] 73, k”])) ’
i=1

where
2 (it, kt) = —51,051 (ity kt) .
17 A1l the details of derivations can be found in Section

18



(¢) The adjustment for (I@ [yt| ¢, K] E [l 3¢, kt]> is therefore the sum of the above two

expressions:

Z Kiti1 — E[Kizi1| vig]) (Yir — Bioliy)
\/— a’/t 6%(Vyt) (ki — E[kit| vis]) —E [yt — Brolie| iz, ki 7
(22)

which is equal to
1 n
) (e Avi (i — Biolin) — Elyie — Biolit] i, ki)
with

P 0
%I(/I:t) ((ki,t+1 — E[kig|vig]) — %L:t) (ki — E kil Vt])) :

Ali =

2. The impact of estimating BI is more convoluted, because we have to remember that

B0 appears in the moment function through Y; = y.41 — Bioli41 and through v, =
E [?/t| i, /‘f?t] - BZ,O]E [lt| it, kt] - 5k,0k’t-

(a) We start with the contribution through v;. Because
th
9B

we can see that Bl impacts the influence function by
~TE B (i ) B i, k] Vi (B = o)

(b) The other impact is because (o appears in moment function through Y} = y1 —
Broli+1. We take the derivative of the population moment function in with

respect to [ :

- —]E [lt| it, k't]

(kt+1 E [kea| v])

—T'E Palv
g 2 (k — E [k 1))

(liyr — Eflea| v4]) ( )] V(B = Bro)

This is a traditional two-step adjustment of the influence function.

(c) The adjustment for Bl is therefore equal to the sum of the above two expressions:

—Y'0Vn(Br — Bro),

(L1 = E[lea| 4]) (k1 — B [kega| va])
> W)E[ltm»k‘t] —%(kt — E k| v4])

This is the adjustment in Remark 1 after Proposition 3.

where we recall

r=E
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(d) In OP, 31 is obtained by partially linear regression estimation. Using the standard

results, we get

V(B = Bio)

s Tty e = B bl s Fid) (i = Boki) ~Elysa = oll ki)
= ‘ ’
E [(lm —E[lit| iz, ki,t])ﬂ ’

we conclude that the adjustment for Bl is

_T—ll—\i zn: (Lip — E[lia] i, ki) ((Wie — Bl,Oli,t‘) —E [y;t — Brolig] iz, k'i,tD, (23)
vn i—1 E [(li,t —E Ll dsg, Kig]) }

that is equal to

1 « .
- Jn Z Aogi (Yt — Brolie) — E[Yie — Broliil iis, ki)
i—1

r
Ay = : (L = E{lia] i, Kig]) -
E [(li,t - K [li,t’ Vit ki,t])ﬂ t b

3. Combining the adjustments, we conclude that the adjustment for the first step estimation

is .

C.3 Derivation of Adjustments

To derive the adjustments for estimating E [y;| i, k] and E[l;| i, k], we calculate the path-
wise derivative of Newey (1994) for each non-parametric function that enters in the moment
condition. The moment function involves non-parametric regressions ~;(1;) on the generated
regressor v;. Hahn and Ridder (2013) show that the path-derivative adjustment has three com-
ponents: an adjustment for the estimation of 7;, an adjustment for the estimation of 14, and an
adjustment for the effect of the estimation of 14 on 7;. In this case only the second and third
adjustments have to be made, because 7; is estimated by minimization. So no adjustment is
needed for the estimation of 7; (and g below).

After linearization the moment function for (3, is the inverse of the second derivative of
Proposition [2] times
9g ()

oy

b,y (1)) = (Vi — 7 (1) — Bro (Ya — 2 (n))) (<Y2 ) e ACON <ut>>) (24)
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with w = (Y1, Y3, Ys,4;), where Y3 = ky, and 3 (v;) = E[Y3]| vy]. The corresponding population
moment condition is
aM (Yiy }/27 ¢ta ktv ﬁk’)

8ﬁk 5kﬂk,o]
— B |05 = 0) = o (0 = 00) ( (V2 = 2 0) = ) (b~ Bk )| 29

0=-E

C.3.1 Adjustment for Estimation of E [y;| i, k]

To account for estimating E [y, i, k|, we note that the estimation of E [y, i, k;] induces sam-

pling variation in the estimator of

v = ¢ (i, ki) — Broke = E [ye] ie, k] — BioE [1e] v, ke] — Broke,

The generated regressor v; is the conditioning variable in the non-parametric regressions E[Y;|v;] =
vj(vy) for j = 1,2,3. Their contribution to the influence function is calculated as in Theorem
5 in Hahn and Ridder (2013). We do the calculation for each 7; and sum the adjustments. We
first find the derivatives of h with respect to the ~;

v, = DO gy o )+ 220 35— ),
_ 0wy () B9
Wy = Tomn) Bro <(Y2 72 (1)) a (Y3 =7 ( t)))
= (Y1 = () = Bro (Yo — 72 (1)),
wy = 2T 0N () = g (v = 7 () 22

03 (1) oy
with w = (Y1, Ys, Y3, 4, k). By Theorem 5 of Hahn and Ridder (2013) the generated-regressor

adjustment, i.e. the adjustment for the effect of the generated regressor on -; is

;E [(‘Ifj —Kj (1)) aWé:/t) n 8!@55?) (93 (o, Ke) — 5 (02)

k] (0o —Elulink]) (20)

where 7; (ir, ki) = E Y| i, k] and k; (1) = E[ Y| 1] for j =1,2,3.

The generated regressor also enters directly in h with derivative

Oh (w,~ (v s 029 (v,
w= 2L ) - g e — e ) EE vy — e ). (2D
814 al/t
with the adjustment calculated by Newey (1994)
E [Wylir, ke] (ye — E [ye] ie, kie]) - (28)
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It is straightforward to show that
ki () =0, 7=1,2,3

Therefore is equal to

E |, om (Vt) U, ) (Vt) + U, 073 (Vt> 4,
th al/t 8Vt

k] (v — E [yil ios k)

which we will simplify by using (), which implies that E [&41] i, k] = 0.
Note that

E {\ylag:”f) i, kt}
—& |- (0 = 20 00) — 25 (3 ) ) 50 i

_ ((k?t+1 ~Elk|n]) — aga(:) (ke — E [k w])) avéy(tyt)v

where if (OP 1)) does not hold, the k;,; in the last line becomes E[k; 1]é¢, k.

E {\1/26755?) i, kt}
= ProE {((YQ =72 (1)) — 898(:) (Y3 —s (Vt))) 87;5:4) it k’t]

-F {(Yl =7 () = Pro (Ya =72 (1)) any(Z/t) it kt}

g (v Oy (14
~ e <(kt“ Bl = g@z(/ ) (b~ ELk| ut]>> %
—E[&11 + vl i, ki aV;y(tVt)

because E [&41 + myy1|ie, k) = 0. If (OP 1)) does not hold, the kyy; in the last line and the

second last line of the above expression becomes K[k, 1|, ki].

E [\113—@7; (1)

Vi

7;157 kt:|

— B | (=9 () = 6 0 = 2 0) 2220 i | 21
=K [§t+1 + 77t+1| it, kt] ag (Vt) 673 (Vt) _ 07

th th
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because E [&;11 + Meya] i, k] = 0, and
E [Wy] i, ki

g ()

8—Vt2 (ke — E [ke| 14])

__E [m — 1 () = Bro (Ya = 72 ()

Z't7 kt:|
ov?

These calculations show that the adjustment for the estimation of of E [y,| i, k] is equal to

. 0?
= —E [{v1 + g1 te, ke M (kt — E [ke| n]) = 0.

E {qfl agu(:/t) + \11267;”(?) + xlfga”gy(ft) + 4y, kt} (e — E [] i, b))

= ((huss = B el = 2 (- £ 110D ) (=220 4 0720 ) - B i)
= ({her = Bl ) = 22 (5~ Bl ) ) 22 0~ Bl )

= 0y G ko) (v~ E i ), (29

where if (OP 1f) does not hold ki1 becomes E[ktq|ir, k).

C.3.2 Adjustment for Estimation of E [[;|i;, k]

To derive the adjustment for estimating E [l;| i;, k;], we work with the moment function h (w,y (1))

in . Note that the estimation of E [l;] i, k] induces sampling variation in

v =B [ye] 10, ke] — BLoE [Le] ir, ki) — Broke.
so that the adjustment is
= Buoou (i, ke) (le — B [l] i, ke]) (30)
with 8y (i, k) given in (29).

C.3.3 Adjustment for Estimation of Bl through v,

To calculate the adjustment for estimating BI as a component of

vy =K [?Jt| i, kt] - BZ,OE [lt| it, kt] - 5k,0]€t

Wwe can use

Oh(w,y (v)) Ovy  Oh(w,vy (1)) ,
o, aﬁl,o = o, E [lt| t, k?t]

and conclude that the adjustment for the estimation of f)’\l is by Theorem 4 of Hahn and Ridder
(2013)

~TYE (8, (ir, ke) E [Le] ir, ki) V(B — Bro)-
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Abstract

This supplemental appendix contains additional technical results of |[Hahn, Liao, and Ridder
(2021)). Sectionprovides detailed description of the multi-step estimator of 8, o mentioned in
Hahn, Liao, and Ridder| (2021). Section derives the asymptotic properties of the multi-step
estimator and provides consistent estimation of its asymptotic variance. Section [S_Cl contains
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SA The multi-step Series Estimator

In this section, we describe the multi-step procedure on estimating ;. The model can be

rewritten as

Y1, = 180 + & (11,4, k1,i) + M, (SA.1)
Y2, = k2,iBr0 + 9(v1,) + uzs, (SA.2)

where ug; = §2i + M2, Y5; = Y2, — l2iB10 and v1,; = ¢ (i1, k1) — k1,:8k0, and &2 is defined in
equation of the paper. The following restrictions are maintained throughout this appendix

E[militi, k1] =0 and E[ug;|i1:, k1] =0. (SA.3)
For any (y, let
vii(Be) = ¢ (i, k1) — k1iBe  and  g(v1,i(Br); Br) = Elys,; — Brka,ilvi(Br)]- (SA.4)
Then by definition
Vg = Vl,i(ﬁk:,o) and g(Vl,i) = g(Vl,i(ﬁk,O); 5k,0)- (SA-5)

The unknown parameters are 39, Bi0, ¢(-) and g(-; B;) for any f, in ©y, where Oy, is a compact
subset of R which contains 3} ¢ as an interior point.

Suppose that we have data {(ys., %, kei, lt,i)i=1,2} -, and a preliminary estimator Bl of B.
The asymptotic theory established here allows for a generic estimator of 3; ¢, as long as certain
regularity conditions (i.e., Assumptions M(iii) and (1) in Section hold. For example, Bl
may be obtained from the partially linear regression proposed in |Olley and Pakes (1996), or from
the GMM estimation proposed in |Ackerberg, Caves, and Frazer (2015). The unknown parameters
Br0, ¢(-) and g(-; By) for any S € Oy are estimated through the following multi-step estimation

procedure described in the paper.

Step 1. Estimating ¢(-). Let Pi(v1:) = (p1.1(214)s---,P1m, (214))" be an mi-dimensional
approximating functions of x;; where z1; = (i14,k1,). Define 91; = y1; — 117131. Then the

unknown function ¢(-) is estimated by

¢ () =P () (PiP1)H(PIYY) (SA.6)
where Py = (Pi(z1,1),. .. ,P1(a:1,n))l and Yl = (911, - ,gl,n)’.

Step 2. Estimating g(-; Bx) for any S € ©f. With Bl and g?)() obtained in the first step, one
can estimate y5,; by 95; = a2, — Bllg’i and estimate v ;(B;) by 01,:(Bk) = gAb(a;M) — Brkii. Let
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Py(v) = (p21(V), ..., p2.my(v)) be an mao-dimensional approximating functions. Then g(-; By) is

estimated by
(5 Br) = Pa(+) By(Br), where By(Br) = (Pa(Bk) P2(Br)) " Pa(Bk) Y5 () (SA.7)

where Po(81) = (Po(#1,1(Bk))s - - -, Pa(#1,0(Br)))" and Y35(Bg) = (931 — Brka1s -3 U5, — Brkan)'-

Step 3. Estimating (. The finite dimensional parameter [ is estimated by Bk through

the following semiparametric nonlinear regression
A~ n ~ ~
B =arg min nt Y Gi(5)?, where £i(By) = 3 = kaaBy — 3(714(Be); Br): (SA.8)
=Sk i=1
We shall derive the root-n normality of /3  and provide asymptotically valid inference for Sy .

SB Asymptotic Properties of Bk

In this section, we derive the asymptotic properties of B i- The consistency and the asymptotic
distribution of B . are presented in Subsection In Subsection we provide a consistent
estimator of the asymptotic variance of ,B r which can be used to construct confidence interval for
Brk,0- Proofs of the consistency and the asymptotic normality of Bk, and the consistency of the

standard deviation estimator are included in Subsection [SB.3]

SB.1 Consistency and asymptotic normality

To show the consistency of B &, we use the standard arguments for showing the consistency of
the extremum estimator which requires two primitive conditions: (i) the identification uniqueness
condition of the unknown parameter f(j; and (ii) the convergence of the estimation criterion
function n=t Y"1, @i(ﬁk)Q to the population criterion function uniformly over 85 € ©,. We impose
the identification uniqueness condition of ;o in condition below, which can be verified

under low-level sufficient conditions. The uniform convergence of the estimation criterion function

is proved in Lemma in Subsection

Lemma SB1. Let {;(Br) = y2,i — 12610 — Brk2: — 9(v1,i(Br); Br) for any By, € O. Suppose that
for any € > 0, there exists a constant 6. > 0 such that

inf E [6:(Br)* — ¢; ] > 6. SB.9
{5k €Ok |Br—Bk 0| 2€) (48" ~ Ei(Bro)] > o (55.9)

Then under Assumptions and in Section we have B, = Br,0 + 0p(1).



The asymptotic normality of ,3 r can be derived from its first-order condition:

noo 9a(i s IR
n! Zel(ﬁk) k2,i + g(”L%(Bk)a Bk) -0 (SB.IO)
pn OBk
where for any S € O
09(01,i(Br); Br) _ » ,OPs(01,:(B)) N ,08,(Br)
: = — " 4 P i . B.11
o By ey G & P50 (SB.11)
By the definition of §(1.:(B); 3,) in SA.7), we can write
n! ZPQ A(Be)a(014(By); By) =n7! ZPQ(ﬁl,i(Bk))(?J;,i — k2,381
i=1
which implies that
n! Z Ci(By) Pa(i1.4(By)) =
Therefore, the first-order condition (SB.10)) can be reduced to
IR ,OP(1,4(By))
1N ko — ki SRR ) = B.12
w7 3B (ks = kb (B = 0 (5B.12)
which slightly simplifies the derivation of the asymptotic normality of B k-
Theorem SB1. Let Sli = kQJ‘ — E[k27i’V17i} — gl(Vl,i)(kl,i — E[/{?17Z‘|V17i]) where
_ 0g9(v)
av) = i (SB.13)
Suppose that
T=E [gii] > 0, where Sl = k‘z’@' — E[k‘zﬂl/lﬂ‘] — gl(l/l,i)(kl,i — E[l{?17i|1/1,i]). (SB14)
Then under n Lemma and Assumptions[SCI], [SC3 and [SCY in Section
Bk —Bro = T in! ZU2,i§1,i
i=1
Yt Z n,ig1 (V1) (S — <2.4)
i=1
—T7I0(B; — Buo) + op(n ), (SB.15)



where I' = E [(lo; — l1,i91(v1,4)) s1,i + 1,691 (V1,i)s2,4] and o = ko ;s — Elkg i|215]. Moreover
n!2(By — Bro) —a N(0,T7IQY) (SB.16)

where @ = E |((u2,; — m,ig91(v13))s1,i — Teri + 771,i91(’/1,i)<2,i)2} :

REMARK 1. The local identification condition of 8 o is imposed in (SB.14|) which is important to

ensure the root-n consistency of B - This condition is verified in Proposition [2| of the paper. [

REMARK 2. The random variable 1; in the definition of 2 is from the linear representation of

the estimator error in 3, i.e.,

n
Bl — B0 = nt Zﬂ,i + Op(n_l/Q) (SB.17)
i=1
which is maintained in Assumption [SCI{(iii) in Section The explicit form of €1 ; depends on the
estimation procedure of 3. For example, when f3 ¢ is estimated by the partially linear regression
proposed in [Olley and Pakes (1996),E|
Lii — Ell ] 21]

€14 = M-
El|l1; — E[l1;| z1,4]|°]

On the other hand, &1 ; may take different forms in different estimation procedures (under different
identification condition on ), such as the GMM procedure in |Ackerberg, Caves, and Frazer
(2015). O

REMARK 3. Since E[; ;|v1;] =0 for j =1,2,
E [lais14) = E[(l2,; — Ell2i|v1.4]) 61,4
by the law of iterated expectation. Similarly
E[lig1(v14) (10 = s2,0)] = B [Ellilz1ilgr (v14) (614 — s24)]
Therefore we can write

I' = Ellc1, —l1,91(v1,) (1,6 — <2,6)]
= E[(lo; — Ellai|via]) s1,6 — Ellil@,i]g1(v1) (S1,6 — <2,6)] - (SB.18)

1See Assumption and Lemma |[SC26[in Subsection for the regularity conditions and the derivation for
BT




When the perpetual inventory method (PIM) i.e., ko; = (1 —9) k1, + i1,; holds, we have ¢; = 0

for any i = 1,...,n. Therefore, we deduce that

' =E[(la; — Ellzi|v1:] — g1(v1,0)Ell1ilw14]) 614] (SB.19)

which appears in Proposition [3] of the paper. Moreover

Q=E [((uz,i —m,ig1(vi,i)) st — F61,i)2] (SB.20)
under PIM. O

REMARK 4. From the asymptotic expansion in 1’ we see that the asymptotic variance of B k
is determined by three components. The first component, n ! > i ug,i61, comes from the third-
step estimation with known v ;. The second and the third components are from the first-step
estimation. Specifically, the second one, n™! o migi(vs) (15 — 2,4) is from estimating ¢(+) in

the first step, while the third component F(B ; — Bio) is due to the estimation error in B /- ]

SB.2 Consistent variance estimation

The asymptotic variance of 3, can be estimated using the estimators of <1, <2i, €14, 71,5, U2,

and g1 (v ;). First, it is clear that g;(v1,;) can be estimated by gl(ﬁl,i(ﬁk); Bk) where

~ » OP(D 4
1 0n1(00); 1) = By (33 PP oy 5, 0 (sB.21)
Second, the residual ¢;; can be estimated by
1 = Ak — Po(1,i(Br)) (Pa(B1,) P2(By,) " Z Po(1,:(By,)) Aka i (SB.22)

where Akg; = ko — k1.491(01.4(Bx); By,). Third, the residual ¢y ; can be estimated by
Soi =koy — Pr(21,) (P1P1)” Zpl (21,4) k2 (5B.23)
Given the estimated residual <1 ;, the Hessian term Y can be estimated by

T, =n! Z 2, (SB.24)



Moreover the Jacobian term I' can be estimated by

r,=n"! Z {(12@‘ — i1 (1,5 (Br); Br))s1s + luidn (01,4(By); Bk)ﬁz,i] : (SB.25)

i=1

Define d2; = §a; — l2iB; — k2B, — §(01,4(By); By) and 1 ; = y1s — huiBy — d(x1,:). Then Q s
estimated by

Qn 712 ( UZZ 771 191(1/1 z(ﬁk) B ))gll - anlz +771 zgl(yl Z(Bk) Bk’)é?,i)Q (SB26)
=1

where &1 ; denotes the estimator of e1; fori =1,...,n.

Theorem SB2. Suppose that the conditions in Theorem [SB1] hold. Then under Assumption[SCY
in Section[SQ, we have
T,="+0,(1) and Q,=Q+0,(1) (SB.27)

and moreover )
n2 (B — Bro)
(Y710, T H1/2

—a N(0,1). (SB.28)

SB.3 Proof of the asymptotic properties

In this subsection, we prove the main results presented in the previous subsection. Throughout
this subsection, we use C > 1 to denote a generic finite constant which does not depend on n, mq

or mg but whose value may change in different places.

PROOF OF LEMMA By (SC.80)) in the proof of Lemma and Assumption i)

sup E [&(&;)2] <C (SB.29)
Br€OK

which together with Lemma implies that

sup n- Zf (Br)? = O0,(1). (SB.30)

BrEOK i—1

By the Markov inequality, Assumptions (i, iii) and [SC2 - we obtain

nt Z Usi— i) = (B =B Y 1B, = 0p(n7Y). (SB.31)
=1



By the definition of /;(8;) and £;(3;), we can write
> —E [6:(Bk)?]

n Z (Br)
=1
= ST (G B [G(?]) + 207 ST 6B 5 — vi)
i—1 =1

12& Bi)(9(01,4(Br); Br) — 9(v1,i(Br); Br))
—2n~! Z(?);,z = 45901, (Br); Br) — g(v1,i(Br); Br))
i1

n

+n 1 Z( y22 12 (1,:(Br); Br) — 9(v14(Br): Br))?,
i—1

which together with Assumption [SC2{(vi), Lemma Lemma [SC8, (SB.30)), (SB.31) and the
Cauchy-Schwarz inequality implies that

sup |n” ZE (Be)? — E [L:(Br)?]| = 0p(1). (SB.32)

BrEOK
The consistency of B i follows from its definition in 1’ (ISB.32)), the identification uniqueness
condition of fj ¢ assumed in (SB.9)) and the standard arguments of showing the consistency of the

extremum estimator. Q.E.D.

Lemma SB2. Let gLi = gl(l/u) and j,(ﬂk) = gz(ﬂk) (k27i — kl,igl(ﬁl,i(ﬂk);,@k)) f07’ any ﬂk (S @k,
where G1(01,(Bk); Br) is defined in . Then under Assumptions[SC1T|, [SCZ and[SC3, we have

n

n'Y Ji(Beo) =07t (uacri — miga(va) (sui — s2.0)) — T(By — Bro) + 0p(n~'/?). (SB.33)
i=1

i=1

PROOF OF LEMMA By the definition of lﬁi(ﬁho) and Lemma |[SC10)
n Y " li(Bro) (k2 — k1,id1 (014(Br0); Bro))
i=1

nt Z i(Bro) — 9(v14))(ka,i — k1,391,4)

n~! Z (1,1 (Br0); Br0) — 9(v1,3)) (kai — k1ig1i) + op(n~/?) (SB.34)



where g3 ;(Br0) = yo.i — lo,iB) — k2,iBr0. and by Lemma
n”! Z i(Br,0); Bro) — g(v14)) (ki — k1,i91,)
nt Z u2i0(16) — Ell2i0(v1,0))(By — Bro)
- Zgl ((d(213) — D(21,))s1,i + 0p(n~ ), (SB.35)

where ¢(v1;) = E|

7'] — E[kl,i‘yl,i]gl,i- By the definition of @;77;(6/@0), we get

nt (55 (Bro) — 9(v10)) (k2 — k1igra)

i=1

= ”_12“2,i(k2,i—kl¢gl,z’)—(51 Bro)n 1Zl21k2z_klzglz)
i=1 i=1

= n_ U2,i\K2,; — F14391,i) — Az— 1,0 2,i\R25 — K1,i914 op(n~ .
! (ki — k1igri) — (By — Bio)Ella(ka, — k1igri)] + 0p(n"/?)  (SB.36)
i=1

where the second equality is by Assumption [SC1|(iii) and
n~! Z loi(kai — k1ig14) = Ello (ko — k1,91,0)] + Op(n='/?)
i=1

which holds by the Markov inequality, Assumptions E i) and S - ISC2(i, ii). Therefore by (SB.34)),
(SB.35)) and (SB.36|), we obtain

n! Zé"(ﬂm) (k2 — k1,691 (P1,i(Br,0): Br.0))

i=1
= n! Z u2,iS1,: — (B — Br0)Ell2,:61,4] — Z g1i( b1 i) — d(z1,4))s1, + op(n_l/@)B.37)
The claim of the lemma follows from (SB.37) and Lemma [SC13 Q.E.D.

Lemma SB3. Under Assumptions[SC1|, [SC and[SC3, we have

n-! Z(ji(/ék) — Ji(Brp)) = —(Br, — Bro) (E[ct:] + 0p(1)) + 0p(n~1/2).



PROOF OF LEMMA First note that by the definition of .J;(8) and £;(8), we can write

= (B~ Bro)n 2; Fo,i(kas — ki (91,:(Be); Br)
n! Z i(B); Br) = §(01,(Br0); Bro)) (ko — krign (1,i(Br.0); Br0))
‘1Zumu 9101,6(Br); Br) — 1(21,6(Br0); Br0))
— Bro)n szzgl (Br): Br) = §1(01,:(Bro); Bro)) (SB.38)

which together with Assumption iii), Lemma [SC17] Lemma [SC19|and Lemma [SC23| implies
that

nUY (JiB) = JilBro)) = —(By — Bro)Elkzi(k2i — kiig14)]
=1
+(Br, — Bro) [E[k1,i91,i51,1] + Elkai0(v1,)]]
+(Bk — Br,o)op(1) + 019(”71/2)
= _(Bk - Bk,O) (Eklz,J + 0p<1)) + Op(nil/z)
which finishes the proof. Q.E.D.

T <E[|(l2; — li,igi(vi)) s1,i + 1691 (v1,i)s24]] < C (SB.39)
and
Q = E [((Uz,z‘ —mig1(v13))s1 — Deri + mig1(v1.4)52.4)°
< CEluy; +ni,+ki;+ks;+e1,] <C. (SB.40)

By Assumption [SC1(i), (SB.40]) and the Lindeberg-Lévy central limit theorem,

n
2 Z ((u2i = mig1(va))sii — e + miigr(v13)s2,i) —a N(0,9). (SB.41)
=1
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By (SB.12), Assumption [SC1(iii), Lemma and Lemma we can write

0 = n' Z Ji(Bro) +n Z(ji(ﬁk) — Ji(Bro))
1=1 i=1
= n! Z (u2,is1,i —m,ig1 (V1) (S — $2,4)) — Fnl/Q(Bl — Bio)
i=1
~(Br, — Bro) (E[sf,] + 0p(1)) + op(n~4?) (SB.42)

which together with (SB.14)) and (SB.41]) implies that

By — Bro="T"'nt Z (u2.i51.5 — M.i91(114) (s1.4 — s2.4)) — YID(B; — Bro) + 0p(n/?). (SB.43)
=1

This proves (SB.15]). The claim in (SB.16)) follows from Assumption [SC1iii), (SB.41)) and (SB.43]).
Q.E.D.

PrROOF OF THEOREM |[SB2| The results in (SB.27) are proved in Lemma [SC25(i, iii), which
together with Theorem Assumption [SC4[(iii) and the Slutsky Theorem proves the claim in

(5B.28). Q.E.D.

SC Auxiliary Results

In this section, we provide the auxiliary results which are used to show Lemma Theorem
and Theorem The conditions and are assumed throughout this section.
The following notations are used throughout this section. We use ||-||, to denote the Lo-norm
under the joint distribution of (v, 14, kti,lei)i=1,2, ||-]| to denote the Euclidean norm and ||-||g
to denote the matrix operator norm. For any real symmetric square matrix A, we use Apin(A)
and Apax(A) to denote the smallest and largest eigenvalues of A respectively. Throughout this
appendix, we use C' > 1 to denote a generic finite constant which does not depend on n, m; or my

but whose value may change in different places.

SC.1 The asymptotic properties of the first-step estimators

Let Qm, = E[Pi(z1,)Pi(x1,)']. The following assumptions are needed for studying the first-
step estimator ¢(-).

Assumption SC1. (i) The data {(yt,i,it,i,kt,i,lt,z’)t:m}?:l are i.4.d.; (ii) E[nii|x1:] = 0 and

11



E[l%l + 77%,1‘ x1,] < C; (i) there exist i.i.d. random variables €1, with E[a‘ii] < C such that

B —Bo=n" Z e +op(n2);
i=1
(iv) there exist ry > 0 and Bym € R™ such that sup,cy [pm(x) — ¢(x)] = O(m™") where
¢m (2) = Py (z) Bpm and X denotes the support of x1,; which is compact; (v) C™1 < Ain(Qumy) <
Amax(Qm,) < C uniformly over my; (vi) min~' +n'?m;"™ = o(1) and log(ml)fg,mln_l = o(1)

where &o.m, 15 a nondecreasing sequence such that sup,cy || Pi(z)|| < &om, -

Assumption m(iii) assumes that there exists a root-n consistent estimator Bl of B 0. Different
estimation procedures of Bl may give different forms for 1;. For example, Bl may be obtained
together with the nonparametric estimator of ¢(-) in the partially linear regression proposed in
|Olley and Pakes| (1996), or from the GMM estimation proposed in |Ackerberg, Caves, and Frazer|
l) Therefore, the specific form of €1 ; has to be derived case by caseE| The rest conditions in
Assumption are fairly standard in series estimation; see, for example, Andrews| (1991)), Neweyl|

(]1997[) and |Chen| (|2007[)E| In particular, condition (iv) specifies the precision for approximating the

unknown function ¢ (-) via approximating functions, for which comprehensive results are available
from numerical approximation theory.

The properties of the first-step estimator &() are presented in the following lemma.

Lemma SC4. Under Assumption[SC1|, we have

n MY |d(wra) — ¢larg)|? = Op(man™t) (SC.44)
i=1
and moreover
sup, |B(21) — d(x1)| = Op(Eomymy*n 2. (SC.45)
r1E

Proor or LEMMA [SC4] Under Assumption i, v, vi), we can invoke Lemma 6.2 in
|Chernozhukov, Chetverikov, and Kato| (2015 to obtain

HnﬂP/lPl — Qm, HS = Op((log m1)1/2§07m1n71/2) = 0p(1) (SC.46)

2See (SC.270) in Subsection lm for the form of €1,; when [0 is estimated by the partially linear regression
proposed in [Olley and Pakes| (1996)).

3For some approximating functions such as power series, Assumptions v, vi) hold under certain nonsingular
transformation on the vector approximating functions P (-), i.e., BPi(-), where B is some non-singular constant
matrix. Since the nonparametric series estimator is invariant to any nonsingular transformation of P;(-), we do not
distinguish between BP;(-) and P;(-) throughout this appendix.

12



which together with Assumption [SC1|v) implies that
C™' < Amin(n7'PIP1) < Amax(n'PiP1) < C (SC.47)

uniformly over m; with probability approaching 1 (wpal). Since 91; = y1; — ll,iﬁl = ¢(x1,4) +

i — l1:(B; — Bio), we can write

n

B¢ — Bomy = (PiP1)7! Z Py(x1)m
i=1
HPIP) Y Pi(w1)($(214) — by (21,))
=1

—(B1 = Bro) (P P1) Z Pr(21,4)l- (SC.48)

=1

By Assumption m(i7 ii, v) and the Markov inequality

n 'Y Pi(ayi)m, = Op(my"*n=1/?) (SC.49)

i=1

which together with Assumption |[SC1|(vi), (SC.46)) and (SC.47)) implies that

[(n PP~ = Qut]n ™Y Pilari)mi = Op((log ma)V/?€o.m,my/*n™") = 0p(n™1/2). (SC.50)
=1

By Assumption [SC1|(iv, vi) and
(PP~ z”: Pi(1,3)($(21,5) = Gy (211)) = Op(m™"¢) = Op(n~ /). (SC.51)
i=1
Under Assumption m(i, ii, v, vi), we can use similar arguments in showing to get
n! zn: Pi(w13)li — B[P (z10)l15] = Op(m)*n=2) = 0,(1). (SC.52)
i=1
By Assumption m(i7 ii, v),

IE[1,i PL(21)] P < Amax(Qm )Ell1i Pr(21,:) |Qu B[Py (21,)l1:]) < CE[i},] < C (SC.53)

13



which combined with (SC.52)) implies that
n_l Z Pl(xl,i)ll,i == Op(l) (8054)
i=1

By Assumption [SC1{(iii, v, vi), (SC.46]), (SC.52)), (SC.53)) and (SC.54)),

~

(B = Buo)(P1P1) ™! Z Pi(z1,)l,; = Qi E[Py(21,0)l1.,:)(B; — Bro) + Op(n~*/?)

i=1

which combined with Assumption [SC1|(vi), (SC.48)), (SC.50) and (SC.51|) shows that

By — Bomy = Qr_nll (Z Pi(z14)m — E[Pl(.%‘l,i)ll,i](Bl — 5170)) + Op(n_1/2) = Op(mi/Qn_lﬂ)
- (SC.55)

where the second equality follows from Assumptions m(iii, v), (SC.49) and (SC.53). By the
Cauchy-Schwarz inequality

nY o) — dlar) P < 207 D d(@ra) = Gy (w1 + 207D [dmy (214) — Bla1a)]
=1 =1

=1

C 2 50p [y (@) — 0(2)] = Op(ml*nV/2) (SC.56)

< 2 a0 PiP) 1By = B,
reX]

where the equality is by Assumptions [SC1iv, vi), (SC.47)) and (SC.55)), which proves (SC.44)). By
the triangle inequality, the Cauchy-Schwarz inequality, Assumption M(iv, vi) and (SC.55))

sup |§(z1) = ¢(x1)| < sup |6(z1) = by (21)] + 5P [y (21) = Bl1)]

T1EX T1EX T1EX

< o ||Bo = Bom || + O(my ") = Op(€omymy’*n~Y2) (SC.57)
which proves the claim in (SC.44)). Q.E.D.

SC.2 Auxiliary results for the consistency of Bk

Recall that v1; (Bk) = ¢(z1,i) — Brk1,; and g(v; Bk) = Elys; — Brkalv1,i (Bk) = v]. For any
Br € O, let Q(Br) = [ag,,bp,] denote the support of vy ;(8x) with ¢, < ag, < bg, < C,, where
¢, and C,, are finite constants. Define Q.(8) = [ag, — €, bg, + €] for any constant € > 0. For an

integer d > 0, let [g(Bk)|4 = maxo<j<a SUP,co(s,) ‘8jg(y; ﬁk)/az/j|.

Assumption SC2. (i) IE[(y;Z-)4 + l;{i + k%zlac“] < C; (i) g(v; Br) is twice continuously differen-
tiable with uniformly bounded derivatives; (iii) for some d > 1 there exist By m,(Br) € R™ and
Tg > 0 such that SupPg,co, ’g(/gk) — 9ms (51{)‘0{ = O(m;rg) where 9mao (V; 5]@) =P (V)/ﬁg,mz (ﬁk);

14



() for any By € Oy there exists a nonsingular matriz B(By) such that for Py (v1(Br); Br) =

B(Br) P2 (v1(Br)),
C_l < )\min(ng (Bk)) < )\max(ng (5/@)) < C

uniformly over By, € Oy, where Qm,(Br) = E[PQ (v1(Br); Br) Py (1(Br); Br)']; (v) for 5 =0,1,2,3,

< &jmo where

there exist sequences §jm, such that supg, cg, SUP,cq. (8,) H(?JPQ (v; Br) /8V718Bj I ‘
j1 < J ande =my*; (v1) §m, < Cm"™ and &, (my*md + (log(n))/2)n=1/2 40! 2my ™ = o(1).

Assumption ( ) imposes upper bound on the conditional moments of 3 v b2, and ko ; given
x1;. Assumptions [SC2(ii, iii) require that the conditional moment function g(v;8;) is smooth
and can be well approximated by linear combinations of P (v). Assumption [SC2{iv) imposes
normalization on the approximating functions P (v), and uniform lower and upper bounds on
the eigenvalues of Qu,(B). Assumption [SC2(v, vi) restrict the magnitudes of the normalized
approximating functions and their derivatives, and the convergence rate of the series approximation
error.

Let P, (1,i(Br1); Br2) = B(Br,2)Pa(v1,i(Bi)) for any By 1, B2 € Of. Since the series estimator
9(01,i(Br); Br) = Pz(ﬁlji(ﬂk))’ﬁg(ﬁk) is invariant to any non-singular transformation on P (v),
throughout the rest of the Appendix we let

Py(Br) = (Poa(Br)s- - Pan(Br)) and Pa(Br) = (Po1(Br), .-, Pon(Br))

where Py ;(Br) = Pa (v1,i(Br); Br)s Poi(Br) = B(Br)Pa(P1,:(Br)) and 01;(Br) = ¢(w1,:) — /ﬁ,zﬂk

Define o

&’ Py (v; Br)
ovJ

&Py (v; Br) and 7Py (Br) = & Py (v1,(Br): Br)
forj=1,2,3andi=1,...,n

Lemma SC5. Under Assumptions[SCI1| and [SCZ, we have

sup
BrE€O

WP Pa(5k) — n P8 Ba(A)| = Op(€r ! Pn %),

PROOF OF LEMMA Since i1 (Br) = ¢(14) — Brk1i, by Lemma

sup max |1,;(Bx) = v1,i(Br)| = max 6(210) — (x15)] = Op(€ommi’*n %) = 0,(1)  (SC.58)
BrEO) =T

*Note that we define Ps;(8x) = P2(@1,:(Bx)) in Section E We change its definition here since the asymptotic
properties of the sereis estimator §(@1,;(Bk); Br) = Pa(@1,:(Bk))’ 5 (Bx) shall be investigated under the new definition

P2, (Br) = B(Br)P2(01,:(Br))-
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which together with Assumption m(vi) implies that
1,i(Br) € Qe(Br) wpal (SC.59)
for any ¢ < n and uniformly over 5 € ©. By the mean value expansion, we have for any b € R"2
V(Pyi(Br) — Pz,i(ﬂk))’ = ‘5/31152 (71,i(Br); Br) (01, (Br) — v1,i(Br)) (SC.60)

where 1 () lies between vy ;(Bx) and 1 ;(B). Since v1;(B) and 1 ;(Bk) are in Q. () uniformly
over f € O and for any i = 1,...,n wpal, the same property holds for 7 ;(5x). By the Cauchy-

Schwarz inequality, Assumption [SC2{(v) and (SC.60))

V' (Pai(Br) — pQ,z'(ﬁk))’ < |0l €1.ms |D(1.5) — (w1.4)| wpal.

Therefore,

=D (V' (PoiBr) — Poi(Bi)? < 10”6y D 10(21,) — dan)|?
i=1

i=1

wpal, which together with Lemma implies that

sup 1P2(81) = Pa(Bi)lls = Op(Ermymy’). (SC.61)
k€O

By Lemma and Assumption [SC2|(iv, vi), we have uniformly over 3j € O
C™ < Amin(n ' P2(Bk) P2(Br)) < Amax(n ™' P2(B)P2(B)) < C wpal. (SC.62)

By the triangle inequality, Assumption [SC2(vi), (SC.61)) and (SC.62|), we get

sup. [|n =P (8) Pa) — n~ Pa(B4)Pa(6)|
BrE€O s
< sup n7! H(f’2(ﬁk) —Pa(Br)) (Pa(Br) — f’z(ﬁk))”
BrE€OK S
+ sup n! H(lf’g(ﬁk) — P2(ﬂk))/f)2(/8k)H
BrEOK s
+ sup w7t [Ba(Be) (Po(Be) — Po(B) | = OplErmemi/*n™"/2)
BrE€O s
which proves the claim of the lemma. Q.E.D.
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Lemma SC6. Under Assumptions[SCT| and [SC3, we have

Jup n 'y ‘pQ,i</3k)/Bg(/3k> - 9(1/1,i(ﬁk);ﬁk)‘2 = Op((m3* + &¢,;m1)n ") = 0,(1)
kEOK i=1

where B,(Bx) = (P2(Br) Pa(Bx)) " P2(51) Y3 (Br)-

PROOF OF LEMMA Let By m,(Be) = (B(Br)) " Bgyms (Bk) and Bym, (By) is defined in As-
sumption [SC2(iii). By the Cauchy-Schwarz inequality and Assumption [SC2((iii)

17t S P3R5 = o050 50|

< 2n7! Z ’P2z Br)' By (Br) = Gma (v1:(Br); ﬂk)‘Q
2! Z |Gms (V1,6 (B1); Br) — 9(v1,i(Br); Bro)
< 2max (T P2(BE) P2(B)) 1By (Br) — Bgmy (Bi)II> + Cmy " (SC.63)

uniformly over 5y, € Oy, where g, (11,i(Bk); Br) = pz,i(ﬁk)lgg,mg(ﬁk) for any B € ©r. We next
show that

By(Br) = By.ms (ﬁk)Hz = O0p((m3? + & ymi)n™") = 0p(1) (SC.64)

sup
Br €Ok

which together with (SC.62|) and (SC.63) proves the claim of the lemma.
Let u2’i(ﬂk) = y;,i — kg’iﬁk — g(Vl,i(Bk)a Bk) Then we can write

By(Br) = Byms(Br) = (f’z(ﬁk)’f’z(5k))_1f’2(5k)/(Y§(ﬁk) P5(Br) Byms (Br))
= (P2(Br)P2(Br)) IZPQ’L Br)(9(v1,i(Br)s Br) — gmo (01,i(Bk ) Br))

—(B1 = B1.0) (Pa(5k) Pa(Br)) ZPQz Br)lai

+(Pa(Br) Pa(Br) " ZPQz Bi)u2,i(Bk) (SC.65)

=1

where g, (71,i(Bk), Br) = ]327i(ﬁk)/397m2 (Bk). By Assumption (Vi), Lemma |SC5| and dSC.62[),

we have uniformly over 8 € Oy

C™" < Anin(n”"P2(Bk) Pa(Br)) < Amax(n™'Pa(Br) Pa(Br)) < C wpal (SC.66)
which implies that Py(8;)(Pa2(8,)P2(8)) P2(8) is an idempotent matrix uniformly over 3, €
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O wpal. Therefore,

(P2(8r) P2(Br)) Z 9W1,i(Br), Br) — Gma (71, (Br), Br))

! Z vLi(Bk) Br) — Gma (1.4(Br). Bi))>. (SC.67)

uniformly over i € Of. Since vy ;(Sr) = ¢(x1:) — k1,iBk, we can use Assumptions i) and
SC2[i) to deduce

sup |g(v1,i(Br); Br)| < C. (SC.68)
BrE€OK
Therefore,
5 2 3 § 2
0 Bosm B0 S sp Oin@na (B [P By 1)
< Cﬁslelg 191, (Brk); Br) = gms (V1,5 (Br); Bi)ll3
+058161p lg(v1,i(Br); Be)ll5 < C. (SC.69)

By the second order expansion, Assumption [SC2(iii, v, vi), Lemma (SC.68) and (SC.69)), we

have uniformly over ; € O,

n_l Z(gmz (Vl,i(ﬁk’)a Bk’) — 9ms (ﬁl,i(ﬁk)v /Bk))2

=1
< 2071 (9 Poi(Br) By, (Br) ($(w1) — d(w1,))?
i=1
on~! 2(32152 (71, (Br); Br) Byomy (Br) (3(z1,5) — d(21,4)%)?
=1

= Op(mlnfl) + Op(fgy,m{g,mlm%nﬂ) = Op(mlnfl)

where 71 ;(0) is between v ;(8k) and 01,;(Sx) and it lies in Q. () uniformly over i € O wpal
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by (SC.59)), which together with Assumption iii, vi) implies that

n”! Z v1i(Br)s Br) = Gmo (91.4(Be): Be))?

< COn7! Z@(m,i(ﬁk),ﬁk) — 9ms (11,4(Br), Br))?
=1
Cn™" (s (V1.3 (Br); Br) — Gms (71.1(Br), Br))?
=1

= Op(min” +m22Tg):Op(m1”_l)-

From (SC.67)) and (SC.70), we get uniformly over fj € O

(P2(Br) P2(Br)) 1ZP22 Bi) (913 (B1)s Br) — gma (P13(Br), Br)) = Op(my*n~Y/2).

By Assumptions E i) and [S - and the Markov inequality,
n
nt Zl%,i =0p(1)
i=1
which together with Assumption [SC1|(iii) and (SC.66]) implies that

(B — Buo)(P2(Br) P2(Br)) 1ZP21 Bi)la.i = Op(n™'/?)

=1

(SC.70)

(SC.71)

(SC.72)

(SC.73)

uniformly over B € Of. By the mean value expansion, the Cauchy-Schwarz inequality and the

triangle inequality, we have for any b € R™2

n! Z b (Po,i(Br) — Poi(Br))uz,i(Br)

n=' Y VO Py (1,i(Br); Br) (P1:(Br) — vii(Br))uz,i(Br)
i=1

IN

9] &1 mun ™) )(62)(331,2') - ¢($1,i))u2,i(/3k)‘ :
i=1

(SC.74)

By the definition of us ;(5k), we can use Assumptions [SC1{(i) and |S ), (SC.68|) and the Markov

inequality to deduce

sup n IZ u2,i(Br))” = Op(1).

Br€OK i—1
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Thus by the Cauchy-Schwarz inequality, Lemma [SC4] and (SC.75)),

n

sup nt Z

BrEOK i=1

(¢(x1,) — ¢($1,i))uz,i(5k)‘ = Op(mi/Qn_lﬁ)

which together with (SC.66)) and (SC.74) implies that

(P2(Br) P2(Br)) " Z Poi(Br) — Pai(Br))usi(Br) = Op(él,mzmi/znil/Z) (SC.76)

uniformly over (i € Of. Applying Lemma [SC33|and (SC.66)) yields

(Pa(Br) Pa(Br)) 1§jpmk Ui (Br) = Op(my 0112 (SC.77)

=1

uniformly over 8 € ©p. The claim in (SC.64]) then follows from Assumption [SC2(vi), (SC.65]),
(SC.71)), (SC.73), (SC.76]) and (SC.77). Q.E.D.

Lemma SC7. Under Assumptions[SC1| and [SC3, we have

sup n 1Z|g 21,6(B0): Br) — 9(va(Br): B> = Op((m3' + €8 ymi)n™") = 0,(1).

BrEOK =1

Proor ofF LEMMA [SC7| By the triangle inequality, (SC.64|) and (SC.69)

sup
BrE€Ok

Bg(ﬂk‘)’ S sup
Br €O

Bg,mg(ﬁk)‘ + sup Bg(/Bk) - Bg,mg(/Bk)H = Op(l) (SC78)

Br €O

By the mean value expansion, the Cauchy-Schwarz inequality, Assumption [SC2(v, vi), Lemma

SC4f and (SC.78)),

sup n”' ) ‘(Pz,i(ﬁk) - pZ,i(Bk)),Bg(Bk)r
i=1

BrEOK

= supn 'y ’31152 (714 (Br); Br)' By (Br) (014(Br) — Vl,i(ﬂk)r

5k€®k i=1

L mant *12 ¢(a1) — d(x1,1))* sup

BrEO

IN

B,(Br) H — 0p(&} ,muin™) = 0,(1) (SC.79)
where 71 ; (k) is between 1 ;(8) and v ;(Bx) and hence by (SC.59) it lies in Q. (5x) wpal for any

i < n and uniformly over fj, € ©. The claim of the lemma directly follows from Lemma [SC6| and

(CT9). Q.E.D.
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Lemma SC8. Under Assumptions[SCI| and[SC2, we have

sup n 12 (5k) ]) = Op(n _1/2>-

BrEOK i—1

ProoOF oOF LEMMA [SCS| For any B € O, by the Cauchy-Schwarz inequality and ,
0i(Br)? < C [(y5.)* + K388 + g(v1:(Br); Br)?] < O+ (y5.)* + k3,).- (SC.80)
For any f3i1, B2 € O, by the triangle inequality and Assumption (ii),
1€i(Br,1) — £i(Br,2)| < (C + k2:) |Br,r — Brp2l - (SC.81)

By Assumption [SC2{(ii), (SC.80) and (SC.81|), we get

E[£6:(80)% 16:(8k1) — 6i(Ba)] < C(Bra — Bra)? (SC.82)

for any i € ©, which implies that

E [[6:(8k1) = £:(Br2)?["| < C(Bra — Bra)®.

Therefore we have for any 81, 8k 2 € O,
1€:(Br1)? = Li(Br2)?[|, < CBra — Broal - (SC.83)

By Assumptions E SCIf(i) and [SC2 - and ,
2
E[nI/QZ (Bk)]) ]

= E[6(80)"] — (B [6:(60)?])° < C (E [(y3.)* + ks + (9(v1,4(Br): Br)Y]) < C

for any i € O, which implies that

n~1/2 Z [4:i(Br)?]) = Op(1) (SC.84)
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for any B € ©k. Moreover, by Assumption E i) and m

2
E

2 Z i(Be1)” = £(Br2)” — E [Gi(Br1)” = L:(Br1)])

<E [\Ei(ﬁk,l)Q — t:(B12)*] < C 161 — Bral. (SC.85)

Collecting the results in (SC.84)) and (SC.85|), we can invoke Theorem 2.2.4 in [van der Vaart and
Wellner| (1996) to deduce that

S ae)|| <o
BLEO 9
which together with the Markov inequality finishes the proof. Q.E.D.

SC.3 Auxiliary results for the asymptotic normality of Bk

Let o(v) = v2(v) =7 (v)g1(v) where g1(v) = 0g(v)/0v and ~;(v) = E[k;;|v1; = v] for j =1, 2.
For any B € ©Opandi=1,...,n, let

Gi(Be) = 9(01,i(Be); Br)  and  G1:(Br) = 91(P1,i(Br); Br)-

The following assumptions are needed for showing the asymptotic normality of Bk

Assumption SC3. (i) ¢(v) is continuously differentiable with uniformly bounded derivatives
over v € Q(Bro); (1) there exist By m, € R™ and r, > 0 such that

sup  |p(v) = om, (V)| = O(my ")
veQ(Br,0)

where Qpm, (V) = Pa(V) Bom,; (iii) there exists B m, € R™2 such that
| (51,6 = s2,0)91(11,0) = P1 (213) Beymy ||, = 0 as my — oo

(i) n*?my " +mimin=?% = o(1).

Assumptions [SC3((, ii) require that the function ¢(r) is smooth and can be well approximated

by the approximating functions P (v). By the definition of ¢; ; and ¢ ;, we can write
S1i — 24 = Elkailwr] — Blkoalvie] — (k1 — Elkyilvie]) 91(v14)

which combined with Assumption [SC2(1, ii) implies that (¢1,; —<2,i)g1(v1,i) is a function of x; ; with
finite Ly-norm. Assumption iii) requires that (s1; — <2,)g1(v1,;) can be approximated by the

22



approximating functions P (z1,). Assumption m(iv) restricts the numbers of the approximating

functions and the smoothness of ¢(v).

Lemma SC9. Under Assumptions|SC1),|SCY and |SCY(iv), we have

HBg(/Bk,O) — Byms (ﬁkz,o)H = 0p((mi* + mY/* =112

where B, (Br0) = (B(Br.0)') ™" Boma (Br.o) and By.m, (Bro) is defined in Assumption (m)-

PrROOF OF LEMMA @ By the definition of Bg(ﬁk), we can utilize the decomposition in (SC.65)),
and the results in (SC.71|) and (SC.73)) to get

By(Br0) = By (Bro) = (Po(Bro) Pa(Bro) ™ Y Pai(Bro)uza + Op(my*n %) (SC.86)
i=1
By the second order expansion, we have for any b € R™?2
n~t Z V' (Pai(Bro) — Poi(Bro))uz; = nt Z V' Py (Bro) (s — ¢i)us, (SC.87)
i=1 =1

+n! Z V0% Py (1,45 Bro) (b5 — i) 2us,
=1

where 71 is between #1;(8k0) and v1;(Bro). By (SC.59), 71, € Q:(Bro) for any i = 1,...,n
wpal. By Assumption [SC2(i) and (SC.68|),

E [uj,|21,] < C. (SC.88)

By Assumption m(i7 v, vi), (SC.88)) and the Markov inequality

n_l Z |u2,i| P1($171)P1($1,i)/ —E [|’UQ¢| Pl(xu)Pl ($1,i)/] H = Op(l). (8089)

=1

Since Amax(E [[uz,| P1(x1,)Pi(z1,)']) < C by Assumption [SCI|(v) and (SC.88), from (SC.89) we

deduce that
Amax (nl Z ”U,27i| Pl(xl,i)Pl(xl,i)’> <C wpal. (SCQO)

i=1
By (SC.55)) and (SC.90|), we get

n

n! Z ‘Wz(&% - ¢m1,i)2‘ = Op(min~1) (SC.91)

=1
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where ¢, i = ¢m, (z1,i). By Assumption [SCIfi, iv) and (SC.88), and the Markov inequality
n! z”: |2 (Smri — 61)2] = Op(my ")
i=1
which together with and Assumption [SCI|(vi) implies that
n~! zn: lugi| (¢; — ¢1)% = Op(myn™1). (SC.92)
i=1

By the Cauchy-Schwarz inequality and the triangle inequality, Assumption [SC2{(v) and (SC.92)

n~'Y WO Py (7145 Bro) (& — ¢0) 2| < |[Bl| Op(E2myman™). (SC.93)
i=1
By Assumptions (i, v) and V), and (SC.88)),
2

n
n~! Z Us:0" Py i (Bro) Pr(w1,)
i—1

E < Cfi,mmln_l

which together with the Cauchy-Schwarz inequality, the Markov inequality and (SC.55) implies
that

nt Z g ib'0 Py i (Bro) P1($1,z‘)/(3¢ — Bémy) (SC.94)

i=1

< [ HB(]ﬁ — Bpm = |1]] Op(&1mpman™).

n! Z ;0" Pai (Bro) Pr(214)
=1

By Assumptions m(i, iv, vi) and V), and (SC.88|),

2

E <C&,,,n"7

n~! Z 0" Pai (Br0) (Sma,i — di)us,
=1

which together with the Cauchy-Schwarz inequality and the Markov inequality implies that

n'Y V0 P (Bro) (dmai — ¢i)uzi| < ] Op(€men ™). (SC.95)

i=1

24



Collecting the results in (SC.94)) and (SC.95)) obtains

nt Z VO Poi (Bro) (95 — di)uai| < |bll Op(Ermeman™?). (5C.96)

Therefore, from Assumptions [SC2{(vi) and [SC3(iv), (SC.66), (SC.87)), (SC.93) and (SC.96} m we can

deduce

n

(P2(Br0) P2(B8r0)) 1> (Poi(Bro) — Poi(Bro))uzi = Op(my*n~1/2). (SC.97)
=1
By Assumptions [SCI|(i) and [SC2|v), and (SC.8§),

nY " Poi(Bro)usi = Op(my/*n=1/?)
=1

which together with (SC.66[) implies that

(P2(Br0) P2(Bro) " Z P i(Bro)uz,; = O, (ma/*n=1/2). (SC.98)
i=1
The claim of the lemma follows from (SC.86|), (SC.97) and (SC.98)). Q.E.D.

Lemma SC10. Under Assumptions[SCI|, [SCY and [SCY, we have:

n Y BBk s(314(Beo) = 1(1.0)) = 0.

PRrROOF OoF LEMMA [SC10, By the definition of l@(ﬁk,o), we can write

nY li(Bro)ki(91i(Bro) — 91(v14))
i=1
= n! Z (v1,i) = Gi(Br,0))k1,:(91,i(Br0) — g1(v1,i))
+n! Z(Z);,i(ﬂk,o) — g(v1,))k1,i(91,i(Br,o) — 91(v14))- (SC.99)

We shall show that both terms in the right hand side of the above equation are op(n_l/ 2). By the
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Cauchy-Schwarz inequality, Lemma [SC9| (SC.66]) and (SC.70))

nY (Gi(Bro) — 9(r1)? < O (PailBro) (By(Bro) = Byma (Bro)))’
=1 i=1

+Cn ! Z(PQ,i(Bk,O)/Bg,mg (Bro) — 9(v1.4))?

i=1
< C HBQ(Bk,o) - Bg,mz(ﬁk,o)HQ Amax (7 P2(Br.0) P2(Bro)) + Op(min~t)
= Opl(m1 +ma)n™") (SC.100)
Similarly, we can show that
n7t Y (G1i(Bro) = g1(n))® < OntY (9" Pai(Br0) (By(Bro) = Bgamy (Bro))?
=1 i=1
+Cn™1) (0" Poi(Bro) — 0" Pai(Br0)) By my (Br0))?
i=1
+Cn Y (01 Poi(Br0) Byyma (Bro) — 01(11,0))?
Zfl 3 2 2 1
< C& oy |18 (Bro) —5g,m2(5k,o)H + Op(§3,m,m1n™ ")

= Op(& y(m1+mo)n ™" + &, min™"). (SC.101)

Therefore, by the Cauchy-Schwarz inequality, Assumption [SC3|iv), (SC.100) and (SC.101]),

n (3i(Bro) — 9(v1.)k1i(916(Bro) — 91(v1,6)) = 0p(n~1/?). (SC.102)
i=1
Since 5 ;(Br,0) — 9(1,i) = u2i — ll,i([}l — B10), we can write

nUY (@5 (Bro) — 9(v1i)kni(§14(Bro) — g1(v14)

i—1
=n! Z u2,ik1,:(91,:(Br0) — 91(v1,4))
=1
— (B, = Bro)n~" Zh,iku(@l,i(ﬁk,o) —g1(v1,))- (SC.103)

=1

Since k1,; has bounded support, by Assumptions[SCI(i, ii, iii), [SCZ(vi) and [SC3{iv), (SC.101) and
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the Markov inequality,

(B = Bron™ D lik1i(§14(Bro) — 1(v1,) = op(n~?).

i=1

Let
O Py i(Br) = 0' Pa(ir1.4(Br); Br) for any By € Oy

Then we can write

nt Z ug,ik1,i(91,i(Br0) — 91(v1,4))

i=1
= n7 Z “Zikl,i(alpli(ﬁk,o) - 81?2,i(ﬁk,0))/39(5k70)
i=1
+nt Z uz,z‘lm,z‘@lpm(5k,0)’(39(5k,0) - Bg,m (Br0))
i=1

+nt Zw,iku (31152,i(5k,0)/[39,m2(5k,0) - gl(Vlvi)) :

=1

By Assumptions [SC1{i) and [SC2(iii), (SC.88|) and the Markov inequality, we have

n~! Zuz,ikl,i (81]52,2'(61670),3%7712 (Br.o) — 91(V1,z’)> _ Op(n_l/z).

i=1
Similarly,

n! Z Uz k10" Pai(Bro) = Op(E1men™?)

=1

which together with Assumptions [SC2|(vi) and [SC3iv), and Lemma implies that

n~! Zuz,@'ku@lﬁ’z,i(Bk,o)’(ﬁg(ﬁk,g) — Bg’m (Bro)) = op(n~Y2).
=1

By Assumption [SC1(i), (SC.88) and the Markov inequality

n
n! Z u%zk%z = Op(1).
i—1

27

(SC.104)

(SC.105)

(SC.106)

(SC.107)

(SC.108)



~

Let &)Z = ¢(x1,) and ¢; = ¢(x1;). By the second order expansion,

n! Z g ik (0" Pai(Bro) — 31152,i(5k,0))/3g(ﬁk,0)

=1

= n Z“Ziklﬂ'(&i — 61)0° P2,i(Br0) By (Br.o)
=1
071 ug ik (¢ — 61)°0° Pa(14(Bro); Bro) By (Br.o) (SC.109)
=1

where 71 ;(Bk0) is between 21 ;(Br0) and vq;(Bk,0). Using similar arguments for proving (SC.92)),
we can show that .
nY fug ikl (6 — 6i)° = Op(man™). (SC.110)
i=1

By the Cauchy-Schwarz inequality, Assumption [SC2|v), Lemma [SC4] (SC.78)) and (SC.110)

nt Z ik i(d; — 0i) 0P Po(ir1,i(Brp); ﬁk,o)lég(ﬁk,o) = Op(E3.mymin™t) = 0,(n"Y?) (SC.111)
i=1

where the second equality is by Assumptions[SC2|vi) and [SC3|iv). By Assumptions i, v) and
SC2{(v), and (SC.88))

nhY Cug ik i Pr(213)0 Poi(Bro) = Op (o mym/?n 172
=1

which together with Lemma [SC4| and (SC.78)|) implies that

n! Z s ik i (B; — ¢i)a2p2,i(/3k,o)//§g(ﬁk,o) = Op(Eamymin™t) = 0,(n1/?) (SC.112)
i=1
where the second equality is by Assumptions M(vi) and iv). Similarly, we can show that

nt Zu2,ik1,i(¢m1 (€1.) — $(214))0° Pa.i(Bro) By (Bro) = 0p(n™/?)
i=1

which together with (SC.112)) implies that

n~t Z g, ik1,i(d; — 0)0* Pai(Bo) By(Bro) = op(n/2). (SC.113)
=1
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Collecting the results in (SC.109)), (SC.111)) and (SC.113|) we get

nh g ik i (0" Pai(Bro) — 0 Pai(Br0)) By (Bro) = op(n™'?). (SC.114)

=1

By (SC.103), (SC.104), (SC.105), (SC.106), (SC.107) and (SC.114),

n! Z {(Br0) — 9(1,))k1,i(91,(Bro) — g1(v1,5)) = 0p(n~13). (SC.115)
The claim of the lemma follows from (SC.99), (SC.102) and (SC.115]). Q.E.D.

Lemma SC11. Under Assumptions[SCI|, [SCY and [SC3, we have

n~t Z(PQ,i(/Bk,O)/Bg,mQ (Br,0) — 9(v1,0))(k2i — k191 (V1))

i=1
Zgl vii)(@(z1) — B(x1,0)) (ko — krign (1)) + op(n™/?),

Proor or LEMMA [SC11| First we write

nY (Pai(Br0) Bymy (Bro) — 9(v1.0)) (ko — kigr (v14))

=1
= n! Z(pzz'(ﬁk,o) — Poi(Br,0)) Byny (Br0) (ki — k1i91(v14))
—1
+nt Z(pQ,i(ﬁk,o)/Bg,mQ (Bro) — 9(v1,6)) (k2 — k1,091 (v14))- (SC.116)
i—1

By Assumptions i) and [SC2(i, ii), and the Markov inequality

n_l Z(k27i — k17igl(l/17i))2 = Op(l). (SC.117)

i=1

Therefore by Assumption iii, vi) and (SC.117)), we have

1Y (Poi(Br0) By s (Bro) — 9(v1.)) (bai — k1igi(v14)) = op(n™/?). (SC.118)

=1
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Recall that &)Z = ¢(x1,;) and ¢; = ¢(x1;). By the second order expansion,

n! Z(Pm(ﬁk,o) — P2,i(Br,0)) B gmy (Br0) (ki — krign (v1,4))
=1

= 'Y 0" Pri(Bro) Bym, (Br0) (B — 6i) (ki — krigi (v1,))

i=1

+n! Z O Py(i71,i(B,0); Br.0) By (Br,0) (05 — 1) (ki — krigi(v1)).  (SC.119)

i=1

By the Cauchy-Schwarz inequality and the triangle inequality, Assumption [SC2(v), (SC.59) and
(SC.69)

n~! Z 02 Po(71,i(Br.0): Br.0) By.my (Br0) (8 — 6i)*(kai — k1ig1(v1,0))

=1

< Opl&ama)n ™Y ko — krigi(v13)] (65 — 6i) (SC.120)

i=1

Since E[|ka; — k191 (v14)]* |214] < C by Assumption M(i, ii), we can use the similar arguments
for showing (SC.92)) to get

n! Z ko — k1.i91(014)] (¢ — ¢i)? = Op(man™t)

i=1

which combined with Assumption [SC3|(iv) and (SC.120) implies that
n Y 0P Po(01,i(Br0); Br0) Byma (Br0) (85 — 00 (ka.i — krigr(via)) = op(n™/?).  (SC.121)

1=1

n~! Z O Pai(Br.0) By (Bro) (05 — 63) (k2 — k1,191 (v14))
=1

= 07 g1 () — 60) (ko — krigi (v1,0) + op(n”1/?)
=1
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which together with (SC.119) and (SC.121f) shows that

nt Z(Pz,i(ﬁkp) — Po,i(Br,0)) By.my (Br0) (ki — k1191 (v14))
i

= 7Y g (m1)( — 6i) (ki — k1igi(v13) + 0p(n ). (SC.122)
The claim of the lemma follows from (SC.116)), (SC.118) and (SC.122]). Q.E.D.

Lemma SC12. Under Assumptions[SCI, [SCY and[SC3, we have

n (9i(Bro) — 9(via)) (bzs — k1igi (v14))
=1
=t Y wieln) Bl (10l o
! Z 1 (11,0)(D(@1,) — D(214))s1i + 0p(n?)

where (v1,;) = Elka,; — k1,001 (v1,i)|v14] and <1 is defined in (SB.14).

Proor or LEMMA [SC12| By the definition of g;(5x,0), we can write
n
nY (Gi(Bro) — 9(v1)) (ko — k1igi (v140))
i=1

= (Bg(ﬁk,o) - Bg,mz(ﬁk,o))/n_l Z Py i(Bro) (ko — k1,191 (v14))
i=1
+nt Z(PQ,i(/Bk,O)IBg,mQ (Br,o) — 9(v1,6)) (k2 — k191 (v14))- (SC.123)

=1

In view of Lemma [SC11{and (SC.123)), the claim of the lemma follows if

(By(Br0) = Bgms (Bro))'n™! Z Pyi(Bro) (k2 — k1ig1(11,))
i=1
nt Y vieln) = Bl (0l o
Zgl V1) $1 i) — O(x1))e(vis) + Op(n_l/Z). (SC.124)

We next prove (SC.124]).
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Let B,(Bro) = (P2(Br0)P2(Bro)) "t iy Pri(Bro)(k2i — k1ig1(v1,:)). Then we can use the
decomposition in (SC.65|) to write

(By(Br0) = Bymy (Bro))n™! Z P i(Bro) (ki — k1,591 (1))

i=1

= (By(Bko) = Bymy (ﬁk,o))/(Tflfb(5k,o)/f’2(ﬁk,0))3¢(ﬁk,o)
= 7Y Bo(Br0) Pri(Bro)(9(v1,i(Bro): Bro) — gms (71 (Br0): Bro))

i=1

—(B, - Bio)n Zﬁ (Br0) Pa,i(Bro)lai +n~ Zﬂ (Br.0) Pai(Bro)us: (SC.125)

where gm, (U1,i(Br0), Bro) = p2,i(5k,o)/Bg,m2 (Bk,0). Under Assumptions |SClL |SCQ| and |SC3|7 we can

use the same arguments for proving Lemma [SC9| to show that

Bo(B810) = Bopmy (Br0) = Op((my”* + my/*)n=1/2) = 0,(1) (SC.126)

where Bgo,mz (Bro) = (B(Bko)) 1Bpms and Bym, is defined in Assumption ii). By Assump-
tions |[SC1|i, v) and [SC3(ii, iv), and (SC.126|), we can use similar arguments for showing (SC.69)
and (SC.78|) to deduce

HBW@ (5’“0)“ — 0(1) and HBw(ﬁk,o)H = 0,(1). (SC.127)

Moreover, we can use similar arguments for proving (SC.100|) to show that

n! Z (Br.o) P2,i(Bro) — ¢(11,4))? = Op((m1 +ma)n™). (SC.128)

The rest of the proof is divided into 3 steps. The claim in (SC.124]) follows from (SC.125|), (SC.129)),
(SC.131)) and (SC.133) below.
Step 1. In this step, we show that

nY 0 Bo(Bro) Poi(Bro)(9(v1,i(Bro), Bo) — gms (#1,i(Br.o), Bro))
=1

= Y g (@(ar) — (1) e(vra) + op(n” 2. (SC.129)

=1

Recall that gAbl = g}b(x“) and ¢; = ¢(z1,). By Assumptions (iii, vi) and (i, iv), (SC.70|) and
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(5C.128), we get
1Y " Bo(Br0) Pai(Bro) (9ma (71,i(Bro): Bro) — 9(v14))
=1
= n! Z@(Vl,i)(gmz(ﬁl,i(ﬂk,o),5k,o) — g(v1.4)) + 0p(n~Y?)

=1

= 7Y 01,0 (Poi(Bro) — Poi(Br0)) By (Bro) + op(n™/2). (SC.130)

i=1

and
n~! Zn; 0(11,0) (Pa,i(Br0) — Pri(Br0)) Byms (Br0)
= n! ﬁ; 0(v1,0)(0; — 1)0" Pai(Br0) By.my (Br0)
ot Z (1) (: — 6220 Po(91,6(Br0): Br) By (Br0) + 0p(n~/2)
= n! Zn; P(1,0)(0; — )91 (10) + 0p(n~?)

which together with (SC.130)) proves (SC.129)).

Step 2. In this step, we show that

(B = Bro)n ™ B (Bro) Pri(Bro)lai = Ellaie(v1,)](B, — Bio) + op(n~'/?). (SC.131)

i=1

By the Cauchy-Schwarz inequality, (SC.72|) and (SC.128])

n! Z Bo(Bro) Poi(Bro)lai = nt Z o)z + Op((my”? + my*)n=1/2)

i=1 =1

= Ellip(vi)] + Op((my/” +my* =12 (8C.132)

where the second equality is by the Markov inequality, Assumptions i), [SC2{(i) and [SC3(i).
The claim in (SC.131) follows by Assumptions iii), [SC2{i) and [SC3(ii, vi), and (SC.132)).

Step 3. In this step, we show that

n~! Z Bw(ﬁk,o)lpz,i(ﬁk,o)uz,i =n! Z ugi (V1) + op(n_l/Q). (SC.133)

i=1 =1
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By the second order expansion,

Z (Br0) Pri(Bro)uzi = n™' > By(Bro) Pai(Bro)ua,

i=1

+n”t Z Bo(Br0) 0" Pai(Bro)(¢; — ¢iJua;  (SC.134)

071 " Bo(Br0) 0° Pa(iris Bro) (& — ¢i) uzs

=1

which together with Assumption [SC ), (SC.93), (SC.96) and (SC.127)) implies that

n

nt Z Bw(ﬁk,o)/fjli (/Bk,O)UQ,i =nt Z ng(ﬁk,O)lP&i(ﬁk,O)uzi + Op(n71/2)' (SC.135)
i=1

=1

Since by the Markov inequality, Assumptions E SC1|(i) and [SC2} - iv)
n
n' Y Poa(Broluzs = Oplmy*n/2) (SC-136)
i=1

we deduce that

n_l Z Bcp(/BhO)/pZi(ﬁk,O)uQ,i = n_l Z B@,mg (Bk,O)/PZi(ﬁk,O)uli + OP(TL_l/Q)

=1 =1

n
= "> p(vii)ugi+op(n”?)
i=1

where the first equality is by (SC.126)), (SC.136) and Assumption [SC3(vi), the second equality is
by Assumptions [SC1|(i) and [SC3(ii), (SC.88) and the Markov inequality. Q.E.D.

Lemma SC13. Under Assumptions[SCI|, [SCY and [SC3, we have

-t Z 91(v1.0)((w1.4) — d(21.4))s14

= n! Z g1 (V1) (s — s2.4) — Elligi (v1.s) (s1i — 2.0](Br — Bro) + op(n~1/?)

i=1
where G2, = ko ; — Elka i|21,].

PROOF OF LEMMA Since ¢(x1,1) — d(1,1) = (By — Bomy) Pr(a13) + by (21,0) — d(1,3),
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we can write

nt Z g1i(P(x10) — d(w1.4))s1
=1

= (By — Bom)n" Z Py(z1)g1isi +n " Zg1,¢(¢m1(ﬂf1,z’) — ¢(x1,4))s1,4 (SC.137)

=1 =1

where g1,; = g1(v1,;). By Assumptions [SCI{i, iv, vi) and [SC2(ii), and the Markov inequality

n
n! 291,,- (Omq (21,) — @(@1,4)) s1, = Op(nflm)- (SC.138)
i=1
By the definition of <1 ; and ¢ ;, we can write

1,0 = Els14]z1,i] + <24 (SC.139)

By Assumptions [SC1i, v, vi) and [SC2[i, ii), and the Markov inequality

n
n™' " Pi(en)grisni — B[Pz g1is1i) = Op(my*n'/?)
i=1

which together with Assumption |[SC3|iv), (SC.55) and (SC.139) implies that

(Bqﬁ — Bomy) 0! Z Pr(21,i) 91,1,

i=1
= nt Z i P (213) Qi B [Pr(w1,i)g1(s1i — s2,4)]
i—1
(B — BZ,O)EUI,@'PI(wl,i)/]Q;lllE [P1(214)91,i(s1,6 — $2.4)] + Op(n_l/Q)- (SC.140)

By Assumptions [SCI1{(i, ii, v), [SC2(i, ii) and [SC3(iii)

2

E[|[n! Z M [Pr(21,3) Qi B[Py (21,3) 91,1 (s1,i — s2,4)] — 91,i(s1,i — $2,4)]

=1

<Cn'E UH (214) Q1  E[PL (21,0914 (510 — 2.0)] — g1.i(s14 — s2.4)

2] =o(n™1)

which together with the Markov inequality implies that

n n
nY i Puen) Qs E[PLigi(si — o)l =07t ) migui(sn — sa) 4 0p(n ™). (SC.141)
=1 =1
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By Hoélder’s inequality, Assumptions ii, v), [SC2|(ii) and [SC3((ii)

_ 2
‘E [l Pr(21,)] lelE [P1(21,4)91,i(s1,i —s2.4)] — Ell1491.i(s1,i — §2,i)”
_ 2
= ‘E [ll,i (Pl(xl,i)/lelE [Pl(xl,z‘)gl,z‘(ﬁ,z‘ - <2,z’)] - 91,¢(§1,z‘ - §2,z‘))] ‘
_ 2
E[i7,]E [(Pl (21,0) Qi E [Pr(21,0)91,i (51, — 2,0)] = 91,3 (s1,i — 2,4)) ] = o(1)

IN

which combined with Assumption [SC1|(iii) implies that

~

(B1 = B1,0)Ell1,i P (21,0) 1Qpm E [Pr (21,1 91,i(s1,6 — $2,0)]
= (B, — Bro)E[lig1.i(s1i — s2.4)] + op(n~?) (SC.142)

The claim of the lemma follows from (SC.137), (SC.138)), (SC.140)), (SC.141)) and (SC.142)).Q.E.D.

Lemma SC14. Under Assumptions[SCI|, [SCY and [SC3, we have

By (Br) = Bouma (BK) = (B = Bro) Op(&1mamy*n %) + Op((my? + ma)n™/2).

ProOF oF LEMMA [SC14] Using the decomposition in (SC.65|), and applying the results in (SC.71J),
(SC.73) and (SC.77), we have

n

By(Bi) = Byamy (Br) = (Pa(By 12 (Poi(By) — Poi(By))uz,i(By,) + Op((m 1/2+m 2.
- (SC.143)
By the second-order expansion, we have for any b € R™2
nt Z b,(PZi(Bk) - 152,z’(3k))u2,i(3k) (SC.144)
i=1

= 7Y VO Poi(Br) (¢ — di)uai(Br) + 125/32132 1i(Br); Br) (6 — ¢i)*ua,i(By,)

i=1 i=1
where 71,4(8},) lies between 1 4(3;,) and v1;(3;,). By (SC.68) and the compactness of Oy,

sup [uz,i(Bk)| < C + [y5,] + k2l (SC.145)
Br€O

Using similar arguments in showing (SC.92)), we have

n

n (6 — 6)2(C + lys il + [k2l) = Op(min™?)

=1
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which together with the Cauchy-Schwarz inequality, the triangle inequality, Assumptions vi)

and [SC3(iv), and (SC.145)) implies that

nt Z b’@QPQ,i(Dl,i(Bk); Br)(¢; — ¢i)2u2,i(3k)
i—1

< bl E2amen S (5 — 60)2(C + ly3al) = IIb] 0p(my 012, (SC.146)
=1

Since ua,i(By) = u2i — ko,i(By — Bro) — (9(v14(Br), Br) — g(v1,)), we can write

n~t Z WO Poi(By,)(6; — di)usi(By)
i—1
= n! Z b/alpz,i(fék)(ﬁ%i — ¢i)ug,
=1
—(By, = Bro)n ™" > V0" Pai(By) k(s — i)
=1

—n 1Y WO Poi(Br) (6 — ¢0) (9(vi(Br), Br) — 9(vi4)). (SC.147)

=1

By the Cauchy-Schwarz inequality, the triangle inequality, Assumption [SC2(i, v) and Lemma m

n! Z VO Poi(Bi)kai(d; — 1)| < 1Bl Op(Ermemy*n=1/2). (SC.148)
=1

Similarly we can show that

nt Z bl@lPQ,i(Bk)({bi - (bi)(g(’/l,i(Bk): Bk) —9(v1,i))

i=1

< 1bl11By, — BrolOp(Ermymy*n=22). (SC.149)

By the Cauchy-Schwarz inequality, the triangle inequality, Assumption m(iv), Lemma [SC35
Lemma [SC36| and (SC.55)),

WY WO P s(B) (0 — di)uns| < [1b] Op(m3 *man=t) < [b] Op(my/* + ma)n=Y/?) (SC.150)

i=1
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Collecting the results in (SC.144)), (SC.146[), (SC.147)), (SC.148)), (SC.149) and (SC.150), we have

S (Paa(Br) = PoalBi)usa(B) = (B = Bro) OplEnmamy*n™12) + Op(my* 4+ mojn=1/2)
which together with (SC.143|) proves the claim of the lemma. Q.E.D.

Lemma SC15. Under Assumptions[SCI|, [SCY and [SC3, we have

9(1.:(By); Bk)‘ = (B, — Br0)20p(€} pyman™) + O, ((my +m3)n~")

where §i(3,) = g(01, i(Br); Br).

PRrOOF OF LEMMA [SC15| First note that by (SC.70]),

> [9ma (P1.6(3): By) = 91a(B). By)| = Oplman™) (8C.151)

~ ~

where g, (01,4(B1,); Br) = Pai(Br) By, (Br)- By Lemma [SC14|and (SC.66)

BB By(B) — a1 s(B): )|
=1

< Amax( Pa(Br) Pa(Bi))1By (Br) = By (Bi)II?
= (B — Br0)*0p(&] juyman™) + Op ((m1 + m3)n~")

which together with (SC.151)) finishes the proof. Q.E.D.

Lemma SC16. Under Assumptions[SCI|, [SCY and [SC3, we have

2

n! Z ‘91 i — g1( Vl,z(/Bk) Br)| = op(1)

where §1,:(By) = 81]52,@'(30/59(30-
ProOF OF LEMMA [SC16| First, we can use similar arguments for showing (SC.70]) to get

2

n 'y ‘81p2,i(6k)/59,m2 (Br) — 91(v1i(Br), Br)| = Op(&3 pmyman™). (SC.152)
=1
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By Assumption @(v), Lemma [SC14] and the consistency of 3},
i e . PP L2
|0 Poi(Br) By (Bi) — 0" Poi(Be) Byuma (B
i=1

< g%,mgH/@g(Bk) - Bg,mg(Bk)”2
= 0p(&1 mymin™) + Op (&7 1y (ma + m3)n ") (SC.153)

which together with Assumption m(iv) and (SC.152)) proves the claim of the lemma. Q.F.D.

Lemma SC17. Under Assumptions[SCI, [SCY and[SC3, we have

n! Z ko,i (ko — k1,914 (Br)) = Elko,i (k2 — k1,91 (v1,0))] + 0p(1) (SC.154)
i=1
and .
n! Z la,ik1i(91,6(Br) — 914 (Bro) = op(1). (SC.155)
i=1

Proor orF LEMMA [SC17| By the Cauchy-Schwarz inequality, Assumptions M(i, ii, vi) and
SC3(iv), Lemma [SC16| and the consistency of Bk, we have

n~! Z koi(kai — k13g14(By)) = n7! Z ki (ko — k1,914(Br)) + 0p(1)

i=1 i=1

= pnt Z k‘2,i(k52,i — kl,igl(Vl,i)) + Op(l)
=1
= Elko;i(kai — k1,501(v1,))] + 0p(1)

where the third equality is by the Markov inequality. This proves the claim in (SC.154|). Similarly,
by Assumption M(ii), Lemma [SC16| and the consistency of /3 &, we have

n! Z ‘g“(ﬁk) — f]l,i(ﬁk,@)r
=1
<2y ‘gl(Vl,i</Bk)§ Br) — 91(1,:(Bro); Bro) g op(1)
=1

< C(Br — Bro)? + 0p(1) = 0p(1). (SC.156)

By the Markov inequality and Assumption @(i), n iy l%z/-cfz = O,(1) which together with
(SC.156)) proves the claim in (SC.155)). Q.E.D.
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Lemma SC18. Under Assumptions[SCI|, [SC3 and [SC3, we have

n-1 Z — §i(Br 0))(’?2&‘ — k1,¢§1,z‘(5k,0))
= — (B — Bro) (El(v2 + €1,191,0) (k20 — k1,i91,0)] + 0p(1)) + Op((ma + my 172

where g1,; = g1(V1,4), €14 = k1; — Elk1i|via], 72,0 = Elkai|vi], vii and g1(-) are defined in

and respectively.

PROOF OF LEMMA First note that

nt Z — 3i(Br,0)) (ka,i — k1,391,4(Br0))
! Z ki3 (By) — 9:(Br0)) (914 (Bro) — 91.)
- Z 91,1(B1): Br) — 3i(Bro) + 901.)) (kai — ki)
+n! Z(g(m,i(Bk); Bi) = 9(v13)) (k2 — krigni)- (SC.157)

By the Cauchy-Schwarz inequality, Assumption [SC3(iv), Lemma and (SC.101J),
! Zku — 5i(Br,0)) (911 (Bro) — 91.0) = (B — Bro)op(1) + 0p(n~ /2. (SC.158)

Similarly, we can use the Cauchy-Schwarz inequality, Lemma [SC15| the consistency of Bk, and

(SC.117) to get

nt Z 9wri(Be); Bi) — Gi(Bro) + 9(vri)) (ko — k1.491.0)
= (B — Br0)op(1) + Op((ma +my/*n~1/2). (SC.159)

Moreover, by Assumptions ii) and the consistency of B &

n! Z (1,6(B1): Br) — 9013 (Br,o); Bro)) (ko — k1,ig1,)

= (Br— Bro)n™" Z O9(ons gﬁkko 1Pro) (ki — k1i91:) + (Br, — Bro)op(1)- (SC.160)
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Since

99(11i(Br0); Bro) O (n1i(Br)) — Bry2(v1,i(Br)))
9Bk 9Bk Br=Bk,0
011 (v1,i(Br)) — Brov2(vLi(Br)))
0Bk

= —y(v1,i) — g1i(k1,; — Elk1ilvia))

= —y(ri) +

Bx=PBk,0
where the third equality is by the derivative formula in (1994) (Example 1 Continued,
p.1358), by Assumptions [SC1|(i) and [SC2(i, ii), and the Markov inequality,

_ 09(v1,i(Br.,0); Br.0)
! — (k2,i — k1,91,
E 95, (k2,i — k1,i91,:)

=-n! Z(’m,z’ +€1,i91,3) (k2 — k1i91:) = —E[(hy2, + €1,i91) (k2,0 — k1:391.4)] + Op(n_l/Z)

i=1
which together with (SC.160]) implies that
nY (g(vri(Br)i Br) — 91,6 (Bro); Bro)) (ki — krigr.i)
i=1
= —(Br— Br,0) (E[(v2,i + €1,i91.) (ki — krig14)] + 0p(1)) + Op(n_l/z)- (SC.161)
The claim of the lemma follows from (SC.157)), (SC.158)), (SC.159)) and (SC.161)). Q.E.D.

Lemma SC19. Under Assumptions[SCI, [SCY and[SC3, we have

n"Y gk i(§1i(Br) — 91.6(Br0)) = (By — Bro)op(1) + op(n"/?).

i=1
PROOF OF LEMMA By the second order expansion,
n n
nY ugikiigri(By) = nTtY ugiki 0" Pai(By) B,y(Bk)
i=1 i=1

= 07ty uz k0" Poi(By) By (By)
=1

+n! Z u27,k12((}z - ¢i)82152,i(3k)139(3k)
i=1

071 ug k(@ — ¢:)20° P s Br) By(Br)  (SC.162)
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where 1 ; is between ﬁl7i(3k) and Vlz(Bk) By (SC.59), 71 € Qc(Bg) for any ¢ = 1,...,n wpal.
By Assumption [SC3(iv), Lemma [SC14] and Lemma [SC34

nY g ki Poi(B1) (By(Br) = Byma (Br)) = (By — Bro)op(1) + op(n™1/?)
i=1
which together with Assumption m(iii, vi) implies that
nThY g k10" Poi(Br) By (By)
=1

= 7'y unikiigi(v1,i(Br); Bi) + (Bl — Bro)op(1) + op(n'/?). (5C.163)

i=1

Using similar arguments for proving (SC.149|) we can show that

nt ug ik (s — 06)07 Prai(By)'b] < [|bl] Op(myman™) (SC.164)
i=1

for any b € R™2. By the Cauchy-Schwarz inequality, Assumption [SC3(iv), (SC.78) and (SC.164)

<

nt Z ug ik i (d; — 0)0° Pai(By) By (Br)
=1

Bg(Bk)H O, (mY*min™) = 0,(n"1/2)  (SC.165)

By the Cauchy-Schwarz inequality and the triangle inequality, Assumption|SC2(v), (SC.59)), (SC.78)
and (SC.92))

~

nt Z g ik (¢ — 6:)2 0P Po (1 45 Bk)/Bg(ﬁk)
i1

< Op(&ma)n™" Y Juail (& — 60)* = Op(Eamymuin™) = 0p(n~7?) (SC.166)
=1

where the second equality is by Assumption iv). Combining the results in (SC.162), (SC.163]),
(SC.165)) and (SC.166)), we get

n! Zuz,iklﬂiglvi(ﬁk) =n"! Z uz,ik1,i91 (11 (B1); Br) + (Br — Bro)op(1) 4+ op(n~Y?). (SC.167)

i=1 i=1

Similarly, we can show that

n n
n ug ik idri(Bro) =17t uikigr (v1,i(Bro); Bro) + op(nH?)
i=1 =1
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which together with (SC.167)) implies that
n Y gk i(914(By) — G1.i(Bro))
i=1

= 7" ugikii(91(v1i(Br); Br) — 91(v1i(Bro); Bro))

=1

(B, — Bro)op(1) + op(n/?). (SC.168)

Therefore by Assumptions [SC1|(i), [SC2{ii), (SC.108) and the consistency of 3,

n ug ik (g1 (v (B)s Br) — 91(v1,i(Br0)i Bro)) = (B — Bro)op(1)

i=1
which together with (SC.168)) proves the claim of the lemma. Q.E.D.

Lemma SC20. Under Assumptions[SCI, [SCY and[SC3, we have

By = Bro = Op((my”* + ma)n~1/2). (SC.169)

PROOF OF LEMMA [SC20| Recall that J;(8x) = £i(Bk) (ko — k1.iG1(91.4(Br); Br)) for any By, €
©p. The first order condition of ﬁk, i.e. (SB.12)), can be written as

n! Z(ji(ﬁk,o — Ji(By)) = _IZJ Bro) (SC.170)
i—1

where by Lemma [SB2|and (SB.41))

n ' Ji(Bro) = Op(n~ 1), (SC.171)
=1

Using Assumption iii), Lemma Lemma [SC18 and Lemma [SC19, we can use the decom-
position in (SB.38|) to deduce that

*1ZJ/3,€ Ji(Bro)) = —(Br — Bro) (BIs2] + 0p(1)) + Op((my”* +ma)n~V/2).  (SC.172)

The claim of the lemma follows from (SB.14]), (SC.170)), (SC.171)) and (SC.172). Q.E.D.

Lemma SC21. Under Assumptions[SCI), [SC3 and [SC3, we have

By — By(Br0) = Op(Evmy (ma +my/*)n~12) = 0,(1)
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where Bg,* = (B(Bk,O),)_lB(Bk),Bg(Bk)'

PROOF OF LEMMA [SC21| By the definition of 3, ,, we can write

97*7

By = (P5(B1)P5(B1)) " P3(By) Y5(By)

where P3(8x) = (P51(Br), .-, P5,(Br)) and P5 (k) = B(Bro)Po (#1,i(Bk)). Therefore we have
the following decomposition

Bow = By(Bro) = [(P3(BPHB) " = (Pa(Bro) Pa(Beo)) ™| P3(BL) Y3 (By)

H(P2(Br0) P2(510) " (P3(Br) — P2(B10)) Y3 (Br)
+(P2(Br.0) P2(Br0) ' Pa(Bro) (Y3(Br) — Y5 (Bro))- (8C.173)

By the Markov inequality, Assumptions ( ) and [SC2] - and (| m,

» I —11 / 2 n! Z?:l k%z
H(PQ(IBk,O) P2(Br0))” P2(Bro0) K2H < (1B (e o)’f;Q(ﬁk 5" Op(1). (SC.174)

Since Y3(B%) — Y3(Bro) = —(Bx — Br0)Kz, by Lemma [SC20|{ and (SC.174) we get

(P2(B.0) Pa(Br0)) " Pa(Bro) (Y3(Br) = Y3(Bro)) = Op((ms +my*)n=12). (8C.175)
By the mean value expansion, we have for any b € R™2,
V(P35 :(Br) — Poi(Bro)) = —b' 0" Po(i1,4(B1); Br.o)k1,:(Br — Bro) (SC.176)

where Bk lies between Bk and (0. By Assumption (iv), Lemma and Lemma [SC20
i(By) € Qe (Bro) for any i = 1,...,n wpal. Therefore by the Cauchy-Schwarz inequality,

Assumption E (v) and ( m

b (P54(B1) = PaaBo))| < bl €1.ms [F1a(B = Bro)|

wpal. Therefore we have wpal,

V' (P3(B1) — P2(Bro)) (P3(B1) — P2(Bro))b
= Z (' (P5:(Br) — P2i(Bro))? < IbI° €.ny (B — Bro) Z ki
=1
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which together with Lemma [SC20] implies that

IP3(B1) — Pa(Bro)lls = 1B — BrolOp(€1man'’?) = Op(€1my(ma +mi*)n= V2. (SC.177)

Since y5 ;(Bk) = Y3, — Brkz2,i, by the Cauchy-Schwarz inequality we get

n! Z(yé‘z(ﬁkW <38 (n_l Z(ygz)Q + B! Z k%z)
i—1 i—1 i—1

which together with the Markov inequality, Assumptions E ) and [SC2] - and the compactness
of O implies that

n

N (2 (B)2 = O,(1). SC.
Sup ;(ym(ﬁk)) p(1) (SC.178)

By the Cauchy-Schwarz inequality, (SC.66)), (SC.177)) and (SC.178)),

H (P2(Br0) P2(Bro) " (P3(By) — Pa(Bro)) Y5 (Br) H
n 1P () — Palolls [¥3(80)|

. _ g (Mg +mi /2. SC.179
Amin(P1P2(Br0) P2 (Br0)) Opl&1ims(ma =m0 ( :

By the definition of Bg(Bk), we can write

[(P3(B)P3(B1) " — (P2(Br,0) Pa(Br, 0))71]155(@)’3(5(319)
= (P2(Br0)"P2(Br0)) " (P2(Bro) — P5(Br)) Pa(
+(P2(Br.0) P2(Br.0)) " Pa(Bro) (Pa(Bro) — P3(B4)) By (SC.180)

By the Cauchy-Schwarz inequality, (SC.66|), (SC.78) and (SC.177)),

| P2(810) P2(810)) ™ (Pa(Bro) — P3(BL)) Pal51) By (5|
nIPS(5) — Pa(Bro)lls P25 3, (5|

< — ~
Amin (™ P2(Br,0)P2(Br0))

= Op(€1,m (m2 +my*)n~1/2).(SC.181)

By the definition of 3 g,» and the mean value expansion

|260) = B3BDB | = DB Palons(ro): Bi) — Boloni(Bi)i B))?
i=1
= (By = o) YR i(By(B)/ 0" Pa(i1a(By): B1))° (SC.182)
=1
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where Bk lies between Bk and Bo. By Assumption (iv), Lemma and Lemma [SC20
ni(Bg) € Qe (By) for any i = 1,...,n wpal. By the Cauchy-Schwarz inequality, Assumption

5C2(v), Lemma (C78) and (SC182)
n Y2 (Pa(Br0) — P3(Bi)Bys = (Br — Br0)Op(Erma) = Opl(E1my(ma +my*)n=12)  (SC.183)

which together with (SC.66[) implies that

(P2(Br,0)"P2(Br0) " P2(Bro) (P2(Bro) — P5(Br)Bgs = Opl(Erms (ma + mi/n1/2). (SC.184)

Combining the results in (SC.180)), (SC.181)) and (SC.184) we get

[(P5(B)P3(Br)) ™" = (P2(Br.0) Pa(Br0) " TP5(B1) Y5(Br) = Op(€1,my (ma + my/*)n=12)

which together with Assumption [SC3(iv), (SC.173)), (SC.175) and (SC.179) proves the lemma.
Q.E.D.

Lemma SC22. Let Uy = (ug1,...,u2,), Gn = (§011(B); Br), - - > 3010 (B1); Br)) and G, =
(9(r11),...,9(v1)). Then under Assumptions|SC1|,|SCZ and|SCS, we have

(i) n= UL (B5(B1) — PolBea)) B, (o) = (B — Bro)op(1) + op(n /)

(ii) = Ly (P3(Bi) — Pa(Br0))By(Bro) = 0p(1);

(iii) n "' K5 (P5(B3;,) — P (51@,0))5@(5&0) = 0p(1);

(iv) n=H (G = Gn) (P5(Br,) — P2(B81,0)) B (Br0) = (Br = Bro)op(1)-

ProOOF OF LEMMA [SC22| (i) First note that

n~ UL (P5(B,) — 152(5k,0))3¢(5k,0)
= n 12“21 2 (1,6 (Br): Bro) — Pa(v1,i(Br): Bro)) By (Bro)
—n~! Z Ui (PQ(ﬁl,i(ﬁk,O)Q /Bk,O) - PQ(W,i(ﬁk,O)Q Bk,O)),Bp(ﬁkD)
=1

IZUm 2 (1,i(Br): Bro) — Pa(v1,i(Br0)i Br.0)) By (Bro)- (SC.185)
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By the second order expansion,
n 12“21 2 (01,6(Br); Br0) — Pa(v1,6(By); Bro)) By(Bro)
= nflzlm — 61)0" Py (v1,i(B1); Br0) By (Br.0)

IZ““ — ¢i)20° Pa(71,3(By,); Br.0) By (Br.o) (SC.186)

where 71 ;(5},) is between 1 4(5;,) and vy ;(B;). By Assumption (iv), Lemma and Lemma
both 1(B),) and vy 4(3;) are in Q.(Byo) for any i = 1,...,n wpal. Therefore 71:(3;) €
Q:(Brpo) for any i = 1,...,n wpal. By the triangle inequality, the Cauchy-Schwarz inequality,
Assumptions [SC2|(v) and [SC3|iv), (SC.92) and (SC.127)

n~! Z u2,i(d; — ¢:)20* Pa(i11,:(B1); Br.o) B (Bro)
< Op(&amy)n Z ug,;| (¢ = Op(Exmymin™t) = 0,(n™1/2).  (SC.187)
Using similar arguments for proving , we can show that
n! Zuz i(0 — 6:)0" Pa(v1,:(B); Br,0) Bo(Bro) = 0p(n~/?)
which together with and implies that
B Z ug,i(Pa(1,4(B1); Bro) — Po(vri(Br); Bro)) By (Bro) = op(n™"?). (SC.188)
Similarly, we can show that

nt ugy (132(ﬁ1,i(5k,0); Bro) — Po(v1,i(Bro); ﬁk,o))/Bw(ﬂk,o) = 0,(n"1/2). (SC.189)
=1
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By the third order expansion,
- Z w2,i(Pa(v1,i(B1); Bro) — Pa(v1,i(Bro); Bro)) By (Bro)

= (B), — Bro)n Zuwa P2Z(6k0)ﬂ<p(ﬁk0)

+(By — Bro)’n ! sz@ Pyi(Br0) By (Bro)

i=1

+(By — Bro)®n lzuzza Py(1,i(B): Bro) By (Bro) (SC.190)

=1

where Bk is between Bk. and (0. By Lemma [SC20| and Assumption (iv), VM(B,C) € Q:(Bro)
for any ¢ = 1,...,n wpal. Therefore by the triangle inequality and the Cauchy-Schwarz inequality,

Assumptlons SC1|(i) and [S , Lemma (SC.88]) and (SC.127)

By, — Bro)®n IZqua Py(v1,:(B4); Bro) By (Bro)

= (Br— Bro) p<53,m2<m1+m2>n Y = (Bx — Bro)op(1) (SC.191)

where the second equality is by Assumption|SC3(iv). By Assumptions|SC1|i),|[SC2(v) and [SC3(iv),
Lemma [SC20, (SC.88) and (SC.127)), we can show that

(B — Bro)n Z us,;0" Py i (Br.p0) /%(Bk,o) = (B — Bro)op(1) (SC.192)
=1
and
By, — Bro)’n Z u2:0° Py,i(Br0) Bo(Bro) = (By — Br,o)op(L). (SC.193)
=1

Collecting the results in (SC.190)), (SC.191)), (SC.192) and (SC.193|), we obtain

! Z u2i(Pa(v1,i(Br); Bro) — Pa(v1:(Bio); Bro)) Bo(Bro) = (Bl — Bro)op(1)

which together with (SC.185)), (SC.188|) and (SC.189) finishes the proof.

(ii) By the mean value expansion,

n LY (P3(By) — PQ(ﬂk,O))BLp(/Bk,O) (B — Bro)n ™ Z 1,:0" Py (01:(By1,); Br.o) /ng(ﬂk,o) (SC.194)

=1
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where Bk is between Bk and Byo. By Assumption @(iv), Lemma and Lemma [SC20
n4(By) € Q:(Bro) for any i = 1,...,n wpal. By the triangle inequality, the Cauchy-Schwarz

inequality, (SC.72) and (SC.127]),

n Y 150 Pa(vii(B1); Bro) By (Bro) = Op(E1ms)

i=1

which together with Assumption |SC3(iv) and Lemma [SC20] finishes the proof.
(iii) The third claim of the lemma can be proved in the same way as the second one.

iv) By the mean value expansion,
y

n‘l(én -G )'(?S(Bk) - 132(5k,0))5¢(5k,0)
— ! Z 9(w1.))) (Pa(i1,(Br); Bro) — Pa(714(Bro); B1,0)) B (Br,o)

= —(By — Bro)n Z 9(11.0))0  Pa(91.4(B); Bro) ﬁ (Br,0) (SC.195)

where Bk is between Bk and fro. By Assumption iv), Lemma and Lemma |SC20
1:(B) € Qc(Bro) for any i = 1,...,n wpal. By Assumptions v) and [SC3{(iv), Lemma

SC15, Lemma [SC20| and (SC.127)), we get

n! Z 9(1,:))0" Pa (1,5 (Br); Bro) By (Bro) = op(1)
which together with (SC.195)) finishes the proof. Q.E.D.

Lemma SC23. Under Assumptions[SCI, [SCY and[SC3, we have

nt Z (B Br) — 9(01,i(Br,0); Br,o)) (ks — K1idni(By))
—(Br = Bro) [Elk1,ig1,51.] + E (k2 (v2,6 — 71,191.0)] + 0p(1)] + 0p(n~"7?)
where aj; = E[kj;|v1:] and g1; = g1(v14)-

ProOF or LEMMA [SC23| In view of (SC.158)), to prove the lemma it is sufficient to show that

_12 i(Br); Bi) — (01,6 (Bro); Bro)) (ko — k1.491.0)

= —(5k — Bro) [E[k1,i91,i61.5) + E [k2,i (V2,6 — 71,i91,4)] + 0p(1)] + op(n’l/Q). (SC.196)
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By the definition of §(1,;(8k); Bk),
G(01,6(Bk); Br) = Pai(Br) By (Br) = P (B) P5(8k) P5(8k)) ' P (Br) Y5(Bk)

where P3(8;) = (P2 1(Br), - ,Pin(ﬁk))’ and P;ﬂ(ﬁk) = B(Br,0) P2 (71,i(Bk)). Therefore we obtain
the following decomposition

)_1f’2 Br,o) (YS(Bk) = Y35(Br0))- (8C.197)

The proof is divided into 4 steps. The claim in (SC.196|) follows from the results in (SC.198)),
(SC-212), (SC.225) and (SC.227).

Step 1. In this step, we show that

nt Z 59 (P5(Br) = Poi(Bro)) (k2 — k1,i91.)
= —(5k — Bro) (Blk1ig1i(kai — k1ig1.0)] + 0p(1)) + 0p(n~1/2). (SC.198)

where Bg,* = (P3(B)P3(Br) " P3(Br) Y3 (By).
By Lemma and (SC.78))

= 0,(1). (SC.199)

By the second order expansion,

B;,* (PZ*Z(Bk) — P3i(Br) — 0" Pai(Bro) (01,:(By) — V1,i(ﬁk,0))>
= 3;7*32152(171,1'; Br.0) @1:(Br) — v1,i(Br0))? (SC.200)

where 71 ; lies between 7 ;(3,) and v1,i(Bro). By Assumption SC3{(iv), Lemma and Lemma
SC20, 71, € Qe(Br,0) forany i = 1,...,n wpal. Since ﬁl,i(Bk)—Vl,i<5k,0) = ((Abi—gbi)—kl,i(ﬁk—ﬁk,o),
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by Assumption [SC2(v), (SC.199) and (SC.200) we have

ool P (k) Psi(Br,0) o
Zﬁg’ ( 81Pzz(5k0)(ﬁ (B )—V1,i(ﬁk,o))>(k2’l F1i01.4)

< Op(&2,my) <n1 D (@i — )+ (B — Bro)*n > ki)

i=1 i=1

= (Br — Br.0)Op(E2,my (my? + ma)n™2) 4 Op(Ea,mymin™)
= (Br — Br0)op(1) + 0p(n~1/?) (SC.201)

where the first equality is by Lemma [SC4] and Lemma and the second equality is by As-
sumption [SC3(iv). Similarly, we can show that

1 i . ( Psi(Br0) — P2i(Bro)

; ko = kuigri) = op(n™ %) (3C.202
—81P2,i(5k,0)(f/1,i(,3k70) _ Vl,i(ﬂ]go) ) ( 2, 1,91, ) Op(n ) ( )

Since 1,;(B1) — 1,i(Br0) = —k1,i(Br — Bro), using (SC.201) and (SC.202) we get
n”! Z By (P5i(Br) — Poi(B0)) (ki — k1.ig1,) (SC.203)

= —(By — Bro)n" ZBlg,*alﬁb,z‘(5k,o)/€1,z‘(k2,z‘ — k1ig14) + (B, — Bro)op(1) + op(n~1/?)

i=1

By the definition of /3’97*, we can write B;,*alpzz‘(ﬁk,o) = BQ(Bk)'alz(ul,i(ﬁk,O);Bk). Therefore

Tty By 0" Poi(Bo0) b a(kai — k1,ig1.7)
i—1
= Elgrikri(kei — k1i91,)]

07 (griki(kas — kuigri) — Elgrikyi(kas — k1igri)))
i=1

Z By (B1) 0" Pa(v1.i(Br0); Br) — grakri(kai — kuigis). (5C.204)

By Assumption [SC3|(iv), Lemma [SC14] and Lemma [SC20

ﬁg(ﬁk) - Bg,mg (51@) = Op((mQ + m1/2)n71/2)- (S0205)
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By the Markov inequality, Assumptions E and [S - SC2(1, ii, iii, v)
n! Z k2 (ko — k1491.4)% = Op(1). (SC.206)
By the mean value expansion,
n! Zn: By(Br) (0" Pa(v1,i(Bro); Br) — 0" Pa(vri(By): Br) v (ki — K1ig1)

i=1

= (B = Bro)n ™" By(Br) 0 Pa(v1i(By); Br)ki(ka.i — krigrs) (SC.207)
i=1
where ), is between 3, and Br,0- By Lemma [SC20| and Assumption M(iv), v1:(By) € Q(By)
for any ¢ = 1,...,n wpal. Therefore by the Cauchy-Schwarz inequality, Assumptions (V) and
Assumption [SC3(iv), Lemma [SC20, (SC.78)), (SC.206) and (SC.207]),

ntY By (BY) (0" Pa(vii(Bro); Br) — 0" Pa(v1,i(Br); B)) (ki — krigri) = op(1).  (SC.208)

=1

By the triangle inequality and the Cauchy-Schwarz inequality, Assumptions [SC2((ii, iii, v) and
SC3(iv), Lemma [SC20} (SC.205|) and (SC.206]),

nt Z(Bg(ék)lall%(yl,i(sk); Br) — gri)k1i(koi — k1i91,)

=1
”Z

0703 | BB 9 Pan B Be) — 91004(B)s B s — i)
=1

IN

(By(Br) = Byma (Bi)) 0" Pa(v1,i(By): By)kvi(kai — k1.ig14)

+n! Z ’(gl(Vl,i(Bk); Br) = 911 (Br0): Bro) ki (ko — k1.i914)

=1

= OplErma(ma +my*n2) + 0, (m™"9) + (By = Br0)Op(1) = 0,(1)

which together with (SC.208)) implies that

n! Z By(B1) 0" Po(v1:(Bro); Br) — g1i)kri(ka — k14g1.) = op(1). (SC.209)
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By Assumptions [SC1{i) and [SC2(i, ii), and the Markov inequality,

n! Zgl,ikl,i(k2,i — k1ig1i) — Elk1i91i(kai — k1.4914)] = Op(n™"/?) (SC.210)
i=1

which together with (SC.204)), (SC.209)) and (SC.210)) implies that

Tty By 0 Py i(Bro)ki(kas — kiigra) = Elkrigui(ka, — k1ig1i)] + op(1). (SC.211)
i=1

The claim in (SC.198) follows from (SC.203) and (SC.211)).
Step 2. In this step, we show that
By | P2(Bro) PalBro) = P3(B)P3(B)| B (Bro)
= (By — Bro) (Blgrik1i(v2i — 714910)] + 0p(1))
+ 17 By P (BL) (Pa(Bro) — P5(Br))By(Bro) + 0p(n~'/?) (SC.212)

where B, (B,0) = (P2(B10) P2(Br0)) " S0y Poi(Bro) (k2,i — k1,i914)-
First note that
By [152(5k,0)/152(5k,0) — P5(B)P3(B1,) | B (Bro)
= By (P2(Br0) — P5(B1) Pa(Br0)Bo(Bro) + By P5(B1) (Pa(Bro) — P5(Bi))By(Bro).

Therefore to prove (SC.212), it is sufficient to show that

nflé;,*(f@(ﬁk,o) — P3(B1)) P2(Br0)Bou(Bro) = (Br — Bro) (B [grikripi] + 0p(1)) + 0p(n /).
(SC.213)
where p; =72, — 71,i91,i-
By the Cauchy-Schwarz inequality, Assumption [SC3|(iv), (SC.66|), (SC.126)) and (SC.183)),

1B (Pa(Bro) — P33 P2(Br0) (B (o) — Bipuma (Bro)
< 0B Pa(B0) = P3BL) | [|P2(Br0) (B (Bro) = By (Bro))|
7B Pa(i0) — P3| B (B0 = Bma B

()\max(nilp2(Bk,O)/P2(5k,O)))71/2
= 1By — BrolOp(Erms (my? + my*)n=Y2) = By, — Brolop(1). (SC.214)

By the Cauchy-Schwarz inequality, Assumptions [SC2|(vi) and [SC3(iv), (SC.61), (SC.127) and
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(SC1%3)

n 7 | (Pa(o) = P33 (Pa(Bro) — Po(B0)) By (Bro)|
(P(Bro) = P5(B) By | || (P2(B0) = Po(Br0) By ms (Bro)|
=By — 5k,0\0p(f%,m2mi/2n_l/2) 81 — Brolop(1). (SC.215)

Sn’l‘

By Assumption Assumptions E (vi) and [SC3 - (i, iv), and m, where ¢, = (¥1,...,0n),
which together with (SC.214]) and (SC.215)) implies that

n_lglg,*(PQ(ﬁk,O) — P3(B1)) P2(Br0) B (Bro)
= 1By (P2(Bro) — P5(B1)) e + (Bi — Bro)op(1)- (SC.216)

Since B, = (B(Bro0)') "' B(B1) By(Br), we can write
By (P2(Bro) — P5(By)) Zﬁg B (Pa(1,i(Br0); Br) — Pa(01,4(By); Bi))wi. (SC.217)

By the first-order expansion, the triangle inequality and the Cauchy-Schwarz inequality, Assump-

tions |[SC1] E ) and [SC3] - (i, iv), and m, we have

~ A~ ~

nt Z Bgms (B)) (Pa(01,i(Bro); Br) — Pa(014(B1); Br)) @i
= (Br— Bro)n" Z By(Br) = Bgms (Br)) 0" Pa(1,6; By, ke
= (B — Bro)O P((ml/ + ma)n2)0p(E1.my) = (Br — Bro)op(1) (SC.218)

where 71 ; is between q;(80) and 1/1,2'(3,@) and it is in QE(Bk,) for any i« = 1,...,n wpal by

Assumption [SC3((iv), Lemma and Lemma From (SC.217) and (SC.218)),

+(P2(Bro) — P3(Br)) en

~

B g Br) (Pa(071,:(Br0); Br) — Pa(1,i(Br); Br)) i + (Br — Bro)op(1). (SC.219)

|
M: <P\l

=1
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By the second order expansion,

A N

n~! Z Bgms (Br) (Po(1,:(Br.0); Br) — Pa(v1i(Br); Bi))wi
=1

= 7Y Byms (Br) 0" Pa(vr,i(By); Br) (01,4 (Bro) — v1.i(By))ei
=1

A1) Byng (Br) O Pa(14; By) (91.4(Bro) — v1.4(Bx)) @i (5C.220)

=1

where 7y ; lies between 1 ;(f1,0) and v14(Bx). By Assumption @(iv), Lemma and Lemma
SC20| 1 € QE(Bk) forany ¢ =1,...,n wpal. By Assumptions M(iii, vi) and [SC3(i, iv), Lemma
SC4l and Lemma

0NN Byma (B0 Pa(v1,i(By); Bi) (01,6(Bro) — vi(By)) i

i=1

= 7Y g Wi (B)i B) (01,6(Bro) — vii(Bi))wi + op(n 2. (SC.221)

=1

By Assumptions [SC2{(v, vi) and [SC3[{i, iv), Lemma and Lemma [SC20| and (SC.69)

0 By g (B)' 0 Pa(1,65 B1) (01,:(Bro) — v1,i(Br)) @i = (Bi = Bro)op(1) + op(n~'/?)

i=1

which together with (SC.220) and (SC.221|) implies that

0 By, (Be) (Pa(01,4(Bro); Br) — Pa(vri(Br); Br)) @i (SC.222)
=1
= Y g (wa(Br); Br) (01,4(Bro) — vii(Br)ei + (B — Bro)op(1) + op(n~/?).
i=1

Similarly, we can show that

0 By s (Bi) (Pa(01,6(By): Br) — Pa(vri(By); Br)) i
=1

= 07 g1(vi(Bi); B) (14 (Br) — v1i(Br))gi + op(n~1/?)
i=1
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which together with (SC.222) implies that
0 " Byms (B) (Pa(01,i(Bro); Br) — Pa(vri(Br): By) )i
i=1

= (By — Bro)n 1291 vii(By)i Br)krii + (By — Bro)op(1) + op(n/2)  (SC.223)

=1

By Assumptions [SC2((ii, vi) and [SC3(i, iv), and Lemma [SC20

nY g1 (Br): Bk =07 gk + 0p(1)

i=1 =1

which combined with (SC.223) implies that
! Z Byms (Br) (Pa(1,i(Bro): Br) — Pa(01,4(By): Br)) i
= ﬁk —»Bk:o Zgl ik1 i9i t+ 5k —5,% O)Op( ) +0p(n_1/2)

= (Br—Bro)E [gl,zkl,z%] (Br — Bro)op(1) + 0p(n /%) (SC.224)

where the second equality is by the Markov inequality. The claim in (SC.213)) now follows from
(SC.219) and (SC.224)).
Step 3. In this step, we show that

Y5 (Br) ~Pa(B1) By (B1)) (P (Br) =P2(Br0)) By (B0) = (Bi—Bro)op(1)+op(n~/?). (SC.225)
Since §5(B),) = v — loifB; — ko.iBy, we can write

93(Br) — p2(3k),39(5k) = ys — By — k2B, — G(01,:(Br); Br)
=i — l2,i(B — Bro) — k2, (B — Bro) — ((01,:(Br); Br) — 9(v14)).

Therefore,

n (Y5 (81) — Pa(Br)B,(Br) (P3(Br) — P2(Br0) By (Bro)
= n"ULP5(By) — P2(Br0))Bu(Bro)
—(B1 = Bro)n "L (P3(B1) — Pa(Br0)) By (Bro)
—n " (By = Bro)K5(P3(81) — Pa(Br0)) B, (Bro)
“H(G2 — Ga) (P5(Bx) — Pa(Br0)) By (Bro) (SC.226)
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which combined with Lemma [SC22| proves (SC.225)).

Step 4. In this step, we show that
Y3 (B) = Y5 (Br0)) P2(Br0) B (Bro) = —(Br—Bro) (Elkai(v2,: — v1,i91.)] + 0p(1)) . (SC.227)
Since 5 (51) — 95 (Br.0) = —k2i(By = Bro), we can write
“HY5(Br) = Y3(8r0)) P2(Bro) By (Bro) = =1 (By — Bro) KoPa(Bro)B,(Bro)  (SC.228)

and

n

n T KEPo(Br0)Bo(Bro) = Elkoip(vi )] +n7t Y (kaip(v) — Elkaip(1,:)])
i=1
nt Z k2.i(o(v14) pz,i(ﬁk,o)/B@,mQ (Br,0))
+n! Z k2, Po,i(Br,0) (B (Br,o) = Boms (Bro))-  (SC.229)
i—1

By the Markov inequality, Assumptions E and [S -
n”! i(kz,m(vl,i) — Efka,ip(v1,4)]) = 0p(1) (SC.230)
By the mean value expansion, Assumptions [SCI|(i), [SC2(i) and [SC3(ii, iv)
nt Z ka,i (V1) = Pai(Br0) By (Bro))
= n! Z ki (Po(v1,i(Br.0); Bro) — Po(P1,i(Bk0); B1.0)) Boymy (Br.o)
i=1
n! Z ki ((v1.0) — Pa(v1,i(Br0); Br0) By ms (Br0))

= —n! Z Ko,i (& — 03)0" Pa(1,1(B1,0); Br,0) Booams (Br0) + 0p(1) (SC.231)

where 71;(B0) lies between 1 ;(8k0) and v1;(Bro). By (SC.59) m, 71i(Bro) € Qe(Bro) for any
i =1,...,n wpal. By the triangle inequality and the Cauchy-Schwarz inequality, Assumptions

5CI), BT, v) and STH(iv), and (SCIZ7
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n”! Zkzz — $0)0" Pa(1,6(B1.0): B0) Bopoms (Br0) = Op(€1imamy*n712) = 0,(1)
which together with implies that
n”! Z k2,i (0(V1,1) — P2,i(B10) By (Br0)) = 0p(1). (SC.232)
By the Cauchy-Schwarz inequality, Assumptions E and [S - and ( m

n1 Z k2, Po,i (Br,0) (B (Br0) = Booms (5k,0))‘ (SC.233)

1/2
< (Amax(n""P2(B10) P2(Br0))) U?( 12’%) 82(860) = Boma(Bro) | = 0n(1).

The claim in (SC.227) follows from (SC.228)), (SC.229), (SC.230), (SC.232) and (SC.233).Q.E.D.

SC.4 Auxiliary results for the standard error estimation

Assumption SC4. (i) There exist &1, for i =1,...,n such that n=1 Y " (&1 — e1,)* = 0p(1);
(i1) there exist v > 0 and Baym € R™ such that sup,cy |azm(x) — az(x)] = O(m™"*) where
ag.m () = Py (1) Bagm and &g m,m™"e = o(1); (iii) Q> 0; (iv) :fo,mlmiﬂm%n*l/? =o(1).

Assumption (1) assumes the existence of estimators of the random variables €1 ; in the linear
representation of the estimation error in Bl. Specific estimator £;; can be constructed using the
form of 51#’E| Assumption (ii) requires that the unknown function as(z1;) = E[kg|z14] can
be well approximated by the approximating functions P; (z1,). Assumption (iii) requires that
the asymptotic variance €2 is bounded away from zero. Assumption (iv) restricts the numbers
of the approximation functions used in the multi-step estimation procedure.

The following lemma is useful to show the consistency of the standard error estimator.

Lemma SC24. Under Assumptions[SCI, [SCZ, [SCY and [STY, we have
(i) n71P5(B) Pa(By) — 7 P2(Br0) Pa(Bro) = Op(E1men?);
(i1) maxi<p |91, — 914" = 0p(1);
(i) n=t 300 (S1,i — s1,0)* = 0p(1);
(i) n=t 30 (i — u2)* = 0p(1);

(v) max;<p |S2; — s2,i| = op(1).

®See (SC.271)) in Subsection for the form of &1,; when ;0 is estimated by the partially linear regression
proposed in |Olley and Pakes| (1996]).
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PRrROOF OF LEMMA [SC24] (i) For any b € R™2, by the mean value expansion, Assumption [SC2(v)
and (SB.16|)

V' (P2(By) — Pa(Bro)) (P2(By) — Pa(Bro))b

where (3, is between Bk and fy, and by (SC.58) and Assumption (Vi), Dl,i(Bk) € Qs(Bk) for

any ¢ = 1,...,n wpal. Therefore

Hlﬁg(ﬁk) _ ﬁg(ﬂk,o)HS = Op(E1my). (SC.234)

By the triangle inequality and the Cauchy-Schwarz inequality, Assumptions [SC2|vi) and [SC3{iv),
(SC.66) and (SC.234)

n—l

P5(B1,) Pa(By) — 132(51670)'152(51@,0)”3
n! H(P2(Bk) - PZ(ka:O))/PQ(B"”O)HS

~

P3(Br0) (P2(By) — 132(ﬂk,0))”

IN

+n_1

S

which finishes the proof.
(ii) By triangle inequality and the Cauchy-Schwarz inequality, Assumption [SC2{iii, v), and
(SC205)

max 0" Pai(Br) By(Br) — 91(v1,4(By); Bk)’
< max|(0' Pai(By) — 0" Poa(B)' By (By)|
+max |0 Pai(B)' (B, (By) = Boama (Be))|
a0 Pos(By) By (Be) = 910181 By)|
< max| (0" Pos(By) — 0" Paa(B)) By(Be) | + Opl€rma(ma +miH)n /%), (SC.236)

By the mean value expansion,

~ ~

(0" Pa,i(By) = 0" Poi(Br)) By (Br) = (61 — 6:)0* Pa(#1,(Br); Bi)' B B) (SC.237)
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where 71 ;(3y,) is between v ;(B;) and 71 4(3;). By (SC.59), o1 Z(Bk) € Q. (Bk) foranyi=1,...,n
wpal. Therefore by the Cauchy-Schwarz inequality, Assumptions|SC2{(v, vi) -(1V ) and [SC4| -

Lemma [5C4] (SC.78), (SC236) and (SC.237),

max

nax 0" Po(By) By (Bi) — 91 0.1(Bi)s )|

p(§2,m2) max [¢; — if + Op(€1.ms (2 + ml/2)n=1/2)

IN

= Op(&0ms E2mary *n %) + Op 1y (ma + my "1 = 0(1). (SC.238)
By Assumption E ISC2{(ii) and m, we have

(1, (Br); Br) — 91(1,i(Br0); Bro) | = Op(n~1/?) (SC.239)

max
i<n

which together with (SC.238)) proves the second claim of the lemma.
(iii) Define ¢, = P2,i(Bk)’B<p(Bk) for i < mn, where

~ N ~

Bo(Br) = Pa(B1)Pa(Bi)) ™D Poi(By) (ki — krigni(By))-

i=1

Recall that Ako; = ko — k1g1; and Ako; = ko — k1.4914(8)). Since ¢1; = Akg; — ¢; and
S1 = Algzz,i — ¢;, we have

nt Z(él’i — §1,2‘)4 < Cn~1 Z(Aiﬁgﬁ' — Akg,i)4 + Cn~1 Z(Q)Z - goi)4. (SC.240)
i=1 i=1 i=1
By Lemma [SC24{(ii),
TN (A — Akgy)t = 12 kL i(314(Br) — 91(1,6(Bro); Bro))* = 0p(1). (SC.241)
i=1

By Assumptions [SC2{(vi) and [SC3|iv), (SC.152)), (SC.153)) and (SC.205)

[

2
| = Op(mimn)

712‘911 gl Vlz(/Bk;) Bk)

which together with (SC.239) implies that

n

n! Z(?}Li(ﬁk) — 91(1,i(Br0); Bro))? = Op(mimin~1). (SC.242)

i=1
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Therefore,

n! Z(Ai@ﬂ' — Akg;)? < COn™t Z(@u(ﬁk) — 91(11,1(Br0)i Bro))? = Op(mimin~").  (SC.243)

i=1 i=1

By the definition of ¢;, we can write

Pi—pi = Poi(Br) (Pa(Br)Pa(Br) ' Pa(By) (AK2 — AKy)
+P2i(Br) (Pa(Br) P2(By) ~ (P2(By) — f’2(5k,0))AK2
+P2i(By) [(P2(B1) Pa(Br)) ™ — (Pa(Br0) P2(Bro)) 1P2(Br0) AKy
+(Poi(Br) — P2i(Bro)) (P2(Br0) P2(Br0) " P2(Bro) AK2
+P2i(Br0) (P2(Br0) Pa(Bro))  Pa(Bro) AKs — ;. (SC.244)

where AK, = (Al%271,...,Al;:27n)’ and AKy = (Akaq,...,Aky,)". By Assumption (V) and

(SC.59),
maxHPQZ B) H = 0y (E0.my)- (SC.245)

By Assumption [SC2|(v, vi), (SC.66), (SC.243) and (SC.245),

nt Z(pQ,i(Bk)/(f)Z(Bk),152(@]@))_1132(Bk)(AKZ — AKy))*

=1

S G | P2B BB BB (AKs — AKy)||
xn” Y " (Poi(By) (Pa(By,) Pa(By,)) "' Pa(By) (AK, — AKy))?
=1
n 2
< Quin(n"P2(B1) P2(B1)) & 1, <”1 > (Akg - Ak2,z‘)2>
=1
= O, (mlﬁamzmgn_l) = op(1). (SC.246)

By the the Cauchy-Schwarz inequality and Assumptlonsu -(1 v, vi) and [SC3(iv), (SC.66]),
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(SC.234) and (SC.245),

nt Z ‘pZ,i(Bk)/(pQ(Bk),PZ(Bk))_I(PZ(Bk) - PQ(ﬁk,O))AK2‘4
i—1

IA

B s (P23 P2(51) ! (PalBy) — Pa(Bio)) AKs |
x| PaBa) Pa(B) 2B () — PalBro)) AKs|| (5C.247)

& s ||P2(Br) — P2(Bro) H4 _12 e
12 (Amin (01 P2(B;,) Pa(5y)))

By the Cauchy-Schwarz inequality, Lemma [SC24(i), (SC.78)), (SC.127)) and ( m,

2
= Op(é-g,mgé-imgn_2) = Op(l)'

3| Pa (B [(Pa(Bi) PaB) ™! - <f>2m,o)'l%wk,o))*]lsawk,o)AKg]4
i=1

n . N . R ~ R . . R N ~ . . 4
= 'y )P2,i(5k)/(P2(5k)/P2(5k))_1[Pz(ﬁk)/P2(5k) - P2(Bk,O)/PQ(Bk,O)]IB(p(ﬁk,O)‘
i=1

IA

(P2(B,) P2(By) " [Pa(Br) Pa(By,) — ]-52(5k,0)lp2(5k,0)]3¢(ﬁk70)H2

5(2),7712
xn !ty ‘152,1'(Bk),(f’2(3k)/f’2(3k))_l[P2(Bk)/f’2(5k) — P2(B,0) P2(Br.0)18, (Br.0) ‘2
i=1

&8 mo Bw(ﬁk,o)Hél e e e s - 4
o Ba e Ba G | P P~ PalBra Bk
min k k

= Op(gg,mggimzn_2) = Op(l) (SC248)

<

where the second equality is by Assumptions E ISC2(vi) and |S - ISC3|(iv). By the first order expansion,

in Theorem [SB1] “ Assumption E ii) and m,
n Y (Poi(Br) = Pri(Br0)) Bo(Bro))’
i=1
= (B = Bro)'n ") _(0Pa(914(B1): Br)/0Brk) By (Bro))’
=1

Vo 444 Vo 4_ 4 -2\ __
< (B = B0 €y ||BoB0)| = OplEl man™) = 0p(1) (8C.249)

where the second equality is by Assumptions [SC2(vi) and [S - SC3|(iv). By Assumptions [SC2{(v) and
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SC3|i, iv), Lemma [SC4] (8C.62), (SC.126), and (SC.127)

nt Z(PQ,i(ﬁk,o)'(f’Z(ﬁk,o)'f’z(ﬁk,o))_lf’2(5k,0)AK2 — ;)
i1

Cn~t Z((pz,i(ﬁk,o) — P2i(B10)) Bo(Bro))*

IN

-1 Z Pyi(Bro)( (ﬁk 0) — ﬁ%mQ (Bro)))*

Cn~t Z(pQ,i(/Bk,O)/B@,mg (Bro) — ¢i)*

=1

C HBw(Bk,O)HLl &l zn:(&z — ¢3)*
i=1

IN

6B g A (07 P2(50) P (Bi)) [ B, (81.0) = Bpma0)|| + O1m3 ™)
= Op((&l mymt +m3)EG 1myn~2) = 0p(1) (SC.250)

where the second equality is by Assumptions [SC2|(vi) and [SC3(iv). Collecting the results in
(SC.24), (SC.246), (SC-247), (SC.243), (SC.249) and (SC.250), we get

Y (=)t =0, (1)
i=1

which together with Assumption [SC3{iv), (SC.240) and (SC.241)) proves the third claim of the

lemma.

(iv) By the definition of 49 ;, we can write

Qo — uzg = —loi(B) — Buo) — k2,i(Br — Bro) — (Gi(Br) — 9(1.:(Bro0); Bro))

which implies that

nilz(%’i_w’i)z; = —Bro)'n 1Zl21+C 5k—5k04n712k
=1
! Z 9(14(Br0): o))’
= On”! Z 9(W1i(Bro)i Bro))* + Op(n™2)  (SC.251)

where the equality is by Assumptions 1 iii) and [S -(1 ii), and m Using similar argu-
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ments for proving (SC.238|), we can show that

max

nas 3i(Br) — 9(v1,i(Bro); 5k,0)‘

= Op(&0mi E1mamy "0 2) 4+ Op(€omy (m2 + my ")) = 0,(1)  (SC.252)

where the second equality is by Assumption [SC2(vi). By Assumption [SC2[ii) and (SB.16]), we

)

have

max

i<n 9(vi(Br); By) — Q(Vl,i(ﬂk,o);ﬁk,o)‘ = 0, (n~Y/?)

which together with (SC.252)) shows that

n”! Z 91 (Br0): Bro))* = 0p(1). (SC.253)

The claim of the lemma follows from (SC.251f) and (SC.253]).
(v) Let BGQ = (P/P1) 1Y | Pi(z1,)ks;. By Assumptions and (ii), we can use similar
arguments for proving (SC.55)) to show

Bay = Basym = Op(my*ny M 4 mi™). (SC.254)
Therefore by the triangle inequality, Assumption E (vi) and m,

BCLQ - Ba2,m1

/2, — —Ta
= Op(ogmmy "0 + €ommi"™) = 0p(1)

max [$2; — 24| < &oma + max |ag,m, (21,:) — a2(21,)|
i<n 1<n

where the second equality is by Assumptions E vi) and [SC4} -(11 Q.E.D.

Lemma SC25. Under Assumptions[SCI, [SCZ, [SCY and [SCY, we have
(i) Tu— X = 0,(1);
(ii) Ty = T = 0p(1);
(iii) Qn — Q = 0,(1).

PrOOF OF LEMMA [SC32| (i) By Assumptions i) and [SC2(i, ii), and the Markov inequality

Tty G =T+ 0 = 0y(1) (SC.255)

=1

which together with Lemma [SC24{(iii) proves the first claim of the lemma.
(ii) Let T, = Yoy (o — liigi(v14)) s1,i + L,ig1 (V1,i)s2,4]. Then by Assumptions (ii) and
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SC2(i, ii), and the Markov inequality, we have
B[+ +<i+s,+a(m)'] <C (SC.256)

which together with Assumption [SC1|(i) and the Markov inequality implies that

n! Z [(l2i — l1ig1 (V1)) <1, + Liigr (v1i)s2,4]
i—1

= E[(loi — lig1(v14)) s + l.ig1(v10)s0i] + Op(n™/?) (SC.257)

Therefore
[, =T +o0,(1). (SC.258)

By the definition of I',, we can write

fn_fn = _lzlll glz glz)(glz glz lel glz glz S1,i
=1

n
+n~! Z(ZZ,i —11491.0)(C15 — 1) +nt Z 11,i(g1,i$2,i — §1,452,i)- (SC.259)
i=1 =1

(SC.258) and (SC.259).
(iii) Since 7y ; = M — ll,i(@g — Bio) — (¢; — &), by the Markov inequality, Assumptions (i,

iii) and [SC2|(vi), Lemma and (SC.256),

nt Z(ﬁu —ma)t < CB—Bo)'n! Z i+ rnax —¢i)’nt Z(&z -
i=1 i=1

= Op(n_2)+0p(£o,mlm%n 2): Op(€2 0, min"2) = 0,(1). (SC.260)

By Assumption [SC2(ii) and Lemma [SC24](ii)

max g ; < Cmax(ji; — g14)" + Cmaxgi; = Op(1). (SC.261)
i<n i<n i<n
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By Assumption [SCI1{(i, ii), Lemma [SC24{(ii, iv), (SC.260]) and (SC.261|), we get

nt Z(ﬁz,i — 131 — vz + mig1i)*

i=1
n
< Ot Y s )+ Ot 3 (g - m )
i=1 i=1
n
+Cmax(g1; — g14)*'n ! Z nt = op(1) (SC.262)
i<n —1 ’

which together with Assumption [SC1{(i, ii) and [SC2[(i, i), Lemma [SC24{iii), (SC.88)) and (SC.256))
implies that

n! Z (G2, — 71 :914)51,0 — (U2 — 771,1'91,7;)9,@)2 = op(1). (SC.263)
i=1
By Assumptions [SC1{(, ii, iii) and [SC4{i), and (SC.260)), we have
*1Zsu+n Zﬁi‘ﬂ- = 0,(1) (SC.264)

which combined with Lemma [SC25(ii), (SC.260]) and Assumption [SC4{(i) implies that

n

nt Y (Tutrifn; —Terma)® < O —T)? Zé‘% i
=1

+CT%n ! Z(é‘m - 51,1‘)277%,1'

i=1

+COT?n 25%,1(771,1 —m)? = op(1).  (SC.265)
i=1

By Assumptions [SC1{(i, ii) and [SC2(ii), Lemma [SC24{(ii, v) and (SC.256), we have

n
n=Y (i igiS2i — Migrise)
i=1
n
< I?g;(@ii”_l 2(771 i — M) + max 916 — gl n Z M iS5
- i=1 =1

ntY ntigt s = op(1). (SC.266)

+max [$g; —
i<n

Let Qn = n_l Z?:l ((u27i — nl,igl,i)gl,i — Fsl,i + 771,7;9171(271')2. Then by Assumptions (1) and
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SC2[(ii), and the Markov inequality
Qn = Q2+ 0,(n~Y?). (SC.267)

By the definition of Q, and Qn, the triangle inequality and the Cauchy-Schwarz inequality,
(SC.263)), (SC.265) and (SC.266)), we get

_ . A s 2
Q= Q| < COn7'> (g — 1 914)810 — (2 — M1ig1)s1)
i=1
n 9 n )
Cn~'y (Fnél,z’mﬂ' - F61,i771,z') +Cn Y (16624 — Migrisa)
i i=1
n 1/2
~ _ . A A 2
+09711/2 <n ! Z ((Uzz - 771,191,¢)<1,z' — (ug, — 771,191,1)9,@) )
i=1
n 1/2
o0l (1! St v
i=1
n 1/2
+CQ0y/? <”_1 Z(%,ifh,iiz,i - n1,ig1,¢<2,¢)2) = 0,(1)
i=1
which together with (SC.267|) proves the third claim of the Lemma. Q.E.D.

SC.5 Partially linear regression

In this subsection, we provide the preliminary estimator of Bl when 3¢ is estimated together
with ¢(-) in the partially linear regression proposed in |Olley and Pakes| (1996). Define z;; =
(I, 114, k1) and Py(Z1,) = (I, Py (:cLi)’)/. Let Bl and B%z be the first element and the last m;

elements of Bl respectively, where

B, = (PP Y(PLY))

where Py = ( 1(71,1), - -, P12y n))/ and Y1 = (yl,lw--ayl,n)/' The unknown function 4(-) is
estimated by ¢ Dl () =h ( ) 6%1
Let Q,,, = E[P1(Z1,1)P1(Z1,1)'] and hi(z1;) = E[l1,|21,:]. The following assumptions are

needed.

Assumption SC5. (i) there exist rp, > 0 and Bp, m € R™ such that sup,cy |him(z) — hi(z)| =
O(m™"r) where him (-) = P (-) Buym and n'?m™ = O(1); (ii)) 7' < Amin (@, ) uniformly

over mjq.

Assumption [SC5H|i) the unknown function hj(z1;) can be well approximated by the approxi-
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mating functions Py (21,;). Assumption [SC5(ii) imposes a uniform lower bound on the eigenvalues
of @ml' This condition implicitly imposes a identification condition on the unknown parameter
Br0- That is in Lemma [SC2§ below, we show that

1T, — ha(z13)ll, > C (SC.268)

which together with (SA.1)) implies that

E[(l1; — ha(z14))(y1: — E[y1i| ©14])]
Elll1: — h1(z1,)]?] '

We shall show below that Assumption |[SCI1{iii) holds

Bio =

(SC.269)

lii—nh i
£l = = 1) M- (SC.270)

" E[hy — bz

Let iLLi = Pi(z1,;) (PP1)P|Ly where Ly = (Iy 1, ... JLn)/. Then €1,; can be estimated by

lii— hig .
L L M. (SC.271)

~ 1
nt 3o (i — hag)?
where )y ; = y1; — ll,iBl — qAﬁ(xll) is defined in Subsection

Lemma SC26. Under Assumptions|SCI\(i, i, iv, v, vi) and we have

€1,

ﬂl Bl 0="n - Z — hl (.le ))’2] T]l,i + Op(n_1/2>~ (SC272)
- 1 1,2

PROOF OF LEMMA [SC26| First note that we can write 3, = (L) M;L;)~*(L,M;Y1). Therefore

B —Bo = (L/1M1L1)_1(L/1M1Y1 — BroL1)

— hl xl z) —
1 1
_ § 4+ O (m SC.273
|llz h1(331 l)| ]7717 p( n ) ( )

where the second equality is by Lemma |[SC30(i, ii). The claim in (SC.272)) follows by Assumption

ISC1(vi) and (SC.273]).

Lemma SC27. Under Assumption |SCI|(ii, v), we have Amax(Qpn,) < C.

PROOF OF LEMMA [SC27] Consider any b = (b1, b))’ € R™*! with v'b = 1 where by € R™. Then
V' Qb = bIE[I] ] + 20 'E [Py (21,3)l14] + V' Qb < C + 2016'E [Py (21,3)11,4] (SC.274)
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where the second inequality is by Assumption m(ii, v). Moreover by Assumption m(ii, V)

IE[Pr(21,:)1,4]

| <Elf;]<C

which together with the Cauchy-Schwarz inequality and (SC.274)) implies that b’@mlb <C.Q.E.D.

Lemma SC28. Under Assumptions|SCI|(ii, v) cmd we have |[l1; — hy(z1,)], > C7L.

ProoF oF LEMMA [SC28| By Assumption [SC5(ii), there exists a fixed m, such that

81615 |h1m(z) — hi(x)] < (20)71 (SC.275)

for any m > m.. Consider any m > m.. By the triangle inequality and (SC.275))

11 — ha(z10) g > 1l — ham ()]l — (20Y2) 71 (5C.276)

Let B . = QuiE[Pi1(x1,)l1,]. Then Py (z14) B} . is the projection of I3 ; on Pi(x1;) under the

Lo-norm. Therefore
1li = him (x1i)lly > ||l = Pr(21) Bry |, = Amin(@p, )2 = CY2

which together with (SC.276) finishes the proof. Q.E.D.

Lemma SC29. Under Assumption|SCI|(i, ii, v, vi), we have

= Op((log m1)/%€0,m,n™Y2) = 0,(1) (SC.277)

Hn_lﬁllﬁl - @ml I

and
C™' < Amin(n " PIP1) < Amax(n P, P) < C wpal. (SC.278)

PrOOF OF LEMMA [SC29] By Assumption [SCI{(i, ii, v) and the Markov inequality, we have

nT Y R —E[R] = 0p(n71?) (SC.279)
=1
and
S s~ BIPy ] = Oy, e
1=1

Let Ay, =nt Doic1 l%i, Aoy = Al21,n =n! Yoici P and Agg,, = n~ 1P} P;. Consider any
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b= (b1,bh) € R+ with b'b = 1 where by € R™.. By the Cauchy-Schwarz inequality,

/ 2
by Aiin —E[Any] Aian —E[A)] by
bo Aoin —E[A21n] Ay —E[As,] by

<C |:HA11,n — E[A110]|? + |A12,0 — E [A12,4]|]” + [|A22, — E [A22,n]H§}

which combined with (SC.46)), (SC.279) and (SC.280|) implies that

= O((log m1) "2 (€o,m, +my*)n~1/2). (SC.281)

15 -
eim -2,

By (SC.281]) and Assumption [SC1{(vi), we have

Hn—lﬁ’lﬁ = Q| = o) (SC.282)
which together with Assumption m(v) proves (SC.278|). Q.E.D.

Lemma SC30. Let M; =1, — P (P|Py)"'P}. Under Assumptions (i, ii, W, v, vi) and
we have

(i) " LAMI Ly = Bl = b (1,0) ] + Op(my/*n=1/2);

(it) n T 'LAML (Y1 — LiBio) = n =t 00 (ls — ha(21,4))m + op(n=Y2).

Proor orF LEmMA [SC30] (i) By Assumption m(ii) and Holder’s inequality,

hi(z1:) = (E[ly;

214))? <E[R, 214 < C (SC.283)
which together with Assumption [SC1|(ii) implies that
Elel ;| 21] < 2B[13;| 1] + 203 (1) < C (SC.284)

where €1, = l1; — hi(z1;). Let Bhl = (P{Py)"!P/L;y. Then

n n
Bhy = Brymy = (PP Priers + (PiPY) Y Priha(wis) — hamy (21,4))-
i=1 i=1
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Therefore by Assumptions (i, v) and [S - and ( m, we obtain

2

Hﬁhl - /Bhl mi

Zﬁuﬂ (1) ) P\Py)” <ZP1 (1) 611>

=1
n

(h1my (214) hl(xl,i))Pl(l'lz)> (PiPy)~ (Z Pi(21)(h1m, (z1,4) — hl(ﬂfl,i))>

=
(& >

2T S Pua | 2858 (g (1) — b (@1,))?
o ()\mm 1P,P1)) n)\min(nflP’lPl)

=

= Op(mint) (SC.285)

which together with Assumption |[SC5|(i) and (SC.47)) further implies that

ntY (@) — hag)? = Op(man™"). (SC.286)

By (SC.283) and (SC.256)
nt Z hi(xy;) —nt Z iL%Z
=1 =1
n~! Z(M(wu) — )
=1
n 1/2 n 1/2
+ (nl Z%(m,ﬁ) (nl 3 (1) - hl,i)2> = 0,(m}/*n~1/2), (SC.287)
=1 i=1

Therefore by the Markov inequality, Assumption [SC1{i, ii), (SC.283|) and (SC.287))

nilLllMlLl (E[1} ;] — E[h1(z14)?])
= 71 Z l -1 Z hl :111 ’L il%ﬂ)
=1

—n~! Z(hl(l“l,i)Q —E[hi(z14)?]) = Op(m}/2n_1/2). (SC.288)
i1

Since E[|l1; — hi(x1.4)[*] = E[h1(21,)?], the first claim of the lemma follows from (SC.288).
(ii) Since Y1 — L1830 = ¢ + m; where ¢ = (¢1,...,¢n) and 0y = (911, ..., m1,n), we can write

n LM (Y1 — LiBo) = n 'LiMyp+n LM 0y, (SC.289)

Let ¢,,, = (ém,(21,1),---,0mi(z10)). Then ¢, = P18y, and MiP; = 0. Therefore by
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Assumption [SCI|(iv, vi) and
n Mg =n"" (¢ — ¢, )’ Mi(p — ) <07} Z(¢($1,i) — ¢my (114))* =O(n"). (SC.290)
i=1

Let hy = (h1(21,1),-..,h1(x1,,))". Then by the similar arguments of showing (SC.290]), we get

n~'ThiMih; = O(n™"). (SC.291)

By Assumption [SC1(i), (SC.284) and (SC.290)

_ 2 n _ n _ _
E[|lneiMig| ‘ {o1aViy| = n 2¢/MIE [er€]] {21} M1 < Cn2¢/Mygp = O(n?)
which together with the Markov inequality implies that
nteiMigp = Op(n ). (SC.292)

Similarly, we can show that
n~'hiMin, = O,(n ). (SC.293)

Collecting the results in (SC.289)), (SC.290)), (SC.291)), (SC.292) and (SC.293)), we obtain

n LM (Y1 — LiBo) = n” teiMin, + Op(n™1). (SC.294)

Since n= Y"1 | Prier; = Op(m}/anl/z) and n= Y0 Py = Op(m}/anl/Q) by Assumption
SC1|(i, ii), (SC.284) and the Markov inequality, we can use (SC.47) to deduce that

n e P1(PiP1) 1P im = Op(min™t)
which together with (SC.294)) proves the second claim of the lemma. Q.E.D.

SC.6 Preliminary results

Lemma SC31 (Matrix Bernstein). Consider a finite sequence {d;} of independent, random ma-

trices with dimension mi X mo. Assume that

Eld] =0 and |difg <&
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where & is a finite constant. Introduce the random matriz Dy, = > " | d;. Compute the variance

; _max{ 4 }

2

parameter

Then for any t >0

The proof of the above lemma can be found in Tropp, (2012).

Lemma SC32. Let Sg z(/Bk) = PQ 1(ﬁk)f~)2 Z(/Bk)/ where ]321' (/Bk) = pg(l/lﬂ'(ﬁk), Bk) fOT any ,Bk S @k-
Then under Assumptions[SC1|(i) and [SCY(iv, v, vi), we have

sup
BrEO

= Op((log(n))"*€o,myn™"/?).
S

n -1 ZSQZ Bk S2 z(ﬁk)]

PrRoOOF OF LEMMA [SC32| For any (i € O, by the triangle inequality and Assumptions [SC2(iv,

V),

152,i(Br) —E [S2,i(Br)]llg < 1152, (Br)llg + 1B [S2,i (Bl g < CEF - (5C.295)

By Assumptions E SCIf(i) and [SC2 - iv, v),

n (|[E [(S2:(86)7] | + | [S2:(B))? || 5) < CEG -
(SC.296)

ZE [(Sz,i(ﬂk) —-E [SQ,i(/Bk)Dz}

S

Therefore we can use Lemma to deduce that

( > t) < 2mg exp (_17?752/2> (SC.297)
S

! E S i /3 S i I6;
2 F 2 ( k)] Cfg,mg(l +t/3)
for any B € O and any ¢ > 0.

Since ki ; has bounded support, there exists a finite constant Cj such that |k; ;| < C}, for any
i. Consider any Sy 1, B2 € O and any b € R™? with ||b]| = 1. By the triangle inequality,

152,i(Br,1) — S2,i(Br2)llg < HSZi(Bk,l)_pZ,i(Bk,Z)pQ,i(/Bk,l)/HS

+ HpQ,i(/Bk,2)p2,i(/3k,1)/ - S2,i(/3k,2)HS . (SC.298)
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By the mean value expansion and the Cauchy-Schwarz inequality, and Assumption [SC2(v)
- - N - 2
‘b/(P2,i(5k,1)P2,i(5k,1)/ - P2,i(ﬁk,2)P2,i(5k,1)/)‘
. 2 _ N 2
HPQ,i(/Bk,I)H ‘bI(PQ,i(,Bk,l) - P2,z‘(5k,2))‘
~ 2 o - - 2 9
= HPQ,i(/BkJ)H ‘b 0P, <V1,i(5k,12);5k,12> /3@@‘ (Br,1 — Br,2)
< 11 €8 1y 3 s (Bt — Bre2)?

where f3 k12 lies between B 1 and B 2, which together with Assumption vi) implies that

HSQ,z‘(ﬁk,l) - PQ,i(BkQ)PQ,i(/Bk,l)/HS < Cm3 | By — (5C.299)

The same upper bound can be established for the second term in the right hand side of the
inequality of (SC.298)). Therefore,

1192, (Br,1) — S2,i(Br2)llg < Cm3 (B2 — Brnl - (SC.300)

Similarly, we can show that

IE [S2,i (Br,1)] — E[S2,i(Br2)]llg < Cm3 B2 — Bral - (SC.301)

Combining the results in (SC.300)) and (SC.301)), and applying the triangle inequality, we get

< Csm3 |Bra — Br.il (SC.302)
S

H n Y (S2,i(Be1) — E[S2,i(Brk1)])
—n Y (S2,i(Br2) — E[S2,i(Br,2)])

where C's is a finite fixed constant. Since the parameter space Oy, is compact, there exist {55 (1) }1=1,...x

such that for any 8y € Oy

min [ — Br()] < (Csmin'/?)~! (SC.303)

where K,, < 2Csm3n'/2. For any B € Oy, by (SC.302) and (SC.303))

§ max
7 ’KTL
S

_1 2521 5]6 SQ z(ﬁk)]

12522 Be(l) E[SZ,i</3k(l))]H +n 12
T (sC.304)
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Therefore for any B > 1,

12522 Br) — E[S2,:(Br)]

B(&} n, log(n)n )"/ 2)

sup
BrEO

§]P’< max

-----

S

-1 Z So.i(Br(l)) — E[S2:(Br(l))]

> (B = 1)(&m, log(n)n1)1/2>

S

< ijP < > (B = 1)(&3 1, log(n)n™ )"/ 2)
=1

B log(n)
< 2K, —-— SC.305
>~ mo exXp < C 1 + (587”@2 log(n)n1)1/2> ( )

nt Zl So,i(Br(l)) — E[S2,:(Br(1))]

S

where the last inequality is by (SC.297). The claim of the theorem follows from (SC.305) and
Assumption [SC2(vi). Q.E.D.

Lemma SC33. Let u2i(8k) = y3,; — k2iBk — 9(v1,:(Bk), Bk). Then under Assumptions and

( 5/4 —1/2)

my n

n~! Z Py i (Br)uz,i(Br)

i=1

sup
BrEOk

PROOF OF LEMMA Define m,(8) = n~1/? Py Pg’i(ﬁk)um(ﬁk). For any B, € O, by

Assumptlonui and m,
E [ (u2,i(8))*| v1,:(Br)] < CE [(y3:)* + k3| v1.:(Bk)] + C lg(vri(Be): Bu)|* < C. (SC.306)

For any B 1, Bk2 € Ok, by the i.i.d. assumption and the Cauchy-Schwarz inequality

E [lma(8k1) = mn(Br2) 7]
=E [sz,i(ﬁk,l)uz,i(ﬁm) - p?,i(ﬁk,2)u2,i(ﬁk,2)H2:|

~ ~ 2
<2E [(uzi(ﬁk,z))z HPQ,i(/Bk,l) — P2,i(/8k,2)H }
28 | )| 51 — a2 (5307

Consider any b € R™2. By the mean value expansion and Assumption [SC2(v)

/(D D 2 2~Y5 P 2 2 2 42 2
U (Poi(Br1) = PoilBe2))| = [VOPoi (Briz) /05| (Bra = Bk2)? < DI €y (B — B2)
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where B k12 lies between Sy 1 and By 2, which implies that

Hf)Q,i(ﬁk,l) - 152,i(5k,2)H2 <& s (B — Br2)”. (SC.308)

Therefore, by (SC.306) and (SC.308|),

. . 2
B | (024 5u))? |PastBrn) = Pra(Bra)|*| < Oyl — B (5C.309)
By the definition of ug;(S), we can write

w1 (Br2) — v1,i(Br,1) = 9(V1,i(Br1)s Br,) — 9(v1,i(Br2), Br,2) + k2,i(Br,2 — Br,1)-

Therefore by Assumption M(i, ii, iv), we have
N 2
E [szi(ﬁk,l)H (u1,i(Br2) — u1,i(Be1))*| < Cma(Bra — Bra)? (SC.310)

which together with Assumption [SC2|(vi), (SC.307) and (SC.309) implies that

17n(Bea) — T (Be2)lllly < Cm3 Bz — Bral (SC.311)

for any B 1, Bk,2 € O.
We next use the chaining technique to prove the theorem. The proof follows similar arguments

for proving Theorem 2.2.4 invan der Vaart and Wellner| (1996). Construct nested sets ©,1 C 2 C
-+ C O such that ©y ; is a maximal set of points in the sense that for every S ;, 51/”' € O
there is )ﬁk,j - Bl/ﬁj

than C27. Link every point Br,j+1 € Ok j+1 to a unique f ; € O ; such that |By j11 — Bk ;| < 277,

> 277, Since O} is a compact set, the number of the points in Op,; is less

Let J, = min{j : 277 < Cmy 3/ 2}. Consider any positive integer J > J,,. Obtain for every Si 11
a chain B j41,...,B%,, that connects it to a point 8 5, in ©y ;. For arbitrary points S j11,
B y41 in O, 741, by the triangle inequality

|70 (Br,s 1) = Tn(Br,a) — [Tn(Brg1) — 7 (B, s )] ||

J J
=1 >° ma(Brjt) = maBrs)] = D [a(Brja1) = malBry)]
i=Tn =
J
<2 " max |[mn (Brj41) — Tn(Bry) (SC.312)
i=Jn

where for fixed j the maximum is taken over all links (8 jy1,0k,;) from Oy ;11 to O ;. Thus
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the jth maximum is taken over at most C2/*! many links. By Assumption [SC2|(vi), (SC.311]),
(SC.312)), the triangle inequality and the finite maximum inequality,

Hmax H7Tn(5k,J+1) - Wn(ﬁk,Jn) - [Wn(ﬁl:;,JH) - W”(ﬁ”i‘,Jn)] H H2

J
<2 Z [max |7 (Br,j+1) — mn(Br,g) 5

Jj=Jn
J . 0 .
<C 3" 292 max||[fmn (B 1) — n(Brlll, < Om3 Y 2792 < Om3/* (SC.313)
j=Jn j=Jn

where (3, j, and ﬁfﬁ 7, are the endpoints of the chains starting at S, s4+1 and ﬁfﬁ 741 respectively.

Since the set Oy ;, has at most Cmg/ 2 many elements, by the finite maximum inequality, the

triangle inequality, (SC.306)) and Assumption [SC2{(iv)

a7 (81,1, = 70 (B 1), < Oy mae 1 (B ), < Cm5"™. (SC.314)
Therefore, by the triangle inequality, (SC.313|) and (SC.314)),

(|[max || (Br,11) = 7 (Br g0 |l

< ||max || 7 (Br,s41) — Tn(Brogn) — [0 (Brsi1) — Tn(Br.s,)] HHQ

+ [|max | (Br, ) = 7n (B s I, < O™, (SC.315)
Let J go to infinity, by (SC.315|) we deduce that
sup H7rn(6k) - Wn(ﬁ]/c)H < C’mg/4. (SC.316)
By (SC.314)), (SC.316) and the triangle inequality,
sup (|7 (Be)|| < || sup 7 (Bk) — m(Bro)ll|| + lllma(Bro)lly, < Cmy' (SC.317)
BrEOBK 9 BrEO 9
which finishes the proof. Q.E.D.

Lemma SC34. Under Assumptions and [SCY(ii, iii, v, vi), we have

sup = Op(mg/2n_1/2).

n
—1 15
n ug,ik1,:0" Pai(Br)
BrEO Z

=1

PrROOF OF LEMMA [SC34| Define m,(8;) = n~1/2 Yoy uzyikualﬁ’g,i(ﬁk) for any B € ©;. By
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Assumptions [SC1f(i) and Assumption [SC2(v, vi), and (SC.88)

sup || [ma(Bo)lllly < C&1m, < Cmi (SC.318)

Br€Ok

Moreover for any [ 1 and B2, we can use similar arguments in showing (SC.309)) to obtain

1170 (Br,1) = Tn(Be2)lllly < C&Lmy 1Bkt — Br2l < Cm3 |Bra — Brol (SC.319)

Consider the same nested sets ©; (j = 1,2,...) constructed in the proof of lemma [SC34} Let
Jo =min{j : 277 < Cmy 11, Then for any positive integer J > .J,, using the similar arguments in
the proof of Lemma we obtain

e |7 (Br,s41) = 70 (Br,0a) = [T (B gi1) = Tn(Brs )] [l < md D 27972 < Cm3?
<
! (SC.320)

where S, s, and f}, j, are the endpoints of the chains starting at Sy j1 and By y41 respectively.

Since the set O, has at most C'mgy many elements, by the finite maximum inequality, the triangle

inequality and (SC.318)
/ 1/2 5/2
e B 0) = a8l < COm s Wa(Bo < O™ (SC.321)
k k

Then the claim of the lemma follows by applying the chaining arguments in the proof of Lemma

Q.E.D.
Lemma SC35. Under Assumptions and [SCA(ii, iii, v, vi), we have

n Y ug,;0" Poi(Br) Pi(1)

=1

sup
BrE€OK

- O )

PROOF OF LEMMA [SC35| Define m,(8x) = n-1/2 S uz,ialpg,i(ﬁk)Pl(xu)’ for any 8 € ©. By
Assumptions m(l) and Assumption m(v, vi), and (SC.88))

sup 17 () |lly < C&Lmymy’? < Omy"*m3. (SC.322)

BrEOL

Moreover for any [ 1 and B2, we can use similar arguments in showing (SC.309)) to obtain

7 (Brt) = Ta(Bro)llly < Cmt/?*m3 |1 — Bral - (SC.323)

Consider the same nested sets Oy ; (j = 1,2,...) constructed in the proof of lemma [SC34} Let
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Jn =min{j: 277 < Cmjy 11, Then for any positive integer J > J,, using the similar arguments in
the proof of Lemma, we obtain

[masc || (Brss1) — Ta(Bros) — [mn(Bhssr) — maBhs)] ||, < Cmy/*m3/ (SC.324)

where Sy s, and f, 7, are the endpoints of the chains starting at Sy j1 and B 41 respectively.

Since the set Oy, has at most C'mgy many elements, by the finite maximum inequality, the triangle

inequality and (SC.322))

e 17 (Br.,) = a (B s, < Om’ sup lima(B)lll, < Omy*m3. (5C.325)
k k

Then the claim of the lemma follows by applying the chaining arguments in the proof of Lemma

5T33 Q.E.D.

Lemma SC36. Under Assumptions and [SCA(ii, iii, v, vi), we have

= Op(mg/2”_1)-

sup
Br€EOk

nY g (G, (w14) — d(21,1))0" Pai(Br)
i=1

PROOF OF LEMMA |[SC36| Define 7, (8x) = n=1/2 Yo u2i(Pmy (215) — qﬁ(xlyi))alpm(ﬁk) for any
Br € Ok. By Assumptions i) and Assumption iii, v, vi), and (SC.88)

sup ||| (Be)lllly < Céumyn/? < Cmin /2. (SC.326)

Br €O

Moreover for any [ 1 and 32, we can use similar arguments in showing (SC.309)) to obtain

170 (Br,1) = Tn(Br2)lllly < Cmdn= 2By — Bral - (5C.327)

Consider the same nested sets O ; (j = 1,2,...) constructed in the proof of lemma [SC34} Let
Jn, =min{j : 277 < Cm5"'}. Then for any positive integer J > .J,, using the similar arguments in
the proof of Lemma [SC33] we obtain

[max || (Bk,s11) = T(Brg) = [T (Bsir) — Tu(Brs)|l]], < Cmy/*n=22 (SC.328)

where (3, j, and 527 7, are the endpoints of the chains starting at S s4+1 and 527 741 respectively.

Since the set Oy, 7, has at most C'my many elements, by the finite maximum inequality, the triangle

inequality and (SC.326))

max || (Be.) — (B )|, < Ot/ sup [lma(Bll; < Cmy*nV2 (SC.329)
k k
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Then the claim of the lemma follows by applying the chaining arguments in the proof of Lemma

5T33) Q.E.D.
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