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Abstract 

Can features extracted from high spatial resolution satellite imagery accurately estimate poverty 

and economic well-being? We investigate this question by extracting both object and texture 

features from satellite images of Sri Lanka, which are used to estimate poverty rates and average 

log consumption for 1,291 administrative units (Grama Niladhari (GN) Divisions). Features 

extracted include the number and density of buildings, the prevalence of building shadows (a proxy 

for building height), the number of cars, density and length of roads, type of agriculture, roof 

material, and a suite of texture and spectral features calculated using a non-overlapping box 

approach. A simple linear regression model, using only these inputs as explanatory variables, 

explains nearly sixty percent of both poverty headcount rates and average log consumption. In 

comparison, models built using Night Time Lights explain only 15 percent of the variation in 

poverty or income. Estimates remain accurate throughout the GN average consumption 

distribution. Two sample applications, extrapolating predictions into adjacent areas and estimating 

local area poverty using an artificially reduced census, confirm the out of sample predictive 

capabilities.     
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1 Introduction 
Despite the best efforts of national statistics offices and the international development 

community, local area estimates of poverty and economic welfare remain rare. Between 2002 

and 2011, as many as 57 countries conducted zero or only one survey capable of producing 

poverty statistics, and data are scarcest in the poorest countries (Serajuddin et al., 2015). But 

even in countries where data are collected regularly, household surveys are typically too small to 

produce reliable estimates below the district level. Generating welfare estimates for smaller areas 

require both a household welfare survey and contemporaneous census data, and the latter is 

typically available once per decade at best. Furthermore, safety concerns may prohibit survey 

data collection in many conflict areas altogether. 

 

Satellite imagery has generated considerable enthusiasm as a potential supplement to household 

data that can help fill these severe data gaps. In recent years, private companies such as 

DigitalGlobe and Airbus have rapidly expanded the coverage and availability of high spatial 

resolution imagery (HSRI), driving down commercial prices. Planet (formerly Planetlabs) 

currently operates more satellites than any organization other than the US and Russian 

governments, and just recently, successfully launched 88 dove satellites that will allow for 

coverage of the entire globe with imagery resolution of 3 to 5 m per pixel on a daily basis. 

Continued technological advances will increasingly allow social scientists to benefit from this type 

of imagery, which has been utilized intensively by the intelligence and military communities for 

decades.  

 

This paper investigates the ability of object and texture features derived from HSRI (High Spatial 

Resolution Imagery) to estimate and predict poverty rates at local levels. The area of our study 

covers 3,500 square kilometers in Sri Lanka, which contain 1,291 villages (Grama Niladhari (GN) 

divisions). For each village, we extract both object and texture features to use as explanatory 

variables in poverty prediction models. Object features extracted include the number of cars, 

number and size of buildings, type of farmland (plantation or paddy), the type of roofs, the share 

of shadow pixels (building height proxy), road extent and road material, along with textural 

measures. These features are identified using a combination of deep learning based Convolutional 

Neural Networks (CNN) and classification of spectral and textural characteristics. These satellite 

derived features were then matched to household estimates of per capita consumptions imputed 

into the 2011 Census for the 1,291 GN Divisions. 

 

We investigate five main questions: 1) To what extent can variation in GN economic well-being -

- poverty rates defined at the 10 and 40th percentiles of national income and average GN 

consumption -- be explained by high spatial-resolution features? 2) Which features are most 

strongly correlated with these measures of well-being? 3) Do these features predict equally well 

in poor and rich GNs? In urban and rural GNs? 4) Can these models predict into geographically 

adjacent areas? and 5) Are predictions robust to the use of a smaller sample of training data?   

 

We find that: i) satellite features are highly predictive of economic well-being and explain about 

sixty percent of the variation in both village average consumption and estimated poverty headcount 

rates; ii) Built-up area and roof type strongly correlate with welfare. Car counts and building height 

are strong correlates in urban areas, while the share of paved roads and agricultural type are strong 

correlates in rural areas; iii) Accuracy declines only slightly in the poorest decile of villages 
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(average consumption of $4.67 per day). Models are less accurate in urban areas than rural ones; 

iv) Predicting into adjacent areas produces less accurate poverty measures, but ranking between 

true and predicted rates is moderately high; and v) Using a one percent sample of the census based 

ground truth, designed to mimic the sampling strategy of the Household Income and Expenditure 

Survey, has little impact on the accuracy of the prediction.    

 

This paper contributes to a growing literature exploring how remotely sensed data may be used 

to assess welfare. Traditionally, the most popular remotely sensed measure for economic 

applications has been night-time lights (NTL), which measures the intensity of light captured 

passively by satellite. Strong correlations between NTL and GDP appear at the country level 

(Henderson et al., 2009, Pinkovskiy and Sala-I-Martin, 2016) although within a country NTL 

appears more strongly correlated with density than welfare. The relationship between lights and 

wages or other measures of income appears weak (Mellander et al., 2013), casting doubt on its 

reliability as a proxy for small area estimates of welfare. Additionally, NTL is ill-suited for 

identifying variation in welfare within small areas because of its low spatial resolution. Even the 

most advanced NTL satellite, the Visible Infrared Imaging Radiometer Suite VIIRS, has a spatial 

resolution at nadir of approximately 1.0 km2.9 Indeed, we find that NTL captures only 15% of 

the variation in poverty or income in the same area where high resolution spatial features capture 

60% of the variation.  

 

Daytime imagery has recently emerged as a practical source of information on welfare, in large 

part due to new developments in computer vision algorithms. Advances in Deep Learning such as 

Convolutional Neural Networks (CNN) have the capability to algorithmically classifying objects 

such as cars, building area, roads, crops and roof type (Krizhevsky, Sutskever, and Hinton, 2012). 

These objects may be more strongly correlated with local income and wealth than NTL. 

Furthermore, textural and spectral algorithms provide a simpler alternative to analyzing HSRI that 

does not rely on object classification (Graesser et al. 2012, Engstrom et al. 2015, Sandborn and 

Engstrom 2016).  In this approach, the spatial and spectral variations in imagery are calculated 

over a neighborhood of pixels to characterize the local scale spatial pattern of the objects observed 

in the imagery. These measures, which we refer to as “texture” or “spectral” measures, capture 

information about an area that may not be clear from object recognition alone. 

  

This paper also contributes to a literature exploring how supervised learning techniques from 

machine learning may be applied to unstructured data to reveal information about human welfare 

(Athey, 2017). Glaeser, Kominers, Luca, and Naik (2015) apply texture-based machine vision 

classification to images that are captured from Google Street View, trained using subjective 

ratings of the images on the basis of the perceived safety. They estimate a support vector 

machine model and show the fitted model can reliably predict block level income in New York 

City. Jean et al. (2016) employs an innovative transfer learning approach, in which a set of 4,096 

unstructured features are extracted from the penultimate layer of a convolutional neural network 

that uses Google Earth daytime imagery to predict the luminosity of NTL. These 4,096 features 

are then used to predict the average per capita consumption of enumeration areas (villages), 

taken from living standard measurement surveys using ridge regression to prevent overfitting.  

The resulting model predicts well and explains an average of 46 percent of the variation in 

                                                 
9 Pixel size can vary depending on the angle of the satellite relative to the ground site.  
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village per capita consumption, out of sample, across the four countries it was trained in. While 

this innovative use of daytime imagery substantially improves on the use of night time lights 

alone, it is not necessarily optimal for predicting poverty rates. When the top two quintiles are 

excluded from their sample, restricting the sample to those below twice the international poverty 

line, the 𝑅2 falls precipitously, to about 0.12.  This illustrates the challenges this method faces in 

in distinguishing welfare among the poorest of the poor, who in the African context most likely 

live in relatively dark. It also raises questions about the ability of a transfer learning method 

calibrated to night time lights to accurately predict variation in local poverty headcount rates, the 

measure of poverty typically of greatest interest to policymakers and aid organizations for 

targeting purposes.10   

 

This study utilizes imagery features that are based either on recognizable objects or “texture” 

algorithms developed for computer vision applications, derived from High Spatial Resolution 

Imagery (HSRI). This method offers several advantages for the estimation of poverty rates. First, 

it eliminates reliance on NTL, which is a coarse measure of welfare, to identify relevant features 

for model development. Second, it provides a more transparent understanding of the underlying 

factors that explain geographic variation in welfare in different contexts. Third, features developed 

from HSRI, such as roads and the extent of built-up area, are useful for policy analysis in other 

areas as transport and urban planning. Finally, a feature-based approach can easily be extended to 

alternative welfare indicators, such as headcount poverty rates measured at different thresholds.   

 

The paper proceeds as follows: Section 2 summarizes how the data were created and presents brief 

summary statistics. Section 3 presents the statistical methodology. Section 4 examines the 

predictive power of high resolution satellite features (HRSF) to estimate poverty in small areas at 

the village level. Section 5 examines out of sample performance using two applications from 

estimating local area economic well-being. Section 7 concludes.  

 

2 Data Description 
Our analysis is restricted to a sample area of approximately 3,500 km2 in Sri Lanka. National 

coverage was not feasible due to the high cost and partial availability of high-resolution imagery, 

however these data are rapidly becoming more available and less expensive as companies such a 

Planet and DigitalGlobe expand their archives and launch newer, more precise satellites with 

more frequent revisit rates. We sampled DS Divisions conditional on HSRI being available, 

drawing areas from urban, rural, and estate sectors.11 According to the 2012 census, population 

by sector in Sir Lanka is rural (77.4%), urban (18.2%) and estate (4.4%) (Sri Lanka Department 

of Census and Statistics, 2012). Population by sector in our sample is rural (45.9%), urban 

(46.2%) and estate (7.8%).  

2.1 Details on Satellite Imagery 

                                                 
10 It is not straightforward to generate estimates of poverty headcount rates from predictions of mean consumption at 

the village level, since poverty rates depend on the dispersion of welfare within each village as well as its mean.    

11 Sri Lanka classifies sectors as urban, rural, or estate. The estate sector refers to plantation areas of more than 20 

acres with 10 or more residential laborers. Except for sample stratification, the estate sector is grouped with the rural 

sector. 
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The satellite imagery consists of 55 unique “scenes” purchased from Digital Globe, covering 

areas specified in our sample area.   Each “scene” is an individual image captured by a particular 

sensor at a particular time. Images were acquired by three different sensors: Worldview 2, 

GeoEye 1, and Quickbird 2. These sensors have a spatial resolution of 0.46m2, 0.41m2, and 

0.61m2, respectively in the panchromatic band and 1.84m2, 1.65m2, 2.4m2 respectively in the 

multi-spectral bands. Pre-processing of imagery included pan-sharpening, ortho-rectification, 

and image mosaicking. Most imagery was captured in either 2011 or 2012, although some 

imagery from 2010 was also used. 

 

2.2 Details on Poverty Data 

Ideally village poverty and consumption statistics would be generated directly from the 2012/13 

Household Income and Expenditure Survey (HIES), a detailed survey that measures the 

consumption patterns of 25,000 households on approximately 400 consumption items. The 

survey contains an average of 8.4 households per GN Division in the 47 sampled DS Divisions, 

making the HIES insufficient to generate consistent poverty estimates at the GN Division 

without supplementary data. We therefore draw on the most common method to impute welfare 

estimates (Elbers, Lanjouw, Lanjouw, 2003) into the 2011 Census of Population and Housing, 

which is identical to the method used to generate official poverty estimates at the DS Division 

level (Department of Census and Statistics and World Bank, 2015). For each household in the 

census, per capita consumption was estimated based on models developed from the HIES, using 

household indicators that are common to both the Census and the HIES.  We derive GN 

headcount poverty rates using the standard Foster-Greer-Thornbecke method (Foster, et al., 

1984), for two poverty lines: poverty line 1 at the 10th percentile of the national per capita 

Figure 1: Coverage Area of High Resolution Satellite Imagery 

Notes: Sample area shown highlighted in white.   

 



 

6 

 

consumption distribution, and poverty line 2 at the 40th percentile. This is equivalent to $3.00 

and $5.13 per day respectively in 2011 PPP terms, which compares to an extreme poverty line in 

2011 prices of $1.90 per day. 

 

Imputing welfare into the census requires an assumption of spatial homogeneity within small areas. 

This assumption “may severely underestimate the variance of the error in predicting welfare 

estimates at the local level in the likely presence of small-area heterogeneity in the conditional 

distribution of expenditure or income.” (Tarozzi and Deaton, 2009). To test the extent of spatial 

heterogeneity in practice, small area estimates of poverty have been compared to census-based 

measures in Mexico and Brazil, which each collect income information in their census. 

Considerable spatial heterogeneity is present in Mexico.15 In contrast, Elbers et al (2009) finds 

significantly less in Minas Gerais, Brazil. The effect of spatial heterogeneity on the results 

presented below is unclear.  We are not aware of any empirical estimate of the extent to which 

spatial heterogeneity assumption leads to biased poverty headcount estimates at the local level.  To 

the extent any additional noise in the poverty estimates due to uncaptured heterogeneity in the 

coefficients is independent across neighboring households within a GN, this noise would be 

significantly reduced after averaging over a large number of households.  

 

2.3 Comparison of GN Poverty Rates and Mean NTL Reflectance 

A simple visual comparison between mean NTL and village poverty rates illustrates why NTL 

provides limited information on sub-national welfare. Figure 2 presents a panel of three images 

for the Divisional Secretariat of Seethawaka: mean raw NTL (left), poverty rates derived from the 

10% national income threshold (middle), and log of mean population density (right). Comparing 

the left and middle panels, there is only a small association between villages that have low NTL 

reflectance and those that are high in poverty. Problems of overglow (Henderson et al., 2012) mean 

that poor villages adjacent to wealthy ones will be misclassified as non-poor. While NTL tracks 

the general contours of poverty for the DS – lower poverty areas in the Northwest and higher 

poverty areas in the Southeast – this coarse association is only of limited use for public policy 

applications such as poverty targeting or budget allocations.  

 

NTL appears to give a more accurate approximation of the population density of the underlying 

GN Divisions, which is consistent with Mellander et al. (2013). Comparing the right and left panel 

shows a strong association between high NTL areas and areas with a high population density. We 

take this to suggest that the information content contained within NTL related to human welfare is 

limited. While lights at night may indicate gross associations, it is highly imperfect measure of  

 

                                                 
15 Simulations indicate that in 10 percent of municipalities, the coverage rate of the estimated poverty rate is less 

than 50 percent.  In other words, in these 10 percent of municipalities, confidence intervals from simulations that 

estimate headcount rates exclude the true poverty rate in more than half the simulations. 
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Figure 2: Comparison of Mean Night Time Lights (NTL), Poverty Rate, and Mean Population 

Density, Seethawaka, Sri Lanka 

 

welfare. We therefore investigate whether the much richer set of information contained in HSRI 

daytime imagery translates into more accurate welfare predictions.   

 

2.4. Feature Extraction from High Resolution Satellites 

The derived high resolution spatial features fall into seven broad categories: (1) Agricultural Land, 

(2) Cars, (3) Building Density and Vegetation, (4) Shadows (building height proxy) (5) Road and 

Transportation; (6) Roof Type; and (7) Textural and Spectral characteristics. In addition to the 

satellite features, we use two geographic attributes of the GN Division: Whether it is 

administratively classified as an urban area, and its area in square kilometers. Table 1 presents 

summary statistics for these variables.  

 

Deep learning-based object classification was used for classifying the share of the GN division 

that is built-up (i.e. consists of buildings), the number of cars in the GN, and the share of pixels in 

the GN that were identified as shadow pixels (proxy for building heights), and crop type. The 

classification method used is similar to Krizhevsky, Sutskever, and Hinton (2012), which utilizes 

convolutional neural networks (CNN) to build object predictions from raw imagery. Roof type, 

paved and unpaved roads of different widths, and railroads were classified using a combination of 

Trimble eCognition and Erdas Imagine software, utilizing a combination of support vector 

machines and visual identification. Classifier accuracy is great than 90% for all of the objects 

recognized. Details on the extraction and classification process are provided in detail in the online 

appendix, which includes an example ROC curve for buildings.  
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2.4.1 Object Classification Details 

The agricultural land variables consist of the fraction of GN agriculture identified as paddy (rice 

cultivation) or plantation (cash crops such as tea). These sum to one hundred percent for GNs with 

agricultural land, so the excluded category in subsequent regressions is GN Divisions with no 

agricultural land. We also calculated the fraction of total GN area that is either paddy, plantation, 

or any agriculture. Figure 4 shows an example of a developed area building classification, with 

raw image shown at the top and CNN classification accuracy shown below. On the bottom panel, 

true positives are highlighted green, with false positives highlighted red. Figure 5 shows a sample 

car classification. Cars that are positively identified are shown circled in blue. False negatives are 

most prevalent where there is considerable tree masking of pixels.  

 

  

Figure 3: Example Developed Area (Buildings) Classification 

Notes: above image shows raw (left) and classified (right) for developed area building classifier from raw 

satellite imagery. Areas in green show are true positive building classifications. Images in red are false 

positives: erroneously classified areas as buildings. 

Figure 4: Example Car Classification 
Notes: Cars identified by the convolutional neural network shown in blue. 

 



 

9 

 

Table 1: Grama Niladhari Summary Statistics  

 Mean Sd Min Max 

     Economic Well-Being     
Avg Consumption in Rs 10274.2 3052.7 4881.9 21077 
Avg Log Consumption  9.19 0.28 8.49 9.96 
Rel. Pov. Rate at 10% Nat. Cons. 0.0903 0.066 0.0023 0.39 
Rel. Pov. Rate at 40% Nat. Cons. 0.332 0.16 0.035 0.8 
     Geographic Descriptors     
log Area (square meters) 14.73 1.01 12.1 18 
= 1 if urban 0.304 0.46 0 1 
province==[1] Western 0.587 0.49 0 1 
province==[3] Southern 0.255 0.44 0 1 
province==[6] North-Western 0.0643 0.25 0 1 
province==[7] North-Central 0.0155 0.12 0 1 
province==[8] UVA 0.0782 0.27 0 1 
     Agricultural Land     
% of GN area that is agriculture 16.8 0.15 0 94 
% of GN agriculture that is paddy 44.4 37.5 0 100 
% of GN agriculture that is plantation 46.38 37.8 0 100 
% of Total GN area that is paddy 8.629 10.9 0 74.7 
% of Total GN area that is plantation 8.168 11 0 94.1 
     Cars     
log number of cars 3.123 1.44 0 8.3 
Total cars divided by total road length 0.00556 0.01 0 0.17 
Total cars divided by total GN Area 0 0.00007 0 0.00093 
     Building Density and Vegetation     
% of area with buildings 7.817 6.82 0.13 33.9 
% shadows (building height) covering valid area 6.509 6.01 0.31 34.9 
Vegetation Index (NDVI), mean, scale 64 0.427 0.21 0 0.86 
Vegetation Index (NDVI), mean, scale 8 0.566 0.24 0 0.99 
     Shadows      
ln shadow pixels (building height) 12.96 1.04 7.31 17.6 
ln Number of Buildings  6.90 0.92 0 9.3 
     Road variables     
log of Sum of length of roads 9.445 0.94 1.47 13.1 
fraction of roads paved 38.3 28.7 0 100 
ln length airport roads 0.013 0.33 0 9.25 
ln length railroads 1.098 2.67 0 10.8 
     Roof type     
Fraction of total roofs that are clay 36.5 22 0 100 
Fraction of total roofs that are aluminum 14.08 7.06 0 71.9 
Fraction of total roofs are asbestos 7.766 11.3 0 71.2 
     Textural and spectral characteristics     
Pantex (human settlements), mean 0.627 0.54 0.02 2.94 
Histogram of Oriented Gradients (scale 64m), mean 3509.4 2070.3 129.1 10381 
Linear Binary Pattern Moments (scale 32m), mean 49.5 1.1 18.1 49.5 
Line support regions (scale 8m), mean 0.00836 0.004 -2E-07 0.035 
Gabor filter (scale 64m), mean 0.469 0.28 0.014 1.3 
Fourier transform, mean 84.34 17.8 4.51 113.4 
SURF (scale 16m), mean 12.06 7.77 0.13 31.6 

Observations 1291 
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Three car related variables were calculated – the log total number of cars in a GN, total cars divided 

by total road length, and cars per square kilometer of the GN. The average GN Division in our 

sample contains 50 cars. However, there is wide dispersion, as the 99th percentile of the car count 

distribution is equal to 577 cars and the maximum value is 4,000 cars. On the left side of the 

distribution, 136 out of 1291 GNs contain no cars. Because the distribution is skewed, we take the 

log of the car count, while imposing a smooth function for GNs with zero or few cars 18  

 

Building density variables include the fraction of an area covered by built-up area and the number 

of roofs identified, Built up area captures any human settlements – buildings, homes, etc. – 

regardless of use or condition. These are grouped with two measures of the Normalized Difference 

Vegetation Index. Although technically a spectral characteristic, the presence of vegetation in 

urban areas indicates development such as parks, trees, or lawns (i.e., are that is not built up) within 

the urban environment. In the rural environment it also indicates undeveloped areas, and the values 

can aid in describing variations in agricultural type and productivity depending on the timing of 

the image acquisition. The fifth category are two indicators that capture shadows of buildings: the 

log of the number of pixels classified as shadow as well as the fraction of shadows in a GN. The 

shadow variables use the angle of the sun as it shines on a building, and the shadows it displaces, 

to estimate the presence of shadows.20  

 

The road variables we calculate are the log of total road length, fraction of roads that are paved, 

and length of airport runway and length of railroad identified. For roof type, we calculate the 

fraction of roofs in a village that are either clay, aluminum, asbestos, with the omitted category 

being roofs that are identified as none of the above, the vast majority being gray cement roofs. 

Roof type can be identified through remote sensing by using hyperspectral imaging, or using 

reflectance from several contiguous spectral bands. Different roof materials exhibit different 

spectral properties, particularly in the sub-visible bands of the spectrum. The roofs in our sample 

are clay (36.5%) aluminum (14.08%), asbestos (7.8%) or gray concrete (41.6%).  

 

2.4.2 Details of Textural and Spectral Features 

We calculate seven separate types of spectral and textural features: Fourier transform, Gabor 

filter, Histogram of Oriented Gradients (HoG), Line support regions (LSR), Pantex, and Speed-

Up Robustness Features (SURF). These are often used in machine vision problems to decompose 

an image. They are intended to capture aspects of a neighborhood that are not so easily identified 

directly, including the presence of characteristics associated with slums such as many irregular 

building lines or high density. These features may be considered outputs from a dimension 

reduction technique, in that they are reduced dimensionality descriptions of a complex 2-D 

satellite imagery. 

 

Because these measures may be novel to readers without backgrounds in remote sensing, further 

description may be helpful. We consider Pantex here to be a measure of human settlements. It’s a 

spatial similarity index, where each cell is compared to adjacent cells in all directions. Forests will 

                                                 
18  The log car variable is calculated as the log of the sum of the car count and the square root of the car count plus 

one.  
20 Valid area refers to areas at the foot of building where shadows may appear.  
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have a low Pantex level, since cells in all directions have similar contrast, as will cells with straight 

roads. Cities dense with many buildings will have high Pantex values. HOG captures “local 

intensity gradients or edge directions” (Dalal and Triggs, 2005) and in context here captures 

intensity of lines of development or agriculture. Local binary patterns (LBPM) captures local 

spatial patterns and gray scale contrast. SURF detects local features used for characterizing grid 

patterns, and measures orderliness of building development, the opposite of which is typically 

referred to as a slum. Areas with right angles, corners, or areas with regular grid patterns, will have 

larger SURF values relative to areas with chaotic or irregular spacing.  For more detail on imagery 

and the feature extraction process we refer the reader to the online appendix.   

 

3 Statistical Methodology  
 

Given the list of available covariates, variable choice is not obvious. Estimating a model with the 

full set of candidate variables in table one would likely produce predictions that are overfit, in the 

sense that they  perform much better in-sample than out-of-sample (Athey and Imbens, 2015). One 

attractive method for variable selection among a large selection of covariates is Lasso 

regularization. Lasso is a regularized regression that estimates a regression model with an added 

constraint that enforces parsimony (Tibshirani, 1996). The motivation for the shrinkage estimator 

is that by reducing the parameters of the model, one increases bias at the expense of lower variance.  

 

Our baseline model is a “Post-Lasso” estimator (Belloni and Chernuzhukov, 2013). This two-step 

estimator first estimates a Lasso model over the full set of coefficients, followed by an OLS model 

over the set of non-zero coefficients from the Lasso step. The model we estimate in the Lasso step 

is defined as  

 

(1) 
   𝛽𝐿𝑎𝑠𝑠𝑜 = argmin

𝛽

{
 

 
∑(𝑦𝑖 −∑𝑥𝑖𝑗

𝐾

𝑗=1

𝛽𝑗)

2
𝑁

𝑖=1 ⏟              
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

+ 𝜆∑|𝛽𝑗|

𝐾

𝑗=1⏟    
𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟}

 

 

 

 

 

Where the poverty rate in a GN is given by 𝑦𝑖 and 𝜆 ≥ 0 is a parameter that penalizes the 

absolute values of the coefficients. At the extreme, full relaxation of the penalization factor, that 

is setting 𝜆 to zero, yields unconstrained OLS estimates. Thus as 𝜆 → ∞ , 𝛽𝐿𝑎𝑠𝑠𝑜 → 𝛽𝑂𝐿𝑆. As 𝜆 →
∞, the penalty increases and 𝛽𝐿𝑎𝑠𝑠𝑜 converges to the zero vector. Lasso regressions are useful as 

a variable selection methodology because the sharp ℓ1 metric shrinks variables exactly to zero if 

they prove unuseful in decreasing the sum of squared errors. This creating a type of variable 

selection. However, simultaneously the Lasso “shrinks” the magnitude of coefficients towards 

zero, even for those that remain non-zero (Varian, 2014). Thus by subsequently estimating an 

OLS model in the second stage, we ensure the coefficient estimates are unbiased. To choose the 

appropriate value of 𝜆, we apply 10-fold cross validation, and choose the value of 𝜆 that 

minimizes root-mean squared error (RMSE) across folds. GLM versions of the model, which 

ensures that predicted values lie in between zero and one, do not change the results qualitatively 

and are available by request.  
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Inferential standard errors are typically absent from Lasso models. Because of the Oracle property 

of the Lasso estimator (Fan and Li, 2001), we use the standard errors from the OLS model in the 

second stage as our measures of population inference. The Oracle property ensures that inference 

in the second stage using the reduced set of variables selected in the first stage is consistent with 

inference were we to use a single stage estimation strategy using only the selected variables present 

in the true data-generating process (Belloni and Chernuzhukov, 2013).   

 

4 Results 
 

Table 2 presents the estimates from the main specification for the full sample. The first two 

columns show the model where GN poverty is defined at the lower poverty rate, the next two 

present the higher poverty rate models, and the next two present average GN consumption 

dependent variable models. Many extracted satellite features have high explanatory power, 

including agriculture type, length of roads and fraction of roads paved, number and density of 

buildings, NDVI, roof type, shadows (building height proxy) and two spatial features, LBPM, 

and Fourier transform. The models explain a high amount of the variation in poverty, 

summarized in the in-sample R-squared values between 0.608 and 0.618. Out-of-sample R-

squared, estimated using ten-fold cross-validation, vary between 0.588 and 0.605. We conclude 

from the results that the models are not likely to be overfit to the data.  

 

The results suggest that, in words, a simple linear model that includes only the geographic size of 

the GN Division, whether it is urban, and remotely sensed information explains 61 percent of the 

variation across GNs in headcount poverty rates. Figure 6 plots predicted against true average 

GN consumption, with colors assigned by province in which the GN is located. A LOWESS 

smoothing line is shown with associated confidence interval. A perfect model would have 

predictions exactly on the 45 degree line. While there is noise, the predictions tend to straddle the 

45° line indicating a high degree of agreement between the predicted and true welfare values. 

Although the model has a tendency to under-predict for wealthier GNs. 

 

4.1 Marginal Effects of Satellite Features 

While the primary objective of this exercise is to obtain accurate predictions, the model 

coefficients also shed light on the nature and magnitude of the conditional correlations between 

imagery features and poverty. The coefficients may be difficult to interpret for two reasons: First, 

the independent variables are often measured in different units. Second, in some cases multiple 

independent variables are based on the same underlying feature. In these cases, it is meaningless 

to evaluate the conditional correlation of one variables while holding the others constant.  

 

To understand the magnitude of coefficients, we group independent variables and consider the 

marginal effect of a one standard deviation increase of the underlying satellite feature.23 Table 3 

presents these marginal effects tables. For some dependent variables, the reported marginal effects 

                                                 
23 Except for percent of GN agriculture that is plantation, for which a one standard decrease is considered.  
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reflect a combination of multiple underlying indicators, while for others they reflect single 

variables, as indicated in the right most column.  

 

The size of the GN, in square kilometers, is more strongly correlated with headcount or average 

consumption. This suggests that households in the bottom decile are disproportionately found in  

larger GN Divisions. The presence of agricultural land is weakly and negative associated with 

poverty, controlling for other characteristics of the GN, although the result is not statistically 

significant.  Of the indicators related to the distribution of paddy vs. plantation land, The LASSO 

procedure selected three of the indicators for 10 and 40 percent poverty incidence models, and two 

Table 2: Prediction of Local Area Poverty Rates Using High-Res Spatial Features 

  
  
  
  
  
  

 

Lower Poverty Rate 
(10% Nat. Inc.) 

Higher Poverty Rate 
(40% Nat. Inc.)  

Average Log Per Capita 
Consumption 

 Coef t coef t coef T 

log Area (square meters) 0.020* [2.52] 0.0093 [0.60] -0.0079 [-0.31] 
= 1 if urban -0.023 [-1.80] -0.037 [-1.06] 0.08 [1.18] 

% of GN area that is agriculture -0.00025 [-1.04] -0.00017 [-0.27]   

% of GN agriculture that is paddy -0.00033** [-2.97] -0.00087** [-2.97] 0.0014** [2.92] 

% of GN agriculture that is plantation -0.00021** [-2.84] -0.00059* [-2.66] 0.0012** [2.72] 

% of Total GN area that is paddy -0.00019 [-0.58] -0.00083 [-1.10] 0.0016* [2.10] 

Total cars divided by total road length -0.31 [-1.17]     

Total cars divided by total GN Area 29.6 [0.54]     

log number of cars -0.0059 [-0.89] -0.015 [-1.39] 0.024 [1.60] 

log sum of length of roads -0.020*** [-3.64] -0.027* [-2.32] 0.033 [1.67] 

fraction of roads paved -0.00035*** [-4.24] -0.00079** [-3.24] 0.0014** [3.06] 

ln length airport roads -0.0051 [-1.45]   0.022 [1.52] 

ln length railroads 0.00098 [1.31]   -0.0046 [-1.26] 

% of area with buildings -0.0027* [-2.31] -0.0093* [-2.34] 0.020* [2.56] 

log of Total count of buildings in GN -0.0090** [-2.71] -0.019* [-2.05] 0.029 [1.70] 

Vegetation Index (NDVI), mean, scale 64 0.061* [2.20] 0.14** [2.94] -0.21** [-2.93] 

Vegetation Index (NDVI), mean, scale 8 -0.064** [-2.80]     

% shadows (building height)  0.0022* [2.04] 0.0064* [2.18] -0.013* [-2.27] 

ln shadow pixels (building height) 0.016* [2.51] 0.039* [2.64] -0.047 [-1.95] 

Fraction of total roofs that are clay 0.00077** [3.35] 0.0017** [3.25] -0.0027** [-3.15] 

Fraction of total roofs that are aluminum 0.00091*** [3.63] 0.0022** [3.15] -0.0040** [-3.15] 

Fraction of total roofs are asbestos -0.00033 [-1.08]     
Linear Binary Pattern Moments (scale 32m) 
mean 

0.0021** [2.91] 0.0090*** [5.53] -0.017*** [-5.92] 

Line support regions (scale 8m), mean -0.66 [-0.87]     

Gabor filter (scale 64m) mean -0.052 [-1.53]     

Fourier transform, mean 0.0017** [3.42]     

SURF (scale 16m), mean -0.0014 [-0.94] -0.001 [-0.59] 0.0034 [1.06] 

Constant -0.32** [-3.03] -0.31 [-1.43] 10.1*** [29.9] 

Observations 1291 1291 1291 
R-sq 0.610 0.618 0.608 

R-sq Adj. 0.602 0.613 0.602 

Out-of-Sample R-sq 0.588 0.605 0.594 

Mean Absolute Error  0.032 0.078 0.139 

Notes: Unit of observation is Grama Niladhari (GN) division. Variables were selected using Lasso regularization from the 
candidate set of variables shown in table 1. * p<0.05, ** p<0.01, *** p<0.001 
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for the log consumption model.24 The results indicates a discernible but fairly weak negative 

relationship between the presence of paddy agricultural land and poverty, which is consistent with 

the traditionally disadvantaged nature of the tea plantation sector in Sri Lanka.     

 

 

 

Compared with land type, the association between poverty and cars is mildly stronger. A one 

standard deviation increase in log cars (to an average value of 3.1) is associated with a 2.2 

percentage point decline in poverty at the higher poverty line, and a 0.035 increase in predicted 

log per capita consumption. A one standard deviation increase in all three car related variables, is 

associated with a 1.2 percentage point decline in poverty at the lower percent rate. Road 

characteristics are moderately associated with local poverty rates. Length of roads, fraction of 

roads paved, and runways are are negatively associated with poverty, though only the first two are 

statistically significant, while GNs with more railways are poorer. A one standard deviation change 

in total length of road is associated with a 1.9 percentage point decline in the lower poverty line, a 

2.5 percentage point decline where poverty is defined at the higher line, and a .031 increase in log 

consumption. The magnitudes of the marginal effects for fraction of roads that are of paved are 

broadly similar, though a one standard deviation increase is only associated with a weaker 1 

percentage point decline at the lower poverty line.   

                                                 
24 Since an increase in paddy land implies a reduction in agricultural land, for those GNs with agricultural land, the 

latter is subtracted instead of added when calculating the marginal effect. 

Table 3: Marginal Effects of One Standard Deviation Change  

 Lower Poverty 
Rate (10% 
Nat. Inc.) 

Higher 
Poverty Rate 

(40% Nat. Inc.)  

Average Log Per 
Capita 

Consumption Variables 

Area  2.1 pp * 0.9 pp -0.008 Area   
Urban  -1.0 pp -1.7 pp 0.037 Urban Dummy  
Agricultural land  -0.4 pp -0.3 pp  % of GN area that is agriculture 
Agricultural type  -0.6 pp * -1.9 pp ** 0.026 *  Combined: Ag % paddy, Ag % plantation (-), 

% area paddy 
Cars -1.2 pp   Combined: cars divided by road length, cars 

divided by Area, log cars 
  -2.2 pp 0.035 log cars 
Road variables -1.9 pp *** -2.5 pp * 0.031 log sum of length  

-1.0 pp *** -2.3 pp ** 0.040 ** Fraction paved  
-0.2 pp  0.007 log length of airport runway 
0.3 pp  -0.012 log sum of railroads 

Building Density  -2.7 pp ** -8.1 pp ** 0.162  ** % of area with buildings and log of total count 
of buildings in GN combined  

Vegetation  -0.2 pp 2.9 pp ** -0.044 ** Combined: NDVI, scale 64m, NDVI, scale 8m 
Shadows  

3.0 pp *** 7.9 pp *** -0.128 *** 
Combined: % shadows (building height) and 
ln shadow pixels  

Roofs 1.7 pp  ** 3.8 pp ** -0.06  ** Fraction of roofs clay 
 0.6 pp *** 1.6 pp ** -0.028 ** Fraction of roofs aluminum 

 -0.4 pp   Fraction of roofs asbestos  
Spatial Features 0.2 pp ** 1.0 pp *** -0.019 *** Linear Binary Pattern Moments 

 -0.3 pp   Line support regions 
 3.1 pp   Fourier transform  
 -1.5 pp   Gabor filter 
 -1.1 pp ** -0.8 pp 0.026 SURF 
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Measures of building density are strongly associated with log welfare and poverty. A one standard 

deviation increase in these two variables is associated with a 2.7 percentage point decline at the 

lower poverty rate, an 8.1 percentage point decline at the higher poverty rate, and a 0.16 increase 

in log consumption. In the lower poverty rate model, a one standard deviation increase is associated 

with a smaller 2.7 percentage point decline in poverty. Vegetation is moderately associated with 

poverty. A one standard deviation reduction in vegetation is associated with a 2.9 percentage point 

reduction at the higher poverty line, and a .04 increase in mean per capita consumption, which is 

comparable to cars or the fraction of roads that are paved. For the lower poverty line model, both 

NDVI measures are selected. The higher poverty line and log welfare models only include NDVI 

calculated over blocks of 64 pixels, suggesting that very high spatial resolution imagery may not 

be critical for generating informative measures of NDVI for prediction.    

  

Two measures of shadows, a proxy for building height, are selected: the share of valid area covered 

by shadows, and the log number of shadow pixels. A one standard deviation increase in both 

measures is associated with a 3 percentage point increase in poverty at the lower poverty line, an 

8 percentage point increase in poverty at the higher one, and a 0.13 decrease in mean log per capita 

consumption. For roof type, the Lasso procedure selects both the fraction of roofs classified as 

clay and aluminum, for all three models, and includes the fraction classified as asbestos for the 

lower poverty line model. The signs on clay and aluminum in the poverty regressions are positive, 

suggesting that these are generally inferior compared to the omitted category of grey concrete. 

This appears to be consistent an analysis in Kenya that documents that roofs with greater 

Figure 6: Model diagnostic plot of predicted against true average GN consumption  
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luminosity, like aluminum, are associated with lower levels of poverty (Suri et al., 2015).  The 

marginal effect of a standard deviation in clay and aluminum roofs are, respectively, 1.7 and 0.6 

percentage points for the lower poverty line model, and .06 and .03 for mean log per capita 

consumption. These magnitudes are stronger than roads and vegetation, but considerably less than 

those for building density and shadows.   

 

Of the texture variables, five out of seven are selected for the 10 percent model (LBPM, LSR, and 

Gabor, Fourier, and SURF). Of these, only LBPM and SURF are selected for the 40 percent and 

log per capita consumption model. In general, the estimated marginal effects for these variables 

are modest. The main exception is the mean of the Fourier transform, which is positively associated 

with poverty in the lower poverty line model, though the coefficient is not statistically significant. 

A one standard deviation increase in SURF is associated with a one percentage point decline in 

the lower poverty line model and a 0.03 increase in log per capita consumption. This is consistent 

with wealthier areas being laid out in a more orderly way, with more “right angles” in housing 

layouts.  

 

Figure 7 presents a map showing the true welfare measures on the left panel, against the 

predicted welfare measures on the right, for a particular DS Division, Seethawaka. The top panel 

shows predicted welfare from the OLS model against actual welfare. The model is able to 

distinguish the poorer eastern areas from the richer western ones. Even poor GNs adjacent to 

richer ones can be distinguished; although the smallest GNs are less than a half mile across, the 

HRSF model is able to distinguish with considerable accuracy the variation in average 

consumption. The middle panel shows predicted and true poverty rates defined at the lower 

poverty line. Again, the predicted model approximates the true poverty rates with considerable 

accuracy. The lower poverty regions in the south and north east are replicated in the predicted 

values. The model tends to under-predict poverty in the lowest poverty areas in the mid-west, 

suggesting that two-step or zero-inflated Poisson models  may perform better.   

 

In sum, predictive models based on an urban indicator, the size of the GN, and a host of features 

derived from satellite imagery predict poverty rates and mean log per capita consumption 

remarkably well. Greater numbers of cars are associated with lower poverty, although the 

relationship is not statistically significant, as is a denser road network and a larger share of paved 

roads. The indicators most strongly associated with poverty are building density and shadows. 

Shadows are positively associated with poverty, which suggests they are capturing variation in tree 

cover that is inversely related to building density. Consistent with this, areas characterized by more 

and lusher vegetation tend to be poorer. Clay and aluminum roofs, compared to grey roofs, are 

associated with greater levels of poverty. Of the spatial features, SURF exhibits a fairly strong 

association with poverty at the lower poverty line, suggesting that neighborhoods laid out in a 

more orderly way tend to be less poor. The following sections consider the robustness of these 

main findings.  
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Figure 7: Predicted Versus True Welfare Measures, Average Consumption (top), 

10% Poverty (middle) 40% Poverty (bottom) 
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4.2 Decomposition of Satellite Feature Explanatory Power 

The results presented above indicate that features derived from satellite imagery explain a large 

portion of village income or poverty, and that associations are particularly strong for measures of 

building density and shadows. However, these results don’t address the question of which 

indicators account for the model’s predictive power. To address this issue, we decompose the 𝑅2 

using a Shapley decomposition (Shorrocks, 2013; Huettner and Sunder, 2012; Israeli, 2007). 

This procedure calculates the marginal 𝑅2 of a set of explanatory variables, as the amount by 

which 𝑅2 declines when removing that set from the set of candidate variables. In other words, for 

a model with 𝑘 sets of explanatory variables, the procedure will estimate 2𝑘−1 models and 

average the marginal 𝑅2 obtained for each set of independent variables across all estimated 

models. This ensures that the variable’s contribution to 𝑅2 is independent of the order in which it 

appears in the model.   

 

Table 4 presents the 𝑅2 decomposition. The results confirm that measures of building density – 

built up area, number of buildings, shadow pixels, and to a lesser extent vegetation, are powerful 

contributors to predictive power. Collectively, these three sets of variables account for 39 to 45 

percent of the model’s explanatory power. However, a number of other variables are moderately 

important. GN area, urban classification, road characteristics, roof type, and the texture variables 

each explain 8 to 12 percent of the variation. The car and agricultural variables explain a bit less 

than that, between 5 and 7 percent each. In short, while broad measures of building density 

explain a large share of the variation, virtually all sets of indicators contribute substantial 

predictive power to the model.  

 

 

Table 4: Shapley Decomposition of Share of Variance Explained (𝑹𝟐) by High Resolution Spatial Feature 
Subgroup 

  
Lower Poverty Rate 

(10% Nat. Inc.) 
Higher Poverty 

Rate (40% Nat. Inc.)  
Average Log Per Capita 

Consumption 

Area 10.4 8.3 8.4 
Urban  9.4 9.7 10.8 
Agricultural land  0.9 1.0  
Paddy land  3.8 4.6 4.1 
Cars 7.3 5.6 4.6 
Building density 14.8 19.5 22.5 
Vegetation  8.0 6.2 4.4 
Shadows 14.4 14.1 14.0 
Road variables 9.4 7.7 9.8 
Roof Type 10.4 8.3 8.4 
Texture variables 9.4 9.7 10.8 
Observations 1291 1291 1291 
R-sq  0.610 0.618 0.608 

Notes: Agricultural variables include fraction agriculture plantation, fraction agriculture paddy, and fraction of GN area that is 
plantation.  Car variables include log of car count, and cars per total road length. Building density variables include log of 
developed area, shadow count (building height proxy), fraction of GN developed, fraction covered by shadow, NDVI at scales 64 
and 8. Road variables include log of unpaved road length, log of paved roads narrower than 5m, log of paved roads 5m+, log of 
airport roads, log of railroad length, and fraction of roads paved. Roof variables include count of roofs by type: clay, aluminum, 
asbestos, grey cement, and fraction of roofs of same type. Texture variables include Fourier series, Gabor, histogram of oriented 
gradients, Local Binary Pattern Moments mean and standard deviation, line support regions, and SURF.  

 



 

19 

 

4.3 Comparisons to Night Time Lights  

How do the predictive power of indicators derived from daytime imagery compare with night 

time lights? To shed light on this, Table 5 presents OLS models covering the same sample area 

using night time lights as the independent variable. The first three columns present poverty and 

per capita consumption models. Aggregate night time lights is positively correlated with welfare 

and negatively correlated with poverty, however the total explanatory power is low: 𝑅2 values 

for the three regressions are between 0.10 and 0.147, with performance lowest for the 10 percent 

headcount measure and highest for log consumption per capita. Adding higher order polynomials 

up to a quartic only increases it to 0.15. Models built using high resolution satellite indicators 

capture around four times as much variation in poverty or welfare as NTL. Columns 4-6 of table 

4 shows estimates that include DS Division fixed effects. Night time lights is no longer 

significant in any of the specifications, indicating that within DS Divisions, NTL is weakly 

correlated with welfare.   

 

Given the prevalence, ease of use and familiarity with night time lights, one might also ask how 

much more explanatory power do night time lights provide in addition to the indicators extracted 

from daytime imagery? Table 6 answers that question, by adding night time lights to the Shapley 

decomposition. The night time lights category includes average, squared, cubed, and average 

standard deviation of NTL. The night time lights variables explain between 7 and 12 percent of 

the variance in per capita consumption or poverty according to the decomposition, meaning there 

is roughly a 90 percent additional variation in poverty or income that is captured through high 

resolution satellite predictions. Furthermore, adding night time lights marginally increases the 

overall 𝑅2 of the regression, by about 0.01.  In this context, NTL is not a particularly accurate 

proxy for poverty and welfare, and adds very little explanatory power to the set of available 

daytime indicators.     

 
Table 5: Model Estimates, Night Lights on Poverty/Average GN Consumption 

 Lower 
Poverty 

Rate (10% 
Nat. Inc.) 

Higher 
Poverty Rate 

(40% Nat. 
Inc.)  

Average Log 
Per Capita 

Consumptio
n 

Lower 
Poverty Rate 

(10% Nat. 
Inc.) 

Higher 
Poverty Rate 

(40% Nat. 
Inc.)  

Average Log 
Per Capita 

Consumptio
n 

Night Lights 
2012 

-0.583*** -1.546** 2.922** -0.0383 -0.0898 0.186 

 (-3.53) (-3.38) (3.32) (-0.79) (-0.67) (0.64) 

Observations 1291 1291 1291 1291 1291 1291 
R-sq 0.109 0.131 0.147 0.000868 0.000842 0.00103 
R-sq Adj. 0.108 0.130 0.146 0.0000932 0.0000671 0.000258 
R-sq within    0.000868 0.000842 0.00103 
R-sq between    0.372 0.448 0.527 
R-sq overall    0.109 0.131 0.147 
Divisional 
Secretariat FEs 

No No No Yes Yes Yes 

Unit of observation is Grama Niladhari (GN) Division. All models include a regression constant which is omitted from the table. * p < 
0.05, ** p < 0.01, *** p < 0.001 
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Table 6: Shapley Decomposition By High Resolution Spatial Feature Subgroup and Night Time 
Lights 

  
Lower Poverty 
Rate (10% Nat. 

Inc.) 

Higher Poverty Rate 
(40% Nat. Inc.)  

Average Log Per Capita 
Consumption 

Area 10.2 8.1 8.0 
Urban  8.7 8.7 9.5 
Agricultural land  0.9 1.0 3.3 
Paddy land  3.3 3.8            
Cars 6.7 5.1 4.0 
Buildings 13.0 16.7 19.0 
Vegetation  8.0 6.0 4.1 
Shadows 12.1 13.0 10.6 
Road variables 8.0 8.0 8.5 
Roof Type 13.0 12.0 11.7 
Texture variables 8.5 7.1 8.9 
Night time lights variables   7.6 10.6 12.1 
Observations 1291 1291 1291 
R-sq  0.621 0.636 0.632 

Notes: Night time lights category includes the following transformations of night time lights: average, squared, 

cubed, and standard deviation. Variable groupings are identical to those in table 5.  

 

4.4 Urban and Rural Linear Models 

How does the relationship between indicators and welfare differ in urban and rural areas? Table 7 

shows model estimates estimated separately for 393 urban villages and the 898 rural ones, based 

on Sri Lanka’s official definition of urban and rural areas.30 Variables were again selected through 

Lasso estimation. The urban model selects fewer variables – 13 of the candidate variables in the 

urban model are selected versus 16 for the rural model. R-squared values are slightly higher in 

rural areas (0.656) and significantly lower in urban areas (0.445).31 For the urban model, log 

number of cars, built-up development, and shadow pixels are important. In rural models, 

agricultural variables, roof type, shadow pixels, NDVI, Pantex and LBPM are important. The 

association between cars and poverty is significantly stronger in urban areas. In addition, the 

association between NDVI and poverty is  strongly negative in rural areas, as rural areas with more 

vegetation and less built-up area are poorer. The coefficient on NDVI in urban areas, meanwhile, 

is positive and not statistically significant, suggesting that if anything wealthier urban GNs are 

characterized by a greater prevalence of lush vegetation.  

 

 

 

 

 

 

                                                 
30 This definition is based on administrative units and has not been updated in many years. As a result, some areas 

officially classified as rural have urban characteristics.  
31 This might be due to the presence of de-facto urban GNs in the rural sample. In addition, the nature of the 

consumption module in the HIES, which could better capture consumption in rural than urban areas.   
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Table 7: Marginal Effects of One Standard Deviation Change for Urban and Rural Models  

 Urban Rural Variables  

Area   -0.032 Area   
Agricultural land   0.018 * % of GN area that is agriculture 
Paddy land 0.045  Combined Paddy and plantation 
  0.026 ** % of GN agriculture that is paddy, % of GN agriculture that is 

plantation (-) 
Cars 0.093 *** 0.029 *** Log car count   
Road variables  0.030 * log sum of length  
 0.041 0.029 *** Fraction paved  
  0.011 *** Log length of airport runway 
 -0.02  Log sum of railroads 
Building density  0.186 ***  Both building density variables 
  0.038 *** log of Total count of buildings in GN 
Vegetation  0.041 -0.060 *** NDVI mean, scale 64 
Shadows -0.107 **  % shadows  
  -0.061 *** ln shadow pixels 
Roofs 0.036 -0.084 *** Fraction of total roofs that are clay 
 -0.022 -0.037 *** Fraction of total roofs that are aluminum  
  -0.021 * Fraction of total roofs that are asbestos   
Spectral and Texture  -0.018 Linear Binary Pattern Moments 
 -0.006  Line support regions 
 -0.058  Fourier transform  
  0.075 *** Pantex 

Observations 393 898  
R-sq 0.446 0.656  
R-sq Adj. 0.427 0.650  
Out-of-Sample R-sq 0.412 0.641  
Mean Absolute Error  0.145 0.113  

Notes: Tables gives estimated marginal effect of a one standard deviation change in variable or variables listed in right column. 
For example, the combined marginal effect of a one standard deviation in all three cars variables on the 10 percent relative 
poverty rate is a reduction of 1.2 percentage points. Variables excluded from 40 percent poverty and log consumption models, 
as shown in Table 2, are also excluded when calculating marginal effects for those dependent variables.  For agricultural land, % 
of GN that is plantation is subtracted from the sum of % GN agriculture that is paddy and % total GN area that is paddy. * 
p<0.05, ** p<0.01, *** p<0.001 

 

4.5 Model Performance at Varying Income Levels 

The model’s ability to predict variation in headcount poverty rates at both poverty lines suggests 

that it can effectively distinguish between households within lower parts of the welfare 

distribution. To verify this, we divide the sample of GN Divisions into quintiles based on the 

mean predicted per capita consumption of census households, and re-estimate the main model for 

log per capita consumption on the subsample of the bottom 80, 60, 40, and 20 percent of the 

distribution. Model performance across income quintiles are shown in Table 8 and in Figure 4. 

Overall, the model continues to predict well within the poorest subsamples, as the adjusted R-

squared declines only mildly from 0.60 in the full sample to 0.579 when only considering the 

bottom decile. Given that the poorest decile of GNs have an average welfare of $4.67 per day, 

this represents a little more than double the international poverty line. This suggests that this 

approach for estimating welfare from high-resolution satellites images is accurate for even very 

poor contexts. 
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Table 8: Model Performance for Prediction of Average log per Capita Consumption at Different Points 
in the Welfare Distribution  

 Bottom 20% Bottom 40% Bottom 60% Bottom 80% Full Sample 

Observations  259 517 775 1033 1291 
R-sq 0.551 0.454 0.474 0.509 0.608 
Adjusted R-sq 0.52 0.436 0.461 0.5 0.602 
Out of sample  0.487 0.425 0.447 0.475 0.595 
Mean Absolute Error 0.064 0.0774 0.0909 0.115 0.139 
Mean log p.c. income 8.83 8.95 9.00 9.09 9.16 
Standard deviation  0.11 0.13 0.15 0.20 0.28 

Notes: Table reports model performance statistics for the national model for different subsamples of the bottom portion of the 
GN Division welfare distribution. The dependent variable is average predicted log GN per capita consumption. The rightmost 
column is identical to the results reported in the right column of Table 2.  

 

Table 9: MLE Estimation Correcting for Spatial Autoregression 

 Average Log Per Capita Consumption 

  coef t 

log Area (square meters) -0.046*** [-4.01] 
= 1 if urban 0.048+ [1.96] 
% of GN area that is agriculture 0.00022 [0.42] 
% of GN agriculture that is paddy 0.00046+ [1.74] 
% of GN agriculture that is plantation 0.00076** [3.09] 
% of Total GN area that is paddy 0.00057 [0.79] 
Total cars divided by total road length -0.93 [-1.20] 
Total cars divided by total GN Area 401.4* [2.28] 
log number of cars 0.020*** [3.57] 
% of area with buildings 0.0083*** [4.19] 
log of Total count of buildings in GN 0.012 [1.23] 
Vegetation Index (NDVI), mean, scale 64 0.071 [1.54] 
Vegetation Index (NDVI), mean, scale 8 -0.042 [-0.67] 
log of Sum of length of roads 0.029** [2.70] 
fraction of roads paved 0.0012*** [6.00] 
ln length airport roads 0.0052 [1.50] 
ln length railroads -0.00092 [-0.48] 
Fraction of total roofs that are clay -0.0025*** [-5.83] 
Fraction of total roofs that are aluminum -0.0034*** [-4.92] 
Fraction of total roofs are asbestos 0.0014* [2.26] 
Linear Binary Pattern Moments (scale 32m), mean -0.0080*** [-3.38] 
Line support regions (scale 8m), mean -1.25 [-0.71] 
Gabor filter (scale 64m) mean -0.053 [-0.92] 
Fourier transform, mean -0.0030*** [-3.61] 
SURF (scale 16m), mean 0.0052* [2.24] 
Constant 9.74*** [51.6] 

Observations 1287 

Notes: Standard errors have been corrected according to Conley (1999, 2008), with model estimation via GMM. + p<0.10, * 
p<0.05, ** p<0.01, *** p<0.001 
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4.6 Correcting for Spatial Autoregression  

One unaddressed concern is whether the presence of either spatial autocorrelation or spatial 

heterogeneity leads the standard errors to be underestimated. Spatial autocorrelation can occur in 

the presence of geographic spillovers or interactions (Anselin, 2013), and considering the 

village-level observations one could develop plausible stories by which poverty is influenced by 

this mechanism. A Moran’s I test for the presence of such disturbances according to Anselin 

(1996) rejects the null hypothesis that there is no spatial autocorrelation present. To correct for 

the spatial autocorrelation we model explicitly the spatial autoregression (SAR) process and 

allow for SAR disturbances, a so called SARAR model. This is implemented via a generalized 

spatial two-stage least-squares (GS2SLS) as shown in Drukker et al. (2013). The results 

presented in table 9 show that after correcting for spatial autocorrelation most high-resolution 

spatial features remains significant predictors of local area poverty. Although there is some 

presence of autocorrelation, it is not sufficient to alter the joint significance of the spatial 

variables.  

 

4.7 Do High Resolution Satellite Features Explain the Poverty Gap?  

The poverty gap is a useful supplement to the headcount rate for understanding poverty because 

it takes the depth of poverty into account. The poverty gap or 𝐹𝐺𝑇1 metric measures poverty 

depth by considering how far the poor are from a given poverty line. 33 We compute the average 

poverty hap for each village, and use this measure as a dependent variable in a regression where 

the right hand side includes the size of the GN, a dummy indicating urban classification, and the 

                                                 
33 We calculate for our sample the FGT_1 metric (Foster Greer and Thorbecke, 1984), which is defined as 

FGT_1=1/N ∑_(i=1)▒((z-y_j)/z)   , where y_j  is an individual’s income, and z is the poverty threshold. 

Figure 8: Average out of sample R-squared and Average GN welfare, by subsample of GNs  

Figure 8: Average out of sample R-squared and Average GN welfare, by subsample of GNs 



 

24 

 

features created from high resolution satellite imagery. We consider again poverty lines defined 

at the 10th and 40th percentiles of national consumption per capita. Table 10 presents the results 

estimated via OLS. The coefficients can be interpreted as a unit change in the distance between 

the poverty gap and the poverty line for the average village. As was the case for headcount rates, 

high resolution features explain the poverty gap well, with adjusted 𝑅2 values between 0.588 and 

0.609. Not surprisingly, building density and shadow variables are also strong correlates of the 

poverty gap.   

 

 

Table 10: Estimating Poverty Gap Using High Res Features 

 Poverty Gap (FGT1 - 10%) Poverty Gap (FGT1 - 40%) 

  coef t coef t 

log Area (square km) 0.0060** [2.84] 0.0063 [1.02] 
= 1 if urban -0.0063 [-2.00] -0.013 [-1.05] 
% of GN area that is agriculture -0.000081 [-1.29] -0.00018 [-0.76] 
% of GN agriculture that is paddy -0.000087** [-3.24] -0.00033** [-3.10] 
% of GN agriculture that is plantation -0.000053** [-2.91] -0.00021* [-2.63] 
% of Total GN area that is paddy -2.3E-05 [-0.29] -0.00025 [-0.88] 
Total cars divided by total road length -0.09 [-1.32]   
Total cars divided by total GN Area 9.55 [0.72]   
log number of cars -0.0014 [-0.83] -0.0058 [-1.24] 
log of Sum of length of roads -0.0049** [-2.97] -0.011* [-2.48] 
fraction of roads paved -0.000077** [-3.37] -0.00023* [-2.67] 
ln length airport roads -0.00027 [-0.89]   
ln length railroads 0.00026 [1.35]   
% of area with buildings -0.00062* [-2.16] -0.0028* [-2.04] 
% shadows (building height) covering valid 
area 0.00053 [1.76] 0.0017 [1.54] 
ln shadow pixels (building height) 0.0037* [2.19] 0.016* [2.68] 
Fraction of total roofs that are clay 0.00020** [2.96] 0.00070** [3.12] 
Fraction of total roofs that are aluminum 0.00024** [3.31] 0.00084** [3.19] 
Fraction of total roofs are asbestos -9.1E-05 [-1.14]   
log of Total count of buildings in GN -0.0022* [-2.62] -0.0073* [-2.09] 
Vegetation Index (NDVI), mean, scale 64 0.017* [2.33] 0.056** [2.88] 
Vegetation Index (NDVI), mean, scale 8 -0.019** [-2.95]   
Linear Binary Pattern Moments (scale 32m) 0.00048* [2.55] 0.0029*** [4.87] 
Line support regions (scale 8m), mean -0.27 [-1.39]   
Gabor filter (scale 64m) mean -0.016 [-1.78]   
Fourier transform, mean 0.00046** [3.44]   
SURF (scale 16m), mean -0.00025 [-0.67] -0.0001 [-0.15] 
Constant -0.093** [-3.41] -0.17+ [-2.00] 

Observations 1234 1234 
R-sq 0.5884 0.6097 
R-sq Adj. 0.5792 0.6039 

* p<0.05, ** p<0.01, *** p<0.001     
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5 Out of Sample Performance with Two Applications 
 

5.1  Estimating Poverty Using a Reduced Census Training  

A key motivation for this analysis is to understand how HRSF compliments traditional surveys to 

generate small area estimates. The standard small area estimation technique used to model 

poverty combines a smaller household survey with a population census. Conducting a population 

census is expensive, but needed to cover the full range individuals within a country. Can we 

combine satellite features with a smaller household survey alone to produce sufficiently precise 

small area estimates? To assess this, we examine whether the predictive power of satellite 

imagery remains when it is calibrated using a census extract, of approximately the size of the 

Household Income and Expenditure Survey, rather than a full census.  

 

We produce several simulations of the dependent variable (either per capita consumption or GN 

poverty rate) using subsamples of the census intended to mimic the size of a household survey. 

For each subsample only 20% of GNs are sampled. The number of households within each 

subsample that are “surveyed” (i.e., used to produce the training set’s poverty statistic). We 

sample either 5%, or 100% of the actual households in that GN. For each simulated sample we 

build a model of poverty using HRSF, producing estimates of poverty that we can then compare 

to actual estimates. The poverty rate of a GN in the training data will become less precise the 

fewer households that are sampled per GN, although survey costs increase with the number of 

households surveyed. Figure 5 plots the results of the simulation exercise, where we have plotted 

R-squared values between predicted welfare rates and true welfare rates, both in-sample (GNs 

within the subsample) and out-of-sample (GNs excluded from the subsample), and mean 

absolute error. Average R-squared values between predicted and true values do not depreciate 

significantly when using the sample consisting of 20% of GNs and 5% of households within 

those GNs. R-squared values decline modestly with the smaller sample size, but R-squared 

Figure 9: Model explanatory power and error with artificially reduced sample size. (20% of GNs 

sampled to estimate model, Households sampled as shown.)
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values remain well above 0.5 even when sampling artificially many fewer households. The 

second panel of figure 5 shows the same exercise with mean absolute error used as a metric, and 

the results confirm there is negligible difference when using many fewer households to train the 

model. However, these results are suggestive that it may be possible to generate reasonably 

reliable estimates of economic well-being by combining household survey with features 

extracted from satellite imagery.  

 
Table 11:  Model Performance Using Simulated Reduced Census Sampling 

    
In-Sample 𝑹𝟐 

Out of Sample 
𝑹𝟐 

Normalized Mean 
Absolute Error (NMAE)  

Sample of GNs for model 
training 

Sample of 
households 
within GNs       

Using Lower Poverty Line As Dependent Variable 

100% 
100% 0.6325 - 0.3272 

50% 0.6316 - 0.3271 
25% 0.6287 - 0.3283 

50% 
100% 0.6058 0.6379 0.3355 

50% 0.6061 0.6378 0.3348 
25% 0.6092 0.6441 0.3342 

25% 

100% 0.5995 0.6139 0.3393 

50% 0.5990 0.6167 0.3395 

25% 0.5948 0.6212 0.3392 

Using Higher Poverty Line As Dependent Variable 

100% 
100% 0.6215 - 0.2300 

50% 0.6213 - 0.2300 
25% 0.6209 - 0.2303 

50% 
100% 0.6097 0.6104 0.2348 

50% 0.6097 0.6118 0.2346 
25% 0.6098 0.6154 0.2340 

25% 
100% 0.5947 0.6132 0.2363 

50% 0.5939 0.6152 0.2357 
25% 0.5923 0.6178 0.2346 

Using Average Per Capita Consumption as Dependent Variable 

100% 
100% 0.6081 - 0.014778 

50% 0.6080 - 0.014783 
25% 0.6077 - 0.014782 

50% 
100% 0.5989 0.5964 0.01499 

50% 0.5987 0.5982 0.01498 
25% 0.5984 0.6014 0.01493 

25% 

100% 0.5880 0.5943 0.01524 

50% 0.5874 0.5954 0.01520 

25% 0.5866 0.5966 0.01515 

Notes: This table simulates estimation error when using a reduced Census size. “Sample of GNs” refers to the percentage of 
the villages within the Census used to train the model. “Sample of households within GN” refers to the number of 
households within the sampled GNs used to calculate the income or poverty rate statistic. In-sample (out-of-sample) 𝑅2 
reports the coefficient of determination for the data used in the training (test) sample. Normalized mean absolute error 
(NMAE) reports the mean average error rate divided by the average income/poverty rate, such that the statistic gives the 
average absolute error expressed  as a percentage of the income/poverty rate. 
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5.2 Poverty Estimation via Geographic Extrapolation  

A major motivation for using satellite imagery is to extrapolate poverty estimates into areas 

where survey data on economic well-being do not exist. While most of the data deprivation that 

characterizes the developing world occurs at the country level, it is also common for surveys to 

omit selected regions, due to political turmoil, violence, animosity towards the central 

government, or prohibitive expense. For example, from 2002 through 2009/10, Sri Lanka’s HIES 

failed to cover certain districts in the North and Eastern part of the country due to civil conflict, 

and Pakistan’s HIES exclude the Federally Administered Tribal Areas, Jammu and Kashmir.  

 

To assess how well a model “travels” to a different geographic area, we fit a series of models, 

where in each model we exclude a single Divisional Secretariat (DS), a larger administrative 

area, from the model, and use the estimated model to predict into that excluded area. This is a 

form of “leave-one-out cross-validation” (LOOCV), a common method used to infer statistical 

out-of-sample performance (Gentle et al., 2012). We estimate both linear models and random 

forest models34 to predict out of sample to determine if more flexible model specifications 

perform better out-of-sample. 

 

Our approach differs from the standard case in that for each estimation we exclude, or “leave 

out”, an entire Divisional Secretariat (DS), an administrative sub-unit at the level immediately 

below the district. Table 3 shows model performance at predicting into adjacent areas, 

comparing normalized root mean squared error, normalized mean absolute error, and the 

correlation between predicted and true welfare rates using both random forest and linear models 

to fit HRSF models. The adjacent prediction error rates are larger than when predicting randomly 

out of sample using cross-validation. Normalized error rates divide average error by the average 

value of welfare, therefore the error rates can be interpreted as fractions of average welfare. 

Mean absolute error is estimated at 2.5% of log household consumption, 45% of the average 

poverty rate at the lower poverty line, and 30% of the average poverty rate at the higher poverty 

line using linear models to estimate and predict into adjacent areas. The error rates are lower 

when using random forests to estimate and predict into adjacent areas. When predicting and 

predicting using random forest models mean absolute error declines to 1.5% of log household 

consumption, 38% of the average poverty rate at the lower poverty line, and 25% of the higher 

poverty line.  

 

While these error rates imply adjacent predictions will be too imprecise for producing welfare 

measures intended as official statistics, they may be sufficient for generating rank ordering of 

villages by poverty or income. The rank correlation between the predicted and the true values 

results in a Spearman’s ρ estimated at between 0.67 and 0.7 for the linear models, and between 

0.74 and 0.76 using the random forest models. We conclude from these results that HRSF cannot 

yet be used to predict accurately into adjacent areas for official statistics, but the accuracy may 

be acceptable for targeting or other applications, and is likely to improve as better machine 

learning methods are employed. 

 

                                                 

34 For each random forest model we use 1000 decision trees, sampling 13 of the predictors with replacement.   
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Table 12: Model Performance Predicting Into Adjacent Areas 

 Dependent Variable  

 
Average Log Per 

Capita Consumption 
Lower Poverty Rate 

(10% Nat. Inc.) 
Higher Poverty Rate 

(40% Nat. Inc.)  

Linear Models 

Normalized Root Mean Squared Error (NRMSE) 0.0836 0.9225 0.5376 

Normalized Mean Absolute Error (NMAE) 0.0242 0.4544 0.2923 

Correlation, Predicted and True Poverty Rates 0.6983 0.6707 0.6772 

Random Forest Models 

Normalized Root Mean Squared Error (NRMSE) 0.02008 0.5454 0.3373 

Normalized Mean Absolute Error (NMAE) 0.01537 0.3827 0.2561 

Correlation, Predicted and True Poverty Rates 0.7608 0.7512 0.7423 

 

 

6 Conclusion 
 

Traditionally, given the prohibitive cost of conducting surveys sufficiently large to provide 

accurate statistics for small areas, generating small area poverty estimates requires pairing a 

welfare survey with a census or intercensus survey. Census and intercensus data is expensive to 

collect and therefore produced relatively infrequently. It is also usually disseminated with a lag, 

making it difficult to rapidly assess changes in local living standards.  The results above show that 

indicators derived from high spatial resolution imagery, when paired with survey data, generate 

accurate predictions of local level poverty and welfare, and that by and large the conditional 

correlations are of sensible signs and magnitudes. Furthermore, predictions based on specific 

features accurately predict mean per capita consumption throughout the welfare distribution.  

While the welfare consequences of more frequent measures of poverty and inequality are 

unknown, they may be large given the many applications of frequent local measures of economic 

well-being, ranging from impact evaluation, to budget allocation to social transfers.   

 

How well do indicators derived from satellite imagery predict poverty and which indicators are 

most important? We investigate these questions using a sample of 1,291 villages in Sri Lanka, 

linking measures of economic well-being with features derived from high resolution satellite 

imagery. The results indicate that the correlation between satellite derived indicators and economic 

well-being is remarkably strong. Simple linear models explain 60 to 61 percent in the variation in 

poverty and average log per capita consumption. In both rural and urban areas, variables measuring 

building density, built-up area, and shadows are the strongest predictors of variation in poverty.. 

As expected, the extent and lushness of vegetation is negatively correlated with welfare in rural 

areas, and mildly positively correlated with incomes in urban areas, suggesting that trees and other 

vegetation are a luxury in urban areas.  

 

While these results are very encouraging, additional analysis suggests caution when extrapolating 

predictions into geographically adjacent areas. The normalized error rates range from a quarter to 
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one half of the poverty rates, depending on the incidence of poverty. The likely impediment to 

extrapolation is geographic heterogeneity in the relationship between indicators and welfare. Using 

models that learn from geographic heterogeneity, such as ensemble methods or deep learning 

methods, will likely improve performance for this task. Another factor is time differences at which 

satellites images were taken, which can contribute to noise in the independent variables across 

geographic regions. This could impact particular indicators such as car counts, which can vary 

greatly according to the day of the week the imagery was obtained. Measures of agriculture also 

exhibit considerable seasonal variation which may also confound extrapolation to adjacent areas. 

This suggests that some indicators may particularly contribute to bias when extrapolating across 

space, and that the date of the image is an important consideration when considering spatial 

extrapolation using satellite-based indicators. We suspect this will improve as the revisit rates of 

satellites improves. Planet, which has 190 imagery satellites in orbit, already claims daily revisit 

rates for all of the earth’s land mass, sometimes giving revisit rates as frequently as every hour.  

 

These findings raise a host of questions for further work, and contribute to an ongoing discussion 

regarding the use of predictive methods in public policy (Athey, 2017). The most immediate of 

these is whether satellite indicators can substitute for census data in different contexts and for 

different indicators. Does the strong correlation between satellite-based indicators and economic 

well-being extend to wage income measured directly from an expenditure survey? Second, it is 

important to better understand the extent to which these results generalize to different social and 

ecological environments, such as Africa, the Middle East, and other parts of Asia. There is no 

guarantee that the predictive power of building density, shadows, and other features documented 

above will hold in all environments. 

 

A second line of research could explore whether changes in satellite imagery could be used to 

forecast changes in economic well-being across space and time. Poverty surveys are typically 

collected every three years and the most recent global estimates are produced with a three-year 

lag. Therefore, the ability to “now-cast” measures of economic well-being by combining 

frequently updated satellite imagery with the most recent survey-based measures of poverty has 

great potential. Secondly, additional research can shed light on identifying the best way of 

predicting into adjacent areas not covered by surveys. Overall, the inevitable increase in the 

availability of imagery and feature identification algorithms, in conjunction with the encouraging 

results from this study, implies that satellite imagery will become an increasingly valuable tool to 

help governments and stakeholders better understand the spatial nature of poverty.  
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