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Motivation

allocate offices to faculty; allocate infrastructure investments among
neighborhoods; allocate students to dorm rooms

examples of allocation problems without transfers

goal: find an efficient and equitable mechanism

this paper: analyze collective choice markets with equal budgets



Collective Choice Markets

we study the following mechanism:

1. Each group member is given an equal budget of fiat money

2. Each member confronts a price for each of the relevant alternatives
under consideration.

3. Chooses an alternative that maximizes utility subject to the budget
constraint.

4. The organization acts as an auctioneer and implements an
alternative that maximizes revenue.
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Motivation. . .

To get efficiency....

Choices need to be stochastic

Agents choose lotteries over outcomes

Organization picks (and then implements) a lottery



Why this Mechanism?

Generalization of market based mechanisms for allocation problems
(Hylland and Zeckhauser (1979), Buddish (2011), Gul, Pesendorfer and
Zhang (2019)))

“Works” even if there are externalities or complementarities

Yields (ex ante) Pareto efficient outcomes (unlike deterministic
mechanisms)



Main Question and Result

What notion of equity is implied by equilibria of collective choice markets?

Map collective choice problem to an n−person bargaining problem

Define Equitable Solution for the bargaining problem

Main Result:

1. Every equilibrium of a collective choice market is equitable

2. Every equitable solution is an equilibrium of the collective choice
market



Collective Choice Markets



Collective Choice Problem

n agents and k outcomes plus a disagreement outcome that yields zero
utility to every agent

a (random) social outcome, q, is an element of the k-dimensional unit
simplex

ui = (u1i , . . . , uki ) is i ’s utility index

ui · q is i ’s utility if the outcome is q

ui is non-negative and not identically zero

The utility profile u = (u1, . . . , un) defines a collective choice problem



Collective Choice Market: Consumers

e = (1, . . . 1), q = (q1, . . . , qk ), pi = (p1i , . . . , pki )

Consumer i has one unit of fiat money and purchases probability qj of

outcome j at price pji to maximize utility:

maximize
q

ui · q

subject to pi · q ≤ 1, (Budget constraint),

e · q ≤ 1, (Probability constraint)

(1)

A minimal cost solution to the consumer’s problem is a solution to the
above problem that minimizes the expenditure of fiat money



Collective Choice Market: Firm

The firm chooses the social outcome q to maximize profit:

maximize
q

n

∑
i=1

pi · q

subject to e · q = 1, (Probability constraint)

(2)



Collective Choice Market: Equilibrium

The pair (p, q) is a Lindahl equilibrium (LE) if q is a minimal-cost
solution to every consumer’s maximization problem at prices pi and
solves the firm’s maximization problem at prices p.

Lemma 1 Every collective choice market has a Lindahl equilibrium; all
Lindahl equilibria are Pareto efficient.



Example...

I 3 students must be assigned to 2 rooms; a double and a single
room.

I Allocations k = {1, 2, 3} where allocation k assigns student i = k
to a single room.

I utilities:

u1 = (10, 2, 0)

u2 = (5, 10, 0)

u3 = (0, 9, 10)

I every student prefers the single room; students 1 and 2 do not want
to be matched with each other; student 3 would much rather be
matched with student 1 than student 2.



...Example

Lindahl Equilibrium:

The lottery q = (.27, 0.73, 0) is a Lindahl equilibrium allocation:

Either student 1 or student 2 gets the single room.

Equilibrium price: pi is the price student i pays for the allocations:

single = 1 2 3

p1 = 2.42 0.49 0

p2 = 0.58 1.15 0

p3 = 0 1.36, 1.51

∑ pi = 3.00 3.00 1.51

All 3 students are better off in equilibrium than under a uniform lottery
(serial dictatorship)



Bargaining and Equitable Solutions



The Bargaining Problem

Bargaining Problem: full dimensional and comprehensive polytope
B ⊂ Rn

Disagreement point: d(B) is the component-wise minimum of B

Comprehensive: if y ∈ B then B contains all points d(B) ≤ x ≤ y

unit simplex: ∆ is the n−dimensional unit simplex

Let a⊗ x = (a1 · z1, . . . , an · zn);

Simplex: B = z + a⊗ ∆ affine transformation of the unit simplex



Ordering Bargaining Problems

A ≥ B if for every x ∈ A, y ∈ B, there exist x ′ ∈ A, y ′ ∈ B such that
x ′ ≥ y and x ≥ y ′.

u1

u2



The Equitable Solution

Fair Outcome: equal division (ui = 1/n) if the bargaining set is the
unit simplex;

vNM utilities are unique only up to positive affine transformations,
therefore:

xi = ai/n+ zi is the fair outcome of simplex B = a⊗ ∆ + z

Fair outcomes are only defined for simplices: F (A) is the fair outcome if
A is a simplex; F (A) is empty otherwise.

Equitable Solution: outcomes of B that coincide with the fair outcome
of a simplex A ≥ B:

E (B) := {x ∈ B ∩ F (A) |A ≥ B}



Equitable Solution

x1

x2

1’s equitable outcome

2’s equitable outcome



Representation Theorem

S is a set valued solution to the bargaining problem if S(B) ⊂ B.

Scale Invariance S(a⊗ B + z) = a⊗ S(B) + z

Symmetry S(∆) = { 1n · e}.

Consistency B ≤ A implies S(A) ∩ B ⊂ S(B).

Justifiability x ∈ S(B) implies B ≤ A and {x} = S(A) for some A.

Theorem 1 S satisfies the four axioms above if and only if it is the
equitable solution.



Justifying Justifiability

Ann and Bob must divide a peanut butter cake and a chocolate cake.
Bob is allergic to peanuts while Ann likes all cakes equally.

Equitable solution #1: pb-cake to Ann; ch-cake 50-50.

Ann: “Since Bob has no use for the peanut butter cake, from his perspective

the situation is as if we only had the chocolate cake and in that situation it’s

obviously equitable to divide the chocolate cake equally.” Perles and Maschler

(1981) provide an axiomatic foundation for Ann’s argument.

Equitable solution #2: pb-cake to Ann; ch-cake to Bob.

Bob: “If I were not allergic to peanuts we would each get one cake. Since Ann

is indifferent between the chocolate cake and the peanut butter cake it makes

sense that she gets the peanut butter cake and I get the chocolate cake.” Nash

(1951) provides an axiomatic foundation for Bob’s argument.

Other equitable solutions: in-between; e.g., pb-cake to Ann, ch-cake
1/3-2/3 (Kalai-Smorodinsky)



Relationship to other Bargaining Solutions

I the equitable solution always contains the Nash bargaining solution

I for two players, the equitable solution contains all standard
Bargaining solutions that satisfy scale invariance.

x1

x2



Main Result



Mapping Collective Choice Problems to Bargaining
Problems

The utility profile of outcome j is uj = (uj1, . . . , ujn)

The convex and comprehensive hull of these utility profiles and the origin
forms the bargaining problem Bu

Therefore, for each u we get a bargaining problem Bu

Conversely, let B be any bargaining problem with the origin as
disagreement point

The utility profile at an extreme point corresponds to the utility profile of
an outcome j

Therefore, for each B we get a collective choice problem u



Main Result

Theorem 2 The set of Lindahl equilibrium utilities coincides with the
equitable solution of the corresponding bargaining problem.



Argument: Justifying a Lindahl Equilibrium

maximize
q

ui · q

subject to e · q ≤ 1 (ci ),

pi · q ≤ 1 (ai )

minimize
ci , ai ≥ 0

ci + ai

subject to cie + aipi ≥ ui

Lindahl equilibrium: (q, ci , ai ) solves consumer i ’s problem; q
maximizes the auctioneer’s profit

x2

x1

(c1, c2) (c1 + 2a1, c2)

(c1, c2 + 2a2)

( 1
a1

, 1
a2

)
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Explaining the graph...

maximize
q

ui · q

subject to e · q ≤ 1,

pi · q ≤ 1

minimize
ci , ai ≥ 0

ci + ai

subject to cie + aipi ≥ ui

Complementary Slackness: q · (cie + aipi − ui ) = 0

Therefore, if qj > 0:

pji =
1

ai
(uji − ci )



... Explaining the Graph
value of dual = ci + ai = ui · q

Profit maximization implies that ( 1
a1

, 1
a2
) must be perpendicular to Bu
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Lindahl equilibria and Nash Bargaining

Nash allocation:

arg max
q

∑
i

log(wi · q)

subject to e · q ≤ 1

Define
ūji (ci ) := max{uji − ci , 0}

Admissible Let q be the Nash allocation for wi = ūi (ci ). Then,

c = (c1, . . . , cn) is admissible if uji ≥ ci for all j such that qj > 0 and for
all i .



Lindahl equilibria and Nash Bargaining

Theorem 2 If q is the Nash allocation for ū(c) and c is admissible, then
(p, q) such that pi = ūi (ci )/(ūi (ci ) · q) is a Lindahl equilibrium for u.

Conversely, if q is a Lindahl allocation for u, then there is an admissible c
such that q is a Nash allocation for ū(c).

why admissibility?

I For q to be a Lindahl equilibrium, ui · q = ūi (c) · q + ci must hold

I In general, ūi (c) · q + ci ≥ ui · q
I Equality holds if and only if c is admissible.



Applications 1: Matching



Application: Matching

A group of agents must decide who matches with whom as

A matching, is a bijection j from the set of all agents to itself such that
j(j(i)) = i for all i . If j(i) = i , then i is said to be unmatched.

wm
i is the utility of agent i when she matches with agent m.

Walrasian Market:

I Each agent has one unit of fiat money, must pay price πm
i for

matching with agent m

I Agents choose lotteries (over partners) that maximize their utilities
subject to the budget constraint.

I Feasibility: there is a lottery over allocations that implements all the
chosen lotteries



Matching continued

I Walrasian equilibrium: consumers specify demands for private goods
(individual match)

I Lindahl equilibrium: consumers specify demand for collective goods
(matches for everyone)

Theorem 3 Lindahl equilibrium allocations coincide with Walrasian
equilibrium allocations

Corollary: Matching is equitable if and only if it can be implemented
via a Walrasian economy with equal budgets



Application 2: Allocation Problems



Office Allocation Example

Three agents must decide on an office allocation:

v1(1) = 10, v1(2) = 4, v1(3) = 2

v2(1) = 10, v2(2) = 7, v2(3) = 3

v3(1) = 10, v3(2) = 5, v3(3) = 1

I office 1 has a premium desk

I office 2 has a good desk

I office 3 has the standard desk



Walrasian economy #1

3 goods = 3 offices

v1(1) = 10, v1(2) = 4, v1(3) = 2

v2(1) = 10, v2(2) = 7, v2(3) = 3

v3(1) = 10, v3(2) = 5, v3(3) = 1

Economy has a unique Walrasian equilibrium in which:

I Good 2 is allocated to agent 2

I Agents 1 and 3 each have an equal chance at getting good 1 or 3.



Walrasian economy #2

I Agents have designated offices but can be assigned different desks;

I Each agent can derive utility only if she gets her designated office;
otherwise her utility is 0.

I 5 goods: the three offices (goods 1, 2 and 3) and the two premium
desks (good 4, the good desk and good 5, the premium desk).

v̂1({1, 5}) = 10, v̂1({1, 4}) = 4, v̂1(1) = 2

v̂2({2, 5}) = 10, v̂2({2, 4}) = 7, v̂2(2) = 3

v̂3({3, 5}) = 10, v̂3({3, 4}) = 5, v̂3(3) = 1



Walrasian economy #2 cont’d

I Economy #2 has multiple equilibria; Equilibrium allocations
coincide with the Lindahl equilibria

I Walrasian outcomes depend on commodification; Lindahl
outcomes do not



Walrasian economies

Finite set of goods H = {1, . . . , r}

Agent’s i utility for bundle M is vi (M); vi (∅) = 0 and vi (L) ≤ vi (M)
whenever L ⊂ M.

p : 2H → IR+ is a (possibly non-additive) price

Consumers choose random consumption θi to solve:

maximize
θi

∑
M

vi (M)θi (M)

subject to ∑
M

p(M)θi (M) ≤ 1

A (deterministic) allocation is feasible if it is a partition of H; a random
allocation is feasible if every allocation in the support is feasible.



Walrasian Equilibrium

Definition A random allocation and a price are a Walrasian equilibrium if
the allocation

(i) is feasible,

(ii) yields a least-cost utility maximal consumption lottery for every
consumer;

(iii) maximizes the auctioneer’s revenue.

Existence of Walrasian equilibrium requires restrictions on utility functions

If utilities satisfy the gross substitutes property (Gul, Pesendorfer and
Zhang (2019)), equilibria exist



Commodification Theorem

Commodification: utility function v = (v1, . . . , vn) defined on a finite
set of (private) goods so that Bv = B (where Bv is the Bargaining
problem for v).

Theorem 4

1. Every Walrasian equilibrium allocation is a Lindahl equilibrium
allocation

2. For every bargaining problem B there is a commodification v such
that the set of Walrasian allocations coincide with the set of Lindahl
allocations.



Lindahl vs Walrasian equilibria

I Lindahl equilibria depend only on the bargaining game

I two exchange economies that yield the same bargaining game may
have two different sets of Walrasian equilibria.

I Walrasian equilibria are typically simpler than Lindahl equilibria
because the former involve many fewer prices. This is so because
the number of allocations typically exceeds the number of goods and
because Lindahl prices are personal while Walrasian prices are not.

I If the commodity space is rich enough, as is the commodity space
we construct in the proof of Theorem 4, the distinction between
Lindahl equilibrium and Walrasian equilibrium disappears.



Related Literature

Bargaining: axiomatic treatment closely related to Nash (1950); Kalai
and Smorodinsky (1975); Perles-Maschler solution (Perles and Maschler
(1981); survey by Thomson (1994).

Lindahl Allocations and Bargaining: In a public goods setting with
linear costs and transfers, Fain, Guel and Munagala (2016) show that the
Nash bargaining solution coincides with the Lindahl equilibrium.

Walrasian Equilibria as Allocation Mechanisms: Hylland and
Zeckhauser (1979) propose Walrasian equilibria as solutions to stochastic
allocation problems. Gul, Pesendorfer and Zhang (2020) extend Hylland
and Zeckhauser from unit demand preferences to general
gross-substitutes preferences. Collective choice markets allow for arbitrary
preferences, public goods and externalities.

Fairness and Equilibrium: Foley (1967), Schmeidler and Vind (1972)
and Varian (1974) associate equity with envy-freeness. Walrasian
equilibria with equal budgets are envy free. The equitable solution is a
notion of fairness adapted to collective choice markets.
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