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Abstract

This paper shows how experimental findings can be used for structural es-

timation. In laboratory experiments bidding in first-price auctions is more ag-

gressive than predicted by the risk-neutral Bayesian Nash Equilibrium (RNBNE)

- a finding known as the overbidding puzzle. Instead of estimating a particular

model of overbidding, we use the overbidding restriction itself for identification,

which allows us to bound the valuation distribution and the seller’s payoff func-

tion. These bounds are consistent with RNBNE and all models of overbidding

and remain valid if there is unobserved heterogeneity in the bidding strategies.

We evaluate the validity of the bounds numerically and in experimental data.
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1 Introduction

The main role of experiments in economics, and more generally in the scientific

method, is to compare their results with model predictions in order to choose among

competing models. Structural work in economics in turn uses restrictions from mod-

els for identification. Thus experiments in economics can affect structural estimation

indirectly, if models that fit the experimental data poorly are abandoned, or if ex-

perimental findings spark the development of new models. In this paper we show

that experimental work can inform structural estimation directly if the experimen-

tal findings themselves are used as identifying restrictions. This is possible even if

the experimental findings are consistent with multiple models, which allows for infer-

ence that is robust to model misspecification. We demonstrate this approach in the

structural analysis of first-price auctions.1

Identification and estimation of first-price auctions typically assumes that bidders

play the risk neutral Bayesian Nash Equilibrium (RNBNE) (Guerre, Perrigne, and

Vuong (2000)). However, a long series of laboratory experiments with independent

private valuations have consistently found that bidders tend to bid more aggressively

than predicted by the RNBNE - a finding known as the “overbidding puzzle”.

Several models have been proposed that can explain the overbidding puzzle. Thus

one way to account for overbidding in structural estimation is to study the identifica-

tion of these models. Indeed, under additional restrictions, identification results have

been established for some overbidding models, including models with risk aversion

(Perrigne and Vuong (2007), Lu and Perrigne (2008), Guerre, Perrigne, and Vuong

(2009), Campo, Guerre, Perrigne, and Vuong (2011), Campo (2012), Gentry, Li, and

Lu (2015), Kong (2017)), ambiguity aversion (Aryal, Grundl, Kim, and Zhu (2018)),

and the level-k model (An (2017), Gillen (2009)).

This paper proposes a different approach. Instead of assuming a particular model

of overbidding, we use the overbidding restriction itself for identification. As a result

our approach is consistent with RNBNE and all models of overbidding. Such a robust

approach is needed because no canonical alternative to RNBNE has emerged in the

1This is not the first paper to connect experimental and structural work. Bajari and Hortacsu
(2005) use experiments to evaluate whether structural auction estimates are reasonable and to com-
pare the fit of competing models. Hickman, List, Price, and Cotton (2016) use a structural model to
guide the design of a field experiment. To the best of our knowledge however, this is the first paper
to use experimental findings as identifying restrictions.
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experimental literature, and it is unclear which overbidding model should be used in

empirical work.

We assume that bidders (weakly) overbid compared to the RNBNE and bid no

more than their valuations, which allows us to partially identify the valuation distri-

bution. The bounds can be tightened by exploiting variation in the number of bidders

under assumptions that are common in the structural auction literature. The bounds

for the valuation distribution can be translated into bounds for the seller’s payoff as

a function of the reserve price under an additional assumption on the bidders’ coun-

terfactual bidding behavior.2 This in turn allows us to bound the optimal reserve

price. We also derive analogous identification results under an alternative notion of

overbidding, which is that bidders overbid compared to the risk-neutral best response

to the bid distribution (RNBR).3

The identification results are not only robust to overbidding, but perhaps equally

important, most of the results allow for unobserved heterogeneity in bidding strategies

across bidders. Such heterogeneity can reflect unobserved heterogeneity in preferences

and/or beliefs, which can be relevant in the field and in lab experiments. Indeed in the

laboratory bid data from Dyer, Kagel, and Levin (1989) there is a lot of heterogeneity

of bids for the same underlying valuation. Intuitively, our approach only requires

every bidder to bid somewhere between RNBNE or RNBR and their valuations, but

does not require all bidders to use the same bid function. Robustness to unobservable

bidder heterogeneity is an important advantage compared to most point-identification

results in the literature.

We propose simple estimators for the bounds under both overbidding restrictions,

2This additional assumption does not help to tighten the bounds for the valuation distribution.
3The standard approach to identification in first-price auctions (Guerre, Perrigne, and Vuong

(2000)) relies on the fact that the bidders best respond to the bid distribution if they play the
RNBNE. We show that if the bidders use the same bid function then overbidding compared to
RNBR implies overbidding compared to RNBNE, but not vice versa. In general however, neither
overbidding restriction implies the other.

An attractive feature of the bounds under RNBR overbidding is that they provide a direct con-
nection to the existing structural auction literature. The estimates obtained under the standard
approach (Guerre, Perrigne, and Vuong (2000)) can be reinterpreted as a sharp upper bound of the
bidders’ valuations and the seller’s profit.
While we know from the experimental literature that overbidding compared to RNBNE is common,
we do not know whether bidders also overbid compared to RNBR. To answer this question we an-
alyze experimental data by Dyer, Kagel, and Levin (1989) and find that overbidding compared to
RNBR is equally prevalent as overbidding compared to RNBNE. Moreover, we show in Grundl and
Zhu (2019) that RNBNE and RNBR overbidding go hand in hand in most models of overbidding.
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and evaluate the performance of the bounds in numerical examples and in an empir-

ical application to the data from Dyer, Kagel, and Levin (1989). We find that the

bounds are valid and that the assumption of RNBR overbidding yields tighter bounds

than RNBNE overbidding. Overall, we favor the RNBR restriction over the RNBNE

restriction, because it is directly related to the standard approach (Guerre, Perrigne,

and Vuong (2000)), tends to yield tighter bounds, and is found to be equally prevalent

in the experimental data.

This paper is motivated by a large experimental literature on the overbidding

puzzle. The overbidding puzzle goes back at least to Coppinger, Smith, and Ti-

tus (1980), followed by a series of papers by Cox et al. (Cox, Roberson, and Smith

(1982), Cox, Smith, and Walker (1983a,b, 1985, 1988)), who proposed a model of het-

erogeneous bidders with constant relative risk aversion (CRRA) as the explanation

of the puzzle. Harrison (1989) and Harrison (1990) criticized the risk aversion expla-

nation, which sparked a controversial discussion about the correct interpretation of

the overbidding puzzle in the December 1992 issue of the American Economic Review

(Friedman (1992), Kagel and Roth (1992), Cox, Smith, and Walker (1992), Merlo and

Schotter (1992) and Harrison (1992)). Since then, other models of overbidding have

been proposed and experimental studies have aimed not only at finding out whether

there is overbidding, but also at distinguishing different potential explanations.4 The

literature has not settled on a particular model as the correct explanation of the over-

bidding puzzle, and likely different factors that are captured by different models all

play a role.

It is sometimes argued that while overbidding may be common in the laboratory, it

is not relevant for most structural applications to field data, because there the stakes

are higher and the bidders are experienced firms. However, the auctions studied

in structural applications are often highly heterogeneous (e.g. auctions of different

timber species in different forests), so it is unclear to what extend experience that

was acquired in previous auctions is relevant. Moreover, even in settings that are

4An incomplete list of references includes Kagel and Levin (1993), Selten, Buchta, et al. (1994),
Chen and Plott (1998), Isaac and James (2000), Dufwenberg and Gneezy (2002), Goeree, Holt,
and Palfrey (2002), Dorsey and Razzolini (2003), Ockenfels and Selten (2005), Neugebauer and
Selten (2006), Engelbrecht-Wiggans and Katok (2007), Neugebauer and Perote (2008), Engelbrecht-
Wiggans and Katok (2009), Kirchkamp and Reiß (2011), Shachat and Wei (2012), Astor, Adam,
Jähnig, and Seifert (2013), Georganas, Levin, and McGee (2015), Ratan (2015) and Füllbrunn,
Janssen, and Weitzel (2018). See also the surveys of Kagel (1995) and Kagel and Levin (2010), and
the references therein.
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commonly studied in structural applications the bidders are often inexperienced either

because the firms are small and participate in auctions only infrequently (e.g. small

logging firms) or because the auctions themselves are held only infrequently. Lastly,

while the stakes are higher than in laboratory experiments deviations from optimal

bidding may result only in a small payoff reduction if the maximum is relatively flat.

Therefore we argue that it is plausible that overbidding plays an important role in

the field even if it may be less pronounced than in the laboratory.

There is no direct evidence for or against overbidding in the field because val-

uations are not observed, but there is evidence that is consistent with overbidding.

For example, Lu and Perrigne (2008), Campo, Guerre, Perrigne, and Vuong (2011),

Campo (2012) and Kong (2017) find evidence of risk aversion, which leads to over-

bidding. Similarly, Aryal, Grundl, Kim, and Zhu (2018) find evidence of ambiguity

aversion, which can also lead to overbidding. Lastly, Burkart (1995) and de Bodt,

Cousin, and Roll (2018) find overbidding in takeover contests. In light of challenging

assumptions underlying RNBNE bidding in first-price auctions, the direct evidence

from lab experiments and the suggestive evidence from the field, it is desirable to

develop inference for first-price auctions that is robust to overbidding.5

This paper is close in spirit to Haile and Tamer (2003), who show how to bound the

valuation distribution in English auctions if the assumptions of the point-identified

button model are replaced with two weak behavioral restrictions. The papers are

similar in that they do not rely on a particular model of bidding and the estimates

are therefore robust to model misspecification, but they differ regarding the source

of identifying restrictions. Haile and Tamer (2003) relax the assumptions of the

canonical model of English auctions in a very intuitive way and still obtain informative

bounds. It is more difficult to follow this approach in first-price auctions. For example,

Aradillas-Lopez and Tamer (2008) find that a similar approach in first-price auctions

(level-k rationalizability) bounds the valuation distribution only from above. In this

paper, we therefore rely on restrictions from experiments to bound the valuation

distribution from both sides.

The remainder of this paper is organized as follows. Section 2 documents the

extent of overbidding compared to RNBNE and RNBR in the experimental data by

5In some settings where the stakes are very high and all bidders are highly experienced it may
be preferable to assume RNBNE bidding to obtain point-identification, but it is difficult to know
“where to draw the line”.
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Dyer, Kagel, and Levin (1989). Section 3 presents the identification results under

both overbidding restrictions. Section 4 illustrates the identification results through

numerical examples. We discuss estimation in Section 5. Section 6 evaluates the ap-

proach using experimental data, and Section 7 concludes. Some proofs are presented

in the Appendix.

2 Overbidding in the Data

Before presenting the identification results we briefly motivate both of our identify-

ing restrictions using the experimental bid data from Dyer, Kagel, and Levin (1989),

which was also studied by Bajari and Hortacsu (2005). The subjects in their exper-

iments were MBA students at the University of Houston. As in other experimental

work on auctions, the bidders were assigned valuations randomly and then asked to

bid given the valuation they drew. The valuations were drawn from a uniform distri-

bution from $0 to $30. The payoff for the winning bidder is the difference between

bid and valuation. The data set contains bids for n = 3 and n = 6 bidders for the

same underlying valuation from the same bidder. After discarding bids from training

rounds there are 414 bids for n = 3 and 414 bids for n = 6.

Overbidding Compared to RNBNE Our first identifying restriction is that

bidders overbid compared to RNBNE. The RNBNE bidding strategy is σn (t) = n−1
n
t,

where t is the valuation of a bidder for the auctioned good. Figure 1 shows scatter

plots of the bids (blue circles), the RNBNE strategy (red line), and“truthful bidding”,

i.e., bidding one’s valuation (black line). Figure 1(a) shows n = 3 and Figure 1(b) n =

6. For n = 3, 91.3 percent of the bidders overbid compared to the RNBNE. For n = 6,

74.4 percent overbid. Overbidding tends to be more prevalent in auctions with fewer

opponents. This is because in auctions with many opponents, the RNBNE prediction

is already close to bidding one’s valuation, so there is less scope for overbidding while

still bidding less than one’s valuation.
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Figure 1: Overbidding Compared to RNBNE: Experimental bid data from Dyer,
Kagel, and Levin (1989). Our first identifying restriction is that the bids (blue circles)
are between the RNBNE (red line) and their valuations (black line).

The scatter plots also show that most bids below the RNBNE prediction come

from bidders with low valuations, especially for n = 3. This pattern of overbidding

is common in the experimental literature, as described by Kagel and Levin (2010).

In Section 6, we apply our identification approach to the data from Dyer, Kagel,

and Levin (1989), which allows us to see whether such violations of the overbidding

restriction by some bidders invalidate the bounds we propose.

Notice also that no bidders bid above their valuation. We will use this restriction

to bound the valuations from the other side.

Overbidding Compared to RNBR Our second overbidding restriction is that

bidders overbid compared to the RNBR. While overbidding compared to RNBNE has

been established in a long series of experimental studies, much less is known about

overbidding compared to RNBR. Experimental studies have naturally focused on

comparing observed bidding to theoretical predictions such as RNBNE. Overbidding

compared to RNBR, however, is relevant for this study because RNBR is the basis of

Guerre, Perrigne, and Vuong (2000), which is the main approach to identification in

first-price auctions.

Figure 2(a) shows the same bid data as Figure 1(a), but here the lower bound

is given by RNBR rather than by RNBNE. In three bidder auctions, 91.8 percent of

the bidders overbid compared to RNBR. In six bidder auctions, 71.8 percent overbid.

Thus overbidding compared to RNBR is approximately just as prevalent as overbid-

ding compared to RNBNE.
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Figure 2: Overbidding Compared to RNBR: Experimental bid data from Dyer,
Kagel, and Levin (1989). Our second identifying restriction is that the bids (blue
circles) are between the RNBR (red line) and their valuations (black line).

In this data set, RNBNE and RNBR are very similar. If all bidders use the

same bidding strategy and play RNBR, they must play RNBNE. Moreover, as we

show later, if they overbid compared to RNBR, they must also overbid compared to

RNBNE.6 However, these results do not apply here, because bidding behavior differs

considerably across bidders. With heterogeneous bidders, generally neither form of

overbidding implies the other.

3 Identification

We consider a symmetric independent private-value environment. There are n ≥ 2

bidders participating in a first-price auction for an indivisible good. Each of them

simultaneously submits a sealed bid. The bidder with the highest bid wins the good

and pays the bid. Bidders’ valuations for the good are independently drawn from the

distribution Fn with density fn. The bid distribution is denoted by Gn with density

gn. Our goal is to identify the valuation distribution Fn from the bid distribution Gn.

We assume that both fn and gn are supported on bounded intervals, and bounded

away from 0 on their supports. Without loss of generality, we assume that the support

of fn has a lower bound of 0.

In the rest of the paper, instead of working directly with the valuation and bid

distributions, we focus on their quantile functions. Define vn (α) = F−1
n (α) for α ∈

[0, 1]. Because fn has a support with a lower bound of 0, vn (0) = 0. Let bn (α) =

6Interestingly, if RNBNE and RNBR conincide this does not mean that the bidders bid RNBNE.
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G−1
n (α) be the bid quantile function. Denote the bidding strategy of a bidder with

valuation t as sn (t). We assume that all bidders adopt the same bidding strategy

for now, but later we discuss how our results generalize to heterogeneous bidding

strategies.

We will maintain the following regularity assumption on sn and Gn throughout

the paper.

Assumption 1 (Regularity).

(1) The bidders’ strategy sn (t) is strictly increasing and continuously differentiable

with sn (0) = 0.

(2) b+Gn (b) / [gn (b) (n− 1)] is strictly increasing in b on the support of gn.

Assumption 1(1) implies that the bid function is smooth and invertible.7 Assump-

tion 1(2) ensures that the RBNR strategy is strictly increasing in the valuation and

is fully characterized by its first-order condition.

3.1 RNBNE Overbidding

Structural analysis of first-price auctions typically assumes that the bidders play the

symmetric RNBNE. Under this assumption a bidder with valuation t bids σn (t),

which satisfies the first-order condition,

σ′n (t) = (n− 1) [t− σn (t)]
fn (t)

Fn (t)
, (1)

and the boundary condition, σn (0) = 0. This differential equation has the following

closed form solution:

σn (t) = t−
∫ t

0

[
Fn (x)

Fn (t)

]n−1

dx.

Definition 1 (RNBNE Overbidding). Bidders overbid compared to RNBNE if sn (t) ≥
σn (t) for all t.

Definition 2 (Rationality). Bidders are rational if sn (t) ≤ t for all t.

7This assumption is not crucial for our identification results but it simplifies the proofs. One can
show that our bounds stay valid even if bidders use non-monotone strategies.
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Rationality is a weak restriction that is also used in Haile and Tamer (2003). This

assumption holds in the experimental data by Dyer, Kagel, and Levin (1989) as shown

in the previous section. Next, we derive the bounds for the valuation quantile function

and the counterfactual profit function under RNBNE overbidding and rationality.

Valuation Quantile Function First notice that rationality directly implies vn (·) ≥
bn (·). Therefore, vn (·) = bn (·) is a valid lower bound for vn (·). It is also sharp be-

cause it can be attained by a model with constant relative risk aversion (CRRA) as

the CRRA coefficient approaches 1.

Now we construct an upper bound for vn (·). The idea is that if we can obtain the

set of all quantile functions that are consistent with bn and satisfy RNBNE overbidding

and rationality, then the upper contour of this set is an upper bound for vn (·). If a

quantile function qn (·) satisfies rationality, qn (α) ≥ bn (α) for all α ∈ [0, 1]. To check

RNBNE overbidding, the following lemma will be useful.

Lemma 1. A quantile function q (·) is consistent with bn (·) and RNBNE overbidding

if and only if βn (α, q) ≤ bn (α) for all α ∈ [0, 1], where

βn (α, q) =

 1
αn−1

∫ α
0
q (t) dtn−1 if α > 0;

q (0) if α = 0.
(2)

Proof. Notice that q (·) is consistent with bn (·) and RNBNE overbidding if and only

if sn (q (α)) = bn (α) for some bidding strategy sn (·) that is weakly larger than the

RNBNE strategy under q. If s̃n is the RNBNE bidding strategy under q, s̃n (q (α)) ≤
sn (q (α)) = bn (α). Lastly, by Gimenes and Guerre (2016), s̃n (q (α)) = βn (α, q).

This lemma says that q (·) can rationalize bn (·) under RNBNE overbidding if and

only if the RNBNE bid quantile function under q (·) lies below bn (·).
In light of Lemma 1, an upper bound for vn (α) can be defined as

v̄n (α) = sup
q∈Θ

q (α) s.t. βn (t, q) ≤ bn (t) ≤ q (t) ,∀t ∈ [0, 1] , (3)

where Θ is the set of non-negative, non-decreasing and continuous functions that are

supported on [0, 1] and differentiable almost everywhere. The inequalities impose

RNBNE overbidding and rationality. The supremum is well-defined because at least
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q (·) = bn (·) satisfies all the constraints. By construction, v̄n (α) is a sharp upper

bound. The following result characterizes the properties of this bound.

Proposition 1. If the bidders are rational and overbid compared to RNBNE, then

vn (α) and v̄n (α) are sharp bounds for vn (α). In addition, v̄n (α) satisfies

(1) v̄n (α) < bn (1) / (1− α) for any α < 1;

(2) ∃C > 0 such that v̄n (α) > C/ (1− α) for α close to 1;

(3) v̄n is strictly increasing and continuous.

The most surprising part of this proposition is perhaps that v̄n (α) is bounded for

any α < 1 but it diverges to infinity as α → 1. The easiest way to understand this

is to start with a quantile function q and investigate what happens to its RNBNE

bid quantile if we increase q (α) for some α < 1. First notice that this increase does

not change the RNBNE bidding behavior of the bidders with valuations lower than

q (α) . Therefore, only the bid quantile function evaluated at points larger than α can

provide information to bound q (α) from above. Now if q (α) is increased then the

bidder with valuation q (α) has an incentive to increase his bid to increase his winning

probability. In the RNBNE, a bidder with a valuation higher than q (α) never bids

lower than a bidder with valuation q (α). Therefore the bidders with valuations higher

than q (α) have to increase their bids as well. These upwards shifts of the RNBNE

bid function could drive the RNBNE bid quantile function above the observed bid

quantile function. This bounds vn (α) from above if α < 1. However, a bidder with the

highest valuation vn (1) does not have an incentive to bid higher even if his valuation

increases, because he wins with probability 1 even with the current bid. Therefore,

vn (1) is not bounded from above.

Alternatively, one can recast (3) as a one-dimensional maximization problem,

which provides some further intuition for v̄n. Notice that if we ignore the conti-

nuity requirement, the lowest possible valuation quantile that satisfies rationality and

takes value x at a some α ∈ [0, 1] is

qα,x (t) =

bn (t) if t < α

max {x, bn (t)} if t ≥ α
.
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If βn (·, qx,α) does not lie below bn (·), there cannot exist a q that satisfies rationality

and RNBNE overbidding and q (α) = x. Hence, if there were no continuity require-

ment on q, v̄n (α) can be obtained by finding the maximum x such that βn (·, qx,α) does

not exceed bn (·). Next, notice that any function with a jump can be approximated by

a continuous function. Therefore, we arrive at the following equivalent formulation.

Proposition 2. The upper bound for the valuation quantile can be expressed as fol-

lows:

v̄n (α) = v̄an (α) = max
x≥bn(α)

x, s.t. βn (t, qα,x) ≤ bn (t) , ∀t ∈ [α, 1] . (4)

Notice that only t ∈ [α, 1] enter the expression for v̄an (α), which confirms, as

discussed earlier, that only points larger than α can provide information to bound

q (α) from above.

Profits The identification result for the valuation distribution yields bounds that

are consistent with many models of overbidding. This raises the question how to do

counterfactual analysis without assuming a particular model of overbidding. In this

section we provide bounds on the seller’s profit as a function of the reserve price r

by placing a weak restriction on the counterfactual bidding behavior with a binding

reserve price, but without choosing a particular model of overbidding.

Let sn (t, r) be the bidding function under reserve price r and let bn (α, r) be the

bid quantile function. Suppose the seller has valuation c for the auctioned good.

We first construct a lower bound for the profit function. Recall that we cannot rule

out the possibility that bidders are bidding arbitrarily close to their valuations. In

this case, bids cannot be increased by setting a reserve price, so bn (α, r) = bn (α)

if vn (α) ≥ r and bn (α, r) = 0 otherwise. The profit function obtained under this

scenario therefore is a lower bound:

πn (r) =

∫
α≥v−1

n (r)

[bn (α)− c] dαn + c.

A naive upper bound for the profit function can be obtained by assuming that

the valuation quantile is v̄n (·) and that the bidders bid their valuations under any

alternative r. However, this upper bound is not very informative. This is because v̄n

is obtained under the assumption that bidders bid much lower than their valuations.

Combining it with “truthful bidding” leads to a very conservative upper bound. In

order to obtain a more informative upper bound, we impose the following restriction.
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Assumption 2. Under any reserve price r ≥ 0, (1) if t < r, the bidding strategy

sn (t, r) satisfies sn (t, r) = 0; (2) if t ≥ r, sn solves the following differential equation

with initial condition sn (r, r) = r,

∂sn (t, r)

∂t
= (n− 1)λn (t− sn (t, r))Hn (t)

fn (t)

Fn (t)

where λn (·) is a positive, weakly increasing function and Hn (·) > 0; (3) sn (t, r) ≥
σn (t, r) where σn (t, r) is the RNBNE bidding strategy under r.

Assumption 2 is very general and satisfied by most first-price auction models. All

models studied in Grundl and Zhu (2019) satisfy this assumption except for the level-

k model. Imposing this assumption does not improve the bounds for the valuation

quantile function but can greatly improve the bounds for the profit function. The

functions λn and Hn allow for deviations from RNBNE that can lead to overbidding,

where λn captures deviations of bidder preferences and Hn captures changes of bidder

beliefs.

Assumption 2 and rationality imply that sn (t, r) ≥ sn (t, 0) for all t ≥ r and

r ≥ 0. Because λn is weakly increasing, the slope of the bidding strategy under r > 0

is bounded by that under r = 0. Therefore, if vn (α) > r,

bn (α, r) = sn (vn (α) , r) = r +

∫ vn(α)

r

∂sn (t, r)

∂t
dt ≤ r +

∫ vn(α)

r

∂sn (t, 0)

∂t
dt

= r + bn (α)− bn
(
v−1
n (r)

)
≤ r + bn (α)− bn

(
v̄−1
n (r)

)
. (5)

In light of this observation, define

b̄n (α, r) =

r + bn (α)− bn (v̄−1
n (r)) if α ≥ v̄−1

n (r)

0 otherwise
. (6)

Then, an upper bound for the profit function is

π̄n (r) =

∫
α≥v̄−1

n (r)

[
b̄n (α, r)− c

]
dαn + c. (7)

Proposition 3. Suppose that bidders are rational and overbid compared to RNBNE.

If Assumption 2 holds, then πn (r) ≤ πn (r) ≤ π̄n (r). The lower bound is sharp.
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Proof. We start by showing that sn (t, r) ≥ sn (t, 0) for all t ≥ r if r ≥ 0 by contra-

diction. Suppose there exists t > r such that sn (t, r) < sn (t, 0). Because the bidders

never bid more than their valuations by rationality, sn (r, r) = r ≥ sn (r, 0). There

must then exist an interval [x, x+ ε] such that sn (x, r) = sn (x, 0) and sn (y, r) <

sn (y, 0) for all y ∈ (x, x+ ε]. Then, there exists at least one ỹ ∈ [x, x+ ε] such

that ∂sn (ỹ, r) /∂t < ∂sn (ỹ, 0) /∂t, because otherwise sn (y, r) ≥ sn (y, 0) for all

y ∈ (x, x+ ε]. By Assumption 2, this implies sn (ỹ, r) > sn (ỹ, 0) because λn (·)
is weakly increasing. Then we reach a contradiction. Therefore, sn (vn (α) , r) ≥
bn (α) 1 (bn (α) ≥ r) and πn (r) is a valid bound because it is the profit function under

bn (α) 1 (bn (α) ≥ r). To see that it is a sharp lower bound, consider a model with

where bidders have constant relative risk aversion (CRRA). If the CRRA coefficient

approaches one, the bid function gets arbitrarily close to truthful bidding. Then, the

lower bound is arbitrarily close to the true counterfactual profit function. In addition,

because sn (t, r) ≥ sn (t, 0) for all t ≥ r, π̄n (r) ≥ πn (r) follows from equation (5) and

the discussion around it.8

3.2 RNBR Overbidding

The seminal contributions by Laffont and Vuong (1996) and Guerre, Perrigne, and

Vuong (2000) are based on the observation that if bidders play the RNBNE then they

also play the risk-neutral best response to the bid distribution (RNBR). This obser-

vation forms the building block of structural analysis of first-price auctions, because

it means that the bidding strategy can be directly calculated from the observed bid

distribution without solving for the equilibrium.

8Although v̄n (α) diverges to infinity when α approaches 1, π̄n (r) is bounded uniformly in
r. To see this, notice that by Proposition 1, v̄n (α) ≤ bn (1) / (1− α). Consequently, v̄−1

n (r) ≥
max {1− bn (1) /r, 0}. Therefore,

π̄n (r) =

∫
α≥v̄−1

n (r)

[
b̄n (α)− c

]
dαn + c

=

∫
α≥v̄−1

n (r)

[
r + bn (α)− bn

(
v̄−1
n (r)

)
− c
]
dαn + c

≤ [r + bn (1)− c]
[
1−

(
max

{
1− bn (1)

r
, 0

})n]
+ c,

where the last inequalith follows because bn (α) − bn
(
v̄−1
n (r)

)
≤ bn (1) − bn (0) = bn (1). This

inequality implies that π̄n (r) < ∞ for every r ≥ 0. Because π̄n (r) is continuous in r and
limr→∞ π̄n (r) ≤ c+ nbn (1) <∞, it is bounded uniformly in r.
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In light of the importance of RNBR for in the structural literature, we also obtain

identification results if the bidders overbid compared to RNBR. Unlike overbidding

compared to RNBNE this form of overbidding has not been considered in the ex-

perimental literature, because the experimental literature is focused on testing the

RNBNE theory. Recall from Section 2 however that in the data by Dyer, Kagel,

and Levin (1989) overbidding compared to RNBR is just as prevalent as overbidding

compared to RNBNE.

Define RNBR as

ρn (t) = arg max
b

(t− b)Gn (b)n−1 .

Under Assumption 1(2), ρn (t) is fully characterized by the first-order condition.

Therefore, one can obtain ρ−1
n (b) = b + Gn (b) / [(n− 1) gn (b)].9 This expression

is sometimes referred to as the “GPV inverse”. If bidders indeed play RNBNE,

ρ−1
n (b) = σ−1

n (b).

Definition 3 (RNBR Overbidding). Bidders overbid compared to RNBR if sn (·) ≥
ρn (·).

The following proposition describes how RNBNE and RNBR overbidding are re-

lated.

Proposition 4. Suppose Assumption 1 holds and all bidders adopt the same strategy

sn (·).

(1) If sn (·) = ρn (·), then sn (·) = ρn (·) = σn (·).

(2) If sn (·) = σn (·), then sn (·) = σn (·) = ρn (·).

(3) If sn (·) ≥ ρn (·), then sn (·) ≥ σn (·).

Notice that ρn (·) = σn (·) does not imply sn (·) = ρn (·) = σn (·).10 The third

part of Proposition 4 shows that overbidding compared to RNBR implies overbidding

compared to RNBNE. Notice however, that sn (·) ≥ σn (·) does not imply that sn (·) ≥
ρn (·).11 Hence, the assumption of overbidding compared to RNBR is stronger than

overbidding compared to RNBNE under symmetry.

9A sufficient condition for this is strict log-concavity of (t− b)Gn (b)
n−1

, which is implied by the
strict log-concavity of Gn (b).

10For a counter-example let F be the uniform distribution on [0, 1] and n = 2. Now let sn (t) = ct
for some constant c ∈ (0.5, 1]; then σn (t) = t

2 = ρn (t) < sn (t).
11For a counter-example let F be the uniform distribution on [0, 1] and n = 2. Hence σn (t) = t

2 .
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Valuation Quantile Function As in the RNBNE case, the bid quantile remains a

sharp lower bound under rationality and RNBR overbidding. This is because a model

with very risk averse bidders is also consistent with RNBR overbidding.

For the upper bound, notice that if bidders are bidding the RNBR, the GPV

inverse implies the valuation that corresponds to bn (α) for any α ∈ [0, 1] is

ṽn (α) = bn (α) +
1

n− 1

Gn (bn (α))

gn (bn (α))
.

Because bidders bid more than the RNBR strategy, the bidder who bids bn (α) must

have a valuation of at most ṽn (α). Therefore, ṽn (α) is a valid upper bound for vn (α).

In fact, it is also a sharp bound, because we cannot rule out RNBR bidding.

Proposition 5. If bidders are rational and overbid compared to RNBR, then vn (α)

and ṽn (α) are sharp bounds for vn (α).

One nice feature of RNBR overbidding is that applied researchers can continue

to use the standard method in the literature that assumes RNBNE. If they want

robustness to overbidding, they only need to reinterpret the estimate as the upper

bound.

Profits The lower bound of the profit function comes from truthful bidding. This

leads to a sharp lower bound because we cannot rule out that bidders have arbitrarily

high risk aversion. As in the last section, additional restrictions are needed to obtain

an informative upper bound. One natural approach is to impose Assumption 2.

Then an upper bound for the profit function can be constructed by using (6) and

(7) after replacing v̄n (·) by ṽn (·). However, it turns out that models consistent with

overbidding compared to RNBR usually imply additional restrictions, which lead to

tighter bounds. In this section, we focus on the following strengthened version of

Assumption 2.

Assumption 3. Under a reserve price r ≥ 0, (1) if t < r, the bidding strategy sn (t, r)

satisfies sn (t, r) = 0; (2) if t ≥ r, sn solves the following differential equation with

Now let sn (t) = 0.7t − 0.2t2 ≥ σn (t). It can be shown that ρn (0.75) > sn (0.75). Intuitively, s′n
becomes small for large t and therefore the best response is to reduce the bid shading because a
slight increase in the bid increases the winning probability substantially.
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initial condition sn (r, r) = r,

∂sn (t, r)

∂t
= (n− 1)λn (t− sn (t, r))Hn (t)

fn (t)

Fn (t)

where Hn ≥ 1, λ′n (x) ≥ 1 and λn (0) = 0.

Assumption 3 is the same as Assumption 2 except that it requires Hn and λ′n to

be at least 1. Lemma 1 in Grundl and Zhu (2019) shows that Assumption 3 is a

sufficient condition for RNBR overbidding. Grundl and Zhu (2019) also shows that

the risk aversion model, the loser regret model, loss aversion, and Choquet Expected

Utility model all satisfy this assumption.12 This assumption implies that for any α

such that vn (α) > r,

∂

∂α
bn (α, r) = (n− 1)

λn (vn (α)− bn (α, r))

α
Hn (α) , (8)

where Hn (α) = Hn (vn (α)) > 1.

Let σ̃n (α, r) be the RNBNE bid quantile function under ṽn (·) and r in n-bidder

auctions. Define

π̃n (r) =

∫ 1

ṽ−1
n (r)

[σ̃n (α, r)− c] dαn + c.

Proposition 6. Suppose bidders are rational and overbid compared to RNBR. If

Assumption 3 holds, then πn (r) ≤ πn (r) ≤ π̃n (r). These bounds are sharp.

Proof. We only show that π̃n (r) is a sharp upper bound. Applying Lemma 3 in the

appendix with γ (α) = 1/α, we obtain σ̃n (α, r) ≥ bn (α, r). Because vn (·) ≤ ṽn (·)

πn (r) =

∫ 1

v−1
n (r)

[bn (α, r)− c] dαn + c ≤
∫ 1

ṽ−1
n (r)

[σ̃n (α, r)− c] dαn + c = π̃n (r)

To see that this bound is sharp, notice that the observed bid quantile function bn (·, 0)

can be rationalized by ṽn (·) with RNBNE, in which case the upper bound is attained.

Now we have shown that if bidders overbid compared to RNBR, the standard

12The MaxMin Expected Utility generally does not necessarily predict overbidding, but under the
restriction we consider such that it leads to overbidding it satisfies this assumption as well.
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approach in the structural auction literature yields not only a sharp upper bound for

the valuation quantile function but also a sharp upper bound for the profit function.

Intuitively, there are many pairs of a valuation quantile function and a bidding model

which are consistent with bn (·) under r = 0. For r = 0 they all yield the same

profit because they all generate the observed bid distribution. As r increases, the

RNBNE bidding strategy increases most among all strategies that satisfy Assumption

3. Intuitively, the RNBNE bidding strategy has the largest bid shading and therefore

leaves the most room for more aggressive bidding. As a result, the profit function

increases most under the RNBNE bidding strategy, implying that the RNBNE profit

function is an upper bound.

This result shows that Guerre, Perrigne, and Vuong (2000) is a robust approach

for choosing the reserve price in the sense that the resulting reserve price can be

interpreted as a max-max reserve price, i.e. a reserve price maximizing the upper

profit bound.

3.3 Tightening Bounds with Variation in n

In many applications, auctions with different numbers of bidders are observed. This

variation in n can be used to tighten the bounds. To exploit this variation, we must

restrict how the valuation distribution varies with n. To this end, we consider the

following two assumptions:

Assumption 4. vn (·) = v (·) for all n ∈ N, where N is a finite set of integers.

Assumption 5. vn (α) is weakly increasing in n for all α ∈ [0, 1].

Assumption 4 requires that the valuation distribution is independent of n. This

assumption is sometimes called exogenous participation (EP) in the literature. It

holds trivially if bidders are randomly assigned to auctions. However, even if the

bidders decide which auctions to enter, it holds in many cases.13 EP is used in many

papers to either improve inference and/or to achieve identification.14 Testing EP

13 Grundl and Zhu (2016) show that this assumption holds very generally as long as potential
bidders observe independent signals before making their entry decisions. If there is auction hetero-
geneity, we need to condition on all auction level heterogeneity (observed and unobserved) that is
observed by the bidders, including the number of potential bidders.

14An incomplete list includes Haile and Tamer (2003), Haile, Hong, and Shum (2003), Guerre,
Perrigne, and Vuong (2009), Aradillas-López, Gandhi, and Quint (2011) and Aryal, Grundl, Kim,
and Zhu (2018).
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empirically in field data is usually difficult due to the presence of unobserved auction

level heterogeneity.

Assumption 5 is usually referred to as stochastically increasing valuations (SIV). It

allows for some positive selection and thereby relaxes Assumption 4. This assumption

is also considered in Aradillas-López, Gandhi, and Quint (2011) and Grundl and

Zhu (2016). Notice that we do not restrict how bidding behavior changes with n.

This is important for robustness because different overbidding models have different

predictions on how bidding changes with n.

RNBNE Overbidding First, we focus on RNBNE overbidding. If vn satisfies

Assumption 4, the lower bound can be tightened to vEP (α) = maxn∈N {bn (α)}. The

upper bound can be tightened by incorporating additional restrictions introduced by

different n into (3), i.e.,

v̄EP (α) = sup
q∈Θ

q (α) , s.t. βm (t, q) ≤ bm (t) ≤ q (t) ∀m ∈ N, ∀t ∈ [0, 1] . (9)

The only difference from (3) is that now the inequality constraints are required for all

m ∈ N, i.e., rationality and RNBNE overbidding have to hold for all m ∈ N. These

additional constraints help to improve the upper bound.

If, instead, Assumption 5 holds, the lower bound is vSIVn (α) = maxm∈N:m≤n {bm (α)}.
Notice now we only include m smaller than n. The upper bound for vn (α) is

v̄SIVn (α) = sup
q∈Θ

q (α)

s.t. βm (t, q) ≤ bm (t) ∀m ∈ N, m ≥ n, ∀x ∈ [0, 1]

bm (t) ≤ q (t) ∀m ∈ N, m ≤ n, ∀x ∈ [0, 1] . (10)

The constraints are slightly different compared to (9). The first constraint says that

the RNBNE bid quantile under q is below the observed bid quantile for all auctions

with no less than n bidders. This is because in auctions with at least n bidders, the

valuation quantile functions are at least the same as vn. Because the RNBNE bid

quantile function is weakly increasing in the valuation quantile function, the observed

bid quantile functions in auctions with at least n bidders should lie above the RNBNE

bid quantile functions under vn. On the other hand, bm (·) ≤ vn (·) only if m ≤ n,

because Assumption 5 does not rule out the possibility that bm (α) > vn (α) if m is
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larger than n. Therefore, the second constraint is required only for m ≤ n.

Proposition 7. Suppose bidders are rational and overbid compared to RNBNE.

(1) If Assumption 4 holds, the sharp bounds for vn (α) are vEP (α) and v̄EP (α).

(2) If Assumption 5 holds, the sharp bounds for vn (α) are vSIVn (α) and v̄SIVn (α).

Proof. We only need to show that the bounds are sharp. The upper bounds are sharp

by construction because they are obtained by taking the supremum of all valid q.

The lower bounds are sharp because our identifying assumption cannot rule out the

possibility that bidders are truthful bidding at least for some n.

Variation in n also helps to tighten the profit bounds. Without variation in n,

the lower profit bound is constructed under the truthful bidding scenario, which

cannot be ruled out with a single n. But under Assumption 4, if the bid quantile

function changes with n, bidders are not bidding their valuation at least for some n.

This information helps to tighten the lower bound. To construct the lower bound,

define σEPn (α, r) and σSIVn (α, r) to be the RNBNE bidding function under reserve

price r with valuation quantile function vEP (α) and vSIVn (α), respectively.15 Because

bidders overbid compared to RNBNE, the counterfactual bid quantile function is

at least max
{
σEPn (α, r) , bn (α) 1

(
vEP (α) ≥ r

)}
under Assumption 4, and at least

max
{
σSIVn (α, r) , bn (α) 1

(
vSIV (α) ≥ r

)}
under Assumption 5. Then we can obtain

lower bounds for the profit function,

πEPn (r) =

∫
vEP (α)≥r

[
max

{
σEPn (α, r) , bn (α)

}
− c
]
dαn + c

πSIVn (r) =

∫
vSIV
n (α)≥r

[
max

{
σSIVn (α, r) , bn (α)

}
− c
]
dαn + c.

For the upper bound, because we do not impose restrictions on how bidding strate-

gies change with n, bids from auctions with sizes different from n only provide infor-

mation on the valuation quantile function. Under under Assumption 4 and rationality,

the counterfactual bid quantile function is bounded from above by v̄EP (α) and

b̄EPn (α, r) =

r + bn (α)− bn
((
v̄EPn

)−1
(r)
)

if v̄EPn (α) ≥ r

0 otherwise
. (11)

15If vEP (α) < r, then σEPn (α, r) = 0. The same holds for σSIVn (α, r).
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Similarly, under Assumption 5, the bid quantile function is bounded from above by

v̄SIVn (α) and

b̄SIVn (α, r) =

r + bn (α)− bn
((
v̄SIVn

)−1
(r)
)

if v̄SIVn (α) ≥ r

0 otherwise
. (12)

Consequently, we have the following two upper bounds for the profit functions:

π̄EPn (r) =

∫
v̄EP (α)≥r

[
min

{
b̄EPn (α, r) , v̄EP (α)

}
− c
]
dαn + c

π̄SIVn (r) =

∫
v̄SIV
n (α)≥r

[
min

{
b̄SIVn (α, r) , v̄SIVn (α)

}
− c
]
dαn + c.

Proposition 8. Suppose bidders are rational and overbid compared to RNBNE. In

addition, Assumption 2 holds.

(1) If Assumption 4 holds, then πEPn (r) ≤ πn (r) ≤ π̄EPn (r).

(2) If Assumption 5 holds, then πSIVn (r) ≤ πn (r) ≤ π̄SIVn (r).

Proof. We only show that the lower bounds are valid. Compared to the case without

using variation in the number of bidders, we also use σEPn (α, r) and σSIVn (α, r) to

bound bn (α, r) from below. By Lemma 2, σEPn (α, r) and σSIVn (α, r) are smaller than

the RNBNE bid quantile under the true valuation quantile, which is a valid lower

bound for bn (α, r). As a result, σEPn (α, r) and σSIVn (α, r) are also valid lower bounds

for bn (α, r) under corresponding assumptions.

RNBR Overbidding Now we move to RNBR overbidding. It is straightforward to

exploit variation in n to tighten the upper bounds of the valuation quantile function.

We only need to obtain upper and lower bounds for each n and take the minimum

of the upper bounds and the maximum of the lower bounds over the relevant set of

auction sizes. Define ṽEP (α) = minm∈N ṽm (α) and ṽSIVn (α) = minm≥n ṽm (α). Notice

that ṽEP is obtained by first applying Guerre, Perrigne, and Vuong (2000) to auctions

with different numbers of bidders and then by forming their lower contour. The lower

bound remains the same as under RNBNE overbidding. In the interest of space, we

omit the proofs in this section.

Proposition 9. Suppose bidders are rational and overbid compared to RNBR.
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(1) If Assumption 4 holds, then vEP (α) ≤ vn (α) ≤ ṽEP (α).

(2) If Assumption 5 holds, then vSIVn (α) ≤ vn (α) ≤ ṽSIVn (α).

For profits, πEPn (r) and πSIVn (r) remain valid lower bounds. The upper bound

can be obtained by a slight change to the above results. Define

π̃EPn (r) =

∫ 1

ṽEP (α)≥r

[
min

{
ṽEP (α) , σ̃n (α, r)

}
− c
]
dαn + c

π̃SIVn (r) =

∫ 1

ṽSIV
n (α)≥r

[
min

{
ṽSIVn (α) , σ̃n (α, r)

}
− c
]
dαn + c.

Notice here we simply plug in the tighter bounds for valuation quantiles obtained by

using variation in n.

Proposition 10. Suppose bidders are rational and overbid compared to RNBR. In

addition, Assumption 2 holds.

(1) If Assumption 4 holds, then πEPn (r) ≤ πn (r) ≤ π̃EPn (r).

(2) If Assumption 5 holds, then πSIVn (r) ≤ πn (r) ≤ π̃SIVn (r).

3.4 Heterogeneous Bidding Behavior

So far we have assumed that all bidders use the same bidding strategy sn. However,

the scatter plots in Section 2 show that there is a lot of variation in bids conditional

on the bidder’s valuation. In this section, we show that most of the identification

results in the previous sections remain valid with heterogeneous bidding strategies,

i.e., if bidder i bids sn,i. This is an important extension because most existing point-

identification results for particular models do not allow for such heterogeneity.16 In

this section, we will consider identification if every sn,i satisfies overbidding:

Definition 4 (Overbidding with Heterogeneity).

(1) Bidders overbid compared to RNBNE if sn,i (·) ≥ σn (·).

(2) Bidders overbid compared to RNBR if sn,i (·) ≥ ρn (·).
16One exception is An (2017), who studies identification with heterogeneity in bidding strategies

with multiple observations per bidder.
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Notice that σn and ρn do not have bidder subscripts i, because σn is defined as

the symmetric BNE strategy of a risk-neutral bidder and ρn is defined as the best

response to the bid distribution. Moreover, σn is fully determined by the valuation

distribution and n and does not depend on the composition of bidder types i. However,

ρn depends on the composition of bidder types i because the composition affects the

bid distribution.

With heterogeneous bidding strategies, Proposition 4 no longer holds. In par-

ticular, it is no longer the case that overbidding compared to RNBR is necessarily

a stronger restriction than overbidding compared to RNBNE. A counterexample is

given in Appendix B.

Proposition 11. If bidders use heterogeneous bidding functions sn,i then

(1) Propositions 1, 5, 7, and 9 remain valid.

(2) The lower bounds on the profit function in Propositions 3 and 6 remain valid.

(3) If, in addition, sn,i (·, r) ≥ σn (·, r) for all r, the lower bounds on profit in

Proposition 8 and 10 remain valid.

Proof. The first claim holds because all these bounds exploit only the fact that bidders

bid between their valuations and σn (·) or ρn (·). The second claim follows because

the lower bounds in Propositions 3 and 6 are obtained from truthful bidding, which

remain valid under rationality. Lastly, notice that the lower bounds in Proposition

8 and 10 are obtained from truthful bidding and RNBNE bidding under the lower

bound of the valuation quantile function. Truthful bidding leads to a valid bound

under rationality. RNBNE bidding under the lower bound of the valuation quantile

leads to a valid lower bound under the additional assumption that sn,i (·, r) ≥ σn (·, r)
for all r. Therefore, the third claim follows.

Unlike in previous sections, Proposition 11 does assume that the bidding strategies

have some general form. Only in the third claim, we require that bidders bid at least

the RNBNE bidding strategy under any reserve price r. This assumption is needed to

exploit variation in n to tighten lower bound on profit. We were not able to establish

general results for the upper bound of the profit function, but we conjecture that our

upper bounds also remain valid if Assumption 2 or 3 holds with λn and Hn varying

across bidders. Numeric examples shown in the next section are consistent with this

conjecture.
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4 Illustrating the Identification Results

4.1 Computation

Solving (3) is a difficult problem because it requires taking the supremum over a

set of functions. We now provide a computationally easy approach to approximate

the solution. The idea is to approximate quantile functions with B-splines. Let

PK = (p1, p2, · · · , pK) be a vector of basis functions supported on [0, 1]. Then q (α) ≈
PK (α) θ, where θ is a K-dimensional column vector. The constraints can be imposed

on a set of points {tj}Jj=1 ⊂ [0, 1]. Then, an approximate upper bound can be obtained

by solving

max
θ
PK (α) θ, s.t. PK (tj) θ ≥ bn (tj) ≥ AK (tj) θ, PK (0) θ ≥ 0, P ′K (tj) θ ≥ 0 ∀j,

(13)

where AK (α) = 1
αn−1

∫ α
0
PK (t) dtn−1 if α > 0 and AK (0) = 0. This is a linear

programming problem that can be solved very quickly even if K and J are both very

large.

The numerical and empirical results we show in the remainder of this paper are

based on (13). Alternatively one can solve (4), which is a one-dimensional nonlinear

optimization problem that can be solved even faster than (13). One advantage of

using (13) is that it is straightforward to impose additional shape restrictions on the

valuation quantile function.

4.2 Valuation Quantile Function

In this section we illustrate the identification results graphically. We begin with the

six graphs in Figure 3, which illustrate the identification results for the valuation

distribution with n = 2. For the three graphs in the upper half, bidders play the

RNBNE so there is no overbidding. For the three graphs in the lower half, bidders

have CRRA and therefore overbid. The coefficient of relative risk aversion is 0.8. The

valuations are drawn from a mixture of a Beta distribution with parameters α = 2 and

β = 7 and a uniform distribution on [0, 1]. The mixture weights are 97.5 percent on

the Beta distribution and 2.5 percent on the uniform distribution. The small weight

on the uniform distribution has a negligible effect on the shape of the mixture, but

ensures that the density is strictly positive on [0, 1].
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The two graphs on the left of Figure 3 do not use variation in the number of

bidders. The two graphs in the middle use Assumption 5 (SIV) to tighten the bounds,

and the graphs on the right use the stronger Assumption 4 (EP) to tighten the bounds

further.

For the graphs in the middle and on the right, bid data with n = 7 are used in

addition to data with n = 2 to bound v2 (α). Thus, the graphs only use variation in

n from “one side” to tighten the bounds, i.e., from auctions with more bidders. In

some cases this only allows us to tighten one of the bounds. This allows us to better

illustrate the workings of the identification results than, for example, using data from

n = 2 and n = 7 to tighten the bounds for n = 3.
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Figure 3: Bounding the Valuation Distribution: These graphs show how to
bound the valuation distribution for n = 2. In the upper row the bidders play the
RNBNE, so there is no overbidding. In the lower row bidders have constant relative
risk aversion, so they overbid. The graphs on the left do not use variation in the
number of bidders and only use bid data from n = 2. The graphs in the middle
and the right also use bid data from n = 7 to tighten the bounds. The graphs in
the middle impose Assumption 5 (SIV), and on the right Assumption 4 (EP). The
coefficient of relative risk aversion is 0.8.

No Variation in n First consider Figure 3(a). The true valuation quantile function

v2 (α) is shown in red. The lower bound stemming from the assumption of rationality

(v2 (α) = b2 (α)) is shown in black. The upper bound obtained from overbidding

compared to RNBNE (v̄2 (α)) is shown in blue, and the upper bound from overbidding

compared to RNBR (ṽ2 (α)) in black. Because the bidders play the RNBNE, they

also play the RNBR, and therefore ṽ2 (α) = v2 (α).

Next consider Figure 3(d). Here the bidders are risk averse and overbid. Because

the bidders overbid, ṽ2 (α) no longer coincides with v2 (α), but instead b2 (α) is now
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close to v2 (α). If the bidders would overbid more, then b2 (α) would get arbitrarily

close to v2 (α), illustrating that the lower bound is sharp.

Variation in n under SIV Now consider Figure 3(b), which uses bid data from

n = 7 and imposes Assumption 5 (SIV) to tighten the bounds in Figure 3(a).

Notice that bid data from n = 7 do not allow us to tighten the lower bound

for n = 2, i.e., vSIV2 (α) = b2 (α). To understand this, recall that vSIVn (α) =

maxm∈N:m≤n {bm (α)}, so the lower bound can only be tightened by using bid data

from auctions with fewer bidders. Intuitively, observing that bidders in auctions with

n = 7 bid more aggressively does allow us to tighten the lower bound for v2 (α),

because v7 (α) may be higher than v2 (α) under SIV.

The upper bound from overbidding compared to RNBR cannot be tightened ei-

ther, i.e., ṽSIV2 (α) = ṽ2 (α). This is simply because even without using variation in

n, the bound already coincides with the true quantile function (ṽ2 (α) = v2 (α)) in

Figure 3(a). The upper bound from overbidding compared to RNBNE, however, can

be tightened considerably, i.e. v̄SIVn (α) < v̄n (α) for almost all α.

In the case with overbidding, shown in Figure 3(e), the upper bounds under both

overbidding restrictions can be tightened considerably compared to Figure 3(d). In

particular, in contrast to the case without overbidding, ṽSIV2 (α) = minm≥2 ṽm (α) =

ṽ7 (α) < ṽ2 (α) for almost all α. Intuitively, the bidders are risk averse and bid close

to their valuations even for n = 2. Therefore, the implied valuation quantile function

under the assumption of RNBR is lower for n = 7 than for n = 2, which allows us to

tighten the upper bound for v2 (α).

As in the case without overbidding, the lower bound cannot be tightened by using

data from auctions with more bidders.

Variation in n under EP Figure 3(c) shows that Assumption 4 (EP) allows

us to tighten the lower bound relative to Assumption 5 (SIV) (Figure 3(b)), i.e.,

vEP (α) = b7 (α) > vSIV2 (α) = b2 (α) for almost all α. Again, the upper bound from

overbidding compared to RNBR cannot be tightened as it already coincides with

the true valuation distribution so ṽEP (α) = ṽSIV2 (α) = ṽ2 (α) = v2 (α). The upper

bound from overbidding compared to RNBNE, however, can be tightened further,

i.e., v̄EPn (α) < v̄SIVn (α) for almost all α.

Lastly, Figure 3(f) shows that, as in the case without overbidding, the lower
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bound can be tightened. The upper bound under RNBR cannot be tightened further

compared to SIV because ṽEP (α) = minm∈N ṽm (α) = ṽ7 (α) = minm≥n ṽm (α) =

ṽSIVn (α). The upper bound under RNBNE, however, can be tightened slightly, i.e.,

v̄EPn (α) < v̄SIVn (α) for almost all α.

4.3 Profit
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Figure 4: Bounding the Seller’s Payoff: These graphs show how to bound the
seller’s payoff for n = 2. In the upper row the bidders play the RNBNE, so there is
no overbidding. In the lower row bidders have CRRA, so they overbid. The graphs
on the left do not use variation in the number of bidders and only use bid data from
n = 2. The graphs in the middle and the right also use bid data from n = 7 to tighten
the bounds. The graphs in the middle impose Assumption 5 (SIV), and on the right
Assumption 4 (EP). The CRRA coefficient is 0.8.

Figure 4 illustrates how the bounds for the valuation quantile function in Figure 3

can be translated into bounds for the seller’s profit. We assume that c = 0, i.e.,

the seller does not value the auctioned good. Without using variation in n, the
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bounds from overbidding compared to RNBNE are fairly wide, but the bounds from

overbidding compared to RNBR are more informative. Using variation in n leads to

a considerable tightening of the bounds corresponding to the tighter bounds for the

valuation distribution.

Optimal Reserve Price Figure 5 shows how the profit bounds can be used to

bound the optimal reserve price. The two graphs use the bounds from overbidding

compared to RNBR and impose Assumption 4 (EP) in Figure 4(c) (left) and 4(f)

(right). The pink lines demarcate the range of reserve prices that may be optimal.

How can we translate the profit bounds into the bounds for the reserve price? If

the maximum profit under some reserve price r1 is smaller than the minimum profit

under some alternative reserve price r2, i.e., π̄EP2 (r1) < πEP2 (r2), then r1 can be ruled

out. The set of potentially optimal reserve prices contains all reserve prices that

cannot be ruled out in this fashion.

This is shown in Figure 5. The horizontal pink lines in the graphs indicate the

maximum of the lower profit bound, πEP,max
2 . Any reserve price r such that π̄EP2 (r) <

πEP,max
2 can therefore be ruled out. The reserve prices between the two vertical pink

lines satisfy π̄EP2 (r) ≥ πEP,max
2 and can therefore not be ruled out. In the case without

overbidding (Figure 5(a)) the range of potential reserve prices is [0.03, 0.29] and in

the case with overbidding (Figure 5(b)) it is [0, 0.23].

The graphs also show the estimated seller profit under the assumption that there is

no overbidding, as in Guerre, Perrigne, and Vuong (2000), in green. If this assumption

is correct (Figure 5(a)), it identifies the optimal reserve price. If there is overbidding,

however, (Figure 5(b)) the optimal reserve price recovered through Guerre, Perrigne,

and Vuong (2000) even lies outside the reserve price bounds. This is because the

bounds use data from n = 7 to tighten the upper bound for the profit.

Which reserve price inside the bounds should the seller choose? The procedure

outlined above only bounds the set of reserve prices, but ultimately the seller has to

choose a particular reserve price. One way to choose the reserve price in partially

identified models is to maximize the minimum profit, i.e., maximize the profit under

a worst case scenario (Aryal and Kim (2013)).
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Figure 5: Bounding the Optimal Reserve Price: These graphs show how to
bound the optimal reserve price for n = 2 using the bounds from overbidding com-
pared to RNBR in Figures 4(c) (left) and 4(f) (right). The pink lines demarcate the
range of reserve prices that may be optimal. On the left the bidders play the RNBNE,
so there is no overbidding. On the right bidders have CRRA, so they overbid. Both
graphs impose Assumption 4 (EP) for n = 2 and n = 7 to tighten the bounds. The
coefficient of relative risk aversion is 0.8.

4.4 Heterogeneous Bidding Behavior

Lastly we consider the case of heterogeneous bidding behavior. Figure 6 shows bounds

for valuations (top) and profits (bottom) if different bidders use different bidding

strategies. There are three bidder groups, each accounts for one-third of the bids.

The first group overbids moderately compared to RNBNE. These bidders use the bid

function of a BNE where bidders have CRRA with a coefficient of 0.3. The second

group overbids more, as their CRRA coefficient is 0.5. The third group overbids the

most, as their CRRA coefficient is 0.8.

The graphs on the left row only use data with n = 2. The graphs in the middle

and on the right use data from n = 7 in addition to n = 2 to tighten the bounds.

The graphs in the middle use Assumption 5 (SIV) and the graphs at the right use

Assumption 4 (EP).

These graphs not only illustrate the identification results in Proposition 11, but

are also consistent with the conjecture that the upper bounds for the profit function

remain valid even with heterogeneous bidding behavior.
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Figure 6: Heterogeneous Bidding Behavior: These graphs show bounds for the
valuation distribution (top) and profits (bottom) if the bidders use different bidding
strategies. Here there are three bidder groups, which each account for one third of
the bids. The first group overbids moderately compared to RNBNE. These bidders
use the bid function of a BNE where bidders have CRRA with a coefficient of 0.3.
The second group overbids more as their CRRA coefficient is 0.5. The third group
overbids the most as their CRRA coefficient is 0.8. The graphs on the left only use
data with n = 2. The graphs in the middle and on the right use data from n = 7 in
addition to n = 2 to tighten the bounds. The graphs in the middle use Assumption
5 (SIV) and the graphs at the right use Assumption 4 (EP).

5 Estimation

Our identification results are constructive and lead to simple estimators for the

bounds. Suppose we observe Nn bids, {yi}Nn

i=1, from n-bidder auctions. Without loss

of generality, assume that y1 ≤ y2 ≤ · · · ≤ yNn . Let Ĝn be the empirical distribution

of bids from n-bidder auctions and let ĝn be a kernel density estimate.
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Lower Bound As an estimator for the lower bound of the valuation quantile func-

tion we define v̂n (α) = b̂n (α) = inf
{
b : Ĝn (b) ≥ α

}
. An estimator for the lower

bound of the profit function can be obtained by plugging b̂n (α) into πn.

Upper Bound under RNBNE Overbidding Next, consider the upper bound

under overbidding compared to RNBNE. In principle, an estimator for the upper

bound v̄n (α) can be obtained by plugging b̂n (α) into (3). We now establish a consis-

tency result of an infinite-dimensional sieve estimator.

ΘR (bn) = {q ∈ Θ : βn (t, q) ≤ bn (t) ≤ q (t)∀t ∈ [0, 1]} .

Therefore, v̄n (α) = supq∈ΘR
q (α). Next, define

Θ̃R (bn) =
{
q ∈ Θ̃ : βn (t, q) ≤ bn (t) ≤ q (t)∀t ∈ [0, 1]

}
,

where Θ̃ is a density subset of Θ. Then we can define ˆ̄vn (α) = supq∈Θ̃R(b̂cn) q (α) where

b̂cn (·) is defined by b̂cn (0) = y1 and b̂cn

(
i
Nn

)
= yi for all i > 1 and then interpolate

between these points.17 An estimator for the upper bound of the profit function can

then be obtained by plugging ˆ̄vn (α) into the expression for π̄n (r).18

Proposition 12. Suppose Θ̃ contains all the piece-wise linear functions and gn is

continuous and bounded away from 0 on its support. As Nn →∞, (1) for any ε > 0,

supα∈[0,1−ε]
∣∣ˆ̄vn (α)− v̄n (α)

∣∣ → 0 and supα∈[0,1] |v̂n (α)− vn (α)| → 0 almost surely;

(2) ˆ̄πn (r) → π̄n (r) and ˆ̄πn (r) → π̄n (r) and π̂n (r) → πn (r) almost surely for every

r.

Notice that the consistency result holds even though Θ̃ is very complex. And

unlike the case with large sieve space considered in Chen and Pouzo (2012), we do

not need any penalty. This is because that only b̂cn has estimation errors and it is a

function defined on [0, 1]. To implement the estimator, we choose Θ̃K to be the space

spanned by B-splines with K knots. Then Θ̃ = ∪∞K=1Θ̃K is a dense subset of Θ and

17We use b̂cn (·) instead of b̂n (·) because b̂n (·) is a step function and we cannot find a continuous
q that satisifes both overbidding and rationality in a neighborhood of 0. To see this, notice that
b̂n (α) = y1 for all α ∈ (0, 1/Nn]. To satisfy overbidding and rationality, we musht have q (α) = y1 on

(0, 1/Nn]. However, b̂n (α) = y2 > y1 if α ∈ (1/Nn, 2/N2]. As a result, q has to jump at α = 1/Nn.
18One can construct confidence set following Hsieh, Shi, and Shum (2018). In the interest of space,

we do not pursue it in this paper.

32



contains all piece-wise linear functions. We approximate ˆ̄vn (α) by taking maximum

on Θ̃K with a very large K. This leads to a linear programming problem.

Upper Bound for RNBR Under overbidding compared to RNBR,

ˆ̃vn (α) = b̂n (α) +
1

n− 1

α

ĝn

(
b̂n (α)

) .
Again this is a step function defined as

ˆ̃vn (α) = y(i) +
1

n− 1

1

ĝn
(
y(i)

) i

Nn

, if
i

Nn

≤ α <
i+ 1

Nn

.

An estimator for the upper bound of the profit function can obtained by plugging

in ˆ̃vn (α) into the the expression for π̃n (r). Consistency results can be established

following Guerre, Perrigne, and Vuong (2000) with additional smoothness assumption

on gn.

Variation in n If there is variation in n, we can construct similar estimators for the

bounds of the valuation quantile function following the identification argument. These

estimators can the be plugged into the expressions for the profit bounds to obtain

estimators for the profit bounds. Similar consistency results can also be established.

6 Validity of Bounds in Experimental Data

In this section we check whether the proposed bounds are valid in the experimental

data from Dyer, Kagel, and Levin (1989). This is important because the identifying

assumptions are violated for some bidders, especially those with low valuations, as

discussed in Section 2.

The data set contains contingent bids for n = 3 and n = 6 for the same underlying

valuation from the same bidder. After discarding bids from training rounds there are

414 bids for n = 3 and 414 bids for n = 6. As the valuation distribution does not

vary with n, we can exploit variation in the number of bidders to tighten the bounds.

The valuations are drawn from a uniform distribution on [0, 30], so σn (t) = n−1
n
t.
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Figure 7: Bounding the Valuation Distribution: Bounds on the valuation quan-
tile function for n = 3 (left) and n = 6 (right). The top row does not use variation
in n. The middle row uses variation in n under the SIV assumption, and the bottom
row under the EP assumption.

Valuation Quantile Function Figure 7 shows the estimated bounds for the valu-

ation quantile function for n = 3 on the left and n = 6 on the right. The top row does

not use variation in n. The middle row uses variation in n under the SIV assumption,

and the bottom row under the EP assumption. The true valuation distribution is

shown in red, the RNBNE bounds in blue, and the RNBR bounds in black.

The graphs show that the bounds are valid even though the identifying assump-

tions are violated for some bidders. The RNBR bounds are substantially tighter than
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the RNBNE bounds and the bounds for n = 6 are tighter than for n = 3. Using

variation in n helps to tighten the bounds considerably.
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Figure 8: Bounding the Seller’s Payoff: Bounds on the profit function for n = 3
(left) and n = 6 (right). The top row does not use variation in n. The middle row
uses variation in n under the SIV assumption, and the bottom row under the EP
assumption.

Seller Payoff Figure 8 shows the estimated bounds for the seller’s payoff that

correspond to valuation bounds in Figure 7. Naturally, tighter bounds for valuations

are translated into tighter bounds for the seller’s payoff. Therefore the RNBR bounds

are substantially tighter than the RNBNE bounds, and the bounds for n = 6 are

tighter than for n = 3. The bounds for low reserve prices are tight and widen for
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higher reserve prices. Intuitively, this is because the payoff without a reserve price is

point identified from the data, so the bounds are tighter for lower reserve prices.

Reserve Price Figure 9 illustrates how the bounds for the seller’s profit function

can be used to bound the reserve price. Here we show the RNBR bounds under the

assumption of EP.

For n = 3, shown in panel (a), reserve prices between 0 and 16.6 may be optimal

as indicated by the two pink vertical lines. Reserve prices above 16.6 can be ruled out

because the maximum payoff under these reserve prices is lower than the minimum

payoff under some other reserve price, as indicated by the pink horizontal line.

To choose among reserve prices between 0 and 16.6 requires some assumption

about the preferences of the seller. For example, a maxmin seller would choose a

reserve price of 0 because this yields the highest minimum payoff whereas a maxmax

seller would choose a reserve price of 14.1 because this yields the highest maximum

payoff.19
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Figure 9: Bounding the Reserve Price: These graphs show the bounds for the
optimal reserve price. The bounds are shown for overbidding compared to RNBR
and under the assumption of EP. For n = 3 reserve prices between 0 and 16.6 may be
optimal as indicated by the two vertical pink lines. Reserve prices above 16.6 can be
ruled out because the maximum payoff under these reserve prices is lower than the
minimum payoff under some other reserve price, as indicated by the pink horizontal
line. For n = 6 a reserve price of 0 is optimal. All reserve prices above 0 can be ruled
out because they yield a maximum payoff below the known payoff at 0.

For n = 6, shown in panel (b), all reserve prices above 0 can be ruled out, because

their maximum seller payoff is below the payoff at 0. Hence, this is a case where the

19See Aryal and Kim (2013) for choosing reserve prices with partially identified models.
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optimal reserve price can be determined exactly even though the identifying restric-

tions are weak and only yield partial identification of the valuation distribution and

the payoff function. This is an instance where weakening the identifying restrictions

does not come at the expense of having to content oneself with less precise policy

recommendations.

7 Conclusion

This paper suggests a new link between experimental economics and structural esti-

mation. Usually experiments are conducted to compare their findings to theoretical

predictions. Hence, experimental work affects structural work only indirectly if it

sparks the development of new models. However, in this paper we demonstrate that

experimental findings can be used directly in structural estimation without imposing

a particular model. This approach is particularly useful in cases where there is no

agreement which model is best supported by the experimental findings, as is the case

for first-price auctions.

In the context of first-price auctions, imposing the restrictions from experiments

allows us to relax the assumptions of the canonical model, which appears to be in-

consistent with the experimental findings, and still obtain informative bounds on

primitives. In other contexts it could be the case that while the canonical model is

not rejected by experimental findings, it is also not identified from field data. In this

case, imposing the restrictions from experiments in addition to the restrictions from

the canonical model could help in identification.

We see two broad avenues for future work. First, structural researchers can ask

whether using existing experimental findings to inform structural estimation is helpful

in other contexts, for example, for identification and estimation of bargaining models.

Second, experimental researchers can ask whether it is useful to conduct experiments

specifically to inform structural estimation rather than to test theory.

A Proofs (For Online Publication)

A.1 Proof of Results in Section 3.1

We first prove Proposition 2 because it will be handy in proving Proposition 1.
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Proof of Proposition 2. Notice that v̄an (0) = v̄n (0) = bn (0). Therefore, the statement

holds for α = 0.

Now consider α > 0. First we show that v̄n (α) ≤ v̄an (α). If this is not the case

there exists some q that satisfies overbidding and rationality such that q (α) > v̄an (α).

Then qα,q(α) (·) satisfies rationality by construction and because bn (·) ≥ βn (·, q) ≥
βn
(
·, qα,q(α)

)
it also satisfies overbidding. By the definition of v̄an, v̄an (α) ≥ qα,q(α) (α) =

q (α), which contradicts v̄an (α) < q (α).

Next, we show that v̄n (α) ≥ v̄an (α). Define

qα,ε,δ (t) =


bn (t) if t < α− ε
v̄an(α)−δ−bn(α−ε)

ε
(t− α + ε) + bn (α− ε) if t ∈ [α− ε, α]

max {x− δ, bn (t)} if t ≥ α

, (14)

where ε and δ are two positive numbers. Notice that qα,ε,δ is continuous, weakly

increasing and satisfies rationality. If we can show that for every sufficiently small

δ, there exists ε > 0 such that β (·, qα,ε,δ) ≤ bn (·), then q̃α,ε,δ = (1− κ) qα,ε,δ + κbn ∈
Θ satisfies overbidding and rationality for all κ ∈ (0, 1). This would imply that

v̄n (α) ≥ limκ→0 (1− κ) qα,ε,δ (α) = v̄an (α) − δ. Because δ can be arbitrarily small,

v̄n (α) ≥ v̄an (α).

Now we show that for every δ sufficiently small, there exists ε > 0 such that

β (·, qα,ε,δ) ≤ bn (·). First, notice that βn (t, bn) < bn (t) for all t > 0 because bn is

strictly increasing. Therefore,

max
t≥α

[βn (t, bn)− bn (t)] > 0.

In addition, βn (·, q) is uniformly continuous in q. This means that

q (t) = bn (t) 1 (t < α) + 1 (t ≥ α) max {bn (α) + 2δ, bn (t)}

satisfies RNBNE overbidding if δ is sufficiently small. Because v̄an (α) ≥ q (α) =

bn (α) + 2δ, v̄an (α) − δ > bn (α) if δ is sufficiently small. By continuity of bn, there

exists η1 > 0 such that v̄an (α)− δ > bn (t) for all t < α + η1.

Second, notice that βn
(
α, qα,v̄n(α)

)
− bn (α) = β (α, bn)− bn (α) < 0 and both bn (·)

and β
(
t, qα,v̄n(α)

)
are continuous in t. There exists η2 > 0 such that β

(
t, qα,v̄n(α)

)
<

bn (t) − η2 for t ∈ (α− η2, α + η2). Define η = min (η1, η2). In addition, notice that
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β (·, qα,ε,δ) converges uniformly to β
(
·, qα,v̄an(α)−δ

)
uniformly if ε → 0. This suggests

that if t ∈ (α− η, α + η), for all sufficiently small ε > 0

β (t, qα,ε,δ) ≤ β
(
t, qα,v̄n(α)−δ

)
≤ β

(
t, qα,v̄n(α)

)
< bn (t) .

If t ≥ α + η and ε is sufficiently small,

tn−1β (t, qα,ε,δ)− tn−1βn
(
t, qα,v̄n(α)

)
≤ tn−1β

(
t, qα−ε,v̄n(α)−δ

)
−
∫ t

0

qα,v̄n(α) (s) dsn−1

=

∫ t

0

[
qα−ε,v̄n(α)−δ (s)− qα,v̄n(α) (s)

]
dsn−1 ≤

∫ α+η

α−ε

[
qα−ε,v̄n(α)−δ (s)− qα,v̄n(α) (s)

]
dsn−1

≤
[
αn−1 − (α− ε)n−1] (v̄n (α)− δ)− δ

[
(α + η)n−1 − αn−1

]
< 0,

where the second inequality holds because qα−ε,v̄n(α)−δ (t)−qα,v̄n(α) (t) = −δ < 0 for all

t > α+η. This means that β (t, qα,ε,δ) ≤ βn
(
t, qα,v̄n(α)

)
≤ bn (t) for ε sufficiently small

for all t > α + η. In addition, if t ≤ α − ε, βn (t, qα,ε,δ) = βn (t, bn) ≤ bn (t) . Hence,

qα,ε,δ satisfies RNBNE overbidding and rationality for all ε that are sufficiently small

and qα,ε,δ (α) = v̄an (α) − δ. Because δ > 0 can be arbitrarily small, we can conclude

that v̄n (α) ≥ v̄an (α).

Proof of Proposition 1. By definition, v̄n (α) is an upper bound for the true valuation

quantile. Now we show that it is a sharp bound. Given α, by the definition of v̄n, for

any η > 0, there exists a q̃ that satisfies all the constraints and q̃ (α) > v̄n (α)− η/2.

Define ˜̃q = (1− δ) q̃+ δbn for some δ ∈ (0, 1). By assumption, ˜̃q ≥ bn and it is strictly

increasing. Because ˜̃q < q̃, by Proposition 2 in Grundl and Zhu (2016), the RNBNE

bid quantile function of ˜̃q is weakly lower than that of q̃ and hence weakly lower than

bn. This means that ˜̃q is a valid candidate quantile function for any δ ∈ (0, 1). Then

pick a sufficiently small δ such that ˜̃q (α) > q̃ (α) − η/2 > v̄n (α) − η. Therefore,

v̄n (α)− η cannot be a valid upper bound for any η. This shows that v̄n (α) is sharp.

The lower bound is sharp because we cannot rule out the case where bidders have

arbitrarily high risk aversion. This would induce them to bid arbitrarily close to their

valuations.
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Proposition 1(1) Next we show that v̄n (α) < bn (1) / (1− α) for any α < 1.

Notice that by the constraints,
∫ 1

0
q (t) dtn−1 ≤ bn (1). As q (t) ≥ 0∫ 1

α

q (t) dtn−1 ≤
∫ 1

0

q (t) dtn−1 ≤ bn (1) .

Because q (t) is non-decreasing, q (α) (1− αn−1) ≤
∫ 1

α
q (t) dtn−1. Therefore,

q (α) ≤ bn (1)

1− αn−1
<
bn (1)

1− α
.

The last inequality follows because α < 1.

Proposition 1(2) Now we show that ∃C > 0 such that v̄n (α) > C/ (1− α) for α

close to 1. Define 2y = bn (1) − βn (1, bn) where y > 0 because the RNBNE bid is

strictly lower than the valuation for α > 0. We will show that Proposition 1(2) is

satisfied for C = y/4.

By continuity, there exists some γ > 0 such that bn (α) − βn (α, bn) > y if α ∈
[1− γ, 1]. Next, define

q̃ (α) =

bn (α) if α < 1− η

[2M − bn (1− η)] α−(1−η)
η

+ bn (1− η) if α ≥ 1− η
,

where M = y
2

(
1
η
− 1
)

. We will show that for any sufficiently small η, q̃ is a valid

quantile function. Once we establish this, v̄n (1− η) ≥ q̃ (α) = y
4η

for all sufficiently

small η. Then Proposition 1(2) holds with C = y/4.

Because the bid density is bounded away from 0, z = supα∈[0,1] b
′
n (α) is bounded.

If η is sufficiently small such that M − bn (1) > z, it is guaranteed that q̃ (·) ≥ bn (·).
For α < 1− η, βn (α, bn) = βn (α, q̃). Notice that

βn (1, q̃)− βn (1− η, q̃) ≤ 1

(1− η)n−1

∫ 1

1−η
q̃ (t) dtn−1 ≤ 2M

(1− η)n−1

[
1− (1− η)n−1] .

(15)

For all η < γ , by the definition of M

2M

(1− η)n−1

[
1− (1− η)n−1] ≤ 2M

1− η
− 2M = y. (16)
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As a result, if η < γ, for all α ∈ [1− η, 1], by (15), (16) and the fact that bn (1− η)−
βn (1− η, bn) > y, we obtain that

βn (α, q̃) <
2M

(1− η)n−1

[
1− (1− η)n−1]+ βn (1− η, q̃)

<y + βn (1− η, q̃) < bn (1− η) ≤ bn (α) ,

where the third inequality hold because η < γ. Therefore, q̃ (·) is a valid candidate

valuation quantile function if η < γ and M = y
2

(
1
η
− 1
)
> bn (1) + z, which are

satisfied for all η that are sufficiently small. This concludes the proof for Proposition

1(2).

Proposition 1(3) To see that v̄n is continuous, notice that for any ε > 0, we can

find a q that satisfies all the constraints and q (α) > v̄n (α) − ε/2. Because q is

continuous, we can find a δ > 0 such that |q (x)− q (α)| < ε/2 for all x ∈ (α− δ, α].

This means that v̄n (x)− v̄n (α) > q (x)− q (α)− ε/2 > −ε, which in turn implies that

|v̄n (x)− v̄n (α)| < ε for all x ∈ (α− δ, α] because v̄n (x) is weakly increasing. This

shows that v̄n (·) is left continuous.

Now we prove v̄n (·) is right continuous at any α ∈ (0, 1). Let {αk}∞k=1 be a

decreasing sequence that converges to α. Define limk→∞ v̄n (αk) = x for some ε > 0.

Notice that qα,x satisfies rationality by construction. Now we show that qα,x satisfies

RNBNE overbidding. First notice that as k →∞

sup
t∈[α,1]

∣∣βn (t, qα,x)− βn
(
t, qαk,v̄n(αk)

)∣∣ ≤ 1

αn−1

∫ 1

0

∣∣qα,x (t)− qαk,v̄n(αk) (t)
∣∣ dtn−1 → 0

As a result, βn (t, qα,x) ≤ bn (t) for all t ∈ [α, 1] because by proposition 2, qαk,v̄n(αk) (t) ≤
bn (t) for all t ∈ [0, 1]. And by construction, qα,x satisfies RNBNE overbidding on

[0, α]. Therefore, for any α ∈ (0, 1)

v̄n (α) = qα,x (α) = x = lim
k→∞

v̄n (αk) .

Now consider the case where α = 0. Suppose that limk→∞ v̄n (αk) = x > bn (0). Then

for any ε > 0

bn (ε) ≥ lim
k→∞

β
(
ε, qαk,v̄n(αk)

)
= x > bn (0) ,
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which contradicts the continuity of bn. In addition, limk→∞ v̄n (αk) ≥ bn (0) by ratio-

nality. As a result, limk→∞ v̄n (αk) = bn (0) = v̄n (0).

Lastly, we prove that v̄n (·) is strictly increasing. Notice that it is weakly increasing

because it is the supremum of a set of increasing functions. Now suppose towards

contradiction that v̄n (·) is not strictly increasing. There must exist 0 < α1 < α2 < 1

such that v̄n (α1) = v̄n (α2) = x. By Proposition 2, both qα1,x and qα2,x satisfies

RNBNE overbidding and rationality. Notice that bn (t) ≥ β (t, qα1,x) > β (t, qα2,x) if

t ∈ [α2, x]. Because both bn and β (·, qα2,x) are continuous, there exists ε > 0 such

that bn (t) > β (t, qα2,x) + ε if t ∈ [α2, x]. Then β (t, qα2,x+ε) ≤ β (t, qα2,x) + ε < bn (t) if

t ∈ [α2, x]. This implies that v̄n (α2) > x. Therefore, v̄n (·) is strictly increasing.

A.2 Proof of Results in Section 3.2

Proof of Proposition 4. Notice that Gn (b) = Fn (s−1
n (b)). Therefore, sn (·) = ρn (·)

implies that sn (t) = arg maxb (t− b)Fn (s−1
n (b))

n−1
. Since the unique solution to

this functional equation is σn (·), sn (·) = σn (·) = ρn (·). If sn (·) = σn (·), then it

is the best response to Fn (σ−1
n (b)) = Gn (b), which implies sn (·) = σn (·) = ρn (·).

To see the second part, suppose that Fn is uniform on [0, 1] and sn (t) = ct for some

1 > c > (n− 1) /n. One can show that ρn (t) = σn (t) = (n− 1) t/n 6= ct.

If sn (·) ≥ ρn (·), then ∀t, t ≤ ρ−1
n (sn (t)), so t ≤ sn (t)+Gn (sn (t)) / [(n− 1) gn (sn (t))].

Notice that Gn (sn (t)) = Fn (t) and gn (sn (t)) = fn (t) /s′n (t). After some algebra,

one can show that sn (·) ≥ ρn (·) is equivalent to

s′n (t) ≥ (n− 1) (t− sn (t))
fn (t)

Fn (t)
.

Because sn (0) = σn (0), this inequality implies that sn (·) ≥ σn (·). One can see this

through contradiction. Suppose there exists some t1 such that sn (t1) < σn (t1). One

can always find t2 < t1 such that sn (t2) = σn (t2) and sn (t) < σn (t) on (t2, t1]. This

is because sn (·) is bounded and has a uniformly bounded first-order derivative by

Assumption 1. By the first-order conditions, s′n (t) > σ′n (t) on (t2, t1]. This implies

that sn (t2) < σn (t2), because sn (t1) < σn (t1). This is a contradiction.
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A.3 Proof of Results in Section 5

Proof. We start with Proposition 12(1). First, supb

∣∣∣Ĝn (b)−Gn (b)
∣∣∣ → 0 almost

surely as Nn → ∞. Because gn (·) is bounded away from 0 on its support, then

almost surely supt∈[0,1]

∣∣∣b̂n (α)− bn (α)
∣∣∣ → 0, which is the second part of Proposition

12(1). In addition, because b̂n is increasing and b̂cn (α) = b̂n (α) for α = 0 and i/Nn

for all i > 2, supt∈[0,1]

∣∣∣b̂cn (α)− bn (α)
∣∣∣→ 0 almost surely. Now notice that Θ̃ contains

all piece-wise linear functions and b̂cn (·) is piece-wise linear. Then for any α ∈ [0, 1),

ˆ̄vn (α) = supq∈ΘR(b̂cn) q (α), i.e. the supreme on Θ̃ agrees with the supreme on Θ. To

see this, just notice that in the proof of Proposition 2, we establish that the supremum

on Θ can be attained by the supremum of a sequence of functions that has the form

(14). This sequence of functions are piece-wiselinear because b̂cn is piece-wise linear.

For every α ∈ [0, 1), supq∈ΘR(bn) q (α) is continuous in bn under the sup norm. This

implies that ˆ̄vn (α) → v̄n (α) almost surely for every α ∈ [0, 1). Next, notice that

v̄n (·) is continuous and increasing on [0, 1− ε]. Then it is uniformly continuous on

[0, 1− ε]. For any δ > 0, we can find J points 0 = t1 < t2 < · · · < tJ = 1 − ε such

that

sup
1<j≤J

|v̄n (tj)− v̄n (tj−1)| < δ.

In addition, notice that by the previous argument, almost surely

lim
Nn→∞

sup
1<j≤J

∣∣ˆ̄vn (tj)− v̄n (tj)
∣∣ = 0.

In addition, ˆ̄vn (tj) is non-decreasing almost surely because for almost all realization,

it is a supreme over a set of non-decreasing functions. Consequently,

sup
t∈[0,1−ε]

∣∣ˆ̄vn (t)− v̄n (t)
∣∣ ≤ 2 sup

1<j≤J

∣∣ˆ̄vn (tj)− v̄n (tj)
∣∣+ sup

1<j≤J
|v̄n (tj)− v̄n (tj−1)| .

As a result, limNn→∞ supt∈[0,1−ε]
∣∣ˆ̄vn (t)− v̄n (t)

∣∣ < δ. Because δ can be arbitrarily

small,

lim
Nn→∞

sup
t∈[0,1−ε]

∣∣ˆ̄vn (t)− v̄n (t)
∣∣ = 0.

Then notice that

ˆ̄πn (r) =

∫
α≥ˆ̄v−1

n (r)

[
ˆ̄bn (α, r)− c

]
dαn + c.
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And ˆ̄bn (α, r) converges to b̄n (α, r) uniformly in α almost surely and ˆ̄v−1
n (r) converges

to v̄−1
n (r) almost surely because v̄n is strictly increasing. Therefore, ˆ̄πn (r) → π̄n (r)

almost surely. Similarly, π̂n (r)→ πn (r)almost surely for every r.

A.4 Additional Lemmas

Lemma 2. Let σln (·, r) be the RNBNE bid quantile function under valuation quantile

vl and reserve price r in n bidder auctions. If v1 (·) ≥ v2 (·), then σ1
n (·, r) ≥ σ2

n (·, r).

Proof. Under RNBNE, the bid quantile function satisfies

∂σln (α, r)

∂α
= (n− 1)

vl (α)− σln (α, r)

α
,

with the initial condition σln (α, r) = r if σl (α) = r. And if vl (α) < r, σln (α) = 0. Let

v1 (α1) = r and v2 (α2) = r. Because v1 (·) ≥ v2 (·), α1 ≤ α2. In addition, σ1
n (α, r) ≥

r ∀α ≥ α1. Therefore, σ1
n (·, r) ≥ σ2

n (·, r) ∀α ∈ [0, α2). Next, we conclude the proof

by showing the statement holds ∀α ∈ [α2, 1] using a contradiction argument. Suppose

there is some α3 ∈ [α2, 1] such that σ1
n (α3, r) < σ2

n (α3, r). Because σ1
n (α2, r) ≥ r =

σ2
n (α2, r), by the continuity of the bid function, there must be some α3 > α4 ≥ α2 such

that σ1
n (α4, r) = σ2

n (α4, r) and σ1
n (α, r) < σ2

n (α, r) for all α ∈ (α4, α3]. Then by the

first order condition, ∂
∂α
σ1
n (α, r) > ∂

∂α
σ2
n (α, r). This implies σ1

n (α3, r) > σ2
n (α3, r),

which is a contradiction.

Next, we prove a general result on bid quantile dominance. Let vn (α) and vn,G (α)

be two valuation quantile functions with vn (0) = vn,G (0) = 0. Let bn (α, r) and

βn,G (α, r) be bid quantile functions, which are defined as follows. We set bn (α, r) = 0

if vn (α) < r and elsewhere it solves the following differential equation with the initial

condition bn (v−1
n (α) , r) = r:

∂

∂α
bn (α, r) = (n− 1)λn (vn (α)− bn (α, r)) γ (α)Hn (α)

where γ is some positive function and λn (0) = 0, λ′n ≥ 1 and Hn ≥ 1. The quantile

function βn,G is defined in the same way based on vn,G and the differential equation,

∂

∂α
βn,G (α, r) = (n− 1) (vn,G (α)− βn,G (α, r)) γ (α) .
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Lemma 3. If bn (α, 0) = βn,G (α, 0) for all α ∈ [0, 1], then bn (α, r) ≤ βn,G (α, r) for

all α ∈ [0, 1] and r > 0 .

Proof. By assumption,

(n− 1)λn (vn (α)− bn (α, 0))Hn (α) γ (α) = (n− 1) (vn,G (α)− bn (α, 0)) γ (α) .

Because Hn ≥ 1, λ′n (x) ≥ 1 , we must have vn (α) ≤ vn,G (α) for all α. Now define

αr and ᾱr through vn (αr) = r and vn,G (ᾱr) = r. Obviously, ᾱr ≤ αr. Because

bn (α, r) = 0 if α < αr and βn,G (αr, r) ≥ βn,G (ᾱr, r) = r = bn (αr, r), βn,G (α, r) ≥
bn (α, r) for all α ≤ αr. We next show by contradiction that

βn,G (α, r) ≥ bn (α, r) , ∀α ∈ [αr, 1] .

Suppose there is an α1 ∈ [αr, 1] such that βn,G (α1, r) < bn (α1, r). Define

ᾱ = sup {α ∈ [αr, α1] : βn,G (α, r) ≥ bn (α, r)} .

By continuity of the bid function and the fact that βn,G (αr, r) ≥ bn (αr, r), we must

have βn,G (ᾱ, r) = bn (ᾱ, r) and there exists a ∆ > 0 such that for any α ∈ (ᾱ, ᾱ + ∆),

βn,G (α, r) < bn (α, r). This means that there exists at least some α ∈ [ᾱ, ᾱ + ∆] such

that ∂βn,G (α, r) /∂α < ∂bn (α, r) /∂α or equivalently,

λ (vn (α)− bn (α, r))Hn (α) > vn,G (α)− βn,G (α, r) .

Now notice that bn (α, r)− bn (α, 0) ≥ 0, λ′n ≥ 1 and Hn ≥ 1,

λn (vn (α)− bn (α, 0))Hn (α) ≥ λn (vn (α)− bn (α, r))Hn (α) + bn (α, r)− bn (α, 0)

> vn,G (α)− βn,G (α, r) + bn (α, r)− bn (α, 0)

> vn,G (α)− bn (α, 0) .

which violates the fact that

(n− 1)λn (vn (α)− bn (α)) γ (α)Hn (α) = (n− 1) [vn,G (α)− bn (α)] γ (α)

for all α ∈ (0, 1]. Thus, βn,G (α, r) ≥ bn (α, r) , ∀α ∈ [αr, 1].
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B Counterexample for Proposition 4 with Hetero-

geneous Bidders (For Online Publication)

With heterogeneous bidding strategies, Proposition 4 no longer holds. In particular,

it is no longer the case that overbidding compared to RNBR is necessarily a stronger

restriction than overbidding compared to RNBNE.

To see this consider the following counter-example. Suppose that n = 2 and the

valuation distribution Fn is the standard uniform distribution. Hence, σ−1
n (b) = 2b.

There are two bidder types, distinguished by their bidding strategies sn,1 and sn,2. The

first type represents a share of 1− ε of all bidders and the second type represents the

remaining share ε. First suppose that ε = 0 so there is no heterogeneity among bidders

and that s−1
n,1 (b) = 2b− 1

3
b3. Hence, G (b) = s−1

n,1 (b) = 2b− 1
3
b3 and g (b) = 2−b2. This

implies that ρ−1
n (b) = b+ G(b)

g(b)
= b+b

2− 1
3
b2

2−b2 . Because
2− 1

3
b2

2−b2 > 1, ρ−1
n (b) > 2b = σ−1

n (b)

for all b > 0 or ρn (v) < σn (v) for all v ∈ (0, 1]. Therefore, RNBNE is more aggressive

than RNBR in this case. Moreover, s−1
n,1 (b) = 2b − 1

3
b3 < 2b = σ−1

n (b) for b > 0, so

ρn (v) < σn (v) < sn,1 (v) for all v ∈ (0, 1].

Now we introduce a small amount of bidder heterogeneity into this example with

ε > 0. Let the new RNBR and RNBNE be ρεn and σεn. The introduction of the second

bidder type has no effect on the RNBNE, i.e. σεn = σn. If ε is sufficiently small then

ρεn is almost entirely determined by bidder type 1 and therefore very close to ρn. Now

let sn,2 (v) = ρn(v)+σn(v)
2

. Hence, bidder type 2 bids more aggressively than RNBR,

but less aggressively than RNBNE. If ε is sufficiently small then ρεn (v) < sn,2 (v) <

σεn (v) < sn,1 (v) for all v ∈ (0, 1]. Hence, in this example all bidder types overbid

compared to RNBR, but not compared to RNBNE.
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