Asymmetric and State Dependent Dynamics in Credit and Labor Markets

Petrosky-Nadeau, Tengelsen, and Wasmer FRB San Francisco, CMU, and Sciences Po

Penn State - April 13, 2016

Overview - Time series asymmetries

■ Unemployment and BAA- 10Y Treasury interest rate spread

- High contemporaneous business cycle correlation
- Similar time series asymmetry:
- Skewness and kurtosis of deviations from trend

Overview - Time series asymmetries in the literature

Steep, deep or delayed ? - focus here on deepness, asymmetry in levels

■ Hanson and Prescott (2000): capacity constraints limit booms
■ Kocherlakota (2000): financial constraint amplify downturns
■ Acemoglu and Scott (1997): learning by doing amplifies trough

In this paper: search and matching in labor and credit markets

■ Congestion property of matching markets limits booms and amplifies downturns

Steepness - asymmetry in growth rates
■ Boldrin and Levine (2001), Jovanovic (2003), Van Nieuwerburgh and Veldkamp (2006),

Overview - State dependent dynamics

Unemployment response to 1 p.p. increase in BAA-10 yr Treasury spread

■ Unemployment forecast regressions with business cycle indicator

- Unemployment moves twice as much during a recession compared to normal times
- Little response during expansions

Overview - State dependence in the literature

U.S. time series evidence following various approaches:

■ Smooth Transition VARs: Govermnent spending (Auerbach and Gorodnichenko 2012)
■ Local projection approach: Jorda (2005), Ramey and Zubairy (2015)

■ Overview of the empirical literature: Ramey (2016)

In this paper

- Empirics: local projection

■ Model (Today): Theoretical IRFs increasing in unemployment both due to concavity of matching functions

Overview - Theory needed to account for facts

Search in the labor market:
■ Diamond-Mortensen-Pissarides in a rep. agent DSGE model

- Congestion in matching:
- Elasticity of matching to change in vacancy increases with unemployment
- Asymmetry in hiring over the business cycle

Search in the credit market:

- New projects search for financial institutions
- Additional cost to job creation
- Share the rents of production
- Reduce the surplus of a labor match

■ Financial multiplier:

- Amplifies shocks to productivity and credit market
- Increasing in search costs in the credit market

Overview - Taking the model to the data

- Solution method and estimation on U.S. data
- Non-linear model solved by projection algorithm
- Parameters estimated by Simulated Method of Moments
- Particle filter to obtain model implied histories of productivity and credit shocks

■ Quantitative results: (Preliminary)

- Present model moments
- State dependent IRFs
- Shock histories and counterfactuals

Outline

Empirical facts

Model

Estimate and analyze the model

Discussion

Credit and labor markets - time series asymmetries

■ Credit spread: Annualized return on BAA corporate bond - 10 year treasuries

■ Unemployment rate: civilian population over 16

Credit and labor markets - time series asymmetries

1953:I - 2015:III	U	Spread
Standard moments		
\quad Mean (raw, \%)	6.4	2.2
Standard deviation	0.12	0.12
Higher order moments		
\quad Skewness	0.57	1.69
Kurtosis	3.14	9.77

■ Measure moments removing a HP trend
■ Skewness: evidence of "deepness"

- Kurtosis: importance of rare event far from mean

Credit and labor markets - state dependence

Local projection approach, Jorda 2005:
■ Run forecast resgression of different horizons h

- Horizon h regression coefficients on the variable of interest map out an empirical impulse response

■ Approach permits the inclusion of an interaction term to test for state dependence

■ Advantage: flexible and transparent

State dependence - local projection

$$
\mathcal{U}_{t+h}=\beta_{0}+\beta_{R, h}(L) R_{t}+\beta_{D, h}(L) D_{t}+\beta_{D R, h}(L) D R_{t}+\beta_{X}(L) X_{t}+\varepsilon_{t+h}
$$

- $\mathcal{U}_{t+h}: h>0$ periods ahead unemployment rate
- R_{t} : measure of credit spread
- D_{t} : dummies for state of economy
- $D R_{t}$: interaction terms between D_{t} and R_{t}

■ X_{t} : vector of controls
Coefficients of interest: $\beta_{D R}(L)$
■ Indicates whether or not credit markets move symmetrically with unemployment over the business cycle

- Trace out an empirical impulse response function

Business cycle indicator

Cyclical component of labor market tightness, $\tilde{\theta}$

- Expansion threshold: $\tilde{\theta}>80$ th pctl

■ Recession threshold: $\tilde{\theta}<20$ th pctl

Alternative indicators and thresholds [Link]

Regression results - Unemployment rate

Table: Regression results - credit market shocks and unemployment at different forecast horizons ($\mathrm{R}=\mathrm{BAA} 10 \mathrm{YM}$)

Horizon:	$\mathrm{h}=1$	$\mathrm{~h}=2$	$\mathrm{~h}=3$	$\mathrm{~h}=4$	$\mathrm{~h}=5$	$\mathrm{~h}=6$
β_{R}	$0.255^{* * *}$	$0.396^{* * *}$	$0.493^{* *}$	$0.619^{* * *}$	$0.552^{* *}$	$0.561^{* *}$
	(0.082)	(0.170)	(0.220)	(0.259)	(0.327)	(0.312)
$\beta_{\text {R_REC }}$	0.053	0.166^{*}	$0.351^{* *}$	0.317^{*}	0.208	0.143
	(0.065)	(0.120)	(0.182)	(0.207)	(0.231)	(0.245)
$\beta_{\text {R_EXP }}$	-0.129	$-0.307^{* *}$	$-0.454^{* *}$	$-0.405^{* *}$	-0.201	-0.122
	(0.109)	(0.165)	(0.211)	(0.239)	(0.258)	(0.262)
Obs.	248	247	246	245	244	243
R^{2}	.98	.92	.84	.75	.69	.66

Additional Regressions [Link], F-tests [Link]

State dependence - unemployment rate

Unemployment response to a 1 p.p. increase in the credit spread

■ Twice as large during a recession compared to normal times
■ Results robust to alternative measures of credit spread [Link] and recession indicator [Link] or forecasting the V-U ratio [Link]

Summary

Asymmetry:
■ Unemployment and measures of the spread have longer right tails (skewness) and a significant portion of the variance is attributable to infrequent large deviation (kurtosis).

State dependence:
■ Labor market response when the spread increases 1 p.p. much larger if the labor market is slack.

Outline

Empirical facts

Model

Estimate and analyze the model

Discussion

Model

Three types of agents

1. Workers in a representative households - supply labor
2. Firms - produce with labor
3. Financial institutions - supply funds to firms

Two search frictional markets

1. Labor market: matching unemployed \mathcal{U} and vacant jobs \mathcal{V}
2. Credit market: matching new projects \mathcal{N}_{c} and financial institutions \mathcal{B}_{c}

Two measures of market tightness and Nash bargained prices:

1. Labor: tightness θ and wage W with share $\alpha_{L} \in(0,1)$ to worker
2. Credit: tightness ϕ and repayment Ψ with share $\alpha_{C} \in(0,1)$ to creditor

Search and matching - financial market

Firms: add production capacity (job) matching with a creditor

- Place $\mathcal{N}_{c t}$ potential projects to search at unit cost $\kappa_{I}>0$
- Match with a creditor at rate p_{t}
- Receive funds when job is vacant to cover costs
- Share revenues during production

Financial institutions: search and manage credit market matches

- Place $\mathcal{B}_{c t}$ units of effort to search at unit cost $\kappa_{B t}>0$
- Match with a creditor at rate \bar{p}_{t}
- Provide funds when job is vacant to cover costs
- Receive payment from jobs in production

Search and matching - financial market

Meetings in the financial market: CRS matching function $M_{c}\left(\mathcal{B}_{c t}, \mathcal{N}_{c t}\right)$

Contact rates - function of credit tightness $\phi_{t}=\mathcal{N}_{c t} / \mathcal{B}_{c t}$:

- Project meets creditor:

$$
p_{t}=\frac{M_{c}\left(\mathcal{B}_{c t}, \mathcal{N}_{c t}\right)}{\mathcal{N}_{c t}}=p\left(\phi_{t}\right) \text { with } p^{\prime}\left(\phi_{t}\right)<0
$$

- Creditor meets project:

$$
\bar{p}_{t}=\frac{M_{c}\left(\mathcal{B}_{c t}, \mathcal{N}_{c t}\right)}{\mathcal{B}_{c t}}=\bar{p}\left(\phi_{t}\right) \text { with } \bar{p}_{t}^{\prime}\left(\phi_{t}\right)>0
$$

Credit match separate at exogenous rate $s^{C} \in(0,1)$

Search and matching - labor market

Vacant positions \mathcal{V} search for the unemployed, funded by creditors :

- Have search costs $\gamma>0$ per vacancy per period of time
- Find a worker with probability $q_{t} \in(0,1)$

Unemployment workers \mathcal{U} search for vacant jobs

- Enjoy leisure l and receive UI benefits b
- Find a job with probability $f_{t} \in(0,1)$

Matching governed by CRS function $M_{l}\left(\mathcal{V}_{t}, \mathcal{U}_{t}\right)$, with tightness $\theta=\frac{\mathcal{V}}{\mathcal{U}}$

$$
\begin{aligned}
& q_{t}=\frac{M_{l}\left(\mathcal{V}_{t}, \mathcal{U}_{t}\right)}{\mathcal{V}_{t}}=q\left(\theta_{t}\right) \text { with } q^{\prime}\left(\theta_{t}\right)<0, \\
& f_{t}=\frac{M_{l}\left(\mathcal{V}_{t}, \mathcal{U}_{t}\right)}{\mathcal{U}_{t}}=f\left(\theta_{t}\right) \text { with } f^{\prime}\left(\theta_{t}\right)>0
\end{aligned}
$$

Labor market - turnover and laws of motion

Two types of turnover:

1. Labor matches separate at rate $s^{L} \in(0,1)$

- Worker becomes unemployed
- Job becomes a vacant position

2. Credit matches separate at rate $s^{C} \in(0,1)$

- Job is destroyed and worker becomes unemployed

Law of motion for unemployment:

$$
\mathcal{U}_{t+1}=\mathcal{U}_{t}+\left[s^{C}+\left(1-s^{C}\right) s^{L}\right] \mathcal{N}_{t}-M_{l}\left(\mathcal{V}_{t}, \mathcal{U}_{t}\right)
$$

Law of motion for vacancies:

$$
\mathcal{V}_{t}=\left(1-s^{C}\right)\left[\left(1-q\left(\theta_{t-1}\right)\right) \mathcal{V}_{t-1}+s^{L} \mathcal{N}_{t-1}\right]+M_{c}\left(\mathcal{B}_{c t}, \mathcal{N}_{c t}\right)
$$

Firm's decision problem

Choose new projects to maximize the value of the firm S_{t} :

$$
\begin{aligned}
& S_{t}=\max _{\mathcal{N}_{c t}}\left[X_{t} \mathcal{N}_{t}-W_{t} \mathcal{N}_{t}-\Psi_{t} \mathcal{N}_{t}-\kappa_{I} \mathcal{N}_{c t}\right]+\mathbb{E}_{t} M_{t+1}\left[S_{t+1}\right] \\
& \text { subject to : } \\
& \mathcal{V}_{t}=\left(1-s^{C}\right)\left[\left(1-q\left(\theta_{t-1}\right)\right) \mathcal{V}_{t-1}+s^{L} \mathcal{N}_{t-1}\right]+p\left(\phi_{t}\right) \mathcal{N}_{c t} \\
& \mathcal{N}_{t+1}=\left(1-s^{C}\right)\left[\left(1-s^{L}\right) \mathcal{N}_{t}+q\left(\theta_{t}\right) \mathcal{V}_{t}\right]
\end{aligned}
$$

- X_{t} : labor productivity
- W_{t} : wage for each \mathcal{N}_{t} worker
- Ψ_{t} : repayment to each credit match currently generating revenue

■ M_{t+1} : Household's stochastic discount factor between t and $t+1$
Firm marginal values: [Link]

Financial institution's decision problem

Choose effort in finding new projects to maximize its equity value B_{t} :

$$
B_{t}=\max _{\mathcal{B}_{c t}}\left[\Psi_{t} \mathcal{N}_{t}-\gamma \mathcal{V}_{t}-\kappa_{B t} \mathcal{B}_{c t}\right]+\mathbb{E}_{t} M_{t+1}\left[B_{t+1}\right]
$$

subject to :

$$
\begin{aligned}
& \mathcal{V}_{t}=\left(1-s^{C}\right)\left[\left(1-q\left(\theta_{t-1}\right)\right) \mathcal{V}_{t-1}+s^{L} \mathcal{N}_{t-1}\right]+\bar{p}\left(\phi_{t}\right) \mathcal{B}_{c t} \\
& \mathcal{N}_{t+1}=\left(1-s^{C}\right)\left[\left(1-s^{L}\right) \mathcal{N}_{t}+q\left(\theta_{t}\right) \mathcal{V}_{t}\right]
\end{aligned}
$$

■ Ψ_{t} : repayment to each credit match currently generating revenue
■ M_{t+1} : Household's stochastic discount factor between t and $t+1$

Marginal values: [Link]

Representative Household's decision problem

Choose consumption C_{t} and holding of risk free bonds A_{t} :

$$
H_{t}=\max _{C_{t}, A_{t}}\left[u\left(C_{t}\right)+l \mathcal{U}_{t}\right]+\beta \mathbb{E}_{t}\left[H_{t+1}\right]
$$

subject to :

$$
W_{t} \mathcal{N}_{t}+b \mathcal{U}_{t}+A_{t-1}\left(1+r_{t-1}\right)+D_{t}^{S}+D_{t}^{B}=C_{t}+T_{t}+A_{t}
$$

Laws of motion of employed and unemployed

- β : time discount factor

■ r_{t} : risk-free interest rate
■ $D_{t}^{S}=X_{t} \mathcal{N}_{t}-W_{t} \mathcal{N}_{t}-\Psi_{t} \mathcal{N}_{t}-\kappa_{I} \mathcal{N}_{C t}$: firm dividends
$\square D_{t}^{B}=\Psi_{t} \mathcal{N}_{t}-\gamma \mathcal{V}_{t}-\kappa_{B t} \mathcal{B}_{c t}$: financial institution dividends

- T_{t} : lump sum taxes

Marginal values: [Link]

Bargaining and Equilibrium in the Financial Market

First order condition of the firm and financial institution:

$$
\begin{aligned}
& S_{c t}=0 \rightarrow \frac{\kappa_{I}}{p\left(\phi_{t}\right)}=S_{l t} \\
& B_{c t}=0 \rightarrow \frac{\kappa_{B_{t}}}{\bar{p}\left(\phi_{t}\right)}=B_{l t}
\end{aligned}
$$

■ Value of a vacant position to each side of the credit market equal to creation (search) costs

Define the joint value of a vacant position to the firm and the creditor:

$$
K_{t}=\frac{\kappa_{I}}{p\left(\phi_{t}\right)}+\frac{\kappa_{B_{t}}}{\bar{p}\left(\phi_{t}\right)}
$$

■ Increasing in the cost of search in the credit market
■ In anticipation of wage bargaining: firm's outside option in bargaining with worker

Bargaining and Equilibrium in the Financial Market

Bargaining over the joint match surplus $\left(B_{l t}-B_{c t}\right)+\left(S_{l t}-S_{c t}\right)$:

- Share of surplus to the creditor: $\alpha_{C} \in(0,1)$

■ Solve $\mathbb{E}_{t}\left[\Psi_{t+1}\right]=\operatorname{argmax}\left(B_{l t}-B_{c t}\right)^{\alpha_{C}}\left(S_{l t}-S_{c t}\right)^{1-\alpha_{C}}$

- Sharing rule : $\left(1-\alpha_{C}\right) B_{l, t}=\alpha_{C} S_{l, t}$

Equilibrium credit market tightness:

$$
\phi_{t}=\frac{1-\alpha_{C}}{\alpha_{C}} \frac{\kappa_{B t}}{\kappa_{I}}
$$

- ϕ_{t} decreasing in α_{C} : relatively more entry of creditors
- ϕ_{t} increasing in search costs $\kappa_{B t}$

Bargaining and Equilibrium in the Financial Market

Equilibrium expected repayment:

$\mathbb{E}_{t}\left[\Psi_{t+1}\right]=\alpha_{C} \mathbb{E}_{t}\left[X_{t+1}-W_{t+1}\right]$

$$
+\left(1-\alpha_{C}\right)\left[\frac{\gamma}{q_{t}}\left(\frac{1+r_{t}}{1-s^{C}}\right)-\left(1-s^{L}\right) \mathbb{E}_{t}\left[\frac{\gamma}{q_{t+1}}\right]\right] .
$$

Creditor receives:

- α_{C} of the profit flow from labor
- more if the current costs γ / q_{t} - paid by the creditor in the period of price setting - are large relative to expected in the future

Bargaining and Equilibrium in the Financial Market

Expected return on loans:

$$
R_{t}=\frac{\mathbb{E}_{t}\left[\Psi_{t+1}\right]}{\gamma / q\left(\theta_{t}\right)}-\left(s^{C}+\left(1-s^{C}\right) s^{L}\right)
$$

- Rate which sets the expected discounted value of a loan, $\frac{\gamma}{R_{t}+q(\theta)}$ equal to the expected discounted repayment $\frac{q(\theta)}{R_{t}+q(\theta)} \frac{E_{t}\left[\Psi_{t+1}\right]}{R_{t}+s^{C}+\left(1-s^{C}\right) s^{L}}$
- R_{t} strictly increasing in bargaining weight α_{C}

ExCess RETURN: $R_{t}-R_{t}^{0}$

- R_{t}^{0} : competitive pricing in the credit market - creditor's surplus driven to $0\left(\alpha_{C}=0\right)$

Bargaining and Equilibrium in the Labor Market

Each job is the joint interest of the firm and the creditor:

■ Joint marginal value of a vacant job:

$$
\begin{equation*}
S_{l t}+B_{l t} \equiv F_{l t}=-\gamma+\left(1-s^{C}\right) \mathbb{E}_{t} M_{t+1}\left[q_{t} F_{g t+1}+\left(1-q_{t}\right) F_{l t+1}\right] \tag{1}
\end{equation*}
$$

- Joint marginal value of a filled job:
$S_{g t}+B_{g t} \equiv F_{g t}=X_{t}-W_{t}+\left(1-s^{C}\right) \mathbb{E}_{t} M_{t+1}\left[\left(1-s^{L}\right) F_{g t+1}+s^{L} F_{l t+1}\right]$ (2)

■ Equilibrium in the financial market determined $F_{l t}=K_{t}$

Bargaining and Equilibrium in the Labor Market

Job creation condition:

$$
\frac{K_{t}+\gamma}{q\left(\theta_{t}\right)}=\left(1-s^{c}\right) \mathbb{E}_{t} M_{t+1}\left[F_{g t+1}+\left(\frac{1-q\left(\theta_{t}\right)}{q\left(\theta_{t}\right)}\right) K_{t+1}\right]
$$

- $\frac{K_{t}+\gamma}{q\left(\theta_{t}\right)}$: job creation costs
- $F_{g t+1}$: value a filled vacancy

■ $\left(\frac{1-q\left(\theta_{t}\right)}{q\left(\theta_{t}\right)}\right) K_{t+1}$: present value of unfilled vacancy
Expanded JC condition: [Link]

Bargaining and Equilibrium in the Labor Market

Nash wage rule:

$$
W_{t}=\alpha_{L}\left(X_{t}+\theta_{t}\left[\gamma+\left[\frac{r_{t}+s^{C}}{\left(1+r_{t}\right)}\right] \frac{K_{t}}{\left(1-s^{C}\right)}\right]\right)+\left(1-\alpha_{L}\right) Z_{t}-\alpha_{L}\left[\frac{r_{t}+s^{C}}{1+r_{t}}\right] K_{t}
$$

Nash bargaining between firm and worker:

- Worker has bargaining weight $\alpha_{L} \in(0,1)$

■ Wage solves

$$
W_{t}=\operatorname{argmax}\left(\frac{H_{N t}-H_{U t}}{\lambda_{t}}\right)^{\alpha_{L}}\left(F_{g t}-F_{l t}\right)^{1-\alpha_{L}}
$$

■ Wage satisfies sharing rule $\alpha_{L}\left(F_{g t}-K_{t}\right)=\left(1-\alpha_{L}\right)\left(H_{N t}-H_{U t}\right) / \lambda_{t}$
■ Limit $K_{t} \rightarrow 0 \forall t: W_{t}=\alpha_{L}\left(X_{t}+\theta_{t} \gamma\right)+\left(1-\alpha_{L}\right) Z_{t}$

Outline

Empirical facts

Model

Estimate and analyze the model

Discussion

Estimation and analysis

1. Estimation by Simulated Method of Moments
2. Model moments and impulse responses
3. Non-linear Kalman filter: recovering the unobserved states

Simulated Method of Moments

$$
\hat{\omega}=\operatorname{argmin}\left(\mu-\frac{1}{S} \sum_{s=1}^{S} \mu_{s}(\omega)\right)^{\prime} W^{-1}\left(\mu-\frac{1}{S} \sum_{s=1}^{S} \mu_{s}(\omega)\right)
$$

- μ : vector of empirical moments of interest
- $\mu_{s}(\omega)$: vector of corresponding model models for a given vector of structural parameters ω
- S: number of model simulations of length T
- W: (optimal) weighting matrix, inverse of sample covariance matrix of moment condition

References: Duffie and Singleton (1993), Adda and Cooper (2003), Ruge-Murcia (2012)

Model solution and moments

Policy function solved with projection over state space $\left(X_{t}, \kappa_{B t}, N_{t}\right)$
■ $\log \left(X_{t}\right)$ and $\log \left(\kappa_{B t}\right)$ discretized with 9 grid points each; cubic splines (20 basis functions) in N for each $\log (X)$ and $\log \left(\kappa_{B t}\right)$ -levels

- Model condenses to one functional equation, the job creation condition

■ Our approach: solve for the conditional expectation $E_{t}\left[F_{g t+1}\right]$ $\equiv \mathcal{F}\left(N_{t}, X_{t}, \kappa_{B t}\right)$ to satisfy the job creation condition

■ Highly accurate method evaluated in Petrosky-Nadeau and Zhang (2013)

Average moments across 2000 simulations of length 474 (months)

Projection vs. Loglinearization

See Petrosky-Nadeau and Zhang (2016), Solving the DMP model Accurately

Estimation results - Data and Model Moments

Data Model

Mean unemployment	mean (U)	0.064	0.093
Unemployment volatility	σ_{U}	0.117	0.091
Mean vancancy rate	mean $\left(V_{t}\right)$	0.052	0.076
Vacancy rate volatility	σ_{V}	0.072	0.083
Vacancy-unem. correlation	$\operatorname{corr}\left(U_{t}, V_{t}\right)$	-0.876	-0.379
Wage volatility	σ_{V}	0.010	0.045
Credit spread: mean	mean $\left(R_{t}\right)$	0.022	0.041
Credit spread: volatility	σ_{R}	0.12	0.078
Spread-unemp. correlation	$\operatorname{corr}\left(U_{t}, R_{t}\right)$	0.448	0.192
Productivity: volatility	$\operatorname{std}(X)$	0.008	0.009
Productivity: autocorrelation	autocorr (X)	0.739	0.732

Estimation results - Model parameters

Externally set:
 discount factor
 job-separation rate credit separation rate matching curvature search costs

Estimated paramaters:
matching parameter
worker bargaining weight creditor bargaining weight vacancy cost
non-employment value search costs persistence parameter persistence parameter spillover parameter standard deviation standard deviation

Parameter Value
B $\quad .997$
0.032 0.01/3 1.5 0.1

Std. Errors Reference

3 month U.S. T-bill JOLTS
Firm exit rate

η_{L}	1.44	(\ldots)
α_{L}	0.61	(\ldots)
α_{C}	0.38	(\ldots)
γ	0.329	(\ldots)
z	0.806	(\ldots)
$\bar{\kappa}_{B}$	0.187	(\ldots)
ρ_{x}	0.943	(\ldots)
$\rho_{\kappa_{B}}$	0.717	
$\rho_{x, \kappa_{B}}$	-0.147	
σ_{x}	0.009	(\ldots)
$\sigma_{\kappa_{B}}$	0.032	(\ldots)

Quantitative results - sample path

Sample model simulation: unemployment rate and credit spread

Quantitative results - moments

Table: EMPIRICAL AND MODEL MOMENTS

	U			Spread	
	data	model		data	model
Mean	0.064	0.093		0.022	0.041
S.d.	0.117	0.091		0.120	0.078
Skewness	0.573	0.489		1.679	0.113
Kurtosis	3.144	3.433		9.770	2.692

Quantitative results - theoretical IRFs to X shock

State dependent impulse responses:

1. Labor market tightness: $\partial \theta_{t} / \partial v_{x t}$ increasing in \mathcal{U}_{t}
\rightarrow convexity of job filling rate $q\left(\theta_{t}\right)$
2. Unemployment: $\partial \mathcal{U}_{t} / \partial \theta_{t}$ increasing in \mathcal{U}_{t}
\rightarrow concavity and $\mathcal{U} \mathcal{V}$ complementarity in $M_{l}\left(\mathcal{U}_{t}, \mathcal{V}_{t}\right)$

LABOR MARKET TIGHTNESS

UNEMPLOYMENT

[^0]
Quantitative results - theoretical IRFs to X shock

3. Credit spread $R_{t}-R_{t}^{*}$

- Recall that $R_{t}=\frac{\mathbb{E}_{t}\left[\Psi_{t+1}\right]}{\gamma / q\left(\theta_{t}\right)}-\left(s^{C}+\left(1-s^{C}\right) s^{L}\right)$
- With bargaining power lenders receive more than the zero profit return to a project
- Greater cushion in a recession
$\operatorname{Spread} R_{t}-R_{t}^{0}$

Quantitative results - theoretical IRFs to credit shock

Shock to search costs $\kappa_{B t}$ for a 1 p.p. increase in credit spread:
■ Two different initial U rates

- θ response 80% greater
$\operatorname{SPREAD} R_{t}-R_{t}^{*}$

LABOR MARKET TIGHTNESS

Impulse responses to a financial market shock

Quantitative results - theoretical IRFs to credit shock

Shock to search costs $\kappa_{B t}$ for a 1 p.p. increase in credit spread:
■ Two different initial U rates

■ U response 3.5 times larger
$\operatorname{SPREAD} R_{t}-R_{t}^{*}$

UNEMPLOYMENT

Impulse Responses to a financial market shock

Particle filter

■ Assess the conditional probability of date t observation of Y_{t} given a history of past realizations $Y^{t-1}=\left\{Y_{j}\right\}_{j=1}^{t-1}$:

$$
L\left(Y_{t} \mid Y^{t-1}\right)
$$

■ Sequence of conditional likelihoods:

$$
L(Y)=\prod_{t=1}^{T} L\left(Y_{t} \mid Y^{t-1}\right)
$$

■ Each assigned the likelihood of a candidate shock $\hat{\nu}_{t}$ by its assumed probability distribution:

$$
L\left(Y_{t} \mid Y^{t-1}\right)=p_{v}\left(\hat{v}_{t}\right)
$$

References: Fernandez-Villaverde and Rubio-Ramirez (2007), DeJong and Dave (2011)

Particle filter - no measurement error

■ States and observables follow (dimension of v_{t} matches the dimension of Y_{t})

$$
\begin{aligned}
Z_{t} & =f\left(Z_{t-1}, v_{t}\right) \\
Y_{t} & =g\left(Z_{t}\right)
\end{aligned}
$$

■ Conditional on the structural parameters ω, solve, in sequence:

$$
Z_{t}=g^{-1}\left(Y_{t}\right) \text { and } v_{t}=v\left(Y_{t}, Z_{t-1}\right)
$$

- For a given initial Z_{0}, use the recursion to obtain series

$$
\mathrm{Z}^{T}=\left\{\mathrm{Z}_{t}\right\}_{t=1}^{T} \text { and } v^{T}=\left\{v_{t}\right\}_{t=1}^{T}
$$

Particle filter - no measurement error

■ Construct the likelihood for Y^{T} conditional on Z_{0} :

$$
L\left(Y^{T} \mid Z_{0}, \omega\right)=\prod_{t=1}^{T} p\left(v_{t}\left(Y^{t}, Z_{0}\right)\right)
$$

- Integrate over the model implied distribution for Z_{0} :

$$
L\left(Y^{T} \mid \omega\right)=\prod_{t=1}^{T} \int p\left(v_{t}\left(Y^{t}, Z_{0}\right)\right) p\left(Z_{0} \mid Y^{t}\right) d Z_{0}
$$

\Rightarrow ENTER THE PARTICLE FILTER

And turn to Fernandez-Villaverde and Rubio-Ramirez (2007), DeJong and Dave (2011) for details on implementation

Model implied states, 1976-2015

■ Realizations symmetric around the mean

Model implied states, 1976-2015

■ Skewness and kurtosis appear with the financial crisis

Counterfactual

Actual and counterfactual unemployment rate (Detrended) fixing credit SEARCH COST FROM DEC. 2007 TO HISTORIC MEAN

■ Credit shocks have added, persistently, 0.5 p.p. to unemployment rate

Conclusion - work in progress

Summary:

- Asymmetry and state dependence in labor and credit market variables over the business cycle
- Arises in a macro model with search frictional credit and labor markets

To do (partial list):

1. Add higher order moments to estimation
2. Endogenize job destruction and credit destruction

State dependence - labor market tighntess

V-U ratio response to a 1 p.p. increase in the credit spread

Firm - marginal values

Additional project $\mathcal{N}_{c t}$ searching in the credit market:

$$
S_{c, t}=-\kappa_{I}+p_{t} S_{l, t}+\left(1-p_{t}\right) \mathbb{E}_{t} M_{t+1} S_{c, t+1}
$$

Additional vacant position searching in the labor market:

$$
S_{l, t}=\left(1-s^{C}\right) \mathbb{E}_{t} M_{t+1}\left[q_{t} S_{g, t+1}+\left(1-q_{t}\right) S_{l, t+1}\right]+s^{C} \mathbb{E}_{t} M_{t+1}\left[S_{c, t+1}\right]
$$

Additional filled position generating revenue:

$$
S_{g, t}=X_{t}-W_{t}-\Psi_{t}+\left(1-s^{C}\right) \mathbb{E}_{t} M_{t+1}\left[\left(1-s^{L}\right) S_{g, t+1}+s^{L} S_{l, t+1}\right]+s^{C} \mathbb{E}_{t} M_{t+1}\left[S_{c, t+1}\right]
$$

[Back]

Financial institution - marginal values

Additional unit of effort $\mathcal{B}_{c t}$ searching in the credit market:

$$
B_{c, t}=-\kappa_{B t}+\bar{p}_{t} B_{l, t}+\left(1-\bar{p}_{t}\right) \mathbb{E}_{t} M_{t+1} B_{c, t+1}
$$

Additional vacant position searching in the labor market:
$B_{l, t}=-\gamma+\left(1-s^{C}\right) \mathbb{E}_{t} M_{t+1}\left[q_{t} B_{g, t+1}+\left(1-q_{t}\right) B_{l, t+1}\right]+s^{C} \mathbb{E}_{t} M_{t+1} B_{c t+1}$

Additional filled position generating revenue:

$$
B_{g, t}=\Psi_{t}+\left(1-s^{C}\right) \mathbb{E}_{t} M_{t+1}\left[\left(1-s^{L}\right) B_{g, t+1}+s^{L} B_{l, t+1}\right]+s^{C} \mathbb{E}_{t} M_{t+1} B_{c, t+1}
$$

[Back]

Representative Household - marginal values

Additional unemployed worker \mathcal{U}_{t} :

$$
\frac{H_{U t}}{\lambda_{t}}=Z_{t}+\beta \mathbb{E}_{t} \frac{\lambda_{t+1}}{\lambda_{t}}\left[f\left(\theta_{t}\right) \frac{H_{N t+1}}{\lambda_{t+1}}+\left(1-f\left(\theta_{t}\right)\right) \frac{H_{U t+1}}{\lambda_{t+1}}\right]
$$

Additional employed worker \mathcal{N}_{t} :

$$
\frac{H_{N t}}{\lambda_{t}}=W_{t}+\beta \mathbb{E}_{t} \frac{\lambda_{t+1}}{\lambda_{t}}\left[\left(1-s^{C}\right)\left(1-s^{L}\right) \frac{H_{N t+1}}{\lambda_{t+1}}+\left(s^{C}+\left(1-s^{C}\right) s^{L}\right) \frac{H_{U t+1}}{\lambda_{t+1}}\right]
$$

■ λ_{t} : Lagrange multiplier on budget constraint
■ $Z_{t}=b+l / \lambda_{t}$: flow utility when unemployed
[Back]

Bargaining and Equilibrium in the Labor Market

Job creation condition:

$$
\frac{\Gamma_{t}}{q_{t}}=\mathbb{E}_{t} M_{t+1}\left[X_{t+1}-W_{t+1}+\left(1-s^{c}\right)\left[\left(1-s^{L}\right) \frac{\Gamma_{t+1}}{q_{t+1}}+s^{L} K_{t+1}\right]\right]
$$

- $\Gamma_{t}=\frac{K_{t}+\gamma}{\left(1-s^{C}\right)}-\left(1-q_{t}\right) \mathbb{E}_{t} M_{t+1} K_{t+1}$
- Limit as $s^{C}=0$ and $K_{t} \rightarrow 0 \forall t$:

$$
\frac{\gamma}{q_{t}}=\mathbb{E}_{t} M_{t+1}\left[X_{t+1}-W_{t+1}+\left(1-s^{L}\right) \frac{\gamma}{q_{t+1}}\right]
$$

[Back]

[^0]: Impulse responses To A Percentage deviation negative productivity shock

