FRAGILE COALITIONS UNDER SOCIAL AND SAVINGS FRICTIONS

H. Cole

D. Krueger

G. Mailath Y. Park

November 2, 2015

QUESTION

- ▶ Risk sharing with limited commitment
 - Optimal insurance contract against idiosyncratic shock subject to limited enforcement
 - Seminal work : Kocherlakota (1996), Kehoe & Levine (1993, 2001), Alvarez & Jermann (2000)
 - Application : village insurance, consumption inequality, sovereign debt contract
- ▶ Typical assumption : individual deviation & no saving technology
- Exceptions :
 - ▶ Krueger and Uhlig (2006) : savings via financial intermediaries
 - ▶ Genicot and Ray (2003) : group deviations

QUESTIONS

- Question: How does does the possibility of group deviations affect risk sharing? Does the ability to save interact with this possibility?
 - We examine effects of social efficiency and financial efficiency with group deviations.
- ▶ Related work: Genicot and Ray (2003, Restud)
 - Consider impact of group size with sub-group deviations
 - Assume deviating coalition come only from original group.
 - Assume no savings
 - Look only at Markov arrangements.
- ▶ Kreuger and Uhlig : special case of our analysis

Social Efficiency and Saving Efficiency

Groups of Individuals form Coalitions to insure against risk.

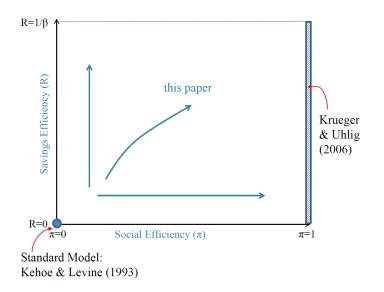
[Social Efficiency]

- ▶ There can be barriers to formation.
- ▶ Social Efficiency = probability of successfully forming coalition
 - Social efficiency $\uparrow \Longrightarrow$ Easier to form a coliation
 - Social efficiency $\uparrow \Longrightarrow$ Easier to form an alternative coalition too
- ▶ How does greater social efficiency affect outcomes?

[Savings Efficiency]

- ▶ Societies can use storage to bond the coalition.
 - But alternative coalition can also use storage
- ▶ Savings Efficiency = return to storage
- ▶ How does greater savings efficiency affect outcomes?

Context



PREVIEW OF RESULTS

▶ Efficient risk-sharing allocation can be characterized by

- consumption floors
- decay rates
- public saving

• Interaction between π and R:

- substitues when the social efficiency(π) is very low
- complements at higher level of social efficency(π).

Economy

Classic Insurance Economy

▶ Risk averse individuals subject to income risk.

$$E\left\{\sum_{t=1}^{\infty}u(c_t)\right\}$$
 u is CRRA; γ

 $y_t \in Y = \{y_1, ..., y_N\}$ i.i.d. across time and people

- ▶ Population is infinite.
- Period 0 is planning/coalition
- Income begins in period 1.

INSURANCE COALITIONS

- ▶ Coalition formation (Initial and Deviating) :
 - Initial coalition : formed with probability π
 - Deviating Colition:
 - Can exit from old colation to form new one with probability π .
 - Can include in new coalition people not in original one.
 - If (initial or deviating) coalition does not form then stuck in autarky forever.
- ► Saving (storage):
 - Gross interest rate of saving: $R \in [0, \beta^{-1}]$.
 - Saving can be done both on own or within group.
 - If by person, can take it when leave. By coalition cannot.

Optimal Allocation of Coalition

- ▶ Optimal allocation solves the social planning problem.
 - Maximize (utilitarian) social welfare of the coalition subject to RC and PC
 - Allocation of deviating coalition also solves the social planning problem.
- ▶ Individual weights in the planing problem :
 - Initial coalition : Ex ante identical \Rightarrow equal weight
 - ▶ Deviating coalition : equal weight
 - ▶ In first period of deviating : cannot exit or undo.
 - ▶ From the second period : identical

Plan of Talk

- 1. Basics of Coalition and Storage Usage
 - ▶ size of coalition, usage of storage
- 2. First Best Analysis
- 3. Optimal Coalition allocation characterization
- 4. Effects of π and R
 - Is higher π good?
 - Is higher R good?
 - Are π and R substitutes or complements ?

BASICS OF ALLOCATIONS

Coalition outcome is $\left\{c_{i}\left(y^{N,t}\right), s_{i}\left(y^{N,t}\right), S\left(y^{N,t}\right)\right\}$

- \blacktriangleright N is the number of members
- ▶ $y^{N,t}$ is the history of the vector of income realizations
- c_i and s_i are the consumption and savings of i
- S_t are the coalition level savings.

BASICS OF COALITIONS

PROPOSITION

Infinite coalitions (i.e. $N = \infty$) are always optimal.

 \Rightarrow No aggregate risk

PROPOSITION

Breakaway Coalitions will be homogeneous w.r.t. initial income.

▶ More

 $\Rightarrow~$ Deviating coalitions start with y - homogenous initial income.

BASICS OF STORAGE

▶ Individual level storage? No.

PROPOSITION

Storage within a coalition will only take place at level of the coalition (i.e. $s_i(y^{N,t}) = 0$)

- \Rightarrow Coalition outcome is $\{c(y^t), S_t\}$
 - ▶ Storage never be used in any complete efficient arrangement.

$$u'(E\{Y\}) \le \beta Ru'(E\{Y\}).$$

▶ Storage will not be used in autarky storage if

$$u'(\max\{y \in Y\}) \ge \beta RE\{u'(y_i)\}, \qquad (\text{N ST AUT})$$

FIRST BEST

ASSUMPTION

Assume for now condition (N ST AUT) holds.

- \implies No storage in autarky
- \implies Autarky payoff:

$$V^{A}(y) = u(y) + \beta V^{A}$$
, where $V^{A} = E\{u(y_{i})\}/(1-\beta)$

- ► First Best Ex Ante payoff: $\pi \bar{V} + (1 - \pi)V^A$, where $\bar{V} = u(E\{Y\})/(1 - \beta)$. (V FB)
- ▶ Payoff from deviating :

$$u(y) + \beta \left[\pi \overline{V} + (1 - \pi) V^A \right].$$

FIRST BEST

For FB to be feasible,

$$\frac{u(E\{Y\})}{1-\beta} \ge u(y) + \frac{\beta \left[\pi u(E\{y\}) + (1-\pi)E\{u(y)\}\right]}{1-\beta}.$$
 (FB fes)

When FB is possible at $\pi = 0$,

- Payoff conditional on initial coalition formation is weakly declining in π .
- ▶ Ex ante payoff is
 - strictly increasing in π at least up until FB is feasible
 - may or may not be increasing thereafter.

FIRST BEST

- ► Effets of Storage:
 - Increasing R up until β^{-1} no direct impact on FB (not used).
 - But it will raise $V^{A}(y)$. The FB can break down at lower π .

PROPOSITION

If FB possible with R = 0, then increasing R is always weakly bad. If the cut-off level of π at which storage breaks down is interior, i.e.

$$\frac{u(E\{Y\})}{1-\beta} = \pi \left[u(y) + \frac{\beta u(E\{Y\})}{1-\beta} \right] + (1-\pi)V^A(y;R) \text{ for } \pi \in (0,1),$$

this cut-off is strictly decreasing in R when (N ST AUT) does not hold and storage is used in autarky.

CHARACTERIZATION OF ALLOCATION: ROADMAP

- 1. Consider outcomes when R = 0, and storage is never used.
 - 1.1 Develop approximation to optimal arrangement
 - 1.2 Characterize how outcomes depend upon π .
- 2. Consider outcomes when R is big enough so always used.
 - 2.1 Show approximiation is exact here.
 - 2.2 Characterize how outcomes depend upon R and π .
- 3. Consider outcomes when R may be used but not always.
 - 3.1 Especially possible in deviating coalitions.
 - 3.2 Also possible if storage starts to be used in transition.
 - 3.3 Extend approximation algorithm and characterize.

1. R = 0: Coalition Problem

$$F(\bar{V},\pi) = \max_{c(y^t)} E\left\{\sum_{t=1}^{\infty} \beta^t u(c_t(y^t)) \operatorname{Pr}(y^t)\right\}$$

subject to

$$\sum_{y^t} c_t(y^t) \Pr(y^t) = Y$$

$$\beta^{t} u(c_{t}^{i}(y^{t})) + E\left\{\sum_{n=t+1}^{\infty} \beta^{k} u(c(y^{n}))|y^{t}\right\}$$

$$\geq \beta^{t} u(y_{t}(y^{t})) + \beta^{t+1} \left[\pi \bar{V} + (1-\pi)V^{A}\right]$$
for all y^{t} , (1)

1. R = 0: Coalition Problem

PROPOSITION

- The optimal continuation payoff $\overline{V} \in \mathcal{V} = \left[V^A, u(E\{Y\})/(1-\beta) \right]$.
- ► The operator F : V × [0,1] → V. defines the unique conditional payoff to our contracting problem, conditional the value of V in constraint (1).
- F is continuous and decreasing in \bar{V} and π
- The optimum \overline{V}^* is a fixed point of F, or

$$\bar{V}^* = F(\bar{V}^*, \pi).$$

1. R = 0: Characterizing Lagrangian

$$\mathcal{L} = \max_{\{c_t\}} \min_{\{\omega_t, \gamma_t\}} \sum_{t=1}^{\infty} \beta^t \sum_{y^t} \left\{ \underbrace{\left[1 + \sum_{n=1}^t \omega_n \left(y^n(y^t) \right) \right]}_{\equiv w_t(y^t)} u(c_t(y^t)) \\ + \gamma_t \left[Y - c_t^i \right] \right\}} \Pr(y^t)$$

$$-E\sum_{t=1}^{\infty}\beta^{t}\sum_{y^{t}}\omega_{t}(y^{t})\left\{u(y_{t}(y^{t})+\beta\left[\pi\bar{V}+(1-\pi)V^{A}\right]\right\},$$

The f.o.c. for consumption :

$$w_t(y^t)u'(c_t(y^t)) = \gamma_t.$$

$$\implies c_t(y^t) = u'^{-1}\left(\frac{\gamma_t}{w_t(y^t)}\right).$$

1. R = 0: Characterizing Lagrangian

Since utility is CRRA with coefficient of risk aversion γ :

$$c_t(y^t) = \left(\frac{\gamma_t}{w_t(y^t)}\right)^{-1/\gamma}.$$
(2)

Resource constraint :

$$Y = \sum_{y^t} c_t(y^t) \Pr(y^t) = \gamma_t^{-1/\gamma} \sum_{y^t} w_t(y^t)^{1/\gamma} \Pr(y^t).$$

 \implies Shadow price of consumption:

$$\gamma_t = \left[\frac{Y}{\sum_{y^t} w_t(y^t)^{1/\gamma} \Pr(y^t)}\right]^{-\gamma},$$

 \implies growth rate of shadow price :

$$\frac{\gamma_t}{\gamma_{t-1}} = \left[\frac{\sum_{y^t} w_t(y^t)^{1/\gamma} \Pr(y^t)}{\sum_{y^{t-1}} w_{t-1}(y^{t-1})^{1/\gamma} \Pr(y^{t-1})}\right]^{\gamma} = g_t^{\gamma}.$$

1. R = 0: Optimal Allocation

▶ If the participation constraint does not bind,

$$c_t(y^t) = \left[\frac{\sum_{y^{t-1}} w_{t-1}(y^{t-1})^{1/\gamma} \operatorname{Pr}(y^{t-1})}{\sum_{y^t} w_t(y^t)^{1/\gamma} \operatorname{Pr}(y^t)}\right] c_{t-1}(y^{t-1}) = \frac{c_{t-1}(y^{t-1})}{g_t}$$

PROPOSITION

The efficient consumption allocation is determined by a sequence of consumption floors, $\{\bar{c}_t(y_1), ..., \bar{c}_t(y_N)\}$, and decay rates, $\{g_t\}$, where $c_t(y^t) = \begin{cases} c_{t-1}(y^{t-1})/g_t \text{ if } c_{t-1}(y^{t-1})/g_t \ge \bar{c}_t(y_t) \\ \bar{c}_t(y_t) \text{ o.w.} \end{cases}$

ASSUMPTION

Consumption allocation eventually becomes stationary, then

$$\overline{c}_t(y_i) \to \overline{c}(y_i) \text{ and } g_t \to g.$$

2. Adding Storage

• Autarky value with storage:

$$V^{A}(y;R) = \max u(c_{1}) + E\left\{\sum_{t=2}^{\infty} \beta^{t-1} u(c_{t})\right\} \text{ subject to}$$
$$y_{t} + Rs_{t-1} = s_{t} + c_{t}$$

with

$$y_1 = y$$
, $s_0 = 0$, and $s_t \ge 0$ for all $t \ge 1$.

▶ The outside option payoff :

$$\pi \bar{V}(y) + (1-\pi)V^A(y).$$

 \implies depends upon y through both Autarky and the deviation coalition

2. Adding Storage

resource constraint :

$$\sum_{y^t} c_t(y^t) \operatorname{Pr}(y^t) = Y + RS_{t-1} - S_t,$$

$$S_0 = 0, \ S_t \ge 0 \text{ for all } t \ge 1.$$

• f.o.c. for S_t :

$$\begin{split} -\beta^t \gamma_t + \beta^{t+1} R \gamma_{t+1} &\leq 0 \text{ and } = \text{ if } S_t > 0. \\ \Longrightarrow g_{t+1}^{\gamma} &= \frac{\gamma_{t+1}}{\gamma_t} \leq \frac{1}{\beta R} \text{ and } = \text{ if } S_t > 0. \end{split}$$

► Implication: PROPOSITION

Storage is used in the mechanism iff it can help to smooth the shadow price of consumption to planner.

 \implies Bonding may be an indirect benefit (not the primary motivation).

2. Adding Storage : Characterization

- Characterization of optimal coalition allocation
 - ▶ No storage case:
 - characterized by consumption floors and decay rates
 - ▶ The outside options pin down consumption floors
 - The resource constraint pin down the decay rates
 - Storage case:
 - characterized by consumption floors, decay rates, and savings
 - (time invariant) g is pinned down by the Euler equation
 - ▶ The resource constraint pin down the saving

PROPOSITION

The ergodic ladder is the same as that of the optimal mechanism for any deviating coalition.

- Assumption: $y \in \{y_l, y_h\}$ with $prob(y_l) = prob(y_h) = \frac{1}{2}$
- Characterization of ergodic allocation:
 - Binding consumption levels : c_h , c_l

 $y_h \ge c_h \ge Y \ge c_l \ge y_l$, where $Y = .5(y_h + y_l)$

- ${\scriptstyle \blacktriangleright}\,$ decay rate in the ergodic ladder : $g\geq 1$
- ▶ Number of steps in the ladder between c_h and c_l

$$T = \arg \max \left\{ t = 1, ..., \infty : c_h/g^{t-1} > c_l \right\}.$$

- If g > 1, then $T < \infty$. If perfect insurance is possible g = 1, $T = \infty$, and $c_h = c_l = Y$.
- This defines a consumption ladder with T steps

$$\left\{c_h, c_h/g, c_h/g^2, ..., c_h/g^{T-1}, c_l\right\}.$$

- How to determine ergodic c_h , c_l , and g?
 - c_h, c_l, and g should satisfy the resource constraint and participation constraints.
- Resource constraint w.r.t. c_h , c_l , and g:
 - \blacktriangleright The ergodic distribution on the T ladder steps :

$$\Pr(c_h/g^{t-1}) = \left(\frac{1}{2}\right)^t$$

$$\Pr(c_l) = 1 - \sum_{t=1}^T \left(\frac{1}{2}\right)^t = \left(\frac{1}{2}\right)^T.$$

• Thus, RC should satisfy:

$$\sum_{t=1}^{T} \left(\frac{1}{2}\right)^{t} c_{h}/g^{t-1} + \left(\frac{1}{2}\right)^{T} c_{l} = Y.$$
(3)

- Participation constraints w.r.t. c_h , c_l , and g:
 - Determine the payoff conditional on the current consumption level: solving the following system of recursive equations.

$$V_j = u(c_h/g^{j-1}) + \beta \frac{1}{2} [V_{j+1} + V_1] \text{ for all } j < T+1$$
$$V_{T+1} = u(c_l) + \beta \frac{1}{2} [V_{T+1} + V_1].$$

PC for the high type:

$$V_1(c_h, c_l, g) = u(y_h) + \beta \left[\pi \overline{V} + (1 - \pi) V^A \right]$$

▶ PC for the low type :

$$V_{T+1}(c_h, c_l, g) = u(y_l) + \beta \left[\pi \overline{V} + (1 - \pi) V^A \right]$$

 \implies PC's depend on endogenous \overline{V} (payoff of coalition). But how can we determine \overline{V} ?

- Issues in determining \overline{V} :
 - In the transition: time-varying : $c_h(t)$ and g_t
 - Why? $g_t \nearrow g$, as weight of ladder promises press on RC.
- Remark: c_l is always a constant.
 - ▶ The conditional payoff at the bottom :

$$V_{T+1} = u(c_l) + \beta \frac{1}{2} [V_{T+1} + V_1],$$

- V_1 and V_{T+1} are pinned down by constant outside option.
- \implies To determine \overline{V} , we need to solve for $\{c_h(t), g_t\}_{t \ge 0}$ and c_l .
 - Approximation of \overline{V} : approximate time varying $\{c_h(t), g_t\}_{t \ge 0}$

TWO-STATE CASE - NO STORAGE APPROXIMATION

• Assumption : As soon as get y_h start on ergodic ladder c_h .

For
$$1 \le t \le T - 1$$
, $\{y_l, y_{l,...}\}$ type gets residual to satisfy RC:
 $c_1 = 2\left[Y - \frac{1}{2}c_h\right]$
 $c_t = 2^t \left[Y - \frac{1}{2}\sum_{j=0}^{t-1}\left(\frac{1}{2g}\right)^j c_h\right]$, for $1 \le t \le T - 1$

• In period T , every one is on ergodic ladder ({ $y_l, y_{l, \dots}$ } type hits $c_l.$).

 \implies Approximated allocation is characterized by ergodic c_h, c_l , and g.

- Allocation not optimal to the extent that decay rate of $\{y_l, y_{l,...}\}$ type not g.
- Can show decay rate becomes the same if T is large. Appendix

TWO-STATE CASE - NO STORAGE APPROXIMATION

• How to determine approximately optimal ergodic c_h , c_l , and g?

- c_h , c_l , and g should satisfy two PC's, and the RC.
- ▶ RC: ergodic RC (3)
 - (Note): By construction, the RC for $t = 1, \dots, T-1$ are satisfied.
- ► PC:
 - Under the approximation assumption :

$$\overline{V}(c_h, c_l, g) = \sum_{j=1}^T \left(\frac{1}{2}\right)^j \beta^{j-1} \left[V_1 + u(c_j)\right] + \left(\frac{1}{2}\right)^{T+1} \beta^T \left[V_1 + V_{T+1}\right]$$

• \implies PC's w.r.t. ergodic c_h , c_l , and g:

$$V_1(c_h, c_l, g) = u(y_h) + \beta \left[\pi \overline{V}(c_h, c_l, g) + (1 - \pi) V^A \right]$$
$$V_{T+1}(c_h, c_l, g) = u(y_l) + \beta \left[\pi \overline{V}(c_h, c_l, g) + (1 - \pi) V^A \right]$$

We now consider the case where storage is always used.

[Payoff of initial coalition]

- How to determine ergodic c_h , c_l , g, and S?
 - Storage fixes the decay rate to $g = (\beta R)^{-\frac{1}{\gamma}}$
 - Now outside options + res. const. determine c_h , c_l and ergodic S.
- How to determine initial c_1 and $\{S_t\}$?
 - Ergodic distribution of consumption in T steps so $S_T = S$ ergodic.
 - First period consumption of y_l , c_1 is determined by $S_T(c_1) = S$.

$$S_t = 1 - \sum_{j=1}^t \frac{c_h}{2^j g^{j-1}} - \frac{1}{2^t} \max\left\{\frac{c_1}{g^{t-1}}, c_l\right\} + RS_{t-1} \text{ for } t = 1, \cdots T$$

▶ $c_h(t)$ and g(t) are constant in the optimal mechanism. Thus, this algorithm is exact. (No approximation)

[Payoff of deviating coalition with y_h]

▶ Consumption distribution over time:

•
$$t = 1: c_1^d = y_h - s_1^d$$
, for all HH

•
$$t = 2$$
: c_1^d/g , for all HH

. . .

•
$$t = T(c_1^d): c_1^d/g^{T(c_1^d)-1}$$
, for all HH

•
$$t = T(c_1^d) + 1$$
: $\{c_h, c_1^d/g^{T(c_1^d)}\}$ with prob $\{\frac{1}{2}, \frac{1}{2}\}$

►
$$t = T(c_1^d) + T(c_h)$$
: $\{c_h, c_h/g, \cdots, c_h/g^{T(c_h)-1}, \max\{c_1^d/g^{T(c_1^d)+T(c_h)-1}, c_l\}\}$
with prob $\{\frac{1}{2}, \frac{1}{2^2}, \cdots, \frac{1}{2^{T(c_h)}}, \frac{1}{2^{T(c_h)}}\}$

• $t \ge T(c_1^d) + T(c_h) + 1$: ergodic distribution

- $S_t^d(c_1^d) = S$ at $t = T(c_1^d) + T(c_h) + 1$ pins down c_1^d
- \blacktriangleright We can deduce the value of outside option V_h .

Payoff of deviation coalition with y_l similar to before

- Lowest possible income so no storage in period 1, $c_1 = y_l$.
- ▶ Afterwards follow original optimal mechanism.

► So
$$V_l = u(y_l) + \beta V = u(y_l) + \beta [\pi \overline{V} + (1 - \pi)V^A]$$
 optimal coalition payoff.

Constant g(t) and $c_h(t)$ are optimal in the deviating coalition. Thus, this algorithm is exact for the payoff of deviation coalition also.

Now two-dimensional fixed point to determine allocation

- Given outside values V_h and V_l , solve for c_h and c_l which determines S.
- ► Solve for \overline{V} implied by this ladder, which determines $V_l = u(y_l) + \beta[\pi \overline{V} + (1 \pi)V^A]$ and iterate until convergence of V_l .
- Solve for V_h implied by this ladder and iterate until convergence of V_h .

TWO-STATE CASE W. TEMPORARY STORAGE Storage may be used but not always. We extend the approximation algorithm.

- Deviating coalition with y_h will go to same ergodic ladder.
 - So if no storage erodically in optimal mechanism no long run storage for them either.
 - But will store temporarily if

$$u'(y_h) < \beta R u'(c_1).$$

- Decay rate g_t of consumption for $\{y_l, y_l, ...\}$ in approximately optimal allocation increase with t.
 - Never used in the optimal mechanism if not used ergodically.
 - If used ergodically, it may start to be used in the transition.

TWO-STATE CASE W. TEMPORARY STORAGE For deviating coalition, add simple savings dimension to no storage approximation if not used on ergodic ladder.

▶ Treat *c*'s as transfers and allocation problem:

$$\max_{\substack{c_1^d, \{\tau\}\\ t=1}} u(c_1^d) + \sum_{t=2}^{T(c_h)} \beta^{t-1} \left[\sum_{j=1}^{t-1} u(c_h/g^{j-1} + \tau_{t,j}) \left(\frac{1}{2}\right)^j + u(c_t + \tau_t) \left(\frac{1}{2}\right)^{t-1} \right] \\ + \sum_{t=T(c_h)+1}^{\infty} \beta^{t-1} \left[\sum_{j=1}^{T(c_h)} u(c_h/g^{j-1} + \tau_{t,j}) \left(\frac{1}{2}\right)^j + u(c_l + \tau_t) \left(\frac{1}{2}\right)^{T(c_h)} \right] \\ \text{s.t. } c_1^d + \sum_{t=1}^{T(c_h)} \frac{1}{R^{t-1}} \left\{ \sum_{j=1}^{t-1} \tau_{t,j} \left(\frac{1}{2}\right)^j + \tau_t \left(\frac{1}{2}\right)^{t-1} \right\} \\ + \sum_{t=T(c_h)+1}^{\infty} \frac{1}{R^{t-1}} \left\{ \sum_{j=1}^{T(c_h)} \tau_{t,j} \left(\frac{1}{2}\right)^j + \tau_t \left(\frac{1}{2}\right)^{T(c_h)} \right\} = y_h, \text{ and } \tau \ge 0.$$

TWO-STATE CASE W. TEMPORARY STORAGE

For the optimal mechanism which uses storage ergodically but not initially, we apply the no storage approximation for initial k peirods.

- Ergodic storage fixes the ergodic decay rate to $g = (\beta R)^{-1}$.
- Outside options + res. const. determine ergodic c_h , c_l and S.
- For initial k 1 periods where storage is not used, we apply the no storage approximation.
 - As soon as get y_h start on ergodic ladder c_h .
 - $\{y_l, y_{l,...}\}$ type just gets residual from the resource constraint: $\{c_t\}_{t=1}^{k-1}$
- ► Once storage is used, decay rate is constant g_t = (βR)⁻¹. Period-k consumption of y_l, c^{*}_k is determined by RC and need to hit S at T − 1.
- ▶ Determine k by increasing k until it satisfies $S_{T-1}(c_k) < S$. (c_k : residual consumption)

QUANTITATIVE ANALYSIS

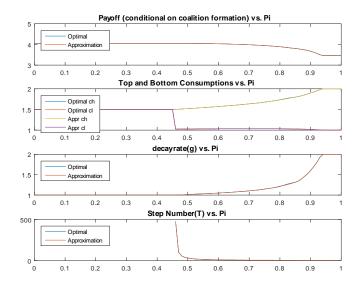
We take the two-state numerical example with :

- ▶ $y_h = 2, y_l = 1$
- $\blacktriangleright \ \beta = 0.9$
- $\blacktriangleright \ \gamma = 1$
- ► R = 0 (no storage) and $R \in [1.01, 1.10]$ (temporary and always) (Note: $\beta R < 1$)

We first present the result for R = 0 (no storage). Then, we will present the result for storage case.

QUANTITATIVE ANALYSIS (R = 0)

No storage case. Effects of increasing π :

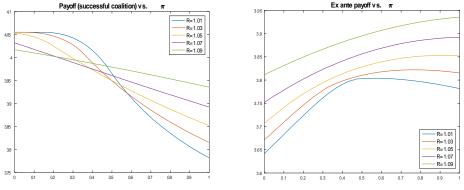


QUANTITATIVE ANALYSIS (R = 0)

• Risk-sharing is declining in π .

- Payoff conditional on coalition formation weakly decreasing in π .
- Consumption dispersion increases with π .
- Decay rate of consumption weakly increasing in π . Hence growth rate of shadow cost of consumption weakly increasing in π .
- Number of steps from in ladder is weakly decreasing in π .
- Risk sharing can happen even with $\pi = 1$.
 - Comparing y_h followed by c_h or c_1 vs. c_h followed by c_h/g .
- ▶ The approximation error is very small.

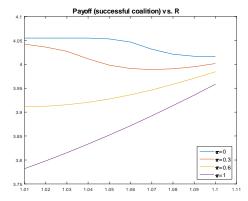
QUANTITATIVE ANALYSIS (R > 0): PAYOFF



• Effects of increasing π

- Payoff conditional on coalition formation is weakly declining in π .
- Ex ante payoff (πV
 (π) + (1 − π)EV^A) has hump shape in π when R is low. It is increasing in π when R is high. (π↑: +, V
 (π) ↓: -)

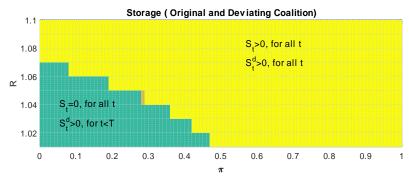
Quantitative Analysis (R > 0): Payoff



• Effects of increasing R

- For low R, storage is only used in outside values, thus increasing R is bad. Once initial coalition uses storage, increasing R is good.
- For high π, initial coalition is more likely to use storage at lower
 R. Thus, the turning point R (−→ +) is decreasing in π

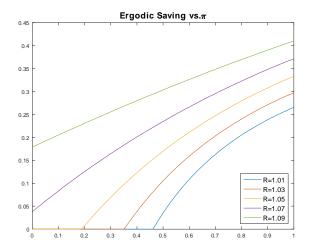
Quantitative Analysis (R > 0): Storage



▶ At low *R*, storage is only used in deviating coalition and autaky.

- Storage is used in the initial coalition, if R is sufficiently high.
- When π is high, shadow price of consumption grows faster over time, and storage can help smoothing shadow prices. Thus, starting point R(π) of using storage is decreasing in π.

Quantitative Analysis (R > 0): Storage



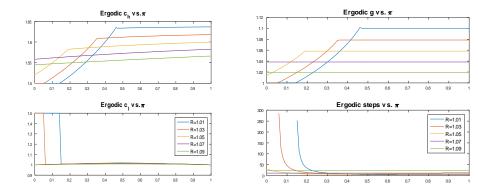
• Saving is weakly increasing in π and R

Social Efficiency and Savings Efficiency

- Social efficiency and savings efficiency are substitutes when social efficiency (π) is very low.
- Social efficiency and savings efficiency are complements when social efficiency (π) is very high.
- In the intermediate level of social efficiency, social and savings efficiency can be either substitutes or complements (substitutes for low R, complements for high R)

Quantitative Analysis (R > 0): Allocation

consumption for the binding guys, decay rate, number of steps:



BASICS OF COALITIONS

▶go back

PROPOSITION

Infinite coalitions (i.e. $N = \infty$) are always optimal.

- ▶ Initial coalition everyone ex ante identical no income in period 0.
 - so can replicate N-member outcome with 2N hence weakly better.
- ▶ For deviating coalitions
 - Members' start conditional on y_t, but initial incomes matter only because of impact on per capita Y.
 - Replicate N-member coalition with same per capita income so weakly better.
- ▶ Infinite coalition strictly better since greater insurance.

BASICS OF COALITIONS

🕨 go back

PROPOSITION

Breakaway Coalitions will be homogeneous w.r.t. initial income.

- ▶ Prefer coalition members with higher income.
- Since true for everyone, get positive assortitive matching in coalition formation - high with highs forces mediums with mediums which in turn forces low with low.

TWO-STATE CASE - NO STORAGE

Almost optimal if # of steps is large

Remark

It then follows that

$$\frac{c_{t+1}}{c_t} = \frac{2^{t+1} \left[Y - \sum_{j=1}^{t+1} \left(\frac{1}{2}\right)^j c_h / g^{j-1} \right]}{2^t \left[Y - \sum_{j=1}^t \left(\frac{1}{2}\right)^j c_h / g^{j-1} \right]} \text{ for all } t < T.$$

 $Then \ note \ that$

$$Y - \sum_{j=1}^{t} \left(\frac{1}{2}\right)^{j} c_{h}/g^{j-1} = \sum_{j=t+1}^{T} \left(\frac{1}{2}\right)^{t} c_{h}/g^{j-1} + \left(\frac{1}{2}\right)^{T} c_{l}, \quad (4)$$

where

$$c_l: c_h/g^{T-1} \ge c_l \ge c_h/g^T.$$

TWO-STATE CASE - NO STORAGE

🕨 go back

Remark

$$\frac{c_{t+1}}{c_t} = \frac{1}{g} + \frac{2^{t+1} \left[\left(\frac{1}{2}\right)^T c_l - \left(\frac{1}{2}\right)^{T+1} c_l/g - \left(\frac{1}{2}\right)^{T+1} c_h/g^T \right]}{2^t \left[\sum_{j=t+1}^T \left(\frac{1}{2}\right)^t c_h/g^{j-1} + \left(\frac{1}{2}\right)^T c_l \right]} \\ > \frac{1}{g}.$$

However, note that

$$\frac{2^{t+1} \left[\left(\frac{1}{2}\right)^T c_l - \left(\frac{1}{2}\right)^{T+1} c_l/g - \left(\frac{1}{2}\right)^{T+1} c_h/g^T \right]}{2^t \left[\sum_{j=t+1}^T \left(\frac{1}{2}\right)^t c_h/g^{j-1} + \left(\frac{1}{2}\right)^T c_l \right]} \simeq 0$$