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Abstract

Expert advice is often rich and broad, going beyond a simple recommen-
dation. In this paper we show that this additional, referential information
plays an important strategic role in expert advice and that it is vital to
an expert’s power. We develop this result in the context of the canonical
model of strategic communication with hard information, enriching the
model with a notion of expertise that allows for a meaningful distinction
between a recommendation and referential information. Referential ad-
vice changes communication as it creates an expectation for additional
information that ties the hands of the expert. This can hurt the expert
as she may be compelled to reveal more information than she would like,
up to and including full revelation. It can also help the expert as, by
tying her hands, her messages become more credible. We identify an
equilibrium in which, with probability one, the expert is strictly better
off by providing referential advice than she is in any equilibrium in which
she provides a recommendation alone. The benefit of referential advice to
the expert is non-monotonic in the complexity of her expertise, reaching
its peak when expertise is moderately complex.
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1 Introduction
Advice takes many forms. A common form is for an expert to simply offer a
recommendation: A librarian recommends a book, a travel agent recommends
a tour, or a sales assistant recommends a pair of shoes. In many situations,
however, an expert does not limit herself to only a recommendation. Instead,
the expert provides advice that is more expansive and that conveys informa-
tion about options beyond the one recommended. This richer, contextual
advice—what linguists refer to as referential information (Jakobson 1960)—is
particularly relevant when the expert possesses complex knowledge. For in-
stance, in addition to recommending a treatment, a doctor will often discuss
alternative treatments and why she does not recommend them. Similarly,
a mechanic might detail likely outcomes should a car owner undertake only
superficial repairs instead of the more extensive and expensive ones she does
recommend.

The role that referential information plays in the supply of expert advice
has not previously been examined. As such, it is unclear whether referential
information plays a meaningful role in communication or whether it is superflu-
ous or even babbling. The objective of this paper is to offer the first analysis
of referential information and address these questions.

In a model of hard (verifiable) information, we show that referential advice
fundamentally changes the nature of strategic communication. Referential
advice matters to communication because it creates an expectation for more
information and this expectation ties the hands of the expert. Done poorly,
the expert is compelled to provide more information than she would like, up
to and including full revelation of her expertise. Done well, however, the
expert is able to shape the decision maker’s beliefs in a way that systematically
sways decisions in her favor. We identify an equilibrium in which the expert is
always strictly better off when she provides referential advice than she is in any
equilibrium in which she provides only a recommendation. This equilibrium
implies that the mechanic, by providing referential advice, is able to induce
the owner to spend more money on repairs, regardless of the true damage to a
car, than were she to provide a recommendation alone.

To begin to understand the role of referential advice, we need to examine
more deeply what it means to be an expert. In the classical formulations of
Milgrom (1981) and Crawford and Sobel (1982), expertise is modeled as a single
piece of information that the expert alone possesses. This formulation provides
no space for referential advice. Because the same single piece of information
affects all options (often in an identical way), advice about one option is
necessarily advice about all options. As a modeling tool, this formulation has
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yielded considerable insight, yet it conflicts with our intuitions about what it
means to be an expert. Weber (1922) famously emphasized the large gap in
knowledge between an expert and a decisionmaker and argued that this gap
is the source of an expert’s power, observing that “the political master finds
himself in the position of the ‘dilettante’ who stands opposite the ‘expert’.”1

We take inspiration from Weber and introduce a novel, richer conception of
expertise, one that allows space for referential advice. Specifically, we suppose
that each option is associated with a unique state variable that determines the
outcome of that option, and that the states are imperfectly correlated. The
expert knows these states but the decisionmaker does not and the gap between
them is large.

The key novelty of this approach is that it allows the expert to communicate
precisely yet imperfectly. The spillover of information from expert advice is
incomplete. This means that the doctor not only has more information than the
patient, but when she prescribes medicine for a migraine, that prescription does
not reveal all of her expertise about, say, heart disease or any other illness.2

In the canonical model, in contrast, the spillover of information from a
recommendation is complete. In revealing the ideal treatment for one malady,
a doctor reveals the ideal treatment for all maladies. This leads to the seminal
result of the hard information literature—the famous “unravelling” result—that
in the unique equilibrium the expert’s information advantage unravels and she
fully reveals her information to the decisionmaker (Milgrom 1981; Grossman
1981).3 As a result, the expert retains no leverage and the decision that is
made aligns fully with the preferences of the decisionmaker.

Our richer notion of expertise provides the expert with greater ability to
keep her information private and we show that the expert is able to do so to
the maximal extent. We identify a continuum of equilibria in which the expert
reveals the minimum amount of information to influence decision making—i.e.,
the outcome of a single state variable. The option that is revealed constitutes a
recommendation—what linguists refer to as the conative function of language
(Jakobson 1960)—and the decisionmaker follows the recommendation.

The existence of recommendation-only conative equilibria imply that com-
1The logic for this advantage is described by Bendor et al. (1985, p.1042): “A bureau’s

influence rests. . . as Weber noted, [in] its control of information, its ability to manipu-
late. . . information about the consequences of different alternatives.”

2Subsequent literature has generalized the informational structure of the classical models
and explored the limits of unraveling, although in directions different from ours. We discuss
this work below.

3See also Milgrom and Roberts (1986); Matthews and Postlewaite (1985); Seidmann and
Winter (1997).
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plex expertise does not necessarily imply complex communication. A doctor
can, despite her extensive knowledge, simply recommend a treatment and
know that the patient will follow her advice. As these equilibria maximize the
expert’s ability to shield her information from the decisionmaker, it may be
reasoned that they are the expert’s preferred equilibria. Our main result is
that this is not true.

Constraining conative equilibria is the fundamental problem of informational
spillover. The expert can minimize the amount of information she reveals,
but she can’t prevent that information from spilling over into other options.
Should the decisionmaker reject the expert’s recommendation, he can still use
the information contained in that recommendation for his own benefit.4 This
allows the decisionmaker to extract the surplus from expertise. We show that in
the case in which the decisionmaker has quadratic utility, the expected decision
in all conative equilibria is equal to or larger than what the decisionmaker
would choose in the absence of expertise. This means that a risk-neutral expert
wanting smaller choices is indifferent between her most preferred conative
equilibrium and not having expertise at all.5

Referential advice allows the expert to avoid this fate. By supplementing
her recommendation with referential advice, the expert is not so much able
to avoid information spillover, but to redirect it in her favor. To understand
how, it is important to understand that effective communication is a process
of both persuasion and dissuasion. To persuade the decisionmaker to follow
a recommendation, the expert must simultaneously dissuade him from choos-
ing another option. Referential advice allows the expert to separate these
tasks. The recommendation persuades and the referential advice dissuades. A
recommendation alone cannot carry the weight of both tasks.

The influence of referential information is not that the expert reveals
bad outcomes when the realized states of the world are unfavorable to the
decisionmaker and stays quiet otherwise (which would fall to standard adverse
selection arguments). Referential advice works instead through a different
channel. In our model, an ideal option for the decisionmaker almost surely
exists and, therefore, no amount of bad information will convince him otherwise.
The decisionmaker’s core problem, however, is that he does not know which

4For example, the persuasiveness of an overly-cautious doctor is limited because when
she prescribes four weeks of physiotherapy for a knee injury, the less-cautious patient can
infer that his injury is not life-threatening or even permanently disabling, and instead decide
that a few sessions is enough.

5We follow the hard information literature in assuming that the expert cares about the
decision taken (the cost of repairs to the mechanic) whereas the decisionmaker cares about
the outcome.
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option is his ideal. By strategically providing referential information, and
by exploiting the correlation across states, the expert is able to manipulate
and spread out the decisionmaker’s uncertainty such that no single decision
is particularly attractive. Combining this ability with a carefully chosen
recommendation, the expert is able to present a picture of the world that
persuades the decisionmaker to accept a recommendation that he otherwise
wouldn’t were it presented alone and without referential information. The
power of this result is that the logic holds not just some of the time but all of
the time: The expert is always able to induce a more favorable decision with
referential advice than with a recommendation alone.

At its core, the difference between referential and conative equilibria is
credibility. Conative advice cannot carry the weight of both persuasion and
dissuasion because in minimizing communication, the expert, ironically, has
too much freedom to communicate, freedom that she can use to misrepresent
her true type and deceive the decisionmaker. In many strategic environments
that freedom is powerful. In a game of strategic communication that freedom
is destructive. In conative equilibria the freedom to deceive undermines the
expert’s ability to persuade. Referential advice is credible because it ties the
hands of the expert. In referential equilibria the expert potentially provides a
lot of information. Some of it is used to persuade and dissuade directly, the
remainder is important in that it makes imitation difficult. Precisely because
imitation is difficult, the expert is unable to deceive the decisionmaker, and this
is what makes her message credible. Credibility is what makes the persuasion
and dissuasion possible and, when constructed in just the right way, induces
the decisionmaker to accept a recommendation that he otherwise wouldn’t.

Our model of expertise introduces a novel application of stochastic processes.
Formally, we analyze a decision problem with a finite set of options but we allow
that set to become arbitrarily large such that in the limit it approximates the real
line. The realization of the correlated state variables then produces a mapping
from options to outcomes that is a discrete stochastic process. We construct
the correlation across states such that in the limit this path approximates a
Brownian motion and we interpret the variance of the Brownian motion as
parameterizing the complexity of the decision problem and, as the expert knows
the outcome of each option, as the complexity of expertise. This construction
offers advantages in richness, tractability, and realism, and we leverage these
to provide insights into strategic communication.6 The canonical models of
expertise as a single piece of information (Milgrom 1981; Crawford and Sobel

6The Brownian motion representation of uncertainty has also recently found application
in models of search (Callander 2011; Garfagnini and Strulovici 2016).
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1982) correspond to the special case of our model in which the correlation
across states is perfect and the mapping is perfectly linear.

Modeling expertise in a richer, more realistic way, significantly expands
the space of types, messages, and beliefs. This richness leads to a multiplicity
of equilibria. It also means that a complete characterization of referential
equilibria is beyond our reach. We view this as a reasonable trade-off of
analytic power for modeling richness. That said, we do fully characterize what
the expert can achieve through a recommendation alone. We then show that a
particular referential equilibrium strictly dominates all conative equilibria, such
that the expert is always made better off by providing referential advice, and
that this equilibrium possesses appealing properties relative to other referential
equilibria.

Related Literature

Experts play a role in almost every aspect of economic, social, and political
life, and intuition strongly suggests that they benefit from their expertise.
Indeed, Weber et al. (1958) concluded that in politics the power of experts was
preeminent: “Under normal conditions, the power position of a fully developed
bureaucracy is always overtowering.” Documenting this advantage empirically,
however, can be challenging. Nevertheless, over time, broad and compelling
evidence has accumulated that experts not only influence decisions but that
they shape them to their personal advantage: Division managers manipulate
headquarters into funding too many projects (Milgrom and Roberts 1988);
realtors manipulate homeowners into selling too quickly and cheaply (Levitt
and Syverson 2008); and OBGYNs manipulate patients into having too many C-
sections (Gruber and Owings 1996), among other evidence. The contribution of
our model is to provide a novel theoretical foundation for this expert advantage
even when the decisionmaker knows the expert does not have his interests at
heart.

We are not the first paper to enrich the informational structure of the
canonical sender-receiver model, although the focus and intention of those
papers is very distant from ours, and we are the first to identify a role for
referential information. The knowledge of the sender (the expert) is generalized
to multiple dimensions in Glazer and Rubinstein (2004), Shin (2003), and
Dziuda (2011). More recently, Hart et al. (2017) generalize further and assume
only that knowledge satisfies a partial order (see also Ben-Porath et al. 2019;
Rappoport 2020). In these settings, the information that is strategically
withheld from the receiver (the decisionmaker) is relevant to all options and,
in equilibrium, the receiver is uncertain of the outcome he will receive from
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his choice. In equilibrium in our model, in contrast, the receiver is certain of
the outcome he will receive from his decision as all unrevealed information is
irrelevant to his choice. This provides a sharp distinction in interpretation. In
our setting, the extra information provided is purely referential and aimed at
dissuasion (and persuasion indirectly, as explained above), whereas in these
other models, the conative and referential functions of language are intermingled
and all information that is provided constitutes part of the recommendation
and is aimed at persuasion directly.

In his famous treatise, Jakobson (1960) delineates six purposes of language,
and we borrow only two. Although there is a considerable chasm between
the setting of Jakobson (1960) and the formalism of models of strategic com-
munication, we find resonance. According to Jakobson (1960), the conative
function of language is a call for action, what we take as a recommendation.
The referential function of language, in contrast, is to provide context and is
the additional, non-prescriptive information that a speaker may offer about the
world. This translates in our setting into the information an expert provides
beyond her recommendation as, by construction, this information does not
affect beliefs about the recommendation itself.7

A separate, prominent strand of the hard information literature, due to
Dye (1985), incorporates the possibility that the sender is uninformed and,
thus, not an expert at all (see also Dziuda 2011). This implies that should
the receiver not receive some information, he is unsure whether the sender is
deliberately withholding the information or whether she doesn’t have it at all.
This concern is not present in our model. Throughout our analysis, the sender
is informed and the receiver knows this with certainty.

The alternative approach to communication with hard information is cheap
talk communication (Crawford and Sobel 1982). The analysis with cheap-talk
in our environment is trivial and immediate: No informative equilibria exist.
If different messages induce different decisions by the receiver then, because
the expert cares only about the action taken, it follows that at least one
message must be strictly suboptimal. Callander (2008) shows that informative
communication is possible if the expert cares instead about the outcome.
Analyzing the limit case of our model in which the mapping is a Brownian
motion, he shows that this creates a common interest—both expert and receiver
wish to avoid extreme outcomes—and that this common interest supports

7We treat the hard information about the recommendation as part of the recommendation
itself. An alternative interpretation is to treat that information also as referential. Sobel
(2013) was the first to connect Jakobson’s typology to games of strategic communication
and he offers a more complete translation and interpretation into the language of strategic
communication games.

7



informative advice. Nevertheless, in the equilibrium he identifies, referential
advice plays no role and communication is purely conative: In equilibrium,
the sender recommends an action that maps into her own ideal point and, as
long as the sender’s preferences are not too different from his, the receiver
implements that option. The sender has no incentive to deviate as she obtains
her ideal outcome, and the receiver implements the recommendation as he
prefers the sender’s ideal outcome rather than face the risk of choosing on his
own. This balance is not relevant for the preferences we analyze here and the
equilibria we identify are logically distinct.

Our model is also distinct from the flourishing literature on information
design (Kamenica and Gentzkow 2011; Rayo and Segal 2010). Our core
difference with that literature is an absence of commitment. In our model,
neither the receiver nor the sender can commit to any particular course of action.
Similarly, communication in our model is without institutional constraint.
In political economy, the influential model of Gilligan and Krehbiel (1987)
demonstrates how legislatures can organize themselves by committing to formal
institutional structure and rules that incentivize and leverage expertise in
policymaking. Our model, instead, contributes to our understanding of how
and why experts can wield power even in absence of commitment or institutional
structure.

2 Model
A sender and a receiver play a game of strategic communication with hard
information. We introduce a novel notion of rich expertise but otherwise hew
as closely as possible to classical models of hard information (Milgrom 1981;
see also Meyer 2017; Gibbons et al. 2013). We follow the convention of using
the female pronoun for the sender and the male pronoun for the receiver.

Technology: There is a set of options D = {d0, d1, . . . , dn}, where n ≥ 2,
d0 = 0, and

di = di−1 +
1√
n

for i = 1, 2, . . . , n.

The n+ 1 options, therefore, span the interval [0,
√
n], with each being equally

far from its neighbors.
Option d generates outcome X(d) according to the outcome function X(·).

The outcome function is the realization of a random walk with drift. Specifically,
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X(d0) = 0 and

X(di) = X(di−1) +
µ√
n

+
σ
4
√
n
θi for i = 1, . . . , n,

where each θi is independently drawn from the standard normal distribution,
µ > 0 measures the expected rate of change from one option to the next, and
σ > 0 scales the variance of each option relative to its neighbors. Thus, for
each option d, X(d) is random. Our main interest is on large option sets, as
n approaches infinity, in which case the set of feasible options becomes the
non-negative half line [0,∞), and the outcome function X(·) becomes the
realization of a Brownian motion with drift µ and scale σ.

We denote the state of the world by θ = (θ1, . . . , θn) and the set of possible
states of the world by Θ ≡ Rn. Since d0 is the only option whose outcome
is fixed, we refer to it as the default option and its outcome X(d0) = 0 as
the default outcome. It is sometimes convenient to make the dependence on θ
explicit, so we also write X(d; θ) to denote the outcome of option d in state θ.

Preferences: As is standard in games of verifiable information, the receiver
has preferences over outcomes and the sender over the option chosen. The
receiver has an ideal outcome b > 0, and for transparency, in the main text, we
focus on the functional form uR(x) = −(x−b)2, where x is the realized outcome.
With the sole exception of Corollary 1, all of our results are proven under more
general utility functions, and general receiver utility does not qualitatively
change our results. We refer to Section 6.1 for details.

The sender’s utility is strictly monotonic and declining in the choice of
option; an example is the linear form uS(d) = −d. The assumption of decreasing
utility is more than a normalization given the default option is fixed. We discuss
this issue and explore the opposite case in which the sender prefers larger options
in Section 6.2.

Information: The sender is an expert. She is privately informed about state
θ, and, thus, outcomes X(di), for i = 1, . . . , n. We often refer to θ as the
sender’s type. All other information is public, including the outcome of the
default option d0 and the parameters µ and σ.

In accordance with Weber (1922), the informational advantage of the expert
is significant. The advantage is n distinct pieces of information, although the
significance of the advantage depends on how correlated the information is. We
define the complexity of expertise by the ratio σ2/(2µ), which also reflects the
complexity of the underlying decision problem. As σ2/(2µ)→ 0 the receiver
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can infer much about the environment from his knowledge of the default option,
whereas as σ2/(2µ)→∞ such inference is increasingly useless.

To ensure that communication is non-trivial, we impose the following restric-
tion on the receiver’s preference relative to the complexity of the environment:8

b >
σ2

2µ
.

Communication: For each option, the sender has a piece of hard information
that verifies its outcome. The sender can hide or reveal any number of these
pieces of information but she cannot fake them. Her message is formally
described by a mapping m : D → R ∪ {∅}, where m(d) = ∅ if she hides the
outcome of option d, otherwise, she reveals it and m(d) must be the outcome
of option d.9

Timing: First, nature draws the outcome function—the state of the world—
and the sender learns the realization. Second, the sender sends her message.
Third, the receiver updates his beliefs and chooses one of the options. Finally,
the sender and the receiver realize their payoffs and the game ends. Note that
neither party has commitment power: The sender cannot commit to a message
rule and the receiver cannot commit to a decision rule.

Solution Concept: The solution concept is perfect Bayesian equilibrium. A
strategy for the sender is a mapping M from the set of all possible states Θ to
the set of all possible messagesM. A strategy for the receiver is a mapping D
from the set of all possible messagesM to the set of all possible options D.
The receiver’s beliefs are described by a belief mapping B that assigns belief
B(m)—a probability distribution over states, B(m) ∈ ∆(Θ)—to every possible
message m ∈ M. Strategies M and D and belief mapping B form a perfect
Bayesian equilibrium if (i.) the sender’s strategy M maximizes her utility
given D, (ii.) the receiver’s strategy D maximizes his expected utility given B,
and (iii.) given M , on path, the receiver’s beliefs satisfy Bayes’ rule whenever

8Without this restriction, the sender trivially gets her first best for every n large enough:
It is an equilibrium for the sender not to communicate any information and for the receiver
to choose the default option (see Section 3.2).

9This does rule out vague communication, such as when the sender reveals an outcome is
in some range, although this restriction is immaterial to our results. If we allow for a “rich
language” in the terminology of Seidmann and Winter (1997), then any equilibrium in our
setting continues to be an equilibrium with the general message space, as we prove formally
in Appendix B.2.
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possible and, off path, they are consistent with any hard information that has
been revealed. We refer to a tuple (M,D,B) as a strategy profile. Throughout,
E denotes the expectation operator under the original state distribution, and
EB(m) the expectation operator when states are distributed according to belief
B(m).

Terminology: The focus of our analysis is the amount and the nature of
information communicated in equilibrium. To that end, some terminology is
helpful. An interaction between sender and receiver is the message sent and
the option chosen. An interaction contains a recommendation if an option that
is revealed is chosen by the receiver. If it contains only a recommendation then
the interaction is conative (by convention, we include in this definition the
recommendation and choice of the default option). Advice other than a recom-
mendation is referential. We say that an interaction is prescriptive if it contains
a recommendation—whether it contains referential advice or not—otherwise the
interaction is non-prescriptive.10 An equilibrium is referential/prescriptive/etc.
if equilibrium interactions are referential/prescriptive/etc.

Our model has many equilibria, some of which differ only in minor and
extraneous details of the sender strategy. To simplify the statement of our
results, we say that two equilibrium profiles are equivalent if they generate the
same mapping from sender type to receiver choice.

So that comparisons of equilibria are not dependent on the functional form
of utility, we evaluate welfare properties via dominance. We distinguish between
a strict and a weak form of dominance.

Definition 1 An equilibrium (M,D,B) weakly (resp. strictly) dominates an
equilibrium (M ′, D′, B′) in state θ if D(M(θ)) is no greater than (resp. less
than) D′(M ′(θ)).

We then say an equilibrium weakly (strictly) dominates another if it weakly
(strictly) dominates on a probability one set of states of the world. When this
condition holds, therefore, the sender prefers the dominant equilibrium for any
(decreasing) utility function.

Finally, to study an equilibrium property with n large, we consider not just
one equilibrium, but a sequence of equilibria—one equilibrium for each value of
n. Throughout the paper, sequences of equilibria implicitly refer to sequences
indexed by n, the dimension of the state space. A property holds “in the limit”
when the probability that such a property holds for given n converges to one

10Thus, a non-prescriptive interaction is necessarily referential other than if no advice is
offered.
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as n goes to infinity.11 All convergence statements refer to convergence in
probability.

Off-Path Beliefs: The richness of the type and message spaces ensures there
are many off-path messages available to the sender, all of which require the
specification of beliefs for the receiver.12 Moreover, for any given equilibrium
interaction, there are many off-path beliefs that can support it as an equilibrium.
We refer to them as suspicious beliefs.

To define these beliefs, some additional notation is required. We say that a
state θ and a message m are compatible if the hard information included in m
does not rule out θ. For a message m, Γ(m) represents the set of all the states
that are compatible with m.

Definition 2 Given a strategy profile (M,D,B), off-path beliefs are suspicious
when for every m 6∈M(Θ),

max
m′∈M(Θ)

Γ(m)∩Γ(m′)6=∅

D(m′) ≤ max

(
arg max

d∈D
EB(m)[uR(X(d))]

)
.

The definition is complicated although its intent is simple: It ensures that
all deviations off the equilibrium path are potentially unprofitable. It stipulates
that for every off-path message m, beliefs are such that at least one optimal
response is possible by the receiver that makes the sender weakly worse off,
regardless of which on-path message m′ the receiver was expected to play in
equilibrium.

Suspicious beliefs ensures the deviation may be unprofitable. To be unprof-
itable, it must be that the receiver chooses one of the options that leaves the
receiver weakly worse off. When the receiver does so, we say that his off-path
decisions are suspicious. Formally, off-path decisions are suspicious if for all
m 6∈M(Θ) and all states θ ∈ Γ(m), D(m) ≥ D(M(θ)). Combining these two
requirements, we have the following immediate result.

Lemma 1 Off-path beliefs and decisions are suspicious in all equilibria.
11So, for example, if we discuss an equilibrium defined for every n and say that equilibrium

interaction is conative in the limit as n goes to infinity, the corresponding fully formal
statement is that the probability that equilibrium interaction is conative converges to one as
n goes to infinity.

12We use the following terminology: A message is “on path” if it is communicated in some
state, otherwise it is “off path.” The set of on-path messages associated with sender strategy
M is thus M(Θ).
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Beliefs are suspicious in the sense that the receiver presumes that the
sender deviates to avoid revealing unfavorable information. A receiver is, of
course, entitled to more credulous beliefs but credulous beliefs will not support
equilibrium. Milgrom (1981) shows in his canonical model that the unique
equilibrium requires maximally suspicious beliefs, what he labels skeptical
beliefs. The equilibria here do not always require such extreme beliefs, and
for many off-path messages they can involve little or no suspicion at all.13 In
Appendix B.1, we give general conditions on the existence of suspicious off-path
beliefs.

This richness means that, unlike Milgrom (1981), the equilibrium inter-
actions we identify can be supported by many different off-path suspicious
beliefs. In fact, any interaction that can be supported as an equilibrium for
less suspicious beliefs can also support an equilibrium for more suspicious
beliefs. To avoid equilibrium multiplicity that is not action or outcome relevant,
whenever possible we refer to as a single equilibrium the class of equilibria that
differ only in off-path suspicious beliefs and decisions.14

In some cases, particularly when the expert reveals less information than
expected, the suspicious beliefs necessary must be skeptical and induce the
receiver to choose the right-most option, dn. The existence of a worst option
for all sender types that can send a message is important for the existence
of equilibrium, as has been known generally since the work of Seidmann and
Winter (1997). Because our type space is intertwined with the space of options,
we bound both with finite n. This choice is technical rather than substantive.
Our primary interest is in equilibria as n grows large and the option space
approaches the positive real line, which brings us close to the standard models
in the literature.

3 Preliminaries

3.1 On-Path Beliefs and Strategic Communication

In choosing her message, the sender must consider not only what she reveals but
how that information will spillover into the receiver’s beliefs about other options.
The nature of the spillover is important to the existence of equilibrium. To
understand the forms it can take, begin by considering the following example.

13In Section 5.5 we offer an equilibrium refinement to select equilibria that do not require
any suspicion when the sender “over-communicates.”

14Multiplicity may also arise due to ties as then the receiver’s best response is not unique.
As ties occur for prescriptive interactions with zero probability, we assume without loss of
generality that when indifferent, the receiver chooses the option preferred by the sender.
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Example 1 The sender’s strategy is reveal X(da) if X(da) < b/2, otherwise
reveal X(db), for some db > da > 0.

The spillover of information in this example is both direct and indirect.
The direct component is unavoidable, and comes purely from knowledge of a
particular point. In revealing the outcome of option db, the sender conveys that
the outcome function passes through that point and this knowledge shapes
beliefs in either direction. The indirect component is what the receiver can
infer in addition to that knowledge. In the example, revealing the outcome of
db also reveals information about the option da, namely that the outcome is
larger than b/2, and this indirect knowledge also informs beliefs.

Indirect informational spillovers complicate the receiver’s inference problem.
He must ask himself: What information did the sender reveal and why did she
reveal it? The answer depends on the strategy used by the sender and leads to
complicated beliefs that generally do not permit closed form representations.

The receiver’s inference problem is considerably simpler if informational
spillover is only direct. In this case the receiver need not ask the why question.
He can take the information at face value as it does not depend on the strategy
used to reveal it. Fortunately, strategies exist that have only direct spillovers
and the class of such strategies play an important role in our analysis. The
following is an example.

Example 2 The sender’s strategy is reveal X(da), for some da > 0.

The spillover from this strategy is only direct as the decision to reveal the
outcome of da is independent of not only the other options but of the outcome
of da itself. Without indirect spillover, the receiver’s beliefs condition only on
the hard information. When this holds we say that beliefs are neutral.

Definition 3 Given a message m and an associated belief B(m), we say that
B(m) is neutral when B(m) is the original distribution over states θ conditional
on θ ∈ Γ(m).

Thus, B(m) is neutral when it is equal to the state distribution conditional
on the hard information in m. In the context of Gaussian outcome paths,
neutral beliefs yield particularly simple and tractable functional forms. If dr is
the right-most known option, beliefs for options d > dr are normally distributed
with mean

E[X(d) | X(dr)] = X(dr) + µ|d− dr|, (1)

and variance
Var[X(d) | X(dr)] = σ2|d− dr|. (2)
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Figure 1 – June 2020
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Figure 1: Neutral beliefs with knowledge of option dr and option d0.

These beliefs follow immediately from the law of motion that defines the
distribution of X(d), and represent an intuitive extrapolation from what is
known. The drift term, µ, measures the expected rate of change with the
variance of beliefs increasing linearly in distance from dr, capturing the idea
that beliefs are more uncertain the further an option is from what is known.
The receiver’s beliefs are neutral at the beginning of play, with the default
option, d0, providing the anchor point.

For options between two known points, d ∈ (dl, dr), a Gaussian bridge
forms. Beliefs are again normally distributed with mean

E[X(d) | X(dl), X(dr)] = X(dl) +
d− dl
dr − dl

(
X(dr)−X(dl)

)
, (3)

and variance

Var[X(d) | X(dl), X(dr)] =
|d− dl| · |d− dr|

dr − dl
σ2. (4)

Equations (3) and (4) follow from the projection formulas for jointly normal
random variables. The expected outcome is now a simple interpolation of the
two neighboring points and independent of the drift. The variance is a concave
function across the bridge, reaching a maximum in the middle and approaching
zero in the ends. By the Markov property, beliefs depend only on the nearest
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known points (as they did for d > dr above). In the limit as n goes to infinity,
the beliefs in both cases are depicted in Figure 1.

Neutral beliefs, and the absence of indirect informational spillovers, are
important because they connect directly to the receiver’s inference and the
sender’s credibility. The credibility of a message derives from which sender
types send it. However, the more effective a message is at dissuasion, the
more sender types will want to send it, undermining the message itself. For
dissuasion to be credible, therefore, it must be difficult to imitate.

One way to avoid imitation is to make it impossible. For some strategies,
the sender has only a single on-path message that is consistent with her hard
information. Full revelation is an example, although there are others. In this
class of strategies, incentive compatibility across on-path messages is not so
much satisfied as it is rendered moot. The sender either sends the one on-path
message available to her or she deviates off the equilibrium path. This means
that all deviations are detectable by the receiver and the sender cannot deceive
the receiver about her type. We refer to this class of strategies as non-deceptive.

Definition 4 A sender strategy is non-deceptive if, in every state of the world,
any deviation by the sender can be detected by the receiver. Otherwise, the
sender strategy is deceptive. An equilibrium is non-deceptive if the sender
strategy is non-deceptive.

The inability to deceive does not necessarily imply a full separation of types,
which in our setting would require full revelation.15 The message available to
a type may be a message that many types can send, and upon observing the
message the receiver does not know for sure which type he is facing, but he
knows that it could only be sent by the types that the strategy dictates send
it.16

The connection of non-deceptive strategies to neutral beliefs is that they
are effectively the same constraint. A non-deceptive strategy generates neutral
beliefs, and neutral beliefs imply that the strategy is non-deceptive with
probability one. The link connecting these ideas is a lack of conditionality. To
not have a choice in on-path messages means that the strategy cannot condition
on information that is not revealed. To make this connection tight, we need
to allow for zero probability events. We say that a sender strategy is almost

15In cheap-talk games, no strategy is non-deceptive other than a fully pooling strategy.
16An appealing feature of non-deceptive strategies is that they are, in a sense, strategically

simple. The sender sends the message that is expected of her or she deviates off path. The
inability to deceive also reflects a form of trust and a plain-spoken style of communication
that is observed in practice in many relationships.
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non-deceptive when, for every message m, the probability that the sender sends
m is one, conditionally on the state being compatible with m. We then have
the following equivalence.17

Lemma 2 In any equilibrium, the sender strategy is almost non-deceptive if
and only if the on-path receiver beliefs are neutral.

A non-deceptive strategy ties the hands of the sender. It takes away the
sender’s ability to strategize in her choice of message without being detected by
the receiver. This limits, to be sure, what can be communicated in equilibrium,
but it guarantees that what is communicated is credible. Moreover, the upside
is that it does so in a way that limits informational spillover to only be direct,
thereby allowing the sender to control her information to a greater degree.

The class of non-deceptive strategies will play an important role in our
analysis. They are not the only strategies that can support equilibria. But
they are sufficient to establish that referential advice can deliver leverage to
the sender relative to providing a recommendation alone.

3.2 The Necessity of Equilibrium Advice

Before moving on to the equilibria that do exist, we begin with one that
doesn’t exist. In every equilibrium the sender must communicate information as
revealing nothing is not an equilibrium. This result is relatively straightforward,
although the ideas that underlie it will prove generally useful throughout our
analysis, and we develop it explicitly here.

The strategy of “no-advice” is non-deceptive—the revelation of any infor-
mation is off-path—and, by Lemma 2, the receiver’s beliefs are neutral. The
receiver then faces a choice. He can accept the default option d0 with a known
but unappealing outcome, or he can venture off on his own, experimenting
with a risky option that offers the prospect of a more appealing outcome.
This generates a risk-return trade-off that depends on the complexity of the
underlying environment. Larger options improve the expected outcome at rate
µ but the variance increases linearly at rate σ2.

How the receiver trades-off risk against return depends on the shape of his
utility function. The quadratic-loss functional form delivers a particularly sharp
answer to this trade-off as it admits a separable mean-variance representation.
Recalling the default outcome is set to 0, we have:

E[uR(X(d))] = −(b− µd)2 − σ2d. (5)
17All omitted proofs can be found in the appendices.

17



In the limit as n→∞, a simple optimization then gives the optimal choice to
be dna where:

E[X(dna)] = b− σ2

2µ
and Var[X(dna)] =

(
b− σ2

2µ

)
σ2

µ
. (6)

The receiver does not choose the option with expected outcome of b. Instead,
he stops short at b− σ2/(2µ). Beyond that point the improved return is not
worth the additional risk. Figure 2 depicts this choice.

The maintained assumption b > σ2/(2µ) ensures that for n large enough
this choice is preferred over the security of the default option. For smaller n,
integer problems may leave d0 as the receiver’s optimal when b is just beyond
this threshold. To ensure more generally that the sender experiments in the
absence of advice requires:

b >
σ2

2µ
+

µ

2
√
n
, (7)

with the final term vanishing as n grows large.
That the distance σ2/(2µ) does not depend on the value of b, or, more

accurately, the distance between the receiver’s ideal and the default outcome,
is a particular property of quadratic utility. What is not special is that the
size of this gap determines the option chosen, how much risk it involves and,
thus, the receiver’s utility from his optimal experiment. The bigger the gap
between the receiver’s ideal and the default outcome, the bolder must the
receiver experiment to find a desirable option, and the riskier that option is,
lowering his utility. A better default outcome is good for the receiver, therefore,
because even though it is abandoned, it means that he is more confident in his
choice.

With no on-path deviations, and beliefs for off-path deviations constrained
only by the hard information, intuition suggests beliefs can be found to render
any deviation unprofitable (indeed, off-path beliefs need only be suspicious
enough to induce a choice at or to the right of dna—meaning an option d ≥ dna).
That all is true, but it matters only to the extent that beliefs need to be formed
at all by the receiver. A deviation of special importance in our setting is for
the sender to reveal all the options, thus rendering off-path beliefs moot. For
some sender types this deviation is profitable and, thus, no-advice is not an
equilibrium strategy.

Lemma 3 No-advice is not an equilibrium if b > σ2

2µ
+ µ

2
√
n
: In all equilibria,

there is a sender type who discloses the outcome of at least one non-default
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Figure 2: Receiver’s optimal choice without advice dna.

option.

An example of a profitable deviation is depicted in Figure 2. This outcome
path crosses b only once at an option to the left of dna. The receiver cannot
ignore hard information and must choose this option. Thus, the deviation is
profitable.18 This depends, of course, on dna not equalling d0, which, for finite
n, necessitates the restriction on b in the lemma.

The failure of no-advice as an equilibrium reflects the classic unravelling intu-
ition of hard information games. With communication that is non-prescriptive,
the receiver chooses an option that is an expectation of what the true state-of-
the-world must be. That expectation is better for some sender types and worse
for others. This incentivizes the latter group to deviate and reveal the whole
truth to the receiver. In standard models this unraveling leads inexorably to
full revelation. This is not the case here and unraveling need not be complete.19

18When interactions are prescriptive, the stronger result holds that, if n is large enough,
in any equilibrium, the sender always reveals the outcome of at least one non-default option.
That is to say, it is not only that the sender cannot always say nothing, she can never say
nothing (see Appendix B.4).

19The failure of no-advice as an equilibrium portends a more general difficulty in sustaining
non-prescriptive equilibria. Indeed, it can be shown that, for any n, and any equilibrium, the
probability that the sender communicates information is bounded away from zero, so that
it is not possible to generate a sequence of equilibria in which the probability of no-advice
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The option dna provides a key benchmark in our model as it also represents
the choice of the receiver in the absence of an expert. The influence of the
sender, therefore, is measured by the degree that her advice moves the chosen
option to the left and in her favor.

4 Receiver Optimal Equilibria
We begin by analyzing receiver-optimal equilibria. Exploring this set of equilib-
ria illustrates how the amount of information supplied in equilibrium impacts
the sender’s power, all while holding receiver utility (approximately) constant.

4.1 Full Revelation is an Equilibrium

If the sender fully reveals her information to the receiver, the receiver becomes
an expert, and the sender relinquishes her ability to sway the decision in her
favor. Despite this, full revelation is an equilibrium strategy.20

Proposition 1 An equilibrium that is fully revealing exists. In this equilibrium,
the receiver chooses dro ∈ arg mind |b−X(d)| and, as n→∞, X(dro

n ) converges
to b.

Full revelation supports an equilibrium because the sender is constrained
by the strategy itself. Because full revelation is non-deceptive, the sender
cannot deviate without being detected. This leaves her with only off-path
deviations and, if the receiver is sufficiently suspicious, these are unprofitable.
Full revelation ties the hands of the sender, and leaves her in a position in
which she is compelled to reveal more information than she would like. As
most of this information is referential, referential advice, in this case, acts as a
weight around the sender’s neck.

Full revelation is clearly optimal for the receiver. He obtains the best
possible outcome in every state and, as the number of options grows large, the
outcome converges to his ideal outcome b. The choice itself, however, need not
converge. As n grows large, the outcome path can cross b at many points and
dro will get arbitrarily close to one of these crossing points, although which
one will vary along the sequence depending on the realization of outcomes. To
illustrate, Figure 3 depicts a path with three crossing points. We denote these
crossing points by dcr = {dcr

1 , . . . , d
cr
k }, where k = 3 in the figure.

goes to one as n grows large. We take up the broader class of non-prescriptive equilibria in
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Figure 3: Full Revelation, June 2020
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Figure 3: Full Revelation is an Equilibrium

4.2 Less than Full Revelation

In the full revelation equilibrium the receiver discards most of the information
he receives, using only the information about his best outcome. This raises
the question of whether the additional referential information is necessary to
support equilibrium. Such a question is moot in standard models as receiver-
optimality necessarily demands full revelation. In our richer setting it is possible
for the receiver to be partially informed yet still have enough information to
be satiated.

It is easy to see that full revelation is not necessary to ensure receiver
optimality in equilibrium. Consider a prescriptive interaction in which the
sender makes a recommendation dro and reveals all options to the right of dro,
and the receiver chooses dro. In this case, the receiver cannot see directly that
dro is his best option as he doesn’t have all information. He can infer, however,
that if a better option exists it must be to the left of dro, and in that case,
the receiver would have incentive to reveal that option as it would move the
decision to the left. This partially revealing strategy is an equilibrium strategy,
therefore, and the corresponding equilibrium is equivalent to a fully revealing
equilibrium.

This strategy can be amended, in turn, by having the sender reveal some

Section 5.5.
20See Hagenbach et al. (2014) for general conditions under which fully revealing equilibria

exist in games with disclosure.
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but not all of the information to the left of dro. In contrast to canonical models,
there are many receiver optimal equilibria that differ in the amount of advice
provided. Nevertheless, Proposition 2 establishes a lower bound on the amount
of information. Although information to the left of dro is optional in equilibrium,
the information to the right is not, and in every receiver-optimal equilibrium
the sender must reveal the outcome of dro and all options to the right. For
receiver-optimality, therefore, it is necessary that advice be referential.

Proposition 2 In all receiver-optimal equilibria, with probability one, the
sender reveals all the options to the right of the equilibrium decision.

The only receiver-optimal equilibria that are non-deceptive is when the
state is fully revealed with probability one. All other receiver-optimal equilibria
are deceptive. For instance, the sender can deviate to the option to the right
of dro that is best for the receiver and reveal all options to the right of that
without the receiver detecting this as a deviation. The receiver’s beliefs in
these other equilibria are, therefore, non-neutral by Lemma 2. However, the
inference the receiver draws from the indirect informational spillover is that
the outcomes of these options are further from b than is the outcome of dro

and so they are unappealing to him and, thus, the deviation is not profitable
for the sender.

It is instructive to understand why so much information is required to
sustain receiver-optimal equilibria. To see this, suppose the information sup-
plied was reduced to a single option such that advice were conative. To be
receiver-optimal, this option must be dro and the receiver must implement it in
equilibrium. If the receiver were to rubber-stamp the sender’s recommendation,
however, there would be the temptation for the sender to make a different
recommendation to the left that is more favorable to her. As the receiver does
not know how good is her best option, this deviation is not detectable. The
receiver would then implement the new recommendation and the deviation
would be profitable.

This conative interaction fails as an equilibrium because the receiver cannot
credibly reveal only dro. The ability to deceive the receiver—to deviate without
detection—gives the sender too much freedom for an equilibrium to be sup-
ported. The failure of this equilibrium exposes why referential advice matters.
The same recommendation can be supported in equilibrium if more information
is provided. By providing referential advice, the receiver can be sure he is
learning dro and choose it with confidence. Referential advice matters, therefore,
because it provides credibility. By tying the hands of the sender, referential
advice gives her credibility, and that credibility can support outcomes that are
not obtainable with a recommendation alone.
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Given the clear failure of conative advice as a receiver-optimal equilibrium,
it is interesting that an equilibrium exists that in the limit is conative and
converges on receiver-optimal. To see how, observe that there were two problems
with implementing dro through conative advice. The first is that the best option
is a relative standard, and the second is that non-detectable deviations exist
to the left of the recommendation called for by the strategy. The following
strategy rectifies both of these difficulties.

Definition 5 The sender follows a first-point conative strategy when, for
some ∆ > 0, the sender reveals the smallest option whose outcome falls in the
range [b−∆, b+ ∆] and if no such option exists, the sender reveals everything.
A first-point conative equilibrium is an equilibrium where the sender follows a
first-point conative strategy.

The first-point conative strategy replaces the relative standard of best
alternative with an absolute standard—the outcome must be in a band around
the receiver’s ideal. In this way, the receiver knows whether the sender is telling
him what she is supposed to be telling him. Such a standard does not rule out
undetectable deviations, however, and the second key part of the strategy is
that the sender reveals the first point that meets the absolute standard. It is
deviations to the left that are profitable (given the sender’s preferences) and
this requirement rules them out.21

A first-point conative equilibrium is clearly not receiver-optimal. If an
outcome falls within the band, the receiver will be getting a good outcome
but potentially not the best. The receiver’s loss is, however, decreasing in the
narrowness of the band. As the band collapses around b (i.e., ∆ → 0), the
sender either reveals a single option with outcome arbitrarily close to b or she
reveals all the options.

Proposition 3 shows that first-point conative equilibria exist and constructs
a sequence of them such that ∆→ 0 as n→∞ and the outcome approaches the
receiver’s ideal. Moreover, it establishes that this sequence can be constructed
in such a way that ∆ approaches 0 sufficiently slowly that the probability an
outcome falls within the band is increasing and approaches one in the limit.
Thus, the equilibrium is, in the limit, simultaneously conative and receiver
optimal.

21It is important that the band is symmetric around b for the case of quadratic receiver
utility (or any utility function symmetric around the receiver’s ideal). Were it not, then with
finite n it may be that the best option for the receiver, dro, is to the left of the first option
to fall in the band, such that the deviation to full revelation is profitable. In Appendix B.3
we extend the notion of first-point conative strategy to the case of general—and possibly
asymmetric—utility functions.
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Proposition 3 There exists a sequence of first-point conative equilibria such
that interaction is conative in the limit and outcomes converge to the receiver’s
ideal.

The first-point conative strategy is deceptive and the receiver’s beliefs are
not neutral. However, this is the case only to the left of the recommendation.
To the right beliefs are neutral as the strategy is constructed in such a way
that it conditions only on information to the left of the recommendation.
Although the recommendation is almost surely not b, and the receiver cannot
be sure he is seeing the global optimum, he is nevertheless willing to accept
the recommendation as it is “good enough,” and further experimentation is
not worth the risk-reward trade-off.22 We will develop the logic of conative
equilibria more fully in Section 5.

Although this equilibrium is receiver-optimal in the limit, the sender strictly
prefers it over full revelation. This is because this strategy converges on a
particular decision in the limit, whereas full revelation doesn’t. The limiting
behavior is evident in the Brownian path depicted earlier in Figure 3. The
conative equilibrium decision converges almost surely on the first point to cross
b, dcr

1 , whereas full revelation does not, instead delivering some mixture of all
the crossing points. This implies that full revelation and, indeed, all of the
exactly receiver optimal equilibria in Proposition 2, are Pareto dominated in
the limit by the conative equilibrium.23

The difference between the conative and referential equilibria of this section
is one of expectations. In the referential equilibria, the receiver expects to
receive a lot of information, and if he doesn’t, and that deviation is detectable,
he forms suspicious beliefs. The expectation of referential advice constrains
the sender. The more referential information that is expected in equilibrium,
the fewer on-path deviations are available to the sender, and this increases
the set of outcomes supportable in equilibrium. By providing less information,
even down to a single piece of information, the sender reduces this expectation.
This increases the set of possible on-path deviations and from this freedom the
sender can avoid revealing more information than she wants.

It may be tempting to extract from this the lesson that referential advice is
necessarily bad for the sender, that it constrains her in leveraging her expertise

22This establishes the possibility of receiver optimality in the limit and is by no means the
only equilibrium that does so, even among interactions that are conative.

23If instead we employed an alternative stochastic process with a positive probability of
ties—such as a binary random walk—the receiver’s optimal action along the sequence would
be non-unique. In such a setting, multiple fully-revealing equilibria exist differing in how the
receiver responds to his indifference, although the best of these equilibria would be no better
than the conative equilibrium and the rest strictly dominated.
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and that she should reveal her information as sparingly as possible. That
intuition is wrong. We will show that whilst it will not be possible for the
sender to avoid the expectations and constraints of referential advice, she can
be better off with the constraints in place as, when constructed in just the
right way, the constraints can be exploited to her advantage.

4.3 Refining Equilibrium

A long-standing tradition in signaling games (of which this is one) is to ask:
Which beliefs are reasonable? What is meant by reasonable is subjective, and
many refinements have been offered to sharpen equilibrium prediction. Our rich-
information setting gives rise to its own questions of reasonableness, and we do
not hope to provide a thorough treatment of the refinement question. Instead,
we offer a simple, intuitive refinement that builds on the hard information
feature of the model and that accords with classic ideas from the refinement
literature.

One recurring theme in the refinements literature is the idea that beliefs
are inherently uncertain. This manifests in the idea that equilibria should be
robust to perturbations. This idea has particular force in our setting as some
knowledge held by the receiver is hard information whereas other knowledge is
only inferred. Specifically, it is possible in equilibrium for the receiver to believe
with such confidence that an unrevealed option produces a certain outcome
that he is indifferent between that option and another option for which the
very same outcome has been revealed.

A minimal way to refine beliefs is to distinguish these possibilities, privileging
known knowledge, so to speak, over inferred knowledge. We refer to this as the
Bird-In-The-Hand (BITH) refinement and formalize it as follows.

Definition 6 An equilibrium (M,D,B) satisfies the ε-BITH refinement if, for
every off-path message m where D(m) is not disclosed in m, and every option
d disclosed in m,

EB(m)[uR(X(D(m))] ≥ EB(m)[uR(X(d))] + ε.

An equilibrium (M,D,B) satisfies the BITH refinement if it satisfies the ε-
BITH refinement for some ε > 0.

This says that for an off-path message, m, if the receiver chooses an option
D(m) that is not revealed, it must be that the receiver believes the outcome of
this option will deliver at least ε more utility than does the best option that is
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revealed. He only chooses an unrevealed option, therefore, if he believes it to
strictly dominate the revealed options.

Within the class of receiver-optimal equilibria, the BITH refinement has a
dramatic impact. Full revelation fails the refinement, as does any prescriptive
equilibrium that is exactly receiver optimal. In contrast, every first-point
conative strategy supports an equilibrium when off-path beliefs are chosen
appropriately.24 Moreover, any sequence of equilibria that satisfy the refinement
and are receiver-optimal in the limit must approach the same decision as the
first-point conative equilibrium. In the limit, therefore, the refinement pins
down the equilibrium decision uniquely at the first crossing point of b.

Proposition 4 No receiver-optimal prescriptive equilibrium satisfies the BITH
refinement. However, there exists a sequence of first-point conative equilibria
that satisfy the BITH refinement, that are conative in the limit, and in which
the outcomes converge to b.

The effect of BITH on the set of receiver-optimal equilibria is striking yet
it follows from a clean intuition. Upon seeing with his own eyes an outcome
arbitrarily close to his ideal outcome, the receiver asks himself: Why would
I choose anything else? In particular, why would I engage in a complicated
inference over unrevealed options, let alone have such confidence that I would
choose one of those options?

The full revelation equilibrium relies on just this logic. Even if the sender
deviates and reveals a single option with outcome arbitrarily close to b, the
receiver nevertheless forms suspicious beliefs, beliefs that in this case must be
so suspicious that he decides with almost certain confidence that the right-most
option in the space, dn, produces an outcome even closer to b. The BITH
refinement suggests that such a high confidence is unlikely, and that the receiver
would instead simply accept the recommendation, thereby breaking down the
full revelation equilibrium.25

The same logic breaks down all other receiver-optimal equilibria. It does
not break down the first-point conative equilibria though. These equilibria
survive as there is never an option better for the sender at which he can make
a take-it-or-leave-it offer to the receiver that will be accepted in this way.
Full revelation is often taken as the benchmark equilibrium in models of hard

24The refinement rules out some off-path suspicious beliefs.
25Proposition 4 includes the caveat that equilibria be prescriptive. We can show that a

receiver-optimal equilibrium cannot be non-prescriptive. The remaining possibility is a hybrid
equilibrium in which the interaction is prescriptive for some states and non-prescriptive for
others. Such an equilibrium must be deceptive and the additional requirements are highly
complex, although we can’t rule them out.
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information. The BITH refinement, as well as Pareto efficiency, point away
from this perspective and instead toward less information transmission as a
more appropriate equilibrium benchmark.

5 Expert Power: Can the Sender do Better?
In the equilibria of the previous section the receiver extracted all of the surplus
from expertise. Not only did he benefit from the removal of uncertainty over
the outcome, but the outcome itself shifted to his ideal point. Scope for the
sender to do better exists. The question we address in this section is whether
this is possible and, if so, how much of the surplus the sender can extract.

5.1 Conative Advice

In the conative equilibrium of the previous section, the sender was able to
reveal an option that wasn’t the receiver’s ideal but that he accepted as
good enough.26 This raises the question of what qualifies as “good enough”?
Theorem 1 characterizes exactly what is possible in equilibrium. It shows that
the sender can do better and extract some of the value of her expertise, but
that there is a tight bound on what is possible.

Establishing this result requires us to consider the full family of conative
interactions. We show that for a conative interaction to support an equilibrium,
the sender’s strategy must satisfy a generalization of the first-point conative
strategy in Definition 5. As in that definition, the sender must reveal the first
option that meets some absolute standard, although that standard need not
be a fixed band around b. The standard can vary in the option itself, it can be
non-monotonic, it can even have multiple thresholds such that the standard
isn’t only a single band. Nevertheless, for all these possibilities, we show that
any sequence of equilibria that is conative in the limit, the sender can move
the outcome no further than σ2/(2µ) from the receiver’s ideal outcome.

Theorem 1 For all sequences of equilibria that are conative in the limit, the
equilibrium outcomes are in the range [b− σ2/(2µ), b] in the limit. Moreover,
for any x ∈ [b−σ2/(2µ), b] there exists a sequence of equilibria that are conative
in the limit in which the outcomes converge to x.

Many conative equilibria can be supported because the strategy creates
expectations for the receiver. If the receiver expects the revealed option to

26To simplify the language we abuse it slightly in referring to these as “conative equilibria”
as it is only as n grows large that the first-point conative equilibria formally become conative.

27



meet a certain absolute standard he will be suspicious if it does not or if the
sender reveals additional information, and so the expectation constrains the
sender. Most of these equilibria are not receiver optimal, although the receiver
still does well. By listening to the sender’s advice he not only benefits from the
removal of risk, but in all but the boundary case the outcome shifts toward his
ideal relative to what he would get in expectation without an expert, and in
that boundary case the outcome is exactly the same.

The limitation of Theorem 1 is striking and leads to the question of why.
Why can’t the sender leverage her expertise for her own gain by recommending
an option with a lower outcome that corresponds to a smaller option? There
do exist more favorable recommendations that still give the receiver the same
or more utility than he would get without an expert, yet these recommenda-
tions cannot be supported in equilibrium. The answer is the inevitability of
informational spillovers. The sender may be able to minimize the amount of
information she reveals to the receiver, but she cannot stop the receiver from
using that information for his own advantage.

For a strategy to yield a conative interaction in the limit, it must necessarily
be deceptive.27 Yet, as we saw in the previous section, the construction of
a first-point conative strategy is able to avoid indirect spillover to the right.
Direct informational spillover is unavoidable, however, and this inevitability
bounds the sender’s ability to persuade. To see this, suppose the sender follows
a first-point conative strategy with ∆ ∈ (σ2/(2µ), b), such that the outcome is
between the default outcome at 0 and b− σ2/(2µ). Although an outcome at
b−∆ delivers more utility to the receiver than the default option, and possibly
more than he would get without an expert, it also increases the utility the
receiver expects from other, unrevealed options. The sender’s problem is that
once the recommendation is made, the receiver’s outside option is no longer
no-advice but rather it is what he can gain by using the informational spillover
from the advice itself. The persuasiveness of the advice is undermined by the
advice itself.

This can be seen mathematically by recalling the receiver’s optimal choice
in the absence of advice (Equation (6)). As the receiver’s beliefs are neutral, his
decision problem differs only in that the recommendation rather than the default
provides the anchor point for beliefs. This means that the receiver still wishes
to experiment, even as the recommendation gets closer and closer to b−σ2/(2µ).
The certainty in the recommendation spills over to nearby alternatives, such

27Non-deceptive strategies do exist that yield conative interactions—such as in Example 2—
yet such strategies cannot guarantee an outcome in [0, 2b] and, thus, guarantee being accepted
by the receiver over the default option.
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that the more attractive is the recommendation, the more attractive are nearby
alternatives as well. This represents a positive complementarity between advice
and the spillover of information. This process only ends, and the receiver is only
satiated, when the first-point conative strategy provides a recommendation
with outcome b− σ2/(2µ) or better, and this defines the boundary for what
the receiver deems “good enough.”

This logic applies broadly to all conative interactions if the sender is
using a first-point style strategy for all states. The richness in the theorem
emerges when she is not. If the sender uses a first-point strategy for some
states but not for others, the receiver’s beliefs need not be neutral, even for
a conative interaction. This is possible as the recommendation in one state
using a first-point strategy may also be sent for a different state as part of
a deceptive strategy. The non-neutrality of beliefs holds for all equilibria
along the sequence as n grows large, such that establishing the bounds in
Theorem 1 for all sequences of equilibria that are conative in the limit is
non-trivial. Nevertheless, we show for these sequences that the receiver’s beliefs
must necessarily become approximately neutral as n grows large, such that
the receiver will implement the recommendation if and only if it is within the
range that the receiver considers good enough.

The intuition we have described depends on the sender using a first-point
strategy on an increasing fraction of states, although, as we note above, this
strategy could take a generalized form of that in Definition 5. The final piece
of intuition for Theorem 1 is why the sender’s strategy must come from this
class. The only alternative for the sender to do better is to use a deceptive
strategy that generates indirect spillovers to the right of the recommendation,
and to do so in a way that the non-neutral beliefs are able to dissuade the
receiver from experimenting. Unfortunately for the sender, this is not possible
in equilibrium. To see why, suppose she recommends option d′ with outcome
X(d′) < b − σ2/(2µ) and that this paints a picture of the world such that
experimenting to the right is unappealing, so much so that the receiver is
willing to accept the recommendation. For this to be possible, some sender
types who could send the message don’t, and they must choose not to based on
information to the right of the recommendation. This is optimal only if these
sender types recommend an option to the left of d′. But if all types who could
send this message instead of d′ do so, beliefs at d′ must be neutral. Non-neutral
beliefs cannot be sustained in equilibrium here precisely because messages are
too easy to imitate. Every sender type who can send a message does so unless
they can send an even better message. As this selection conditions only on
information to the left of the recommendation, the credibility of a message is
undermined if the informational spillover to the right of the recommendation
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is indirect. In this case, the sender’s freedom to deceive undermines her ability
to persuade.

The conative equilibria are good for the receiver but not so good for the
sender. The first-point conative equilibrium that is optimal for the sender is
the one with the widest band as this both delivers the smallest option when a
point falls within the band and it minimizes the probability that the sender
is compelled to fully reveal. We refer to it as the sender-optimal conative
equilibrium. This equilibrium is defined by letting ∆ = ∆max in Definition 5,
where:28

∆max =
σ2

2µ
+

µ

2
√
n
. (8)

In the limit the revealed outcome converges to b− σ2/(2µ). To be sure, this is
better for the sender than outcome b, yet it is not necessarily better than the
expected outcome without her presence. For some paths, conative advice will
pull decisions to the left of dna (the choice with no advice) and make the sender
better off, whereas for other realizations the decision will be pushed to the
right. The net effect on the sender of providing conative advice is particularly
stark With quadratic receiver utility. In expectation, the decision is exactly the
same in the sender-optimal conative equilibrium as it is with no expert, and
for conative equilibria that converge to a different outcome the option chosen
is strictly larger.29

Corollary 1 In any sequence of equilibria that are conative in the limit, the
expected equilibrium decision is no smaller than dna in the limit as n → ∞.
Moreover, in the first-point sender-optimal equilibrium, the expected equilibrium
option converges to dna as n→∞.

This says that a sender with linear utility can gain nothing from her expertise
with conative advice, and that for many conative equilibria she will be strictly
worse off. This conclusion holds with even greater force for a sender with
concave utility. A sender with convex utility must temper this loss against the
gain in utility from the dispersion of the options chosen.30

28This is the same threshold, and serves the same purpose, as in Equation (7).
29With general receiver utility this comparison is not strict, yet the sender’s weakness in

influencing the decision with conative advice persists. See Section 6.1 for a discussion.
30It is here that the failure of no-advice as an equilibrium has bite. Even if the conative

equilibrium leaves the sender strictly worse off, she does not have the ability to commit to
not communicate.
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5.2 Referential Advice: Interval Equilibrium

The supply of referential information does not by itself deliver leverage to the
sender. Every first-point conative equilibrium is equivalent to many referential
equilibria. For instance, it is an equilibrium for the sender to follow a first-
point conative strategy amended to reveal all options up to and including the
recommendation, and this equilibrium is equivalent to the first-point conative
equilibrium itself.

The addition of referential advice in this example is not outcome relevant
because it is not decision relevant. The additional outcomes revealed are
dominated by the recommendation itself and they do not change beliefs about
the remaining unrevealed options. For referential advice to be impactful, it must
be that it is decision relevant, and for it to improve upon conative equilibria,
it must include information to the right of the recommendation. To that end,
consider the following strategy.

Definition 7 The sender follows the interval strategy when the sender reveals
the outcomes of options {d0, d1, . . . , d

r}, where dr is the smallest option that
satisfies

max
d≤dr

uR(X(d)) ≥ max
d>dr

E[uR(X(d)) | X(dr)],

with dr = dn if no such option exists.

The interval strategy represents a stopping rule. Starting at the default
option, the sender reveals points until the path hits a lower threshold. This
threshold is a function of the peak revealed so far, increasing in the height of
that peak and ultimately equalling the peak. When it reaches that point—what
can be thought of as an upper threshold—the sender necessarily stops revealing.
If neither threshold is ever met, the sender fully reveals. The interval strategy
is non-deceptive and, thus, beliefs for unrevealed options are neutral.

To understand the thresholds, consider the path depicted in Figure 4 that
hits the lower threshold at dr. Naturally, the recommendation is the option dp
that obtains the peak (the option that is receiver optimal among those revealed)
and not the right-most revealed option, dr. This means that the referential
advice is decision relevant for the receiver. The points revealed to the right of
dp do not change the receiver’s beliefs about dp itself, but they do change the
receiver’s beliefs about unrevealed options further to the right. By changing
the attractiveness of further experimentation, the referential advice changes the
relative appeal of the recommendation, and, potentially, the receiver’s decision.

By construction, the referential advice is worse for the receiver than the
recommendation itself. This matters because of the positive complementarity
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Figure 4: The interval strategy hitting the lower threshold

between information revealed and the receiver’s utility from experimenting. In
the conative equilibria, this complementarity undoes the power of the sender
as the better the outcome that she reveals, the more emboldened is the receiver
to experiment.

The interval strategy turns this complementarity around so that it works
to the sender’s benefit. By revealing bad outcomes, the sender makes ex-
perimenting less appealing to the receiver, which, in turn, makes him more
likely to accept a recommendation that he otherwise wouldn’t. The key is
the disconnect between the spillover and the recommendation. With only a
recommendation these forces are inseparable. When separated with referential
advice, the recommendation and the spillover can be made to work in opposite
directions and this enables the sender to influence the receiver’s decision to a
greater extent.

The lower threshold in the interval strategy is defined as exactly the point at
which the receiver is indifferent between further experimentation and accepting
the recommendation (the right and the left-hand side of the expression in
Definition 7, respectively). For the limiting case as n grows large, the analogue
is given by:

−(b−X(dp))2 = −
(
σ2

2µ

)2

−
(
b− σ2

2µ
−X(dr)

)
1

µ
σ2, (9)
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where, recalling Equations 5 and 6, the first term on the right-hand side is the
expected utility from a mean outcome at b− σ2/(2µ) and the second term is
the corresponding variance. This simplifies to:

b−X(dr) =
µ

σ2
(b−X(dp))2 +

σ2

4µ
. (10)

The threshold increases in the peak and meets it at the upper threshold as at
this point it is not profitable at all to experiment further to the right of dr. This
is exactly the same point as defines the sender-optimal conative equilibrium
(Equation (8)) that in the limit converges to the now-familiar b− σ2/(2µ), and
marked in the figure by option dc. If the upper threshold is reached, revelation
stops and the recommendation is the right-most revealed option itself.

Proposition 5 establishes that the interval strategy supports an equilibrium.
This equilibrium benefits the sender. At worst, the decision is the same as in
the sender’s most-preferred conative equilibria. At best, the path hits the lower
threshold earlier and the option chosen is strictly to the left of that chosen in all
conative equilibria. As this occurs with strictly positive probability, the interval
equilibrium weakly dominates even the sender-optimal conative equilibrium.

Proposition 5 The interval strategy supports an equilibrium. This interval
equilibrium strictly dominates the sender-optimal conative equilibrium with
positive probability, and weakly dominates for all states.

In dissuading the receiver from experimenting, the sender does not convince
him that a good option does not exist. By construction, an option whose
outcome is arbitrarily close to the receiver’s ideal almost always exists if n is
large enough. Rather, the receiver is dissuaded from experimenting because he
is now more uncertain as to where good options lie. He knows they are to the
right of dr, but he does not know how far. And the further is the outcome of
dr from his ideal at b, the greater is his uncertainty, and the less inclined he is
to experiment. Note that he always still prefers to experiment than accept the
outcome of dr, but the construction of the interval strategy is such that the
right-most option dr is no longer the reference point, rather it is the peak of
the interval at dp.

The referential advice allows the sender to paint a picture of the world that
is unfavorable to the receiver, and the construction of the strategy is such that
she can do so credibly. For a particular recommendation, the only sender types
who can send the message are those with hard information that is consistent
and for whom it is unfavorable for the receiver to experiment.
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It is intuitive that this is possible some of the time, that if the path of
outcomes turns down sufficiently, the sender will be able to use the interval
strategy to deter the receiver from experimenting. The subtlety of the interval
strategy is that this is possible not just some of the time but, in the limit, it
is possible all of the time. In Theorem 2 we establish that as n grows large,
the probability approaches one that the lower threshold is reached before the
decision in the sender-optimal conative equilibrium. Thus, in the limit the
interval equilibrium strictly dominates all possible conative equilibria.

Theorem 2 For every sequence of equilibria Σ1,Σ2, . . . that are conative in
the limit, the interval equilibrium strictly dominates Σn in the limit as n→∞.

This implies that not just some sender types can find a peak and a downturn
that deters experimentation, but that every sender type can. These recommen-
dations may get close to the limit threshold of b− σ2/(2µ), but one can always
be found. This is possible because as the peak approaches b − σ2/(2µ), the
lower threshold converges on the peak and as the path nears this boundary the
value of experimenting is itself small. As such, only a small downward step is
needed to dissuade the receiver from experimenting.

That all types can dissuade in this way contrasts with existing intuitions.
Typically if one set of types separate with an picture of the world that is
unfavorable to experimentation, the receiver infers that the remaining types
are favorable to experimentation. Instead of condemning these types to a
worse outcome, the interval strategy resets, in a sense, at a slightly higher
recommendation and allows another set of sender types to separate and paint
a slightly less unappealing picture that nevertheless dissuades the receiver.
Theorem 2 establishes that this process iterates and that in the limit all sender
types can be separated in this way.

We can obtain further insight into the interval strategy numerically. Figure 5
depicts the average option chosen for 10,000 simulations as the complexity of the
underlying issue varies. As can be seen, the sender’s leverage can be considerable
and is maximized at intermediate levels of complexity. Even without advice,
the sender is better off the more complex is the issue as uncertainty makes
the receiver more tentative in his experiment. For low complexity (low σ2),
the receiver’s choice approaches 2 and the expected outcome converges on b,
whereas for high complexity (high σ2) the experiment approaches 0 (following
from the key threshold b− σ2/(2µ)). At either extreme the sender has little
leverage. For high complexity, she has little leverage because there is simply
little to leverage. The receiver is already taking a very favorable decision. At
the other extreme, the sender has little leverage because the outcome follows a
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Figure 5: The receiver’s decision as a function of σ2 for no-advice (green), the
sender-optimal conative equilibrium (blue) and the interval equilibrium (red),
for parameter values µ = b = 1, n = 1000, and sample size 10, 000 for every
value of σ2.

more narrow path and there aren’t the radical peaks and troughs that dissuade
the receiver to a significant degree. Even in this case persuasion and dissuasion
is always possible, yet the simulation shows that the power of dissuasion is
small. The middle range of moderate complexity is the sweet spot for the
sender and where her leverage is greatest.

The simulations also provide insight into why the receiver accepts the
sender’s advice, even when the receiver can extract so much leverage. In
accepting the recommendation, the receiver is accepting an outcome potentially
far from his ideal, and in some cases he would get a better outcome by
experimenting on his own. Using the same parameter values as in Figure 5, and
fixing σ2 = 1, simulations show that this, in fact, occurs a majority of the time.
The receiver is made worse off 60% of the time from accepting the sender’s
advice than she would be from going it alone. She nevertheless accepts the
advice because while the upside of going it alone is bounded, the downside is not.
The interval equilibrium, no matter how favorable to the sender, guarantees
the receiver an outcome no further than b from her ideal. Going it alone, on
the other hand, could leave her with an arbitrarily bad outcome. The value of
advice, therefore, is as insurance, and the sender’s ability to offer that insurance
is what allows her to move the decision in her favor. This explains why we rely
on experts yet so often feel ripped-off in doing so.
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The effectiveness of the interval strategy raises two questions. Is the entire
interval of options in the interval strategy necessary for equilibrium? And, can
other referential equilibria be constructed? We turn to these two questions
now.

5.2.1 How Much Referential Advice is Needed?

The key to the interval equilibrium is the peak and the end-point as these points
persuade and dissuade the receiver, respectively. The additional information
beyond these two points plays a role, although not all of it is necessary.
Consider the strategy that follows the interval strategy but only reveals from
the recommendation to the right. This differs from the interval equilibrium
in omitting information to the left of the recommendation. It can readily be
verified that this strategy too supports an equilibrium and that it is equivalent
to the interval strategy. This strategy is deceptive, and thus the sender can now
deviate on-path. Critically, however, these deviations only move the decision
to the right and are unprofitable. By construction, there is no suitable peak
& end pair of points to the left as otherwise the interval strategy would have
played it.

The referential advice to the right of the recommendation is not so easily
dismissible. Were the sender to reveal only the peak and the end-point, even
more on-path deviations would be opened up and, critically, some of these
would move the recommendation to the left and be profitable. This undermines
the equilibrium. For instance, by revealing a lower outcome to the right of
where the interval strategy would stop, the sender can potentially support a
recommendation with an even less appealing outcome for the receiver to the
left of that in the interval equilibrium.

The information between the peak and the end-point is important because
it provides credibility to the sender. The receiver needn’t ask why did the
sender reveal the peak that she did? By seeing all of the points between the
peak and the end, the receiver can be sure there is no better peak for him,
and thus accept the recommendation with confidence. Although the outcome
is different for the sender, this is the same reason why the receiver optimal
equilibria of Proposition 2 require all information to the right of the optimum
be revealed. Without this referential advice, the receiver cannot be sure he is
seeing what he is supposed to see.

The common thread across these equilibria is that they implement a relative
rather than an absolute standard (such as in conative equilibria). Convincing
the receiver that the recommendation meets a relative standard requires credi-
bility and this, in turn, requires the sender to provide additional, referential
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advice. In these equilibria advice fulfills three roles. It persuades, it dissuades,
and it provides credibility. In our model persuasion and dissuasion each lean
on only a single piece of information. The interval equilibrium shows that
the third requirement—that of credibility—can require more information, and
possibly much more.

5.3 Other Referential Equilibria

The interval equilibrium is not the only way to persuade and dissuade the
receiver with referential advice. Characterizing the full set of referential equilib-
ria is a daunting task, and one that is beyond our capabilities at this time. The
elegance of the interval strategy is that it achieves persuasion and dissuasion
as a non-deceptive strategy and, thus, yields neutral beliefs. The space of
deceptive strategies is unusually large in our setting, and with both direct and
indirect informational spillovers, analyzing the beliefs to verify or dismiss a
strategy as an equilibrium is challenging.

Nevertheless, some additional referential equilibria can be identified. The fol-
lowing deceptive sender strategy supports an equilibrium that is not equivalent
to the interval equilibrium.

Example 3 Suppose that n is a perfect square such that option dq√n = q, a
fixed distance from d0 for all such n.31 For some T ∗ < 0, the sender:

(i) reveals option dq√n = q if X(q) ≤ T ∗,

(ii) fully reveals all options if X(d) ≥ b−∆max for some d ∈ [0, q],

(iii) otherwise follows the sender-optimal first-point conative strategy with
parameter ∆max.

This strategy supports an equilibrium if T ∗ is negative enough such that,
when the sender reveals q only, the best response of the receiver is to choose
the default option. It differs from the interval strategy in that it seeks a low
outcome at a particular option, q. The payoff is that should this occur, the
receiver will choose the default option, d0, which is the sender’s optimal. The
sender is credible despite not reporting the intermediate information because
the option q is preset into the strategy.32 Although this can achieve the sender’s

31More generally, we can consider the case of any n if we replace dq√n by dbq√nc, where
bq
√
nc refers to the integer part of q

√
n.

32Like the conative equilibria, this strategy demands an absolute rather than relative
standard, and all deviations can only move the choice away from the default option.
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most preferred option, it comes with a cost should the outcome of option q
not dissuade sufficiently. If instead the outcome path rises quickly to cross
b−∆max to the left of q, the sender is compelled to reveal all the options and
let the receiver implement his ideal option. If neither of these situations occurs,
the sender proceeds with the sender-optimal conative equilibrium strategy.

The equilibrium that Example 3 generates neither dominates nor is domi-
nated by the interval equilibrium. As n grows large, the probability of d0 being
chosen in the interval equilibrium approaches zero, whereas in Example 3 it
remains strictly positive. At the same time, with a probability bounded away
from zero, all options are revealed in the equilibrium of Example 3, making
the sender strictly worse off than in the interval equilibrium.

The strategy in Example 3 is deceptive as the sender can deviate and use
the first-point conative revelation strategy even when the outcome of option q
meets the threshold. However, as with many equilibria in deceptive strategies,
an equivalent equilibrium exists in non-deceptive strategies. In this case, an
equivalent equilibrium that is non-deceptive is for the sender in case (iii) to
reveal all options up to the conative threshold. Although this equivalence is
common, it is not always possible. The following strategy provides an example.

Example 4 Given some T ∗∗ < 0, the sender reveals the smallest option d such
that X(d) ≤ T ∗∗, and if no such option exists, reveals all the options.

This strategy supports an equilibrium if T ∗∗ is negative enough as then the
receiver’s best response is to choose the default option, d0, when the sender
reveals only one option; otherwise he chooses his ideal option.

As with first-point conative strategies, the sender’s strategy in Example 4
requires that an absolute standard be met in terms of outcomes, and that the
first point to meet this standard be revealed such that the only non-detectable
deviations are unprofitable. However, unlike first-point conative strategies,
this strategy does not produce an equivalent equilibrium if it is amended
to a non-deceptive strategy in which all information is revealed up to the
option that attains the threshold. If it were, the receiver would not choose
d0 should the mapping at first increase before it dips down. The difference
between this and first-point conative strategies is that the revealed option is
the recommendation in the conative strategy whereas here the revealed option
is intended to dissuade. As the intermediate information must be revealed for
non-detectable deviations to be precluded, the strategy in Example 3 cannot
be amended to be non-deceptive and support an equivalent equilibrium.

The equilibria that are supported by Examples 3 and 4 lead to an increase
in the variance in the receiver’s choice relative to the interval equilibrium,
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pushing the choice for some states to the left and for others to the right. For a
sender with concave preferences, this suggests the interval strategy is preferred,
whereas with convex preferences this ordering may be reversed. We can turn to
simulation to answer the question for specific functional forms and parameter
values, but without guidance as to what those values should be, and without a
full characterization of such equilibria, such an exercise is of unclear value.

5.4 Equilibrium Dominance

To understand the trade-offs across referential equilibria, we pursue a dominance
result along the lines of the dominance of the interval equilibrium over all
conative equilibria. The examples of the previous section neither dominate nor
are dominated by the interval equilibrium. The examples are simple, however,
and one may wonder whether a more elaborate extension could beat the interval
equilibrium. In Example 3 for instance, the receiver’s expectations reset for
options to the right of dq√n = q and the sender could play the interval strategy
in this range or repeat the same trick as with option q, at perhaps 2q, and so on.
As rich as these possibilities are, and despite our inability to characterize the set
of equilibria fully, we can prove that any manipulations of information to the
right of the recommendation involves a trade-off with the interval equilibrium
of the type shown in the examples.

To focus on manipulations of information to the right of the recommendation,
we define a strongly prescriptive interaction as one in which the sender reveals, at
least, the options d0, d1, . . . , d

∗, where d∗ is the receiver decision. An equilibrium
is strongly prescriptive when interactions are strongly prescriptive for all
states. Within this class of equilibria the sender is free to strategically provide
information to the right of the recommendation whether non-deceptively or
deceptively.

We prove that no equilibrium that is strongly prescriptive dominates the
interval equilibrium. In fact, we show a stronger result. We show that if
a strongly prescriptive equilibrium dominates the sender-preferred conative
equilibrium, the interval equilibrium necessarily dominates it. Thus, any
strongly prescriptive equilibrium that is better for the sender than is the
interval equilibrium for a positive mass of states, must be worse for the sender
for another positive mass of states and, in fact, must be worse on those states
than is the sender’s preferred conative equilibrium.

Theorem 3 If Σ is an equilibrium whose interactions are strongly prescriptive
with probability one and that weakly dominates the sender-optimal conative
equilibrium, then the interval equilibrium weakly dominates Σ.

39



The class of strategies that support strongly prescriptive interactions is
broad. The interval strategy is in the class, as is full revelation. The class also
includes deceptive strategies, such as the strategies in Examples 3 and 4.33

Indeed, many strategies in which the interaction cannot be strongly prescriptive
nevertheless can be amended so that it is and the equilibrium equivalent. An
example is the first-point conative strategy amended to include all information
to the left of the recommendation.

That the interval equilibrium is strongly prescriptive creates a connection
between Theorem 2 and Theorem 3. Within the class of strongly prescriptive
strategies, the two theorems establish that for a sender who wants an equilibrium
that beats all conative equilibria for any strictly decreasing utility function,
then the interval equilibrium is the best she can do.

The class of strongly prescriptive equilibria also has a tight connection to
non-deceptive equilibria. In ruling out manipulation of information to the
left of the recommendation, there is no room for deception. This is why the
interval and many other non-deceptive strategies support strongly prescriptive
interactions. This is not true for all non-deceptive strategies, however. For
instance, if the sender always and only reveals the outcome of some option dq,
for q ≥ 2, the interaction cannot be strongly prescriptive.

The strategy just described not only fails to support a strongly prescriptive
equilibrium, it cannot support an equilibrium at all. This raises the question
of whether non-deceptive equilibria can be found that are prescriptive but not
strongly prescriptive. In Lemma 4 we answer this in the negative. We show
that for a non-deceptive strategy to support an equilibrium, that equilibrium
must be strongly prescriptive.

Lemma 4 If a non-deceptive equilibrium is prescriptive, interactions are
strongly prescriptive with probability one.

The logic is familiar from the necessity of equilibrium advice in Lemma 3.
A non-deceptive strategy that leaves a gap to the left of the recommendation
leaves open the possibility that full revelation is a profitable deviation for some
types. Because beliefs are neutral, there must be some sender type for whom
the outcome path gets close to b within the gap and never gets as close to b
again.

From the lemma it follows immediately as a corollary to Theorem 3 that the
interval equilibrium is undominated by all non-deceptive equilibria. Any non-
deceptive equilibrium that dominates the sender preferred conative equilibrium
is, in turn, dominated by the interval equilibrium.

33These strategies call for gaps in some cases, although the gaps are to the right of the
recommended option, which in both cases is d0.
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Given the focus until this point of the paper on manipulations of information
to the right of the recommendation, the reader may wonder why a restriction on
information to the left is necessary at all. Throughout the paper, information
to the left of the recommendation has proven innocuous and it is manipulations
to the right that have been important. The complication is exactly when
information supply to the left of the recommendation is inter-dependent with
information to the right. The strongly prescriptive restriction imposes a
separation between the two sides. If we instead assume strategies such that
revelation of information to the left and right of the recommendation are
independent, then Theorem 3 is easily extended to all prescriptive strategies.
We cannot construct an interdependence such that a non-strongly-prescriptive
equilibrium exists, let alone one that dominates the interval equilibrium, but
we cannot, alas, rule it out.34

5.5 Non-Prescriptive Equilibria

We have until this point focused on prescriptive equilibria in which the sender
conveys a recommendation. Non-prescriptive equilibria cannot be ruled out,
although they must satisfy stringent properties that, seemingly, render them
unappealing to the sender. The uncertainty in outcomes—as the receiver
is choosing an unrevealed option—also implies that many non-prescriptive
equilibria are Pareto inefficient, including all non-deceptive equilibria.

What makes the existence of non-prescriptive equilibria difficult is that the
sender can always deviate and fully reveal. We saw earlier that full revelation
undermines no-advice as an equilibrium and, in the same way, full revelation
plagues all other non-prescriptive strategies. The issue is, once again, if a gap
exists between the revealed options and the decision by the receiver as this
creates space for this deviation.

One way to create non-prescriptive equilibria is by eliminating this gap.
That is, by using a strategy that reveals up to the option next to the one that
the receiver chooses. Constructing these equilibria are nonetheless involved
and non-obvious. More importantly, they are unsatisfying as in the limit as

34This seemingly represents a technical rather than substantive difficulty. The purpose of
information to the right of the recommendation is to dissuade, and Theorem 3 establishes that,
on its own, this cannot be used to dominate the interval equilibrium. Similarly, information
to the left cannot do this and, in fact, is often unnecessary in equilibrium. The Markov
property of the outcome function implies that there is no direct informational spillover from
the left of a recommendation to the right. Thus, the indirect spillover—the deception—is
caused by the strategy alone and not the realization of outcomes. In effect, such strategies
allow the sender to randomize within a pure strategy the information she reveals to the right
of the recommendation, and this randomization makes the analysis demanding.
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n grows large, the option space grows dense and these equilibria effectively
become prescriptive. We refer to this type of equilibria as near-prescriptive.

Definition 8 An equilibrium is near-prescriptive when, for every on-path
message m, either the receiver chooses an option disclosed in m, or the receiver
chooses an option just above or just below an option disclosed in m.

To see the possibilities for non-prescriptive strategies, it is helpful to return
to the categories of deceptive and non-deceptive strategies. For non-deceptive
strategies the receiver’s beliefs are neutral and this implies that all outcomes
are possible for unrevealed options. But if all outcomes are possible, and a gap
exists between the revealed options and the receiver’s intended choice, there
must be a path that gets closest to b in the gap and for whom full revelation is
profitable. Therefore, by the same logic as Lemma 4 above, a non-deceptive
strategy can support a non-prescriptive equilibrium only if a gap doesn’t exist
and the strategy is near-prescriptive.

Lemma 5 If an equilibrium is non-deceptive, then it is near-prescriptive.

For a truly non-prescriptive equilibrium to exist, therefore, the strategy
must be deceptive. To rule out the full-revelation deviation, it must also be
that any message with a gap cannot profitably be sent by a type in which the
path crosses b in that gap and nowhere else to the right. Intuition suggests that
this makes supporting an equilibrium difficult, although demonstrating this
formally with non-neutral beliefs (and without closed form representations) is
challenging.35

A further way to evaluate the reasonableness of non-prescriptive equilibria
is to evaluate the reasonableness of the receiver’s beliefs following off-path
deviations. An interesting distinction that our setting creates is whether a
deviation over or under-communicates relative to equilibrium. For instance, a
deviation could include an equilibrium message plus additional information—
what we refer to as over-communication—or it could include something less

35For instance, consider the following strategy that is non-prescriptive for some states and
prescriptive for others: Denote by d∗ the smallest option such that X(d∗) ≥ b; then for some
dnp large, (i) If d∗ ≤ dnp, reveal all options up to and including d∗, (ii) otherwise reveal
nothing. In case (i) the receiver chooses option d∗, and in case (ii) he chooses dnp. Case (ii)
is non-prescriptive, and the receiver knows that the outcome is strictly below b. Nevertheless,
if dnp is sufficiently large, the density may be packed sufficiently tightly to b that he prefers
dnp than to experiment further to the right. Clearly, however, even were this strategy able
to support an equilibrium, it does not dominate the sender-optimal conative equilibrium, let
alone the interval equilibrium.
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than an equilibrium message, possibly plus other information, which we call
under-communication.

Over-communication is an interesting possibility as the sender shows the
receiver what he would get in equilibrium and then adds more information.
This raises the question of what the receiver would believe were the extra
information to reveal a better outcome than he expects in equilibrium. Would
he take the extra information at face value? That is, would he see the extra
information as non-deceptive and incorporate the information only with direct
informational spillovers? This would be a particularly tempting inference if the
extra information was also beneficial for the sender and a Pareto improvement.36

One may construct an equilibrium refinement that follows this logic—what
might be called an “over-communication” refinement.37 If the sender over-
communicates then the receiver is not suspicious at all, but rather takes
the information at face value. It is easy to see that this refinement would
eliminate all non-prescriptive equilibria that are Pareto inefficient.38 In that
case, mutually beneficial over-communication is possible. At the same time, the
interval equilibrium and all first-point conative equilibria survive this refinement.
The Pareto requirement also implies that the sender can over-communicate all
information to the left of the recommendation without upsetting the equilibrium,
meaning that the surviving non-prescriptive equilibria have near-prescriptive
analogues.

This informal argument and Lemma 5 do not provide a definitive judgement
against non-prescriptive equilibria. Indeed, the multiplicity of equilibria in our
model goes hand-in-hand with the richness of expertise and the information
structure. Nevertheless, we see these arguments, on top of the already difficult
requirements for the existence of non-prescriptive equilibria, as suggestive of
why we might more reasonably expect prescriptive equilibria to be those played
in practice.

6 Robustness
The model we analyze is abstract and general. Nevertheless, restrictions have
had to be imposed. In the appendices we consider extensions to allow for a richer

36One may interpret over-communication through the lens of “speeches" that motivated
early refinements. The sender is showing the equilibrium outcome and then, in effect, saying
“here is additional information that will make us both better off.”

37The formalization of this refinement is straightforward, although in the interests of space,
we do not include the details here.

38For instance, it would eliminate the potential equilibrium described in Footnote 35.
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message space (Appendix B.2) and a partially informed sender (Appendix A).
In this section we focus on two specific variants that are perhaps more aptly
viewed as robustness rather than extensions.

6.1 Generalizing Receiver Utility

To simplify the presentation we have developed the model for quadratic receiver
utility. Our results do not depend on this restriction, with the sole exception
of Corollary 1. In this section we develop general conditions on receiver utility
under which our results continue to hold. The intuition in this general setting
remains unchanged, even though the details can be technical and complex. All
the proofs for our results are provided under general receiver utility and, to
that end, we establish several intermediary results about this environment in
Appendix B.3.

Without quadratic utility, how the receiver trades off risk and return depends
on the degree of underlying uncertainty and the expected outcome itself. This
means, for example, that absent expert advice, the receiver’s favored option
will not always deliver outcome b− σ2/2µ, rather it will depend on the default
outcome. Despite this, the principles that underlie all of our equilibria, and
that lead to dominance of the interval equilibrium, carry through. Relaxing
quadratic utility, our results continue to hold if the following assumptions on
receiver utility hold. We define

R(x) = −u
′′
R(x)

u′R(x)
and P (x) = −u

′′′
R(x)

u′′R(x)

as the coefficients of absolute risk aversion and absolute prudence, respectively.39

Assumption 1. uR is smooth to the fourth order and exponentially
dominated.40

Assumption 2. u′′R < 0 and uR(x) is maximized at x = b > 0, the ideal
outcome of the receiver.

Assumption 3. On the range (−∞, b), R′ > 0.
39Assumptions (1) and (2) imply that the coefficient of absolute risk aversion is well defined

and positive on the range (−∞, b), and that the coefficient of absolute prudence is well
defined everywhere.

40Formally, uR is four times continuously differentiable, and for all α > 0, u(k)R (x)e−α|x| → 0

as |x| → ∞, where u(k)R denotes the derivative of order k.
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Assumption 4. If P 6= 0, P ′ < 0.

Assumption 5. R(0) < 2µ/σ2.

Assumption (1) is a technical condition to ensure expectations are well
defined. Assumption (2) ensures that uR is strictly concave and an ideal
outcome for the receiver exists. Assumptions (3) and (4) ensure that the
optimization problem the receiver faces is concave (see Lemma A.2), using the
concepts of absolute risk aversion and absolute prudence from the literature on
decision making under uncertainty (see Callander and Matouschek (2019), for
a discussion of these conditions). Finally, Assumption (5) is the analog of the
requirement b > σ2/(2µ) that ensures the sender’s problem is non-trivial.

The logic for conative equilibria is the same, although the condition describ-
ing the first-point conative equilibria is more involved (see Appendix B.3 for the
extended definition). Regardless of the default outcome, however, there exists
an outcome that the receiver is willing to accept risk-free than to engage in
more experimentation. Similarly, the interval equilibrium carries the same logic,
although the threshold that stops revelation is more complicated, depending on
how the receiver trades-off risk from his optimal experiment should he ignore
the advice. This means that the exact equilibrium behavior will vary from that
with quadratic utility, and potentially vary a lot for specific mappings.

Despite this variation, the comparison of the interval equilibrium to the
sender-optimal conative equilibria carries through exactly as before. The
thresholds for each equilibrium may vary, but as the logic of the peak-and-
trough of the interval equilibrium depends on the level of the sender-optimal
conative equilibrium, it remains the case that the necessary condition will be
satisfied before that conative threshold is reached.

The one result that does not extend to general receiver preferences is
Corollary 1 that reveals a preccise equivalence in the expected outcome of
the sender-preferred conative equilibrium and when the expert is absent (and
provides no advice). The logic of that result is general although the exact
equality is special. It depends on the independence of the receiver’s optimal
experiment from the default outcome that only holds with quadratic utility.
The difference is, however, small in the sense that the leverage of the expert is
small in the receiver-optimal conative equilibrium with the relative comparison
depending on the curvature of utility and not any fundamental property of
strategic communication. The appendix provides complete details for all of
these results.

45



6.2 Sender Prefers Larger Options

The assumption that the sender prefers smaller options is not a normalization.
It implies that the option that is best for the sender is the one that, in the
absence of any advice, is safest for the receiver. We now explore the opposite
case in which the sender wants to convince the receiver to choose the option
about which, in the absence of advice, he is most uncertain about. In this
section, we describe these results informally for the case in which the number
of options goes to infinity, leaving the formal statements to the appendix.

So suppose that the sender’s preferences are strictly increasing in d, such
as the linear form uS(d) = d. Since the sender plays no role in the no-advice
benchmark, this change does not affect the option the receiver would choose in
the absence of any advice, which is still given by dna that produces outcome
b− σ2/(2µ) in expectation.

The logic of conative advice remains unchanged. Previously the sender
revealed the smallest option with outcome sufficiently close to the receiver’s
ideal. With increasing preferences, she now reveals the largest option that is
sufficiently close. This outcome is then above b rather than below. A difference
is that the threshold that defines “close enough” is now non-constant. The reason
is that the relevant domain over which the receiver may experiment rather
than accept advice is now a Brownian bridge. The utility of experimentation
depends on the slope of that bridge, and that in turn depends on how large is
the option that the sender recommends. The larger the option, the flatter is
the bridge and the less tempted to experiment is the receiver, which allows the
sender to pull the outcome further above b. At the other extreme, the smaller
is the option, the steeper is the bridge, such that as the recommended option
approaches d0, the outcome it produces must itself approach b. For quadratic
receiver utility, this threshold is given by 1

2

(
b+
√
b2 + 2σ2d

)
, as marked in

Figure 6a.41

It is evident in this case that, in expectation, conative equilibria do shift
the decision in the sender’s favor relative to what the receiver would choose
in the absence of advice. Without advice, the receiver’s risk aversion creates
a timidity that works in the opposite direction to the sender’s preferences,
whereas it previously worked in her favor.

It still remains the case, however, that the sender can sway the decision
more in her favor by providing referential advice than she can by making a
recommendation alone. Figure 6b illustrates for the interval strategy. Rather
than reveal from the left, the sender now reveals from the right, with all revealed

41The construction of this strategy now yields neutral beliefs to the left of the revealed
option rather than to the right.
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Figure 6a: Different Sender Preferences
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Figure 6b: Different Sender Preferences
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Figure 6: Strictly increasing sender preferences.
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outcomes above b. The recommendation is again the closest revealed outcome
to b, although it is now the low point in the mapping, and the referential advice
is information to the left of that recommendation with the key dissuasive point
being the peak, now marked by δl. In the same way that previously information
to the left of the recommendation could be omitted without upsetting the
equilibrium, information to the right of the recommendation can be omitted
here, reducing the amount of information needing to be communicated in
equilibrium.

Because the domain where the receiver may experiment is now a bridge,
the construction of equilibrium is somewhat more delicate with the thresholds
dependent on the location of the revealed option. Nevertheless an equilibrium
can be constructed. For many paths the interval equilibrium yields a strictly
better choice by the receiver than do all conative equilibria, but it is no longer
true that this holds with probability one. With positive probability the requisite
combination of high and low points can’t be found, and the interval equilibrium
implements the same choice by the receiver as does the sender-optimal conative
equilibrium. Thus, even here, it is still the case that the interval equilibrium
weakly dominates all conative equilibria.

7 Concluding Discussion
Expertise is everywhere and its importance verges on being self-evident. Yet
grasping why and how it matters, and teasing its effects out empirically, has
proven more elusive than one may have expected. The objective of this paper
has been to shed more light on the role of expertise, how it manifests in
advice, and when it matters. At an abstract level, we hope that the use of
referential information resonates with intuition and experience, and opens
up new questions. At a practical level, we aim for our results to open up
new channels of understanding and new interpretations of old data. Before
concluding, we offer briefly here several areas where this opportunity is most
promising.

We have analyzed an environment with unrestricted communication. In
practice, a design choice for decisionmakers is how much information they allow
experts to provide to them. CEO’s famously prefer “executive summaries” over
lengthy reports, Congress requires that only the text of a bill be reported to
the floor by a committee without supporting reports, and common law dictates
that only judicial decisions themselves form binding precedent and not any
supporting arguments contained in a judge’s written opinion. The wisdom
of these restrictions depends on what equilibrium is expected to be played
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were communication unrestricted. If it is the interval equilibrium, then the
CEO is better off with only a recommendation, whereas if the decisionmaker
can expect (or mandate) full disclosure of private information, restricting the
channel of communication helps the expert and not the decisionmaker.42

Beliefs play an important role in our analysis. The BITH and over-
communication refinements are initial steps to explore which beliefs are natural
and which are not. The standard refinement of never-weak-best-response
(NWBR) can be applied here as well, although it eliminates none of the equi-
libria of interest and its ability to refine prediction is limited. Many more
possibilities exist given the rich informational structure. An interesting direc-
tion suggested by the over-communication refinement is that of plain-spoken
versus obtuse communication. The idea of that refinement is that an expert
who over-communicates does so with good intent and, as such, the information
should be taken at face value. In contrast, under-communication suggests
deception and breeds mistrust. This logic reinforces the connection between
neutral beliefs, non-deceptive strategies, and the absence of indirect informa-
tional spillovers. It argues for equilibria in non-deceptive strategies over those
that rely on deception. It also points away from non-prescriptive equilibria in
which the expert reveals information but strategically refrains from making a
recommendation. Reinforcing this argument is that cognitive load of required
for non-deceptive strategies and neutral beliefs is lower as the play is, in a sense,
strategically simple. There are no subtle inferences that need to be drawn, and
beliefs are simple extrapolation and interpolation from the hard information.
Exploring these ideas in theory and particularly in the lab promise to yield
more insight into the psychology and strategy of communication.

Our focus has been on equilibria when the number of options is large,
although our results are characterized for finite n. Thus, a large set of options
is not required for referential advice to be relevant, although there must be
more than two as, with only two options, there is no space for referential advice.
Our results show simply that the bigger the set, the more likely the opportunity
will arise for referential advice to be able to influence the decisionmaker, and
for referential to dominate conative equilibria.43 A similar conclusion emerges

42This suggests that the impact of expertise may be identified through what and how much
an expert communicates and the range of outcomes that it produces. Conative equilibria
exist only in a relatively narrow band, whereas referential equilibria range from the worst
possible for the expert up to the interval equilibrium and perhaps beyond. Evidence of
expertise should also exist beyond the choice itself and in the beliefs a decisionmaker holds
over all options.

43Referential advice would likely be more effective in settings in which the expert were
able to convince the decisionmaker that a good option doesn’t exist. Our setting makes the
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if the outcome space is bounded. The insurance value of advice is a relative
effect, and even in bounded domains the decisionmaker would be tempted to
accept a “good enough” outcome to avoid potentially worse outcomes.

One stark assumption in the model is that the expert knows the state of
the world precisely. This aids tractability but is not necessary. Our results are
unchanged if we add an independent noise term to the expert’s knowledge of
each outcome. A variant more in the spirit of our model is to instead suppose
that the precision of the expert’s knowledge also varies in the option itself,
increasing in the distance an option is from the known default option. In the
appendix we formalize this idea via a noise term that itself is modeled as a
Brownian motion and anchored at the default option. The striking implication
to come from this is that the conative equilibria no longer exist whereas the
referential equilibria do, providing more support for our focus on referential
advice. Conative equilibria break down as a recommendation that is far from
the default implies the expert is very unsure of the recommendation herself,
and for a sufficiently distant recommendation the receiver will prefer an option
near or at the default. The interval equilibrium, in revealing all outcomes from
the default to the right, does not succumb to this problem.

The model can also be tailored to fit more tightly to empirical applications.
A remarkable feature of health care in the United States is how much variation
exists in the incidence and quality of health care across the country, and
considerable effort has been put into understanding the reasons why (Chandra
et al. 2012). In the working paper version of the paper we develop an extension
in which a patient—the receiver—cares both about outcomes (health) and the
option chosen (cost and inconvenience). The amended interval equilibrium
that results suggest a novel interpretation for the complicated interdependency
between insurance coverage and medical care. In addition to the demand
and supply side factors documented in the literature, the equilibrium suggests
that differences in insurance produce different degrees of persuadability of
patients, and that this may explain some of the variation in the data. In the
equilibrium the patient who cares less about the option chosen—a patient with
good insurance and lower copays—is more susceptible to persuasion and, as a
result, will receive worse outcomes. Examining this connection more closely in
the data, and separating it from other demand side effects, offers an interesting
and promising direction to investigate.

The model we develop in this paper exposes clearly how strategic communi-
cation is deeply intertwined with experimentation. The receiver’s decision to
accept advice is made in comparison to what he can achieve by experimenting

task more difficult by ruling out that possible channel of influence.
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on his own, and the benefit of experimentation is itself affected by the advice
that is conveyed. While our model differs from the communication literature
in relaxing the perfect correlation of states, it is notable that it simultaneously
differs from the experimentation literature in relaxing the independence of
states. By parameterizing the correlation, our model demonstrates how the
literatures can be connected. We explore a static model, as is standard in
the communication literature, although there is no logical barrier to it being
dynamic as is the experimentation literature. We hope that the connection
between these areas of economic decisionmaking can be explored more deeply
in further research.
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Appendices
The appendices are organized as follows. Appendix A extends the main model
to the case of imperfectly informed senders. Appendix B includes the results
omitted from the main text and several preliminary results used throughout
the proofs. Appendix C describes and proves the formal results of Section 6.2.
Finally, appendix D contains the proofs omitted from the main text.

A Sender is Imperfectly Informed
In this appendix, we consider another direction in which the model can be ex-
tended, allowing for the sender to be imperfectly informed about the outcomes.

In our context, it is natural to suppose that, just like the receiver, the
sender is better informed about options that are closer to the default option.
To capture this notion, we assume that the sender observes the realization of a
signal function that is correlated with the outcome function. For each option,
she then decides whether to reveal her signal. As in the main model, we assume
revelations have to be truthful. The utilities for the sender and the receiver
are as in the main model of Section 2. The outcome of option d continues to
be denoted X(d) and is distributed as in the main model. However, instead of
observing directly X(d) for every option d, the sender now observes Y (d), with
Y (d0) = X(d0) = 0 and

Y (di) = Y (di−1) +X(di)−X(di−1) +
ε
4
√
n
ξi,

for i = 1, . . . , n, where ξi is independently drawn from the standard normal
distribution, and ε captures the amount of noise in the signals the sender gets
to observe. In the case ε = 0, the sender is perfectly informed about the
state, as in our main model. As ε grows larger, the sender becomes gradually
less informed until, in the limit in which ε = ∞, she knows as little as the
receiver does. Finally, for any positive ε, the sender is more uncertain about
the outcomes of options that are further away from the default option, just like
the receiver. As n grows large, X becomes distributed as a Brownian motion
with drift µ and scale σ, and Y becomes distributed as a Brownian motion
with drift µ and scale

√
σ2 + ε2.

For every option d, let Z(d) denote the best estimate of X(d)—a minimizer
of the mean-squared error—given the sender’s information:

Z(d) = E[X(d) | Y (d′),∀d′].
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Let γ = ε2/(σ2 + ε2). The projection formulas for jointly normal random
variables imply

Z(d) = (1− γ)Y (d) + γµd, and Var[X(d) | Y (d′),∀d′] = γσ2d.

In particular, as n grows to infinity, Z(·) is distributed as a Brownian motion
with drift µ and scale (1−γ)σ. So, compared to original outcome function, the
drift of the estimated outcome function is the same, but the scale is reduced
by the factor 1− γ, which captures the informativeness of the sender’s signals.
As γ → 0, signals become perfectly informative and estimations become
confounded with true outcomes, while as γ → 1, signals become perfectly
uninformative and estimations become equal to the unconditional expected
outcomes.

It is worth noting that, for each option d, the value of signal Y (d) is a
sufficient statistic to compute the distribution of X(d) conditional on all of the
sender’s information:

E[X(d) | Y (d)] = E[X(d) | Y (d′),∀d′],
Var[X(d) | Y (d)] = Var[X(d) | Y (d′), ∀d′].

In addition, if d ≥ d′,

E[X(d) | Y (d′)] = E[X(d) | Y (d′′), ∀d′′ ≤ d′] = Z(d′) + (d− d′)µ, (A.1)

and

Var[X(d) | Y (d′)] = Var[X(d) | Y (d′′), ∀d′′ ≤ d′] = γd′σ2 + (d− d′)σ2. (A.2)

The expected utility of the receiver who takes option d given knowledge of Y (d)
or, equivalently, Z(d), is

−(Z(d)− b)2 − γσ2d. (A.3)

Compared to the receiver’s expected utility conditional on X(d), −(X(d)− b)2,
notice the presence of the second term −γσ2d. This term captures the disutility
the receiver gets for choosing larger options, due to the compounded noise in
the sender’s signals.

Overall, the case of an imperfectly informed sender can be analyzed in
much the same way as our main model by noticing that, rather than revealing
outcomes depending on when X(·) hits different thresholds, the sender reveals
signals (or equivalently, outcome estimates) depending on when Z(·) hits
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suitably adjusted thresholds.
The key difference between this extension and our main model is that

there are no longer any conative equilibria, specifically, the probability of non-
conative interactions remains bounded away from zero as n grows large. To
see why, suppose the sender’s strategy were to reveal the signal of the smallest
option at which the estimate function Z(·) hits threshold b − σ2/(2µ) (the
threshold associated with the sender-optimal conative equilibrium with perfect
information). If the estimate function hits the threshold early enough, it is a
best response for the receiver to choose the revealed option. But if the estimate
function hits the threshold late—for a large option—the receiver is now better
off picking an option to the left of the revealed one, perhaps even the default
option. In such cases, the receiver understands that the sender is very unsure
about the outcome of the option she is revealing and recommending. Rather
than follow such a risky recommendation, he turns it down for something closer
to the safe default decision. This fact holds more generally and is captured in
Proposition A.1 below.

Proposition A.1 If the sender is imperfectly informed about the state, i.e.,
ε > 0, then there is no sequence of equilibria that are conative in the limit.

Proof. Suppose by contraction that there exists a sequence of equilibria that
are conative in the limit, which we write Σ1,Σ2, . . ..

Let z = b − σ2/(2µ). If the receiver observes the value Y (d) or Z(d) of
option d, and if Z(d) ≥ z, then under neutral beliefs, the receiver’s expected
utility is no greater when choosing option d′ > d than when choosing option d.
In contrast, if n is sufficiently large and Z(d) < z, then the receiver gets more
expected utility by choosing some option d′ > d. These facts follow from the
same arguments as in Section 5.1 and imply, by the same arguments as in the
proof of Theorem 1, that as n grows large, the probability that the equilibrium
outcome of Σn is below z vanishes.

Since, as n grows large, the estimated outcome path is a Brownian motion
starting at 0 with drift µ and scale (1 − γ)σ, for every option dT , there is
a positive probability that the outcomes of all the options to the left of dT
are below z. And, because the receiver incurs a disutility linear in the option
chosen, as shown in (A.3), if dT is large enough, the receiver would rather
decide the default option, whose outcome is known. Hence, the probability of
non-conative interactions remain bounded away from zero as n grows large.

However, there exist prescriptive equilibria in which the sender either reveals
the signal of a single option, or reveals all the signals. These equilibria are
the analog of the first-point conative equilibria in the main model, but with a
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threshold or band that is non-constant. For example, let

∆(d) =

√
σ4

4µ2
− γσ2d, and dM =

σ2

4γµ2
,

and consider the following sender strategy: The sender reveals the signal of the
smallest option d ≤ dM whose value falls within the range [b−∆(d), b+ ∆(d)].
If no such option exists, then the sender reveals all the signals.

Proposition A.2 The “one-or-all” sender strategy described above is a pre-
scriptive equilibrium strategy.

Proof. The optimality of the sender’s strategy for on-path messages is im-
mediate, by the same arguments as in the second part of Theorem 1. And
similarly, the sender is never strictly better off revealing all the signals . Let
us show that, for on-path messages, the receiver is best off choosing an option
whose signal is disclosed by the sender.

First, note that for all d ≤ dM , the range [b−∆(d), b+ ∆(d)] is included in
[b− σ2/(2µ), b+ σ2/(2µ)]. If the sender communicates the signal of only one
option d∗, applying the receiver’s beliefs given by (A.1) and (A.2) and using
the same logic as in the second part of Theorem 1, the receiver is never strictly
better off choosing a option to the right of d∗.

Second, note that, if the sender discloses the signal of a single option d∗
such that the signal value is on the boundary of the range [b−∆(d∗), b+∆(d∗)],
the receiver’s expected utility, when the receiver chooses d∗, is independent of
d∗ and is equal to

−

(
b− b±

√
σ4

4µ2
− γσ2d∗

)
− γσ2d∗ = − σ4

4µ2
.

If the receiver decides d < d∗ for which Z(d) /∈ [b−∆(d), b+ ∆(d)], then
the receiver’s expected utility, given Y (d) or equivalently given Z(d), is less
than −σ4/(4µ2). Hence, the receiver is never strictly better off deviating to the
left when the sender reveals the signal of only one option, because according
to the sender’s strategy, the sender’s estimated outcomes of all the options d
to the left of the revealed option fall outside the range [b−∆(d), b+ ∆(d)].

Thus, the receiver decides d∗. Equilibrium existence then follows from the
construction of suspicious off-path beliefs and off-path decisions as done in
Lemma A.1, and this equilibrium is, by definition, prescriptive.
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In this one-or-all equilibrium, as n grows large, and as γ vanishes, dM
becomes infinite and the probability that the estimated-outcome path remains
outside of the band defined by [b−∆(·), b+ ∆(·)] vanishes. Then, the sender
discloses the signal of only one option, and ∆(d) ≈ ∆max, the threshold of the
sender-optimal conative equilibrium under perfect information. So, for large
option sets and a sender close to being perfectly informed, the equilibrium
behavior becomes arbitrarily close to that of the sender-optimal conative
equilibrium of Section 5.1.

The fact that the receiver is uncertain about the outcomes of large revealed
options does not cause any issues for referential advice. Consider the following
sender strategy: The sender reveals the signals of options {d0, . . . , d

r}, where
dr is the smallest option that satisfies

max
d≤dr

E[uR(X(d)) | Y (d)] ≥ max
d>dr

E[uR(X(d)) | Y (dr)], (A.4)

and dr = dn if no such option exists. The following proposition asserts that
this sender strategy supports a prescriptive equilibrium. By construction,
equilibrium interactions are referential.

Proposition A.3 The sender strategy just described is a prescriptive equilib-
rium strategy.

Proof. Note that the left-hand side of Equation (A.4) is equal to

max
d≤dr

E[uR(X(d)) | Y (d′),∀d′ ≤ dr],

the maximum expected utility the receiver can achieve by choosing one of
the options disclosed by the sender, conditionally on the hard information
included in the sender’s message. Similarly, note that the right-hand side of
Equation (A.4) is equal to

max
d>dr

E[uR(X(d)) | Y (d′),∀d′ ≤ dr],

the maximum expected utility the receiver can achieve by choosing one of the
options not disclosed by the sender, conditionally on the hard information
included in the sender’s message and assuming neutral beliefs. Thus, by
construction, if the receiver holds neutral beliefs he is never strictly better off
choosing an option not included in the sender’s message—interactions must
be prescriptive. Observe that the sender strategy is non-deceptive, so that the
receiver forms neutral beliefs upon receiving an on-path message, and so that

56



the sender’s strategy is trivially optimal among on-path messages, as for each
state there exists only one possible on-path message.

Finally, the sender is obviously never strictly best-off deviating to reveal
all the signals. Setting suspicious off-path beliefs and off-path decisions as in
Lemma A.1 ensures equilibrium existence.

Note that as ε vanishes, the above sender strategy converges to the interval
strategy of Section 5.2. Thus, as ε vanishes and n grows large, the equilibrium
that results strictly dominates the all-or-one equilibrium of Proposition A.2.

Simple but tedious calculations show that, for every ε ≥ 0, as n grows large,
the sender chooses, as dr, the smallest option d whose estimated outcome hits
the threshold

b− σ2

4µ
− µ

σ2
(Z(d̂)− b)2,

where d̂ is the smallest option less than or equal to d that maximizes the
receiver’s expected utility conditionally on the sender’s information, thus gener-
alizing the threshold obtained for perfectly informed senders (see Equation (9)
in Section 5.2).

B Auxiliary Results
This appendix includes the results omitted from the main text and preliminary
results used throughout the proofs.

B.1 On the Existence of Suspicious Beliefs

When constructing an equilibrium, it is convenient to focus on the on-path
behavior of the receiver, thus providing an incomplete strategy profile. Under
some general conditions, the incomplete profile can be completed with off-path
suspicious beliefs and decisions so as to be an equilibrium. The purpose of this
section is to formalize this fact.

Consider mappings M : Θ → M, D : M(Θ) → D and B : M(Θ) →
∆(Ω). We interpret these mappings as describing a sender strategy and a
receiver strategy and belief function restricted to messages that are expected
on equilibrium path. Consider the following conditions:

1. Receiver beliefs, captured by B, follow Bayes rule whenever possible, and
upon observing an on-path message, the receiver maximizes utility: For
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all m ∈M(Θ),

D(m) ∈ arg max
d∈D

EB(m)[uR(X(d))].

2. The sender maximizes utility among the possible equilibrium messages:
For all m ∈M(Θ), and all states θ compatible with m, D(M(θ)) ≤ D(m).
In addition, the sender is never strictly better off revealing the full state
if the receiver, upon observing the full state, were to choose the utility-
maximizing option that—if not unique—is worst for the sender.

3. On-path interactions are prescriptive: For all m ∈ M(Θ), the sender
reveals D(m).

These conditions stipulate the rationality and optimality of sender and receiver
behaviors with respect to the set of messages that are expected to be observed
on equilibrium path, and require in addition that the sender is not strictly
better off revealing her type.

The tuple (M,D,B) forms an incomplete strategy profile. Lemma A.1,
below, asserts that under the above conditions, off-path suspicious beliefs exist
and so the incomplete profile can be completed to form an equilibrium.

Lemma A.1 Assume that Conditions (1)–(3) above are satisfied. The incom-
plete strategy profile (M,D,B) can be extended to a complete strategy profile
in which off-path beliefs and decisions are suspicious. The resulting strategy
profile is an equilibrium.

Proof. First, we extend B and D to the entire message spaceM as follows.
For any state θ, let d†(θ) be the option that maximizes the receiver’s utility in
state θ, and if two or more utility maximizing options exist, let d†(θ) be the
largest one. For any m 6∈M(Θ), we define D(m) as

D(m) = max
θ∈Γ(m)

d†(θ).

Because there are finitely many decisions, there exists θ∗ such that d†(θ∗) =
D(m). Let B(m) be the belief that assigns probability one to θ∗.

Second, we observe that the off-path beliefs and decisions just defined are
suspicious. Indeed, by assumption, for every m ∈M(Θ), and all θ ∈ Γ(m),

D(m) ≤ max

(
arg max

d∈D
uR(X(d; θ))

)
.
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Thus, for all m 6∈M(Θ), all m′ ∈M(Θ) such that Γ(m) ∪ Γ(m′) 6= ∅, and all
θ ∈ Γ(m) ∪ Γ(m′),

D(m′) ≤ max

(
arg max

d∈D
uR(X(d; θ))

)
≤ max

(
arg max

d∈D
EB(m)[uR(X(d))]

)
.

Hence, off-path beliefs are suspicious. By definition, off-path decisions are
suspicious as well.

Overall, together with the assumptions made on the incomplete strategy
profile, since beliefs and decisions are suspicious, the sender best responds
given the receiver’s strategy. On path, receiver beliefs satisfy Bayes’ rule and
off path, they are consistent with the hard information revealed. Finally, the
receiver always makes optimal decisions given his beliefs. Hence, the completed
strategy profile (M,D,B) is an equilibrium.

Observe that for a given sender strategy, the receiver strategy for on-path
messages is almost uniquely determined in an equilibrium with prescriptive
interactions—the only flexibility is about how ties are broken, but since ties
occur with probability zero, such flexibility is not relevant for our results,
as discussed in Section 2. When a sender strategy supports a prescriptive
equilibrium, this equilibrium is unique up to off-path beliefs and decisions
and tie-break rules. Therefore, it can be convenient to focus on the sender
strategy, with the understanding that it is associated with an essentially unique
equilibrium. The corollary to Lemma A.1 that follows gives the conditions for
the sender strategy to be a prescriptive equilibrium strategy.

LetM : Θ→M be a sender strategy and let L(m) be the smallest minimizer
of d 7→ E[uR(X(d; θ)) |M(θ)=m]. Consider the following conditions:

4. For all m ∈M(Θ), and all states θ compatible with m, L(M(θ)) ≤ L(m).
In addition, the sender is never strictly better off revealing the full
state if the receiver, upon observing the full state, were to choose the
utility-maximizing option that—if not unique—is worst for the sender.

5. For all states θ, the message M(θ) reveals L(M(θ)).

Corollary A.1 If a sender strategy M satisfies Conditions (4) and (5), then
there exists a receiver strategy D and a belief function B such that (M,D,B)
is a prescriptive equilibrium, and in this equilibrium, the receiver chooses the
sender-preferred option in case of ties.
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B.2 On General Messages

In this section, we allow the sender to send, as message, any set of states
that includes the true state. LetM be this extended set of possible messages.
To distinguish between M and M, we refer to M as the regular message
space, and to M as the extended message space. The goal is to show that
equilibrium outcomes obtained under the regular message space are robust to
generalization.

With the extended message space, a strategy for the sender is a mapping
M from Θ toM, a strategy for the receiver is a mapping D fromM to D,
and a belief function, that captures the receiver’s belief on possible states, is a
mapping fromM to ∆(Θ).

Proposition A.4 Any prescriptive equilibrium under the regular message
space can be extended to an equilibrium under the extended message space.

Proof. Given an equilibrium (M,D,B) under the regular message space,
consider the strategy profile (M,D,B) under the extended message space,
defined as follows:

• For each state θ, let M(θ) = {θ′ ∈ Θ | ∀d ∈ D, m(d)=X(d; θ′)} with
m ≡M(θ).

• We define D and B over the set of on-path messages M(Θ) as follows:
for each state θ, D(M(θ)) = D(M(θ)), and B(M(θ)) = B(M(θ)). (Note
that, for any pair of states (θ, θ′), we have that M(θ) = M(θ′) if and only
if M(θ) = M(θ′).)

• Finally, we define D and B over the set of off-path messages analogously
to the proof of Lemma A.1. For any state θ, let d†(θ) be the option
that maximizes the receiver’s utility in state θ, and if two or more utility
maximizing options exist, let d†(θ) be the largest one. Let m 6∈ M(Θ)
and let d∗ = maxθ∈m d

†(θ). Let θ∗ be such that d†(θ∗) = d∗. Let B(m)
be the belief that assigns probability one to θ∗, and let D(m) = d∗.

It is easily verified that that the triple (B,D,M) just defined satisfies the
conditions required of a perfect Bayesian equilibrium. By construction, B is an
adequate belief function for the receiver, which follows Bayes-rule for on-path
messages whenever possible. Also, the receiver always chooses an optimal
option given his beliefs. In every state, by definition, the sender chooses a
message that is, at least, optimal among the on-path messages—that is, the
sender is never strictly better off deviating with on-path messages. Besides,
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whenever the state is fully revealed, the receiver chooses an option greater
than or equal to the option chosen in the equilibrium (M,D,B). Thus, again
by definition of (B,D,M), the sender is never strictly better off deviating by
revealing the state fully. Finally, in every state θ, if the sender deviates from
sending message M(θ) to sending off-path message m /∈ M(Θ), the option
selected by the receiver is larger than or equal to the decision that would
occur had the sender disclosed the entire state θ. Hence, the sender is never
strictly better off announcing an off-path message. Therefore, (B,D,M) is an
equilibrium.

B.3 On General Receiver Utility

In this section, we provide auxiliary results to account for the case of general
receiver utility. We assume the receiver utility meets Assumptions (1)–(5) of
Section 6.1.

Let x be the unique outcome x < b at which the coefficient of absolute risk
aversion is equal to 2µ/σ2. Similarly, let x be the unique outcome x > b such
that uR(x) = uR(x). Therefore, the receiver utility of any outcome outside
the range [x, x] is less than the receiver utility of all outcomes inside that
range. By Assumption (5), x ∈ (0, b), and the arguments made in Section 3.2
together with Lemma A.3 below imply that the sender cannot get her first
best in equilibrium if n is large enough. Observe that, for the case of quadratic
receiver utility in the main text, x = b− σ2/(2µ) and x = b+ σ2/(2µ).

The existence and uniqueness of x follow from Assumptions (3) and (5),
together with the fact that the coefficient of absolute aversion −u′′R(x)/u′R(x)
becomes unbounded as x approaches b because, by Assumption (2), u′′ is
bounded above negatively while u′ vanishes. The existence and uniqueness of
x follow from Assumption (1).

We extend below the definition of first-point conative sender strategy.

Definition 9 In the case of general receiver utility, we say that the sender
follows a first-point conative strategy when there exists ∆,∆ > 0, with uR(b−
∆) = uR(b + ∆), and such that the sender reveals the smallest option whose
outcome falls in the range [b−∆, b+ ∆] and if no such option exists, the sender
reveals everything.

The sender-optimal conative strategy is then the first-point conative strategy
with the largest range [b−∆, b+ ∆] that supports a prescriptive equilibrium,
analogously to the case of quadratic receiver utility.

In Lemmas A.2 and A.3 below, Z is an independent random variable that
follows the standard normal distribution.
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Lemma A.2 For all x0 ∈ R, the mapping ∆ 7→ E
[
uR(x0 + µ∆ + σ

√
∆Z)

]
defined for ∆ ≥ 0 is strictly concave.

Proof. Let x0 ∈ R and f(∆) = E
[
uR(x0 + µ∆ + σ

√
∆Z)

]
. First, when the

absolute prudence is strictly decreasing, by continuous differentiation,

(u′′′R)2 − u′′′′R u
′′
R

(u′′R)2
< 0,

except possibly on a set of measure zero. Since u′′R < 0, u′′′′R ≤ 0, and u′′′R <√
u′′Ru

′′′′
R , except possibly on a set of measure zero. Then, observing that

E
[
u′R(x0 + µ∆ + σ

√
∆Z)Z

]
= σ
√

∆ E
[
uR(x0 + µ∆ + σ

√
∆Z)

]
, and

E
[
u′′R(x0 + µ∆ + σ

√
∆Z)Z

]
= σ
√

∆ E
[
u′R(x0 + µ∆ + σ

√
∆Z)

]
,

we get

f ′(∆) = µ E
[
u′R(x0 + µ∆ + σ

√
∆Z)

]
+
σ2

2
E
[
u′′R(x0 + µ∆ + σ

√
∆Z)

]
,

and

1

µ2
f ′′(∆) = E

[
u′′R(x0 + µ∆ + σ

√
∆Z)

]
+ 2

(
σ2

2µ

)
E
[
u′′′R(x0 + µ∆ + σ

√
∆Z)

]
+

(
σ2

2µ

)2

E
[
u′′′′R (x0 + µ∆ + σ

√
∆Z)

]
.

Finally, using that u′′′′R ≤ 0 and u′′′R <
√
u′′Ru

′′′′
R (except possibly on a set of

measure zero),

1

µ2
f ′′(∆)

< − E

[(
u′′R(x0 + µ∆ + σ

√
∆Z)−

(
σ2

2µ

)
u′′′′R (x0 + µ∆ + σ

√
∆Z)

)2
]
,

so that f ′′(∆) < 0 and f is strictly concave.
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Lemma A.3 Let f be the mapping ∆ 7→ E
[
uR(x0 + µ∆ + σ

√
∆Z)

]
defined

for ∆ ≥ 0.

• If x0 ≥ x, f(∆) is maximized at ∆ = 0.

• If x0 < x, there exists ∆ > 0 such that for all ∆ ∈ (0,∆), f(∆) > f(0).

Proof. As in the proof of Lemma A.2, we have

f ′(0) = µu′R(x0) +
σ2

2
u′′R(x0),

and f is strictly concave by Lemma A.2. By Assumptions (3) and (5), f ′(0) ≤ 0
if x0 ≥ x, so f(0) is a maximal value by concavity of f . Similarly, f ′(0) > 0 if
x0 < x, so f is strictly increasing in a neighborhood of 0.

B.4 On No-Advice Equilibrium Messages

The goal of this section is to show that, in all prescriptive equilibria, commu-
nication is always informative when the dimension of the state space is large
enough: All sender types reveal the outcome of a non-default option.

Lemma A.4 If n is large enough, in all prescriptive equilibria, in every state
of the world, the sender reveals at least one non-default option.

Proof. Let (M,D,B) be a prescriptive equilibrium. Suppose, by contradiction,
that for some state, the sender reveals the default option (already known to
the receiver) and no other options. In this case, since the equilibrium is
prescriptive, the receiver chooses the default option upon receiving this trivial
message. Hence, in every state, the sender gets her ideal option, d0.

Let F be the information—formally a σ-algebra—generated by the sender’s
message strategy M . By the law of iterated expectation,

E[uR(X(d1))] = E[E[uR(X(d1)) | F ]].

If n is large enough, we have that

E[uR(X(d1))] > uR(0),

and so there exists an on-path message m for which

E[uR(X(d1; θ)) |M(θ)=m] > uR(0).
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Thus, for n large enough, the receiver is strictly better off choosing a non-
default option for at least some on-path messages, which creates a contradiction.

C Formal Results of Section 6.2
Here we consider the case in which the sender prefers larger decisions as opposed
to smaller decisions, letting her utility function be uS(d) = +d. The receiver’s
utility function remains unchanged.

Suppose the receiver knows X(d∗) = x∗, and let us briefly revisit the case
of optimal receiver decision assuming neutral beliefs. Note that, the receiver’s
preferences being unchanged, the case x∗ < b is already treated as part of
Section 5.1 and Theorem 1. The case x∗ > b—relevant when the sender prefers
larger decisions—is more subtle. If x∗ > b, then, letting

β(d) = min

{
1

2
(
√
b2 + 2dσ2 − b), b

}
,

we have the following:

• If d∗ < 4b2/σ2, so that β(d) = 1
2
(
√
b2 + 2dσ2− b), then for x∗ < b+β(d∗),

the receiver’s optimal decision is d∗. As x∗ increases, the optimal decision
decreases. In the limit as x∗ grows to infinity, the optimal decision
converges to 0.

• If d∗ > 4b2/σ2, so that β(d) = b, then for x∗ < b + β(d∗) = 2b, the
receiver’s optimal decision is d∗. For x∗ ∈ [2b, d∗σ2/(2b)], the optimal
decision is 0. Then, as x∗ increases above d∗σ2/(2b), the optimal decision
gradually increases towards d∗, and then then decreases again towards 0.
In the limit as x∗ →∞, the optimal decision converges to zero.

The first result concerns the existence of an equilibrium with conative
interactions.

Proposition A.5 If xC : D 7→ R is nondecreasing with xC(d) ∈ [b, b+ β(d)]
for all options d, then there exists a sequence of equilibria that are conative in
the limit where xC(d∗) is the outcome of equilibrium decision d∗.

Proof.
Let ∆(d) = xC(d)−b, fix n, and consider the following sender strategy: The

sender reveals the largest option d whose outcome belongs to [b−∆(d), b+∆(d)].
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If no such option exists, the sender reveals all options. Then, suppose that,
upon receiving an on-path message, the receiver operates as follows: If the
entire state is revealed, the receiver simply chooses the utility maximizing
option. If two or more options are optimal, as in the main text, the receiver
chooses the sender-preferred option—here, the largest one. Otherwise, the
receiver chooses the only revealed option.

The sender’s strategy is deceptive but optimal when restricted to on-path
messages, by the same argument as in the proof of Theorem 1.

Let us show that the receiver’s strategy is also optimal among on-path
messages. The case of the sender revealing the full state is immediate. Let us
focus on the case in which the sender reveals only one option d∗ whose outcome
x∗ belongs to [b −∆(d), b + ∆(d)]. The receiver is never better off choosing
a option strictly larger than d∗, because xC is nondecreasing and so any such
option yields an outcome even further away from b than is x∗.

If d < d∗, the receiver believes that X(d) is distributed normally with
mean E[X(d) | X(d∗)=x∗] = dx∗/d∗ and variance Var[X(d) | X(d∗)=x∗] =
σ2(d∗ − d)d/d∗. We consider two cases.

• If x∗ ≤ b then choosing option d < d∗ yields an outcome which, on
average, is further away from b than is x∗, and in addition increases the
variance of the outcome. The receiver is better off choosing d∗.

• If x∗ > b then choosing option d < d∗ yields the receiver’s expected utility

− (b− E[X(d) | X(d∗)=x∗])2 − Var[X(d) | X(d∗)=x∗]

= −
(
b− dx∗

d∗

)2

− σ2 (d∗ − d)d

d∗

whereas the receiver’s expected utility when taking option d∗ is −(b−x∗)2.
Hence, the receiver is better off choosing d∗ when the difference of the
two terms, which simplifies to

d∗ − d
(d∗)2

(
(d+ d∗)x∗ − dd∗σ2 − 2bd∗x∗

)
, (A.5)

is non-positive. We have d∗−d ≥ 0, we remark that the term (d+d∗)x∗−
dd∗σ2 − 2bd∗x∗ is linear in d, so if it evaluates non-positively at the two
extremes d = 0 and d = d∗, it also evaluates non-positively at all options
between the two extremes. If d = 0, then

(d+ d∗)x∗ − dd∗σ2 − 2bd∗x∗ = (x∗ − 2b)x∗d∗ ≤ 0
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because xC(d∗) ≤ b+ β(d∗) ≤ 2b. If d = d∗ then

(d+ d∗)x∗ − dd∗σ2 − 2bd∗x∗ = d∗(2(x∗ − b)x∗ − d∗σ2)

which is quadratic in x∗ and is non-positive if and only if x∗ ∈
[1
2
(
√
b2 + 2dσ2 − b), 1

2
(
√
b2 + 2dσ2 + b)], and, so, is non-positive be-

cause for all d, xC(d) is in the interval [b, b + β(d)] ⊂ [1
2
(
√
b2 + 2dσ2 −

b), 1
2
(
√
b2 + 2dσ2 + b)]. Hence (A.5) is non-positive and the receiver’s

maximal expected utility is reached when choosing d∗.

Thus, the receiver’s strategy is optimal among on-path messages.
Finally, observe that if the outcome of any option d falls in [b−∆(d), b+∆(d)],

the sender is never strictly better off deviating by revealing the full state: Doing
so would yield a decision that is at least as large as the decision expected in
equilibrium.

Lemma A.1 (or rather, its analog, which continues to hold for the sort of
sender’s preferences considered here) applies: The strategies defined above
can be completed with appropriate off-path beliefs and decisions to form an
equilibrium.

Sending n to infinity, the outcome path becomes distributed as a Brownian
motion with drift µ > 0. This Brownian motion (almost surely) hits the frontier
defined by the function xC(·), which implies, by the same argument as in the
proof of Theorem 1, that as n→∞ the equilibria just defined become conative.
In addition, the sender then reveals the pair (d∗, xC(d∗)) where d∗ is the largest
option for which X(d∗) = xC(d∗).

Lemma A.5 In any sequence of equilibria that are conative in the limit, the
probability that the equilibrium outcome of equilibrium decision d∗ is above
b+ β(d∗) vanishes as n grows large.

The proof of Lemma A.5 analogous to the proof of the first part of Theorem 1
and is omitted. The lemma implies that the sender’s preferred conative equi-
librium, in the limit, implements outcome b+ β(d∗) for equilibrium decision
d∗.

The second result concerns the existence of a referential equilibrium that
does better for the sender than the sender’s preferred conative equilibrium,
when the option set grows large.

Proposition A.6 There exists a sequence of referential equilibra Σ1,Σ2, . . .
such that, for any sequence of equilibria Σ′1,Σ

′
2, . . . that are conative in the

limit, Σn provides an expected utility for the sender that is greater than Σ′n in
the limit as n→∞.
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Proof. Fix n. We build a equilibrium Σn whose structure is similar to the
interval equilibrium of the main model. Let dl be the largest option that
satisfies either one of these two properties: Either b ≤ X(dl) ≤ b+ β(dl), or,
X(dl) > b+ β(dl) and

max{−(X(d)− b)2 : d ≥ dl} ≥ −b2 if dl ≥ 4b2

σ2
and

X(dl)

dl
≤ σ2

2b
,

max{−(X(d)− b)2 : d ≥ dl} ≥ dlσ2(dlσ2 − 4b(X(dl)− b))
4(X(dl)2 − dlσ2)

if dl <
4b2

σ2
or

X(dl)

dl
>
σ2

2b
.

Let dl = 0 if no such option exists.
Consider the following sender strategy: The sender reveals dl and all the

options to the right of dl. Then, upon receiving an on-path message, the
receiver chooses the option that maximizes his utility among the set of options
that are revealed by the sender, and as before, if two or more options maximize
the receiver’s utility, the receiver chooses the largest one.

Two facts are worth noting. First, −b2 is the maximum possible expected
utility the receiver can get if he chooses an option d to the left of dl, for the
case when dl ≥ 4b2/σ2 and when X(dl)/dl ≤ σ2/(2b). Second, if can be shown
that

dlσ2(dlσ2 − 4b(X(dl)− b))
4(X(dl)2 − dlσ2)

is an upper bound on the maximum possible utility that the receiver can obtain
by choosing an option d less than dl if either dl < 4b2/σ2 or X(dl)/dl > σ2/(2b)
(this upper bound becomes tight as n grows large). These two facts follow from
the above description regarding the receiver’s optimal option under neutral
beliefs, and from solving the relevant maximization problems. The calculations
are tedious but straightforward and are omitted.

These two facts combined imply that the sender’s and the receiver’s strate-
gies just described are optimal when restricted to on-path messages. In addition,
the sender is never strictly better off deviating by revealing all options. In
consequence, as in the proof of Proposition A.5, the analog of Lemma A.1 for
the case of sender preferences considered here guarantees that such a sender
strategy supports a prescriptive equilibrium.

In the limit as n→∞, we get a compact characterization of the equilibrium:
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dl becomes the largest option that satisfies either

X(dl) = b+ β(dl),

or, if dl < 4b2/σ2,

max{−(X(d)− b)2 : d ≥ dl} ≥ dlσ2(dlσ2 − 4b(X(dl)− b))
4(X(dl)2 − dlσ2)

.

In the limit, such an option almost surely exists.
Let Σ′1,Σ

′
2, . . . be a sequence of equilibria that are conative in the limit.

The above-mentioned thresholds that determine the option dl imply that the
equilibrium decision in the sender’s preferred conative equilibrium is never
greater than the equilibrium decision of this referential equilibrium, and that
with positive probability, it is strictly smaller.

D Proofs

D.1 Proof of Lemma 2

Lemma 2 does not depend on the particular form of the receiver utility function.
Consider an equilibrium (M,D,B). First, suppose M is almost non-

deceptive. Let Ω be any (measurable) set of states. Let m be an on-path
message. Note that M−1(m) ⊆ Γ(m). And thus, applying Bayes’ rule,

Pr[θ ∈ Ω | θ ∈M−1(m)] =
Pr[Ω ∩M−1(m) | Γ(m)]

Pr[M−1(m) | Γ(m)]

= Pr[Ω ∩M−1(m) | Γ(m)]

= Pr[Ω | Γ(m)],

where we used compact notation on the right-hand side and where both
equalities owe to the fact that Pr[M−1(m) | Γ(m)] = 1, because M is assumed
to be almost non-deceptive. Hence, on-path receiver beliefs are neutral.

Second, suppose that on-path receiver beliefs are neutral. Let m be an
on-path message and let Ω = Γ(m)\M−1(m). Then, Pr[Ω | Γ(m)] = Pr[Ω |
M−1(m)] = 0, and hence, Pr[M−1(m) | Γ(m)] = 1. So, the sender strategy is
almost non-deceptive.
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D.2 Proof of Proposition 1

Proposition 1 follows immediately from the existence of suspicious beliefs that
can be established, for example, by Corollary A.1.

D.3 Proof of Proposition 2

This proposition does not depend on the receiver utility function.
Fix n and consider an equilibrium (M,D,B) that is receiver-optimal: For

all states θ, D(M(θ)) maximizes d 7→ uR(d; θ). Let Ω be the set of states θ such
that, for all options d, X(d; θ) 6= b. Observe that Ω has probability 1. Suppose
that, for some θ ∈ Ω, m = M(θ) is such that for some option d > D(m), m does
not include the outcome of d. Let θ′ be a state with uR(X(d; θ′)) > uR(X(d; θ)).
Then, in state θ′, the sender is strictly better off revealing m, but the receiver
is strictly better of choosing d instead of D(m). Hence a contradiction.

D.4 Proof of Proposition 3

We prove Proposition 3 for the case of quadratic receiver utility, its extension
to the case of general receiver utility of Section 6.1 is straightforward.

For any n, let ∆n = 1/ 8
√
n, and denote by Ωn the set of states θ such that

for all d, X(d; θ) 6∈ [b −∆n, b + ∆n]. Thus, Ωn is the set of states such that
the first-point conative strategy with parameter ∆n reveals the entire state, as
opposed to revealing a single option. We show that Pr[θ ∈ Ωn]→ 0 as n→∞.

Observe that if θ ∈ Ωn, then at least one of the following is true:

(1) X(dn; θ) < b−∆n, or

(2) for some di ≤ dn−1, X(di+1; θ)−X(di; θ) > 2∆n.

Let Z be an independent random variable that follows the standard normal
distribution. First, observe that X(dn) is normally distributed with mean µ

√
n

and variance σ2
√
n. Thus,

Pr[X(dn) < b−∆n] < Pr[X(dn) < b]

= Pr

[
Z <

b− µ
√
n

σ 4
√
n

]
.

Second, fixing di ≤ dn−1,

Pr[X(di+1)−X(di) > 2∆n] = Pr

[
Z >

2/ 8
√
n− µ/

√
n

σ/ 4
√
n

]
.
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For n large enough,
2/ 8
√
n− µ/

√
n

σ/ 4
√
n

>
8
√
n

σ
,

and

Pr[X(di+1)−X(di) > 2∆n] < Pr
[
Z > 8

√
n/σ

]
≤ e−

4√n/σ2

.

where we use the Chernoff bound Pr[Z > t] ≤ e−t
2/2 if t ≥ 0. Overall we get,

for n large enough,

Pr[θ ∈ Ωn] ≤ Pr

[
Z <

b− µ
√
n

σ 4
√
n

]
+ ne−

4√n/σ2

,

and observing that (b − µ
√
n)/(σ 4

√
n) → −∞, we have Pr[θ ∈ Ωn] → 0 as

n→∞.
Thus, as n grows large, the first-point conative strategy with parameter

∆n defined above reveals all the options with vanishing probability. If this
strategy supports a prescriptive equilibrium, then it means that interactions
become conative with probability one in the limit. It is easy verified that, for
any ∆ > 0 small enough, the first-point conative strategy with parameter ∆ is
a prescriptive equilibrium strategy—the case of quadratic utility is studied in
Section 5.1, and the general case follows from the second part of Theorem 1.

D.5 Proof of Proposition 4

In this proof, the receiver utility function can be assumed to be quadratic or
to satisfy the general assumptions of Section 6.1.

First we show that no receiver-optimal prescriptive equilibrium satisfies
the BITH refinement. We proceed by contradiction and focus on the special
case n = 2, which immediately extends to n > 2. Suppose that an equilib-
rium (M,D,B) is receiver-optimal, prescriptive, and also satisfies the ε-BITH
refinement for some ε > 0. Consider the message m1 that reveals that the
outcome of d1 is y, where y solves uR(y) = uR(b) − ε/2. This message must
be an off-path message as it were on path, the receiver would choose d1 upon
receiving m1—as the equilibrium is prescriptive—and the sender would then
find it strictly profitable to deviate and send m1 for all states θ compatible
with m1 but with uR(X(d2; θ)) > uR(y). In addition, and for the same reason,
we must have D(m1) = d2. Thus, applying the ε-BITH refinement, we must
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have
EB(m1)[uR(X(d2))] ≥ uR(y) + ε,

and since uR(y) + ε = uR(b) + ε/2, no belief B(m1) can satisfy this inequality.
Second, we argue that every first-point conative sender strategy with pa-

rameter ∆ > 0 that supports an equilibrium also supports an equilibrium that
satisfies the BITH refinement. That fact, together with Proposition 3, implies
the second part of Proposition 4 since it then suffices to take the sequence of
equilibria used to prove Proposition 4.

Consider any first-point conative sender strategy M with parameter ∆ > 0,
and assume that M supports an equilibrium, which is equivalent to ∆ ≤ ∆max

as defined in Equation (8) in Section 5.1. Let ε = (uR(b)− uR(b−∆))/2 > 0.
Assume further and without loss of generality that ∆ < b.

For the receiver, consider the following strategy D: Upon receiving any
on-path message, the receiver chooses the option that is optimal among the
options disclosed (and in case of ties, chooses the sender-preferred option).
Upon receiving an off-path message m that discloses at least one option whose
outcome belongs to [b−∆, b+ ∆], the receiver again chooses the option that
is optimal among the options disclosed, following the same sender-preferred
tie-breaking rule. Then, set B(m) such that the beliefs of any undisclosed
option has a very high variance—a variance high enough to make the receiver’s
decision consistent with B(m).

Finally, if an off-path message m discloses either nothing or options with
outcomes outside of the range [b−∆, b+ ∆], consider two cases:

(1) For some i, message m discloses di, . . . , dn, and the receiver is strictly
better choosing one of these options than choosing any other option
disclosed in m.

(2) There exists an option d† not disclosed in m and such that, for every
option disclosed in m to the right of d† (if any), there exists one option
disclosed in m to the left of d† and whose outcome is at least weakly
better for the receiver.

In Case (1), as above, set B(m) such that the beliefs of any undisclosed
option has a very high variance and set D(m) to be the option that is optimal
among the options disclosed, and in case of ties, chooses the sender-preferred
option.

In Case (2), set D(m) = d† and set B(m) such that the mean of X(d†) is b
under B(m) and the variance just high enough so that the expected receiver
utility of X(d†) under B(m) is equal to (uR(b) + uR(b − ∆))/2. Note that
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choosing d† makes the receiver strictly better off than choosing any other option
disclosed in m, for which receiver utility is less than uR(b−∆). Also set B(m)
such that the variance of any undisclosed option except d† is large enough such
that the receiver is never weakly better off choosing any undisclosed option
except d†.

It is clear that (M,D,B) just defined is an equilibrium: The sender strategy
is always optimal by construction, the receiver’s decision is optimal upon
receiving an off-path message (also by construction) and is optimal upon
receiving an on-path message observing that beliefs are then the same as in
any first-point conative equilibrium with parameter ∆.

Finally, if m is an off-path message where D(m) is not disclosed in m, then
this off-path message corresponds to Case (2) above. Then, for any d revealed
in m,

EB(m)[uR(X(D(m)))] = uR(b−∆) + ε ≥ EB(m)[uR(X(d)] + ε,

and hence (M,D,B) satisfies the BITH refinement.

D.6 Proof of Theorem 1

The statement of Theorem 1 holds for quadratic receiver utility. Here, we
prove an extended version of Theorem 1 for general receiver utility under the
assumptions of Section 6.1, of which quadratic utility is a special case. We
define x and x as in Section B.3.

Theorem A.1 For all sequences of equilibria that are conative in the limit,
the equilibrium outcomes are in the range [x, b] in the limit. Moreover, for any
x ∈ [x, b] there exists a sequence of equilibria that are conative in the limit in
which the outcomes converge to x.

We begin by proving the second part of Theorem A.1.
Let x′ ∈ [x, b) and let x′ be the unique outcome greater than b that satisfies

uR(x′) = uR(x′) (existence and uniqueness follow from Assumption (1) in
Section 6.1). Notice that by concavity of the receiver utility, the outcomes in
[x′, x′] are better for the receiver than the outcomes outside [x′, x′].

Fix n, and consider the (extended) first-point conative strategy in which
the sender reveals the smallest option whose outcome belongs to [x′, x′] and if
no such option exists, the sender reveals all the options. This sender strategy
accounts for asymmetric receiver utilities, as explained in Section B.3. Then,
suppose that, upon receiving an on-path message, the receiver operates as
follows: If the full state is revealed, the receiver chooses the utility-maximizing
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option. If two or more options are optimal, the receiver chooses the smallest
one. Otherwise, the receiver chooses the only revealed option.

The sender’s strategy is deceptive but optimal when restricted to on-path
messages. If the state includes any outcome in the range [x′, x′], then all
on-path messages reveal an option whose outcome is in that range. The sender,
who prefers smaller to larger options, is best off revealing the smallest option. If
instead the state does not include any outcome in the range [x′, x′], then there
exists only one possible on-path message, so the sender’s message is trivially
optimal among on-path messages.

The receiver’s strategy is also optimal among on-path messages. The case
of the sender revealing the full state is immediate. If instead the sender reveals
only one option d∗ whose outcome x∗ belongs to the range [x′, x′], then all
options to the left of d∗ have an outcome outside this range, making the
receiver worse off, while beliefs to the right of d∗ are neutral, and as x∗ ≥ x,
by Lemma A.3, the receiver is not strictly better off choosing an option to the
right of d∗.

Finally, observe that if some outcome falls in [x′, x′], the sender is never
strictly better off deviating by revealing the full state: Doing so would yield a
decision that is never less than the decision expected in equilibrium.

Therefore, Lemma A.1 applies: The strategies defined above can be com-
pleted with appropriate off-path beliefs and decisions to form an equilibrium.

Sending n to infinity, the outcome path becomes distributed as a Brownian
motion with drift µ > 0. For any given ε > 0, this Brownian motion almost
surely crosses [x′, x′ + ε], so that, as the option set grows large, the probability
that the sender reveals a single option whose outcomes is in [x′, x′+ε] converges
to one. Hence, in the sequence of equilibria just defined, equilibrium outcomes
converge to x′ in probability, and the probability of conative interactions
converges to one. Finally, the sequence of equilibria of Proposition 3 guarantees
the existence of a sequence of equilibria conative in the limit and whose
outcomes converge to b.

This proves the second part of Theorem A.1.
We now prove the first part. Fix any sequence of equilibria such that the

probability of conative equilibrium interaction converges to one as n grows
large. We show that the probability that equilibrium outcomes fall outside the
range [x, b] vanishes.

First observe that, as n grows large, the probability that the equilibrium
outcome is greater than b vanishes. Indeed, by now familiar arguments, if
it was not the case, with non-zero probability, for any sufficiently large n,
revealing the full state would yield a smaller receiver decision and thus would
be a profitable deviation for the sender.
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Second, we show that if x < x, then as n grows large, the probability
that the equilibrium outcome is less than or equal to x vanishes. Considering
the n-th equilibrium in the sequence, let Ωn be the set of states for which
equilibrium interaction is conative. Let Ωn(d) be the subset of Ωn for which
the sender reveals option d, and On(d) be the set of possible outcomes X(d; θ)
for θ ∈ Ωn(d). Note that On(d) may be empty for some options d. Thus, if
θ ∈ Ωn, in equilibrium the sender reveals the smallest option d whose outcome
is in On(d).

Suppose (d∗, x∗) is such that x∗ ∈ On(d∗) and d∗ < dn. Let d > d∗. The
receiver’s belief on X(d) after observing that X(d∗) = x∗ (and nothing more)
is characterized by the cumulative distribution

y 7→ Pr[X(d; θ) ≤ y | X(d∗; θ)=x∗, θ ∈ Ωn(d∗)].

Note that

Pr[X(d; θ) ≤ y | X(d∗; θ)=x∗, θ ∈ Ωn(d∗)]

= Pr[X(d; θ) ≤ y | X(d∗; θ)=x∗, θ ∈ Ωn, X(d′; θ) /∈ On(d′)∀d′ < d∗]

= Pr[X(d; θ) ≤ y | X(d∗; θ)=x∗, θ ∈ Ωn],

where the first equality owes to the sender’s best response, and the second
equality owes to the Markov property of the outcome function.

Because the probability of Ωn converges to one as n → ∞, the value of
Pr[X(d∗; θ) ≤ y | X(d∗; θ) = x∗, θ ∈ Ωn] becomes arbitrarily close to the value
of Pr[X(d∗; θ) ≤ y | X(d∗; θ) = x∗].44 Consequently, the expected utility of the
receiver when choosing d > d∗, conditionally on observing that X(d∗) = x∗

under a conative interaction, becomes arbitrarily close to the expected utility
of the receiver when choosing d, but only conditionally on X(d∗) = x∗.

That is, as n→∞, the receiver’s beliefs become neutral to the right of the
option revealed by the sender. Lemma A.3 then implies that the receiver is
strictly better off choosing an option to the right of the option revealed if the
outcome of that option is less than x and n is large enough.

In addition, as n grows large, with a probability that converges to 1, the
sender strictly prefers to reveal the full state than to reveal as only data point
the outcome of the largest option dn, because by revealing all the options,
the receiver makes a decision which is strictly less than dn for a set of states
whose probability converges to 1. Therefore, as n grows large, with probability
converging to 1, the sender reveals a single option which is not the largest

44In general, if, for every n, An and Bn are two non-null events and Pr[Bn] → 1, then
|Pr[An|Bn]− Pr[An]| → 0.
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available option.
Putting the last two facts together, it follows that the probability that the

equilibrium outcome is less than x vanishes as n grows large.

D.7 Proof of Corollary 1

We prove Corollary 1 for the special case of quadratic receiver utility (the result
does not always hold in the general case of Section 6.1).

As explained in Section 3, if the sender does not provide any information,
the receiver chooses the option d = dna that maximizes his expected utility

−(E[X(d)]− b)2 − Var[X(d)] = −(µd− b)2 − σ2d.

Then, as n→∞, dna → x/µ, with x = b− σ2/(2µ).
In the sender-optimal conative equilibrium, the equilibrium outcome con-

verges to x as n grows large, and the equilibrium decision is equal to the first
hitting time (in the language of stochastic calculus) of the barrier x for the
outcome path, then distributed as a Brownian motion with drift µ and scale σ.
As it turns out, this average hitting time is also equal to x/µ (see, for example,
Dixit 1993, p. 56). In addition, for any sequence of equilibria that are conative
in the limit, the equilibrium outcomes eventually belong to the range [x, b] by
Theorem 1, consequently the equilibrium decisions become lower-bounded by
the first hitting time of the barrier x, and so on average, are no less than x/µ.

D.8 Proof of Proposition 5

In this proof, the receiver utility function can be assumed to be quadratic or
to satisfy the general assumptions of Section 6.1.

The existence of the interval equilibrium is straightforward. Fix n. Suppose
the sender follows the interval strategy, and that upon observing an on-path
message, the receiver chooses the utility maximizing option among the options
revealed by the sender (and, in case of ties, chooses the sender-preferred
option). Notice that the interval strategy is a non-deceptive sender strategy,
and therefore, the strategy is trivially optimal when restricted to on-path
messages. In addition, the receiver forms neutral beliefs after observing an
on-path message. Therefore, by the Markov property of the outcome function,
the receiver utility for an option d to the right of the right-most revealed
option dr is equal to E[uR(X(d)) | X(dr)], which, by definition of the interval
strategy, is never strictly higher than the utility of the best option among the
options revealed. So the receiver best responds to on-path messages. Of course,
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the sender is never strictly better off deviating by revealing all the options.
Equilibrium existence then follows from Lemma A.1.

By definition of the sender strategy, this interval equilibrium weakly domi-
nates the sender-optimal conative equilibrium for all states. If no-advice is not
an equilibrium, then with positive probability the right-most revealed option
of the interval equilibrium has an outcome below 0, in which case it strictly
dominates sender-optimal conative equilibrium.

D.9 Proof of Theorem 2

Throughout this proof, we consider the case of general receiver utility under
the assumptions of Section 6.1, of which quadratic utility is a special case. We
define x and x as in Section B.3.

Recall that in the limit case n → ∞, outcomes become distributed as a
Brownian motion with drift µ and scale σ. In the case of quadratic receiver
utility, if the receiver is given the outcome x of decision d, with x ≤ b−σ2/(2µ),
chooses decision d+ ∆, with ∆ ≥ 0, and if the receiver’s beliefs are neutral to
the right of d, then the receiver’s expected utility is equal to

−(x+ µ∆− b)2 −∆σ2

whose maximum is reached for ∆ ≥ 0 and is equal to

−σ
2

µ
(b− x) +

σ4

4µ2
.

If x = b − σ2/(2µ), then the maximum is reached for ∆ = 0, and if x >
b − σ2/(2µ), the maximum is reached for ∆ > 0. Besides, the utility of any
option d whose outcome is known to be x is −(x − b)2. Therefore, in this
limiting case, the value of dr is the smallest to satisfy

b−X(dr) =
µ

σ2
min{(b−X(d))2 : d ∈ [0, dr]}+

σ2

4µ
. (A.6)

In turn, the receiver decision dp minimizes d 7→ (b − X(d))2 for d ≤ dr. Of
course, if dr is set to the first hitting time of b − σ2/(2µ), then dr satisfies
Equation (A.6). As µ > 0, this first hitting time is almost surely finite, so dr
is finite with probability one.

In the remainder of this proof, we denote by Z an independent random
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variable that follows the standard normal distribution, and we define

f(x,∆) = E
[
uR(x+ µ∆ + σ

√
∆Z
]
,

for x ∈ R and ∆ ≥ 0. Note that, given two options dj > di, f(x, dj − di)
represents the expected utility of a receiver who chooses option dk = j, observes
that X(di) = x, and who forms neutral beliefs to the right of di. Let ∆opt(x)
be a maximizer of f . By Lemma A.2, this maximizer exists and is unique.

The proof utilizes Lemmas A.6 and A.7 below.

Lemma A.6 We have ∆opt(x) = O(|x− x|).

Proof. For C > 0, let

g(∆) = E
[
u′R(x− C∆ + µ∆ + σ

√
∆Z)

]
+
σ2

2µ
E
[
u′′R(x− C∆ + µ∆ + σ

√
∆Z)

]
.

By the same arguments as in the proof of Lemma A.2,

g′(∆) = (µ− C) E[u′′R(·)] +
σ2

2
E[u′′′R(·)] + (µ− C)

σ2

2µ
E[u′′′R(·)] +

σ4

4µ
E[u′′′′R (·)].

To simplify notation, the expression in the parenthesis (·) refers to x− C∆ +
µ∆ + σ

√
∆Z. In particular,

g′(0) = (µ− C)u′′R(x) +
σ2

2
u′′′R(x) + (µ− C)

σ2

2µ
u′′′(x) +

σ4

4µ
u′′′′(x).

Thus, g′(0) is linear in C. If C = 0 and uR is quadratic, then g′(0) = µu′′R(x) < 0
by Assumption (2). If C = 0 and uR is not quadratic,

g′(0)

µ
= u′′(x) + 2

(
σ2

2µ

)
u′′′(x) +

(
σ2

2µ

)2

u′′′′(x)

< u′′(x) + 2

(
σ2

2µ

)√
|u′′(x)u′′′′(x)|+

(
σ2

2µ

)2

u′′′′(x)

= −
(√
|u′′(x)| −

(
σ2

2µ

)√
|u′′′′(x)|

)2

,

where we used the inequality u′′′(x) <
√
|u′′(x)u′′′′(x)|, consequence of Assump-

tion (4). Thus, in both the quadratic and non-quadratic case, if C = 0, g′(0) is
negative, and by linearity of g′(0) in C, g′(0) remains negative if C is positive
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but small enough. In the remainder of the proof of this lemma, we assume C
meets this condition. By definition of x, g(0) = 0, and as g′(0) < 0, if ∆ is
small enough, g(∆) < 0. Notice that

∂f(x,∆)

∂∆
= µg(∆),

following the same argument as in the proof of Lemma A.2. As f is strictly
concave in ∆ by Lemma A.2, ∆opt(x) is the only value of ∆ satisfying g(∆) = 0;
if ∆ < ∆opt(x) then g(∆) > 0; if ∆ > ∆opt(x), then g(∆) < 0. Since
g(|x− x|/C) < 0 if |x− x| is small enough, ∆opt(x) < |x− x|/C is |x− x| is
small enough, which concludes the proof.

Lemma A.7 There exists K > 0 and δ ∈ (0, x) such that for all δ ∈ (0, δ),
and all ∆ ≥ 0,

uR(x− δ) > f(x− δ −Kδ2,∆).

Proof. By Lemma A.6, there exists C > 0 such that if |x− x| is small enough,
then ∆opt(x) ≤ C|x− x|. Let

K =
2µ

σ2
+ 2σ2C(1 + Cµ)

∣∣∣∣u′′′R(x)

u′R(x)

∣∣∣∣.
Applying Taylor’s theorem with the Peano form of the remainder, we get

uR(x− δ) = uR(x)− δu′R(x) +
δ2

2
u′′R(x) + o(δ2) = g1(δ) + o(δ2),

with
g1(δ) = uR(x)− δ

(
1 +

µ

σ2
δ
)
u′R(x),

where we use the equality −u′′R(x)/u′R(x) = 2µ/σ2.
Applying Taylor’s theorem a second time but with the Lagrange form of

the remainder, we get

uR(x) = uR(x) + (x− x)u′R(x) +
(x− x)2

2
u′′R(x) +

(x− x)3

6
u′′′R(x) +Q(x),

with
Q(x) =

(x− x)4

24
u′′′′R (ξ(x))

and ξ some real function. Since u′′′′R ≤ 0, which follows from Assumption (4) as

78



shown in the proof of Lemma A.2, we have Q ≤ 0. Therefore,

f
(
x− δ −Kδ2,∆

)
≤ f1

(
x− δ −Kδ2,∆

)
+ f2

(
x− δ −Kδ2,∆

)
with

f1(x,∆) = uR(x) + u′R(x) E
[
x− x+ µ∆ + σ

√
∆Z
]

− µ

σ2
u′R(x) E

[
(x− x+ µ∆ + σ

√
∆Z)2

]
,

where we use again −u′′R(x)/u′R(x) = 2µ/σ2, and

f2(x,∆) =
1

6
u′′′R(x) E

[
(x− x+ µ∆ + σ

√
∆Z)3

]
.

We have, after simplification,

f1(x− δ −Kδ2,∆) = uR(x)− δ(1 +Kδ)u′R(x)− µ

σ2

(
δ +Kδ2 − µ∆

)2
u′R(x)

≤ uR(x)− δ(1 +Kδ)u′R(x),

since u′R(x) > 0 as uR is strictly concave and maximized at b > x. Therefore,

g1(δ)− f1

(
x− δ −Kδ2,∆

)
≥
(
K − µ

σ2

)
u′R(x)δ2.

We also have, after simplification,

f2(x− δ −Kδ2,∆) = −1

6
u′′′R(x)

(
δ +Kδ2 − µ∆

)(
3∆σ2 + (δ +Kδ2 − µ∆)2

)
.

Therefore,∣∣f2

(
x− δ −Kδ2,∆

)∣∣ ≤ 1

6
|u′′′R(x)|

(
δ +Kδ2 + µ∆

)(
3∆σ2 + (δ +Kδ2 + µ∆)2

)
,

so if ∆ ≤ 2Cδ and δ is small enough,∣∣f2

(
x− δ −Kδ2,∆

)∣∣ ≤ 2Cσ2(1 + Cµ)|u′′′R(x)|δ2.

Observe that if δ is small enough,

∆opt(x− δ −Kδ2) ≤ C
(
δ +Kδ2

)
≤ 2Cδ.
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Overall, if δ is small enough, for all ∆,

uR(x− δ)− f
(
x− δ −Kδ2,∆

)
≥ uR(x− δ)
− f

(
x− δ −Kδ2,∆opt(x− δ −Kδ2)

)
≥ 2Cσ2(1 + Cµ)|u′′′R(x)|δ2

+
(
K − µ

σ2

)
u′R(x)δ2 + o(δ2),

which by choice of the constant K is positive is δ is small enough, concluding
the proof of Lemma A.7.

With a slight abuse of notation, we consider the limiting case n =∞, for
which the outcome function follows a Brownian motion with drift µ and scale
σ. We define τa, τb as follows:

• τa is the smallest option d such that X(d) = x.

• τb is the smallest option d such that

max{uR(X(d′)) : d′ ∈ [0, d]} ≥ sup{E[uR(X(d′) | X(d)] : d′ ∈ (d,∞)}.

Note that τa ≥ τb, and that τa < ∞ with probability one, because µ > 0.
In the interval strategy, dr is τb, while τa is the option revealed in the sender-
optimal conative strategy. We prove that, with probability one, τa > τb.

The proof proceeds by contradiction. Let us suppose that τa < τb with
probability ε > 0.

Let K > 0 and δ > 0 be defined as in Lemma A.7. Let δ ∈ (0, δ). Let τδ be
the stopping time defined by the smallest option d such that X(d) hits value
x− δ. We then consider two stopping times based on τδ. First, a stopping time
τL defined as the smallest option d > τδ such that

X(d) = x− δ −Kδ2.

Second, a stopping time τU defined as the smallest option d > τδ such that

X(d) = x.

(Of course, τU = τa, but the context in which τU is used is different, so we find
it convenient to define it independently.)

Since µ > 0, τδ is finite with probability one.
Thus, the probability that τU < τL given that τδ < ∞ is the same as the

probability that τU < τL. By standard results (see, for example, Dixit 1993,
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pp. 51–54), for any Brownian motion starting at zero, with drift µ and scale σ,
and whose value at zero is x− δ, the probability of reaching the upper barrier
V H ≡ x before reaching the lower barrier V L ≡ x− δ −Kδ2 is

e−2V Lµ/σ2 − e−2(x−δ)µ/σ2

e−2V Lµ/σ2 − e−2V Hµ/σ2 =
e−2(x−δ−Kδ2)µ/σ2 − e−2(x−δ)µ/σ2

e−2(x−δ−Kδ2)µ/σ2 − e−2xµ/σ2 = Kδ + o(δ).

Hence, the probability that τU < τL converges to zero as δ → 0. We have
τU = τa, and if τb > τδ, then we also have τL ≥ τb. As τa < τb with probability
ε and τδ < τa by definition, it follows that τU < τL with probability ε. This
contradicts the fact that the probability that τU < τL converges to zero as
δ → 0.

Therefore, with probability one, τa > τb in this limiting case. Theorem 2
then follows from the fact that as n→∞, outcomes become distributed as a
Brownian motion with drift µ and scale σ.

D.10 Proof of Theorem 3

Throughout this proof, we consider the case of general receiver utility under
the assumptions of Section 6.1, of which quadratic utility is a special case. We
define x and x as in Section B.3. In addition, for every n, let xn be defined as
the value of x < b that satisfies, for every i = 1, . . . , n,

E[uR(X(di)) | X(di−1)=x] = uR(x).

Existence and uniqueness of xn is guaranteed by Lemmas A.2 and A.3. If
x < xn, then E[uR(X(di)) | X(di−1)=x] > uR(x). Note that as n → ∞,
xn → x and for the case of quadratic receiver utility, xn = b −∆max, where
∆max is defined in Equation (8) of Section 5.1.

We begin by introducing several elements of language that will be used
throughout the proof.

Sub-message/Super-message A message m′ is a sub-message of a message
m when, for every option d, m always reveals d if m′ reveals d. A message
m′ is a super-message of a message m if m is a sub-message of m′.

Simple/Complex messages A message m is simple when it reveals exactly
the outcomes of consecutive options di, di+1, . . . , dj for some i < j. A
message m is complex if there are options di < dj < dk such that m
reveals both di and dk but does not reveal dj.

Message length The length of a message is the number of options it reveals.
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Principal/Sequel messages Every complex message m is composed of a
principal and a sequel. The principal of m is the longest sub-message
of m that is simple and reveals d0 (if m does not reveal d0, then the
principal is the empty message). The sequel of m is the sub-message of
m that excludes the principal but includes the remaining information:
It reveals all the options that m reveals except for the options already
revealed in the principal of m.

Lemma A.8 Let (M,D,B) be an equilibrium. If m is a simple on-path mes-
sage that reveals at least the default option and such that, on a probability one
set of states θ conditionally on θ ∈ Γ(m), M(θ) is a super-message of m, then,
on a probability one set of states θ conditionally on θ ∈ Γ(m), the interval
equilibrium weakly dominates (M,D,B).

Proof. Let (M,D,B) be an equilibrium and let m0 be a simple on-path
message that satisfies the conditions of Lemma A.8. Suppose m0 discloses
exactly the options d0, . . . , dI . Let S be the set of all the super-messages m of
m0 with m ∈M(Θ) and let

Ω =
⋃
m∈S

M−1(m).

Let m ∈ S. In every state θ† ∈ Ω ⊆ Γ(m0), the sender has the possibility
to send m0 and induce a decision in {d0, . . . , dI}, thus D(m) ∈ {d0, . . . , dI},
which implies

max
0≤i≤I

uR(X(di; θ
†)) ≥ max

I<j≤n
E[uR(X(dj; θ)) |M(θ)=m].

Let F be the information (σ-algebra) generated by M . By the law of iterated
expectations, we have, for every d ∈ D,

E[uR(X(d; θ)) | θ ∈ Ω] = E[E[uR(X(d; θ)) | F , θ ∈ Ω]].

Hence,
max
0≤i≤I

uR(X(di; θ
†)) ≥ max

I<j≤n
E[uR(X(dj; θ)) | θ ∈ Ω].

Finally, as Pr[θ ∈ Ω | θ ∈ Γ(m0)] = 1, we also have, for every d ∈ D,

E[uR(X(d; θ)) | θ ∈ Ω] = E[uR(X(d; θ)) | θ ∈ Γ(m0)],

so
max
0≤i≤I

uR(X(di; θ
†)) ≥ max

I<j≤n
E[uR(X(dj; θ)) | θ ∈ Γ(m0)],
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which implies that for every state in Ω, the interval equilibrium yields an equi-
librium decision that is no greater than the equilibrium decision of (M,D,B).

We now proceed to the main proof. Let us fix n and consider any equilibrium
Σ = (M,D,B) that satisfies the conditions of Theorem 3. Let (M I , DI , BI)
denote the interval equilibrium. If xn < 0 then the interval equilibrium
implements the sender’s first best (no advice is an equilibrium) and Theorem 3
is immediately satisfied. In the rest of this proof we assume xn > 0.

We prove by induction on N the following statement:

For every N ≤ n− 1, if, with probability one, M reveals at least the
options d0, . . . , dN , then the interval equilibrium weakly dominates
Σ.

Observe that Theorem 3 is included in the case N = 0. If N = n−1, then, with
probability one, the sender communicates a simple message, and by Lemma A.8,
the interval equilibrium weakly dominates Σ.

By contradiction, we prove that if the induction statement holds for N
then it holds for N − 1. Suppose that the induction statement holds for N ,
that, with probability one, M reveals at least the options d0, . . . , dN−1 and Σ
weakly dominates the sender-optimal conative equilibrium, and that Σ strictly
dominates the interval equilibrium with positive probability. Then, there exists
a message m0 ∈M (not necessarily an on-path message) revealing exactly the
options d0, . . . , dN−1 such that, conditionally on the state being compatible
with m0,

(1) with probability one, interactions are strongly prescriptive, M reveals at
least d0, . . . , dN−1 and Σ weakly dominates the sender-optimal conative
equilibrium; and,

(2) with positive probability, interactions are strongly prescriptive, M reveals
d0, . . . , dN−1 but does not reveal dN , and Σ strictly dominates the interval
equilibrium.

In Steps 1–4 below, we show that there exists some K ∈ {N + 1, . . . , n} and
a message m1 that reveals exactly d0, . . . , dK−1 such that, in the equilibrium
Σ, m1 is an on-path message, D(m1) = dK−1, but the receiver is strictly better
off choosing the unrevealed option dK , thus contradicting the assumption that
Σ is an equilibrium.
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Step 1: Let Q be the set of complex messages in M(Θ) whose principal is
m0. In this first step, we establish Equations (A.7)–(A.9) below:

m0 6∈M(Θ), (A.7)
m0(di) < xn for all i ≤ N − 1, (A.8)

0 < Pr[M(θ) ∈ Q | θ ∈ Γ(m0)], (A.9)

in particular, Q is not empty.
Equation (A.7) is implied by Lemma A.8.
Let Ω be the set of states compatible with m0 such that for all θ ∈ Ω,

M(θ) reveals d0, . . . , dN−1 but does not reveal dN , and, in state θ, Σ strictly
dominates the interval equilibrium.

Equation (A.8) owes to the fact that, if θ ∈ Ω, then DI(M I(θ)) ≥ N but
D(M(θ)) ≤ N − 1, so that m0(di) = X(di; θ) < xn if i ≤ N − 1.

Finally, by assumption,

Pr[θ ∈ Ω | θ ∈ Γ(m0)] > 0,

and by Lemma A.8, if θ ∈ Ω then M(θ) is a complex message whose principal
is m0. We then have

Pr[M(θ) ∈ Q | θ ∈ Γ(m0)] ≥ Pr[θ ∈ Ω | θ ∈ Γ(m0)],

which implies Equation (A.9).

Step 2: Let Qk be the subset of Q such that each message of Qk reveals dk
but does not reveal any option dN , . . . , dk−1. Observe that {QN+1, . . . ,Qn} is
a partition of Q. Thus, by Equation (A.9), there exists k such that

Pr[M(θ) ∈ Qk | θ ∈ Γ(m0)] > 0.

Let K be the largest such index.
For every δ > 0, letMδ be the set of simple messages m1 that extend m0

in the following way:

(i) if k ≤ N − 1, m1(dk) = m0(dk);

(ii) if N−1 < k < K, m1(dk) = x−K − (k + 1)

K −N
δ+εk, for some εk ∈ [0, δ/N);

(iii) if k ≥ K, m1(dk) = ∅;
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(iv) m1(di) < m1(dj) < xn for every i ∈ {0, . . . , N − 1} and every j ∈
{N, . . . ,K − 2};

(v) finally, xn ≤ m1(dK−1) < b.

Lemma A.9 For every δ > 0, M(Θ) ∩Mδ 6= ∅.

Proof. Consider the set of all the states that are compatible with a message
ofMδ and such that the outcomes of options to the right of dK yield a strictly
higher receiver utility than the outcomes of the other options. Conditionally on
the state being compatible with m0, this set of states has positive probability,
so by our condition (1) above, in at least one of these states θ† the sender
reveals at least d0, . . . , dN−1 in Σ, interactions are strongly prescriptive, and
the receiver decision is not greater than that of the interval equilibrium in the
same state.

Let m† = M(θ†). Since m0 is not an on-path message (see Equation (A.7)),
m† reveals some option(s) to the right of dN−1. Naturally m† cannot reveal any
option to the right of dK−1 for the interval equilibrium to be weakly dominated.
Then, because interactions are strongly prescriptive, and by monotonicity of
the outcomes over options dN , . . . , dK−1, m† must be a simple message that
reveals exactly the options d0, . . . , dk for k ≤ K − 1.

Suppose k < K− 1. Observe that for all i = dN , . . . , dK−2, as X(di−1; θ†) <
xn, we have,

E
[
uR(X(di)) | X(di−1; θ†)

]
> uR(X(di−1; θ†).

Thus, if receiver beliefs are neutral upon receiving m†, the receiver would be
strictly better off deviating from the prescribed equilibrium decision. If beliefs
are not neutral upon receiving m†, then for every state compatible with m†, the
sender sends a super-message of m†, as implied by the prescriptive interactions
and noting that the receiver decision is the largest option revealed in m†. By
the same argument as in the proof of Lemma A.8, for at least one such message,
the receiver is strictly better off deviating—as otherwise the law of iterated
expectations would be violated.

Therefore, k = K − 1 and M(Θ) ∩Mδ 6= ∅.
Finally, observe that if m1 ∈M(Θ) ∩Mδ, then D(m1) = dK−1.

Step 3: In this step, we establish the inequality

Pr[M(θ) ∈ Q | θ ∈ Γ(m1)] = Pr[M(θ) ∈ QK | θ ∈ Γ(m1)] > 0. (A.10)
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If k < K, then M−1(Qk) ∩ Γ(m1) = ∅. Thus,

Pr
[
M(θ) ∈ Qk | θ ∈ Γ(m1)

]
= 0.

If k > K, then by definition of K,

Pr[M(θ) ∈ Qk | θ ∈ Γ(m0)] = 0,

Pr[M(θ) ∈ QK | θ ∈ Γ(m0)] > 0.

Observing that the (Gaussian) conditional distributions of (θK , . . . , θn) given
Γ(m0) and Γ(m1), respectively, are equivalent, we also have

Pr[M(θ) ∈ Qk | θ ∈ Γ(m1)] = 0,Pr[M(θ) ∈ QK | θ ∈ Γ(m1)] > 0.

Equation (A.10) then follows from the fact that {QN+1, . . . ,Qn} is a partition
of Q.

Step 4: This step establishes that there exists C > 0 such that for every
δ > 0 and every m1 ∈Mδ,

E[uR(X(dK ; θ)) |M(θ) 6∈ Q, θ ∈ Γ(m1)] > uR(xn) + C.

We have

E[uR(X(dK)) | X(dK−1)=xn + εK−1]

= E[uR(X(dK ; θ)) | θ ∈ Γ(m1)]

= Pr[M(θ) 6∈ Q | θ ∈ Γ(m1)] E[uR(X(dK ; θ)) |M(θ) 6∈ Q, θ ∈ Γ(m1)]

+
K∑
k=1

Pr[M(θ) ∈ Qk | θ ∈ Γ(m1)] E[uR(X(dk; θ)) |M(θ) ∈ Qk, θ ∈ Γ(m1)].

By Step 3, we have

K∑
k=1

Pr[M(θ) ∈ Qk | θ ∈ Γ(m1)] E[uR(X(dk; θ)) |M(θ) ∈ Qk, θ ∈ Γ(m1)]

= Pr[M(θ) ∈ QK | θ ∈ Γ(m1)] E[uR(X(dk; θ)) |M(θ) ∈ QK , θ ∈ Γ(m1)].

By continuity, there exists α > 0 such that, for all δ > 0 small enough and
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all m1 ∈Mδ,

Pr[M(θ) ∈ Q | θ ∈ Γ(m1)] > αPr[M(θ) ∈ QK | θ ∈ Γ(m0)],

In addition, the smoothness conditions imposed on uR imply that

x 7→ E[uR(X(dK)) | X(dK−1)=x]

is continuously differentiable, so that there exists A > 0 such that if ε is positive
but small enough,

E[uR(X(dK)) | X(dK−1)=xn + ε] ≥ uR(xn)− Aε.

Thus, for all δ > 0 small enough and all m1 ∈Mδ,

E[uR(X(dK)) | X(dK−1)=m1(dK−1)] ≥ uR(xn)− AεK .

If m ∈ QK , then D(m) ≤ dN−1, and so

uR(m(dK)) ≤ max
0≤i≤N−1

uR(m(di)) < u(xn),

so there exists B > 0 such that

E[uR(X(dK ; θ)) |M(θ) ∈ QK ] < uR(xn)−B.

Step 5: If θ ∈ Γ(m1) then either (1) M(θ) ∈ Q in which case D(M(θ)) ≤
dN−1 and Σ strictly dominates the interval equilibrium in state θ, or (2)
M(θ) 6∈ Q in which case D(M(θ)) = DI(M I(θ)) = dK−1.

Thus,

E[uR(X(dK ; θ)) |M(θ) 6∈ Q, θ ∈ Γ(m1)] = E[uR(X(dK ; θ)) |M(θ)=m1]

By Step 4,

E[uR(X(dK ; θ)) |M(θ)=m1] > uR(x) + C.

The smoothness conditions imposed on uR mean that if δ is small enough,
for every m1 ∈Mδ,

uR(D(m1)) = uR(x+ εK−1) ≤ uR(x) +DεK−1 ≤ uR(x) +Dδ,
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and thus, if δ is small enough,

E[uR(X(dK ; θ)) |M(θ)=m1] > uR(D(m1))

and there exists a profitable deviation for the receiver. Therefore, Σ cannot be
an equilibrium.

D.11 Proof of Lemma 4

Lemma 4 does not depend on the particular form of receiver utility.
The proof proceeds by contradiction. Let (M,D,B) be a prescriptive

equilibrium whereM is non-deceptive, and with positive probability equilibrium
interactions are not strongly prescriptive.

The set of states where the receiver gets his ideal outcome for at least one
option has probability zero. Therefore, there exists a state θ† such that, in
this state, the interaction is not strongly prescriptive, and X(d; θ†) 6= b for all
d ∈ D. Let m† = M(θ†), and let d† be an option to the left of D(m†) that is
not revealed in m†.

Because M is non-deceptive, in every state compatible with m†, the sender
communicates m†. There exists a state θ compatible with m† such that
X(d†; θ) = b and for every d 6= d†, X(d†; θ) 6= b. In this state, in equilibrium,
the receiver’s decision is D(m†), yet the sender can guarantee herself the
strictly preferred decision d† < D(m†) by revealing all the options. Hence a
contradiction.

D.12 Proof of Lemma 5

Lemma 5 does not depend on the particular form of receiver utility.
The proof proceeds by contradiction. Let (M,D,B) be an equilibrium

where M is non-deceptive but that is not near-prescriptive.
There exists a state θ†, such that the equilibrium decision in state θ† is

an undisclosed option dk, and such that option dk−1 is also undisclosed. Let
m† = M(θ†).

Since M is non-deceptive, beliefs are neutral, so the variance of X(dk) given
the receiver’s information upon observing m† is positive and thus for every
option d, it must be the case that

E
[
uR(X(d); θ)

∣∣M(θ)=m†
]
< uR(b).
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Let
α = max

d∈D
E
[
uR(X(d); θ)

∣∣M(θ)=m†
]
.

Since the sender strategy is non-deceptive, in every state compatible with m†,
the sender sends m†. Thus, there exists a state θ that satisfies

uR(X(d; θ)) ≤ α < uR(b)

for every d ∈ D, d 6= dk−1, and X(dk−1; θ) = b. And thus, in this state θ, the
sender is strictly better off revealing all the options. Hence a contradiction.
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