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Abstract

This paper discusses quantile regression kink designs (QRKD) for identification and

estimation of heterogeneous treatment effects. We first develop causal interpretations of

the QRKD estimand. Second, we propose a sample counterpart QRKD estimator, and de-

velop its asymptotic properties for statistical inference of heterogeneous treatment effects.
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1 Introduction

Recent empirical papers, including Nielsen, Sørensen and Taber (2010), Landais (2015), Si-

monsen, Skipper and Skipper (2015) and Card, Lee, Pei and Weber (2016), conduct causal

inference via the regression kink design (RKD). A natural extension with a flavor of treatment

heterogeneity is the quantile RKD (QRKD), which is the object that we explore in this paper.

Specifically, consider the quantile derivative Wald ratio of the form

QRKD(τ) =
limx↓x0

∂
∂x
QY |X(τ | x)− limx↑x0

∂
∂x
QY |X(τ | x)

limx↓x0
d
dx
b(x)− limx↑x0

d
dx
b(x)

(1.1)

at a design point x0 of a running variable x, where QY |X(τ |x) := inf{y : F (y|x) ≥ τ} defines

the τ -th conditional quantile function of Y given X = x, and b is a policy function. Note that

it is analogous to the estimand of Card, Lee, Pei and Weber (2016):

RKD =
limx↓x0

∂
∂x

E[Y | X = x]− limx↑x0
∂
∂x

E[Y | X = x]

limx↓x0
d
dx
b(x)− limx↑x0

d
dx
b(x)

, (1.2)

except that the conditional expectations in the numerator are replaced by the corresponding

conditional quantiles. While the QRKD estimand (1.1) is of potential interest in the empirical

literature for assessment of heterogeneous treatment effects (e.g., Landais, 2011), little seems

known about econometric theories of identification, estimation, and inference. This paper

develops causal interpretation (identification) and estimation theories for the QRKD estimand

(1.1). Consequently, we also propose methods of inference for heterogeneous treatment effects

based on the QRKD.

Making causal interpretations of the QRKD estimand (1.1) is perhaps more challenging

than the mean RKD estimand (1.2) because the differentiation operator d
dx

and the condi-

tional quantile do not ‘swap.’ For the mean RKD estimand (1.2), the interchangeability of

the differentiation operator and the expectation (integration) operator allows each term of the
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numerator in (1.2) to be additively decomposed into two parts, namely the causal effects and

the endogeneity effects. Taking the difference of two terms in the numerator then cancels out

the endogeneity effects, leaving only the causal effects. This trick allows the mean RKD es-

timand (1.2) to have causal interpretations in the presence of endogeneity. Due to the lack

of such interchangeability for the case of quatiles, this trick is not straightforwardly inherited

by the quantile counterpart (1.1). Having said this, we show in Section 2 (and more formally

in Appendix A.1) that a similar decomposition is possible for the QRKD estimand (1.1) by

applying Sasaki (2015), and therefore argue that its causal interpretations are possible.

For estimation of the causal effects, we propose sample-counterpart estimators for the QRKD

estimand (1.1) in Sections 3. To derive their asymptotic properties, we take advantage of

the existing literature on uniform Bahadur representations for quantile-type loss functions,

including Kong, Linton and Xia (2010), Guerre and Sabbah (2012; 2014), and Qu and Yoon

(2015a). Qu and Yoon (2015b) apply the results of Qu and Yoon (2015a) to develop methods

of statistical inference with quantile regression discontinuity designs (QRDD), which is closely

related to our QRKD framework. We take a similar approach with suitable modifications

to derive asymptotic properties of our QRKD estimator. Weak convergence results for the

estimator as a quantile process are derived. Applying the weak convergence results, we propose

procedures for testing treatment significance and treatment heterogeneity following Koenker

and Xiao (2002), Chernozhukov and Fernández-Val (2005) and Qu and Yoon (2015b). In

Section 4, we conduct Monte Carlo experiments. The results of the experiments support our

theoretical properties.

Literature: The model and method studied in this paper fall in the broad framework of

design-based causal inference methods, including RDD and RKD. There is an extensive body

of literature on RDD by now – see for example the special issue of Journal of Econometrics
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edited by Imbens and Lemieux (2008) and the literature review by Lee and Lemieux (2010).

The first extension to quantile treatment effects in the RDD framework was made by Frandsen,

Frölich and Melly (2012). More recently, Qu and Yoon (2015b) develop uniform inference

methods with QRDD that empirical researchers can use to test a variety of important empirical

questions on heterogeneous treatment effects. While the RDD has a rich set of empirical and

theoretical results including these quantile extensions, the RKD method that developed more

recently does not have a quantile counterpart in the literature yet, despite potential demands

for it by empirical researchers (e.g., Landais, 2011). Our paper can be seen as either a quantile

extension to Card, Lee, Pei and Weber (2016) or a RKD counterpart of Frandsen, Frölich and

Melly (2012) and Qu and Yoon (2015b).

2 Causal Interpretation of the QRKD Estimand

The causal relation of interest is represented by the structural equation

y = g(b, x, ε).

The outcome y is determined through the structural function g by two observed factors, b ∈ R

and x ∈ R, and a scalar unobserved factor, ε ∈ R. We assume that g is monotone increasing

in ε, effectively imposing the rank invariance; causal interpretations in a more general setup

with non-monotone g and/or multivariate ε is discussed in Appendix A.1. The factor b is a

treatment input, and is in turn determined by the running variable x through the structural

equation

b = b(x)

for a known policy function b. We say that b has a kink at x0 if b′(x+
0 ) := limx→x+0

db(x)
dx
6=

limx→x−0
db(x)
dx

=: b′(x−0 ) is true, where x→ x+
0 and x→ x−0 mean x ↓ x0 and x ↑ x0, respectively.
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Throughout this paper, we assume that the location, x0, of the kink is known from a policy-

based research design, as is the case with Card, Lee, Pei and Weber (2016).

Assumption 1. b′(x+
0 ) 6= b′(x−0 ) holds, and b is continuous on R and differentiable on R\{x0}.

The structural partial effects are g1(b, x, ε) := ∂
∂b
g(b, x, ε), g2(b, x, ε) := ∂

∂x
g(b, x, ε) and

g3(b, x, ε) := ∂
∂ε
g(b, x, ε). In particular, a researcher is interested in g1 which measures heteroge-

neous partial effects of the treatment intensity b on an outcome y. While the structural partial

effect g1 is of interest, it is not clear if the QRKD estimand (1.1) provides any information

about g1. In this section, we argue that (1.1) does have a causal interpretation in the sense

that it measures the structural causal effect g1(b(x0), x0, ε) at the τ -th conditional quantile of

ε given X = x0.

Under regularity conditions (see Appendix A.1), an application of Lemma 1 of Sasaki (2015)

to the current model yields the decomposition

∂

∂x
QY |X(τ | x) = g1(b(x), x, ε) · b′(x) + g2(b(x), x, ε)−

∫ ε
−∞

∂
∂x
fε|X(e | x)de

fε|X(ε | x)
· g3(b(x), x, ε), (2.1)

where τ = Fε|X(ε | x). The first term on the right-hand side is the partial effect of the

running variable x on the outcome y through the policy function b. The second term is the

direct partial effect of the running variable on the outcome y. The third term measures the

effect of endogeneity in the running variable x. We can see that this third term is zero under

exogeneity, ∂
∂x
fε|X = 0. In order to get the causal effect g1(b(x), x, ε) of interest through the

QRKD estimand (1.1), therefore, we want to remove the last two terms in (2.1).

Suppose that the designed kink condition of Assumption 1 is true, but all the other functions,

g1, g2, g3, 1/fε|X and ∂
∂x
fε|X , in the right-hand side of (2.1) are continuous in (b, x) at (b(x0), x0).

Then, (2.1) yields

∂
∂x
QY |X(τ | x+

0 )− ∂
∂x
QY |X(τ | x−0 )

b′(x+
0 )− b′(x−0 )

= g1(b(x0), x0, ε),
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showing that the QRKD estimand (1.1) measures the structural causal effect g1(b(x0), x0, ε) of

b on y for the subpopulation of individuals at the τ -th conditional quantile of ε given X = x0.

This section provides only an informal argument for ease of exposition, but Appendix A.1

provides a formal mathematical argument under a general setup without the rank invariance

assumption. Furthermore, we provide a result for the case of fuzzy QRKD in Appendix A.2.

3 Estimation and Inference

We propose to estimate the QRKD estimand (1.1) by the sample counterpart

Q̂RKD(τ) =
β̂+(τ)− β̂−(τ)

limx↓x0 b
′(x)− limx↑x0 b

′(x)
(3.1)

with the two terms in the numerator given by the one-sided local linear quantile smoothers

β̂+(τ) = ι′2 arg min
α,β

n∑
i=1

diK(
xi − x0

hn,τ
)ρτ (yi − α− β(xi − x0)) and

β̂−(τ) = ι′2 arg min
α,β

n∑
i=1

biK(
xi − x0

hn,τ
)ρτ (yi − α− β(xi − x0)),

for τ ∈ T , where T ⊂ (0, 1) is a closed interval, K is a kernel function, ρτ (u) = u(τ−1{u < 0}),

di = 1{xi ≥ x0}, bi = 1{xi ≤ x0}, and ι2 = [0, 1]′. A researcher observing a sample {yi, xi}ni=1

of n observations can compute (3.1) explicitly to estimate (1.1).

In the remainder of this section, we first develop Bahadur representations for the compo-

nent estimators, β̂+(τ) and β̂−(τ), uniformly in τ over T . Second, weak convergence results are

developed for quantile processes for β̂+(τ) and β̂−(τ), which in turn yield weak convergence re-

sults for quantile processes for the QRKD estimator of treatment effects. Third, using the weak

convergence results, we propose some tests of hypotheses concerning heterogeneous treatment

effects.
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We fix some notations for convenience of our analysis. Although they are not direct objects

of interest, the level estimators are denoted by α̂+(τ) = ι′1 arg min
α,β

∑n
i=1 diK(xi−x0

hn,τ
)ρτ (yi −

α − β(xi − x0)) and α̂−(τ) = ι′1 arg min
α,β

∑n
i=1 biK(xi−x0

hn,τ
)ρτ (yi − α − β(xi − x0)), where ι1 =

[1, 0]′. We define the kernel-dependent constant matrices N+(τ) =
∫∞

0
(1, u)′(1, u)K(u)du and

N−(τ) =
∫ 0

−∞(1, u)′(1, u)K(u)du. Some transformations of data points are succinctly written

as z′i,n,τ = (1, (xi − x0)/hn,τ ) and Ki,n,τ = K(xi−x
hn,τ

). Define the linear extrapolation error

ei =
[
Q(τ |x+

0 ) + (xi− x0)
∂Q(τ |x+0 )

∂x

]
−Q(τ |xi) and the estimation errors φ̂(τ) =

√
nhn,τ [α̂

+(τ)−

Q(τ |x+
0 ), hn,τ (β̂

+(τ)− ∂Q(τ |x+0 )

∂x
)]′. We make the following assumptions.

Assumption 2. There exist x̄ > x0 and x < x0 such that the following conditions are satisfied:

(i) (a) The density function fX(·) exists and is continuously differentiable in a neighborhood of

x0 and 0 < fX(x0) <∞. (b) {(yi, xi)}ni=1 is an i.i.d. sample of n observations of the bivariate

random vector (Y,X).

(ii) (a) fY |X(y|x) is Lipschitz continuous on [inf(τ,x)∈T×(x0,x̄] Q(τ |x), sup(τ,x)∈T×(x0,x̄] Q(τ |x)]×

(x0, x̄] and [inf(τ,x)∈T×[x,x0) Q(τ |x), sup(τ,x)∈T×[x,x0) Q(τ |x)]× [x, x0). (b) There exist finite con-

stants fL > 0, fU > 0 and ε > 0, such that fY |X(Q(τ |x) + η|x) lies between fL and fU for all

τ ∈ T , |η| ≤ ε and x ∈ [x, x̄].

(iii) (a) Q(τ |x+
0 ), ∂Q(τ |x+

0 )/∂τ ,Q(τ |x−0 ), and ∂Q(τ |x−0 )/∂τ exist and are Lipschitz contin-

uous in τ on T . (b) ∂Q(τ |x)/∂x and ∂Q2(τ |x)/∂x2 exist and are Lipschitz continuous on

{(x, τ)|x ∈ (x0, x̄], τ ∈ T} and {(x, τ)|x ∈ [x, x0), τ ∈ T}.

(iv) The kernel K is compactly supported, Lipschitz, differentiable, and satisfying K(·) ≥ 0,∫
K(u)du = 1,

∫
uK(u)du = 0. Also,

∫∞
0
ukK(u)du and

∫ 0

−∞ u
kK(u)du are finite for k =

1, 2, 3. The matrices N+ and N− are positive definite.

(v) The bandwidths satisfy hn,τ = c(τ)hn, where nh3
n →∞ and hn = O(n−1/5) as n→∞, and
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c(·) is Lipschitz continuous satisfying 0 < c ≤ c(τ) ≤ c <∞ for all τ ∈ T.

Part (i) (a) requires smoothness of the density of the running variable. This can be in-

terpreted as the design requirement for absence of endogenous sorting across the kink point

x0. The i.i.d assumption in part (i) (b) is usually considered to be satisfied for micro data of

random samples. Part (ii) concerns about regularities of the conditional density function of Y

given X. It requires sufficient smoothness, but does not rule out quantile regression kinks at

x0, which is the main crucial assumption for our identification argument. Part (iii) concerns

about regularities of the conditional quantile function of Y given X. Like part (ii), it does not

rule out quantile regression kinks at x0. Part (iv) prescribes requirements for kernel functions

to be chosen by users. In Section 4 for Monte Carlo experiments, we propose an example

of such a choice to satisfy this requirement. Finally, part (v) specifies the rate at which the

bandwidth parameters diminish as the sample size becomes large. It obeys the standard rate

for a first-order derivative estimation, but we also require its uniformity over quantiles τ in T .

Under this set of assumptions, we obtain uniform Bahadur representations for the component

estimators, β̂+(τ) and β̂−(τ), of our interest.

Lemma 1. Under Assumption 2, we have

φ̂(τ) =


√
nhn,τ (α̂

+(τ)−Q(τ |x+
0 ))√

nh3
n,τ (β̂

+(τ)− ∂Q(τ |x+0 )

∂x
)

 = (nh5
n,τ )

1
2

(N+)−1

2

∫ ∞
0

u2∂
2Q(τ |x+

0 )

∂x2
(1, u)′K(u)du

+
(N+)−1(nhn,τ )

− 1
2

∑n
i=1(τ − 1{yi ≤ Q(τ |xi)})zi,n,τKi,n,τdi)

fX(x0)fY |X(Q(τ |x+
0 )|x+

0 )
+ op(1)

uniformly in τ ∈ T. In particular, we have

√
nh3

n,τ

(
β̂+(τ)− ∂Q(τ |x+

0 )

∂x
− hn,τ

ι′2(N+)−1

2

∫ ∞
0

u2∂
2Q(τ |x+

0 )

∂x2
(1, u)′K(u)du

)
=
ι′2(N+)−1(nhn,τ )

− 1
2

∑n
i=1(τ − 1{yi ≤ Q(τ |xi)})zi,n,τKi,n,τdi)

fX(x0)fY |X(Q(τ |x+
0 )|x+

0 )
+ op(1)
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uniformly in τ ∈ T. Similar results hold for β̂−(τ).

A proof is provided in Appendix D.2 – auxiliary results of uniform consistency that are used

to prove this theorem are also provided in Appendix D.1. The Bahadur representation obtained

in this lemma is uniform in quantiles τ ∈ T for a fixed location of the running variable x. Kong,

Linton and Xia (2010) derived a Bahadur representation that is uniform in x for a fixed quantile

level. Guerre and Sabbah (2012) derived a result that is uniform in both τ and x for interior

points – see also Guerre and Sabbah (2014). Since we are interested in a representation at the

boundary point x0 of the truncated distribution, and since we did not require the uniformity

in x, and we developed our approach more closely following Qu and Yoon (2015a).

Applying the uniform Bahadur representation in Lemma 1, we now establish weak conver-

gence results for our component estimators. We focus on β̂+, but a similar result follows for

β̂−. Furthermore, since these right and left estimators use two mutually exclusive sides of an

i.i.d. sample on the running variable, their asymptotic distributions are mutually independent

processes. This independence allows the asymptotic distribution of the QRKD estimator (3.1)

to be easily constructed using the asymptotic distributions of the two quantile processes of β̂+

and β̂−.

Theorem 1. Under Assumptions 2, we have the weak convergence√
nh3

n,τfX(x0)fY |X(Q(τ |x+
0 )|x+

0 )×(
β̂+(τ)− ∂Q(τ |x+

0 )

∂x
− hn,τ

ι′2(N+)−1

2

∫ ∞
0

u2∂
2Q(τ |x+

0 )

∂x2
(1, u)′K(u)du

)
⇒ G+(τ),

for the zero mean Gaussian process G+(τ) defined over T with covariance function

E(G+(r)G+(s)) = (κ(r)κ(s))−1/2(r ∧ s− rs)ι′2(N+)−1T+(r, s)(N+)−1ι2,

for each r, s ∈ T , where T+(r, s) =
∫∞

0

[
1 u

κ(r)

]′
K( u

κ(r)
)

[
1 u

κ(s)

]
K( u

κ(s)
)du with κ(τ) =

hn,τ/hn,1/2 = c(τ)
c(1/2)

≥ (c/c) > 0. A similar result follows for β̂−(τ).

9



A proof is provided in Appendix D.3. While we write the above weak convergence result

explicitly accounting for the finite-sample bias term hn,τ
ι′2(N+)−1

2

∫∞
0
u2 ∂

2Q(τ |x+0 )

∂x2
(1, u)′K(u)du, it

goes away in large sample as hn,τ goes to zero uniformly in τ ∈ T . In other words, this bias

term can be considered to be absent in the above equation. With this said, in case one wish to

reduce this finite-sample bias, we propose in Appendix B how to estimate this bias term.

We are now ready to present a weak convergence result for our QRKD estimator (3.1).

By Section 2.1 of Giné and Nickl (2015), the sum of two independent Gaussian processes is

a Gaussian process with the mean (respectively, the covariance) being the sum of the means

(respectively, the covariances).

Corollary 1. Under Assumptions 1 and 2 we have the weak convergence

√
nh3

n,τ

(
Q̂RKD(τ)−QRKD(τ)

)
⇒Y (τ) =

1√
fX(x0)

(
b′(x+

0 )− b′(x−0 )
)[ G+(τ)

fY |X(Q(τ |x+
0 )|x+

0 )
− G−(τ)

fY |X(Q(τ |x−0 )|x−0 )

]
.

The random process Y (·) has mean zero, as G+(τ) and G−(τ) do. For any pair r, s ∈ T of

quantiles, the covariance can be computed by:

E[Y (r)Y (s)] =
1

fX(x0)(b′(x+
0 )− b′(x−0 ))2

×
[

EG+(r)G+(s)

fY |X(Q(r|x+
0 )|x+

0 )fY |X(Q(s|x+
0 )|x+

0 )
+

EG−(r)G−(s)

fY |X(Q(r|x−0 )|x−0 )fY |X(Q(s|x−0 )|x−0 )

]
.

This uniform convergence result is applicable to many purposes, such as to compute uniform

confidence bands for the QRKD. Of particular interest may be the empirical tests of the fol-

lowing hypotheses among others.

Treatment Significance HS
0 : QRKD(τ) = 0 for all τ ∈ T.

Treatment Heterogeneity HH
0 : QRKD(τ) = QRKD(τ ′) for all τ, τ ′ ∈ T.
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They are both considered in Koenker and Xiao (2002), Chernozhukov and Fernández-Val (2005)

and Qu and Yoon (2015b), among others. Following the approach of these preceding papers,

the two hypotheses, HS
0 and HH

0 , may be tested using the statistics

WSn(T ) = sup
τ∈T
|Q̂RKD(τ)| and

WHn(T ) = sup
τ∈T

∣∣∣∣Q̂RKD(τ)−
∫
T

Q̂RKD(τ ′)dτ ′
∣∣∣∣,

respectively. Consequence of Corollary 1 are the following asymptotic distributions of these

test statistics, a proof of which is provided in Appendix D.4.

Corollary 2. Under Assumptions 1 and 2, we have

(i)
√
nh3

n,τWSn(T )⇒ supτ∈T |Y (τ)| under the null hypothesis HS
0 ; and

(ii)
√
nh3

n,τWHn(T ) ⇒ supτ∈T |φ′QRKD(Y )(τ)| under the null hypothesis HH
0 , where φ′QRKD

(g)(τ) = g(τ)−
∫
T
g(τ ′)dτ ′ for all g ∈ L∞m (T ), the space of all bounded, measurable, real-valued

functions defined on T .

4 Monte Carlo Experiments

Consider the following policy function with a kink at x0 = 0.

b(x) =


2x if x 6 0

0.5x if x > 0

For convenience of assessing the performance of our estimator for homogeneous treatment effects

and heterogeneous treatment effects, we consider the following three outcome structures.

Structure 0: g(b, x, ε) = 0.0b+ 0.5x+ 0.05x2 + ε

Structure 1: g(b, x, ε) = 0.5b+ 0.5x+ 0.05x2 + ε

Structure 2: g(b, x, ε) = 0.5[0.5 + Fε(ε)]b+ 0.5x+ 0.05x2 + ε
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where Fε denotes the CDF of ε. Note that Structures 0 and 1 entail homogeneous treatment

effects, while Structure 2 entails heterogeneous treatment effects across quantiles τ as follows.

Structure 0: g1(b, x,Qε(τ)) = 0.0

Structure 1: g1(b, x,Qε(τ)) = 0.5

Structure 2: g1(b, x,Qε(τ)) = 0.5[0.5 + τ ]

We generate the primitive data according to Xi
i.i.d.∼ N(0, σ2

X) and εi
i.i.d.∼ N(0, σ2

ε) independently,

where σX = σε = 0.5. For estimation, we use the tricube kernel defined by

K(u) =
70

81
(1− |u|)3

1{|u| < 1}.

The bandwidths are selected with our choice rule based on the MSE minimization – see Ap-

pendices B and E for details.

The left and right columns of Figure 1 show Monte Carlo distributions of the QRKD es-

timates under Structure 1 and Structure 2, respectively. The top row, the middle row and

the bottom row list results for the sample sizes N = 1, 000, 2, 000 and 4, 000, respectively.

In each graph, the horizontal axis measures quantiles τ , while the vertical axis measures the

QRKD. The true QRKD are indicated by solid gray lines. The other broken curves indicate

the 5-th, 10-th, 50-th, 90-th, and 95-th percentiles of the Monte Carlo distributions of our esti-

mates based on 5,000 Monte Carlo iterations. We may observe that the displayed distribution

shrinks around the true QRKD values for each structure at each quantile τ as the sample size

N increases.

In order to more quantitatively analyze the finite sample behavior, we summarize some

basic statistics for the Monte Carlo distributions in the upper and lower sections of Table 1

for Structure 1 and Structure 2, respectively. In each section, the four column groups list the
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absolute biases (MC Bias), the standard deviations (MC SD), root mean squared errors (MC

RMSE), and the rejection frequencies for point-wise 5%-level t-tests for the null hypotheses

of the true QMTE values (MC 5% Size). For each structure at each quantile τ , we again

observe that SD and RMSE decrease as the sample size N increases. Observe that the MC

5% sizes are reasonably accurate at each quantile for each structure. While these sizes concern

about point-wise inference, we also provide uniform inference results. Table 2 shows rejection

probabilities for the 95% level uniform test of significance (panel A) and the 95% level uniform

test of heterogeneity (panel B) based on 1,000 Monte Carlo iterations. Panel A shows that the

rejection probability for the test of the null hypothesis of insignificance does not increase in the

sample size for Structure 0, while it increases in the sample size for each of Structure 1 and

Structure 2. Panel B shows that the rejection probability for the test of the null hypothesis

of homogeneity does not increase in the sample size for Structure 0 and Structure 1, while it

increases in the sample size for Structure 2. These results are consistent with the construction

of Structure 0, Structure 1, and Structure 2.

5 An Empirical Illustration

In labor economics, causal effects of the unemployment insurance (UI) benefits on the duration

of unemployment are of interest from policy perspectives. The elasticity of labor supply with

respect to changes in unemployment insurance is an intertwining result of two endogenous

forces – the liquidity effects and the moral hazard effects. Landais (2015) demonstrates a

reinterpretation of these forces in terms of the traditional framework of dynamic labor supply,

and shows how the moral hazard effects of UI on search efforts can be explained by the Frisch

elasticity concept, i.e., responses of search efforts to changes in benefits keeping the marginal
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utility of wealth constant. He then proposes an empirical strategy using the RKD to identify

the moral hazard effects of UI. Using the data set of the Continuous Wage and Benefit History

Project (CWBH – see Moffitt, 1985), Landais estimates the effects of benefit amounts on the

duration of unemployment. In this section, we apply our QRKD methods, and aim to discover

potential heterogeneity in these causal effects.

In all of the states in the United States, a compensated unemployed individual receives a

weekly benefit amount b that is determined as a fraction τ1 of his or her highest earning quarter

x in the base period (the last four completed calendar quarters immediately preceding the start

of the claim) up to a fixed maximum amount bmax, i.e. b = min{τ1 · x, bmax}. The both

parameters, τ1 and bmax, of the policy rule vary from state to state. Furthermore, the ceiling

level bmax changes over time within a state. For these reasons, empirical analysis needs to be

conducted for each state for each restricted time period. The potential duration of benefits is

determined in a somewhat more complicated manner. Yet, it also can be written as a piecewise

linear and kinked function of a fraction of a running variable x in the CWBH data set.

Following Landais (2015), we make our QRKD empirical illustration by using the CWBH

data for Louisiana. The data cleaning procedure is conducted in the same manner as in Landais.

As a result of the data processing, we obtain the same descriptive statistics (up to deflation)

as those in Landais for those variables that we use in our analysis. For the dependent variable

y, we consider both the claimed number of weeks of UI and the actually paid number of weeks.

For the running variable x, we use the highest quarter wage in the based period. The treatment

intensity b is computed by using the formula b(x) = min{(1/25) · x, bmax}, with kink where

the maximum amount is bmax = $4, 575 for the period between September 1981 and September

1982 and bmax = $5, 125 for the period between September 1982 and December 1983.

Table 3 summarizes empirical results for the time period between September 1981 and

14



September 1982. Table 4 summarizes empirical results for the time period between September

1982 and December 1983. In each table, we display the RKD results by Landais (2015) for a

reference. In the following rows, the QRKD estimates are reported with respective standard

errors in parentheses for quantiles τ ∈ {0.10, · · · , 0.90}. At the bottom of each table, we report

the p-values for the test of significance and the test of heterogeneity.

We can observe the following patterns in these result tables. First, the estimated causal

effects have positive signs throughout all the quantiles, implying that higher benefit amounts

cause longer unemployment durations consistently across all the outcome levels. Second, these

causal effects are smaller and insignificant at lower quantiles, while they are larger and signifi-

cantly different from zero at middle and higher quantiles. This pattern implies that unemployed

individuals who have longer unemployment durations tend to have larger unemployment elas-

ticities with respect to benefit levels. The extent of this increase of the causal effects in quantiles

is more prominent for the results in Table 3 (1981–1982) than in Table 4 (1982–1983). Third,

the causal effects are very similar between the results for claimed UI as the outcome and the

results for paid UI as the outcome variable. The respective standard errors are almost the same

between these two outcome variables, but they are not exactly the same. Fourth, the uniform

tests show that the causal effects are significantly different from zero for the both time periods.

Lastly, the uniform tests show that the causal effects are significantly heterogeneous in Table

3 (1981–1982), while the heterogeneity is insignificant in Table 4 (1982–1983).

6 Summary

Economists have taken advantage of policy irregularities to assess causal effects of endogenous

treatment intensities. A new approach along this line is the regression kink design (RKD)

15



used by recent empirical papers, including Nielsen, Sørensen and Taber (2010), Landais (2015),

Simonsen, Skipper and Skipper (2015) and Card, Lee, Pei and Weber (2016). While the

prototypical framework is only able to assess the average treatment effect at the kink point,

inference for heterogeneous treatment effects using the RKD is of potential interest by empirical

researchers (e.g., Landais, 2011). In this light, this paper develops econometric tools for the

quantile regression kink design (QRKD).

We first develop causal interpretations of the QRKD estimand. It is shown that the QRKD

estimand measures the marginal effect of the treatment variable on the outcome variable at the

conditional quantile of the outcome given the design point of the running variable. Second, we

propose a sample counterpart QRKD estimator, and develop its asymptotic properties for sta-

tistical inference of heterogeneous treatment effects. Using uniform Bahadur representations,

we derive a weak consistency result for the QRKD estimator. Applying the weak consistency

result, we propose procedures for statistical tests of treatment significance and treatment het-

erogeneity. We also discuss finite-sample bias reduction and bandwidth selection. Monte Carlo

experiments support our theoretical results. Applying our methods to the Continuous Wage

and Benefit History Project (CWBH) data, we find significantly heterogeneous causal effects

of unemployment insurance benefits on unemployment durations in the state of Louisiana for

the period between September 1981 and September 1982. Finally, while the main text mostly

focuses on the sharp QRKD that is relevant to our empirical illustration, we remark that iden-

tification and estimation results for the fuzzy QRKD are also available in Appendices A.2 and

C for completeness.

16



References

Angrist, Joshua D. and Guido W. Imbens (1995) “Two-Stage Least Squares Estimation of Av-

erage Causal Effects in Models with Variable Treatment Intensity,” Journal of the American

Statistical Association, Vol. 90, No. 430, pp. 431–442.

Bashtannyk, David M., and Rob J. Hyndman (2001) “Bandwidth selection for kernel conditional

density estimation,” Computational Statistics and Data Analysis, Vol. 36, No. 3, pp. 279–298.

Card, David, David Lee, Zhuan Pei, and Andrea Weber (2016) “Inference on Causal Effects in

a Generalized Regression Kink Design,” Econometrica, Vol. 83, No. 6, pp. 2453–2483.

Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato (2014) “Gaussian Approximations

and Multiplier Bootstrap for Maxima of Sums of High-Dimensional Random Vectors,” The

Annals of Statistics, Vol. 41, No. 6, pp. 2786–2819.

Chernozhukov, Victor and Ivan Fernández-Val (2005) “Subsampling Inference on Quantile Re-

gression Processes,” Sankhya: The Indian Journal of Statistics, Vol. 67, No. 2, pp. 253–276.

Einmahl, Uwe and David M. Mason (2005) “Uniform in Bandwidth Consistency of Kernel-Type

Function Estimators,” Annals of Statistics, Vol. 33, No. 3, pp. 1380–1403.

Fan, Jianqing and Irène Gijbels (1996) “Local Polynomial Modeling and Its Applications,”

Chapman & Hall/CRC: London.

Fan, Jianqing, Tien-Chung Hu, and Young K. Truong (1994) “Robust Non-Parametric Function

Estimation,” Scandinavian Journal of Statistics, Vol. 21, No. 4, pp. 433–446.
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A Causal Interpretation in General Settings

A.1 Causal Interpretation without Rank Invariance

In this appendix, we inherit the basic settings from Section 2 except that the unobserved factors

ε are now allowed to be M -dimensional, as opposed to be a scalar. As such, we can consider

general structural functions g without the rank invariance. Define the lower contour set of ε

evaluated by g(b(x), x, ·) below a given level of y as follows:

V (y, x) = {ε ∈ RM |g(b(x), x, ε) ≤ y}.

Its boundary is denoted by ∂V (y, x). Furthermore, the velocities of the boundary ∂V (y, x) at u

with respect to a change in y and a change in x are denoted by ∂υ(y, x;u)/∂y and ∂υ(y, x;u)/∂x,

respectively. Σ denotes an (M − 1)-dimensional rectangle. For a short hand notation, we write

h(x, ε) = g(b(x), x, ε) and h1(x, ε) = ∂h(x,ε)
∂x

. Let mM and HM−1 denote the Lebesgue measure

on RM and the Hausdorff measure on ∂V (y, x), respectively.1 Letting X = supp(X), we make

the following assumptions.

Assumption 3. (i) h(·, ε) is continuously differentiable on X \ {x0} for all ε ∈ E and h(x, ·)

is continuously differentiable for all x ∈ X . (ii) ‖∇εh(x, ·)‖ 6= 0 on ∂V (y, x) for all (x, y) ∈

X × Y. (iii) The conditional distribution of ε given X is absolutely continuous with respect to

mM , fε|X is continuously differentiable, and fε|X ∈ C1(X ;L1(RM)) is true. (iv)
∫
∂V (y,x)

fε|X(ε |

x)dHM−1(ε) > 0 for all (x, y) ∈ X ×Y. (v) ∂V (y, ·) ∈ C1(Σ×X ;RM) holds for all y ∈ Y and

∂V (·, x) ∈ C1(Σ×Y ;RM) holds for all x ∈ X . (vi) ∂υ(y, · ; ·)/∂x ∈ C1(X ;L1(Σ)) holds for all

y ∈ Y and ∂υ(·, x ; ·)/∂y ∈ C1(Y ;L1(Σ)) holds for all x ∈ X .

1We obtain the (M − 1)-dimensional Hausdorff measure by the restriction of the function HM−1 : 2R
M →

R defined by HM−1(S) = supδ>0 inf
{∑∞

i=1(diamUi)
M−1 | ∪∞i=1Si ⊃ S, diamSi < δ

}
to the collection of

Carathéodory-measurable sets.
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Assumption 4. Let γ(x, ε) := ‖∇εh(x, ε)‖−1. There exist values p > 1 and q > 1 satisfying

p−1 + q−1 = 1 such that ‖γ(x, · )‖Lp(∂V (y,x),HM−1) < ∞ and ‖fε‖Lq(∂V (y,x),HM−1) < ∞ hold for

all (x, y) ∈ X × Y.

Assumption 5. There exists a function w ∈ L1(∂V (y, x), HM−1) such that

|γ(x, ε)hx(x, ε)fε|X(ε|x)| ≤ w(ε) for all ε ∈ ×V (y, x) for all x ∈ X .

Assumption 6. limx→x+0
∂
∂x
QY |X(τ |x) and limx→x−0

∂
∂x
QY |X(τ |x) exist.

Assumptions 3 and 4 are used to derive a structural decomposition of the quantile partial

derivative – see Sasaki (2015) for detailed discussions of these assumptions. The regularity

conditions in Assumptions 5 and 6 together facilitate the dominated convergence theorem to

make a structural sense of the QRKD estimand (1.1). With B(y, x) denoting the collection of

Borel subsets of ∂V (y, x), we define the function µy,x : B(y, x)→ R by

µy,x(S) :=

∫
s

1
‖∇εh(x,ε)‖fε|X(ε|x)dHM−1(ε)∫

∂V (y,x)
1

‖∇εh(x,ε)‖fε|X(ε|x)dHM−1(ε)
for all S ∈ B(y, x).

The next theorem claims that this is a probability measure and gives weights with respect to

which the QRKD estimand (1.1) measures the average structural causal effect of the treatment

intensity b on an outcome y for those individuals at the τ -th conditional quantile of Y given

X = x0.

Theorem 2. Suppose that Assumptions 1, 3, 4, 5 and 6 hold. Then, µy,x is a probability

measure on ∂V (y, x) for all (x, y) ∈ X × Y, and we have

QRKD(τ) = Eµy,x0 [g1(b(x0), x0, ε)] (A.1)

where τ = FY |X(y | x0).

A proof is provided in Appendix D.7. We may derive a similar causal interpretation for the

case of fuzzy QRKD – see Appendix A.2. As is often the case in the treatment literature (e.g.,
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Angrist and Imbens, 1995), this theorem shows a causal interpretation in terms of a weighted

average. Specifically, (A.1) shows that the QRKD estimand (1.1) measures a weighted average

of the heterogeneious causal effects g1(b(x0), x0, ε) displayed on the right-hand side of (A.1).

The weights given in the definition of µy,x0 are proportional to fε|X(ε|x0)/‖∇εh(x0, ε)‖ which

is positive on the conditional support of ε given X = x0. In other words, the QRKD estimand

measures a strict convex combination of the ceteris paribus causal effects of b on y for those

individuals at the τ -th conditional quantile of Y given X = x0. One may worry about the

obscurity of the causal interpretations under the ‘weighted’ averages. There are two special

cases where the QRKD estimand allows for causal interpretations in terms of purely unweighted

averages, i.e., ‖∇εh(x0, ε)‖ is constant in ε. One example is the case where the structural

function g(b, x, · ) is monotone in a scalar unobservable ε, which is the special case discussed

in Section 2. The other example is the more general case where the structure exhibits partial

additivity, e.g., g(b, x, ε) =
∑M

m=1 εmg
m(b, x). When an empirical practitioner is reluctant to

make either of these assumptions, the QRKD estimand can be still interpreted as a weighted

average measurement of the treatment effects among the subpopulation of individuals at the

τ -th conditional quantile of Y given X = x0. In either of these cases, heterogeneity in values of

the QRKD estimand across quantiles τ can be used as evidence for heterogeneity in treatment

effects. Therefore, we can still conduct statistical inference for heterogeneous treatment effects

based on the weak convergence results obtained in Section 3 and Appendix B.

A.2 Causal Interpretation of the Fuzzy QRKD

While Appendix A.1 focuses on the case of sharp QRKD, our identification result (Theorem

2) can be extended to the case of fuzzy QRKD in an analogous manner to the corresponding

extension in Card, Lee, Pei and Weber (2016). In the current appendix section, we show the
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causal interpretation for the fuzzy QRKD.

The fuzzy QRKD estimand reads as

limx↓x0
∂
∂x
QY |X(τ | x)− limx↑x0

∂
∂x
QY |X(τ | x)

limx↓x0
∂
∂x
E[B | X = x]− limx↑x0

∂
∂x
E[B|X = x]

,

where B denotes the random variable for the treatment intensity. Unlike the sharp case, it is not

deterministically controlled by the running variable. With the M -dimensional unobservables

ε = (ε1, ε2) decomposed into two parts, we specify the relevant causal structure by

y = g(b, x, ε2)

b = b(x, ε1)

For short-hand notations, we write b1(x, ε1) = ∂
∂x
b(x, ε1) and h(x, ε) = g(b(x, ε1), x, ε2). With

these notations under the above setup, we make the following assumption.

Assumption 7. (a) b( · , ε1) is continuous on X and continuously differentiable on X \ {x0}

for all ε1. (b) There exist an absolutely integrable function that envelops b1(x, ·) for all x. (c)

E[(b1(x+
0 , ε1) − b1(x−0 , ε1))|X = x0] and

∫
(b1(x+

0 , ε1) − b1(x−0 , ε1))dµy,x0(ε) exist and are finite

and nonzero, where µy,x0 is defined as in Section A.1.

Under this assumption, together with the basic assumptions from Section A.1, we obtain

the following causal interpretation of the fuzzy QRKD estimand by similar lines of proof to

those of Theorem 2.

Theorem 3. Suppose that Assumptions 3 (with the modified definitions of g, h and ε in the

current appendix section), 4, 5, 6 and 7 are satisfied. For each y ∈ Y, we have

limx↓x0
∂
∂x
QY |X(τ | x)− limx↑x0

∂
∂x
QY |X(τ | x)

limx↓x0
∂
∂x
E[B | X = x]− limx↑x0

∂
∂x
E[B|X = x]

= Eψy,x0 [g1(b(x0, ε1), x0, ε2)]

where τ = FY |X(y | x0) and ψy,x0(S) =
∫
S(b1(x+0 ,ε1)−b1(x−0 ,ε1))dµy,x0 (ε)∫
(b1(x+0 ,ε1)−b1(x−0 ,ε1))dµy,x0 (ε)

for all S ∈ B(y, x).
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B Bias Reduction and Bandwidth Selection

While the bias term hn,τ
ι′2(N+)−1

2

∫∞
0
u2 ∂

2Q(τ |x+0 )

∂x2
(1, u)′K(u)du in Theorem 1 is asymptotically

negligible, some users may wish to mitigate this finite sample bias by explicitly estimating

it. Such a reduction may make a difference especially when the uderlying quantile regressions

exhibit large curvatures. The second derivative
∂2Q(τ |x+0 )

∂x2
can be consistently estimated by the

one-sided local quadratic quantile smoother

λ̂+(τ) = ι′3 arg min
α,β,λ

n∑
i=1

diK(
xi − x0

bn,τ
)ρτ (yi − α− β(xi − x0)− λ(xi − x0)2),

where bn,τ denotes a bandwidth parameter and ι′3 = (0, 0, 1). The left version of the estimator

λ−(τ) can be similarly defined. To ensure effective bias correction with these estimators, we

first obtain a uniform Bahadur representation for the second derivative estimator λ̂+ in a

similar manner to Lemma 1, and then derive its asymptotic properties in a similar manner to

Theorem 1. To this goal, we introduce additional short-hand notations. Some transformations

of data points are denoted by z̄′i,n,τ = (1, (xi − x0)/bn,τ , (xi − x0)2/b2
n,τ )) and K̄i,n,τ = K((xi −

x0)/bn,τ ). We let N̄+ denote the 3-by-3 matrix with the (i, j)-th element given by µ+
i+j−2 =∫∞

0
ui+j−2K(u)du. With these notations, we make the following assumption.

Assumption 8.

(i) ∂Q3(τ |x)/∂x3 is finite and Lipschitz continuous on T × ([x, x̄] \ {x0}).

(ii) ∂Q3(τ |x+
0 )/∂x3 and ∂Q3(τ |x−0 )/∂x3 are finite and Lipschitz continuous in τ ∈ T .

(iii) The bandwidths satisfy bn,τ = c(τ)bn, where nb5
n → ∞ and bn = o(n−1/7) as n → ∞, and

c(·) is Lipschitz continuous with 0 < c ≤ c(τ) ≤ c <∞ for all τ ∈ T.

(iv) h3
nb
−5
n = o(1).

Following a similar argument to the proof of Lemma 3 by Qu and Yoon (2015b) and using

our Lemma 5 in Appendix D.1 yield the following Bahadur representation result for λ̂+.
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Lemma 2. Under Assumptions 2 and 8 (i)–(iii), we have

√
nb5

n,τ

(
λ̂+(τ)− 1

2

∂Q2(τ |x+
0 )

∂x2

)
=
ι′3(N̄+)−1(nbn,τ )

− 1
2

∑n
i=1(τ − 1{yi ≤ Q(τ |xi)})z̄i,n,τdiK̄i,n,τ

fX(x0)fY |X(Q(τ |x+
0 )|x+

0 )
+ op(1)

uniformly in τ ∈ T . A similar result holds for λ̂−(τ).

With a similar reasoning as the proof of Theorem 1, this representation yields the following

asymptotic property.

Lemma 3. Under Assumptions 2 and 8 (i)–(iii), we have the weak convergence

√
nb5

n,τfX(x0)fY |X(Q(τ |x+
0 )|x+

0 )
(
λ̂+(τ)− 1

2

∂2Q(τ |x+
0 )

∂x2

)
⇒ Ḡ+(τ),

for the zero mean Gaussian process Ḡ+(τ) defined over T with covariance function

E(Ḡ+(r)Ḡ+(s)) = (κ(r)κ(s))−1/2(r ∧ s− rs)ι′3(N̄+)−1T̄+(r, s)(N̄+)−1ι3,

for each r, s ∈ T , where T̄+(r, s) =
∫∞

0

[
1 u

κ(r)
u2

κ(r)2

]′
K( u

κ(r)
)

[
1 u

κ(s)
u2

κ(s)2

]
K( u

κ(s)
)du with

κ(τ) = bn,τ/bn,1/2 = c(τ)
c(1/2)

≥ (c/c) > 0. A similar result follows for λ̂−(τ).

Proof. The proof is almost the same as the proof of Theorem 1. The only difference is that we

now work with the Bahadur representation from Lemma 2 instead of Lemma 1.

With Lemmas 1–3, we can now derive a weak convergence result for the slope estimator β̂+

with a uniform bias correction as follows.

Theorem 4. Under Assumptions 2 and 8, we have

√
nh3

n,τfX(x0)fY |X(Q(τ |x+
0 )|x+

0 )

(
β̂+(τ)− ∂Q(τ |x+

0 )

∂x
− λ̂+(τ)hn,τ ι2(N+)−1

∫ ∞
0

u2(1, u)′K(u)du

)
⇒ G+(τ),

where G+(τ) is defined in Theorem 1.
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Proof. From Lemmas 1 and 2, we can write

√
nh3

n,τfX(x0)fY |X(Q(τ |x+
0 )|x+

0 )

(
β̂+(τ)− ∂Q(τ |x+

0 )

∂x
− λ̂+(τ)hn,τ ι2(N+)−1

∫ ∞
0

u2(1, u)′K(u)du

)
= An,τ +

(
h3
n,τ

b5
n,τ

)1/2

Bn,τ + op(1)

where

An,τ =
ι′2(N+)−1(nhn,τ )

− 1
2

∑n
i=1(τ − 1{yi ≤ Q(τ |xi)})zi,n,τdiKi,n,τ )√

fX(x0)

Bn,τ = −ι
′
3(N̄+)−1(nbn,τ )

− 1
2

∑n
i=1(τ − 1{yi ≤ Q(τ |xi)})z̄i,n,τdiK̄i,n,τ√

fX(x0)

The term An,τ weakly converges to G+ by Theorem 1. Assumptions 2 and 8 imply that the

second term is op(1) since Bn,τ is Op(1) by Lemma 3. Therefore, the desired result follows.

We can define a version of the QRKD estimator with bias reduction by

Q̂RKDBR(τ) =
(β̂+(τ)− β̂−(τ))− hn,τ ι2(λ̂+(τ)(N+)−1R+ − λ̂−(τ)(N−)−1R−)

b′(x+
0 )− b′(x−0 )

,

where R+ =
∫∞

0
u2ūK(u)du and R− =

∫ 0

−∞ u
2ūK(u)du. By similar lines of argument to Corol-

lary 1, we obtain the following weak convergence result for this estimator with bias reduction.

Corollary 3. Under Assumptions 1, 2, 8, we have the weak convergence

√
nh3

n,τ

(
Q̂RKDBR(τ)−QRKD(τ)

)
⇒Y (τ) =

1√
fX(x0)

(
b′(x+

0 )− b′(x−0 )
)[ G+(τ)

fY |X(Q(τ |x+
0 )|x+

0 )
− G−(τ)

fY |X(Q(τ |x−0 )|x−0 )

]
.

Finally, we discuss bandwidth choices. We derive the first-order optimal bandwidths in

terms of mean square errors (MSE) in finite sample.

Corollary 4. Under Assumption 2, the approximate optimal choice of hn,τ is

h∗n,τ =

(
6

(ι′2(N+)−1D+)2

τ(1− τ)ι′2(N+)−1T+(N+)−1ι2
fX(x0)(fY |X(Q(τ |x+

0 )|x+
0 ))2

) 1
5

n−
1
5 ,

where D+ =
∫∞

0
u2 ∂

2Q(τ |x+0 )

∂x2
(1, u)′K(u)du, T+ =

∫∞
0

(1, u)′(1, u)K(u)2du.
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Corollary 5. Under Assumptions 2 and 8, the approximate optimal choice of bn,τ is

b∗n,τ =

(
90

(ι′3(N̄+)−1D̄+)2

τ(1− τ)ι′3(N̄+)−1T̄+(N̄+)−1ι3
fX(x0)(fY |X(Q(τ |x+

0 )|x+
0 ))2

) 1
7

n−
1
7 ,

where N̄ =
∫∞

0
[1, u, u2]′[1, u, u2]K(u)du, T̄+ =

∫∞
0

[1, u, u2]′[1, u, u2]K(u)2du, and D̄+ =
∫∞

0
u3

∂3Q(τ |x+0 )

∂x3
[1, u, u2]′K(u)du.

Proofs are provided in Appendix D.5 and D.6. Note that these two corollaries prescribing

the approximate MSE-optimal bandwidth choices involve unknown densities, fX and fY |X ,

as well as the unknown conditional quantile function Q. We suggest to plug-in preliminary

estimates, f̂X f̂Y |X and Q̂, where bandwidth choices for these preliminary estimates in turn can

be conducted by existing rule-of-thumb or data-driven methods. See Appendix E for a guide

to practice in a bandwidth choice procedure.

C Estimation and Asymptotics for the Fuzzy QRKD

The main text focuses on the sharp QRKD. In this appendix, we provide an estimator for

the fuzzy QRKD estimand developed in Appedix A.2 and its asymptotic properties. The

conditional mean of the policy with errors, b(X, ε1), is written as m(x) = E[b(X, ε1)|X = x].

The regression is also represented by the canonical decomposition B = m(X) + U , where the

error U satisfies E[U |X = 0] = 0 and V (U |X = x) = σ2(x). The fuzzy QRKD estimand can

then be estimated by

̂QRKDf (τ) =
β̂+(τ)− β̂−(τ)

m̂′(x+
0 )− m̂′(x−0 )

,

where the numerator is the same as the one in Section 3. For denominator, we use the local

derivative estimator

m̂′(x+
0 ) =

− 1
nhn

∑n
i=1 biK

′(xi−x0
hn

)di − m̂(x0)
(
− 1

nhn

∑n
i=1K

′(xi−x0
hn

)di
)

1
nhn

∑n
i=1 K(xi−x0

hn
)di
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as in Equation (4.14) of Pagan and Ullah (1999). The left counterpart, m̂′(x−0 ), can be defined

analogously. Notice that we are using hn as the bandwidth for m̂′(x+
0 ). This is reasonable

for the asymptotic argument because, as we will see, m̂′(x+
0 ) and β̂+(τ) have the same rate of

convergence. We make the following assumptions.

Assumption 9.

(i) The partial derivatives of fX , m and
∫
b2fBX(b, · )db exist up to the third order and are

bounded.

(ii) There exists a δ > 0 such that E[|U |2+δ | X = x0] <∞ and
∫
|K(u)|2+δ <∞.

(iii) ‖K ′‖∞ <∞.

(iv) fY XB exists and is continuous in x for each (y, b) ∈ R2. Also, there exists a > 0 such that

|m′(x+
0 )−m′(x−0 )| > a.

(v) There exists an x̄ such that Q(τ |·) is monotone on (x0, x̄).

Theorem 5. Under Assumptions 2, 7, and 9, we have

√
nh3

n( ̂QRKDf (τ)−QRKDf (τ))⇒ (m′(x+
0 )−m′(x−0 ))G∆(τ)− (β+(τ)− β−(τ))G∆(b)

(m′(x+
0 )−m′(x−0 ))2

,

where G∆ is a Gaussian process with mean zero and covariance function as following: for any

given r, s, τ ∈ T and let b stand for the dimension of m̂′(x), Cov(G∆(b), G∆(b)) = σ+
b,b + σ−b,b,

Cov(G∆(τ), G∆(b)) = σ+
τ,b + σ−τ,b, Cov(G∆(r), G∆(s)) = σ+

r,s + σ−r,s, where

σ+
b,b =

σ2(x0)

fX(x0)

∫
K ′(v)2dv,

σ+
τ,b =

ι′2(N+)−1√
c(τ)fX(x0)2fY |X(Q(τ |x+

0 )|x+
0 )

∫
R

∫
R

∫
(0,∞)

(τ − 1{y ≤ Q(τ |x0)})(1, v

c(τ)
)′

×K(
v

c(τ)
)K ′(v)(b− E[b(X, E1)|X = x0])fY XB(y, x0 + hnv, b)dvdydb,

σ+
r,s =

c(1/2)

c(r)c(s)fX(x0)fY |X(Q(r|x+
0 )|x0)fY |X(Q(s|x+

0 )|x0)
(r ∧ s− rs)ι′2(N+)−1T+(r, s)(N+)−1ι2,

and the left counterparts are defined analogously.
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A proof of this theorem is provided in Appendix D.8

D Mathematical Appendix

D.1 Auxiliary Lemmas: Uniform Consistency

In this appendix section, we develeop the following auxiliary results that show uniform conver-

gences of some useful local sample moments over T . While it is stated for right observations

only, we remark that similar results hold for left observations too.

Lemma 4. Under Assumption 2, we have

(i) (nhn,τ )
−1
∑n

i=1Ki,n,τzi,n,τz
′
i,n,τdi

P−→ fX(x0)N+ uniformly in τ ∈ T ;

(ii) (nhn,τ )
−1
∑n

i=1 fY |X(ỹi|xi)Ki,n,τzi,n,τz
′
i,n,τdi

P−→ fY |X(Q(τ |x+
0 )|x+

0 )fX(x0)N+ uniformly in

τ ∈ T with any ỹi lying between Q(τ |xi) and Q(τ |xi) + ei(τ) + (nhn,τ )
−1/2z′i,n,τdiφ̂(τ) for each i;

(iii) (nh3
n,τ )

−1
∑n

i=1
1
2

(
xi−x0
hn,τ

)2
∂2Q(τ |x+0 )

∂x2
h2
n,τzi,n,τKi,n,τdi

P−→ fX(x0)
2

∫∞
0
u2 ∂

2Q(τ |x+0 )

∂x2
(1, u)′K(u)du uni-

formly in τ ∈ T .

Proof. (i): We claim E
[
(nhn,τ )

−1
∑n

i=1Ki,n,τzi,n,τz
′
i,n,τdi

]
→ fX(x0)N+ uniformly in τ ∈ T and

(nhn,τ )
−1
∑n

i=1 Ki,n,τzi,n,τz
′
i,n,τdi

p−→ E
[
(nhn,τ )

−1
∑n

i=1Ki,n,τzi,n,τz
′
i,n,τdi

]
uniformly in τ ∈ T. We

provide a proof for only ι′2(nhn,τ )
−1
∑n

i=1Ki,n,τzi,n,τz
′
i,n,τ ι2 = (nhn,τ )

−1
∑n

i=1

(
xi−x0
hn,τ

)2
K
(
xi−x0
hn,τ

)
.

Similar arguments apply for the other simpler entries.

First note that, by Assumption 2 (i)(a), (i) (b), (iv), and (v),

Eι′2(nhn,τ )
−1

n∑
i=1

Ki,n,τzi,n,τz
′
i,n,τdiι2 =

∫ ∞
0

u2K(u){fX(x0) + f ′(x0)uhn,τ + o(uhn,τ )}du.

Assumption 2 (i) (a) implies that f ′X(x) is bounded in a neighbourhood of x0. Assumption 2 (iv)

and (v) then implies that the right-hand side in the equation above is fX(x0)ι′2N
+ι2 +O(hn,τ ).

Since O(hn,τ ) = O(c(τ)hn) = O(c̄hn), the convergence is uniform in τ ∈ T .
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In the remainder, we show the uniform convergence of the stochastic part using empirical

process theories. For notational convenience, we denote sup{supp(K)} = k̄. Let F = {xi 7→

a2(xi−x0)2

c(τ)3
1{K(a(xi−x0)

c(τ)
) > 0}K

(a(xi−x0)
c(τ)

)
1{xi ≥ x0} : (τ, a) ∈ T × [0,∞)}. Because each f ∈ F

is right continuous under (iv) of Assumption 2, this family is a point-wise measurable class

– see Einmahl and Mason (2005) and Section 2.3 of van der Vaart and Wellner (1996). For

each (τ, a) ∈ {T × [0,∞), xi 7→ a2(xi−x0)2

c(τ)2
1{K(a(xi−x0)

c(τ)
) > 0} is monotone on its support

and bounded by k̄2 under (iv) of Assumption 2. Meanwhile, c(τ) is finite and bounded away

from 0 uniformly in τ ∈ T under (v) of Assumption 2, and so is (1/c(τ)). Therefore, xi 7→

a2(xi−x0)2

c(τ)3
1{K(a(xi−x0)

c(τ)
) > 0} is of bounded variation. xi 7→ 1{xi ≥ x0} is trivially of bounded

variation. Putting them together, we have that each element in F is of bounded variation with

a measurable envelope F (xi) =
k̄2‖K‖∞

c
, where the constant c is from (v) of Assumption 2. Since

F is a finite constant, ‖F‖2 =
( ∫
|F |2fX(xi)dxi

)(1/2)
< ∞. Without loss of generality as it is

bounded, we can assume F ≤ 1. For a function of bounded variation being the difference of

two monotone functions, by Theorem 2.7.5 of van der Vaart and Wellner (1996), there exists a

constant k <∞ such that logN[ ](ε ‖F‖2 ,F , L2(P )) ≤ k
ε‖F‖2

for all ε > 0 and for all probability

measures P supported on supp(X).

Now, for every finite δ, we have J(δ,F , F ) =
∫ δ

0
supP

√
1 + logN[ ](ε ‖F‖2 ,F , L2(P ))dε ≤∫ δ

0

√
1 + k

ε‖F‖2
dε < ∞. Since F ∈ L2(P ), with any constant σ2 ∈ [supf∈F Pf 2, ‖F‖2], δ =

σ/ ‖F‖2 andM = max1≤i≤n F (Xi) <∞, we can apply Theorem 5.2 of Chernozhukov, Chetverikov

and Kato (2014) to obtain

E

[
sup
f∈F

∣∣∣∣ 1√
n

n∑
i=1

f(Xi)−
∫
fdP

∣∣∣∣] ≤ J(δ,F , F ) ‖F‖2 +
‖M‖2 J(δ,F , F )2

δ2
√
n

<∞.
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Multiplying both sides by (
√
nhn)−1 yields

E

[
sup
τ∈T

∣∣∣∣(nhn,τ )−1

n∑
i=1

(xi − x0

hn,τ

)2
K
(xi − x0

hn,τ

)
di − E

[
(nhn,τ )

−1

n∑
i=1

(xi − x0

hn,τ

)2
K
(xi − x0

hn,τ

)
di
]∣∣∣∣]

≤ 1√
nhn,τ

(
J(δ,F , F ) ‖F‖2 +

‖M‖2 J(δ,F , F )2

δ2
√
n

)
.

Thus, the right hand side goes to 0 if nh2
n,τ →∞ as n→∞. Finally, Markov inequality gives

the desired result.

(ii): As in the proof of (i), we show E
[
(nhn,τ )

−1
∑n

i=1 fY |X(ỹi|xi)Ki,n,τzi,n,τz
′
i,n,τdi

]
→

fY |X(Q(τ |x+
0 )|x+

0 )fX(x0)N+ uniformly in τ ∈ T , and then we show (nhn,τ )
−1
∑n

i=1 fY |X(ỹi|xi)

Ki,n,τzi,n,τz
′
i,n,τdi

p−→ E
[
(nhn,τ )

−1
∑n

i=1 fY |X(ỹi|xi)Ki,n,τzi,n,τz
′
i,n,τdi

]
uniformly in τ ∈ T .

First we bound |Q(τ |xi) − (Q(τ |xi) + ei(τ) + (nhn,τ )
−1/2z′i,n,τ φ̂(τ))|1{K(xi−x0

hn,τ
) > 0} =

|ei(τ) + (nhn,τ )
−1/2z′i,n,τ φ̂(τ)|1{K(xi−x0

hn,τ
) > 0}. Following part 1 of the proof of Theorem 1 in

Qu and Yoon (2015a), and using part (i) of our Lemma 4, we have φ̂(τ) ≤
√

log nhn with

probability approaching one uniformly in τ ∈ T . Therefore, under Assumption 2 (iv) and (v),

we have (nhn,τ )
−1/2z′i,n,τ φ̂(τ)1{K(xi−x0

hn,τ
) > 0} = Op(

√
lognhn
nhn

) uniformly in i and τ ∈ T .

We next bound ei(τ)1{K(xi−x0
hn,τ

) > 0} = {
[
Q(τ |x+

0 )+(xi−x0)
∂Q(τ |x+0 )

∂x

]
−Q(τ |xi)}1{K(xi−x0

hn,τ
) >

0}. By the mean value expansion of Q(τ |xi) at x = x0 + δ and let x → x+
0 , we have

ei(τ)1{K(xi−x0
hn,τ

) > 0} = [
∂Q(τ |x+0 )

∂x
− ∂Q(τ |x̃)

∂x
](xi−x0)1{K(xi−x0

hn,τ
) > 0} ≤M ‖(τ, x0)− (τ, x̃)‖ (xi−

x0)1{K(xi−x0
hn,τ

) > 0} ≤ M ‖(maxT, x0)− (minT, x̄)‖O(hn) = O(hn) uniformly in τ ∈ T for

some constant M by Lipschitz continuity and properties of bandwidth from Assumption 2 (iii)

(a), (iii) (b) and (iv).

Similarly, we can bound |Q(τ |x+
0 ) − Q(τ |xi)|1{K(xi−x0

hn,τ
) > 0}. By the joint Lipschitz

continuity from Assumption 2 (iii)(a)(b), we have |Q(τ |x+
0 ) − Q(τ |xi)|1{K(xi−x0

hn,τ
) > 0} ≤

M ‖(x0, τ)− (xi, τ)‖ = O(hn) uniformly in τ ∈ T for some constant M .

Combing the auxiliary results above, we have |Q(τ |xi) − ỹi|1{K(xi−x0
hn,τ

) > 0} ≤ |Q(τ |xi) −
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(Q(τ |xi)+ei(τ)+(nhn,τ )
−1/2z′i,n,τ φ̂(τ))|1{K(xi−x0

hn,τ
) > 0} = Op(

√
lognhn
nhn

)+O(hn) and |Q(τ |x+
0 )−

Q(τ |xi)|1{K(xi−x0
hn,τ

) > 0} ≤ 1} = O(hn) uniformly in i and in τ ∈ T . By the triangle inequality,

|Q(τ |x+
0 )− ỹi|1{K(xi−x0

hn,τ
) > 0} ≤ Op(

√
lognhn
nhn

) +O(hn) uniformly in i and τ ∈ T .

Using Assumption 2 (i) (a), (i) (b), (ii) (a) and (iv) along with the asymptotic bounds

obtained above,

Eι′2(nhn,τ )
−1

n∑
i=1

fY |X(ỹi|xi)Ki,n,τzi,n,τz
′
i,n,τdiι2

=fY |X(Q(τ |x+
0 )|x+

0 )fX(x0)ι′2N
+ι2 +Op((log nhn/nhn)1/2) +O(hn)

holds uniformly in τ ∈ T . Convergence of the other entries follows similarly.

For the second part, let F = { xi 7→
a2(xi−x0)2fY |X(b|xi)

c(τ)3
1{K

(
a(xi−x0)
c(τ)

)
> 0}K

(
a(xi−x0)
c(τ)

)
1{xi ≥

x0} : (τ, a, b) ∈ T × [0,∞) × [inf(τ,x)∈T×(x0,x̄] Q(τ |x), sup(τ,x)∈T×(x0,x̄] Q(τ |x)] }. Notice that

the interval of infimum and supremum is bounded by Assumption 2 (iii) (b). An argument

similar to the proof of (i) shows that each element in F is of bounded variation with a

measurable envelope F (xi) =
k̄2‖K‖∞ sup(y,x) fY |X

c
, where the supremum is taken over (x, y) ∈

(x0, x̄] × [inf(τ,x)∈T×(x0,x̄] Q(τ |x), sup(τ,x)∈T×(x0,x̄] Q(τ |x)], under parts (ii), (iv) and (v) of As-

sumption 2. Applying the same inequality from Chernozhukov, Chetverikov and Kato (2014)

provides a bound for expectation that goes to zero if nh2
n → 0. Markov inequality then gives

the desired result.

(iii): We focus on the entry ι′2(nh3
n,τ )

−1
∑n

i=1
1
2

(
xi−x0
hn,τ

)2
∂2Q(τ |x+0 )

∂x2
h2
n,τzi,n,τKi,n,τdiι2. Simi-

lar arguments apply to the other entries. The process is similar to (i). The deterministic

part can be shown by computing the expectation. For the stochastic part, let F = {xi 7→

a3(xi−x0)3

c(τ)4
∂2Q(τ |x+0 )

∂x2
1{K(a(xi−x0)

c(τ)
> 0}K

(
a(xi−x0)
c(τ)

)
1{xi ≥ x0} : (τ, a) ∈ T × [0,∞)} is a VC type

class with a measurable envelope F (xi) =
k̄3m‖K‖∞

c
where m = supT

∂2Q(τ |x+0 )

∂x2
< ∞ under As-

sumption 2 (iii)(b) and T is compact. Then the same uniform consistency argument applies
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under parts (iii) (a) (b), (iv) and (v) of Assumption 2. The same inequality from Chernozhukov,

Chetverikov and Kato (2014) and Markov inequality give the desired result.

Following similar reasoning, we also have the corresponding results for uniform convergences

of some local moments for local quadratic regression.

Lemma 5. Under Assumption 2, 8, we have

(i) (nbn,τ )
−1
∑n

i=1 K̄i,n,τ z̄i,n,τ z̄
′
i,n,τdi

P−→ fX(x0)N̄+ uniformly in τ ∈ T ;

(ii) (nbn,τ )
−1
∑n

i=1 fY |X(ỹi|xi)K̄i,n,τ z̄i,n,τ z̄
′
i,n,τdi

P−→ fY |X(Q(τ |x+
0 )|x+

0 )fX(x0)N̄+ uniformly in τ ∈

T with any ỹi lying between Q(τ |xi) and Q(τ |xi) + ēi(τ) + (nbn,τ )
−1/2z̄′i,n,τdi

ˆ̄φ(τ) for each i,

where ˆ̄φ(τ) =
√
nhn,τ [α̂

+(τ) − Q(τ |x+
0 ), bn,τ (β̂

+(τ) − ∂Q(τ |x+0 )

∂x
), b2

n,τ (λ̂
+(τ) − 1

2

∂2Q(τ |x+0 )

∂x2
)]′ and

ēi(τ) = [Q(τ |x+
0 ) + (xi − x0)

∂Q(τ |x+0 )

∂x
+ (xi − x0)2 ∂

2Q(τ |x+0 )

∂x2
]−Q(τ |xi) ;

(iii) (nb4
n,τ )

−1
∑n

i=1
1
3!

(
xi−x0
bn,τ

)3
∂3Q(τ |x+0 )

∂x2
b3
n,τ z̄i,n,τK̄i,n,τdi

P−→ fX(x0)
3!

∫∞
0
u3 ∂

2Q(τ |x+0 )

∂x2
[1, u, u2]′K(u)du

uniformly in τ ∈ T .

D.2 Proof of Lemma 1

Proof. For this lemma, we mostly follow the proof of Theorem 1in Qu and Yoon (2015a). The

major difference is that we focus on the second coordinate of φ̂ instead of the first one. By step

1 of the proof of Theorem 1 in Qu and Yoon (2015a) which is applicable under parts (i), (ii) (a),

(ii) (b), (iii) (a), (iii) (b), (iv) and (v) of our Assumption 2, we have supτ∈T ‖φ̂(τ)‖ ≤ (log nhn)1/2

with probability approaching one as n→∞. Asymptotically, therefore, we only need to focus

on studying the behavior of the subgradient

(subgradient) =
n∑
i=1

{τ − 1(u0
i (τ) ≤ ei(τ) + (nhn,τ )

−1/2z′i,n,τ φ̂(τ))}zi,n,τKi,n,τdi
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on the set Φn = {(τ, φ(τ)) : τ ∈ T, ‖φ(τ)‖ ≤ log1/2(nhn)}, where u0
i (τ) = yi − Q(τ |xi) and

ei(τ) =
[
Q(τ |x+

0 ) + (xi − x0)
∂Q(τ |x+0 )

∂x

]
−Q(τ |xi). Denote

Sn(τ, φ(τ), ei(τ)) = (nhn)−1/2

n∑
i=1

{P ((u0
i (τ) ≤ ei(τ) + (nhn,τ )

−1/2z′i,n,τφ(τ))|xi)

−1(u0
i (τ) ≤ ei(τ) + (nhn,τ )

−1/2z′i,n,τφ(τ))}zi,n,τKi,n,τdi.

Theorem 2.1 of Koenker (2005) and Assumption 2 (iv) imply (nhn)−1/2 · (subgradient) =

Op((nhn)−1/2) uniformly in τ ∈ T.

Following Qu and Yoon (2015a), we can rewrite the subgradient (scaled by (nhn)−1/2) as

(nhn)−1/2

n∑
i=1

{τ − 1(u0
i (τ) ≤ ei(τ) + (nhn,τ )

−1/2z′i,n,τ φ̂(τ))}zi,n,τKi,n,τdi

={Sn(τ, φ̂(τ), ei(τ))− Sn(τ, 0, ei(τ))}+ {Sn(τ, 0, ei(τ))− Sn(τ, 0, 0)}+ Sn(τ, 0, 0)

+(nhn)−1/2

n∑
i=1

{τ − P ((u0
i (τ) ≤ ei(τ) + (nhn,τ )

−1/2z′i,n,τ φ̂(τ)|xi)}zi,n,τKi,n,τdi

The differences inside the first two pairs of curly brackets are of order op(1) on the set Φn by

Lemma B5 of Qu and Yoon (2015a), which is applicable under parts (i), (ii) (a), (ii) (b), (iii)

(a), (iii) (b), (iv) and (v) of our Assumption 2. The Sn(τ, 0, 0) term is Op(1) under Assumption

2 (i) (a), (iv), (v). The conditional probability in the last term is a conditional CDF of Y |X.

Applying the first order mean value expansion to the last term at y = Q(τ |xi) yields

(nhn)−1/2

n∑
i=1

{τ − P ((u0
i (τ) ≤ ei(τ) + (nhn,τ )

−1/2z′i,n,τ φ̂(τ)|xi)}zi,n,τKi,n,τdi

=− (nhn)−1/2

n∑
i=1

fY |X(ỹi|xi)ei(τ)zi,n,τKi,n,τdi

− (nhn)−1/2(nhn,τ )
−1/2

( n∑
i=1

fY |X(ỹi|xi)Ki,n,τzi,n,τz
′
i,n,τdi

)
φ̂(τ),

where ỹi lies between Q(τ |xi) and Q(τ |xi) + ei(τ) + (nhn,τ )
−1/2z′i,n,τdiφ̂(τ).

Taking the above auxiliary results together, we can now rewrite subgradient (scaled by
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(nhn)−1/2) as

Sn(τ, 0, 0)− (nhn)−1/2

n∑
i=1

fY |X(ỹi|xi)ei(τ)zi,n,τKi,n,τdi

− (nhn)−1/2(nhn,τ )
−1/2

( n∑
i=1

fY |X(ỹi|xi)Ki,n,τzi,n,τz
′
i,n,τdi

)
φ̂(τ).

Recall that this subgradient (scaled by (nhn)−1/2) is op(1) uniformly in τ ∈ T .

By Lemma 4 (ii), (nhn,τ )
−1
∑n

i=1 fY |X(ỹi|xi)Ki,n,τzi,n,τz
′
i,n,τdi

P−→ fY |X(Q(τ |x+
0 )|x+

0 )fX(x0)N+

uniformly in τ ∈ T and so

Sn(τ, 0, 0)− (nhn)−1/2

n∑
i=1

fY |X(ỹi|xi)ei(τ)zi,n,τKi,n,τdi

=(
hn,τ
hn

)1/2
[
fY |X(Q(τ |x+

0 )|x+
0 )fX(x0)N+ + op(1)

]
φ̂(τ) + op(1)

uniformly in τ ∈ T . Since N+ is positive definite and fY |X(Q(τ |x+
0 )|x+

0 )fX(x0) > 0 by parts

(i), (ii) (b) and (iv) of Assumption 2, we obtain

φ̂(τ) =
(
fX(x0)fY |X(Q(τ |x+

0 )|x+
0 )N+ + op(1)

)−1×[(
hn
hn,τ

)1/2

Sn(τ, 0, 0)− (nhn,τ )
−1/2fY |X(Q(τ |x+

0 )|x+
0 )

n∑
i=1

ei(τ)zi,n,τKi,n,τdi + op(1)

]
(D.1)

uniformly in τ ∈ T .

Under Assumption 2 (iii) (a), (iii) (b) the Taylor expansion and ei(τ) = [Q(τ |x+
0 ) + (xi −

x0)
∂Q(τ |x+0 )

∂x
]−Q(τ |xi) suggest that for any xi ≥ x0 such that (xi−x0)/hn,τ ∈ supp(K), we have

ei(τ) = −1

2

(xi − x0

hn,τ

)2∂2Q(τ |x+
0 )

∂x2
h2
n,τ + o(h2

n,τ )

uniformly in τ ∈ T . By Lemma 4 (iii), we have −(hn,τ )
−2(nhn,τ )

−1
∑n

i=1 ei(τ)zi,n,τKi,n,τdi
P−→

fX(x0)
2

∫∞
0
u2 ∂

2Q(τ |x+0 )

∂x2
(1, u)′K(u)du uniformly in τ ∈ T . Substitute this and Sn(τ, 0, 0) with its
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definition into equation (D.1), we have

φ̂(τ) =
(N+)−1(nhn,τ )

− 1
2

∑n
i=1(τ − 1{yi ≤ Q(τ |xi)})zi,n,τKi,n,τdi)

fX(x0)fY |X(Q(τ |x+
0 )|x+

0 )

+ (nh5
n,τ )

1
2

(N+)−1

2

∫ ∞
0

u2∂
2Q(τ |x+

0 )

∂x2
(1, u)′K(u)du+ op(1)

uniformly in τ ∈ T.

D.3 Proof of Theorem 1

Proof. By Theorem 18.14 in van der Vaart (1998), it suffices to show the finite dimensional

convergence in distribution and the tightness. The tightness follows from the boundedness

assumptions of fX and fY |X , and by Lemma B3 in Qu and Yoon (2015a) which is applicable

under our Assumptions 2 (i), (ii) (a), (ii) (b), (iii) (a), (iii) (b), (iv) and (v). Specifically, the

denominator is bounded away from zero by Assumption 2 (i), and the numerator is tight by

their lemma.

For finite dimensional convergence in distribution, We introduce a couple of additional

short-hand notations. For each τ ∈ T , let

Z+
n,i(τ) =

1√
n

ι′2(N+)−1(τ − 1{yi ≤ Q(τ |xi)})zi,n,τdiKi,n,τ√
fX(x0)hn,τ

.

For any finite set {τ1, ..., τk} ⊂ T of quantiles, we write W+
n,i(τ1, ..., τk) = (Z+

n,i(τ1), ..., Z+
n,i(τk))

′.

Note that

E

(
ι′2(N+)−1(r − 1{yi ≤ Q(r|xi)})zi,n,rdiKi,n,r√

fX(x0)hn,r

)
=E

(
ι′2(N+)−1E[(r − 1{yi ≤ Q(r|xi)})|X]zi,n,rdiKi,n,r√

fX(x0)hn,r

)
=E

(
ι′2(N+)−1(r − r))zi,n,rdiKi,n,r√

fX(x0)hn,r

)
= 0

holds for each n ∈ N and r ∈ T . Since it is n-invariant, let
∑n

i=1 CovW
+
n,i(τ1, ..., τk) = Σ{τ1,...,τk}.

The entry of the covariance matrix Σ{τ1,...,τk} corresponding to the pair r, s ∈ T of quantiles is
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given by

E

(
ι′2(N+)−1(r − 1{yi ≤ Q(r|xi)})zi,n,rdiKi,n,r√

fX(x0)hn,r

)(
ι′2(N+)−1(s− 1{yi ≤ Q(s|xi)})zi,n,sdiKi,n,s√

fX(x0)hn,s

)′
=E

ι′2(N+)−1zi,n,rKi,n,sKi,n,sz
′
i,n,s(N

+)−1ι2di(r ∧ s− rs)
fX(x0)

√
hn,rhn,s

=(κ(r)κ(s))−1/2(r ∧ s− rs)ι′2(N+)−1

∫ ∞
0

 1

u
κ(r)

K(
u

κ(r)
)

[
1 u

κ(s)

]
K(

u

κ(s)
)du(N+)−1ι2.

We remark that the last line is invariant from hn,τ because they cancel out through change of

variables and by hn,τ = c(τ)hn in Assumption 2 (v). This is finite because Assumption 2 (iv)

and (v) imply |
∫∞

0
ukK( u

κ(r)
)K( u

κ(s)
)du| ≤ ‖K‖∞

∫∞
0
ukK( u

κ(r)
)du| < ∞ for k = 0, 1, 2 and all

other parts are finite.

Secondly, we show that the moment condition of Lindeberg-Feller is satisfied. Write (N+)−1 =

[ a bb c ], fix any finite set {τ1, ..., τk} ⊂ T of quantiles. Under Assumptions 2 (i)(a)(b), (iv) and

(v), we have for any ε > 0,

n∑
i=1

E
∥∥W+

n,i(τ1, ..., τk)
∥∥2
1(
∥∥W+

n,i{τ1, ..., τk)
∥∥ > ε}

=
n∑
i=1

E

[ k∑
j=1

Z+
n,i(τj)

21{
k∑
j=1

Z+
n,i(τj)

2 > ε2}
]

=
n∑
i=1

E

[ k∑
j=1

(
ι′2(N+)−1(r − 1{yi ≤ Q(τj|xi)})zi,n,τjdiKi,n,τj√

fX(x0)nhn,τj

)2

× 1{
k∑
j=1

(
ι′2(N+)−1(r − 1{yi ≤ Q(τj|xi)})zi,n,τjdiKi,n,τj√

fX(x0)nhn,τj

)2

> ε2}
]

≤E
[
k sup
τ∈T

( [b+ c
(
xi−x0
hn,τ

)
]2diK

(
xi−x0
hn,τ

)2

fX(x0)hn,τ

)
1{k sup

τ∈T

( [b+ c
(
xi−x0
hn,τ

)
]2diK

(
xi−x0
hn,τ

)2

fX(x0)nhn,τ

)
> ε2}

]
≤
∫ ∞

0

m

(
[b+ ck̄]2 ‖K‖∞K(u)

)
1{ [b+ ck̄]2 ‖K‖2

∞
nhn

> cε2/m}
(
fX(x0) +O(uhn)

)
du

=

∫ ∞
0

m1K(u)1{ 1

nhn
> m2ε

2}dufX(x0) +O(hn)
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for some finite non-negative constant m, m1, m2 and k̄ = sup supp(K). By applying Dominated

Convergence Theorem, the last equation goes to zero since nhn →∞ implies the indicator goes

to zero and all other terms are finite.

Therefore, by Lindeberg-Feller’s Central Limit Theorem, we have[√
nh3n,τfX(x0)fY |X(Q(τ |x+0 )|x+0 )

(
β̂+(τ)− ∂Q(τ |x+0 )

∂x
− hn,τ

ι′2(N+)−1

2

∫ ∞
0

u2
∂2Q(τ |x+0 )

∂x2
(1, u)′K(u)du

)]
τ∈{τ1,...,τk}

=

[
√
n
ι′2(N+)−1(hn,τ )−

1
2

∑n
i=1(τ − 1(yi ≤ Q(τ |xi)))dizi,n,τKi,n,τ )

n
√
fX(x0)

]
τ∈{τ1,...,τk}

d−→ N(0,Σ{τ1,...,τk})

as n→∞.

D.4 Proof of Corollary 2

Proof. The first part of the corollary follows immediately from Corollary 1. The second part

follows by an application of the functional delta method (van der Vaart,1998; Theorem 20.8).

It suffices to show that the linear functional φ : g 7→ g −
∫
T
gdτ is Hadamard differentiable at

QRKD tangentially to L∞m (T ). The linearity of φ′QRKD is trivial and the continuity is implied

by its boundedness as
∥∥φ′QRKD(g)

∥∥ ≤ ‖g‖ |1 + diam(T )| for all g ∈ L∞m (T ). We want to show

that for gn → g ∈ L∞m (T ) and tn → 0

φ(QRKD + tngn)− φ(QRKD)

tn
− φ′QRKD(g)→ 0 in L∞m (T ).

The left hand side is equal to gn−
∫
T
gndτ −φ′QRKD(g). By the bounded convergence theorem,

it converges to 0.

D.5 Proof of Corollary 4

Proof. By Theorem 1, we have

MSE(h) =
h2

4

(
ι′2(N+)−1D+

)2

+
τ(1− τ)ι′2(N+)−1T+(N+)−1ι2
nh3fX(x0)(fY |X(Q(τ |x+

0 )|x+
0 ))2

+ op(
1

nh3
).

By the first order condition with the two leading terms, we obtain the desired result.
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D.6 Proof of Corollary 5

Proof. From Lemma 3, we have

MSE(b) =
b2

36

(
ι′3(N̄+)−1D̄+

)2

+
τ(1− τ)ι′3(N̄+)−1T̄+(N̄+)−1ι3
nb5fX(x0)(fY |X(Q(τ |x+

0 )|x+
0 ))2

+ op(
1

nb5
).

By the first order condition with the two leading terms, we obtain the desired result.

D.7 Proof of Theorem 2

Proof. The first result that µy,x is a probability measure on ∂V (y, x) follows from Lemma 2 of

Sasaki (2015) under Assumption 4. Next, by Lemma 1 of Sasaki (2015) under Assumptions 3

and 4, the QPD ∂
∂x
QY |X(τ | x) exists and

∂

∂x
QY |X(τ | x) =

∫
∂V (y,x)

hx(x,ε)
‖∇εh(x,ε)‖

fε|X(ε|x)·Mπ(M−1)/2

2M−1Γ(M+1
2

)
dHM−1(ε)−

∫
V (y,x)

∂
∂x
fε|X(ε | x)dmM(ε)∫

∂V (y,x)
1

‖∇εh(x,ε)‖
fε|X(ε|x)·Mπ(M−1)/2

2M−1Γ(M+1
2

)
dHM−1(ε)

= Eµy,x [hx(x, ε)]− A(y, x),

where Γ is the Gamma function and A is defined by

A(y, x) :=

∫
V (y,x)

∂
∂x
fε|X(ε | x)dmM(ε)∫

∂V (y,x)
1

‖∇εh(x,ε)‖
fε|X(ε|x)·Mπ(M−1)/2

2M−1Γ(M+1
2

)
dHM−1(ε)

Note that g2 = ∂g
∂x

is continuous in x by Assumption 3 (i). Also, µy,x(ε) is continuous in x

for each fixed y according to parts (i), (ii) and (iii) of Assumption 3. Furthermore, Assumption

3 (i), (ii), (iii) and (iv) imply that A(y, x) is well-defined and is continuous in x for all y ∈ Y .

Therefore, applying the dominated convergence theorem under Assumptions 5 and 6 yields

lim
x→x+0

∂

∂x
QY |X(τ | x) = lim

x→x+0

∫
{hx(x, ε)}dµy,x(ε)− lim

x→x+0
A(y, x)

=

∫
lim
x→x+0

∂

∂x
{g(b(x), x, ε)}dµy,x(ε)− A(y, x0)

=

∫
lim
x→x+0

{g1(b(x), x, ε)b′(x) + g2(b(x), x, ε)}dµy,x(ε)− A(y, x0)

=

∫
{g1(b(x0), x0, ε)b

′(x+
0 ) + g2(b(x0), x0, ε)}dµy,x0(ε)− A(y, x0)
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Similarly, taking the limit from the left, we have

lim
x→x−0

∂

∂x
QY |X(τ | x) =

∫
{g1(b(x0), x0, ε)b

′(x−0 ) + g2(b(x0), x0, ε)}dµy,x0(ε)− A(y, x0).

Taking the difference of the right and left limits eliminates
∫
g2(b(x0), x0, ε)dµy,x0(ε) −

A(y, x0), and thus produces

lim
x→x+0

∂

∂x
QY |X(τ | x)− lim

x→x−0

∂

∂x
QY |X(τ | x) = [b′(x+

0 )− b′(x−0 )]Eµy,x0 [g1(b(x0), x0, ε)] .

Finally, note that Assumption 1 has b′(x+
0 )− b′(x−0 ) 6= 0, and hence we can divide both sides of

the above equality by b′(x+
0 )− b′(x−0 ). This gives the desired result.

D.8 Proof of Theorem 5

Proof. From the proof of theorem 4.2 of Pagan and Ullah (1999),

√
nh3

n(m̂′(x+
0 )− E[m̂′(X)|X = x+

0 ]) =
n∑
i=1

K ′n,iuidi√
nhnfX(x0)

+ op(1)

where K ′n,i = ∂
∂v
K(v)

∣∣
v=

xi−x0
hn

. We denote T+
n,i =

K′n,iuidi√
nhnfX(x0)

. We define additional shorthand

notations for this proof: let W+
n,i(τ1, ...τk) = (T+

n,i, Z
+
n,i(τ1), ..., Z+

n,i(τk)), where Z+
n,i(τ) is defined

as in the proof of Theorem 1. Define

H+
n = (

√
nh3

n(m̂′(x+
0 )− E[m̂′(X)|X = x+

0 ]), {
√
nh3

n(β̂+(τ)− β+
n (τ)) : τ ∈ T}) = (b+

n , A
+
n ),

where β+
n (τ) =

∂Q(τ |x+0 )

∂x
+ hn,τ

ι′2(N+)−1

2

∫∞
0
u2 ∂

2Q(τ |x+0 )

∂x2
(1, u)′K(u)du. We also write A+

n (τ) for√
nh3

n,τ (β̂
+(τ)− β+

n (τ)).

First we show the finite dimensional convergence of the process. The covariance of any

combination of coordinates that does not involve b+
n is the same as the one in Theorem 1.
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Under Assumption 9 (iv), (v), the covariance of a coordinate of A+
n with τ ∈ T and b+

n is

n∑
i=1

Cov

(
ι′2(N+)−1

∑n
i=1(τ − 1{yi ≤ Q(τ |xi)})zi,n,τKi,n,τdi)√
nhn,τfX(x0)fY |X(Q(τ |x+

0 )|x+
0 )

,
K ′i,nui√
nhnfX(x0)

)

→ σ+
τ,b =

ι′2(N+)−1√
c(τ)fX(x0)2fY |X(Q(τ |x+

0 )|x+
0 )

∫
R

∫
R

∫
(0,∞)

(τ − 1{y ≤ Q(τ |x0)})(1, v

c(τ)
)′

×K(
v

c(τ)
)K ′(v)(b− E[b(X, E1)|X = x0])fY XB(y, x0, b)dvdydb

as n → ∞ by the dominated convergence theorem. This is finite under Assumption 9 (ii).

Finally, as in Theorem 4.2 of Pagan and Ullah (1999), the asymptotic variance of b+
n is

σ2(x0)
fX(x0)

∫
K ′(v)2dv < ∞. Thus the covariance matrix is finite for any given finite dimensions

of A+
n .

We now show that the moment condition of Lindeberg-Feller is satisfied. For any finite set

{τ1, ..., τk} ⊂ T of quantiles. Under Assumptions 2 (i) (a), (i) (b), (iv), and (v), and Assumption

9 (iii), we have

n∑
i=1

E
∥∥W+

n,i(τ1, ..., τk)
∥∥2
1(
∥∥W+

n,i{τ1, ..., τk)
∥∥ > ε}

=
n∑
i=1

E

[
(
k∑
j=1

Z+
n,i(τj)

2 + (T+
n,i)

2)1{
k∑
j=1

Z+
n,i(τj)

2 + (T+
n,i)

2 > ε2}
]

≤
∫

(m1K(v) +m2K
′(v)u2)1{u2 > nhnε

2 +m3}dFUX(u, x0 + vhn)

For some constants, m1, m2 and m3, for any ε > 0 given a fixed n. Applying Fubini’s theorem

under Assumptions 2 (iv) and Assumption 9 (iii), the last line above becomes

∫
(0,∞)

∫
R
(m1K(v) +m2K

′(v)u2)1{u2 > nhnε
2 +m3}dFU |X(u|x0 + vhn)fX(x0 + vhn)dv

We denote the first and second terms of the above expression by (1) and (2), respectively.
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Hölder’s inequality implies for any 1 < p, q <∞ such that 1
p

+ 1
q

= 1,

(2) ≤
∫

(0,∞)

m2K(v)E[U2p|X = x0 + vhn]1/pP (U2 > nhnε
2 +m3|X = x0 + vhn)1/qfX(x0 + vhn)dv

≤ess supzE[U2p|Z]1/p
(∫

(0,∞)

m1K(v)P (U2 > nhnε
2 +m3|X = x0 + vhn)1/qfX(x0)dv +O(hn)

)
Assumption 9 (ii) implies the essential supremum term is finite. Since P (U2 > nhnε

2 +m3|X =

x0 + vhn)→ 0 as n→∞, applying the dominated convergence theorem gives us that (2)→ 0

as n → ∞. It can be shown that (1) → 0 following a similar reasoning. This shows that the

moment condition of Lindeberg-Feller is satisfied. Together with the covariance condition, we

have established the finite dimensional convergence of the process H+
n .

The tightness of all but m̂′(x+
0 ) dimensions is shown by the proof of Theorem 1 and m̂′(x+

0 )

is trivially tight since it’s one dimensional. By Lemma 1.4.3 of van der Vaart and Wellner

(1996), H+
n , the product of them, is tight. Applying theorem 18.14 of van der Vaart (1998), we

now have H+
n ⇒ G+

f , a Gaussian process with zero mean and covariance function as specified

above. Using a similar argument, we also have H−n ⇒ G−f .

Since H+
n and H−n are based on an i.i.d. sample from two different sides of the kink,

continuous mapping theorem implies

√
nh3

n

(m̂′(x+
0 )− m̂′(x−0 )

β̂+(τ)− β̂−(τ)


τ∈T

−

m′(x+
0 )−m′(x−0 )

β+(τ)− β−(τ)


τ∈T

)
⇒ G∆ = G+

f −G
+
f

Finally, to derive the asymptotic distribution of ̂QRKDf (τ), we apply the uniform version of

functional delta method – see theorem 3.9.5 of van der Vaart and Wellner (1996). This version

required here because β+
n (τ) − β−n (τ) depends on n. Note β+(τ) = limn β

+
n (τ) and β−(τ) =

limn β
−
n (τ), the existence is implied by (iii) and (v) of Assumption 2. Define Φ : L∞m (T ) ×

[a,∞) → L∞m (T ), a > 0, by Φ(A(τ), b) = A(τ)
b

. We show that Φ Hadamard differentiable at

(A, b) tangentially to L∞m (T )×(a,∞). Since for any (gn, cn) ∈ L∞m (T )× [a,∞) such that gn → g

43



and cn → c and any tn → 0,

Φ(A+ tngn, b+ tncn)− Φ(A, b)

tn
→ Φ′(A,b)(g, c) =

bg − cA
b2

.

The linearity of Φ′(A,b)(g, c) is obvious, and its continuity is implied by its boundedness as∥∥∥Φ′(A,b)(g, c)
∥∥∥ ≤ M max{‖g‖∞ , |c|} = M ‖(g, c)‖. Since such Hadamard derivative exists at

every (A, b) ∈ L∞m (T )× (a,∞), Φ is uniformly differentiable.

By the uniform functional delta method, we have the weak convergence result for the fuzzy

QRKD estimator

√
nh3

n( ̂QRKDf (τ)−QRKDf (τ))⇒ (m′(x+
0 )−m′(x−0 ))G∆(τ)− (β+(τ)− β−(τ))G∆(b)

(m′(x+
0 )−m′(x−0 ))2

,

as desired.

E Practical Recipe on Bandwidth Choice

This section provides a guide to practice in bandwidth choices. Corollaries 4 and 5 prescribe

the approximate MSE-optimal bandwidth choices. The two corollaries suggest

h∗n,τ =

(
6

(ι′2(N+)−1D+)2

τ(1− τ)ι′2(N+)−1T+(N+)−1ι2
fX(x0)(fY |X(Q(τ |x+

0 )|x+
0 ))2

) 1
5

n−
1
5 ,

where D+ =
∫∞

0
u2 ∂

2Q(τ |x+0 )

∂x2
(1, u)′K(u)du, and

b∗n,τ =

(
90

(ι′3(N̄+)−1D̄+)2

τ(1− τ)ι′3(N̄+)−1T̄+(N̄+)−1ι3
fX(x0)(fY |X(Q(τ |x+

0 )|x+
0 ))2

) 1
7

n−
1
7 ,

where N̄ =
∫∞

0
[1, u, u2]′[1, u, u2]K(u)du, T̄ =

∫∞
0

[1, u, u2]′[1, u, u2]K(u)2du, and D̄+ =
∫∞

0
u3

∂3Q(τ |x+0 )

∂x3
[1, u, u2]′K(u)du. Qu and Yoon (2015a) use a very large value for b∗n,τ , which is effec-

tively assuming to have ∂3Q
∂x3

= 0. Once we compute λ̂+(τ) based on the choice of b∗n,τ , we can

in turn substitute 2λ̂+(τ) for
∂2Q(τ |x+0 )

∂x2
in the definition of D+ in order to choose h∗n,τ .
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In the above formulas, the unknown densities, fX and fY |X , and the unknown conditional

quantile function Q need to be replaced by the respective non-parametric estimates f̂X , f̂Y |X

and Q̂. Bandwidth choices for the preliminary estimates, f̂X f̂Y |X and Q̂, in turn can be

conducted by existing rule-of-thumb or data-driven methods. Because we are only using the

observations to right of the kink point, we confine ourselves to the observations {(yj, xj)}j∈I+

with I+ = {j ∈ {1, 2, ...n} : xj ≥ x0}. Write n+ = |I+|, the number of observations to the right

of the kink. Write the bandwidths used for estimating f̂X f̂Y |X and Q̂ as hxn+ , (h̄yn+ , h̄xn+)′ and

hqn+,τ , respectively.

First, for the standard kernel density estimator, hxn may be obtained by minimizing approxi-

mate mean integrated square errors: hxn =
( ∫

u2K(u)du
)−2/5( ∫

K(u)2du
)1/5( 3

8
√
π
σ−5
X

)−1/5
n−1/5,

where σX can be estimated by sample variance of X. See session 3.3 and 3.4 of Silverman’s

(1986). Second, for the standard kernel conditional density estimator, Bashtannyk and Hynd-

man (2001) suggest that, based on normal approximation of the marginal of X and heteroskeda-

sicity of Y |X, (h̄yn+ , h̄xn+)′ may be obtained by

(h̄yn+ , h̄
x
n+)′ =

(( d2v

2.85
√

2πσ5
X+

)1/4

h̄xn+ ,
( 32R2(K)σ5

Y+(260π9σ58
X+)1/8

n+σ4
Kd

5/2v3/4[v1/2 + d(16.25πσ10
X+)1/4]

)1/6
)′

where R(K) =
∫
K2(u)du, v = 0.95

√
2πσ3

X+(3d2σ2
X+ + 8σ2

Y+) − 32σ2
X+σ

2
Y+e

−2, and d is the

slope of an OLS of yi on [1, xi]
′ computed with observations i ∈ I+. σ2

X+ and σ2
Y+ can be

computed by sample variances of xi and yi with i ∈ I+. σ2
K is the variance of the kernel K.

Third, for the local linear conditional function estimator, the bandwidth hqn+,τ for Q̂ can be set

by the Yu and Jones’ (1998) rule of thumb based on the normality assumption of fY |X :

hqn+,τ =
[
2π−1τ(1− τ)φ(Φ−1(τ))−2

]1/5
hqn+,1/2,

where φ and Φ denote the PDF and CDF for the standard normal distribution, respectively,

and hqn+,1/2 can be set to be equal to hn+,mean =

( ∫
K(u)2duσ2(x)

n+(
∫
u2K(u)du)2{m′′(x)}2fX(x)

)1/5

. The functions,
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m(x) and σ2(x), denote the conditional mean and the conditional variance of Y given X. The

second-derivative m′′(x) can be estimated by the coefficient of the square term of the OLS yi on

[1, xi, x
2
i ] with i ∈ I+. The skedastic function σ2(x) can be estimated by the sample counterpart

of E[Y 2|X]− (E[Y |X])2 that can be computed by using the OLS of y2
i on [1, xi] and yi on [1, xi]

with i ∈ I+.

Figures and Tables
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Figure 1: Monte Carlo distributions of QRKD estimates.

Structure1; N = 1, 000 Structure 2; N = 1, 000

Structure1; N = 2, 000 Structure 2; N = 2, 000

Structure1; N = 4, 000 Structure 2; N = 4, 000
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Struct. 1 MC Bias MC SD MC RMSE MC 5% Size

N = 1000 2000 4000 1000 2000 4000 1000 2000 4000 1000 2000 4000

τ = 0.10 0.03 0.04 0.05 0.33 0.24 0.20 0.33 0.25 0.20 0.13 0.13 0.16

τ = 0.20 0.03 0.04 0.04 0.26 0.19 0.15 0.26 0.20 0.16 0.09 0.10 0.11

τ = 0.30 0.04 0.04 0.04 0.23 0.17 0.13 0.23 0.17 0.14 0.07 0.07 0.10

τ = 0.40 0.04 0.04 0.04 0.22 0.16 0.12 0.22 0.16 0.13 0.06 0.07 0.08

τ = 0.50 0.05 0.04 0.04 0.21 0.16 0.12 0.22 0.16 0.13 0.06 0.06 0.07

τ = 0.60 0.05 0.05 0.05 0.21 0.16 0.12 0.22 0.17 0.13 0.05 0.05 0.06

τ = 0.70 0.05 0.05 0.05 0.22 0.16 0.12 0.23 0.17 0.13 0.05 0.05 0.05

τ = 0.80 0.06 0.06 0.05 0.24 0.17 0.13 0.25 0.18 0.14 0.05 0.04 0.05

τ = 0.90 0.08 0.07 0.06 0.29 0.21 0.17 0.30 0.23 0.18 0.05 0.05 0.04

Struct. 2 MC Bias MC SD MC RMSE MC 5% Size

N = 1000 2000 4000 1000 2000 4000 1000 2000 4000 1000 2000 4000

τ = 0.10 0.02 0.03 0.03 0.28 0.20 0.16 0.28 0.20 0.16 0.11 0.10 0.10

τ = 0.20 0.03 0.04 0.03 0.21 0.15 0.12 0.21 0.16 0.12 0.08 0.07 0.07

τ = 0.30 0.04 0.04 0.04 0.18 0.13 0.10 0.19 0.14 0.11 0.06 0.06 0.07

τ = 0.40 0.04 0.04 0.04 0.17 0.12 0.09 0.17 0.13 0.10 0.06 0.07 0.07

τ = 0.50 0.04 0.04 0.04 0.16 0.12 0.09 0.17 0.13 0.10 0.06 0.07 0.09

τ = 0.60 0.04 0.03 0.03 0.16 0.12 0.09 0.17 0.13 0.10 0.05 0.06 0.08

τ = 0.70 0.04 0.04 0.03 0.17 0.13 0.10 0.18 0.13 0.10 0.04 0.06 0.08

τ = 0.80 0.05 0.04 0.04 0.19 0.13 0.10 0.20 0.14 0.11 0.05 0.05 0.06

τ = 0.90 0.07 0.06 0.06 0.23 0.16 0.13 0.24 0.17 0.14 0.04 0.03 0.04

Table 1: Monte Carlo finite-sample statistics of the QRKD estimates under Structure 1 (top)

and under Structure 2 (bottom) based on 5,000 replications.
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(A) Rejection Probabilities for the 95% Level Test of Significance

N = 1, 000 N = 2, 000 N = 4, 000

Structure 0 0.084 0.074 0.078

Structure 1 0.344 0.587 0.864

Structure 2 0.496 0.758 0.970

(B) Rejection Probabilities for the 95% Level Test of Heterogeneity

N = 1, 000 N = 2, 000 N = 4, 000

Structure 0 0.080 0.064 0.072

Structure 1 0.112 0.100 0.108

Structure 2 0.104 0.144 0.233

Table 2: Rejection probabilities for the 95% level uniform test of significance (panel A) and the

95% level uniform test of heterogeneity (panel B) based on 1,000 Monte Carlo replications.
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September 1981 – September 1982

Dependent Variable UI Claimed UI Paid

RKD (Landais, 2015) 0.038 (0.009) 0.040 (0.009)

QRKD τ = 0.10 0.019 (0.030) 0.034 (0.030)

τ = 0.20 0.036 (0.037) 0.038 (0.038)

τ = 0.30 0.054 (0.041) 0.065 (0.041)

τ = 0.40 0.067 (0.044) 0.069 (0.044)

τ = 0.50 0.081 (0.044) 0.086 (0.044)

τ = 0.60 0.109 (0.043) 0.105 (0.043)

τ = 0.70 0.115 (0.041) 0.112 (0.041)

τ = 0.80 0.161 (0.037) 0.150 (0.037)

τ = 0.90 0.167 (0.030) 0.191 (0.030)

Test of Significance p-Value 0.000 0.000

Test of Heterogeneity p-Value 0.000 0.004

Table 3: Empirical estimates and inference for the causal effects of UI benefits on unemployment

durations based on the RKD and QRKD. The period of data is from September 1981 to

September 1982. The numbers in parentheses indicate standard errors.
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September 1982 – December 1983

Dependent Variable UI Claimed UI Paid

RKD (Landais, 2015) 0.046 (0.006) 0.042 (0.006)

QRKD τ = 0.10 0.023 (0.028) 0.024 (0.028)

τ = 0.20 0.049 (0.034) 0.053 (0.034)

τ = 0.30 0.067 (0.038) 0.065 (0.038)

τ = 0.40 0.086 (0.040) 0.080 (0.040)

τ = 0.50 0.108 (0.041) 0.107 (0.041)

τ = 0.60 0.092 (0.040) 0.097 (0.040)

τ = 0.70 0.111 (0.038) 0.110 (0.038)

τ = 0.80 0.074 (0.034) 0.082 (0.034)

τ = 0.90 0.073 (0.027) 0.070 (0.027)

Test of Significance p-Value 0.026 0.021

Test of Heterogeneity p-Value 0.265 0.276

Table 4: Empirical estimates and inference for the causal effects of UI benefits on unemployment

durations based on the RKD and QRKD. The period of data is from September 1982 to

December 1983. The numbers in parentheses indicate standard errors.
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