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Question

I Risk sharing with limited commitment

I Optimal insurance contract against idiosyncratic shock subject to

limited enforcement

I Seminal work : Kocherlakota (1996), Kehoe & Levine (1993, 2001),

Alvarez & Jermann (2000)

I Application : village insurance, consumption inequality, sovereign

debt contract

I Typical assumption : individual deviation & no saving technology

I Exceptions :

I Krueger and Uhlig (2006) : savings via �nancial intermediaries

I Genicot and Ray (2003) : group deviations
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Questions

I Question: How does does the possibility of group deviations a¤ect

risk sharing? Does the ability to save interact with this possibility?

I We examine e¤ects of social e¢ ciency and �nancial e¢ ciency with

group deviations.

I Related work: Genicot and Ray (2003, Restud)

I Consider impact of group size with sub-group deviations

I Assume deviating coalition come only from original group.

I Assume no savings

I Look only at Markov arrangements.

I Kreuger and Uhlig : special case of our analysis
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Social Efficiency and Saving Efficiency
Groups of Individuals form Coalitions to insure against risk.

[Social E¢ ciency]

I There can be barriers to formation.

I Social E¢ ciency = probability of successfully forming coalition

I Social e¢ ciency "=) Easier to form a coliation

I Social e¢ ciency "=) Easier to form an alternative coalition too

I How does greater social e¢ ciency a¤ect outcomes?

[Savings E¢ ciency]

I Societies can use storage to bond the coalition.

I But alternative coalition can also use storage

I Savings E¢ ciency = return to storage

I How does greater savings e¢ ciency a¤ect outcomes?
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Context
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Preview of Results

I E¢ cient risk-sharing allocation can be characterized by

I consumption �oors

I decay rates

I public saving

I Social e¢ ciency(�) ") (Ex ante) Risk sharing y (hump shape)

I Savings e¢ ciency(R) ")

8><>:risk sharing# (at low R)risk-sharing" (at high R)
I Interaction between � and R :

I substitues when the social e¢ ciency(�) is very low

I complements at higher level of social e¢ cency(�).
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Economy

Classic Insurance Economy

I Risk averse individuals subject to income risk.

E

( 1X
t=1

u(ct)

)
u is CRRA; 


yt 2 Y = fy1; :::; yNg i.i.d. across time and people

I Population is in�nite.

I Period 0 is planning/coalition

I Income begins in period 1.
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Insurance Coalitions

I Coalition formation (Initial and Deviating) :

I Initial coalition : formed with probability �

I Deviating Colition:

I Can exit from old colation to form new one with probability �:

I Can include in new coalition people not in original one.

I If (initial or deviating) coalition does not form then stuck in au-

tarky forever.

I Saving (storage):

I Gross interest rate of saving: R 2
�
0; ��1

�
:

I Saving can be done both on own or within group.

I If by person, can take it when leave. By coalition cannot.
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Optimal Allocation of Coalition

I Optimal allocation solves the social planning problem.

I Maximize (utilitarian) social welfare of the coalition subject to RC

and PC

I Allocation of deviating coalition also solves the social planning

problem.

I Individual weights in the planing problem :

I Initial coalition : Ex ante identical ) equal weight

I Deviating coalition : equal weight

I In �rst period of deviating : cannot exit or undo.

I From the second period : identical
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Plan of Talk

1. Basics of Coalition and Storage Usage

I size of coalition, usage of storage

2. First Best Analysis

3. Optimal Coalition allocation characterization

4. E¤ects of � and R

I Is higher � good?

I Is higher R good?

I Are � and R substitutes or complements ?
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Basics of Allocations

Coalition outcome is
�
ci
�
yN;t

�
; si
�
yN;t

�
; S
�
yN;t

�	
I N is the number of members

I yN;t is the history of the vector of income realizations

I ci and si are the consumption and savings of i

I St are the coalition level savings.

11 / 47



Basics of Coalitions

Proposition

In�nite coalitions (i.e. N =1) are always optimal. M o r e

) No aggregate risk

Proposition

Breakaway Coalitions will be homogeneous w.r.t. initial income.

M o r e

) Deviating coalitions start with y - homogenous initial income.
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Basics of Storage

I Individual level storage? No.

Proposition

Storage within a coalition will only take place at level of the coalition

(i.e. si
�
yN;t

�
= 0)

) Coalition outcome is fc (yt) ; Stg

I Storage never be used in any complete e¢ cient arrangement.

u0(E fY g) � �Ru0(E fY g):

I Storage will not be used in autarky storage if

u0 (max fy 2 Y g) � �RE fu0 (yi)g ; (N ST AUT)
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First Best

Assumption

Assume for now condition (N ST AUT) holds.

=) No storage in autarky

=) Autarky payo¤:

V A(y) = u(y) + �V A; where V A = E fu (yi)g =(1� �)

I First Best Ex Ante payo¤:

� �V + (1� �)V A; where �V = u(E fY g)=(1� �): (V FB)

I Payo¤ from deviating :

u(y) + �
�
� �V + (1� �)V A

�
:
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First Best

For FB to be feasible,

u(E fY g)
1� � � u(y) + � [�u(E fyg) + (1� �)E fu(y)g]

1� � : (FB fes)

When FB is possible at � = 0;

I Payo¤ conditional on initial coalition formation is weakly declining

in �:

I Ex ante payo¤ is

I strictly increasing in � at least up until FB is feasible

I may or may not be increasing thereafter.
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First Best

I E¤ets of Storage:

I Increasing R up until ��1 no direct impact on FB (not used).

I But it will raise V A(y): The FB can break down at lower �:

Proposition

If FB possible with R = 0; then increasing R is always weakly bad.If

the cut-o¤ level of � at which storage breaks down is interior, i.e.

u(E fY g)
1� � = �

�
u(y) +

�u(E fY g)
1� �

�
+ (1� �)V A(y;R) for � 2 (0; 1) ;

this cut-o¤ is strictly decreasing in R when (N ST AUT) does not

hold and storage is used in autarky.
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Characterization of Allocation:

Roadmap

1. Consider outcomes when R = 0; and storage is never used.

1.1 Develop approximation to optimal arrangement

1.2 Characterize how outcomes depend upon �:

2. Consider outcomes when R is big enough so always used.

2.1 Show approximiation is exact here.

2.2 Characterize how outcomes depend upon R and �:

3. Consider outcomes when R may be used but not always.

3.1 Especially possible in deviating coalitions.

3.2 Also possible if storage starts to be used in transition.

3.3 Extend approximation algorithm and characterize.
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1. R = 0 : Coalition Problem

F ( �V ; �) = max
c(yt)

E

( 1X
t=1

�tu(ct(y
t)) Pr(yt)

)

subject to X
yt

ct(y
t) Pr(yt) = Y

�tu(cit(y
t)) + E

( 1X
n=t+1

�ku(c(yn))jyt
)

� �tu(yt(y
t)) + �t+1

�
� �V + (1� �)V A

�
for all yt; (1)
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1. R = 0 : Coalition Problem

Proposition

I The optimal continuation payo¤ �V 2 V =
�
V A; u(E fY g)=(1� �)

�
:

I The operator F : V � [0; 1] ! V: de�nes the unique conditional

payo¤ to our contracting problem, conditional the value of �V in

constraint (1).

I F is continuous and decreasing in �V and �

I The optimum �V � is a �xed point of F; or

�V � = F ( �V �; �):
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1. R = 0: Characterizing Lagrangian

L = max
fctg

min
f!t;
tg

1X
t=1

�t
X
yt

8>>>>><>>>>>:

"
1 +

tX
n=1

!n
�
yn(yt)

�#
| {z }

�wt(yt)

u(ct(y
t))

+
t
�
Y � cit

�

9>>>>>=>>>>>;
Pr(yt)

�E
1X
t=1

�t
X
yt

!t(y
t)
�
u(yt(y

t) + �
�
� �V + (1� �)V A

�	
;

The f.o.c. for consumption :

wt(y
t)u0(ct(y

t)) = 
t:

=) ct(y
t) = u0�1

�

t

wt(yt)

�
:
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1. R = 0 : Characterizing Lagrangian

Since utility is CRRA with coe¢ cient of risk aversion 
:

ct(y
t) =

�

t

wt(yt)

��1=

: (2)

Resource constraint :

Y =
X
yt

ct(y
t) Pr(yt) = 
t

�1=

X
yt

wt(y
t)1=
 Pr(yt):

=) Shadow price of consumption:


t =

"
YP

yt wt(y
t)1=
 Pr(yt)

#�

;

=) growth rate of shadow price :


t

t�1

=

" P
yt wt(y

t)1=
 Pr(yt)P
yt�1 wt�1(y

t�1)1=
 Pr(yt�1)

#

= g
t :
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1. R = 0 : Optimal Allocation

I If the participation constraint does not bind,

ct(y
t) =

"P
yt�1 wt�1(y

t�1)1=
 Pr(yt�1)P
yt wt(y

t)1=
 Pr(yt)

#
ct�1(y

t�1) =
ct�1(y

t�1)

gt

Proposition

The e¢ cient consumption allocation is determined by a sequence of

consumption �oors, f�ct(y1); :::; �ct(yN )g ; and decay rates, fgtg ; where

ct(y
t) =

8<: ct�1(y
t�1)=gt if ct�1(yt�1)=gt � �ct(yt)

�ct(yt) o.w.
:

Assumption

Consumption allocation eventually becomes stationary, then

ct(yi)! c(yi) and gt ! g:
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2. Adding Storage

I Autarky value with storage:

V A(y;R) = maxu(c1) + E

( 1X
t=2

�t�1u(ct)

)
subject to

yt +Rst�1 = st + ct

with

y1 = y; s0 = 0; and st � 0 for all t � 1:

I The outside option payo¤ :

� �V (y) + (1� �)V A(y):

=) depends upon y through both Autarky and the deviatign coalition
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2. Adding Storage

I resource constraint :X
yt

ct(y
t) Pr(yt) = Y +RSt�1 � St;

S0 = 0; St � 0 for all t � 1:

I f.o.c. for St :

��t
t + �t+1R
t+1 � 0 and = if St > 0:

=) g
t+1 =

t+1

t

� 1

�R
and = if St > 0:

I Implication:

Proposition

Storage is used in the mechanism i¤ it can help to smooth the shadow

price of consumption to planner.

=) Bonding may be an indirect bene�t (not the primary motivation).
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2. Adding Storage : Characterization

I Characterization of optimal coalition allocation

I No storage case:

I characterized by consumption �oors and decay rates

I The outside options pin down consumption �oors

I The resource constraint pin down the decay rates

I Storage case:

I characterized by consumption �oors, decay rates, and savings

I (time invariant) g is pinned down by the Euler equation

I The resource constraint pin down the saving

Proposition

The ergodic ladder is the same as that of the optimal mechanism for

any deviating coalition.
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Two-State Case - No Storage

I Assumption: y 2 fyl; yhg with prob(yl) = prob(yh)= 1
2

I Characterization of ergodic allocation:

I Binding consumption levels : ch, cl

yh � ch � Y � cl � yl; where Y = :5(yh + yl)

I decay rate in the ergodic ladder : g � 1

I Number of steps in the ladder between ch and cl

T = argmax
�
t = 1; :::;1 : ch=g

t�1 > cl
	
:

I If g > 1; then T < 1. If perfect insurance is possible g = 1;

T =1; and ch = cl = Y:
I This de�nes a consumption ladder with T steps

n
ch; ch=g; ch=g

2; :::; ch=g
T�1; cl

o
:
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Two-State Case - No Storage

I How to determine ergodic ch; cl; and g ?

I ch; cl; and g should satisfy the resource constraint and participation

constraints.

I Resource constraint w.r.t. ch; cl; and g :

I The ergodic distribution on the T ladder steps :

Pr
�
ch=g

t�1� =

�
1

2

�t
Pr (cl) = 1�

TX
t=1

�
1

2

�t
=

�
1

2

�T
:

I Thus, RC should satisfy:

TX
t=1

�
1

2

�t
ch=g

t�1 +

�
1

2

�T
cl = Y: (3)
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Two-State Case - No Storage

I Participation constraints w.r.t. ch; cl; and g :

I Determine the payo¤ conditional on the current consumption level:

solving the following system of recursive equations.

Vj = u(ch=g
j�1) + �

1

2
[Vj+1 + V1] for all j < T + 1

VT+1 = u(cl) + �
1

2
[VT+1 + V1] :

I PC for the high type:

V1(ch; cl; g) = u(yh) + �
h
�V + (1� �)V A

i
I PC for the low type :

VT+1(ch; cl; g) = u(yl) + �
h
�V + (1� �)V A

i
=) PC�s depend on endogenous V (payo¤ of coalition).

But how can we determine V ?
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Two-State Case - No Storage

I Issues in determining V :

I In the transition: time-varying : ch(t) and gt

I Why? gt % g; as weight of ladder promises press on RC.

I Remark: cl is always a constant.

I The conditional payo¤ at the bottom :

VT+1 = u(cl) + �
1

2
[VT+1 + V1] ;

I V1 and VT+1 are pinned down by constant outside option.

=) To determine V , we need to solve for fch(t); gtgt>0 and cl:

I Approximation of V : approximate time varying fch(t); gtgt>0
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Two-State Case - No Storage

Approximation

I Assumption : As soon as get yh start on ergodic ladder ch.

I For 1 � t � T � 1, fyl; yl;:::g type gets residual to satisfy RC:

c1 = 2

�
Y � 1

2
ch

�
ct = 2t

"
Y � 1

2

t�1X
j=0

�
1

2g

�j
ch

#
; for 1 � t � T � 1

I In period T , everyone is on ergodic ladder (fyl; yl;:::g type hits cl:).

=) Approximated allocation is characterized by ergodic ch; cl, and g.

I Allocation not optimal to the extent that decay rate of fyl; yl;:::g

type not g:

I Can show decay rate becomes the same if T is large. A p p e n d ix
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Two-State Case - No Storage

Approximation

I How to determine approximately optimal ergodic ch; cl; and g ?

I ch; cl; and g should satisfy two PC�s, and the RC.

I RC: ergodic RC (3)

I (Note): By construction, the RC for t = 1; � � � ; T � 1 are satis�ed.

I PC:

I Under the approximation assumption :

V (ch; cl; g) =

TX
j=1

�
1

2

�j
�j�1 [V1 + u(cj)]+

�
1

2

�T+1
�T [V1 + VT+1]

I =) PC�s w.r.t. ergodic ch; cl; and g :

V1(ch; cl; g) = u(yh) + �
h
�V (ch; cl; g) + (1� �)V A

i
VT+1(ch; cl; g) = u(yl) + �

h
�V (ch; cl; g) + (1� �)V A

i
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Two-State Case with Storage
We now consider the case where storage is always used.

[Payo¤ of initial coalition]

I How to determine ergodic ch, cl, g; and S ?

I Storage �xes the decay rate to g = (�R)�
1



I Now outside options + res. const. determine ch, cl and ergodic S.

I How to determine initial c1 and fStg?
I Ergodic distribution of consumption in T steps so ST = S ergodic.

I First period consumption of yl; c1 is determined by ST (c1) = S:

St = 1�
tX

j=1

ch
2jgj�1

� 1

2t
max

�
c1
gt�1

; cl

�
+RSt�1 for t = 1; � � �T

I ch(t) and g(t) are constant in the optimal mechanism. Thus, this

algorithm is exact. (No approximation)
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Two-State Case with Storage
[Payo¤ of deviating coalition with yh]

I Consumption distribution over time:

I t = 1: cd1 = yh � sd1 , for all HH
I t = 2: cd1=g , for all HH

� � �
I t = T (cd1): c

d
1=g

T (cd1)�1, for all HH

I t = T (cd1) + 1: fch; cd1=gT (c
d
1)g with prob f 1

2
; 1
2
g

� � �
I t = T (cd1)+T (ch): fch; ch=g; � � � ; ch=gT (ch)�1;maxfcd1=gT (c

d
1)+T (ch)�1; clgg

with prob f 1
2
; 1
22
; � � � 1

2T (ch)
; 1

2T (ch)
g

I t � T (cd1) + T (ch) + 1: ergodic distribution

I Sdt (c
d
1) = S at t = T (c

d
1) + T (ch) + 1 pins down c

d
1

I We can deduce the value of outside option Vh .
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Two-State Case with Storage

Payo¤ of deviaiton coalition with yl similar to before

I Lowest possible income so no storage in period 1, c1 = yl:

I Afterwards follow original optimal mechanism.

I So Vl = u(yl)+ �V = u(yl)+ �[�V +(1� �)V A] optimal coalition

payo¤.

Constant g(t) and ch(t) are optimal in the deviating coalition. Thus,

this algorithm is exact for the payo¤ of deviation coalition also.
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Two-State Case with Storage

Now two-dimensional �xed point to determine allocation

I Given outside values Vh and Vl; solve for ch and cl which deter-

mines S:

I Solve for V implied by this ladder, which determines Vl = u(yl) +

�[�V + (1� �)V A] and iterate until convergence of Vl.

I Solve for Vh implied by this ladder and iterate until convergence

of Vh.

35 / 47



Two-State Case w. Temporary Storage
Storage may be used but not always. We extend the approximation

algorithm.

I Deviating coalition with yh will go to same ergodic ladder.

I So if no storage erodically in optimal mechanism no long run stor-

age for them either.

I But will store temporarily if

u0(yh) < �Ru
0(c1):

I Decay rate gt of consumption for fyl; yl; :::g in approximately op-

timal allocation increase with t.

I Never used in the optimal mechanism if not used ergodically.

I If used ergodically, it may start to be used in the transition.
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Two-State Case w. Temporary Storage
For deviating coalition, add simple savings dimension to no storage

approximation if not used on ergodic ladder.

I Treat c�s as transfers and allocation problem:

max
cd1 ;f�g

u(cd1)+

T (ch)X
t=2

�t�1

24t�1X
j=1

u(ch=g
j�1 + � t;j)

�
1

2

�j
+ u(ct + � t)

�
1

2

�t�135
+

1X
t=T (ch)+1

�t�1

24T (ch)X
j=1

u(ch=g
j�1 + � t;j)

�
1

2

�j
+ u(cl + � t)

�
1

2

�T (ch)35
s.t. cd1+

T (ch)X
t=1

1

Rt�1

8<:
t�1X
j=1

� t;j

�
1

2

�j
+ � t

�
1

2

�t�19=;
+

1X
t=T (ch)+1

1

Rt�1

8<:
T (ch)X
j=1

� t;j

�
1

2

�j
+ � t

�
1

2

�T (ch)9=;= yh; and � � 0:
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Two-State Case w. Temporary Storage
For the optimal mechanism which uses storage ergodically but not

initially, we apply the no storage approximation for initial k peirods.

I Ergodic storage �xes the ergodic decay rate to g = (�R)�1.

I Outside options + res. const. determine ergodic ch, cl and S.

I For initial k � 1 periods where storage is not used, we apply the

no storage approximation.

I As soon as get yh start on ergodic ladder ch.

I fyl; yl;:::g type just gets residual from the resource constraint: fctgk�1t=1

I Once storage is used, decay rate is constant gt = (�R)
�1. Period-k

consumption of yl; c�k is determined by RC and need to hit S at

T � 1:
I Determine k by increasing k until it satis�es ST�1(ck) < S. (ck:

residual consumption) 38 / 47



Quantitative Analysis

We take the two-state numerical example with :

I yh = 2, yl = 1

I � = 0:9

I 
 = 1

I R = 0 (no storage) and R 2 [1:01; 1:10] (temporary and always)

(Note: �R < 1)

We �rst present the result for R = 0 (no storage). Then, we will

present the result for storage case.
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Quantitative Analysis (R = 0)
No storage case. E¤ects of increasing � :

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5
Payoff (conditional on coalition formation) vs. Pi

Optimal
Approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2
Top and Bottom Consumptions vs. Pi

Optimal ch
Optimal cl
Appr ch
Appr cl

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2
decay rate(g) vs. Pi

Optimal
Approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500
Step Number(T) vs. Pi

Optimal
Approximation
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Quantitative Analysis (R = 0)

I Risk-sharing is declining in �.

I Payo¤ conditional on coalition formation weakly decreasing in �.

I Consumption dispersion increases with �.

I Decay rate of consumption weakly increasing in �. Hence growth

rate of shadow cost of consumption weakly increasing in �.

I Number of steps from in ladder is weakly decreasing in �.

I Risk sharing can happen even with � = 1.

I Comparing yh followed by ch or c1 vs. ch followed by ch=g.

I The approximation error is very small.
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Quantitative Analysis (R > 0): Payoff

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.75

3.8

3.85

3.9

3.95

4

4.05

4.1
Payoff (successful coalition) vs.

R=1.01
R=1.03
R=1.05
R=1.07
R=1.09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95
Ex ante payoff vs.

R=1.01
R=1.03
R=1.05
R=1.07
R=1.09

I E¤ects of increasing �

I Payo¤ conditional on coalition formation is weakly declining in �.

I Ex ante payo¤ (� �V (�) + (1� �)EV A) has hump shape in � when

R is low. It is increasing in � when R is high.

(� " : +, �V (�) #: �)
42 / 47



Quantitative Analysis (R > 0): Payoff

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11
3.75

3.8

3.85

3.9

3.95

4

4.05

4.1
Payoff (successful coalition) vs. R

=0
=0.3
=0.6
=1

I E¤ects of increasing R

I For low R, storage is only used in outside values, thus increasing

R is bad. Once initial coalition uses storage, increasing R is good.

I For high �, initial coalition is more likely to use storage at lower

R. Thus, the turning point R (� ! +) is decreasing in �
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Quantitative Analysis (R > 0): Storage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R

1.02

1.04

1.06

1.08

1.1
Storage ( Original and Dev iating Coalition)

S t=0, for al l t

S t
d>0, for t<T

S t>0, for al l t

S t
d>0, for al l t

I At low R, storage is only used in deviating coalition and autaky.

I Storage is used in the initial coalition, if R is su¢ ciently high.

I When � is high, shadow price of consumption grows faster over

time, and storage can help smoothing shadow prices. Thus, start-

ing point R(�) of using storage is decreasing in �.
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Quantitative Analysis (R > 0): Storage
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I Saving is weakly increasing in � and R
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Social Efficiency and Savings Efficiency

I Social e¢ ciency and savings e¢ ciency are substitutes when social

e¢ ciency (�) is very low.

I Social e¢ ciency and savings e¢ ciency are complements when social

e¢ ciency (�) is very high.

I In the intermediate level of social e¢ ciency, social and savings

e¢ ciency can be either substitutes or complements (substitutes

for low R, complements for high R)
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Quantitative Analysis (R > 0):

Allocation

consumption for the binding guys, decay rate, number of steps:
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Basics of Coalitions
g o b a ck

Proposition

In�nite coalitions (i.e. N =1) are always optimal.

I Initial coalition everyone ex ante identical - no income in period 0.

I so can replicate N -member outcome with 2N hence weakly better.

I For deviating coalitions

I Members�start conditional on yt: but initial incomes matter only

because of impact on per capita Y:

I Replicate N -member coalition with same per capita income so

weakly better.

I In�nite coalition strictly better since greater insurance.
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Basics of Coalitions

g o b a ck

Proposition

Breakaway Coalitions will be homogeneous w.r.t. initial income.

I Prefer coalition members with higher income.

I Since true for everyone, get positive assortitive matching in coali-

tion formation - high with highs forces mediums with mediums

which in turn forces low with low.
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Two-State Case - No Storage
Almost optimal if # of steps is large

Remark

It then follows that

ct+1
ct

=
2t+1

h
Y �

Pt+1
j=1

�
1
2

�j
ch=g

j�1
i

2t
h
Y �

Pt
j=1

�
1
2

�j
ch=gj�1

i for all t < T:

Then note that

Y �
tX

j=1

�
1

2

�j
ch=g

j�1 =
TX

j=t+1

�
1

2

�t
ch=g

j�1 +

�
1

2

�T
cl; (4)

where

cl : ch=g
T�1 � cl � ch=gT :

50 / 47



Two-State Case - No Storage
g o b a ck

Remark

ct+1
ct

=
1

g
+
2t+1

h�
1
2

�T
cl �

�
1
2

�T+1
cl=g �

�
1
2

�T+1
ch=g

T
i

2t
hPT

j=t+1

�
1
2

�t
ch=gj�1 +

�
1
2

�T
cl

i
>

1

g
:

However, note that

2t+1
h�

1
2

�T
cl �

�
1
2

�T+1
cl=g �

�
1
2

�T+1
ch=g

T
i

2t
hPT

j=t+1

�
1
2

�t
ch=gj�1 +

�
1
2

�T
cl

i ' 0
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