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Introduction

• Information design is central to markets with asymmetric
information
◦ Peer-to-peer platforms: eBay and Airbnb
◦ Regulating insurance markets: Community ratings in health

insurance exchanges under ACA
◦ Credit Ratings in consumer and corporate debt markets
◦ Certi�cation of doctors and restaurants

• Common feature:
◦ Adverse selection and moral hazard
◦ Intermediary observes information
◦ Decides what to transmit to the other side
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Introduction

• Key questions:
◦ How should the intermediary transmit the information?
◦ When is it optimal to hide some information?
◦ How do market conditions a�ect optimal information

disclosure?
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Overview of Results

• Provide a full characterization of the set of achievable
equilibrium payo�s under arbitrary rating systems
• Characterize Pareto optimal rating systems:
◦ Some form of mixing is often used to hide information:

- deterministic quality: reveal the state with some probability
- random quality: deterministic signal with full support

distributions
◦ Possible to allocate pro�ts to lower quality types but not to

higher quality types
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Related Literature

• Bayesian Persuasion: Kamenica and Gentzkow (2011), Rayo and
Segal (2010), Gentzkow and Kamenica (2016), Dworczak and
Martini (2019), Mathevet, Perego and Taneva (2019),
Boleslovsky and Kim (2020), ...
◦ State is endogenous to the information structure;

characterization of second order exptations
• Certi�cation and disclosure: Lizzeri (1999), Albano and Lizzeri

(2001), Ostrovsky and Schwartz (2010), Harbough and
Rasmusen (2018), Hopenhayn and Saeedi (2019), Vellodi (2019),
Zubrickas (2015), Zapechelnyuk (2020)
◦ Often ignores moral hazard
◦ Importance of mixing information structures
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Simple Example

• We have two types of sellers:
◦ θ1 = 1 and θ2 = 2

• Cost of quality provision for seller of type θ:

C(q, θ) =
1
2
q2

θ

• Assume buyers are price takers,
◦ pay the expected quality

• Full information:
◦ p1 = q1 = 1, π1 = 1/2
◦ p2 = q2 = 2, π2 = 1

• Can we make type 1 better o�?
• Full pooling/No information:
◦ q1 = q2 = 0
◦ Need to give incentives to sellers to invest in quality
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Optimal Information Structure

• max p1 − q2
1

2
• p1 depends on the quality chosen by type 1, type 2, and

information structure.
• Planner sends di�erent signals after observing level of quality
◦ π(si|q1)
◦ π(si|q2)

• This will determine the price of each signal p(si)

• The incentive constraint for the seller, however, is based on the
price they receive:

p1 = π(s1|q1)p(s1) + ...+ p(sn|q1)p(sn) = E(E(q|s)|q1)

• We call it Signaled Quality and denote it by q1.
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Optimal Information Structure

• We can write the problem as:

max
q1,q2,π(si|q)

q1 −
q2

1
2

• s.t. qj = E(E(q|s)|qj)
• incentive constraints
• participation constraints
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Optimal Information Structure

• We show that you can solve the following problem instead

max
q1,q2,q1,q2

q1 −
q2

1
2

• s.t. q1 ≥ q1 and q1 + q2 = q1 + q2

• incentive constraints
• participation constraints
• Mechanism Design Problem with Added Constraints
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Optimal Information Structure

• Solution is:
◦ q1 = 2

3 , q1 = 8
9 , π1 = 2

3
◦ q2 = 2, q2 = 16

9

• Signal that generates it
q\s q1 ∅ q2
q1

2
3

1
3 0

q2 0 1
3

2
3
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The Model

• Competitive model of adverse selection and moral hazard
• Unit continuum of buyers
◦ Payo�s:

q − t

q: quality of the good purchased
t: transfer
◦ Outside option: 0
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The Model

• Unit continuum of sellers
◦ Produce one vertically di�erentiated product
◦ Choose quality q
◦ Di�er in cost of quality provision

Cost : C (q, θ) ; θ ∼ F (θ)

◦ Payo�s
t − C (q, θ)

◦ outside option: 0
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The Model

Assumption. Cost function satis�es: Cq > 0,Cθ < 0,Cqq > 0,Cθq ≤
0.

• First Best E�cient: maximize total surplus q − C (q, θ)

Cq
(
qFB (θ) , θ

)
= 1

• Submodularity: qFB (θ) is increasing in θ.
◦ Higher θ’s have lower marginal cost
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Information Design

• Sellers know their θ and choose q
• An intermediary observes q and sends information about each

seller to all buyers
◦ Alternative: commit to a machine that uses q as input and

produces random signal
• Intermediary chooses a rating system: (S, π)

◦ S: set of signals
◦ π (·|q) ∈ ∆ (S)

• Buyers only see the signal sent by the intermediary
• Key statistic from the buyers perspective

E [q|s]
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Equilibrium

• Assume buyers compete away their surplus and the price for
each signal realization satis�es

p (s) = E [q|s] , (1)

• Sellers payo�

q (θ) ∈ arg max
q′

∫
p (s)π

(
ds|q′

)
− C

(
q′, θ

)
(2)

• Sellers participation: θ ∈ Θ∫
p (s)π (ds|q (θ))− C (q (θ) , θ) ≥ 0 (3)

Equilibrium:
(
{q (θ)}θ∈Θ , p (s)

)
that satisfy (1), (2) and (3).

Maryam Saeedi and Ali Shourideh Optimal Rating Design



Rating Design Problem

• The goal: �nd optimal (S, π) according to some objective
◦ Pareto optimality of outcomes
◦ Maximize intermediary revenue
◦ etc.

• First step
◦ What allocations are implementable for an arbitrary rating

system

• Key object from seller’s perspective: Expected price

q(θ) =

∫
p(s)π(ds|q(θ)) = E [E [q|s] |q(θ)]

We call it Signaled Quality.
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Characterizing Rating Systems

• Start with discrete types Θ = {θ1 < · · · < θN} and distribution
F : f = (f1, · · · , fN )

◦ Boldface letters: vectors in RN

• Standard revelation-principle-type arugment leads to the
following lemma

Lemma 1. If a vector of qualities, q, and signaled qualities, q arise
from an equilibrium, then they must satisfy:

qN ≥ · · · ≥ q1, qN ≥ · · · ≥ q1

qi − C (qi, θi) ≥ qj − C (qj, θi) , ∀i, j

• Can ignore other deviations (o�-path qualities): with
appropriate out-of-equilibrium beliefs
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Properties of Signaled Qualities

• First Key Property:
◦ Equal in expectation: ∑

i

fiqi =
∑
i

fiqi

- Implied by Bayes Plausibility
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Feasible Signaled Qualities

• What signaled qualities are feasible?
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Feasible Signaled Qualities
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Feasible Signaled Qualities

• Feasible signaled qualities: majorization ranking a la Hardy,
Littlewood and Polya (1934)

De�nition. q F- majorizes q or q<Fq if

k∑
i=1

fiqi ≥
k∑

i=1
fiqi, ∀k = 1, · · ·N − 1

N∑
i=1

fiqi =

N∑
i=1

fiqi

• Note: majorization:
◦ is equivalent to second order stochastic dominance
◦ more suitable for our setup
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Majorization: Main Result

Theorem. Consider vectors of signaled and true qualities, q,q and
suppose that they satisfy

q1 ≤ · · · ≤ qN , q1 ≤ · · · ≤ qN

where equality in one implies the other. Then q <F q if and only if
there exists a rating system (π, S) so that

qi = E [E [q|s] |qi]
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Majorization: Proof of The Main Result

• First direction: If qi = E [E [q|s] |qi], then an argument similar
to the above can be used to show that q <F q.
◦ If all states below k have separate signals from those above, then∑k

i=1 fiqi =
∑k

i=1 fiqi.
◦ With overlap,

∑k
i=1 fiqi can only go up.
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Majorization: Proof of The Main Result

• Second direction:
◦ First step: show that the set of signaled qualities S is convex

Proof

◦ Second step: Show that if q <F q then q ∈ S skip

◦ Illustration for N = 2.

!𝑞!

!𝑞" 𝑞
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Majorization: Proof of The Main Result

• Second direction:
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𝑞
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Majorization: Proof of The Main Result

• Second direction:
◦ First step: show that the set of signaled qualities S is convex

Proof

◦ Second step: Illustration for N = 2.

𝑞

!𝑞𝑓 = 𝑞𝑓
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Majorization: Proof of The Main Result

• Second direction:
◦ First step: show that the set of signaled qualities S is convex

Proof

◦ Second step: Illustration for N = 2.

𝑞

!𝑞𝑓 = 𝑞𝑓

!𝑞

!𝑞!

!𝑞" 45°
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Majorization: Proof of The Main Result

• Second direction:
◦ First step: show that the set of signaled qualities S is convex

Proof

◦ Second step: Illustration for N = 2.

𝑞

!𝑞𝑓 = 𝑞𝑓

!𝑞

!𝑞!
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No Information𝑆
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Majorization: Proof of The Main Result

• Second steps for higher dimensions:
◦ For every direction λ 6= 0, �nd two points in S, q̃ such that

λ · q ≤ λ · q̃

- If λ1/f1 ≤ λ2/f2 ≤ · · · ≤ λN/fN , set q̃ = q,
- Otherwise, pool to consecutive states; reduce the number of

states and use induction.
◦ Since S is convex, separating hyperplane theorem implies that q

must belong to S .
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Majorization: Continuous Case

• We can extend the results to the case with continuous
distribution
◦ Discrete distributions are dense in the space of distributions.
◦ Use Doob’s martingale convergence theorem to prove

approximation works

• We say q (·) <F q (·) if∫ θ

θ
q
(
θ′
)
dF
(
θ′
)
≥
∫ θ

θ
q
(
θ′
)
dF
(
θ′
)
,∀θ ∈ θ =

[
θ, θ
]

∫ θ

θ
q (θ) dF (θ) =

∫ θ

θ
q (θ) dF (θ)
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Constructing Signals

• Given q (θ) and q (θ) that satisfy majorization: What is (π, S)?
• In general a hard problem to provide characterization of (π, S);

Algorithm in the paper
• Example: Full mixing
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Optimal Rating Systems

• Pareto optimal allocations
• Approach:

max

∫
λ (θ) Π (θ) dF (θ)

subject to
(PC),(IC),(Maj)

• Analogy: Mechanism Problem with Added Majorization
Constraint
• Our focus is on
◦ λ (θ): decreasing; higher weight on lower-quality sellers
◦ λ (θ): increasing; higher weight on higher-quality sellers
◦ λ (θ): hump-shaped; higher weight on mid-quality sellers
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Total Surplus

• Benchmark: First Best allocation
◦ maximizes total surplus ignoring all the constraints

Cq
(
qFB (θ) , θ

)
= 1

• Incentive constraint:

q′ (θ) = Cq (q (θ) , θ) q′ (θ) = q′ (θ)

• Set q (θ) = q (θ)

◦ Satis�es IC
◦ Satis�es majorization

• Maximizing total surplus: full information about quality
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Low-Quality Seller Optimal

• λ (θ): decreasing; higher weight on lower-quality sellers
◦ Textbook mechanism design problem

• Tradeo�: information rents vs. reallocation of pro�ts
◦ Want to allocate pro�ts to the lowest quality-type
◦ All higher quality types want to lie downward

• Reduce qualities relative to First Best
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Low-Quality Seller Optimal

Relaxed problem - w/o majorization constraint

max

∫
λ (θ) Π (θ) dF (θ)

subject to

Π′ (θ) = −Cθ (q (θ) , θ)

q (θ) : increasing∫ θ

θ
Π (θ) dF (θ) =

∫ θ

θ
[q (θ)− C (q (θ) , θ)] dF (θ)

Π (θ) ≥ 0

Proposition. A quality allocation q (θ) is low-quality seller optimal
if and only if it is a solution to the relaxed problem. Moreover, if the
cost function C (·, ·) is strictly submodular, then a low-quality seller
optimal rating system is full mixing.
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Low-Quality Seller Optimal: Intuition

• The solution of the relaxed problem (with or without ironing)

Cq (q (θ) , θ) < 1

• Incentive constraint

q′ (θ) = Cq (q (θ) , θ) q′ (θ)

• q (θ) �atter than q (θ): majorization constraint holds and is
slack
◦ If Cq < 1 for a positive measure of types, no separation of

qualities
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Constructing Signals

• When q (θ) is �atter than q (θ) and majorization constraint
never binds:
◦ Finding signals is very straightforward: partially revealing

signal

• Signal:
S = {q (θ) : θ ∈ Θ} ∪ {∅}

π ({s} |q) =

{
α (q) s = q
1− α (q) s = ∅

◦ Reveal quality or say nothing!
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Low-Quality Seller Optimal

• Intuition:
◦ Higher weight on low-quality sellers: Extract more from higher

quality sellers
◦ Underprovision of quality to avoid lying by the higher types
◦ Some form of pooling is required to achieve this

Maryam Saeedi and Ali Shourideh Optimal Rating Design



High-Quality Seller Optimal

• Suppose λ (θ) is increasing in θ
• Solution of the relaxed mechanism design problem satis�es

Cq (q (θ) , θ) > 1

• IC:
q′ (θ) = Cq (q (θ) , θ) q′ (θ) > q′ (θ)

• Majorization inequality will be violated
◦ Intuition: overprovision of quality to prevent low θ’s from lying

upwards; signaled quality must be steep
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High Quality Seller Optimal

Proposition. Suppose that λ (θ) is increasing. Then optimal rating
system is full information.

skip

• Sketch of the proof:
◦ Consider a relaxed optimization problem; replace IC with

Π (θ)−Π (θ) ≤ −
∫ θ

θ

Cθ (q (θ′) , θ′) dθ′

similar to restricting sellers to only lie upward
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High Quality Seller Optimal

Proposition. Suppose that λ (θ) is increasing. Then optimal rating
system is full information.

• Sketch of the proof:
• if majorization is slack in an interval I

◦ relaxed IC must be binding: otherwise take from lower types
and give it to higher types
◦ overprovision of quality relative to FB, i.e., Cq ≥ 1: if not:

- increase q for those types; compensate them for the cost increase
- distribute the remaining surplus across all types

Maryam Saeedi and Ali Shourideh Optimal Rating Design



High Quality Seller Optimal: Perturbation
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High Quality Seller Optimal: Perturbation
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High Quality Seller Optimal: Perturbation
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High Quality Seller Optimal

Proposition. Suppose that λ (θ) is increasing. Then optimal rating
system is full information.

• Sketch of the proof:
◦ Having majorization slack, incentive constraint binding and

Cq ≥ 1 is the contradiction
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Mid Quality Seller Optimal

• λ (θ) is increasing below θ∗ and decreasing above θ∗.

Proposition. Suppose that λ (θ) is hump-shaped. Then there exists
θ̃ < θ∗ such that for all values of q ≤ limθ↗θ̃ q (θ), the optimal rating
system is fully revealing while it is partially revealing for values of q
above q

(
θ̃
)

. Finally, q (·) and q (·) have a discontinuity at θ̃.
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Mid Quality Seller Optimal
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Pareto Optimal Ratings

• General insight:
◦ Cannot push pro�ts towards higher qualities; at best should

reveal all the information
◦ Can use partially revealing to reallocate pro�ts to lower qualities
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Random Quality Outcomes

• Choice: q
• Realized quality: x ∼ G (x|q)

• Int.: observes x; sends signal s ∈ S with dist. π(s|x)

• Signaled qualities

x (x) =

∫
E [x|s]π (ds|x) .

• Assumption: x (x) is increasing in x.
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Random Quality Outcomes

• The same majorization result holds
• x 4H x i� ∫ x

0

[
x
(
x′
)
− x′

]
dH
(
x′
)
≥ 0

∫ 1

0
[x (x)− x] dH (x) = 0

where
H (x) =

∫
Θ
G (x|q (θ)) dF (θ)
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Monotone Partitions are Optimal

Proposition. If Assumption 2 holds, then a Pareto optimal rating
system is a monotone partition.

Assumption 2

• Similar to Moldovanu, Kleiner, and Strack (2020)
• No need to use mixing
• pooling does not lead to bunching
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Two Types

• Two types: θ1 < θ2

• λ(θ2) = 0
• Problem equivalent to max

∫
Γ(x)x(x)dH(x) subject to

majorization and monotonicity.
• Gain function

Γ (x) =
g (x|q1)

h (x)

(
1 + γ1

gq (x|q1)

g (x|q1)
+ γ2

gq (x|q2)

g (x|q2)

g (x|q2)

g (x|q1)

)
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Two Types

• Two types: θ1 < θ2

• λ(θ2) = 0
• Problem equivalent to max

∫
Γ(x)x(x)dH(x) subject to

majorization and monotonicity.
• Gain function

Γ (x) =
g (x|q1)

h (x)︸ ︷︷ ︸
decreasing: pool

(
1 + γ1

gq (x|q1)

g (x|q1)
+ γ2

gq (x|q2)

g (x|q2)

g (x|q2)

g (x|q1)

)
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Two Types

• Two types: θ1 < θ2

• λ(θ2) = 0
• Problem equivalent to max

∫
Γ(x)x(x)dH(x) subject to

majorization and monotonicity.
• Gain function

Γ (x) =
g (x|q1)

h (x)︸ ︷︷ ︸
decreasing: pool

1 + γ1
gq (x|q1)

g (x|q1)
+ γ2

gq (x|q2)

g (x|q2)

g (x|q2)

g (x|q1)︸ ︷︷ ︸
IC1 and IC2, increasing: separate


Proposition. Suppose that the gain function Γ (x) is continuously
di�erentiable and that its derivative changes sign k <∞ times. Then,
the optimal information structure is an alternating partition with at
most k intervals.
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Two Types

Proposition. Suppose that Assumptions 2 and 3 hold. If at the
optimum q2 ≥ q1, then there exists two thresholds x1 < x2 where
optimal rating system is fully revealing for values of x below x1 and
above x2 while it is pooling for values of x ∈ (x1, x2).

Assumption 3
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Role of The Intermediary

• Suppose that the intermediary charges a �at fee
• Then problem is similar to the low quality seller optimal
• You may want to exclude some sellers
• Partially revealing rating system is optimal
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Conclusion

• Rating Systems in a competitive model of adverse selection and
moral hazard
• Provide full characterization of feasible allocations:
◦ Majorization

• Pareto optimal rating systems
• Random quality realization
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Thank You!
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Random Quality Outcomes, Assumptions

• The distribution function g (x|q) satis�es:
1. Average value of x is q, i.e.,

∫ 1
0 xg (x|q) dx = q.

2. The distribution function g (x|q) is continuously di�erentiable
with respect to x and q for all values of x ∈ [0, 1] and q ∈ (0, 1).

3. The distribution function g (x|q) satis�es full support, i.e.,
g (x|q) > 0,∀x ∈ (0, 1) and monotone likelihood ratio, i.e.,
gq (x|q) /q (x|q) is strictly increasing in x.
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Role of Entry

• Let’s assume that the outside option of buyers is random:
v ∼ G (v)

• Outside option of sellers is π
• There will be an endogenous lower threshold θ for entry
• Everything is the same as before; all the results go through
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Role of The Intermediary

• Suppose that the intermediary charges a �at fee
• Then problem is similar to the buyer optimal
• Partially revealing rating system is optimal
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Related Literature

• Bayesian Persuasion: Kamenica and Gentzkow (2011), Rayo and
Segal (2010), Gentzkow and Kamenica (2016), Dworczak and
Martini (2019), Mathevet, Perego and Taneva (2019), ...
◦ Characterize second order expectations + endogenous state

• Certi�cation and disclosure: Lizzeri (1999), Ostrovsky and
Schwartz (2010), Harbough and Rasmusen (2018), Hopenhayn
and Saeedi (2019), Vellodi (2019), ...
◦ Joint mechanism and information design

• (Dynamic) Moral Hazard and limited information/memory:
Ekmekci (2011), Liu and Skrzpacz (2014), Horner and Lambert
(2018), Bhaskar and Thomas (2018), ...
◦ Hiding information is sometimes good for incentive provision

Maryam Saeedi and Ali Shourideh Optimal Rating Design



Convexity of S

• Discrete signal space:

qi =
∑
s

π ({s} |qi)
∑

j π ({s} |qj) fjqj∑
j π ({s} |qj) fj

• Alternative representation of the RS:

τ ∈ ∆ (∆ (Θ)) : µsj =
π ({s} |qj) fj∑
j π ({s} |qj) fj

, τ ({µs}) =
∑
j

π ({s} |qj) fj

• Bayes plausibility

f =

∫
∆(Θ)

µdτ

• We can write signaled quality as

q = diag (f)−1
∫

µµTdτq = Aq
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Convexity of S

• The set S is given by

S =

{
q : ∃τ ∈ ∆ (∆ (Θ)) ,

∫
µdτ = f,q = diag (f)−1

∫
µµTdτ

}
• For any τ1, τ2 satisfying Bayes plausibility, i.e.,

∫
µdτ = f,their

convex combination also satis�es BP since integration is a
linear operator.
• Therefore

λq1 + (1− λ)q2 = λdiag (f)−1
∫

µµTdτ1+

(1− λ) diag (f)−1
∫

µµTdτ2

= diag (f)−1
∫

µµTd (λτ1 + (1− λ) τ2)

• Since λτ1 + (1− λ) τ2 satis�es BP, λq1 + (1− λ)q2 ∈ S
Back
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Majorization: Basic Properties

• <F is transitive.
• The set of q that F-majorize q is convex.
• Can show that there exists a positive matrix A such that q =Aq

where
fTA = fT ,Ae = e

with e = (1, · · · , 1) and f = (f1, · · · , fN ).
• We refer to A as an F-stochastic matrix.
◦ Set of F-stochastic matrices is closed under matrix

multiplication.
Back
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Constructing Signals

• One easy case: q (θ) �atter than q (θ), i.e., q′ (θ) < q′ (θ)
◦ majorization constraint never binds.

• Signal:
S = {q (θ) : θ ∈ Θ} ∪ {∅}

π ({s} |q) =

{
α (q) s = q
1− α (q) s = ∅

◦ Reveal quality or say nothing!
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Non-separating signal

When q (θ) is �atter than q (θ)
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Random Quality Distribution

Assumption 2. The distribution function g (x|q) satis�es:
1. Average value of x is q, i.e.,

∫ 1
0 xg (x|q) dx = q.

2. The distribution function g (x|q) is continuously di�erentiable
with respect to x and q for all values of x ∈ [0, 1] and q ∈ (0, 1).

3. The distribution function g (x|q) satis�es full support, i.e.,
g (x|q) > 0,∀x ∈ (0, 1) and monotone likelihood ratio, i.e.,
gq (x|q) /q (x|q) is strictly increasing in x.

Back
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Random Quality Distribution

Assumption 3. For arbitrary q2 > q1, de�ne the function x̂ (z) as
the solution of z = g (x̂ (z) |q2) /g (x̂ (z) |q1). The function x̂ (z) must
satisfy the following properties:

1. The function φ (z) = gq (x̂ (z) |q) /g (x̂ (z) |q) satis�es
φ′′ (z) ≤ 0,

2. The function ψ (z) = zgq (x̂ (z) |q) /g (x̂ (z) |q) satis�es
ψ′′ (z) ≥ 0,

3. The function φ′′ (z) /ψ′′ (z) is increasing in z.

Back
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Constructing Signals: Algorithm

• For the discrete case, we can give an algorithm to construct the
signals (rough idea; much more details in the actual proof)

1. Start from q
2. Consider a convex combination of two signals:

2.1 Full revelation: πFI ({q} |q) = 1
2.2 Pooling signal: pool two qualities qi and qj

S = {q1, · · · , qN} − {qi, qj} ∪ {qij}

πi,j ({s} |q) =

{
1 s = q, q 6= qi, qj
1 s = qij, q = qi, qj

2.3 Send πFI with probability α and πi,j with probability 1− α
3. Choose α so that the resulting signaled quality has one element

in common with q
4. Repeat the same procedure on resulting signaled quality until

reaching q Back
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