Information Processing: Contracts versus Communication

Andreas Blume Inga Deimen Sean Inoue

U Arizona U Arizona Colgate U

October 2020

Contracts versus communication

- A principal expects to receive private information
- The principal relies on an agent acting on that information
- Ideally, complete control in advance: actions pre-specified for all contingencies
- Difficult to exercise this degree of control
- Role for non-binding ad hoc communication (cheap talk)

Questions:

When to commit (to instructions) and when to communicate? How do contract and cheap talk interact?

Timeline of the game

Stage 1: Principal writes contract

- Codifes language that makes conditions (sets of states) and actions (instructions) verifiable to third parties
- Commits principal to provide instructions (not state)
- Commits agent to follow instructions
- Incompleteness: effort to make conditions verifiable
 - Finitely many instructions and potential gaps

Timeline of the game

Stage 1: Principal writes contract

- Codifes language that makes conditions (sets of states) and actions (instructions) verifiable to third parties
- Commits principal to provide instructions (not state)
- Commits agent to follow instructions
- Incompleteness: effort to make conditions verifiable
 - Finitely many instructions and potential gaps

Stage 2: State realizes and is privately observed by principal

Stage 3: Principal communicates with agent:

- Sends instruction (contract)
- Sends cheap talk recommendation (gap)

Stage 4: Agent takes action

- Follows instruction (contract)
- Chooses action (gap)

Results

Extension

Conclusions

Timeline of the game

Results

Extensions

Conclusions

Timeline of the game

Stage 5: States in the contract become verifiable

- Contract establishes language that makes states in the contract verifiable
- Informal communication cannot be verified

Results

Extension

Conclusions

Take-aways

Tradeoff: ex ante commitment versus ex post discretion

General preferences:

- Small disagreement: communication dominates
- Many clauses: contracting dominates

Uniform-quadratic:

- Contracts relax incentive constraints in communication
- Benefits from contract
 - direct: shifts control to principal
 - indirect: more actions in communication more equalized communication intervals

Example:

- Contracts cover states with more conflict
- Contracts cover states that are more likely

- Crawford and Sobel (1982) (Cheap talk)
- Dye (1985), Battigalli & Maggi (2002) (Writing cost)
- Shavell (2006), Heller & Spiegler (2008), Schwartz & Watson (2013) (Contract interpretation)
- Aumann & Hart (2003), Krishna & Morgan (2004), Golosov, Skreta, Tsyvinski, & Wilson (2014) (Endogenous communication thresholds)

Model

Example

Results

Extension

Conclusions

Model

Blume, Deimen, Inoue (UofA, Colgate)

Contracts versus Communication

- Players:
 - Sender (Principal)
 - Receiver (Agent)
- Receiver's action $y \in \mathbb{R}$
- State $heta \in [0,1]$ with $heta \sim {\sf F}$, f(heta) > 0
- Payoffs: standard concave loss functions satisfying positive mixed-partial condition
 - Sender $U^{S}(y, \theta, b)$
 - Receiver $U^{R}(y,\theta)$
 - positive sender-bias b > 0

Timing of the contract writing game G

- 1. Sender writes a contract $\ensuremath{\mathcal{C}}$
 - simple not fully detailed complete
 - gaps potentially not obligationally complete
- 2. Sender observes the state
 - contract induces action
 - gap induces communication
- 3. Communication subgame Γ^{C}
 - sender sends message
 - receiver takes action

Goal: characterize sender-optimal SPEa

Contract writing game $G(\widehat{K}, b)$

- Sender writes contract $C = \{(C_k, x_k)\}_{k=1}^K$
- Clauses $(C_k, x_k), k = 1, \ldots, K$
- Conditions are intervals in the state space, $C_k \subseteq [0, 1]$
- Instructions $x_k \in \mathbb{R}$
- $K \leq \widehat{K}$

Commitment:

If $\theta \in C_k$, action x_k implemented

Communication subgame $\Gamma^{\mathcal{C}}$

- Gap in the contract: $\mathcal{L}(\mathcal{C}) := [0,1] \setminus igcup_{k=1}^{\mathcal{K}} \mathcal{C}_k$
- Sender strategy (messages) $\sigma: \mathcal{L}(\mathcal{C}) \to \Delta(M)$
- Receiver strategy (actions) $ho: \mathcal{M}
 ightarrow \mathbb{R}$
- No commitment
- Partitional equilibria
 - critical types θ_i
 - "steps" = induced actions y_i
- Γ^0 induced by \mathcal{C}^0 is a CS game:

Communication subgame $\Gamma^{\mathcal{C}}$

- Gap in the contract: $\mathcal{L}(\mathcal{C}) := [0,1] \setminus \bigcup_{k=1}^{K} C_k$
- Sender strategy (messages) $\sigma: \mathcal{L}(\mathcal{C}) \to \Delta(M)$
- Receiver strategy (actions) $ho: \mathcal{M}
 ightarrow \mathbb{R}$
- No commitment
- Partitional equilibria
 - critical types θ_i
 - "steps" = induced actions y_i

Model

Example

Results

Extension

Conclusions

Example

Blume, Deimen, Inoue (UofA, Colgate)

Introduction Model Example Results Extensions Conclusions Example:
$$\widehat{K} = 1$$
 and $b = \frac{1}{3}$

- Uniform distribution, quadratic payoffs, constant bias
 - Sender: $U^{S}(y, \theta, b) = -(\theta + b y)^{2}$
 - Receiver: $U^{R}(y,\theta) = -(\theta y)^{2}$
- There cannot be an equilibrium with more than two steps
- We compare:

no contract, 0-step, 1-step, and 2-step optimal contracts

No contract = CS communication:

Obligationally complete contract = no communication (0-step):

Allowing for 1-step communication:

Allowing for 2-step communication:

The sender's payoffs are ordered:

no contract \prec obl. complete contract \prec 1-step \prec 2-step contract

Introduction Model Example Results Extensions Conclusions
Example with different parameters

Increase number of clauses to $\widehat{K} = 2$, keeping $b = \frac{1}{3}$:

Increase number of clauses to $\hat{K} = 2$ and decrease bias to $b = \frac{1}{5}$ (recall: without contract maximally two actions in equilibrium):

- More clauses improve payoff
- More clauses can drive out communication
- Communication can replace contracting for smaller bias
- More communication actions with contract compared to CS: Contract relaxes incentive constraints in communication

Model

Example

Results

Extension

Conclusions

General results

Blume, Deimen, Inoue (UofA, Colgate)

Contracts versus Communication

Maximal use of clauses

The sender optimally uses as many clauses as possible:

Proposition 1

If $C = \{(C_k, x_k)\}_{k=1}^K$ is an optimal contract in $G(\widehat{K}, b)$, then $K = \widehat{K}$.

- Intuition:
 - Replace communication interval: sender imposes her bias
 - Split existing clause: actions more precise

Maximal use of clauses

The sender optimally uses as many clauses as possible:

Proposition 1

If $C = \{(C_k, x_k)\}_{k=1}^K$ is an optimal contract in $G(\widehat{K}, b)$, then $K = \widehat{K}$.

- Intuition:
 - Replace communication interval: sender imposes her bias
 - Split existing clause: actions more precise

Results

Extensions

Conclusions

Many clauses

If the maximal number of clauses goes to infinity, contracting drives out communication:

Proposition 2

For any sequence of $\{\mathcal{L}_{\widehat{K}}\}_{\widehat{K}=1}^{\infty}$ of gaps arising in sender-optimal equilibria $e(\widehat{K}, b)$ of contract-writing games $G(\widehat{K}, b)$, $\widehat{K} = 1, 2, \ldots$,

 $\lim_{\widehat{K}\to\infty}\operatorname{Prob}(\mathcal{L}_{\widehat{K}})=0.$

Results

Extensions

Conclusions

Decreasing bias

If the bias goes to zero, communication drives out contracting:

Proposition 3

Suppose that the continuity property holds for the games $\Gamma^{0}(b_{i})$. For any sequence $\{\mathcal{L}_{i}\}_{i=1}^{\infty}$ of gaps in sender-optimal equilibria $e(b_{i})$ of games $G(\widehat{K}, b_{i})$ with $\lim_{i\to\infty} b_{i} = 0$,

 $\lim_{i\to\infty}\operatorname{Prob}(\mathcal{L}_i)=1.$

Model

Example

Results

Extension

Conclusions

Results for uniform-quadratic environment

Blume, Deimen, Inoue (UofA, Colgate)

Contracts versus Communication

Results for uniform-quadratic environment

(Not necessarily optimal) contracts can increase the number of steps in communication:

Proposition 4

For any b, there exist a \widehat{K} and a contract C such that there is an equilibrium of the communication subgame Γ^{C} with n induced actions if and only if $n < 1 + \frac{1}{2b}$.

• Comparison to CS for $b < \frac{1}{2}$:

$$\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{2b}} < 1 + \frac{1}{2b}$$

• Example $b = \frac{1}{10}$: $N_{CS} = 2$ and $\hat{N} = 5$

Sufficiently many clauses – relative to the bias – result in no communication:

Proposition 5 If $\hat{K} > \frac{1}{2b}$, then any optimal contract will cover [0, 1].

Contracts versus communication

An optimal contract relaxes incentive constraints:

- Every "condition cluster" contains a critical type (equivalently, no condition cluster belongs to the interior of a communication interval)
- For meaningful communication, there is a condition cluster with a critical type that is not 0 or 1

Proposition 6

Suppose that the contract $C = \{(C_k, x_k)\}_{k=1}^{\widehat{K}}$ is optimal in the contract-writing game G, and the equilibrium e^{C} is sender-optimal in the communication subgame Γ^{C} . Then, for every condition cluster C, there is a critical type θ with $C \cap \{\theta\} \neq \emptyset$. If, in addition, the equilibrium e^{C} induces at least two communication actions, then there is a condition cluster C and a critical type $\theta \neq 0, 1$ with $C \cap \{\theta\} \neq \emptyset$.

Conclusions

No condition in interior

Intuition:

Condition has interior type

Intuition:

Structure of optimal contracts

• Equilibrium is partitional and monotonic

Corollary 7

Suppose that the contract $C = \{(C_k, x_k)\}_{k=1}^{\widehat{K}}$ is part of a sender-optimal equilibrium e^G in the contract-writing game G and induces a sender-optimal n-step equilibrium e^C in the communication subgame Γ^C . Then, the equilibrium e^G is

- 1. partitional there is a partition $\mathcal{P} = \{P_1, P_2, \dots, P_{\widehat{K}+n}\}$ of the type space [0, 1] into intervals such that each $P \in \mathcal{P}$ is either a condition of \mathcal{C} or a communication interval in $e^{\mathcal{C}}$; and,
- 2. monotonic for any two $P, P' \in \mathcal{P}, P \neq P'$, with $\inf(P') \ge \sup(P)$, the actions a(P') and a(P) taken for states in P' and P satisfy a(P') > a(P).

Introduction Model Example **Results** Extensions Conclusions

Structure of optimal contracts

• Equilibrium is partitional and monotonic

Model

Examp

Equalizing communication intervals

- Contracts relax incentive constraints
- Lengths of communication intervals can be equalized

Corollary 8

Suppose $\widehat{K} = 1$, the contract C with condition $[\underline{C}, \overline{C}]$ is optimal, and C induces at least two communication actions in the sender-optimal equilibrium e^{C} of the communication subgame Γ^{C} . If θ_{i-1}, θ_{i} , and θ_{i+1} are critical types in the equilibrium e^{C} with $\theta_{i} \in [\underline{C}, \overline{C}]$, then $|\theta_{i+1} - \overline{C}| < |\underline{C} - \theta_{i-1}| + 4b$; and, if $\theta_{i} \in (\underline{C}, \overline{C})$, then $|\theta_{i+1} - \overline{C}| \leq |\underline{C} - \theta_{i-1}|$.

Model

Example

Results

Extensions

Conclusions

Extensions

Blume, Deimen, Inoue (UofA, Colgate)

Contracts versus Communication

Finite unions of disjoint closed intervals as conditions

• It is never optimal to split the condition into finitely many disjoint intervals.

Proposition 9

Suppose that we allow contracts with conditions C that are finite unions of disjoint closed intervals. Then, for $b > \frac{1}{4}$ and $\hat{K} = 1$, any optimal contract is nonempty and the condition in that contract is a single interval.

Example: nonconstant bias

- Assume $b(\theta) = \frac{1}{3} + \frac{1}{30}\theta$
- Optimal contract covers states with relatively higher bias

Example: nonuniform distribution

- Assume $f(\theta) = \frac{9}{10} + \frac{2}{10}\theta$
- Optimal contract covers more likely states

Example: transfers

- Sender: $U^{S}(y, \theta, b, w) = -(\theta + b y)^{2} w$
- Receiver: $U^R(y, \theta, w) = -\alpha(\theta y)^2 + (1 \alpha)w$
- Sender maximizes: $\mathbb{E}U^{S}(y, \theta, b, w)$ s.t. $\mathbb{E}U^{R}(y, \theta, w) = \overline{u}^{R}$
- Optimal contract covers fewer states

- Some motivation for assuming intervals
- Some robustness with respect to: bias, distribution, transfers
- Contract covers states with higher conflict
- Contract covers states that are more likely
- Transfers reduce the set of states in the contract

Model

Example

Results

Extension

Conclusions

Conclusions

Blume, Deimen, Inoue (UofA, Colgate)

Contracts versus Communication

Concluding remarks

- Model of interaction between contracts and communication
- Tradeoff: ex ante commitment versus ex post discretion
- At the extremes:
 - Small disagreement: communication dominates
 - Many clauses: contracting dominates
- Insight: two benefits from contracts
 - direct: shift control to principal
 - indirect: relaxation of incentive constraints
 - \rightarrow potential for more actions induced by communication
 - \rightarrow potential for more equalized communication intervals
- Equilibria are partitional and monotonic
- Optimal contracts
 - cover states that have more conflict
 - cover states that are more likely
 - with transfers cover smaller sets of states

Model

Example

Results

Extension

Conclusions

Thank you!

Blume, Deimen, Inoue (UofA, Colgate)

Contracts versus Communication

Nothing unexpected happens for $b \rightarrow 0$:

Continuity Property. For any sequence of biases $\{b_i\}_{i=1}^{\infty}$ with $b_i \to 0$ and any sequence $\{e(b_i)\}_{i=1}^{\infty}$ of sender-optimal equilibria in the games $\{\Gamma^0(b_i)\}_{i=1}^{\infty}$, the sender's payoffs in those equilibria converge to $\int_{[0,1]} U^S(y^S(\theta), \theta, 0) dF(\theta)$.

back