

Asymmetric and State Dependent Dynamics in Credit and Labor Markets

Petrosky-Nadeau, Tengelsen, and Wasmer FRB San Francisco, CMU, and Sciences Po

Penn State - April 13, 2016

The views expressed in this paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of San Francisco or the Federal Reserve System.

Overview - Time series asymmetries

■ Unemployment and BAA- 10Y Treasury interest rate spread

- High contemporaneous business cycle correlation
- Similar time series asymmetry:
 - Skewness and kurtosis of deviations from trend

Overview - Time series asymmetries in the literature

Steep, deep or delayed? - focus here on deepness, asymmetry in levels

- Hanson and Prescott (2000): capacity constraints limit booms
- Kocherlakota (2000): financial constraint amplify downturns
- Acemoglu and Scott (1997): learning by doing amplifies trough

In this paper: search and matching in labor and credit markets

 Congestion property of matching markets limits booms and amplifies downturns

Steepness - asymmetry in growth rates

 Boldrin and Levine (2001), Jovanovic (2003), Van Nieuwerburgh and Veldkamp (2006),

Overview - State dependent dynamics

Unemployment response to 1 p.p. increase in BAA-10 yr Treasury spread

- Unemployment forecast regressions with business cycle indicator
 - Unemployment moves twice as much during a recession compared to normal times
 - ► Little response during expansions

Overview - State dependence in the literature

U.S. time series evidence following various approaches:

- Smooth Transition VARs: Government spending (Auerbach and Gorodnichenko 2012)
- Local projection approach: Jorda (2005), Ramey and Zubairy (2015)
- Overview of the empirical literature: Ramey (2016)

In this paper

- Empirics: local projection
- Model (Today): Theoretical IRFs increasing in unemployment both due to concavity of matching functions

Overview - Theory needed to account for facts

Search in the labor market:

- Diamond-Mortensen-Pissarides in a rep. agent DSGE model
- Congestion in matching:
 - Elasticity of matching to change in vacancy increases with unemployment
 - Asymmetry in hiring over the business cycle

Search in the credit market:

- New projects search for financial institutions
 - Additional cost to job creation
- Share the rents of production
 - Reduce the surplus of a labor match
- Financial multiplier:
 - Amplifies shocks to productivity and credit market
 - Increasing in search costs in the credit market

Overview - Taking the model to the data

- Solution method and estimation on U.S. data
 - Non-linear model solved by projection algorithm
 - Parameters estimated by Simulated Method of Moments
 - Particle filter to obtain model implied histories of productivity and credit shocks
- Quantitative results: (Preliminary)
 - Present model moments
 - State dependent IRFs
 - Shock histories and counterfactuals

Outline

Empirical facts

Model

Estimate and analyze the model

Discussion

Credit and labor markets - time series asymmetries

- Credit spread: Annualized return on BAA corporate bond 10 year treasuries
- Unemployment rate: civilian population over 16

Credit and labor markets - time series asymmetries

1953:I - 2015:III	U	Spread	
Standard moments			
Mean (raw, %)	6.4	2.2	
Standard deviation	0.12	0.12	
Higher order moments			
Skewness	0.57	1.69	
Kurtosis	3.14	9.77	

- Measure moments removing a HP trend
- Skewness: evidence of "deepness"
- Kurtosis: importance of rare event far from mean

Credit and labor markets - state dependence

Local projection approach, Jorda 2005:

- \blacksquare Run forecast resgression of different horizons h
- Horizon h regression coefficients on the variable of interest map out an empirical impulse response
- Approach permits the inclusion of an interaction term to test for state dependence
- Advantage: flexible and transparent

State dependence - local projection

$$\left| \mathcal{U}_{t+h} = \beta_0 + \beta_{R,h}(L)R_t + \beta_{D,h}(L)D_t + \beta_{DR,h}(L)DR_t + \beta_X(L)X_t + \varepsilon_{t+h} \right|$$

- U_{t+h} : h > 0 periods ahead unemployment rate
- \blacksquare R_t : measure of credit spread
- lacksquare D_t : dummies for state of economy
- DR_t : interaction terms between D_t and R_t
- \blacksquare X_t : vector of controls

Coefficients of interest: $\beta_{DR}(L)$

- Indicates whether or not credit markets move symmetrically with unemployment over the business cycle
- Trace out an empirical impulse response function

Business cycle indicator

Cyclical component of labor market tightness, $\tilde{\theta}$

- **Expansion threshold:** $\tilde{\theta} > 80$ th pctl
- Recession threshold: $\tilde{\theta}$ < 20th pctl

Alternative indicators and thresholds [Link]

Regression results - Unemployment rate

Table: Regression results - credit market shocks and unemployment at different forecast horizons (R=BAA10YM)

I I a mi — a m	l ₋ 1	l- 0	1- 2	1- 1	1- E	1- (
Horizon:	h=1	h=2	h=3	h=4	h=5	h=6
β_R	0.255***	0.396***	0.493**	0.619***	0.552**	0.561**
	(0.082)	(0.170)	(0.220)	(0.259)	(0.327)	(0.312)
β_{R_REC}	0.053	0.166*	0.351**	0.317*	0.208	0.143
, 1121120	(0.065)	(0.120)	(0.182)	(0.207)	(0.231)	(0.245)
β_{R_EXP}	-0.129	-0.307**	-0.454**	-0.405**	-0.201	-0.122
, K_LIII	(0.109)	(0.165)	(0.211)	(0.239)	(0.258)	(0.262)
Obs.	248	247	246	245	244	243
R^2	.98	.92	.84	.75	.69	.66

Additional Regressions [Link], F-tests [Link]

State dependence - unemployment rate

Unemployment response to a 1 p.p. increase in the credit spread

- Twice as large during a recession compared to normal times
- Results robust to alternative measures of credit spread [Link] and recession indicator [Link] or forecasting the V-U ratio [Link]

Summary

Asymmetry:

 Unemployment and measures of the spread have longer right tails (skewness) and a significant portion of the variance is attributable to infrequent large deviation (kurtosis).

State dependence:

■ Labor market response when the spread increases 1 p.p. much larger if the labor market is slack.

Outline

Empirical facts

Model

Estimate and analyze the model

Discussion

Model

Three types of agents

- 1. Workers in a representative households supply labor
- 2. Firms produce with labor
- 3. Financial institutions supply funds to firms

Two search frictional markets

- 1. Labor market: matching unemployed ${\cal U}$ and vacant jobs ${\cal V}$
- 2. Credit market: matching new projects \mathcal{N}_c and financial institutions \mathcal{B}_c

Two measures of market tightness and Nash bargained prices:

- 1. Labor: tightness θ and wage W with share $\alpha_L \in (0,1)$ to worker
- 2. Credit: tightness ϕ and repayment Ψ with share $\alpha_C \in (0,1)$ to creditor

Search and matching - financial market

Firms: add production capacity (job) matching with a creditor

- Place \mathcal{N}_{ct} potential projects to search at unit cost $\kappa_I > 0$
- Match with a creditor at rate p_t
- Receive funds when job is vacant to cover costs
- Share revenues during production

Financial institutions: search and manage credit market matches

- Place \mathcal{B}_{ct} units of effort to search at unit cost $\kappa_{Bt} > 0$
- Match with a creditor at rate \bar{p}_t
- Provide funds when job is vacant to cover costs
- Receive payment from jobs in production

Search and matching - financial market

Meetings in the financial market: CRS matching function $M_c(\mathcal{B}_{ct}, \mathcal{N}_{ct})$

Contact rates - function of credit tightness $\phi_t = \mathcal{N}_{ct}/\mathcal{B}_{ct}$:

Project meets creditor:

$$p_t = \frac{M_c(\mathcal{B}_{ct}, \mathcal{N}_{ct})}{\mathcal{N}_{ct}} = p(\phi_t) \text{ with } p'(\phi_t) < 0$$

Creditor meets project:

$$\bar{p}_t = \frac{M_c(\mathcal{B}_{ct}, \mathcal{N}_{ct})}{\mathcal{B}_{ct}} = \bar{p}(\phi_t) \text{ with } \bar{p}_t'(\phi_t) > 0$$

Credit match separate at exogenous rate $s^{\mathbb{C}} \in (0,1)$

Search and matching - labor market

Vacant positions ${\cal V}$ search for the unemployed, funded by creditors :

- Have search costs $\gamma > 0$ per vacancy per period of time
- Find a worker with probability $q_t \in (0,1)$

Unemployment workers \mathcal{U} search for vacant jobs

- \blacksquare Enjoy leisure l and receive UI benefits b
- Find a job with probability $f_t \in (0,1)$

Matching governed by CRS function $M_l(\mathcal{V}_t, \mathcal{U}_t)$, with tightness $\theta = \frac{\mathcal{V}}{\mathcal{U}}$

$$q_t = \frac{M_l(\mathcal{V}_t, \mathcal{U}_t)}{\mathcal{V}_t} = q(\theta_t) \text{ with } q'(\theta_t) < 0,$$

$$f_t = \frac{M_l(\mathcal{V}_t, \mathcal{U}_t)}{\mathcal{U}_t} = f(\theta_t) \text{ with } f'(\theta_t) > 0.$$

Labor market - turnover and laws of motion

Two types of turnover:

- 1. Labor matches separate at rate $s^L \in (0,1)$
 - Worker becomes unemployed
 - ▶ Job becomes a vacant position
- 2. Credit matches separate at rate $s^C \in (0,1)$
 - Job is destroyed and worker becomes unemployed

Law of motion for unemployment:

$$\mathcal{U}_{t+1} = \mathcal{U}_t + \left[s^C + \left(1 - s^C\right)s^L\right]\mathcal{N}_t - M_l(\mathcal{V}_t, \mathcal{U}_t)$$

Law of motion for vacancies:

$$\mathcal{V}_t = \left(1 - s^{C}\right) \left[\left(1 - q(\theta_{t-1})\right) \mathcal{V}_{t-1} + s^{L} \mathcal{N}_{t-1}\right] + M_c(\mathcal{B}_{ct}, \mathcal{N}_{ct})$$

Firm's decision problem

Choose new projects to maximize the value of the firm S_t :

$$\begin{split} S_t &= \max_{\mathcal{N}_{ct}} \left[X_t \mathcal{N}_t - W_t \mathcal{N}_t - \Psi_t \mathcal{N}_t - \kappa_I \mathcal{N}_{ct} \right] + \mathbb{E}_t M_{t+1} \left[S_{t+1} \right] \\ &\text{subject to :} \\ \mathcal{V}_t &= \left(1 - s^C \right) \left[\left(1 - q(\theta_{t-1}) \right) \mathcal{V}_{t-1} + s^L \mathcal{N}_{t-1} \right] + p(\phi_t) \mathcal{N}_{ct} \\ \mathcal{N}_{t+1} &= \left(1 - s^C \right) \left[\left(1 - s^L \right) \mathcal{N}_t + q(\theta_t) \mathcal{V}_t \right] \end{split}$$

- \blacksquare X_t : labor productivity
- W_t : wage for each \mathcal{N}_t worker
- \blacksquare Ψ_t : repayment to each credit match currently generating revenue
- M_{t+1} : Household's stochastic discount factor between t and t+1

Firm marginal values: [Link]

Financial institution's decision problem

Choose effort in finding new projects to maximize its equity value B_t :

$$\begin{split} B_t &= \max_{\mathcal{B}_{ct}} \left[\Psi_t \mathcal{N}_t - \gamma \mathcal{V}_t - \kappa_{Bt} \mathcal{B}_{ct} \right] + \mathbb{E}_t M_{t+1} \left[B_{t+1} \right] \\ \text{subject to :} \\ \mathcal{V}_t &= \left(1 - s^C \right) \left[\left(1 - q(\theta_{t-1}) \right) \mathcal{V}_{t-1} + s^L \mathcal{N}_{t-1} \right] + \bar{p}(\phi_t) \mathcal{B}_{ct} \\ \mathcal{N}_{t+1} &= \left(1 - s^C \right) \left[\left(1 - s^L \right) \mathcal{N}_t + q(\theta_t) \mathcal{V}_t \right] \end{split}$$

- \blacksquare Ψ_t : repayment to each credit match currently generating revenue
- M_{t+1} : Household's stochastic discount factor between t and t+1

Marginal values: [Link]

Representative Household's decision problem

Choose consumption C_t and holding of risk free bonds A_t :

$$H_t = \max_{C_t, A_t} \left[u(C_t) + l\mathcal{U}_t \right] + \beta \mathbb{E}_t \left[H_{t+1} \right]$$
 subject to :
$$W_t \mathcal{N}_t + b\mathcal{U}_t + A_{t-1}(1 + r_{t-1}) + D_t^S + D_t^B = C_t + T_t + A_t$$
 Laws of motion of employed and unemployed

- \blacksquare β : time discount factor
- r_t : risk-free interest rate
- $D_t^S = X_t \mathcal{N}_t W_t \mathcal{N}_t \Psi_t \mathcal{N}_t \kappa_I \mathcal{N}_{Ct}$: firm dividends
- $D_t^B = \Psi_t \mathcal{N}_t \gamma \mathcal{V}_t \kappa_{Bt} \mathcal{B}_{ct}$: financial institution dividends
- \blacksquare T_t : lump sum taxes

Marginal values: [Link]

First order condition of the firm and financial institution:

$$S_{ct} = 0 \rightarrow \frac{\kappa_I}{p(\phi_t)} = S_{lt}$$
 $B_{ct} = 0 \rightarrow \frac{\kappa_{B_t}}{\bar{p}(\phi_t)} = B_{lt}$

Value of a vacant position to each side of the credit market equal to creation (search) costs

Define the joint value of a vacant position to the firm and the creditor:

$$K_t = \frac{\kappa_I}{p(\phi_t)} + \frac{\kappa_{B_t}}{\bar{p}(\phi_t)}$$

- Increasing in the cost of search in the credit market
- In anticipation of wage bargaining: firm's outside option in bargaining with worker

Bargaining over the joint match surplus $(B_{lt} - B_{ct}) + (S_{lt} - S_{ct})$:

- Share of surplus to the creditor: $\alpha_C \in (0,1)$
- Solve $\mathbb{E}_t \left[\Psi_{t+1} \right] = argmax \left(B_{lt} B_{ct} \right)^{\alpha_C} \left(S_{lt} S_{ct} \right)^{1-\alpha_C}$
- Sharing rule : $(1 \alpha_C)B_{l,t} = \alpha_C S_{l,t}$

Equilibrium credit market tightness:

$$\phi_t = \frac{1 - \alpha_C}{\alpha_C} \frac{\kappa_{Bt}}{\kappa_I}$$

- ϕ_t decreasing in α_C : relatively more entry of creditors
- \bullet ϕ_t increasing in search costs κ_{Bt}

Equilibrium expected repayment:

$$\begin{split} \mathbb{E}_{t} \left[\Psi_{t+1} \right] &= \alpha_{C} \mathbb{E}_{t} \left[X_{t+1} - W_{t+1} \right] \\ &+ (1 - \alpha_{C}) \left[\frac{\gamma}{q_{t}} \left(\frac{1 + r_{t}}{1 - s^{C}} \right) - \left(1 - s^{L} \right) \mathbb{E}_{t} \left[\frac{\gamma}{q_{t+1}} \right] \right]. \end{split}$$

Creditor receives:

- \bullet α_C of the profit flow from labor
- more if the current costs γ/q_t paid by the creditor in the period of price setting are large relative to expected in the future

Expected return on loans:

$$R_t = \frac{\mathbb{E}_t[\Psi_{t+1}]}{\gamma/q(\theta_t)} - \left(s^C + \left(1 - s^C\right)s^L\right)$$

- Rate which sets the expected discounted value of a loan, $\frac{\gamma}{R_t + q(\theta)}$ equal to the expected discounted repayment $\frac{q(\theta)}{R_t + q(\theta)} \frac{E_t[\Psi_{t+1}]}{R_t + s^C + (1 s^C)s^L}$
- **R** t strictly increasing in bargaining weight α_C

EXCESS RETURN: $R_t - R_t^0$

■ R_t^0 : competitive pricing in the credit market - creditor's surplus driven to 0 ($\alpha_C = 0$)

Bargaining and Equilibrium in the Labor Market

Each job is the joint interest of the firm and the creditor:

Joint marginal value of a vacant job:

$$S_{lt} + B_{lt} \equiv F_{lt} = -\gamma + (1 - s^{C}) \mathbb{E}_{t} M_{t+1} \left[q_{t} F_{gt+1} + (1 - q_{t}) F_{lt+1} \right]$$
 (1)

Joint marginal value of a filled job:

$$S_{gt} + B_{gt} \equiv F_{gt} = X_t - W_t + (1 - s^C) \mathbb{E}_t M_{t+1} \left[(1 - s^L) F_{gt+1} + s^L F_{lt+1} \right]$$
(2)

• Equilibrium in the financial market determined $F_{lt} = K_t$

Bargaining and Equilibrium in the Labor Market

Job creation condition:

$$\frac{K_t + \gamma}{q(\theta_t)} = \left(1 - s^{C}\right) \mathbb{E}_t M_{t+1} \left[F_{gt+1} + \left(\frac{1 - q(\theta_t)}{q(\theta_t)}\right) K_{t+1} \right]$$

- \blacksquare $\frac{K_t + \gamma}{q(\theta_t)}$: job creation costs
- F_{gt+1} : value a filled vacancy
- $\left(\frac{1-q(\theta_t)}{q(\theta_t)}\right)$ K_{t+1} : present value of unfilled vacancy

Expanded JC condition: [Link]

Bargaining and Equilibrium in the Labor Market

Nash wage rule:

$$W_{t} = \alpha_{L} \left(X_{t} + \theta_{t} \left[\gamma + \left[\frac{r_{t} + s^{C}}{(1 + r_{t})} \right] \frac{K_{t}}{(1 - s^{C})} \right] \right) + (1 - \alpha_{L}) Z_{t} - \alpha_{L} \left[\frac{r_{t} + s^{C}}{1 + r_{t}} \right] K_{t}$$

Nash bargaining between firm and worker:

- Worker has bargaining weight $\alpha_L \in (0,1)$
- Wage solves

$$W_{t} = argmax \left(\frac{H_{Nt} - H_{Ut}}{\lambda_{t}}\right)^{\alpha_{L}} \left(F_{gt} - F_{lt}\right)^{1 - \alpha_{L}}$$

- Wage satisfies sharing rule $\alpha_L (F_{gt} K_t) = (1 \alpha_L) (H_{Nt} H_{Ut}) / \lambda_t$
- Limit $K_t \rightarrow 0 \ \forall t$: $W_t = \alpha_L (X_t + \theta_t \gamma) + (1 \alpha_L) Z_t$

Outline

Empirical facts

Model

Estimate and analyze the model

Discussion

Estimation and analysis

- 1. Estimation by Simulated Method of Moments
- 2. Model moments and impulse responses
- 3. Non-linear Kalman filter: recovering the unobserved states

Simulated Method of Moments

$$\hat{\omega} = argmin \left(\mu - \frac{1}{S} \sum_{s=1}^{S} \mu_s(\omega)\right)' W^{-1} \left(\mu - \frac{1}{S} \sum_{s=1}^{S} \mu_s(\omega)\right)$$

- μ : vector of empirical moments of interest
- $\mu_s(\omega)$: vector of corresponding model models for a given vector of structural parameters ω
- *S*: number of model simulations of length *T*
- W: (optimal) weighting matrix, inverse of sample covariance matrix of moment condition

References: Duffie and Singleton (1993), Adda and Cooper (2003), Ruge-Murcia (2012)

Model solution and moments

Policy function solved with projection over state space (X_t, κ_{Bt}, N_t)

- $\log(X_t)$ and $\log(\kappa_{Bt})$ discretized with 9 grid points each; cubic splines (20 basis functions) in N for each $\log(X)$ and $\log(\kappa_{Bt})$ -levels
- Model condenses to one functional equation, the job creation condition
- Our approach: solve for the conditional expectation $E_t[F_{gt+1}]$ $\equiv \mathcal{F}(N_t, X_t, \kappa_{Bt})$ to satisfy the job creation condition
- Highly accurate method evaluated in Petrosky-Nadeau and Zhang (2013)

Average moments across 2000 simulations of length 474 (months)

Projection vs. Loglinearization

See Petrosky-Nadeau and Zhang (2016), Solving the DMP model Accurately

Estimation results - Data and Model Moments

		Data	Model
Mean unemployment	mean(U)	0.064	0.093
Unemployment volatility	σ_{U}	0.117	0.091
Mean vancancy rate	$mean(V_t)$	0.052	0.076
Vacancy rate volatility	σ_V	0.072	0.083
Vacancy-unem. correlation	$corr(U_t, V_t)$	-0.876	-0.379
Nage volatility	σ_V	0.010	0.045
Credit spread: mean	$mean(R_t)$	0.022	0.041
Credit spread: volatility	σ_R	0.12	0.078
Spread-unemp. correlation	$corr(U_t, R_t)$	0.448	0.192
Productivity: volatility	std(X)	0.008	0.009
Productivity: autocorrelation	autocorr(X)	0.739	0.732

Estimation results - Model parameters

	Parameter	Value	Std. Errors	Reference
Externally set:				
discount factor	β	.997		3 month U.S. T-bill
job-separation rate	s^L	0.032		JOLTS
credit separation rate	s^C	0.01/3		Firm exit rate
matching curvature	η_C	1.5		
search costs	κ_I	0.1		
Estimated paramaters: matching parameter worker bargaining weight creditor bargaining weight vacancy cost non-employment value	$egin{array}{l} \eta_L \ lpha_L \ lpha_C \ \gamma \ z \end{array}$	1.44 0.61 0.38 0.329 0.806	() () () ()	
search costs	$\frac{z}{\kappa_B}$	0.187	()	
persistence parameter	ρ_x	0.943	()	
persistence parameter	$ ho_{\kappa_R}$	0.717	. ,	
spillover parameter	ρ_{x,κ_B}	-0.147		
standard deviation	σ_x	0.009	()	
standard deviation	σ_{κ_B}	0.032	()	

Quantitative results - sample path

Sample model simulation: unemployment rate and credit spread

Quantitative results - moments

Table: EMPIRICAL AND MODEL MOMENTS

	U			Spread		
	data	model		data	model	
Mean	0.064	0.093	(0.022	0.041	
S.d.	0.117	0.091	(0.120	0.078	
Skewness	0.573	0.489	-	1.679	0.113	
Kurtosis	3.144	3.433	ç	9.770	2.692	

Quantitative results - theoretical IRFs to X shock

State dependent impulse responses:

- 1. Labor market tightness: $\partial \theta_t / \partial v_{xt}$ increasing in \mathcal{U}_t
 - \rightarrow convexity of job filling rate $q(\theta_t)$
- 2. Unemployment: $\partial \mathcal{U}_t / \partial \theta_t$ increasing in \mathcal{U}_t
 - \rightarrow concavity and \mathcal{U} \mathcal{V} complementarity in $M_l(\mathcal{U}_t, \mathcal{V}_t)$

IMPULSE RESPONSES TO A PERCENTAGE DEVIATION NEGATIVE PRODUCTIVITY SHOCK

Quantitative results - theoretical IRFs to X shock

- 3. Credit spread $R_t R_t^*$
 - ► Recall that $R_t = \frac{\mathbb{E}_t[\Psi_{t+1}]}{\gamma/q(\theta_t)} \left(s^C + \left(1 s^C\right)s^L\right)$
 - With bargaining power lenders receive more than the zero profit return to a project
 - Greater cushion in a recession

IMPULSE RESPONSES TO A PERCENTAGE DEVIATION NEGATIVE PRODUCTIVITY SHOCK

Quantitative results - theoretical IRFs to credit shock

Shock to search costs κ_{Bt} for a 1 p.p. increase in credit spread:

- Two different initial U rates
- \bullet response 80% greater

IMPULSE RESPONSES TO A FINANCIAL MARKET SHOCK

Quantitative results - theoretical IRFs to credit shock

Shock to search costs κ_{Bt} for a 1 p.p. increase in credit spread:

- Two different initial U rates
- *U* response 3.5 times larger

IMPULSE RESPONSES TO A FINANCIAL MARKET SHOCK

Particle filter

Assess the conditional probability of date t observation of Y_t given a history of past realizations $Y^{t-1} = \{Y_j\}_{j=1}^{t-1}$:

$$L(Y_t \mid Y^{t-1})$$

Sequence of conditional likelihoods:

$$L(Y) = \prod_{t=1}^{T} L(Y_t \mid Y^{t-1})$$

■ Each assigned the likelihood of a candidate shock \hat{v}_t by its assumed probability distribution:

$$L(Y_t \mid Y^{t-1}) = p_{\nu}(\hat{\nu}_t)$$

References: Fernandez-Villaverde and Rubio-Ramirez (2007), DeJong and Dave (2011)

Particle filter - no measurement error

■ States and observables follow (dimension of v_t matches the dimension of Y_t)

$$Z_t = f(Z_{t-1}, \nu_t)$$

$$Y_t = g(Z_t)$$

■ Conditional on the structural parameters ω , solve, in sequence:

$$Z_t = g^{-1}(Y_t)$$
 and $\nu_t = \nu(Y_t, Z_{t-1})$

■ For a given initial Z_0 , use the recursion to obtain series

$$Z^{T} = \{Z_{t}\}_{t=1}^{T} \text{ and } v^{T} = \{v_{t}\}_{t=1}^{T}$$

Particle filter - no measurement error

• Construct the likelihood for Y^T conditional on Z_0 :

$$L(Y^T \mid Z_0, \omega) = \prod_{t=1}^T p(\nu_t(Y^t, Z_0))$$

■ Integrate over the model implied distribution for Z_0 :

$$L(Y^T \mid \omega) = \prod_{t=1}^T \int p(\nu_t(Y^t, Z_0)) p(Z_0 \mid Y^t) dZ_0$$

 \Rightarrow Enter the particle filter

And turn to Fernandez-Villaverde and Rubio-Ramirez (2007), DeJong and Dave (2011) for details on implementation

Model implied states, 1976-2015

MODEL IMPLIED PRODUCTIVITY

■ Realizations symmetric around the mean

Model implied states, 1976-2015

MODEL IMPLIED CREDIT SEARCH COSTS

Skewness and kurtosis appear with the financial crisis

Counterfactual

ACTUAL AND COUNTERFACTUAL UNEMPLOYMENT RATE (DETRENDED) FIXING CREDIT SEARCH COST FROM DEC. 2007 TO HISTORIC MEAN

■ Credit shocks have added, persistently, 0.5 p.p. to unemployment rate

Conclusion - work in progress

Summary:

- Asymmetry and state dependence in labor and credit market variables over the business cycle
- Arises in a macro model with search frictional credit and labor markets

To do (partial list):

- 1. Add higher order moments to estimation
- 2. Endogenize job destruction and credit destruction

State dependence - labor market tighntess

V-U ratio response to a 1 p.p. increase in the credit spread

Firm - marginal values

Additional project \mathcal{N}_{ct} searching in the credit market:

$$S_{c,t} = -\kappa_I + p_t S_{l,t} + (1 - p_t) \mathbb{E}_t M_{t+1} S_{c,t+1}$$

Additional vacant position searching in the labor market:

$$S_{l,t} = \left(1 - s^{C}\right) \mathbb{E}_{t} M_{t+1} \left[q_{t} S_{g,t+1} + (1 - q_{t}) S_{l,t+1}\right] + s^{C} \mathbb{E}_{t} M_{t+1} \left[S_{c,t+1}\right]$$

Additional filled position generating revenue:

$$S_{g,t} = X_t - W_t - \Psi_t + \left(1 - s^{C}\right) \mathbb{E}_t M_{t+1} \left[\left(1 - s^{L}\right) S_{g,t+1} + s^{L} S_{l,t+1} \right] + s^{C} \mathbb{E}_t M_{t+1} \left[S_{c,t+1} \right]$$

Financial institution - marginal values

Additional unit of effort \mathcal{B}_{ct} searching in the credit market:

$$B_{c,t} = -\kappa_{Bt} + \bar{p}_t B_{l,t} + (1 - \bar{p}_t) \mathbb{E}_t M_{t+1} B_{c,t+1}$$

Additional vacant position searching in the labor market:

$$B_{l,t} = -\gamma + \left(1 - s^{\mathsf{C}}\right) \mathbb{E}_t M_{t+1} \left[q_t B_{g,t+1} + (1 - q_t) B_{l,t+1}\right] + s^{\mathsf{C}} \mathbb{E}_t M_{t+1} B_{ct+1}$$

Additional filled position generating revenue:

$$B_{g,t} = \Psi_t + \left(1 - s^C\right) \mathbb{E}_t M_{t+1} \left[(1 - s^L) B_{g,t+1} + s^L B_{l,t+1} \right] + s^C \mathbb{E}_t M_{t+1} B_{c,t+1}$$

Representative Household - marginal values

Additional unemployed worker U_t :

$$\frac{H_{Ut}}{\lambda_t} = Z_t + \beta \mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} \left[f(\theta_t) \frac{H_{Nt+1}}{\lambda_{t+1}} + (1 - f(\theta_t)) \frac{H_{Ut+1}}{\lambda_{t+1}} \right]$$

Additional employed worker \mathcal{N}_t :

$$\frac{H_{Nt}}{\lambda_t} = W_t + \beta \mathbb{E}_t \frac{\lambda_{t+1}}{\lambda_t} \left[\left(1 - s^C \right) \left(1 - s^L \right) \frac{H_{Nt+1}}{\lambda_{t+1}} + \left(s^C + \left(1 - s^C \right) s^L \right) \frac{H_{Ut+1}}{\lambda_{t+1}} \right]$$

- \bullet λ_t : Lagrange multiplier on budget constraint
- $Z_t = b + l/\lambda_t$: flow utility when unemployed

Bargaining and Equilibrium in the Labor Market

Job creation condition:

$$\frac{\Gamma_t}{q_t} = \mathbb{E}_t M_{t+1} \left[X_{t+1} - W_{t+1} + \left(1 - s^C \right) \left[\left(1 - s^L \right) \frac{\Gamma_{t+1}}{q_{t+1}} + s^L K_{t+1} \right] \right]$$

$$\Gamma_t = \frac{K_t + \gamma}{(1 - s^C)} - (1 - q_t) \mathbb{E}_t M_{t+1} K_{t+1}$$

■ Limit as $s^C = 0$ and $K_t \to 0 \forall t$:

$$\frac{\gamma}{q_t} = \mathbb{E}_t M_{t+1} \left[X_{t+1} - W_{t+1} + \left(1 - s^L \right) \frac{\gamma}{q_{t+1}} \right]$$