Optimal Rating Design

Maryam Saeedi and Ali Shourideh

Carnegie Mellon University

Penn State September 25, 2020

Maryam Saeedi and Ali Shourideh

Introduction _____

- Information design is central to markets with asymmetric information
 - Peer-to-peer platforms: eBay and Airbnb
 - Regulating insurance markets: Community ratings in health insurance exchanges under ACA
 - Credit Ratings in consumer and corporate debt markets
 - Certification of doctors and restaurants

• Common feature:

- Adverse selection and moral hazard
- Intermediary observes information
- Decides what to transmit to the other side

• Key questions:

- How should the intermediary transmit the information?
- When is it optimal to hide some information?
- How do market conditions affect optimal information disclosure?

Overview of Results _____

- Provide a full characterization of the set of achievable equilibrium payoffs under arbitrary rating systems
- Characterize Pareto optimal rating systems:
 - Some form of mixing is often used to hide information:
 - deterministic quality: reveal the state with some probability
 - random quality: deterministic signal with full support distributions
 - Possible to allocate profits to lower quality types but not to higher quality types

Related Literature

- Bayesian Persuasion: Kamenica and Gentzkow (2011), Rayo and Segal (2010), Gentzkow and Kamenica (2016), Dworczak and Martini (2019), Mathevet, Perego and Taneva (2019), Boleslovsky and Kim (2020), ...
 - State is endogenous to the information structure; characterization of second order exptations
- Certification and disclosure: Lizzeri (1999), Albano and Lizzeri (2001), Ostrovsky and Schwartz (2010), Harbough and Rasmusen (2018), Hopenhayn and Saeedi (2019), Vellodi (2019), Zubrickas (2015), Zapechelnyuk (2020)
 - Often ignores moral hazard
 - Importance of mixing information structures

Simple Example _____

• We have two types of sellers:

$$\circ \ \theta_1 = 1 \text{ and } \theta_2 = 2$$

• Cost of quality provision for seller of type θ :

$$C(q, heta) = rac{1}{2} rac{q^2}{ heta}$$

• Assume buyers are price takers,

• pay the expected quality

• Full information:

•
$$p_1 = q_1 = 1, \pi_1 = 1/2$$

•
$$p_2 = q_2 = 2, \pi_2 = 1$$

- Can we make type 1 better off?
- Full pooling/No information:

$$\circ q_1 = q_2 = 0$$

• Need to give incentives to sellers to invest in quality

Maryam Saeedi and Ali Shourideh

Optimal Information Structure

- $\max p_1 \frac{q_1^2}{2}$
- *p*₁ depends on the quality chosen by type 1, type 2, and information structure.
- Planner sends different signals after observing level of quality
 - $\circ \ \pi(s_i|q_1) \\ \circ \ \pi(s_i|q_2)$
- This will determine the price of each signal $p(s_i)$
- The incentive constraint for the seller, however, is based on the price they receive:

$$p_1 = \pi(s_1|q_1)p(s_1) + \dots + p(s_n|q_1)p(s_n) = \mathbb{E}(\mathbb{E}(q|s)|q_1)$$

• We call it Signaled Quality and denote it by \overline{q}_1 .

• We can write the problem as:

$$\max_{q_1,q_2,\pi(s_i|q)}\overline{q}_1 - \frac{q_1^2}{2}$$

- s.t. $\overline{q}_j = \mathbb{E}(\mathbb{E}(q|s)|q_j)$
- incentive constraints
- participation constraints

• We show that you can solve the following problem instead

$$\max_{q_1,q_2,\overline{q}_1,\overline{q}_2}\overline{q}_1 - \frac{q_1^2}{2}$$

- s.t. $\overline{q}_1 \geq q_1$ and $\overline{q}_1 + \overline{q}_2 = q_1 + q_2$
- incentive constraints
- participation constraints
- Mechanism Design Problem with Added Constraints

Optimal Information Structure

• Solution is:

$$\begin{array}{c} \circ \ \ q_1 = \frac{2}{3}, \overline{q}_1 = \frac{8}{9}, \pi_1 = \frac{2}{3} \\ \circ \ \ q_2 = 2, \overline{q}_2 = \frac{16}{9} \end{array}$$

• Signal that generates it

.

- Competitive model of adverse selection and moral hazard
- Unit continuum of buyers

• Payoffs:

q-t

- *q*: quality of the good purchased *t*: transfer
- Outside option: 0

• Unit continuum of sellers

- Produce one vertically differentiated product
- Choose quality q
- Differ in cost of quality provision

$$\operatorname{Cost}: C(q, \theta); \theta \sim F(\theta)$$

• Payoffs

$$t - C(q, \theta)$$

• outside option: 0

Assumption. Cost function satisfies: $C_q > 0, C_{\theta} < 0, C_{qq} > 0, C_{\theta q} \le 0$.

• First Best Efficient: maximize total surplus $q - C(q, \theta)$

$$C_{q}\left(q^{FB}\left(\theta\right),\theta\right)=1$$

- Submodularity: $q^{FB}(\theta)$ is increasing in θ .
 - $\circ~$ Higher θ 's have lower marginal cost

Maryam Saeedi and Ali Shourideh

Information Design ____

- Sellers know their θ and choose q
- An intermediary observes *q* and sends information about each seller to all buyers
 - $\circ\;$ Alternative: commit to a machine that uses q as input and produces random signal
- Intermediary chooses a *rating system*: (S, π)
 - S: set of signals
 - $\circ \ \pi \left(\cdot | q \right) \in \Delta \left(\mathcal{S} \right)$
- Buyers only see the signal sent by the intermediary
- Key statistic from the buyers perspective

 $\mathbb{E}\left[q|s\right]$

Equilibrium _____

• Assume buyers compete away their surplus and the price for each signal realization satisfies

$$p(s) = \mathbb{E}[q|s], \qquad (1)$$

Sellers payoff

$$q(\theta) \in \arg\max_{q'} \int p(s) \pi \left(ds | q' \right) - C \left(q', \theta \right)$$
(2)

• Sellers participation: $\theta \in \Theta$

$$\int p(s) \pi(ds|q(\theta)) - C(q(\theta), \theta) \ge 0$$
(3)

Equilibrium: $(\{q(\theta)\}_{\theta\in\Theta}, p(s))$ that satisfy (1), (2) and (3).

Maryam Saeedi and Ali Shourideh

Rating Design Problem _____

- The goal: find optimal (S, π) according to some objective
 - Pareto optimality of outcomes
 - Maximize intermediary revenue
 - etc.
- First step
 - What allocations are implementable for an arbitrary rating system
- Key object from seller's perspective: Expected price

$$\overline{q}(heta) = \int p(s)\pi(ds|q(heta)) = \mathbb{E}\left[\mathbb{E}\left[q|s\right]|q(heta)
ight]$$

We call it Signaled Quality.

Characterizing Rating Systems ____

• Start with discrete types $\Theta = \{\theta_1 < \cdots < \theta_N\}$ and distribution $F : \mathbf{f} = (f_1, \cdots, f_N)$

• Boldface letters: vectors in \mathbb{R}^N

• Standard revelation-principle-type arugment leads to the following lemma

Lemma 1. If a vector of qualities, \mathbf{q} , and signaled qualities, $\overline{\mathbf{q}}$ arise from an equilibrium, then they must satisfy:

$$egin{aligned} \overline{q}_{N} &\geq \cdots \geq \overline{q}_{1}, q_{N} \geq \cdots \geq q_{1} \ \overline{q}_{i} - C\left(q_{i}, heta_{i}
ight) \geq \overline{q}_{j} - C\left(q_{j}, heta_{i}
ight), orall i, j \end{aligned}$$

• Can ignore other deviations (off-path qualities): with appropriate out-of-equilibrium beliefs

Maryam Saeedi and Ali Shourideh

Properties of Signaled Qualities _____

- First Key Property:
 - Equal in expectation:

$$\sum_{i} f_i \overline{q}_i = \sum_{i} f_i q_i$$

- Implied by Bayes Plausibility

• Feasible signaled qualities: majorization ranking a la Hardy, Littlewood and Polya (1934)

Definition. q *F*- majorizes $\overline{\mathbf{q}}$ or $\mathbf{q} \succcurlyeq_F \overline{\mathbf{q}}$ if

$$\sum_{i=1}^{k} f_i \overline{q}_i \ge \sum_{i=1}^{k} f_i q_i, \forall k = 1, \dots N - 1$$
$$\sum_{i=1}^{N} f_i \overline{q}_i = \sum_{i=1}^{N} f_i q_i$$

- Note: majorization:
 - is equivalent to second order stochastic dominance
 - more suitable for our setup

Maryam Saeedi and Ali Shourideh

Theorem. Consider vectors of signaled and true qualities, $\overline{\mathbf{q}}, \mathbf{q}$ and suppose that they satisfy

$$\overline{q}_1 \leq \cdots \leq \overline{q}_N, q_1 \leq \cdots \leq q_N$$

where equality in one implies the other. Then $\mathbf{q} \succeq_F \overline{\mathbf{q}}$ if and only if there exists a rating system (π, S) so that

$$\overline{q}_i = \mathbb{E}\left[\mathbb{E}\left[q|s\right]|q_i\right]$$

Maryam Saeedi and Ali Shourideh

- First direction: If q
 _i = E [E [q|s] |q_i], then an argument similar to the above can be used to show that q ≽_F q
 .
 - If all states below k have separate signals from those above, then $\sum_{i=1}^{k} f_i \overline{q}_i = \sum_{i=1}^{k} f_i q_i$.
 - With overlap, $\sum_{i=1}^{k} f_i \overline{q}_i$ can only go up.

• First step: show that the set of signaled qualities *S* is convex • Proof

• Second step: Show that if $\mathbf{q} \succcurlyeq_F \overline{\mathbf{q}}$ then $\overline{\mathbf{q}} \in \mathcal{S} \overset{\text{skip}}{\longrightarrow}$

• Illustration for N = 2.

Maryam Saeedi and Ali Shourideh

- Second direction:
 - First step: show that the set of signaled qualities S is convex
 ▶ Proof
 - Second step: Illustration for N = 2.

- Second direction:
 - First step: show that the set of signaled qualities S is convex
 Proof
 - Second step: Illustration for N = 2.

Maryam Saeedi and Ali Shourideh

- Second direction:
 - First step: show that the set of signaled qualities S is convex
 Proof
 - Second step: Illustration for N = 2.

- Second direction:
 - First step: show that the set of signaled qualities S is convex
 Proof
 - Second step: Illustration for N = 2.

Maryam Saeedi and Ali Shourideh

- Second direction:
 - First step: show that the set of signaled qualities S is convex • Proof
 - Second step: Illustration for N = 2.

- Second steps for higher dimensions:
 - For every direction $\lambda \neq 0$, find two points in *S*, \tilde{q} such that

$$oldsymbol{\lambda} \cdot \overline{\mathbf{q}} \leq oldsymbol{\lambda} \cdot \widetilde{\mathbf{q}}$$

- If
$$\lambda_1/f_1 \leq \lambda_2/f_2 \leq \cdots \leq \lambda_N/f_N$$
, set $\tilde{\mathbf{q}} = \mathbf{q}$,

- Otherwise, pool to consecutive states; reduce the number of states and use induction.
- Since S is convex, separating hyperplane theorem implies that $\overline{\mathbf{q}}$ must belong to S.

Majorization: Continuous Case _____

- We can extend the results to the case with continuous distribution
 - Discrete distributions are dense in the space of distributions.
 - Use Doob's martingale convergence theorem to prove approximation works
- We say $q(\cdot) \succcurlyeq_F \overline{q}(\cdot)$ if

$$\begin{split} &\int_{\underline{\theta}}^{\theta} \overline{q}\left(\theta'\right) dF\left(\theta'\right) \geq \int_{\underline{\theta}}^{\theta} q\left(\theta'\right) dF\left(\theta'\right), \forall \theta \in \underline{\theta} = \left[\underline{\theta}, \overline{\theta}\right] \\ &\int_{\underline{\theta}}^{\overline{\theta}} \overline{q}\left(\theta\right) dF\left(\theta\right) = \int_{\underline{\theta}}^{\overline{\theta}} q\left(\theta\right) dF\left(\theta\right) \end{split}$$

Constructing Signals

- Given $\overline{q}(\theta)$ and $q(\theta)$ that satisfy majorization: What is (π, S) ?
- In general a hard problem to provide characterization of (π, S) ; Algorithm in the paper
- Example: Full mixing

Optimal Rating Systems _____

- Pareto optimal allocations
- Approach:

$$\max \int \lambda\left(\theta\right) \Pi\left(\theta\right) dF\left(\theta\right)$$

subject to

```
(PC),(IC),(Maj)
```

- Analogy: Mechanism Problem with Added Majorization Constraint
- Our focus is on
 - $\circ \ \lambda \left(\theta \right):$ decreasing; higher weight on lower-quality sellers
 - $\circ \ \lambda \left(\theta \right):$ increasing; higher weight on higher-quality sellers
 - o $\lambda\left(heta
 ight)$: hump-shaped; higher weight on mid-quality sellers

Total Surplus _____

Benchmark: First Best allocation

• maximizes total surplus ignoring all the constraints

$$C_{q}\left(q^{FB}\left(heta
ight), heta
ight)=1$$

• Incentive constraint:

$$\overline{q}'(\theta) = C_q(q(\theta), \theta) q'(\theta) = q'(\theta)$$

- Set $\overline{q}(\theta) = q(\theta)$
 - Satisfies IC
 - Satisfies majorization
- Maximizing total surplus: full information about quality

Low-Quality Seller Optimal ____

- $\lambda(\theta)$: decreasing; higher weight on lower-quality sellers • Textbook mechanism design problem
- Tradeoff: information rents vs. reallocation of profits
 - Want to allocate profits to the lowest quality-type
 - All higher quality types want to lie downward
- Reduce qualities relative to First Best

Low-Quality Seller Optimal _

Relaxed problem - w/o majorization constraint

$$\max \int \lambda\left(\theta\right) \Pi\left(\theta\right) dF\left(\theta\right)$$

subject to

$$\Pi'(\theta) = -C_{\theta}(q(\theta), \theta)$$

$$q(\theta) : \text{increasing}$$

$$\int_{\underline{\theta}}^{\overline{\theta}} \Pi(\theta) \, dF(\theta) = \int_{\underline{\theta}}^{\overline{\theta}} [q(\theta) - C(q(\theta), \theta)] \, dF(\theta)$$

$$\Pi(\theta) \ge 0$$

Proposition. A quality allocation $q(\theta)$ is low-quality seller optimal if and only if it is a solution to the relaxed problem. Moreover, if the cost function $C(\cdot, \cdot)$ is strictly submodular, then a low-quality seller optimal rating system is full mixing.

Maryam Saeedi and Ali Shourideh

Low-Quality Seller Optimal: Intuition

• The solution of the relaxed problem (with or without ironing)

$$C_{q}\left(q\left(\theta\right),\theta\right)<1$$

• Incentive constraint

$$\overline{q}'(\theta) = C_q(q(\theta), \theta) q'(\theta)$$

- $\overline{q}(\theta)$ flatter than $q(\theta)$: majorization constraint holds and is slack
 - $\circ~$ If $C_q < 1$ for a positive measure of types, no separation of qualities

Constructing Signals _____

- When $\overline{q}(\theta)$ is flatter than $q(\theta)$ and majorization constraint never binds:
 - Finding signals is very straightforward: partially revealing signal

• Signal:

$$S = \{q(\theta) : \theta \in \Theta\} \cup \{\emptyset\}$$
$$\pi(\{s\} | q) = \begin{cases} \alpha(q) & s = q\\ 1 - \alpha(q) & s = \emptyset \end{cases}$$

• Reveal quality or say nothing!

Low-Quality Seller Optimal ____

- Intuition:
 - Higher weight on low-quality sellers: Extract more from higher quality sellers
 - Underprovision of quality to avoid lying by the higher types
 - Some form of pooling is required to achieve this

High-Quality Seller Optimal

- Suppose $\lambda\left(\theta\right)$ is increasing in θ
- Solution of the relaxed mechanism design problem satisfies

 $C_{q}\left(q\left(\theta\right),\theta\right)>1$

• IC:

$$\overline{q}'(\theta) = C_{q}(q(\theta), \theta) q'(\theta) > q'(\theta)$$

- Majorization inequality will be violated
 - Intuition: overprovision of quality to prevent low θ 's from lying upwards; signaled quality must be steep

High Quality Seller Optimal ____

Proposition. Suppose that $\lambda(\theta)$ is increasing. Then optimal rating system is full information.

▶ skip

• Sketch of the proof:

• Consider a relaxed optimization problem; replace IC with

$$\Pi\left(heta
ight) - \Pi\left(heta
ight) \leq -\int_{ heta}^{ heta} C_{ heta}\left(q\left(heta'
ight), heta'
ight) d heta'$$

similar to restricting sellers to only lie upward

High Quality Seller Optimal _

Proposition. Suppose that $\lambda(\theta)$ is increasing. Then optimal rating system is full information.

- Sketch of the proof:
- if majorization is slack in an interval *I*
 - relaxed IC must be binding: otherwise take from lower types and give it to higher types
 - over provision of quality relative to FB, i.e., $C_q \ge 1$: if not:
 - increase *q* for those types; compensate them for the cost increase
 - distribute the remaining surplus across all types

High Quality Seller Optimal: Perturbation _____

Maryam Saeedi and Ali Shourideh

High Quality Seller Optimal: Perturbation _

Maryam Saeedi and Ali Shourideh

High Quality Seller Optimal: Perturbation

Maryam Saeedi and Ali Shourideh

High Quality Seller Optimal ____

Proposition. Suppose that $\lambda(\theta)$ is increasing. Then optimal rating system is full information.

- Sketch of the proof:
 - $\circ~$ Having majorization slack, incentive constraint binding and $C_q \geq 1$ is the contradiction

Mid Quality Seller Optimal _

• $\lambda(\theta)$ is increasing below θ^* and decreasing above θ^* .

Proposition. Suppose that $\lambda(\theta)$ is hump-shaped. Then there exists $\tilde{\theta} < \theta^*$ such that for all values of $q \leq \lim_{\theta \nearrow \tilde{\theta}} q(\theta)$, the optimal rating system is fully revealing while it is partially revealing for values of q above $q(\tilde{\theta})$. Finally, $q(\cdot)$ and $\overline{q}(\cdot)$ have a discontinuity at $\tilde{\theta}$.

Mid Quality Seller Optimal ____

Pareto Optimal Ratings _____

• General insight:

- Cannot push profits towards higher qualities; at best should reveal all the information
- Can use partially revealing to reallocate profits to lower qualities

Random Quality Outcomes _____

- Choice: q
- Realized quality: $x \sim G(x|q)$
- Int.: observes *x*; sends signal $s \in S$ with dist. $\pi(s|x)$
- Signaled qualities

$$\overline{x}(x) = \int \mathbb{E}[x|s] \pi(ds|x).$$

• Assumption: $\overline{x}(x)$ is increasing in *x*.

Random Quality Outcomes _____

- The same majorization result holds
- $\overline{x} \preccurlyeq_H x$ iff

$$\int_{0}^{x} \left[\overline{x} \left(x' \right) - x' \right] dH \left(x' \right) \ge 0$$
$$\int_{0}^{1} \left[\overline{x} \left(x \right) - x \right] dH \left(x \right) = 0$$

where

$$H(x) = \int_{\Theta} G(x|q(\theta)) \, dF(\theta)$$

Monotone Partitions are Optimal ____

Proposition. If Assumption 2 holds, then a Pareto optimal rating system is a monotone partition.

• Assumption 2

- Similar to Moldovanu, Kleiner, and Strack (2020)
- No need to use mixing
- pooling does not lead to bunching

Two Types _____

- Two types: $\theta_1 < \theta_2$
- $\lambda(\theta_2) = 0$
- Problem equivalent to $\max \int \Gamma(x)\overline{x}(x)dH(x)$ subject to majorization and monotonicity.
- Gain function

$$\Gamma\left(x\right) = \frac{g\left(x|q_{1}\right)}{h\left(x\right)} \left(1 + \gamma_{1} \frac{g_{q}\left(x|q_{1}\right)}{g\left(x|q_{1}\right)} + \gamma_{2} \frac{g_{q}\left(x|q_{2}\right)}{g\left(x|q_{2}\right)} \frac{g\left(x|q_{2}\right)}{g\left(x|q_{1}\right)}\right)$$

Two Types _____

- Two types: $\theta_1 < \theta_2$
- $\lambda(\theta_2) = 0$
- Problem equivalent to $\max \int \Gamma(x)\overline{x}(x)dH(x)$ subject to majorization and monotonicity.
- Gain function

$$\Gamma\left(x\right) = \underbrace{\frac{g\left(x|q_{1}\right)}{h\left(x\right)}}_{\text{decreasing: pool}} \left(1 + \gamma_{1}\frac{g_{q}\left(x|q_{1}\right)}{g\left(x|q_{1}\right)} + \gamma_{2}\frac{g_{q}\left(x|q_{2}\right)}{g\left(x|q_{2}\right)}\frac{g\left(x|q_{2}\right)}{g\left(x|q_{1}\right)}\right)$$

Two Types _____

- Two types: $\theta_1 < \theta_2$
- $\lambda(\theta_2) = 0$
- Problem equivalent to $\max \int \Gamma(x)\overline{x}(x)dH(x)$ subject to majorization and monotonicity.
- Gain function

$$\Gamma\left(x\right) = \underbrace{\frac{g\left(x|q_{1}\right)}{h\left(x\right)}}_{\text{decreasing: pool}} \left(1 + \underbrace{\gamma_{1}\frac{g_{q}\left(x|q_{1}\right)}{g\left(x|q_{1}\right)} + \gamma_{2}\frac{g_{q}\left(x|q_{2}\right)}{g\left(x|q_{2}\right)}\frac{g\left(x|q_{2}\right)}{g\left(x|q_{1}\right)}}_{\text{IC1 and IC2, increasing: separate}}\right)$$

Proposition. Suppose that the gain function $\Gamma(x)$ is continuously differentiable and that its derivative changes sign $k < \infty$ times. Then, the optimal information structure is an alternating partition with at most *k* intervals.

Maryam Saeedi and Ali Shourideh

Proposition. Suppose that Assumptions 2 and 3 hold. If at the optimum $q_2 \ge q_1$, then there exists two thresholds $x_1 < x_2$ where optimal rating system is fully revealing for values of x below x_1 and above x_2 while it is pooling for values of $x \in (x_1, x_2)$.

Assumption 3

Role of The Intermediary _____

- Suppose that the intermediary charges a flat fee
- Then problem is similar to the low quality seller optimal
- You may want to exclude some sellers
- Partially revealing rating system is optimal

- Rating Systems in a competitive model of adverse selection and moral hazard
- Provide full characterization of feasible allocations:
 - Majorization
- Pareto optimal rating systems
- Random quality realization

Thank You!

Maryam Saeedi and Ali Shourideh

Random Quality Outcomes, Assumptions ____

- The distribution function g(x|q) satisfies:
 - 1. Average value of x is q, i.e., $\int_0^1 xg(x|q) dx = q$.
 - 2. The distribution function g(x|q) is continuously differentiable with respect to x and q for all values of $x \in [0, 1]$ and $q \in (0, 1)$.
 - 3. The distribution function g(x|q) satisfies full support, i.e., $g(x|q) > 0, \forall x \in (0, 1)$ and monotone likelihood ratio, i.e., $g_q(x|q) / q(x|q)$ is strictly increasing in x.

Role of Entry _____

- Let's assume that the outside option of buyers is random: $v \sim G(v)$
- Outside option of sellers is π
- There will be an endogenous lower threshold θ for entry
- Everything is the same as before; all the results go through

Role of The Intermediary _____

- Suppose that the intermediary charges a flat fee
- Then problem is similar to the buyer optimal
- Partially revealing rating system is optimal

Related Literature

• Bayesian Persuasion: Kamenica and Gentzkow (2011), Rayo and Segal (2010), Gentzkow and Kamenica (2016), Dworczak and Martini (2019), Mathevet, Perego and Taneva (2019), ...

• Characterize second order expectations + endogenous state

• Certification and disclosure: Lizzeri (1999), Ostrovsky and Schwartz (2010), Harbough and Rasmusen (2018), Hopenhayn and Saeedi (2019), Vellodi (2019), ...

• Joint mechanism and information design

• (Dynamic) Moral Hazard and limited information/memory: Ekmekci (2011), Liu and Skrzpacz (2014), Horner and Lambert (2018), Bhaskar and Thomas (2018), ...

• Hiding information is sometimes good for incentive provision

Convexity of *S*_____

• Discrete signal space:

$$\overline{q}_{i} = \sum_{s} \pi \left(\{s\} | q_{i} \right) \frac{\sum_{j} \pi \left(\{s\} | q_{j} \right) f_{j} q_{j}}{\sum_{j} \pi \left(\{s\} | q_{j} \right) f_{j}}$$

• Alternative representation of the RS:

$$\tau \in \Delta\left(\Delta\left(\Theta\right)\right): \mu_{j}^{s} = \frac{\pi\left(\left\{s\right\}|q_{j}\right)f_{j}}{\sum_{j}\pi\left(\left\{s\right\}|q_{j}\right)f_{j}}, \tau\left(\left\{\boldsymbol{\mu}^{s}\right\}\right) = \sum_{j}\pi\left(\left\{s\right\}|q_{j}\right)f_{j}$$

• Bayes plausibility

$${f f}=\int_{\Delta(\Theta)} {m \mu} d au$$

• We can write signaled quality as

$$\overline{\mathbf{q}} = \operatorname{diag}\left(\mathbf{f}\right)^{-1} \int \boldsymbol{\mu} \boldsymbol{\mu}^T d\tau \mathbf{q} = \mathbf{A}\mathbf{q}$$

Maryam Saeedi and Ali Shourideh

Convexity of *S* ____

• The set S is given by

$$\mathcal{S} = \left\{ \overline{\mathbf{q}} : \exists \tau \in \Delta\left(\Delta\left(\Theta\right)\right), \int \boldsymbol{\mu} d\tau = \mathbf{f}, \overline{\mathbf{q}} = \operatorname{diag}\left(\mathbf{f}\right)^{-1} \int \boldsymbol{\mu} \boldsymbol{\mu}^{T} d\tau \right\}$$

- For any τ₁, τ₂ satisfying Bayes plausibility, i.e., ∫ μdτ = f, their convex combination also satisfies BP since integration is a linear operator.
- Therefore

$$\begin{split} \lambda \overline{\mathbf{q}}_1 + (1 - \lambda) \, \overline{\mathbf{q}}_2 &= \lambda \text{diag} \, (\mathbf{f})^{-1} \int \boldsymbol{\mu} \boldsymbol{\mu}^T d\tau_1 + \\ (1 - \lambda) \, \text{diag} \, (\mathbf{f})^{-1} \int \boldsymbol{\mu} \boldsymbol{\mu}^T d\tau_2 \\ &= \text{diag} \, (\mathbf{f})^{-1} \int \boldsymbol{\mu} \boldsymbol{\mu}^T d \left(\lambda \tau_1 + (1 - \lambda) \, \tau_2 \right) \end{split}$$

• Since $\lambda \tau_1 + (1 - \lambda) \tau_2$ satisfies BP, $\lambda \overline{\mathbf{q}}_1 + (1 - \lambda) \overline{\mathbf{q}}_2 \in \mathcal{S}$

Maryam Saeedi and Ali Shourideh

Majorization: Basic Properties _____

- \succcurlyeq_F is transitive.
- The set of $\overline{\mathbf{q}}$ that *F*-majorize \mathbf{q} is convex.
- Can show that there exists a positive matrix ${\bf A}$ such that $\overline{{\bf q}}=\!\!{\bf A}{\bf q}$ where

$$\mathbf{f}^T \mathbf{A} = \mathbf{f}^T, \mathbf{A} \mathbf{e} = \mathbf{e}$$

with $e = (1, \dots, 1)$ and $f = (f_1, \dots, f_N)$.

- We refer to **A** as an *F*-stochastic matrix.
 - Set of *F*-stochastic matrices is closed under matrix multiplication.

▶ Back

Constructing Signals _____

• One easy case: $\overline{q}(\theta)$ flatter than $q(\theta)$, i.e., $\overline{q}'(\theta) < q'(\theta)$ • majorization constraint never binds.

• Signal:

$$S = \{q(\theta) : \theta \in \Theta\} \cup \{\emptyset\}$$
$$\pi(\{s\} | q) = \begin{cases} \alpha(q) & s = q\\ 1 - \alpha(q) & s = \emptyset \end{cases}$$

Non-separating signal _

When $\overline{q}(\theta)$ is flatter than $q(\theta)$

Random Quality Distribution

Assumption 2. The distribution function g(x|q) satisfies:

- 1. Average value of x is q, i.e., $\int_0^1 xg(x|q) dx = q$.
- 2. The distribution function g(x|q) is continuously differentiable with respect to x and q for all values of $x \in [0, 1]$ and $q \in (0, 1)$.
- 3. The distribution function g(x|q) satisfies full support, i.e., $g(x|q) > 0, \forall x \in (0, 1)$ and monotone likelihood ratio, i.e., $g_q(x|q)/q(x|q)$ is strictly increasing in x.

▶ Back

Random Quality Distribution

Assumption 3. For arbitrary $q_2 > q_1$, define the function $\hat{x}(z)$ as the solution of $z = g(\hat{x}(z)|q_2)/g(\hat{x}(z)|q_1)$. The function $\hat{x}(z)$ must satisfy the following properties:

- 1. The function $\phi(z) = g_q(\hat{x}(z)|q) / g(\hat{x}(z)|q)$ satisfies $\phi''(z) \le 0$,
- 2. The function $\psi(z) = zg_q(\hat{x}(z)|q) / g(\hat{x}(z)|q)$ satisfies $\psi''(z) \ge 0$,
- 3. The function $\phi''(z) / \psi''(z)$ is increasing in *z*.

Back

Constructing Signals: Algorithm ____

- For the discrete case, we can give an algorithm to construct the signals (rough idea; much more details in the actual proof)
 - 1. Start from **q**
 - 2. Consider a convex combination of two signals:
 - 2.1 Full revelation: $\pi^{FI}(\{q\} | q) = 1$
 - 2.2 Pooling signal: pool two qualities q_i and q_j

$$S = \{q_1, \cdots, q_N\} - \{q_i, q_j\} \cup \{q_{ij}\}$$
 $\pi^{i,j}\left(\{s\} \mid q\right) = egin{cases} 1 & s = q, q
eq q_i, q_j \ 1 & s = q_{ij}, q = q_i, q_j \end{cases}$

2.3 Send $\pi^{\it F\!I}$ with probability α and $\pi^{i,j}$ with probability 1 - α

- 3. Choose α so that the resulting signaled quality has one element in common with $\overline{\bf q}$
- 4. Repeat the same procedure on resulting signaled quality until reaching $\overline{\mathbf{q}} \rightarrow \text{Back}$

Optimal Rating Design