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Abstract

The strategic importance of commitment in bargaining is widely acknowl-

edged. Yet disentangling its role from key features of canonical models, such as

proposal power and reputational concerns, is difficult. This paper introduces a

model of bargaining with strategic commitment at its core. Following Schelling

(1956), commitment ability stems from the costly nature of concession and is

endogenously determined by players’ demands. Agreement is immediate for

familiar bargainers, modelled via renegotiation-proofness. The unique predic-

tion at the high concession cost limit provides a strategic foundation for the

Kalai bargaining solution. Equilibria with delay feature a form of gradualism

in demands.
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1 Introduction

If two agents seek to divide some surplus, what division will they agree on and when

and how? This set of questions, that I collectively label the bargaining problem, is key

to a vast range of economic interactions. Economic models rely on the strategic theory

of bargaining to resolve it, either directly or indirectly by informing the appropriate

choice of a bargaining solution.

Strategic models of bargaining that allow negotiations to unfold over time typ-

ically have at their core either the alternating-offers model of Rubinstein (1982) or

the reputation model of Abreu and Gul (2000). Schelling (1956, 1960) proposed a

third approach. As summarized in Crawford (1982), Schelling views the bargaining

process as a struggle between players to commit themselves to —that is, to convince

their opponent of their inability to retreat from —advantageous bargaining positions.

Schelling’s own treatment of his approach was impressionistic and by way of examples.

Subsequent work has either developed the theory in static environments or focused on

evaluating the role of commitment while relying on one of the two canonical models

mentioned above to resolve the underlying bargaining problem.1

This paper presents a formalization of Schelling’s theory with an infinite-horizon

model of bargaining with complete information. The objective is to characterize the

extent to which this theory, built on the use of strategic commitments, resolves the

bargaining problem and how, and furthermore establish conditions under which the

model’s predictions are adequately summarized by some bargaining solution.

The model builds on two key elements of Schelling’s theory. First, a bargainer

may find it costly to back down from a stated demand and this is the source of her

commitment ability. Second, the commitment ability is nevertheless endogenous, in

that it depends on the demands. A less aggressive demand weakens the opponent’s

commitment ability by allowing more room for her to back down. By contrast, a

demand that leaves an opponent’s back against the wall only ensures the latter’s

commitment.

In the model, the bargainers simultaneously announce demands. If the demands

are compatible, bargaining ends on those terms. If incompatible, the players decide

1See for example, Crawford (1982), Muthoo (1996), Ellingsen and Miettinen (2008) and Dutta
(2012) for the first and Fershtman and Seidmann (1993), Compte and Jehiel (2004), Wolitzky (2012)
and Basak and Deb (2020) for the second. Ellingsen and Miettinen (2014) consider a dynamic model
of a hybrid nature that I discuss in detail in section 5.
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whether to stick to their demand or concede to the opponent’s offer. Concession

incurs an additional cost which is increasing in the conceded amount. If neither

player concedes, then the current period of bargaining ends and the next period

begins with a fresh round of demands. The game proceeds in this manner until either

compatible demands or a concession following incompatible demands. The bargainers

are impatient, as captured by constant discount factors. I focus on subgame perfect

equilibria with pure strategies in the demand stage (henceforth SPE).

The model can be seen as a variant of the infinite horizon version of the Nash

Demand Game (henceforth IH-NDG). While in the latter, incompatible demands end

the current round of bargaining, in the present model bargainers get a chance to

concede. Indeed, if the concession costs are made arbitrarily high, then concession is

effectively ruled out and the IH-NDG obtains at the limit.

The model predictions depend on the two sets of model parameters, namely the

discount factors and concession cost functions. In any SPE outcome, the bargainers

eventually agree upon an efficient division of the surplus, following some delay, if any.

In contrast to common dynamic bargaining models, the range of efficient divisions

of the surplus that can arise in equilibrium is linked to the maximum delay the

equilibrium accommodates following any history.

Renegotiation-proof SPE, used to model familiar bargainers, feature no delay and

an exact characterization obtains for the corresponding set of surplus divisions. This

leads to the key finding of the paper. As the marginal concession costs are made

arbitrarily high, the set of renegotiation-proof SPE outcomes converges to selecting

a unique efficient outcome in the limiting IH-NDG. This outcome is identical to that

of the Kalai bargaining solution (see Kalai (1977)) with its proportion determined by

the discount factors and a limit ratio of the concession cost functions. Therefore, not

only does the formalization of Schelling’s theory fully resolve the bargaining problem,

it also provides a strategic foundation for the Kalai bargaining solution. Further-

more the parameters of the non-cooperative model select the appropriate bargaining

solution from the family of solutions characterized in Kalai (1977).

Markov perfect equilibria (which may violate renegotiation-proofness) can exhibit

delay. There is a bound to the length of delay and it depends on the two sets of model

parameters. In a natural way, such equilibria with delay yield a form of gradualism,

the feature in which bargainers start with extreme demands that soften over time.

Finally, the set of stationary Markov perfect equilibrium outcomes coincides with the
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set of renegotiation-proof SPE outcomes.

As Binmore, Osborne and Rubinstein (1992) states, The ultimate aim of what is

now called the “Nash program” (see Nash 1953) is to classify the various institutional

frameworks within which negotiation takes place and to provide a suitable “bargaining

solution” for each class. This paper contributes to this literature by making a case

for the Kalai bargaining solution in environments in which commitment ability due

to concession costs is salient.2 Binmore, Rubinstein and Wolinsky (1986) establish

a robust connection between the alternating-offers model and the Nash bargaining

solution. Studies on commitment that rely on the alternating-offers model, such as

Muthoo (1996), find similar support for the (asymmetric) Nash bargaining solution.

Relying on the struggle to commit itself to resolve the bargaining problem, as the

current paper shows, leads instead to the Kalai bargaining solution. This is an im-

portant distinction. The appropriate choice of a bargaining solution is not merely a

game-theoretic curiosity. Aruoba, Rocheteau and Waller (2007), for instance, show

that the choice of bargaining solution matters both qualitatively and quantitatively

for questions of first-order importance in monetary economics.

To the best of my knowledge, Dutta (2012) and Hu and Rocheteau (2020) are

the only other papers that provide strategic bargaining foundations for the Kalai

bargaining solution. Dutta (2012) is the static (one-period) version of the current

model and captures a qualitatively similar role for the concession costs, in that higher

costs benefit the bargainer. It shares the unrealistic feature of the Nash demand

game in ruling out future negotiations following a single round of disagreement, and

as a result has no role for discount factors. Hu and Rocheteau (2020) rely on the

alternating-offers model. They show that if the surplus is divided into N parts and

in each of N rounds players engage in Rubinstein bargaining over one of these parts,

then the outcome corresponds to the Kalai bargaining solution as N tends to infinity.

The rest of the paper is as follows. In section 2, I introduce the general model

and show how all SPEs have a simple structure. In section 3, I focus on a linear

specification of the model, which allows for closed form characterizations. Here I

derive the set of renegotiation-proof SPE outcomes along with all the Markov perfect

equilibria results. In section 4, I return to the general model, characterize the set of

renegotiation-proof SPE outcomes and establish the link with the Kalai bargaining

2This occurs, for instance, in negotiations between political leaders who face domestic audiences,
as discussed in Fearon (1994) and Martin (1993).
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solution. Finally in section 5, I discuss some related literature.

2 The Model

Two players, 1 and 2, play an infinite horizon game to split a pie of size 1. In

period t ∈ N ≡ {1, 2, 3, . . .}, if the bargaining problem is still unresolved, each player

i ∈ {1, 2} announces a demand zi ∈ [0, 1]. The announcements are simultaneous.

For a given demand profile z = (z1, z2), let d(z) = z1 + z2 − 1. If the demands

are compatible (d(z) ≤ 0) then the game ends with both players receiving their

own demands. The resulting payoff profile is (u1(z1), u2(z2)), where ui is the payoff

function for player i.

Following incompatible demands (d(z) > 0), the bargainers enter a concession

stage. Here the players simultaneously decide whether to stick to their demands or

back down and accept the other’s offer. Backing down comes at a cost which is

a function of the conceded amount, the difference between the initial demand and

the accepted amount, zi − (1 − z−i) = d(z), and is captured by the concession cost

function ci. If both players stick to their demand then the bargaining problem remains

unresolved and moves to the next period. This concession stage game is represented

in the table below.

Table 1: Concession Stage following Incompatible Demand Profile z

Accept (A) Stick (S)

Accept (A) u1(1− z2)− c1(d(z)), u2(1− z1)− c2(d(z)) u1(1− z2)− c1(d(z)), u2(z2)

Stick (S) u1(z1), u2(1− z1)− c2(d(z)) u1(0), u2(0)

As long as some player chooses A the game ends this period with the associated

payoffs in the table, otherwise it moves to period t + 1. The following assumptions

hold throughout the paper.

Assumption 1 For i ∈ {1, 2}, ui is a strictly increasing, concave and continuously

differentiable function with ui(0) = 0.

Assumption 2 For i ∈ {1, 2}, ci : R+ → R+ is a strictly increasing and continuously

differentiable function with ci(0) = 0.

A history of play that leads to the beginning of period t+1 with t ∈ N, denoted as

ht, is a sequence of t incompatible demand profiles with (S, S) in the corresponding
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concession stages, (z1, SS, z2, SS, . . . , zt, SS). Let H t be the set of all such t-period

histories, with the null history H0 = {h0} and H = ∪∞t=0H
t. A history of play

that leads to the concession stage in period t, denoted as ht
′
, is an element of H t−1

followed by an incompatible demand profile zt. Let H t′ be the set of all such t-period

histories and H ′ = ∪∞t=1H
t′ . A pure strategy for player i is a function σi : H ∪H ′ →

[0, 1] ∪ {A, S} such that σi(h) ∈ [0, 1] for h ∈ H and σi(h) ∈ {A, S} for h ∈ H ′. The

subgame following history h ∈ H ∪H ′ is labeled g(h).

Given a history ht ∈ H, a strategy profile σ = (σ1, σ2) determines the period

n > t when bargaining ends in the subgame g(ht), with payoffs in that period of

y = (y1, y2), where y = (0, 0) if n =∞. Call (y, n− t) the outcome of the game g(ht)

under σ. A strategy profile σ with outcome (y, n − t) in the subgame g(ht) yields

the discounted payoff of δn−t−1i yi to player i at the beginning of the subgame, where

δi ∈ (0, 1) is player i’s discount factor.

2.1 Subgame Perfect Equilibria

To analyze its content, I focus on pure strategy subgame perfect equilibria of the model.

Subsequently, for expositional ease, I will refer to these simply as subgame perfect

equilibria or SPE. Infinite horizon games with simultaneous moves typically feature

a vast multiplicity of SPE with a sense of anything goes. The current model features

multiplicity too. Nevertheless, the following straightforward yet useful lemma shows

that all such equilibria have a simple structure. Exactly compatible demands imply

d(z) = 0.

Lemma 1 A subgame perfect equilibrium at any period must feature either

(a) exactly compatible demands, or

(b) incompatible demands followed by both players choosing Stick.

Proof. Consider a period in which incompatible demands (z) are followed by some

action profile other than (S, S) in the concession stage. Then, as the payoff matrix

in table 1 shows, there must be some player i who receives a payoff strictly less than

ui(1 − z−i) and is strictly better off by deviating to the compatible demand 1 − z−i
instead of the original zi.

Next, given a period with compatible demands that add up to less than 1, the

player with the lower demand, say i, is strictly better off demanding 1− z−i instead.
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In other words, any SPE involves some rounds of delay, if any, via incompatible

demands, followed by an agreement on an efficient division of the surplus.

Dynamic bargaining games featuring multiple SPE typically have the following

feature.3 The range of efficient SPE outcomes constitutes the first-order multiplicity.

These rely on history-dependent strategies but do not require strategy profiles involv-

ing delay. This first-order multiplicity is used, through appropriate history-dependent

strategies, to generate varying lengths of delay, the second-order multiplicity. In the

current model the first-order multiplicity resides in delay. Limiting the length of

delay permissible in an SPE limits the range of efficient outcomes that can arise in

equilibrium. The following classification of SPEs helps clarify this feature.

Definition 1 An SPE σ is called an SPE with maximum delay m if for any subgame

g(ht), ht ∈ H, it generates an outcome (y, n− t) where n− t− 1 ≤ m.

The characterization results that follow rely on the stationary structure of the

model. To this end, for any h ∈ H, let Om(h) denote the set of outcomes of SPE

with maximum delay m in the subgame g(h). Now define

Bm ≡
{
z|(u(z), t) ∈ Om(h0)

}
to be the set of all surplus divisions that can arise as the outcome of some SPE with

maximum delay m in the bargaining game. Due to the stationary structure of the

game, it follows that

Bm = {z|(u(z), t) ∈ Om(h)} , for all h ∈ H.

Finally observe that by lemma 1, z ∈ Bm ⇒ z1 + z2 = 1.

3 The Linear Model

In this section, I analyze the following specification of the bargaining model.

∀i ∈ {1, 2}, ui(zi) = zi and ci(d(z)) = kid(z) for some ki > 0.

This linear specification retains the strategic tradeoffs of the general model while

allowing for closed-form characterizations of equilibrium outcomes.

3See, for instance, Sutton (1986), Avery and Zemsky (1994) and Merlo and Wilson (1995).
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The following lemma captures a key restriction that the strategic considerations

about commitment impose on the set of compatible demands that can arise in equi-

librium. In particular, the compatible demands must be such that neither bargainer

can raise her own demand and force her opponent to back down in the resulting con-

cession stage. “Forcing” here would require the (unique) dominance solvable outcome

of the concession game to consist of the deviator sticking to her demand while her

opponent concedes, irrespective of the equilibrium continuation strategy profile.

Lemma 2 Suppose σ is a pure strategy profile with σ(ht−1) = z and
∑2

i=1 zi = 1 for

some ht−1 ∈ H. If for some i ∈ {1, 2}, there exists z−i < ẑ−i ≤ 1 such that

1− zi − k−i(zi + ẑ−i − 1) < δn−iz̃−i (1)

and

1− ẑ−i − ki(zi + ẑ−i − 1) > δni z̃i (2)

for all z̃ ∈ Bn∗ and 1 ≤ n ≤ n∗ + 1 then σ is not an SPE with maximum delay n∗.

Proof. Without loss of generality set i = 1. Now note that bargaining failure in

period t leads to g(ht) beginning in the next period. Since σ is an SPE with maximum

delay n∗, and by lemma 1, the outcome (x,m) of this subgame must satisfy x ∈ Bn∗

and m ≤ n∗ + 1. Suppose one such continuation outcome is given by (z̃, n). Now

consider a deviation ẑ2 from the compatible profile z which satisfies both inequalities

1 and 2 for this continuation profile.

Table 2: Augmented Concession Game following deviation ẑ2 from Profile z

A S
A 1− ẑ2 − k1(z1 + ẑ2 − 1), 1− z1 − k2(z1 + ẑ2 − 1) 1− ẑ2 − k1(z1 + ẑ2 − 1), ẑ2
S z1, 1− z1 − k2(z1 + ẑ2 − 1) δn1 z̃1, δ

n
2 z̃2

The deviation leads to the augmented game above in the concession stage, with

(S, S) yielding a discounted payoff consistent with the continuation outcome (z̃, n).

Due to inequality 1, in this concession stage S strictly dominates A for player 2.

Inequality 2 in turn ensures that given player 2’s choice of S, player 1 strictly prefers

to play A. In other words, the unique dominance solvable outcome in the augmented

concession game is (A, S). Furthermore this outcome gives player 2 a strictly higher
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payoff than z2. So, if there exists a ẑ2 such that no matter what the continuation

profile (consistent with σ being an SPE with maximum delay n∗) the two inequalities

above are always satisfied, then ẑ2 is a profitable deviation from z and therefore σ is

not an SPE.

To see how the constraint identified in lemma 2 has bite, consider the compatible

demand profile (1, 0). Fix any set of discount factors and marginal concession costs.

Notice that the highest payoff player 1 gets if bargaining fails this period is δ1. By

choosing a ẑ2 > 0 close enough to 0, player 2 can ensure that conditional on 2 choosing

S, 1 would rather concede and get a payoff arbitrarily close to 1 rather than settle

for the lower amount of δ1. By contrast, player 1 has no room for backing down since

any concession leads to a negative payoff. So irrespective of the continuation strategy,

following a deviation to ẑ2, her dominant strategy would be S. In summary player

2’s deviation from (1, 0) guarantees her a positive payoff. This rules out (1, 0) as an

equilibrium outcome.

To obtain a more complete characterization, the exercise above is extended to

identify the most favourable equilibrium surplus division (element of Bn∗) for player

i.4 The restriction to SPE with maximum delay n∗ ensures that in any continuation

game the eventually agreed upon division must also belong to Bn∗ . This structure

turns out to be sufficient to obtain the characterization below.

Proposition 1 If (z, t) is the outcome of a subgame perfect equilibrium with maxi-

mum delay n∗, then

1− δ1
1− δn∗+1

2

k2
1 + k1

≤ z2
z1
≤ 1− δn∗+1

1

1− δ2
1 + k2
k1

. (3)

Proof.

Let z∗i = supz∈Bn∗ zi. Now suppose for some exactly compatible demand profile z,

there exists ẑ2 such that

1− z1 − k2(z1 + ẑ2 − 1) < δn
∗+1

2 (1− z∗1) (4)

and

1− ẑ2 − k1(z1 + ẑ2 − 1) > δ1z
∗
1 . (5)

4This step is in the spirit of the approach taken in Shaked and Sutton (1984) to solve the
alternating-offers model.
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Then such a ẑ2 also satisfies inequalities 1 and 2 for all z̃ ∈ Bn∗ and 1 ≤ n ≤ n∗ + 1,

since for any such z̃ and n it follows that δn
∗+1

2 (1 − z∗1) ≤ δn2 z̃2 and δ1z
∗
1 ≥ δn1 z̃1.

Therefore, by lemma 2, z cannot arise in any SPE (i.e., z 6∈ Bn∗).

Now since z∗i = supz∈Bn∗ zi it must be that we cannot find such a ẑ2 for the

compatible profile z = (z∗1 , 1 − z∗1). So there cannot be a ẑ2 > 1 − z∗1 which satisfies

both

1− z∗1 − k2(z∗1 + ẑ2 − 1) < δn
∗

2 (1− z∗1), and

1− ẑ2 − k1(z∗1 + ẑ2 − 1) > δ1z
∗
1 .

These inequalities simplify to

ẑ2 >
(1− z∗1)(1 + k2 − δn

∗
2 )

k2
and ẑ2 < 1− (k1 + δ1)z

∗
1

1 + k1
.

Therefore such a ẑ2 cannot exist only if

(1− z∗1)(1 + k2 − δn
∗

2 )

k2
≥ 1− (k1 + δ1)z

∗
1

1 + k1

⇒(1− z∗1)(1− δn∗2 )

k2
≥ z∗1(1− δ1)

1 + k1

⇒ 1− δ1
1− δn∗2

k2
1 + k1

≤ 1− z∗1
z∗1

A symmetric argument establishes

1− δ2
1− δn∗1

k1
1 + k2

≤ 1− z∗2
z∗2

which transforms to
z∗2

1− z∗2
≤ 1− δn∗1

1− δ2
1 + k2
k1

.

To conclude the proof note that

z ∈ Bn∗ ⇒ 1− z∗1
z∗1

≤ z2
z1
≤ z∗2

1− z∗2
.

The result confirms Schelling’s insight about weakness being a strength, in that

higher marginal concession costs generate better equilibrium outcomes for the bar-
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gainer. Greater patience is similarly beneficial. This preserves a key implication of

the canonical bargaining models.

It is clear from proposition 1 that additional conditions that restrict the maxi-

mum delay allowed in an SPE, as a result, also shrink the set of compatible demand

profiles that can obtain in equilibrium. I study three such conditions in the following

subsections.

3.1 Renegotiation-Proofness

Negotiators who are familiar with each other should, in the presence of multiple

equilibria, be able to avoid the strictly Pareto dominated ones. This is especially so,

if the Pareto dominating equilibrium is one they anticipate to play following some

history. Since the game is identical following any history h ∈ H, the negotiators

would see the incongruence of taking an efficient path following one such history

and an inefficient one following another. Given their familiarity they need not take

their cues from some possibly inefficient norm, but rather count on renegotiating

away from such inefficient equilibria. The notions of weak renegotiation proofness

in Farrell and Maskin (1989) and internal consistency in Bernheim and Ray (1989)

capture this idea in the context of repeated games. While not a repeated game, the

present model shares its key feature that following any number of rounds (of failed

bargaining), the continuation game looks the same. Relying on this stationarity, I

import an appropriate notion of renegotiation-proofness for the current setting.

Let ψ(σ;ht) be the continuation payoff (profile) implied by σ given history ht ∈ H
and let

Ψ(σ) = ∪ht∈Hψ(σ;ht)

be the set of all continuation payoffs under σ.

Definition 2 An SPE σ is renegotiation-proof if for no x, y ∈ Ψ(σ) is x� y.

Note that renegotiation-proofness does not rule out history dependent strategies.

Consider, for instance, the construction due to Avner Shaked reported in Sutton

(1986). It supports any efficient division of the surplus as a subgame perfect equi-

librium outcome of a 3-person Rubinstein bargaining game for high enough discount

factors. The construction relies heavily on the history-dependence of the strategy

profile. Imposing an appropriate version of renegotiation-proofness has no effect on

the result since all continuation outcomes are efficient. The severe multiplicity per-
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sists. In the current model, however, renegotiation-proofness sharply restricts the set

of equilibrium outcomes.

Proposition 2 (z, t) is the outcome of a renegotiation-proof subgame perfect equilib-

rium if and only if t = 1 and

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1
≤ 1− δ1

1− δ2
1 + k2
k1

. (6)

I now sketch the argument behind this result. The detailed proof is in the ap-

pendix. Given the structure of SPE identified in lemma 1, renegotiation-proofness

simply rules out any delay. The necessity of inequality 6 then follows immediately

from proposition 1. To establish sufficiency, I construct the following stationary strat-

egy profile, which I show to be subgame perfect for any z satisfying inequality 6 in

lemma 4 in the appendix.

Construction 1 Consider the following stationary strategy profile, σ. Fix z such

that d(z) = 0. For all ht ∈ H, set σi(h
t) = zi. If player i, for some i ∈ {1, 2}, in

period t deviates to a higher demand, ẑi > zi, then in the concession stage game (S, S)

is played if it is a Nash equilibrium and otherwise (Ai, S−i) is played. For all other

h ∈ H ′ some pure strategy Nash equilibrium of the concession stage game is played.

The strategy profile σ above satisfies renegotiation-proofness, since following any

history h ∈ H the continuation outcome is efficient and consists of agreeing on the

compatible demand profile z.

Proposition 2 offers a preview of the limit uniqueness result in section 4. Consider

a sequence of these linear bargaining games parametrized by marginal concession

costs {kn1 , kn2 }∞n=1 such that kn1 = γkn2 for all n and kn2 → ∞ as n → ∞. Observe

first that at the limit, it is too costly for any bargainer to concede following any

incompatible demand. The model therefore reduces to the IH-NDG. However, in

contrast to the acute multiplicity of SPE in the IH-NDG, the set of renegotiation-

proof SPE as characterized in proposition 2 converges to a singleton at the limit. At

this unique limit outcome, the bargainers agree on the compatible profile z with

z2
z1

=
1− δ1
1− δ2

1

γ
.
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3.2 Markov Perfect Equilibria and Gradualism

Negotiations often take place between strangers or relatively inexperienced bargainers.

The assumption of renegotiation-proofness may not be appropriate in such cases. A

different assumption, routinely made in applied work, requires players to use Markov

strategies. Maskin and Tirole (2001) discusses some of the theoretical considerations

that support its use. In this section I focus on SPE in Markov strategies.

Definition 3 σi is a Markov strategy for player i if for all h, h̃ ∈ H t

(i) σi(h) = σi(h̃) and

(ii) σi(h, z
t+1) = σi(h̃, z

t+1).

In words, under the Markov requirement, player i’s demand in period t must be

invariant to the specific t − 1 demand profiles rejected in the past. Further, the

concession stage decision in period t should depend upon the period t demand profile

alone. Note, however, that it allows demands and concession stage behaviour to

depend on calendar time. For instance, a strategy in which the demands get less

and less extreme over the first m periods of bargaining is permitted. Indeed, such

strategies can be shown to generate delay in equilibrium.

Proposition 3 Let j ∈ {1, 2} such that δj ≥ δ−j. If (z, t) is a Markov perfect

equilibrium outcome then t ≤ n∗ and

1− δn∗−j
1− δn∗j

kj
1 + k−j

≤ zj
z−j
≤ 1− δ−j

1− δj
1 + kj
k−j

,

with

n∗ − 1 =

⌊
ln k1+k2

k1+k2+k1k2

ln δj

⌋
.

The proof is in the appendix. Here I discuss the key steps. First, there is an upper

bound to the delay that can arise in any MPE. To see why, notice that to sustain

delay in equilibrium the bargainers must make incompatible demands that neither

wishes to deviate from. To ensure that a unilateral deviation to a compatible profile

is not profitable, the demands simply need to be sufficiently aggressive. For instance,

both players demanding the entire surplus works, no matter the length of delay. It

is more demanding to rule out profitable unilateral deviations to an incompatible

profile. A bargainer in such a deviation makes a lower but still incompatible demand,
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which nevertheless forces her opponent to concede in the subsequent concession game.

Sufficient delay makes such deviations feasible even for very aggressive demands. A

long expected delay lowers the payoff from disagreement and makes concession more

palatable. This feature limits the amount of delay that can arise in an MPE.

The upper bound to the length of delay, restricts the set of equilibrium contin-

uation outcomes. In the remainder of the proof, similar to that of proposition 2, I

characterize the best compatible demand profile that can arise for each player, relying

on the recursive structure of the game.

As for the result itself, observe first that if the two bargainers are equally im-

patient, then the set of MPE outcomes coincides with the renegotiation-proof SPE

outcomes. So not only is the larger set of equilibrium surplus agreements dependent

on the delay allowed by MPE, it relies on bargainers having different degrees of im-

patience. Second, suppose the maximum delay under MPE is derived to be m under

proposition 3, the bounds on MPE surplus divisions are tighter than the bounds

that arise for SPE with maximum delay m, as derived in proposition 1. The lack of

history-dependent strategies delivers a sharper prediction.

A final interesting feature of the Markov environment is the nature of incompat-

ible demands in an MPE with delay. Gradualism is a commonly observed feature of

bargaining in which players gradually lower their demands, starting with very aggres-

sive ones and ending with a compatible profile.5 MPEs with delay yield gradualism

in a natural way. The following proposition characterizes this feature.

Proposition 4 If (y,m) is the outcome of a Markov perfect equilibrium with a delay

of m−1 > 0 periods then the incompatible demand profiles zt for 1 ≤ t ≤ m−1 must

satisfy

zti ≥
(1− δm−t−i y−i)(1 + ki)− δm−ti yi

ki
.

In words, the smallest (incompatible) demand that can arise in an MPE is higher

the further away (in periods) it is made from the eventual agreement. Two separate

features contribute to this. The obvious one is that for neither player to want to

deviate to simply accepting the others implicit offer (by making a compatible demand)

it must be that the offers are worse than accepting the delayed agreement. The longer

the delay the worse the offers need to be, and therefore higher demands. The less

5See, for instance, Backus, Blake, Larsen and Tadelis (2020).
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obvious feature is that a bargainer may find it profitable to deviate to a lower but still

incompatible demand profile that forces the other player to concede. To rule out such

a deviation, the incompatible demands need to be even higher than the level required

to rule out deviations to compatible profiles. Further, this threshold is higher the

more periods that remain to agreement.

I end this section by characterizing the set of stationary MPE outcomes. Station-

arity does not allow strategies to depend on calendar time. It requires

σi(h) = σi(h̃) ∀h, h̃ ∈ H.

Proposition 5 (z, t) is a stationary Markov perfect equilibrium outcome if and only

if t = 1 and
1− δ1
1− δ2

k2
1 + k1

≤ z2
z1
≤ 1− δ1

1− δ2
1 + k2
k1

.

Notice that the set of stationary MPE outcomes coincides exactly with the set of

renegotiation-proof SPE outcomes. In general dynamic games where both concepts

apply the two are typically not the same. Take an infinitely repeated prisoner’s

dilemma game with high enough discount factors, for instance. The unique MPE

outcome involves both parties defecting forever. On the other hand, cooperation

can be sustained as a weak renegotiation-proof SPE, as shown in Farrell and Maskin

(1989).6

4 Strategic Foundation for the Kalai Bargaining

Solution

In this section I return to the general model to establish the main finding of this

study. When concession cost functions are very high, effectively ruling out concession

following incompatible demands, then the renegotiation-proof SPE outcome of the

general model is well approximated by a Kalai bargaining solution. To show this I

first obtain an exact characterization of the set of renegotiation-proof SPE outcomes

for any payoff and cost functions that satisfy the assumptions in section 2.

Let U and C be the set of all (pairs of) functions that satisfy assumptions 1 and

2, respectively. Fix some u ∈ U and c ∈ C. Now for i ∈ {1, 2}, let the incompatible

6See also van Damme (1989).
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demand profile (zMi , ẑ−i(z
M
i )) be defined by the following pair of equations.7

u−i(1− zMi )− c−i(zMi + ẑ−i(z
M
i )− 1) = δ−iu−i(1− zMi ) (7)

ui(1− ẑ−i(zMi ))− ci(zMi + ẑ−i(z
M
i )− 1) = δiui(z

M
i ). (8)

Proposition 6 In the general model, (y, t) is the outcome of a renegotiation-proof

subgame perfect equilibrium with yi = ui(zi) for i ∈ {1, 2}, if and only if t = 1,

d(z) = 0 and
1− zM1
zM1

≤ z2
z1
≤ zM2

1− zM2
. (9)

This result significantly generalizes proposition 2. A key step in the proof (in the

appendix) is to show that the solution to equations 7 and 8 indeed always exists. The

assumption of concavity of the payoff functions plays a role at this step.

Making the concession cost functions steeper makes it progressively harder for

the bargainers to back down from their demands. At the limit, with arbitrarily high

marginal concession costs, the infinite horizon version of the Nash demand game

obtains. Neither player can back down from incompatible demands. Any efficient

payoff profile can be supported as an SPE outcome of the IH-NDG, as pointed out

in Binmore (1987). Infinite delay can also be supported in SPE by each bargainer

always demanding the entire surplus. Chatterjee and Samuelson (1990) show that

this acute multiplicity further survives trembling hand perfection (see Selten (1975)).

The limit set of renegotiation-proof SPE outcomes, in sharp contrast, is a singleton.

For any u ∈ U and c ∈ C, let gc(u) denote the game described in section 2,

where ui and ci are player i’s payoff and concession cost functions, respectively, for

i ∈ {1, 2}. The corresponding set of renegotiation-proof SPE payoff profiles is denoted

by ξ(gc(u)). gc therefore maps any pair of payoff functions in U to its corresponding

infinite horizon bargaining game. Consider a sequence of such mappings {gcn}∞n=1

with cn ∈ C for all n, such that as n → ∞, cn
′
i (0+) → ∞ (the right derivative of

the concession cost functions at 0 becomes arbitrarily large). Further, assume that

∃ε > 0 and some integer N such that ∀n > N , ∀d ∈ (0, ε), cn1 (d)/cn2 (d) is a constant.

Let

ξ∗γ(u) = lim
n→∞

ξ(gc
n

(u)), where γ = lim
n→∞

cn1 (0+)/cn2 (0+).

7The dependence of (zMi , ẑ−i(z
M
i )) on u and c is suppressed for expositional ease.
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The limit set of renegotiation-proof SPE is therefore captured by ξ∗γ(u). It is

parameterized by γ, which is the ratio of the concession cost functions evaluated at

the limit as the amount conceded becomes vanishingly small.

Kalai (1977) introduces a family of bargaining solutions parametrized by a sin-

gle variable, a proportion. Any bargaining solution that is monotonic, in that an

increase in possible bargaining outcomes never hurts either bargainer, is a Kalai (or

proportional) bargaining solution and vice versa. The family of solutions is exactly

characterized by the axioms of independence of irrelevant alternatives, individual

monotonicity and continuity. In addition to being compelling theoretically, the solu-

tions are used extensively and in a variety of fields. Recently, for instance, it is used

increasingly in the field of monetary economics.8 9

I now introduce some notation in order to define the Kalai bargaining solution. Let

Π(u) = {y|yi = ui(zi), zi ≥ 0,∀i ∈ {1, 2} and z1 + z2 ≤ 1} denote the set of feasible

payoffs that can arise from some allocation of the surplus. Set ud = (u1(0), u2(0)) =

(0, 0) to be the disagreement point. Combined, (Π(u), ud) represents a bargaining

problem. Finally let B = {(Π(u), ud)|u ∈ U} be the set of all bargaining problems

that can arise from payoff functions that satisfy assumption 1.

The Kalai Bargaining Solution with proportions (θ, 1), denoted by Kθ, is defined

as Kθ(Π, ud) = λ(Π, ud)(θ, 1),∀Π ∈ B where λ(Π, ud) = max{q|q(θ, 1) ∈ Π}.

Proposition 7 For all u ∈ U , ξ∗γ(u) = Kθ(Π(u), ud) where θ = γ(1− δ2)/(1− δ1).

It is clear in Kalai (1977) that while the family of bargaining solutions is a com-

pelling one, finding the relevant proportion needs information beyond what is mod-

elled in a standard bargaining problem (an element of B). In proposition 7 the

degree of impatience of the bargainers and their relative concession costs constitute

this information. So not only does this formalization of Schelling’s theory provide a

strategic foundation for the Kalai bargaining solution, it also selects the appropriate

proportion.

5 Discussion

Ellingsen and Miettinen (2014) (henceforth EM) extend the static model of Ellingsen

and Miettinen (2008) to a fairly involved dynamic model. Formalizations of Schelling’s

8See, for instance, Lagos, Rocheteau and Wright (2017).
9Duffy, Lebeau and Puzzello (2021) find that the Kalai bargaining solution better fits the be-

haviour of bargainers in the laboratory facing liquidity constraints.
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ideas are usually closely related to the Nash demand game. The EM model has

elements of both the Nash demand game (simultaneous demands) and the generalized

Rubinstein bargaining framework. As examples of the latter, (a) following demands

that are more than compatible, a single responder is selected randomly to accept or

reject the other’s offer and (b) following a choice of flexibility by both bargainers, a

single player is randomly selected to make an offer for that period. The key difference

with the current formalization, however, is that in EM (as well as Ellingsen and

Miettinen (2008)) commitment ability is exogenous and independent of the actual

demands made by the players. It does not matter whether a bargainer is offered a

lot of room to back down or none at all, her commitment ability is pinned down by

an exogenous randomization device. This distinction is critical, since in the current

study the strategic feature that resolves the bargaining problem, is precisely the

ability of bargainers to affect each other’s commitment ability by choosing appropriate

demands.

The delay obtained in Markov perfect equilibrium in section 3.2 is neither the

result of money burning as in Avery and Zemsky (1994) nor due to strategic uncer-

tainty as in Friedenberg (2019). In a sense, as Sakovics (1993) puts it, the delay is

wholly ritualistic and can be expected in settings where bargainers take their cues

from norms or traditions that are perhaps optimal in some larger context but offer

an inefficient prescription in the specific bargaining instance. Similar equilibria also

arise in Perry and Reny (1993) and Sakovics (1993), who study a generalization of

the Rubinstein model with less restriction on when offers can be made and responded

to. A key finding in both is that allowing for simultaneous demands generates an

acute multiplicity of equilibria including those with delay. While not their focus, the

SPE with delay in these models feature a milder form of the gradualism that appears

in the current study. The further away the anticipated agreement, the further apart

the incompatible demands need to be to deter deviation to a compatible profile. As

stated earlier, in the current study the incompatible demands need to be even fur-

ther apart to rule out deviations to incompatible profiles. Compte and Jehiel (2004)

provides a wholly different rationale for gradualism. Players always have access to

outside options whose values depend on past offers. If more favourable offers increase

the value of the opponent’s outside option, then bargainers find it optimal lower their

demand gradually in equilibrium.

18

Electronic copy available at: https://ssrn.com/abstract=3800521



A Appendix

Lemma 3 σ cannot be an SPE in the general model, if for some h ∈ H, σ(h) = z

such that zi = 1 and z−i = 0 for some i ∈ {1, 2}.

Proof. Suppose under σ, in the subgame g(h), the two players make the compatible

demands zi = 1 and z−i = 0, and player−i obtains a payoff of u−i(0) = 0. The highest

payoff player i could get if bargaining broke down this period is δiui(1). Notice that

ui(1 − ẑ−i) − ci(zi + ẑ−i − 1) is a continuous (decreasing) function of ẑ−i. It takes a

value of ui(1) at ẑ−i = 0, which is strictly greater than δiui(1). Therefore there exists

ẑ−i > 0 such that ui(1 − ẑ−i) − ci(zi + ẑ−i − 1) > δiui(1). Now, if player −i were to

deviate to this ẑ−i instead of demanding 0, then in the subsequent concession game

the dominance solvable outcome would involve player i playing A and −i playing S.

Since this is a profitable deviation, the strategy profile σ cannot be an SPE.

Lemma 4 The strategy profile σ described in Construction 1 is an SPE if

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1
≤ 1− δ1

1− δ2
1 + k2
k1

.

Proof. The payoff to player i from σ at any subgame g(h) with h ∈ H is simply zi.

A lower demand would only lower the payoff. A higher demand would lead to either

(S, S) and a continuation payoff of δizi or (Ai, S−i) leading to a payoff strictly lower

than zi due to the resulting concession cost. Therefore no player has an incentive to

deviate in the demand stage of any period.

To verify subgame perfection, therefore, it is sufficient to show that in the conces-

sion stage game following an incompatible demand profile (ẑi, z−i), if (S, S) is not a

Nash equilibrium then (Ai, S−i) is. To establish this result, in turn, it is sufficient to

show the following,

1− ẑi − k−i(ẑi + z−i − 1) > δ−iz−i ⇒ 1− z−i − ki(ẑi + z−i − 1) > δizi

which is equivalent to

1− δ−iz−i + k−iz−i
1 + k−i

> ẑi ⇒
(1− z−i)(1 + ki − δi)

ki
> ẑi.
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A sufficient condition for this is simply

(1− z−i)(1 + ki − δi)
ki

> 1− δ−iz−i + k−iz−i
1 + k−i

⇔ (1− z−i)(1 + ki − δi)
ki

>
z−i(1− δ−i)

1 + k−i

⇔ 1− δi
1− δ−i

1 + k−i
ki

>
z−i

1− z−i
.

Requiring the above inequalities to hold for i ∈ {1, 2} make them equivalent to

1− δ1
1− δ2

k2
1 + k1

≤ z2
z1
≤ 1− δ1

1− δ2
1 + k2
k1

.

Proof for Proposition 2. Lemma 3 above establishes that, even in the general

model, compatible demand profiles in which one player demands the entire surplus

cannot arise in an SPE. This combined with lemma 1 implies that if (z, t) is the

outcome of an SPE then d(z) = 0 and zi ∈ (0, 1) for i ∈ {1, 2}. This in turn means

that if σ is a renegotiation-proof SPE with outcome (z, t) then t = 1. To see why,

suppose instead that t > 1. Then

ψ(σ;h0) = (δt−11 z1, δ
t−1
2 z2)� (z1, z2) = ψ(σ, h̃t),

where h̃t is the history that occurs on the equilibrium path with the t − 1 periods

of incompatible demands with neither player conceding in the subsequent conces-

sion games. Therefore by proposition 1, inequality 6 is a necessary condition for

renegotiation-proof SPE outcomes. Lemma 4 establishes sufficiency by constructing

stationary SPE strategies with outcome (z, t) for any z satisfying inequality 6 and

t = 1. Fix one such z and its corresponding stationary SPE strategy profile, σ. Notice

that σ satisfies renegotiation-proofness since by construction ψ(σ;h) = (z1, z2) for all

h ∈ H.

Lemma 5 If (y,m) is the outcome of a Markov perfect equilibrium and δj ≥ δ−j for

some j ∈ {1, 2}, then

m− 1 ≤

⌊
ln k1+k2

k1+k2+k1k2

ln δj

⌋
.

Proof. Suppose σ is a Markov perfect equilibrium with outcome (y,m) that features
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delay and so m > 1. Consider the demand profile z1 = σ(h0), which must be in-

compatible, d(z1) > 0. Let the continuation payoff profile following such demands be

(w1, w2), which results from the outcome (y,m) of the subgame g(h0). In particular,

wi = δm−1i yi. Further y is an exactly compatible demand profile by lemma 1, as in

y1 + y2 = 1. w1 + w2 < 1 follows from m > 1.

First note that to be in equilibrium requires z1i ≥ 1−w−i for i ∈ {1, 2}. Otherwise

player −i would be strictly better off making the compatible demand 1− z1i in period

t. Set D = {z|zi ≥ 1− w−i, ∀i ∈ {1, 2}}.
Next, observe that the equation 1 − yi − k−i(y1 + y2 − 1) = w−i is satisfied at

y = (1−w−i, w−i). It follows that if yi ≥ 1−w−i and y−i > w−i then 1−yi−k−i(y1 +

y2 − 1) < w−i. Therefore for any z ∈ D and any ẑ−i > w−i the following inequality

holds

1− zi − k−i(zi + ẑ−i − 1) < w−i.

This implies that for any incompatible profile in D played in period 1, player −i can

deviate to a demand arbitrarily close to w−i and in the resulting concession stage

game her action S would strictly dominate A. If following such a deviation player

i preferred A to S, then −i would indeed be better off with the deviation since she

would obtain a higher payoff than w−i.

For player i to prefer A to S following an incompatible demand profile y requires

1− y−i − ki(y1 + y2 − 1) > wi. If this inequality is satisfied for y with yi = 1 then it

will be satisfied for all (xi, y−i) with 1− w−i ≤ xi ≤ 1. So if the inequality

1− w−i − ki(1 + w−i − 1) > wi (10)

holds then for any incompatible profile in D, player −i can deviate to an appropriate

demand greater than w−i such that the unique dominance solvable outcome in the

concession stage has i playing A and −i playing S, with a payoff greater than w−i

to −i. So for D to contain some incompatible demand profile that can support the

delay in period 1 under σ with continuation payoff w requires

1

ki
≤ w−i

1− w1 − w2

, ∀i ∈ {1, 2}.
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A necessary condition for this is

1

k1
+

1

k2
≤ w1 + w2

1− w1 − w2

,

which simplifies to w1 + w2 ≥ (k1 + k2)/(k1 + k2 + k1k2). Since δj ≥ δ−j, it follows

that δm−1j ≥ (k1 + k2)/(k1 + k2 + k1k2) is necessary in turn. The result follows.

Lemma 6 If δj ≥ δ−j then
1− δnj
1− δn−j

≤
1− δn+1

j

1− δn+1
−j

.

Proof.

1− δnj
1− δn−j

≤
1− δn+1

j

1− δn+1
−j
⇔

1− δn+1
−j

1− δn−j
≤

1− δn+1
j

1− δnj

⇔
1 + δ−j + δ2−j + . . .+ δn−j

1 + δ−j + δ2−j + . . .+ δn−1−j
≤

1 + δj + δ2j + . . .+ δnj

1 + δj + δ2j + . . .+ δn−1j

⇔
δn−j

1 + δ−j + δ2−j + . . .+ δn−1−j
≤

δnj

1 + δj + δ2j + . . .+ δn−1j

⇔ 1

δnj
+

1

δn−1j

+ . . .+
1

δj
≤ 1

δn−j
+

1

δn−1−j
+ . . .+

1

δ−j

⇔ δj ≥ δ−j.

Proof for Proposition 3. Let CM denote the set of compatible demand profiles

that can arise in some Markov perfect equilibrium. Let z∗i = supz∈CM zi. First I show

that there cannot exist a ẑ2 > 1− z∗1 such that

1− z∗1 − k2(z∗1 + ẑ2 − 1) < δn2 (1− z∗1) (11)

and

1− ẑ2 − k1(z∗1 + ẑ2 − 1) > δn1 z
∗
1 (12)

for all 1 ≤ n ≤ n∗ where n∗ − 1 =

⌊
ln

k1+k2
k1+k2+k1k2

ln δj

⌋
. Consider a Markov perfect

equilibrium in which (z∗1 , 1 − z∗1) is agreed upon in the first period. The equilibrium

must specify a continuation payoff profile if the current period instead ended in an
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impasse. This must be some fixed (δnz1, δ
nz2) where z ∈ CM and, by lemma 5,

1 ≤ n ≤ n∗. It is fixed in the sense that the payoff is independent of the exact

incompatible demands made, due to Markov perfection. If there exists a ẑ2 that

satisfies inequalities 11 and 12 for all 1 ≤ n ≤ n∗ then it must also satisfy

1− z∗1 − k2(z∗1 + ẑ2 − 1) < δn2 (1− z1) and

1− ẑ2 − k1(z∗1 + ẑ2 − 1) > δn1 z1

for any such z ∈ CM and 1 ≤ n ≤ n∗, since δn1 z1 ≤ δn1 z
∗
1 and δn2 (1 − z1) ≥ δn2 (1 −

z∗1). This means that following the incompatible demand profile (z∗1 , ẑ2) the (unique)

dominance solvable outcome in the concession game is (Accept, Stick), bringing player

2 the higher payoff of ẑ2. So in this case, the compatible demand profile (z∗1 , 1 −
z∗1) cannot arise in a Markov perfect equilibrium. The same argument applies to

compatible demand profiles arbitrarily close to (z∗1 , 1 − z∗1). Therefore, it must be

that no such ẑ2 > 1− z∗1 exists that satisfies inequalities 11 and 12 for all 1 ≤ n ≤ n∗.

Inequalities 11 and 12 simplify to

ẑ2 >
(1− z∗1)(1 + k2 − δn2 )

k2
, and

ẑ2 < 1− (k1 + δn1 )z∗1
1 + k1

.

Therefore a ẑ2 satisfying inequalities 11 and 12 for a given 1 ≤ n ≤ n∗ cannot exist

only if

(1− z∗1)(1 + k2 − δn2 )

k2
≥ 1− (k1 + δn1 )z∗1

1 + k1

⇒(1− z∗1)(1− δn2 )

k2
≥ z∗1(1− δn1 )

1 + k1

⇒1− δn1
1− δn2

k2
1 + k1

≤ 1− z∗1
z∗1

.

Finally then a ẑ2 satisfying inequalities 11 and 12 for all 1 ≤ n ≤ n∗ cannot exist

only if

min
n≤n∗

1− δn1
1− δn2

k2
1 + k1

≤ 1− z∗1
z∗1

.
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A symmetric argument establishes

min
n≤n∗

1− δn2
1− δn1

k1
1 + k2

≤ 1− z∗2
z∗2

⇒ z∗2
1− z∗2

≤ max
n≤n∗

1− δn1
1− δn2

1 + k2
k1

.

Since z ∈ CM implies that (1− z∗1)/z∗1 ≤ z2/z1 ≤ z∗2/(1− z∗2), it follows that

min
n≤n∗

1− δn1
1− δn2

k2
1 + k1

≤ z2
z1
≤ max

n≤n∗
1− δn1
1− δn2

1 + k2
k1

.

By lemma 6, if δ1 ≥ δ2 then

1− δn1
1− δn2

≤ 1− δn+1
1

1− δn+1
2

.

So if δ1 ≥ δ2 then

min
n≤n∗

1− δn1
1− δn2

=
1− δ1
1− δ2

and max
n≤n∗

1− δn1
1− δn2

=
1− δn∗1
1− δn∗2

and the result follows. A symmetric argument works for δ2 ≥ δ1.

Proof for Proposition 4. Let σ be the Markov perfect equilibrium with the

outcome (y,m). Let zt = σ(ht−1) for ht−1 ∈ H and 1 ≤ t ≤ m − 1. By assumption

zt is an incompatible demand profile. In the subgame g(ht−1), player i’s payoff from

following σ is δm−ti yi. Then it must be that zti ≥ 1 − δm−t−i y−i. Otherwise player

−i would do better by making the compatible demand 1 − zti . Set D = {z|zi ≥
1− δm−t−i y−i}. So zt ∈ D.

Next, there cannot exist ẑ−i > δm−t−i y−i such that

1− zti − k−i(zti + ẑ−i − 1) < δm−t−i y−i

and

1− ẑ−i − ki(zti + ẑ−i − 1) > δm−ti yi.

Otherwise, player −i in period t would deviate to the incompatible demand ẑ−i and

the dominance solvable outcome of the resulting concession game would be (Ai, S−i)
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with the higher payoff of ẑ−i. It is already shown in the proof for lemma 5 that for

all z ∈ D there exists ẑ−i > δm−t−i y−i such that 1− zi − k−i(zi + ẑ−i − 1) < δm−t−i y−i.

Finally, requiring 1− ẑ−i − ki(zti + ẑ−i − 1) ≥ δm−ti yi to hold for all ẑ−i > δm−t−i y−i

implies that

zti ≥
(1− δm−t−i y−i)(1 + ki)− δm−ti yi

ki
.

Proof for Proposition 5. A stationary MPE must feature either immediate

agreement or perpetual delay. Perpetual delay is ruled out since either player would

deviate in the first period to making an arbitrarily small demand. This would either

lead to a compatible demand profile, or if incompatible force the opponent to concede.

Therefore stationary MPEs feature no delay. The result then follows from lemma 4

and proposition 1.

Proof for Proposition 6. By lemma 1, any SPE at any history h ∈ H will

involve exactly compatible demands or incompatible ones followed by (S, S). SPE

that further satisfy renegotiation-proofness cannot permit delay. To see this, consider

a strategy profile, σ with outcome (y, t) where t > 1. By lemma 1, yi = ui(zi) with

d(z) = 0. By lemma 3, yi > 0. Now, c(σ;h0) = (δt1y1, δ
t
2y2) while c(σ;ht) = (y1, y2).

Since c(σ;ht) � c(σ;h0), σ is not renegotiation-proof. This concludes the argument

for why t = 1 if (y, t) is the outcome of a renegotiation-proof SPE in the general

model.

Let ORP (h) be the set of all renegotiation-proof SPE outcomes of the game g(h)

and let

BRP ≡
{
z|(u(z), t) ∈ ORP (h0)

}
.

Given the stationary structure of the game it follows that

BRP =
{
z|(u(z), t) ∈ ORP (h)

}
, for all h ∈ H.

Necessity

Let z∗i = supz∈BRP zi. Then there cannot exist a deviation ẑ2 > 1− z∗1 such that

u2(1− z∗1)− c2(z∗1 + ẑ2 − 1) < δ2u2(1− z∗1) (13)

and

u1(1− ẑ2)− c1(z∗1 + ẑ2 − 1) > δ1u1(z
∗
1). (14)
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To see why, suppose that σ(h0) = (z∗1 , 1 − z∗1) and there exists ẑ2 that satisfies the

inequalities above. Then it must be that

u2(1− z∗1)− c2(z∗1 + ẑ2 − 1) < δ2u2(z2)

and

u1(1− ẑ2)− c1(z∗1 + ẑ2 − 1) > δ1u1(z1)

for all z ∈ BRP since for all such z, z1 ≤ z∗1 and z2 = 1 − z1 > 1 − z∗1 . In other

words, irrespective of the continuation strategy profile, following such a deviation,

in the resulting concession stage game, the dominance solvable outcome would be

(A, S), giving player 2 the payoff u2(ẑ2) which is strictly greater than u2(1 − z∗1).

Therefore, if such a deviation were to exist then (z∗1 , 1 − z∗1) 6∈ BRP . The same

argument ensures that z 6∈ BRP for z arbitrarily close to (z∗1 , 1 − z∗1), which in turn

contradicts z∗1 = supz∈BRP z1.

Next, for a given compatible demand profile z, consider the following equation.

u2(1− z1)− c2(z1 + z̃2 − 1) = δ2u2(1− z1) (15)

z̃2 here is the smallest demand that leads to incompatibility and ensures that 2 prefers

S in the resulting concession stage, assuming that in the next period the compatible

demand profile z is announced.

Similarly, for a compatible demand profile z consider the following,

u1(1− ˜̃z2)− c1(z1 + ˜̃z2 − 1) = δ1u1(z1). (16)

˜̃z2 is the largest demand that leads to incompatibility and ensures that in the resulting

concession stage, conditional on 2 choosing S, 1 prefers A, again assuming that in

the next period the compatible demand profile z is announced.

By the implicit function theorem, equations 15 and 16 deliver z̃2 and ˜̃z2 as functions

of z1, denoted z̃2(z1) and ˜̃z2(z1). Now, it cannot be that ˜̃z2(z
∗
1) > z̃2(z

∗
1) since then

a deviation that satisfies inequalities 13 and 14 would exist; any ẑ2 ∈ (z̃2(z
∗
1), ˜̃z2(z

∗
1))

would suffice.
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z̃2(z1) is a strictly decreasing function with slope

∂z̃2(z1)

∂z1
= −(1− δ2)u′2(1− z1)

c′2(z1 + z̃2 − 1)
− 1 < −1.

˜̃z2(z1) is also a strictly decreasing function with slope

∂ ˜̃z2(z1)

∂z1
= − δ1u

′
1(z1) + c′1(z1 + ˜̃z′2 − 1)

u′1(1− ˜̃z2) + c′1(z1 + ˜̃z′2 − 1)
> −1

by the concavity of ui. Observe that z̃2(1) = 0 while ˜̃z2(1) > 0. Also, z̃2(0) > 1

while ˜̃z2(0). Therefore the function z̃2(z1) − ˜̃z2(z1) is positive at z1 = 0, negative at

z1 = 1, continuous and (from the slope inequalities above) strictly decreasing over the

interval [0, 1] Then again by the intermediate value theorem, there exists a unique

zM1 such that z̃2(z
M
1 )− ˜̃z2(z

M
1 ) = 0. Let ẑ2(z

M
1 ) ≡ z̃2(z

M
1 ) = ˜̃z2(z

M
1 ).

Since ˜̃z2(z1) > z̃2(z1) for any z1 > zM1 , it must be that z∗1 ≤ zM1 . A symmetric

argument establishes that z∗2 ≤ zM2 .

Sufficiency

Consider the equations

u−i(1− zi)− c−i(zi + z̃−i − 1) = δ−iu−i(1− zi) (17)

and

ui(1− ˜̃z−i)− ci(zi + ˜̃z−i − 1) = δiui(zi). (18)

As in the necessity argument, by the implicit function theorem, these equations deliver

z̃−i and ˜̃z−i as functions of zi, denoted z̃−i(zi) and ˜̃z−i(zi). Similarly, it follows that

the function z̃−i(zi)− ˜̃z−i(zi) is positive at zi = 0, negative at zi = 1, continuous and

strictly decreasing over the interval [0, 1]. It is clear that the zMi corresponding to

equations 7 and 8, also satisfies z̃−i(z
M
i ) = ˜̃z−i(z

M
i ).

I first show that zM1 ≥ 1− zM2 . To see this, consider equations 7 and 8 with i = 1.

The solution is (zM1 , ẑ2(z
M
1 )). This implies the following pair of inequalities

u2(1− zM1 )− c2(zM1 + ẑ2(z
M
1 )− 1) < δ2u2(ẑ2(z

M
1 ))
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and

u1(1− ẑ2(zM1 ))− c1(zM1 + ẑ2(z
M
1 )− 1) > δu1(1− ẑ2(zM1 ))

since ẑ2(z
M
1 ) > 1− zM1 . Comparing these inequalities with equations 17 and 18 with

i = 2, it follows that

z̃1(ẑ2(z
M
1 )) > zM1 and ˜̃z1(ẑ2(z

M
1 )) < zM1 .

This in turn implies that z̃1(ẑ2(z
M
1 )) − ˜̃z1(ẑ2(z

M
1 )) > 0. Therefore it must be that

zM2 > ẑ2(z
M
1 ). Since ẑ2(z

M
1 ) > 1− zM1 it follows that zM2 > 1− zM1 .

Now, fix some z such that d(z) = 0 and zi ≤ zMi for i ∈ {1, 2}. Consider the

following stationary strategy profile, σ. For all ht ∈ H, σi(h
t) = zi. If player i in

period t deviates to making a higher demand, ẑi > zi, then in the concession stage

game (S, S) is played if it is a Nash equilibrium and otherwise (Ai, S−i) is played. For

all other h ∈ H ′ some pure strategy Nash equilibrium of the concession stage game

is played.

Given the strategy profile σ, it is clear that making a lower demand at any period

is never profitable. Making a higher demand for player i also yields her a lower

payoff, since it either leads to (S, S) in the concession game and a continuation payoff

of δiui(zi) or (Ai, S−i) with a payoff strictly less than ui(zi) due to the concession

cost. Hence no profitable deviation exists in any demand stage. To verify subgame

perfection, therefore, it is sufficient to verify that following an incompatible demand

profile (zi, ẑ−i), if (S, S) is not a Nash equilibrium then (Si, A−i) is. For this it is

sufficient to show that z̃−i(zi) ≥ ˜̃z−i(zi).

Recall that z̃−i(zi) as defined in equation 17 corresponds to the smallest demand

by −i that leads to incompatibility and ensures that −i prefers S over A in the

subsequent concession stage game, assuming that in the next period the compatible

profile z is announced. ˜̃z−i(zi), as defined in equation 18 in turn is the largest demand

by −i that leads to incompatibility and ensures that in the subsequent concession

game, i prefers (Ai, S−i) to (S, S), assuming that in the next period z is announced.

So if z̃−i(zi) ≥ ˜̃z−i(zi) then following any incompatible demand ẑ−i, if (Ai, S−i) is

a Nash equilibrium, then it must be that ẑ−i ≤ z̃−i(zi) and therefore (Si, A−i) is a

Nash equilibrium too. Since (A,A) is never a Nash equilibrium, this shows that with

z̃−i(zi) ≥ ˜̃z−i(zi) if (S, S) is not a Nash equilibrium then (Si, A−i) must be.

Finally observe that z̃−i(zi) ≥ ˜̃z−i(zi) since zi ≤ zM .
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Proof for Proposition 7. It follows from proposition 6 that

ξ(gc
n

) =

{
y = u(z)

∣∣∣∣1− zMn
1

zMn
1

≤ z2
z1
≤ zMn

2

1− zMn
2

and d(z) = 0

}
,

where the incompatible demand profile (zMn
i , ẑMn

−i ) for i ∈ {1, 2} is characterized by

the equations,

u−i(1− zMn
i )− cn−i(zMn

i + ẑn−i(z
Mn
i )− 1) = δ−iu−i(1− zMn

i ) (19)

ui(1− ẑn−i(zMn
i ))− cni (zMn

i + ẑn−i(z
Mn
i )− 1) = δiui(z

Mn
i ). (20)

Set zM∗i = limn→∞ z
Mn
i . Notice that since u−i is bounded above and cn

′
−i(0+) → ∞

as n → ∞, it follows from equation 19 that limn→∞ ẑ−i(z
Mn
i ) = 1 − limn→∞ z

Mn
i =

1− zM∗i .

Now equations 19 and 20 together imply

(1− δ−i)u−i(1− zMn
i )

ui(1− ẑn−i(zMn
i ))− δiui(zMn

i )
=
cn−i(z

Mn
i + ẑ−i(z

Mn
i )− 1)

cni (zMn
i + ẑn−i(z

Mn
i )− 1)

.

Taking limits on both sides of this equation as n→∞ gives

(1− δ−i)u−i(1− zM∗i )

(1− δi)ui(zM∗i )
= lim

n→∞

cn−i(z
Mn
i + ẑ−i(z

Mn
i )− 1)

cni (zMn
i + ẑn−i(z

Mn
i )− 1)

.

The right hand side is equal to γ for i = 2 and 1/γ for i = 1. Therefore,

(1− δ2)u2(1− zM∗1 )

(1− δ1)u1(zM∗1 )
=

1

γ
and

(1− δ1)u1(1− zM∗2 )

(1− δ2)u2(zM∗2 )
= γ.

Now y ∈ ξ∗γ(u) implies that y = u(z) such that d(z) = 0 and

u2(1− zM∗1 )

u1(zM∗1 )
≤ u2(z2)

u1(z1)
≤ u2(z

M∗
2 )

u1(1− zM∗2 )

⇔ 1− δ1
1− δ2

1

γ
≤ u2(z2)

u1(z1)
≤ 1− δ1

1− δ2
1

γ
.
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