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QUESTION

» Risk sharing with limited commitment

» Optimal insurance contract against idiosyncratic shock subject to
limited enforcement

» Seminal work : Kocherlakota (1996), Kehoe & Levine (1993, 2001),
Alvarez & Jermann (2000)

» Application : village insurance, consumption inequality, sovereign

debt contract
» Typical assumption : individual deviation & no saving technology
» Exceptions :

» Krueger and Uhlig (2006) : savings via financial intermediaries

» Genicot and Ray (2003) : group deviations



QUESTIONS

> Question: How does does the possibility of group deviations affect
risk sharing? Does the ability to save interact with this possibility?

» We examine effects of social efficiency and financial efficiency with

group deviations.
» Related work: Genicot and Ray (2003, Restud)

» Consider impact of group size with sub-group deviations
» Assume deviating coalition come only from original group.
» Assume no savings

> Look only at Markov arrangements.

» Kreuger and Uhlig : special case of our analysis



SOCIAL EFFICIENCY AND SAVING EFFICIENCY

Groups of Individuals form Coalitions to insure against risk.
[Social Efficiency]
» There can be barriers to formation.
» Social Efficiency = probability of successfully forming coalition
» Social efficiency 7= Easier to form a coliation
» Social efficiency 1= Easier to form an alternative coalition too
» How does greater social efficiency affect outcomes?
[Savings Efficiency]
» Societies can use storage to bond the coalition.
» But alternative coalition can also use storage
» Savings Efficiency = return to storage

» How does greater savings efficiency affect outcomes?
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PREVIEW OF RESULTS

Efficient risk-sharing allocation can be characterized by

» consumption floors
» decay rates

» public saving
Social efficiency(r) 1= (Ex ante) Risk sharing ~ (hump shape)

risk sharing| (at low R)
Savings efficiency(R) 1=

risk-sharing? (at high R)

Interaction between 7 and R :

» substitues when the social efficiency(w) is very low

» complements at higher level of social efficency ().



EcoNnoMmy

Classic Insurance Economy

» Risk averse individuals subject to income risk.

E {Z u(ct)} u is CRRA; v
t=1

yt €Y ={y1,...,yn} i.i.d. across time and people

» Population is infinite.
» Period 0 is planning/coalition

» Income begins in period 1.



INSURANCE COALITIONS

» Coalition formation (Initial and Deviating) :
» Initial coalition : formed with probability =
» Deviating Colition:

> Can exit from old colation to form new one with probability .

> Can include in new coalition people not in original one.

» If (initial or deviating) coalition does not form then stuck in au-

tarky forever.
» Saving (storage):

> Gross interest rate of saving: R € [0,37"].
» Saving can be done both on own or within group.

» If by person, can take it when leave. By coalition cannot.



OPTIMAL ALLOCATION OF COALITION

» Optimal allocation solves the social planning problem.

» Maximize (utilitarian) social welfare of the coalition subject to RC
and PC
» Allocation of deviating coalition also solves the social planning

problem.

» Individual weights in the planing problem :

» Initial coalition : Ex ante identical = equal weight
» Deviating coalition : equal weight

> In first period of deviating : cannot exit or undo.

» From the second period : identical



PLAN OF TALK

. Basics of Coalition and Storage Usage

» size of coalition, usage of storage

. First Best Analysis

. Optimal Coalition allocation characterization
. Effects of m and R

> Is higher 7 good?
> Is higher R good?

» Are 7 and R substitutes or complements ?

10 /47



BASICS OF ALLOCATIONS

Coalition outcome is {ci (yN’t) ) Si (yN’t) , S (yN’t)}

» N is the number of members

» y™! is the history of the vector of income realizations
» ¢; and s; are the consumption and savings of 4

» S; are the coalition level savings.



Basics orF COALITIONS

ProprosIiTION

Infinite coalitions (i.e. N = oo) are always optimal.
= No aggregate risk

ProprosITION

Breakaway Coalitions will be homogeneous w.r.t. initial income.

= Deviating coalitions start with y - homogenous initial income.



BASICS OF STORAGE

» Individual level storage? No.

ProprosiTIiON

Storage within a coalition will only take place at level of the coalition
(i.e. s; (yN') =0)

= Coalition outcome is {c (y'),S;}
» Storage never be used in any complete efficient arrangement.
W (E{Y}) <BRU(E{Y}).
> Storage will not be used in autarky storage if

v (max{y € Y}) > BRE{u (v;)}, (N ST AUT)



FirsT BEST

ASSUMPTION
Assume for now condition (N ST AUT) holds.

= No storage in autarky

= Autarky payoff:
VAy) = u(y) + VA, where VA = E {u(y:)} /(1= B)

» First Best Ex Ante payoff:
7V + (1 —m) VA, where V =u(E{Y})/(1 - 8). (V FB)
» Payoff from deviating :

u(y) + B [7V + (1 — m)V4].



FirsT BEST

For FB to be feasible,

w(B{YY) |

Blru(E{y}) + (1 —m)E{uly)}]
1-8 —

1-p

u(y) + (FB fes)

When FB is possible at 7 = 0,
» Payoff conditional on initial coalition formation is weakly declining
in 7.
» Ex ante payoff is

» strictly increasing in 7 at least up until FB is feasible

» may or may not be increasing thereafter.



FirsT BEST

» Effets of Storage:

» Increasing R up until 37* no direct impact on FB (not used).

» But it will raise V*(y). The FB can break down at lower 7.

PROPOSITION
If FB possible with R = 0, then increasing R is always weakly bad.If
the cut-off level of m at which storage breaks down is interior, i.e.

wEA{Y})
1-p

pu(E{Y})

=5 + (1 = m)VA(y; R) for m € (0,1),

= |u(y) +

this cut-off is strictly decreasing in R when (N ST AUT) does not

hold and storage is used in autarky.



1. Consider outcomes when R = 0, and storage is never used.

CHARACTERIZATION OF ALLOCATION:

ROADMAP

1.1 Develop approximation to optimal arrangement

1.2 Characterize how outcomes depend upon 7.

2. Consider outcomes when R is big enough so always used.

3.

2.1 Show approximiation is exact here.

2.2 Characterize how outcomes depend upon R and 7.

Consider outcomes when R may be used but not always.

3.1 Especially possible in deviating coalitions.
3.2 Also possible if storage starts to be used in transition.

3.3 Extend approximation algorithm and characterize.



1. R=0: COALITION PROBLEM

subject to

ﬁtU(Ci(yt))JrE{ > 6’“U(C(y”))lyt}

n=t+1
> Buly(y") + B [7V + (1 —mVA

for all y*,



1. R=0: COALITION PROBLEM

ProprosIiTION

> The optimal continuation payoff Ve V = [VA u(E{Y})/(1 - B)].

» The operator F : V x [0,1] — V. defines the unique conditional
payoff to our contracting problem, conditional the value of V in
constraint (1).

> F is continuous and decreasing in V and 7

» The optimum V* is a fized point of F, or

V= F(V*, 7).



1. R =0: CHARACTERIZING LAGRANGIAN

s 1+ Z Wn, (?/‘@/t))] u(e(y'))
L = max min Z ik Z n=l

{et} {wt”Yt}t 1 =wq (y*)

+7 [Y — cff]

Pr(y")

_EZﬁtZwt ) {ulyely’) + B [xV + (1 = m)V*]},

The f.o.c. for consumption :

wy(y)u' (ee(y")) = v,




1. R=0: CHARACTERIZING LAGRANGIAN

Since utility is CRRA with coefficient of risk aversion ~:

ety = (2 )/ @)

wy(y")

Resource constraint :
Y:th(yt)Pr = 1/721” )7 Pr(y).
yt

= Shadow price of consumption:

_ Y
TS, ey Pyt

= growth rate of shadow price :
¥
T _ > we(y') T Pr(y’) _p
Veer | Dy wea (Y)Y Pr(yt?) '

-




1. R=0: OPTIMAL ALLOCATION

» If the participation constraint does not bind,

S w1 (g1 Y Pr(yY) caly'™)

a(y’) = 1y’ =
) S, w1 i) =",

PROPOSITION

The efficient consumption allocation is determined by a sequence of
consumption floors, {¢;(y1),...,ct(yn)}, and decay rates, {g:}, where
ce—1(y" 1) /g if comr(y' 1)/ 90 > ()

Ct (yt) O0.W.

Ct(yt) =

ASSUMPTION

Consumption allocation eventually becomes stationary, then

¢(yi) — c(y:) and gy — g.



2. ADDING STORAGE

» Autarky value with storage:

VA(y; R) = maxu(c;) + E {Z Bt_lu(ct)} subject to

t=2

Yr + Rsi_1 = s + ¢4

with

y1 =19, So=0, and s; > 0 for all ¢t > 1.

» The outside option payoff :

7V (y) + (1 —mVA(y).

= depends upon y through both Autarky and the deviatign coalition



2. ADDING STORAGE

» resource constraint :
Z ct(y)Pr(y') =Y + RS;_1 — Sy,
yt

So=0, St >0forallt>1.
» f.o.c. for S; :

—Bty, + BtHR%H <0and = if §; > 0.

1
:>g3+1=7;“ < — and = if §; > 0.
t

< 3R

» Implication:
PROPOSITION

Storage is used in the mechanism iff it can help to smooth the shadow

price of consumption to planner.

—> Bonding may be an indirect benefit (not the primary motivation).



2. ADDING STORAGE : CHARACTERIZATION

» Characterization of optimal coalition allocation

» No storage case:

» characterized by consumption floors and decay rates
» The outside options pin down consumption floors

> The resource constraint pin down the decay rates

» Storage case:

» characterized by consumption floors, decay rates, and savings
> (time invariant) g is pinned down by the Euler equation

» The resource constraint pin down the saving

PROPOSITION
The ergodic ladder is the same as that of the optimal mechanism for

any deviating coalition.



TwO-STATE CASE - NO STORAGE

» Assumption: y € {y;, y,} with prob(y;) = prob(yn)=4%
» Characterization of ergodic allocation:

» Binding consumption levels : ¢, ¢

yn > cn 2 Y > ¢ >y, where Y = .5(yn +u1)

» decay rate in the ergodic ladder : g > 1

» Number of steps in the ladder between ¢, and ¢
T =argmax{t=1,..,00:¢,/9" " >¢}.
» If g > 1, then T" < oco. If perfect insurance is possible g = 1,
T=o00,and ¢, = ¢, =Y.

» This defines a consumption ladder with T' steps

{ch,ch/g,ch/g2, .‘.,ch/gT_l,cl} .



TwO-STATE CASE - NO STORAGE

» How to determine ergodic ¢y, ¢;, and g ?

> c¢n, ¢, and g should satisfy the resource constraint and participation

constraints.

» Resource constraint w.r.t. ¢, ¢;, and g :

» The ergodic distribution on the T ladder steps :

Pr(en/g'™) = <%)t
o < -

t=1

» Thus, RC should satisfy:

i (%)tch/gt_l + (;)Tq —v. 3)



TwO-STATE CASE - NO STORAGE

» Participation constraints w.r.t. ¢y, ¢;, and g :

» Determine the payoff conditional on the current consumption level:

solving the following system of recursive equations.
Vi = ulen/g )+ 5% [Vig1 4+ Va] forall j < T +1
Vigr = ula)+ 3% Ve + V).
» PC for the high type:
Vi(en,cig) = ulyn) + B [7V + (1 = mVv"]
» PC for the low type :

Vesa(ensei,g) = uly) + 8 |7V + (1 = V"]

= PC’s depend on endogenous V (payoff of coalition).

But how can we determine V7



TwO-STATE CASE - NO STORAGE

» Issues in determining V' :

» In the transition: time-varying : cx(t) and g

» Why? g g, as weight of ladder promises press on RC.
» Remark: ¢; is always a constant.

» The conditional payoff at the bottom :
1
Ve = u(e) + 55 Ve + V],

» Vi and V4 are pinned down by constant outside option.
= To determine V, we need to solve for {c,(t), g: }+>0 and ¢;.

» Approximation of V: approximate time varying {c(t), g: }¢>o0



TwO-STATE CASE - NO STORAGE

APPROXIMATION

» Assumption : As soon as get y; start on ergodic ladder c;,.

» For 1 <t<T -1, {y,y,.} type gets residual to satisfy RC:

1
C1 = 2|:Y—§Ch:|
=R
ot
e = 2 [Y—2J§_O<2g> ch:|,for1<t<T—1

» In period T', everyone is on ergodic ladder ({y:, yi,... } type hits ¢;.).
— Approximated allocation is characterized by ergodic ¢, ¢;, and g.

» Allocation not optimal to the extent that decay rate of {y;, 4.}
type not g.

» Can show decay rate becomes the same if T is large.



TwO-STATE CASE - NO STORAGE

APPROXIMATION

» How to determine approximately optimal ergodic ¢, ¢;, and g 7
> c¢n, ¢, and g should satisfy two PC’s, and the RC.
» RC: ergodic RC (3)
> (Note): By construction, the RC for t =1,--- ,T — 1 are satisfied.
» PC:

> Under the approximation assumption :
_ T o/1N\T . L T+
Vien,c,9) =Y (5) g i+ u(Cj)]-i-(i) B [Vi+ Vi)
j=1
» = PC’s w.r.t. ergodic ¢, ¢, and g :
Vi(en,ci, g) = u(yn) + 8 [7V(en,c1,9) + (1 = MV

Vrgi(en, e, g) = u(y) + 8 [WV(ch,cl,g) +(1- W)VA]



TwO-STATE CASE WITH STORAGE

We now consider the case where storage is always used.

[Payoff of initial coalition]

» How to determine ergodic ¢y, ¢, g, and S 7

» Storage fixes the decay rate to g = (/BR)_%

» Now outside options + res. const. determine cp, ¢; and ergodic S.

» How to determine initial ¢; and {S;}?

» FErgodic distribution of consumption in 7" steps so St = S ergodic.

» First period consumption of y;, ¢1 is determined by Sr(c1) = S.

t

ch 1 c1
St = 1—22]9]71 — gmaX{F,Cl} +RS,§_1 for t = 1,T

j=1

» ¢, (t) and g(t) are constant in the optimal mechanism. Thus, this

algorithm is exact. (No approximation)



TwO-STATE CASE WITH STORAGE

[Payoff of deviating coalition with yp]

» Consumption distribution over time:

>

>

v

>

t=1: ¢ =y, —s¢, for all HH
t=2: cl/g, for all HH

t=T(c}): cil/gT(ct{l)_l7 for all HH
t="T(ct) +1: {cn, c‘f/gT(C?)} with prob {1, 1

d
t=T(c))+T(cn): {cn,cn/g, -+ cn/g" W " max{c]/g" DT =1 o}
with prob {%, 2%, e 2T(+h>7 2T(+h)}

t > T(cf) + T(cn) + 1: ergodic distribution

» Sd(cd) =S at t =T(c}) + T(cy) + 1 pins down cf

» We can deduce the value of outside option V}, .



TwO-STATE CASE WITH STORAGE

Payoff of deviaiton coalition with y; similar to before

» Lowest possible income so no storage in period 1, ¢; = y;.

» Afterwards follow original optimal mechanism.

» So Vi = u(y) + BV =u(y) + B[rV + (1 — 7)VA] optimal coalition
payof.

Constant g(t) and cp,(t) are optimal in the deviating coalition. Thus,

this algorithm is exact for the payoff of deviation coalition also.



TwO-STATE CASE WITH STORAGE

Now two-dimensional fixed point to determine allocation
» Given outside values V}, and Vj, solve for ¢; and ¢; which deter-
mines S.
» Solve for V implied by this ladder, which determines V; = u(y;) +
BIrV + (1 — 7)V4] and iterate until convergence of V.

» Solve for V};, implied by this ladder and iterate until convergence

of Vh.



TwO-STATE CASE W. TEMPORARY STORAGE

Storage may be used but not always. We extend the approximation

algorithm.

» Deviating coalition with y; will go to same ergodic ladder.

» So if no storage erodically in optimal mechanism no long run stor-
age for them either.

> But will store temporarily if
W' (yn) < BRY (c1).

» Decay rate g; of consumption for {y;, yi,...} in approximately op-
timal allocation increase with ¢.
» Never used in the optimal mechanism if not used ergodically.

» If used ergodically, it may start to be used in the transition.



Two-STATE CASE W. TEMPORARY STORAGE
For deviating coalition, add simple savings dimension to no storage
approximation if not used on ergodic ladder.

» Treat ¢’s as transfers and allocation problem:

T(cn) t—1 ) 1 j 1 t—1
max u(cd)+ Z gt u(en/g' ' + 74 ) (> + uler + 7¢) <)
('17{ } S 2 2

t=2 j=1

oo T(Ch) 1 7 1 T(Ch)
t—1 i
+ >, B Z w(en/g” ™ + 7o) <2> +ulcr +7¢) (2)
t=T(cp)+1 j=1
T(cn) 1\
) ()

T(Ch)

1 1\’ 1\ 7en)
+ Z R-T ZTt,j<2) +Tt<2> =1y, and 7 > 0.

t=T(cn)+1 =1



TwO-STATE CASE W. TEMPORARY STORAGE

For the optimal mechanism which uses storage ergodically but not

initially, we apply the no storage approximation for initial k£ peirods.

»

>

Ergodic storage fixes the ergodic decay rate to g = (BR)fl.

Outside options + res. const. determine ergodic ¢y, ¢; and S.
For initial £ — 1 periods where storage is not used, we apply the
no storage approximation.

» As soon as get y, start on ergodic ladder cy,.

» {yi,y1,...} type just gets residual from the resource constraint: {ct}fz_ll
Once storage is used, decay rate is constant g, = (8R) ™. Period-k
consumption of y;, ¢} is determined by RC and need to hit S at
T-1.

Determine k by increasing k until it satisfies St—1(ck) < S. (cg:

residual consumption) 3847



QUANTITATIVE ANALYSIS

We take the two-state numerical example with :
>y =2,y =1
» 3=0.9
» y=1
» R =0 (no storage) and R € [1.01,1.10] (temporary and always)

(Note: SR < 1)

We first present the result for R = 0 (no storage). Then, we will

present the result for storage case.



QUANTITATIVE ANALYSIS (R = 0)

No storage case. Effects of increasing w :

Payoff (conditional on coalition formation) vs. Pi
T T T T T

Optimal
Approximation b
I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Top and Bottom Consumptions vs. Pi
T T T T T T T g
Optimal ch —

Optimal cl
Appr ch
Appr cl I I L s

0.1 0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
decayrate(g) vs. Pi
T T T

1 ! L

0.1 0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Step Number(T) vs. Pi
T T T

0.1 0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
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QUANTITATIVE ANALYSIS (R = 0)

» Risk-sharing is declining in 7.

» Payoff conditional on coalition formation weakly decreasing in .

» Consumption dispersion increases with .

» Decay rate of consumption weakly increasing in w. Hence growth
rate of shadow cost of consumption weakly increasing in 7.

» Number of steps from in ladder is weakly decreasing in 7.
» Risk sharing can happen even with 7 = 1.
» Comparing y;, followed by cj, or ¢1 vs. ¢p, followed by cp,/g.

» The approximation error is very small.



QUANTITATIVE ANALYSIS (R > 0): PAYOFF

Payoff (successful coalition) vs.

T

a1

—R=101
—R=103

R=1.05 |1
—R=107
—R=109

0 [ [i%) 03 04 05

[

o7

08

09

» Effects of increasing 7

1

Ex ante payoffvs. «

» Payoff conditional on coalition formation is weakly declining in .

» Ex ante payoff (7V (7) + (1 — 7)EV*) has hump shape in 7 when

R is low. It is increasing in m when R is high.

V(m)l: =)

(m1:+



QUANTITATIVE ANALYSIS (R > 0): PAYOFF

Payoff (successful coalition) vs. R
T T T T T T

/
-
385 —
_

_— —x=0
38 _— ——x=03
— =06

—m=1

275 L L L L L L L L
101 102 103 104 105 106 107 108 109 11 111

Effects of increasing R
» For low R, storage is only used in outside values, thus increasing
R is bad. Once initial coalition uses storage, increasing R is good.
» For high 7, initial coalition is more likely to use storage at lower

R. Thus, the turning point R (— — +) is decreasing in 7



QUANTITATIVE ANALYSIS (R > 0): STORAGE

Storage ( Original and Deviating Coalition)

St>0, forall t

Sf>0, forall t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
L

» At low R, storage is only used in deviating coalition and autaky.

» Storage is used in the initial coalition, if R is sufficiently high.

» When 7 is high, shadow price of consumption grows faster over
time, and storage can help smoothing shadow prices. Thus, start-

ing point R(w) of using storage is decreasing in 7.



QUANTITATIVE ANALYSIS (R > 0): STORAGE

Ergodic Saving vs.w

0.45
0.4 _—
0.35 —
03
0.25
0.2
0.15
01 —R=1.01| |
—R=1.03
R=1.05
0.05 [ —R=1.07 | ]
—R=1.09
0 . | |
0 0.1 0.2 03 0.4 05 0.6 07 08 0.9 1

» Saving is weakly increasing in 7 and R



SOCIAL EFFICIENCY AND SAVINGS EFFICIENCY

» Social efficiency and savings efficiency are substitutes when social

efficiency () is very low.

» Social efficiency and savings efficiency are complements when social
efficiency () is very high.

» In the intermediate level of social efficiency, social and savings

efficiency can be either substitutes or complements (substitutes

for low R, complements for high R)



QUANTITATIVE ANALYSIS (R > 0):

ALLOCATION

consumption for the binding guys, decay rate, number of steps:

Ergodic c vs.w Ergodicgvs. T

£ T T T




Basics orF COALITIONS

ProproOSITION

Infinite coalitions (i.e. N = 00) are always optimal.

> Initial coalition everyone ex ante identical - no income in period 0.
» so can replicate N-member outcome with 2NV hence weakly better.
» For deviating coalitions

> Members’ start conditional on y;. but initial incomes matter only
because of impact on per capita Y.
» Replicate N-member coalition with same per capita income so

weakly better.

» Infinite coalition strictly better since greater insurance.



Basics orF COALITIONS

ProprosITION

Breakaway Coalitions will be homogeneous w.r.t. initial income.

» Prefer coalition members with higher income.

» Since true for everyone, get positive assortitive matching in coali-
tion formation - high with highs forces mediums with mediums

which in turn forces low with low.



Two-STATE CASE - NO STORAGE
Almost optimal if # of steps is large

REMARK
It then follows that

2 Y =300 (5) en/g’
G4l _ [ t] 123 : ] for allt < T.

a2V -5 () ede

Then note that
t 1\7 T 1\ ! T
-1 _ i—1
YZ(2> /g’ = Z <2> cn/g’ +(2> a, (4)
Jj=1 j=t+1

where

a ch/gT_1 > > ch/gT.



TwO-STATE CASE - NO STORAGE

REMARK
T T+1 T+1
n _ 1 2@ a- @) e @) ]
© 0 2[ELa @ ey (3) )
1
> .
9

However, note that

201 (1) e = (1) afg — (1) enfo]

2 (S0 (3 entgr+ (3) el
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