Discrimination in Promotion

Anja Prummer¹, Francesco Nava²

¹Queen Mary University of London

²London School of Economics

- Long hours
- Dress code: clothing, hairstyles
- Language: dialects/accents (Southern accent in a NYC bank)
- Hobbies: golf, marathons vs Netflix

- Long hours
- Dress code: clothing, hairstyles
- Language: dialects/accents (Southern accent in a NYC bank)
- Hobbies: golf, marathons vs Netflix
- → Do employers select a culture that makes a promotion accessible/ appealing for all workers?

- Long hours
- Dress code: clothing, hairstyles
- Language: dialects/accents (Southern accent in a NYC bank)
- Hobbies: golf, marathons vs Netflix
- → Do employers select a culture that makes a promotion accessible/ appealing for all workers?
- → Does an employer benefit from inducing differential valuations for a promotion among his workers?

Workers with private value for promotion, employer knows distribution of valuations

Discrimination = Design of worker's value distributions

ightarrow work environment, organisational culture

Workers with private value for promotion, employer knows distribution of valuations

Discrimination = Design of worker's value distributions

ightarrow work environment, organisational culture

Employer's Maximisation Problem

max
Value DistributionsSum of Worker's Efforts.t.Constraints on Distributions

(1) Benchmark: no constraint

- (2) Value Dispersion: culture leads to adjustment in values of one worker, does not impact values of other worker
 - \cdot Adjusted distribution cannot lead to higher average valuation \rightarrow encompasses SOSD
 - Designed distribution is first order stochastically dominated by given distribution
- (3) Value Reallocation: culture affect workers differentially
 - Adjustment matches some measure over values

Key trade-off: Distribution design leads to

- reduction in information rent as worker's value more recognisable
- (2) inequalities between workers reducing competition

Key trade-off: Distribution design leads to

- reduction in information rent as worker's value more recognisable
- (2) inequalities between workers reducing competition
- \rightarrow Redistribution of value increases effort
- \rightarrow Discrimination is profitable

Organisational Incentives and Culture

Winter 2004; Kreps 1990; Crémer 1993, Lazear 1995; Hodgson 1996; Hermalin 1999, 2012; Gibbons + co-authors 2015, 2020 → Inequality with substitutable effort through work culture

Mechanism Design/Information Design

Myerson 1981; Condorelli, Szentes 2019; Rösler, Szentes 2017; Bergemann, Pesendorfer 2007; Sorokin, Winter 2018; Bobkova 2019; Haghpanah, Ali, Lin, Siegel 2020 → Mechanism design subject to "capacity constraint"

Contests with Handicap

Lazear, Rosen 1981; Mealem, Nitzan 2016; Li, Yu 2012; Franke 2012; Calsamiglia, Franke, and Rey-Biel 2013

ightarrow Incentive to make agents unequal

- 1. Model of Discrimination
- 2. Benchmark: No Constraints
- 3. Value Dispersion
- 4. Value Reallocation
- 5. Discussion

Model of Discrimination

- Employer maximises total effort of its 2 workers, A and B
- Worker *i* exerts effort *e_i*
- 2 workers compete for a promotion through effort which depends on their value
- Workers value the promotion at v_i
- Valuation is independent, private value distributed with cdf F_i on support $[\alpha_i, \omega_i] \subseteq [0, \overline{\omega}], \overline{\omega} < \infty$
- Workers start with distribution $G(v) = F_A(v) = F_B(v)$
- Probability of being promoted: x_i

Payoffs

1. Worker's expected payoff

 $x_i(\mathbf{v})v_i - e_i(\mathbf{v})$

2. Employer's expected payoff

$$\mathbb{E}[e_A] + \mathbb{E}[e_B]$$

- \rightarrow Agents maximize payoffs
 - the worker by choosing the optimal effort given his valuation and the probability of promotion
 - the employer by implementing the optimal mechanism and selecting the value distribution, subject to constraints

Employer's Optimal Mechanism (Myerson 1981)

Direct mechanism specifies:

- an effort rule $e(\mathbf{v})$ specifies effort of worker
- allocation rule $x(\mathbf{v})$ pinning down probability of promotion

 \rightarrow rules are incentive compatible (IC) and individually rational (IR)

Total effort in IC and IR mechanism

= expected virtual surplus if virtual value is regular, $\psi'_i(v_i) \ge 0$:

$$TE(F_A, F_B) = \mathbb{E}_{\mathbf{v}}\left[\sum_i e_i(\mathbf{v})\right] = \underbrace{\mathbb{E}_{\mathbf{v}}\left[\sum_i \psi_i(\mathbf{v}_i) x_i(\mathbf{v})\right]}_{i}.$$

Expected Virtual Surplus

where

Virtual Valuation

$$\psi_{i}(\mathbf{V}_{i}) = \underbrace{\mathbf{V}_{i}}_{\text{Value}} - \underbrace{\frac{1 - F_{i}(\mathbf{V}_{i})}{f_{i}(\mathbf{V}_{i})}}_{\text{Information Re}}$$

Rent

Quantile Space

In our setting: adjustment of distributions of values

- ightarrow Regularity may fail
- ightarrow Quantile Space

Define

Quantile

Value

Virtual Value

Promotion Probability

 $q_i(v_i) = 1 - F_i(v_i)$ $v_i(q) = F_i^{-1}(1 - q)$ $\phi_i(q) = \psi_i(v_i(q)) = \frac{\partial (v_i(q)q)}{\partial q}$ $y_i(q), y'_i(q) \le 0$

Quantile Space

In our setting: adjustment of distributions of values

- ightarrow Regularity may fail
- ightarrow Quantile Space

Define

Quantile	$q_i(v_i) = 1 - F_i(v_i)$
Value	$V_i(q) = F_i^{-1}(1-q)$
Virtual Value	$\phi_i(q) = \psi_i(v_i(q)) = rac{\partial (v_i(q)q)}{\partial q}$
Promotion Probability	$y_i(q), y_i'(q) \leq 0$

Maximisation Problem in Quantile Space

 $\max_{F_A,F_B} TE(F_A,F_B) = \mathbb{E}_q[\phi_A(q)y_A(q)] + \mathbb{E}_q[\phi_B(q)y_B(q)]$ s.t. constraints on distributions

Employer's Constraints

- 1. Benchmark: no constraint
- 2. Value Dispersion: work environment focusing on one worker
 - Adjustment cannot lead to higher average valuation

 $\mathbb{E}_F(V) \leq \mathbb{E}_G(V)$

 \rightarrow encompasses SOSD

• Designed distribution is first order stochastically dominated

 $F(v) \geq G(v)$

- 3. Value Reallocation: organisational culture favours one worker, disadvantages the other
 - Distributions match some measure H(v) with mass 2

 $F_A(v) + F_B(v) = H(v) = 2G(v)$

- 1. Model of Discrimination
- 2. Benchmark: No Constraints
- 3. Value Dispersion
- 4. Value Reallocation
- 5. Discussion

Proposition

If the employer can adjust the value distribution for both workers arbitrarily, then he assigns measure 1 to value $\overline{\omega}$ for at least one worker.

- + Employer wants workers' values to be as precise as possible \rightarrow atom
 - Knowing worker's value reduces information rent paid to ensure incentive compatibility.
 - If distribution is single atom \to zero information rent, employer can extract all the effort a worker with value $\overline{\omega}$ is willing to exert
- Employer wants worker to exert as much effort as possible
 - ightarrow effort increasing in value
 - ightarrow choose highest possible value
- Influencing one distribution sufficient

- 1. Model of Discrimination
- 2. Benchmark: No Constraints
- 3. Value Dispersion
- 4. Value Reallocation
- 5. Discussion

Keep distribution of worker A fixed, adjust distribution of worker B

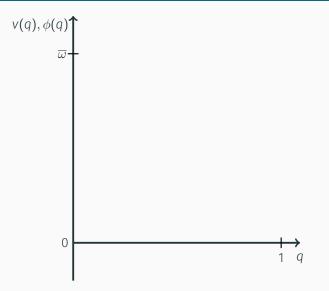
CONSTRAINT:

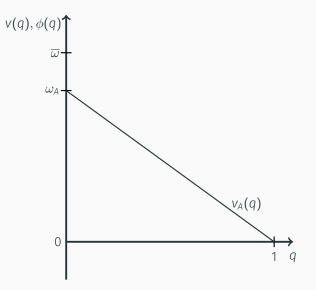
 $\mathbb{E}_{F_B}[V] \leq \mathbb{E}_G[V]$

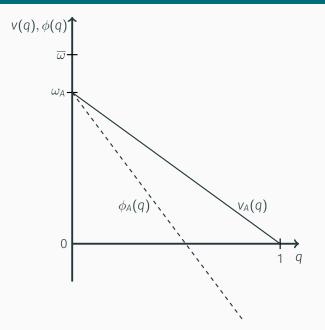
Proposition

Adjustment of B's distribution to $F^*(v) = 1 - \frac{\mathbb{E}_G[v]}{\overline{\omega}} \qquad \forall \ 0 \le v < \overline{\omega}, \qquad F^*(\overline{\omega}) = 1$

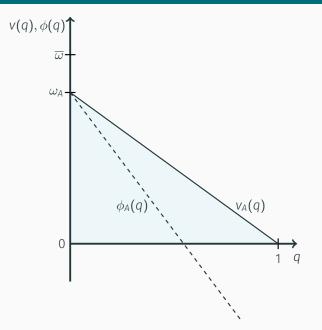
maximises total effort among all distributions F with $\mathbb{E}_{F}[v] \leq \mathbb{E}_{G}[v]$.



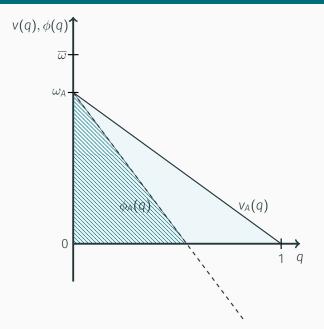


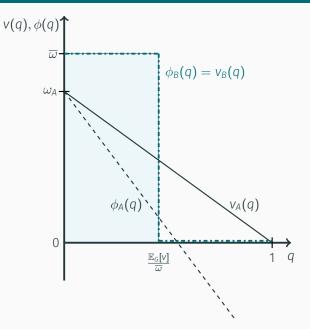


19

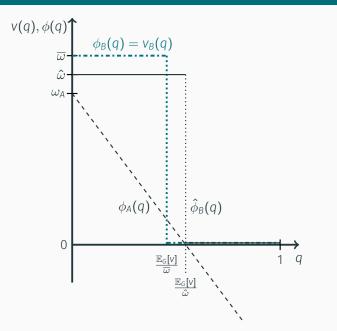


20





22



23

Adjustment of distribution has 2 effects

Employer knows B's value if positive, value irrelevant if zero
 → reduces information rent to zero
 Virtual value for adjusted distribution

$$\phi_{\mathsf{B}}(q) = \begin{cases} \overline{\omega} & \text{if } q < \frac{\mathbb{E}_{\mathsf{G}}[v]}{\overline{\omega}} \\ 0 & \text{if } q > \frac{\mathbb{E}_{\mathsf{G}}[v]}{\overline{\omega}} \end{cases}$$

- Employer maximizes the probability of obtaining the promotion for worker A
 - \rightarrow choose atom at $\overline{\omega}$ as minimizes probability of non-zero value for B
 - ightarrow induces A to exert higher effort

CONSTRAINT

$$\int_0^v G(t) dt \leq \int_0^v F_B(t) dt ext{ for all } v \in [0, \overline{\omega}].$$

 \rightarrow distributions are second order stochastically dominated by initial distribution

Corollary

Among all distributions that are second order stochastically dominated by G, F* maximises total effort.

- Employer selects "riskiest" value distribution for worker B
- Employer has a worker A with smooth value distribution

 \rightarrow A as a safe option, B as risky option

Costs to influence the distribution \rightarrow adjustment still worthwhile

Corollary

For any $E_G[v] > m \ge \mathbb{E}_G[\max\{\psi(v), 0\}]$, the distribution

$$F^{+}(v) = \begin{cases} 1 & \text{if } v = \overline{\omega} \\ 1 - \frac{m}{\overline{\omega}} & \text{if } v < \overline{\omega} \end{cases}$$

yields higher total effort compared to no adjustment.

- Reduction in expected value, $E_G[v] m$, compensated by reduction in information rent, $E_G[v] E_G[\max{\psi(v), 0}]$
- Adjustment is optimal as long as reduction in expected value is lower than reduction in information rent

Value Dispersion: Lower Means for Both Workers

Employer adjusts the distribution of both workers

Corollary

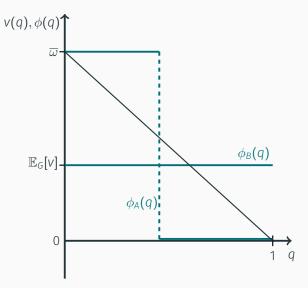
Assume $\mathbb{E}_{F_i}[v] \leq \mathbb{E}_G[v]$, $\forall i \in \{A, B\}$. Total effort is maximised by setting for worker i,

$$F_i^*(v) = \begin{cases} 1 & \text{if } v = \overline{\omega} \\ 1 - \frac{\mathbb{E}_G[v]}{\overline{\omega}} & \text{if } v < \overline{\omega} \end{cases}$$

and for worker j either (i) $F_j^*(v) = F_i^*(v)$ or (ii) $F_j^*(v) = \begin{cases} 1 & \text{if } v \ge \mathbb{E}_G[v] \\ 0 & \text{if } v < \mathbb{E}_G[v] \end{cases}$

- Employer reduces information rent to zero for both workers
- Distributions of both workers can be the same or maximally different

Adjustment A and B: A Picture



Destroying Value: FOSD

Worker *B* faces certain environment, reducing his value such that new distribution is first order stochastically dominated

CONSTRAINT:

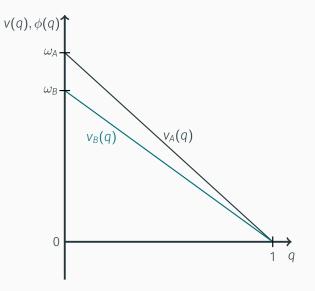
 $F(v) \geq G(v)$

Proposition

Total effort is maximised by having no discrimination and setting $F_B(v) = F_A(v) = G(v)$ among all distributions $F(v) \ge G(v) \forall v$.

- Adjustment of distributions in FOSD-sense never optimal
- To reduce information rent, value has to be decreased drastically \Rightarrow too much to make adjustment worthwhile

FOSD in Quantile – Value Space: A dominates B



1. A suboptimal allocation rule lowers expected virtual surplus

$$\mathbb{E}\Big[\phi(q)y(q)\Big] \geq \mathbb{E}\Big[\phi(q)\hat{y}(q)\Big]$$

2. Integration by parts yields

$$\mathbb{E}\Big[\phi(q)y(q)\Big] = \mathbb{E}\Big[v(q)q(-y'(q))\Big]$$

3. If A dominates B then, it must hold that

$$\mathbb{E}\Big[\Big(v_A(q)-v_B(q)\Big)\left(-y'_B(q)\right)q\Big]>0$$

 \rightarrow any distribution that first order stochastically dominates ${\it B}$ yields higher surplus

Value Dispersion: An Overview

- Bi-modal distribution optimal
 - 1. Optimal adjustment does not destroy expected value
 - 2. Worker's value is recognisable, no information rent
 - 3. To not discourage other workers, select value such that a high value worker is least likely to occur
 - 4. Result encompasses second order stochastically dominated distributions
 - 5. If cost from adjusting distributions, still optimal to adjust (for sufficiently low costs)
- Adjustment to first order stochastically dominated distributions never optimal

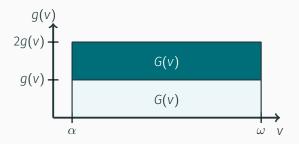
 \rightarrow Making value more recognisable reduces value too much

- 1. Model of Discrimination
- 2. Benchmark: No Constraints
- 3. Value Dispersion
- 4. Value Reallocation
- 5. Discussion

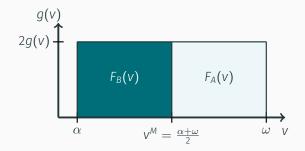
CONSTRAINT:

$$F_A(v) + F_B(v) = H(v) = 2G(v)$$

An example: $v \sim Uniform[\alpha, \omega]$



Adjustment: both distributions are as distinct as possible: $v_B \sim Uniform[\alpha, \frac{\alpha+\omega}{2}]$ and $v_A \sim Uniform[\frac{\alpha+\omega}{2}, \omega]$



Proposition

Reallocating value such that

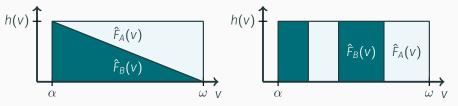
$$\begin{split} F_B(v) &= H(v) & for \ v \in [\alpha, v^M] \\ F_A(v) &= H(v) - 1 & for \ v \in [v^M, \omega] \end{split}$$

maximises total effort.

Key Insight: Minimise information rent, $\frac{1-F(v)}{f(v)}$

- Information rent inversely proportional to *F*(*v*): high for lower values
- \cdot Maximal discrimination assigns highest mass to low values \rightarrow yields maximal total effort as minimises information rent for low values

Compare maximal discrimination to



(a) Splitting Densities

(b) Disjoint Support

Discussion

Fixed Measure: Splitting Densities

- Denote by a(v) share of density h(v) assigned to A, 1 a(v) share assigned to B under \hat{F}_A , \hat{F}_B
- Define auxiliary distributions \overline{F}_A , \overline{F}_B such that

$$\begin{array}{ll} \text{for } v \geq v^M & \overline{x}_A(v) = \max\{\hat{x}_A(v), \hat{x}_B(v)\} \\ \text{for } v < v^M & \overline{x}_B(v) = \max\{\hat{x}_A(v), \hat{x}_B(v)\} \end{array}$$

- Total effort under \hat{F}_A , \hat{F}_B equals total effort under \overline{F}_A , \overline{F}_B
- Compare total effort with allocation rule $\bar{x}_A(v), \bar{x}_B(v)$

$$\mathbb{E}_{\mathsf{V}}[\psi_{\mathsf{A}}(\mathsf{V})\overline{\mathsf{X}}_{\mathsf{A}}(\mathsf{V})] + \mathbb{E}_{\mathsf{V}}[\psi_{\mathsf{B}}(\mathsf{V})\overline{\mathsf{X}}_{\mathsf{B}}(\mathsf{V})]$$

Virtual Value: A,B, Allocation: $\overline{A},\overline{B}$

$$> \underbrace{\mathbb{E}_{v}[\overline{\psi}_{A}(v)\overline{x}_{A}(v)] + \mathbb{E}_{v}[\overline{\psi}_{B}(v)\overline{x}_{B}(v)]}_{=}$$

Virtual Value: $\overline{A}, \overline{B}$, Allocation: $\overline{A}, \overline{B}$ = Virtual Value: \hat{A}, \hat{B} , Allocation: \hat{A}, \hat{B}

Comparison of effort split into (i) $v \ge v^M$ and (ii) $v \le v^M$

Difference in virtual values, weighted by allocation probabilities:
$$v > v^{M}$$

$$\int_{v^{M}}^{\omega} \overline{\left[\psi_{A}(v)\overline{x}_{A}(v) - \overline{\psi}_{A}(v)\overline{a}(v)\overline{x}_{A}(v) - \overline{\psi}_{B}(v)(1 - \overline{a}(v))\overline{x}_{B}(v)\right]} h(v)dv$$

$$+ \int_{\alpha}^{v^{M}} \underbrace{\left[\psi_{B}(v)\overline{x}_{B}(v) - \overline{\psi}_{A}(v)\overline{a}(v)\overline{x}_{A}(v) - \overline{\psi}_{B}(v)(1 - \overline{a}(v))\overline{x}_{B}(v)\right]}_{\text{Difference in virtual values, weighted by allocation probabilities: } v < v^{M}}$$

→ replace $\overline{x}_B(v)$ by $\overline{x}_A(v)$ for $v > v^M$ → replace $\overline{x}_A(v)$ by $\overline{x}_B(v)$ for $v < v^M$

Fixed Measure: Splitting Densities 2

Expression in brackets simplifies to

$$\left[\psi_i(v) - \overline{\psi}_A(v)\overline{a}(v) - \overline{\psi}_B(v)(1 - \overline{a}(v))\right]\overline{x}_i(v)$$

 \rightarrow comparison of virtual values

 \rightarrow simplifies to comparison of information rents

1. For i = A difference is zero at each value \rightarrow any two distributions lead to the same information rent for values above the median

For i = B difference is one at each value → maximal discrimination saves on information rent for values below the median

 \rightarrow Information rent high at low values, inversely proportional to F(v)

Maximal discrimination assigns highest mass possible to low values

 \rightarrow yields maximal total effort as minimises information rent for low values

- 1. Model of Discrimination
- 2. Benchmark: No Constraints
- 3. Value Dispersion
- 4. Value Reallocation
- 5. Discussion

- bi-modal distribution: consistent with divisive culture in law, banking and consultancies culture with long hours → loved by few, disliked by most
- culture disadvantages e.g. women more: women face expectation to spend time with family and focus on work → lose-lose situation for women (Padavic, Ely, Reid 2020)
- ightarrow gender, race, background determine fit

- Taste-based Discrimination (Becker 1957): individuals dislike those who are different from them → competed away, different individuals not hired
- 2. Statistical Discrimination (Phelps 1972, Arrow 1973): exogenous or endogenous differences between groups lead to distinct outcomes of groups

→ multiplicity of equilibria, discrimination if coordination failure but: workers are hired with less information compared to promotion stage, statistical discrimination should be less important at later stages (Bohren Imas Rosenberg 2019; Altonji Pierret 2001)

Conclusion

- Employer benefits from redistributing workers' valuation for promotion, but not from destruction (FOSD)
- Employer aims for workers' valuation to be as recognisable as possible while maximising competition between workers
- Creating more recognisable workers reduces information rent and gain in information rent generally outweighs loss in competition
- \rightarrow impact of corporate culture on workers
- \rightarrow novel source of discrimination
- ightarrow model of designing value distributions

Discrimination is profitable

Fixed Measure: Disjoint Support

- At least one distribution must have disjoint support
- Analyse problem in value-quantile-space as solution boils down to comparison of quantiles
- Define auxiliary allocation probability, keeping total effort constant
- Difference in quantiles is some constant
- Possible to generate reduction in information rent in $v > v^M$, but at cost of increase in information rent for lower v
- Reduction in information rent for high values is never as high as that for low values

Fixed Measure: Disjoint Support

- At least one distribution must have disjoint support
- Analyse problem in value-quantile-space as solution boils down to comparison of quantiles
- Define auxiliary allocation probability, keeping total effort constant
- Difference in quantiles is some constant
- Possible to generate reduction in information rent in $v > v^M$, but at cost of increase in information rent for lower v
- Reduction in information rent for high values is never as high as that for low values

Maximal discrimination assigns highest mass possible to low values

 \rightarrow yields maximal total effort as minimises information rent for low values