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Abstract

A decision maker (DM) takes a binary decision, and cares about their reputation for be-

ing responsive to evidence—a non-partisan type—as opposed to having a fixed agenda—

a partisan type. Non-partisans have heterogenous “leniency,” i.e., evidence thresholds

above which the high action is preferred, whereas partisans always prefer the low ac-

tion. Before the evidence is realized the DM can send a cheap talk message to the

public about his plans following the evidence. A wide range of communication equi-

libria exist, including an ”ex-ante signaling” in which the DM announces (and follows

through on) a threshold above which he will take the high action. We show that the

ex-ante signaling equilibrium generates the highest probability of taking the high ac-

tion across all equilibria. We then endogenize the evidence distribution as the choice of

an investigator who seeks to maximize the probability of the high action. Allowing for

communication qualitatively changes the structure of the optimal investigation, push-

ing towards “unpredictability” in the distribution of evidence that hinders the partisan

type in targeting his announced action threshold.

1. Introduction

In September 2019, a whistleblower complaint surfaced concerning a call between Pres-
ident Trump of the United States, and President Zelensky of Ukraine. The call prompted
allegations that Trump had conditioned aid on Zelensky conducting investigations into
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Trump’s political rivals. Speaker of the House Pelosi responded by initiating an impeach-
ment inquiry. Like many political scandals, despite the investigation being ongoing, var-
ious pivotal senators were asked to weigh in about their intended impeachment votes.
Some made informative statements: Senator Romney reported that the transcript was
“troubling” and Senators Graham, Ernst, and Toomey reported their doubts that convinc-
ing evidence of a quid pro quo would turn up. Others refused to comment: Senator Sasse
criticized his colleagues for jumping to conclusions, and pledged to wait and see until the
investigation was concluded.1 These politicians faced cross pressure between appearing to
approach the issue objectively and siding with their party.2

For the purpose of this paper, the important features of the example above are as fol-
lows. A decision maker (the politician) weighs the tradeoff between taking a potentially
unfavorable action (voting for conviction), and obtaining a positive reputation in the eyes
of the public (projecting integrity to the voters). In addition, there is uncertainty about the
value of the decision (the results of the impeachment inquiry). The decision maker can
stake a position before this uncertainty is resolved or they can be vague (answer interview-
ers’ questions, or “dodge the cameras”). An additional aspect is that the way uncertainty
is resolved is determined by an interested party (Speaker Pelosi). These features describe
other political scandals and decisions well, but are not unique to them:

1. Many government organizations such as the Federal Trade Commission (FTC) or
Food and Drug Administration (FDA) are tasked with approval decisions. The of-
ficials involved may have their idiosyncratic preferences about each issue, but also
have a desire to project integrity rather than appearing to seek a particular outcome
regardless of the specifics. These organizations can set their standards for approval
up front or decide on a case-by-case basis after observing the evidence. For example,
in late 2020, national drug regulatory agencies were eager to approve a safe COVID-
19 vaccine but faced credibility worries that they were rushing approval. In the US,
the FDA laid out a specific efficacy threshold in clinical trials for approval, whereas
the EU’s counterpart deliberately provided no such lower bound (Singh and Upshur
(2021)). Another example is a firm defending the benefits of a potential merger which

1 Costa, Roberts (2019) ”Cracks emerge among Senate Republicans over Trump urging Ukrainian leader
to investigate Biden” Washington Post, September 25.

2 A clear example of these politicians’ concern for appearing non-partisan is that the senate voted unani-
mously to release the transcript of the call and whistleblower complaint despite President Trump and many
Republican party operatives urging against it. (See Mcardle, Mairead (2019) “Senate GOP Unanimously
Approves Dem Resolution Calling for Release of Whistleblower Complaint” National Review, September
24).More broadly, politicians are frequently rewarded for appearing non-partisan, e.g., John Hickenlooper
benefited from taking bipartisan positions in the 2020 presidential election (see Bernstein, Jonathan (2013)
“Understanding the importance of a reputation for bipartisainship,” Washington Post, July 24.)
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can then be approved or denied by the FTC. Because the firm seeks approval, the pro-
cedure by which the FTC communicates its standards will impact the disclosures the
firm makes about the impacts of the merger.

2. University admissions committees would like to appear as though their decisions
are based on academic potential despite being pressured to consider the legacy sta-
tuses, donations, or other non-academic features of their applicants. Many American
universities practice “holistic” admissions and will not give exact criteria for admis-
sion. The lack of transparency in holistic admissions has been criticized for facilitat-
ing higher admission rates for unqualified applicants.3 One alternative is to publicize
specific criteria for admission, a practice common in universities throughout Europe
and Asia.4 In addition, there is concern about how the design of standardized tests
affects how many applicants are admitted primarily due to non-academic qualifica-
tions.5

We study two important questions in such settings. First, how does communication
about hypothetical plans prior to the revelation of evidence affect outcomes? Would we
expect that Republican senators who indicate conditions for impeachment up front convict
more or less than those who wait and see? Would the FTC approve more mergers if they
were to specify approval conditions in advance, than if they decide on a case-by-case ba-
sis? Would universities admit more donor applicants were they to publicize admissions
standards rather than use holistic admissions? Second, how does the design of the inves-
tigation affect outcomes? How should Nancy Pelosi conduct the impeachment inquiry to
get the most Republican senators to convict? How should firms provide evidence about
potential mergers to ensure the highest chance of approval? And, how might one design
standardized tests to give donor applicants the least advantage?

Our model features a single decision maker (DM), an investigator, and an inactive Bayesian
observer. The game consists of two stages: a communication stage and a decision stage. At
the communication stage the DM sends a cheap talk message about his preferences. At the
decision stage the evidence e ∈ R is revealed and the DM chooses a binary action, either
a = 1 — “conviction” — or a = 0 —“acquittal”. In addition to the evidence, the DM’s

3 Pinker, Steven (2014) “The Trouble With Harvard” The New Repbulic, September 4.
4 Frisancho and Krishna (2016) describes how admission to Delhi University is automatic if an applicant’s

exam score crosses a social group dependent cut-off.
5 Other examples abound. Many academic journals have required or offered preregistration (see Warren,

Matthew (2018) “First analysis of ‘pre-registered’ studies shows sharp rise in null findings,” Nature, October
24. ), i.e., specifying the design of the study and conditions for acceptance before the data is observed or
analyzed. While preregistration is often discussed in terms of its incentive effects on authors, it will also have
effects on which papers are selected by reputationally concerned editors.
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preferences over the action also depend on his private type, which is either partisan or
non-partisan. The non-partisan would like to convict if the evidence is sufficiently strong;
more specifically if e crosses their privately known idiosyncratic leniency ℓ ∈ R. On the
other hand, the partisan does not care about the evidence and suffers a constant disutility
from taking a = 1. Finally, the DM also cares about his reputation for being a non-partisan
in the eyes of the observer who sees the DM’s cheap talk message and chosen action along
with the realized evidence.

The investigator specifies the distribution over evidence—the investigation—subject to
constraints. In our main specification, the investigator seeks to maximize the probability
of conviction.6 The first part of our paper develops results for a fixed investigation, i.e.,
where the investigator is inactive, and the second part allows the investigator to flexibly
design an information structure.

One novelty of our model is that the DM seeks a reputation for being responsive to evi-
dence rather than for being inherently biased toward one action or another. While a non-
partisan type can prefer a = 1 more or less than a partisan type depending on the pa-
rameters, the distinctive feature of non-partisan types is that their preferences depend on
evidence.7 Our reputation incentives capture the desire to avoid the common accusation
of opposition as arguing in “bad faith”, i.e., that they have a fixed agenda and simply find
arguments to suit it—like the partisan in our model. “Good faith” opposition may have
different principles or a different set of standards, but is still interested in the objective
evidence on a particular issue—like the non-partisan in our model. Because, as in reality,
the non-partisans have heterogeneous principles, it is often difficult to determine whether
someone is arguing in bad faith: the partisan will pool with the non-partisan type. Our
model explores how uncertainty about the evidence, and the precision of communication
at this uncertain stage, affect outcomes.

We first show that each equilibrium can be pinned down by how much information the
communication stage transmits about the leniency of the non-partisan type. Two salient
cases are when this communication stage involves babbling, i.e., nothing is communicated;
and when it is fully informative, i.e., in the case the DM has a threshold, the observer knows
it before the evidence is revealed. We term these equilibria ex-post and ex-ante signaling
respectively. We show that ex-ante signaling is tantamount to the DM committing to a

6 Subsection 6.3 shows that many of our conclusions are robust to the case in which the investigator’s
preferences are evidence dependent.

7 While this is our preferred interpretation, an alternative perspective of our model is as a standard costly
signaling framework, where there is (i) heterogeneity in the “good” types preferences, and (ii) communica-
tion at some stage where the costs of signaling are uncertain.
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contingent plan as a function of the evidence revealed, e.g., stating “I will convict if the
evidence meets ... standard”. Conversely, ex-post signaling could be interpreted as the
DM saying “I will not speculate on hypotheticals, let’s wait and see”. There are also other
imperfectly informative communication equilibria that admit interpretations between ex-
post and ex-ante signaling.

It is not apparent how changing the equilibrium would affect outcomes: if anything, the
effective “commitment power” provided by ex-ante signaling would seem to benefit the
DM and perhaps allow the partisan to convict less frequently. However, Theorem 1 shows
that ex-ante signaling not only has a higher probability of conviction than ex-post signaling,
but than every other equilibrium as well. This means that politicians who successfully
“dodge the cameras” as opposed to answering reporters’ questions, will tend to break with
party less frequently; government agencies that specify approval criteria up-front will go
against their officials’ interests more frequently than those who decide on a case by case
basis; and setting clear admissions criteria will lead to more socially accepted admission
decisions relative to holistic policies. The broad intuition is simple: before the realization
of evidence, the DM is more willing to make stronger claims in order to attain a higher
reputation because there are many evidence realizations under which these stronger claims
are indistinguishable from weaker ones. Conversely, after a particular evidence realization
occurs, obtaining a high reputation requires convicting with probability one, so the DM
convicts less frequently under ex-post signaling. While this simple reasoning is sufficient to
prove the result with two leniency ℓ types, the full intuition revolves around the “convexity
of reputation” which we elaborate on in Subsection 4.2.

We then move to the investigator’s design problem. In our main specification we con-
sider the investigator flexibly choosing an information structure about a binary state, e.g.,
guilt or innocence.8 We focus on the ex-ante signaling equilibrium for a couple reasons, (i)
Theorem 1 shows that this is the investigator’s preferred equilibrium and in many contexts
whether ex-ante or ex-post signaling outcomes prevail may be a design decision, and (ii)
we argue in Subsection 6.1 that the ex-ante signaling outcome is likely to be selected under
a natural refinement. Theorem 2 characterizes the investigation that maximizes conviction.
Even in the absence of a designer, our characterization speaks to how the distribution of
evidence affects the probability of conviction.

One main takeaway is that the optimal investigation admits no mass points unlike that
seen in standard Bayesian persuasion design problems. This is because the partisan DM
responds to changes in the investigation by altering which principles he claims at the com-

8 In Subsection 6.4, we show that our main takeaways carry over to information design over multiple
states.
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munication stage. This is important from the investigator’s perspective: we show that,
across all investigations, the investigator’s interests (i.e. maximizing probability of convic-
tion) and partisan’s interest are exactly misaligned in equilibrium. The implication is that
the investigator wants to imbue as little predictability on the realized evidence as possi-
ble to avoid “targeting” from the partisan who can declare a threshold for conviction just
above where evidence is likely to be.

Theorem 2 also yields a simple characterization of when more information increases
the probability of conviction. Roughly, this occurs when the distribution of non-partisan
thresholds is convex, or alternatively if and only if more information increases the probabil-
ity of conviction among non-partisans. The intuition again uses the fact that the partisan’s
equilibrium interests are exactly misaligned with that of the investigator: we show that
when the distribution of non-partisan thresholds is convex, interior evidence realizations
induce the partisan to further correlate his strategy with the non-partisan thereby increas-
ing his reputation and harming the investigator.

The layout of the paper is as follows. Section 2 describes our model. Section 3 describes
basic properties of and categorizes all equilibria. Section 4 states our main results com-
paring equilibria. Section 5 characterizes the investigator’s optimal investigation. Subsec-
tion 5.2 describes comparative statics. And lastly, Section 6 discusses equilibrium selection
and extensions of the information design problem.

1.1. Literature Review

We add to the literature studying the impact of reputation concerns (e.g., Holmström
(1999), Scharfstein and Stein (1990), Prendergast and Stole (1996)), in particular those pa-
pers that include cheap talk (e.g., Sobel (1985), Morris (2001), Ottaviani and Sorensen
(2006a), Ottaviani and Sorensen (2006b)). Our reputation incentives are closest to Mor-
ris (2001). He studies an informed sender who seeks a reputation for being a type similar
to our non-partisan. The main difference is that our model includes heterogeneity in the
“good” type’s preferences, i.e., there is a non-degenerate distribution of leniency types. Im-
portantly, communication has no value in our model when the leniency type distribution
is degenerate, but can otherwise change equilibrium outcomes in a significant way. 9

Since the DM in our model eventually takes an action, we are also connected to the costly

9 Other papers study different reputation incentives with related interpretations. The advisor in Durbin
and Iyer (2009) seeks a reputation for being “incorruptible” (i.e., valuing bribes relatively less as compared
with outcomes). Olszewski (2004) and Acemoglu et al. (2013) study a sender who prefers to be seen as honest.
In settings with a biased advisor (i.e., one who does not make decisions), a positive reputation for competence
(e.g., as in Prendergast (1993), Prat (2005), and Li (2007)) induces a preference for different actions to be taken
based on the state or evidence.
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signaling literature initiated by Spence (1973). As in Bénabou and Tirole (2006), Esteban
and Ray (2006), Frankel and Kartik (2019), the multidimensional type of the DM—namely
preference heterogeneity of the non-partisan in our model—precludes separating equilib-
ria. Frankel and Kartik (2022) and Ball (2022), among others bring a design perspective to
such settings, studying how to design scoring systems in the presence of strategic manip-
ulation.10 The key departures in our model from these papers are (i) there is uncertainty at
some initial stage about a variable that impacts the DM’s preferences, (ii) we allow the DM
to communicate via cheap talk at this stage, and (iii) this uncertainty is publicly realized
before the DM takes an action.11

Our results also speak to the literature on the impacts of transparency in the presence
of reputational concerns. Papers such as Prat (2005) and Levy (2007) study how a (purely)
reputationally motivated agent’s action changes when they know their action will be re-
vealed relative to the action being hidden (i.e., transparency increases).12 Our paper instead
studies how communicating the decision maker’s strategy impacts actions choices when
the decision maker has both material and reputational concerns and actions are always
revealed. Increased transparency in our model corresponds to more informative commu-
nication about the agent’s strategy (i.e., do they specify their strategy before evidence is
realized).13

Our study of optimal investigations ties the model to the information design litera-
ture started by Kamenica and Gentzkow (2011). The impact of uncertainty over the re-
ceiver’s type on information disclosure, which Kamenica and Gentzkow (2011) show can
be handled using their concavication approach, has also been studied in papers such as
Alonso and Câmara (2016), Kolotilin et al. (2017) and Kolotilin (2018). We differ from
these previous papers by considering how the design of information impacts the DM’s
choices prior to evidence being realized. Recent papers such as Boleslavsky and Kim (2018)

10 Rappoport (2022) considers designing optimal delegation policies for agents engaged in costly signaling.
11 Ali and Bénabou (2020) considers a costly signaling model where there is a common and, more or less,

public variable that affects signaling incentives, but there is no communication prior to its revelation. Kartik
and Van Weelden (2018) also features communication before the revelation of uncertainty and subsequent
costly signaling, but considers different material and reputation incentives of the DM.

12 Daley and Green (2014) look at a similar question, studying how signaling incentives are changed when
an (exogenous) informative signal about the agent’s type is revealed after the agent chooses a costly signaling
action.

13 Our comparison between ex-ante signaling, which specifies a complete contingent plan, and ex-post sig-
naling, which waits until the evidence is realized echoes themes from the literature on incomplete contracts
initiated by Grossman and Hart (1986) and Hart and Moore (1988). There it is assumed to be arbitrarily costly
to specify complete contracts/contingent plans. Subsequent papers (e.g., Aghion et al. (1994)) have studied
the design of more complex contracts to avoid the inefficiencies caused by contractual incompleteness; our
results complement these by highlighting how communication and high reputation incentives can overcome
the inability to commit to fully specified contingent plans.
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and Zapechelnyuk (2020) study information design in the presence of moral hazard prob-
lem while Hörner and Lambert (2020) study feedback design in dynamic career concerns
model. Boleslavsky and Kim (2018) develop concavification techniques analogous to those
used in Kamenica and Gentzkow (2011) in the presence of moral hazard. Our model, in
contrast, looks at the impact of the investigation on communication strategies (and their
subsequent impact on action choices). The impact of information disclosure where agent’s
are concerned with beliefs on their type also arises in mechanism design models with lim-
ited commitment (e.g., Doval and Skreta (2022)).

Lastly, there is of course a broad political economy literature concerning partisanship
and partisan reputations. In these models (e.g., in Maskin and Tirole (2004), Acemoglu
et al. (2013), Kartik and Van Weelden (2018), and Agranov (2016)) electoral incentives push
against being “partisan”, in the sense of having extreme policy preferences relative to the
median voter. This reputation incentive could be included in our framework by encod-
ing higher reputation payoffs for some leniency types, namely those close to the median
voter, without changing many of our main intuitions. Fox and Van Weelden (2010) models
partisans as politicians who want to prop up the reputation of other officials in their own
party in addition to their own. Bussing and Pomirchy (2022) consider a similar definition
of partisan reputations to our paper in the context of political oversight and checks and
balances, but among other differences, do not focus on communication. Related incentives
also arise in the media (e.g., Shapiro (2016)) where journalists want to appear “objective”.

2. Model

Overview There are three players: an investigator, a decision maker (DM), and a Bayesian
observer. The decision maker will eventually choose a = 1 (“conviction”) or a = 0 (“ac-
quittal”). The preferences of the DM over the action depend on his privately known type,
and the evidence e ∈ E ≡ R. The DM also values his reputation in the eyes of the observer.

In the initial communication stage, the evidence is unknown, and the DM only knows
its CDF F ; we assume

∫
E
edF (e) < ∞. The DM sends a cheap talk message m ∈ M to

the observer, where M is some sufficiently large metrizeable space. After the message is
sent, the decision stage begins, where the evidence e is publicly revealed and the DM then
chooses an action a. The observer sees the DM’s message and action choice in addition to
the realized evidence and forms beliefs, after which payoffs are realized.

Our paper is broken into two main parts. The first part of the paper analyzes the case
where the investigation F is exogenous and arbitrary, i.e., the investigator is inactive. The
second part of the paper considers an investigator who can design F , with restrictions, to
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suit his interests.

Preferences The DM can either be a partisan (P ) or a non-partisan (N ). The prior prob-
ability of N types is q ∈ (0, 1). Partisan DMs always want to choose a = 0, and their
preference over the action does not depend on the evidence realization. Non-partisan DMs
have heterogeneous and privately known leniency ℓ ∈ R. Conditional on being a non-
partisan, the distribution of ℓ has CDF G with L ≡ Supp(G). We assume for expositional
convenience that either F or G is atomless. N types prefer to acquit more if (i) the evidence
is less convincing (e is lower), or (ii) they are more lenient (ℓ is higher).14 For convenience
we will often refer to non-partisans with leniency ℓ as “ℓ types”. Accordingly, we denote
the set of all types by Θ = L ∪ {P}. The DM also values his reputation in the eyes of the
observer of being an N type. More specifically, the utility of type θ ∈ Θ from taking action
a, given evidence e, and public belief µ that he is type N is given by

u(θ, e, a, µ) =

−ac+ ρµ if θ = P,

a(e− ℓ) + ρµ if θ = ℓ,

where c and ρ are strictly positive.15 We refer to the first component of the payoff that
depends on the action as the material payoff and ρµ as the reputation payoff.

Remark 1. Notably we assume that there is no reputation incentive to appear as specific
ℓ types on top of being perceived as non-partisan. We impose this for tractability and
to focus on the novel reputation incentive for being responsive to evidence. In many of
our applications ℓ could be thought of as issue specific and transitory, while partisanship
is interpreted as more persistent. In Subsection 4.1 we discuss how some of our driving
intuitions would extend to leniency-dependent reputation values.

We assume that reputation incentives are strong in the following sense.

Assumption 1. ρ > 2max{ c
q
, c
1−q

}.

14 There is an asymmetry between N types and P types in our model in that only N types have privately
observed heterogeneity in their preferences. One could envision a model that also endowed P with unob-
served heterogeneity in his disutility from taking the decision denoted c. Such heterogeneity tends to place
limits on the amount of informative communication at the communication stage. For example, if there is
only one ℓ type, and many c types one can show that the unique equilibrium involves babbling at the com-
munication stage. Thus our model omits heterogeneity in c in order to most parsimoniously study pre-play
communication.

15 The utility function over actions of N types is assumed to be a(e − ℓ) for convenience. Our results
still hold (with notational tweaks) if the utility difference between a = 1 and a = 0 is increasing in e and
decreasing in ℓ.
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Broadly, this assumption guarantees that the reputation incentives are strong enough
to convince P to convict. Note that if ρ < c, then P will never convict. Assumption 1 is
stronger and, as we will show, ensures that given any public history, P will convict with
positive probability if some ℓ types do as well.

For our main specification, the investigator maximizes the probability of a = 1, namely
his utility is equal to a. In Subsection 6.3 we extend many of our main takeaways to a
model where the investigator’s preferences over a depend on e.

Strategies and Equilibrium It will be useful to break up the DM’s strategy between the
communication stage and decision stage: the DM chooses a messaging strategy σ : Θ →
∆(M), and an action strategy ζ : M × E × Θ → ∆({0, 1}).16 Given the DM’s strategy, the
publicly realized evidence e, the message m, and the chosen action a, denote R(m, a, e) as
the observer’s belief that the DM is an N type.

We study perfect Bayesian equilibria with an additional refinement formalized below—
hereafter, simply equilibria. An equilibrium E consists of σ, ζ, R such that for all θ ∈ Θ,
m ∈M and e ∈ E

1. R is obtained from σ, ζ using Bayes rule whenever possible.

2. ζ(·|m, e, θ) is supported on argmaxa u(θ, e, a, R(m, a, e)).

3. σ(·|θ) is supported on argmaxm∈M
∫
E

(
maxa∈{0,1} u(θ, e, a, R(m, a, e))

)
dF (e).

In addition, we impose a version of the D1 refinement à la Cho and Kreps (1987) and Ramey
(1996). For a fixed messaging strategy σ, let Θm ⊂ Θ be the support of the interim belief
on the DM’s type following message m but before an action is chosen. We impose the D1
refinement at the decision stage, after evidence has been realized and message m has been
sent, where the type space is Θm.17 In our simple framework this refinement simplifies

16 Let us describe some notation we adopt throughout the paper. For a metrizable space Y , we let ∆(Y )
denote the set of all Borel probability measures over Y , endowed with the weak∗ topology. For any two
measurable spaces Y and Z, transition probability χ : Y → ∆(Z), point y ∈ Y , and Borel measurable Ẑ ⊂ Z,
we let χ(Ẑ|y) ≡ χ(y)(Ẑ). For example, ζ(0|m, e, ℓ) is the probability that type ℓ takes action 0 after sending
message m and evidence e is realized.

17 Because our game consists of a communication stage prior to the revelation of an uncertain e, it does not
fit in the static signaling games studied in the literature. We are not aware of existing notions that formalize
this natural “ex-interim D1” refinement. Another alternative would be to use an “ex-ante D1” refinement,
i.e., with the full type space Θ. One can show that in our model this approach yields a less expositionally
convenient but essentially identical set of equilibria: every ex-ante D1 equilibrium is also an ex-interim D1
equilibrium, and every ex-interim D1 equilibrium outcome (as defined below) is the limit of some sequence
of ex-ante D1 equilibrium outcomes.
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to the following: if, after sending message m and observing evidence e, the DM takes an
off-path action, the observer believes the DM to be the type(s) in Θm who would benefit
the most in terms of their material payoff from this deviation relative to their equilibrium
payoffs.

Given an equilibrium E , let UE
θ (F ) be the expected utility of the DM of type θ, and let

V E(F ) be the probability of a = 1 (i.e., the investigator’s expected utility).18

3. Equilibrium Details

This section details features that hold across all equilibria. Our results concern equilib-
rium outcomes, i.e., the distribution over equilibrium actions and reputation as a function
of the DM’s type and evidence realization. Our results below apply to a particular member
of the equivalence class of equilibria that have the same outcomes with probability one.
Given a strategy of the DM, we let Gm be the interim CDF over L conditional on message
m and θ ∈ L, with Lm ≡ Supp(Gm), and qm be the interim probability θ ∈ L conditional on
m. Define ẽℓ ≡ ℓ− c.

Lemma 1. For any equilibrium, the following hold:

1. Following any on-path message m, every ℓ ∈ Lm takes a = 1 (a = 0) if e > ẽℓ (e < ẽℓ).

2. P positively mixes over all messages sent by N , i.e., Supp(σ(·|P )) = ∪ℓ∈L Supp(σ(·|ℓ)).
Following any on-path message m, P takes a = 1 (a = 0) with positive probability ⇐⇒
∃ℓ ∈ Lm : e > ẽℓ (e < ẽℓ).

It will be useful to describe the DM’s decision stage strategy as choosing a distribution
over contingent plans as a function of the evidence, i.e., over x ∈ X ≡ {x′ : E → {0, 1}}.
The first point says the ℓ type’s action choice as a function of the evidence (almost surely)
follows a fixed rule xℓ(e) ≡ 1(e ≥ ẽℓ).19 This is not only constant across equilibria and on-
path messages, but also across parameters of the model such as the investigation and the
type distribution of the DM. This independence should not be misunderstood as arising
because the ℓ types choose their ideal action unaffected by reputation incentives. Indeed, ℓ
types engage in “political correctness”: in order to signal non-partisanship they select a = 1

for e ∈ (ℓ − c, ℓ) where they would prefer a = 0. Instead, xℓ is distinguished by the fact

18 As a notational convention, we superscript strategies, payoffs, outcomes, etc. with E to denote when
they correspond to the equilibrium E .

19 The one caveat is that point 1 in the lemma does not pin down behavior at ẽℓ. However, the set of joint
type evidence realizations where (θ, e) = (ℓ, ẽℓ) arises with probability zero per our assumptions on F and
G. Thus, the choice of ℓ’s strategy at e = ẽℓ does not affect equilibrium outcomes.

11



that it provides the highest signaling value to the ℓ type: xℓ maximizes the utility difference
between ℓ and P types across all contingent plans x ∈ X . The second point says that the P
cannot be distinguished from the ℓ types at any on-path history. A key implication is that
P is indifferent across mimicking the behavior of any ℓ type, at both the communication
and decision stages.

The intuition behind point 2 of Lemma 1 follows from the high reputation incentives. If
an on-path message is sent only by P then it yields an equilibrium reputation, and thereby
also utility, of 0 for P . However, P can obtain at least utility ρq−c by mimicking the strategy
some ℓ type, which is strictly preferred by Assumption 1. Conversely, an on-path message
that is sent only by ℓ types yields a reputation of 1, so P ’s equilibrium utility must be at
least ρ− c. However, P gets at most an expected reputation payoff, and thereby also utility,
of ρq from following the equilibrium strategy,20 which is strictly less than ρ − c again by
Assumption 1. The argument for why, after message m, P mixes over the actions chosen
by ℓ ∈ Lm at the decision phase is similar, but has to contend with the subtlety that the
relevant utility bounds are now dependent on qm instead of the prior q. The proof shows
that any equilibrium qm is close enough to q such that the above argument goes through.

The intuition behind point 1 of Lemma 1 is as follows. Suppose first that both actions
are on path following some evidence realization e. This implies that P mixes over a = 1

and a = 0. However, the type ℓ = e+ c has the same preferences as P , i.e., he has the same
trade off between the cost of conviction and reputation at this e. Combined with the fact
that N ’s utility for conviction is increasing in ℓ, this means that ℓ types must make their
action choice consistent with xℓ. Alternatively, if a = 0 (respectively a = 1) is off path,
then it must be that ℓ > e + c (respectively ℓ < e + c) for every ℓ ∈ Lm; otherwise, by D1,
the off-path action would be interpreted as originating from the ℓ type that violates these
inequalities, and this off-path action would be a profitable deviation for P .

We next identify and categorize the set of equilibrium outcomes. For any equilibrium,
note that {σ(·|ℓ)}ℓ∈L induces an information structure about ℓ, henceforth the associated
Leniency Information Structure (LIS). Formally, an LIS refers to a measure Σ ∈ ∆(M) and
set of CDFs {Gm}m∈Supp(Σ) such that

∫
M
GmdΣ = G. An LIS is associated with {σ(·|ℓ)}ℓ∈L if

Σ(·) =
∫
L
σ(·|ℓ)dG(ℓ) and, ∀m ∈ Supp(Σ), Gm is the interim CDF conditional on m derived

from {σ(·|ℓ)}ℓ∈L.

Lemma 2. For any LIS, there is a unique equilibrium outcome associated with it.

The lemma says that equilibria can be uniquely described by the amount of informa-
tion the communication stage conveys about the ℓ types. The intuition for why any LIS

20 This follows from corollary 2 in Hart and Rinott (2020).
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can be sustained at the communication stage comes from the fact that xℓ maximizes the ex-
pected utility difference between type ℓ and type P across all contingent plans. The proof
uses this to show that ensuring P ’s indifference across mimicking any ℓ type also ensures
incentive compatibility for every ℓ type regardless of N ’s strategy. Because the LIS “essen-
tially” pins down the ℓ types’ messaging strategies, and Lemma 1 pins down their decision
stage strategies, the uniqueness in Lemma 2 refers to the uniqueness of the P ’s equilibrium
strategy when paired with an LIS. Each LIS will require different strategies for P to sus-
tain indifference, which then naturally leads to different equilibrium outcomes. The next
section compares these outcomes.

4. Comparing Equilibria

Our main comparison concerns the equilibrium probability of a = 1, or V E(F ). Recall
that this is the utility of the investigator in our main specification. However, even with
a fixed exogenous investigation, this probability is an important outcome: it represents
the probability of politicians taking votes against their party’s interest, the probability that
skeptical bureaucrats approve requests, or the amount of donor applicants admitted to
university.

We refer to the equilibrium associated with the perfectly informative LIS as ex-ante sig-
naling and denote it as equilibrium α. Under ex-ante signaling, each ℓ type sends a differ-
ent message mℓ. Consistent with Lemma 1, P positively mixes over these messages. After
sending mℓ, the DM follows xℓ at the decision stage. In other words, sending mℓ is tanta-
mount to announcing a contingent plan, i.e., saying “I will take action a = 1 if and only
if e ≥ ẽℓ”. While there is still uncertainty about the DM’s partisanship following message
mℓ, the equilibrium has no residual strategic uncertainty: there does not exist a positive
probability set of m, e for which both actions are on-path after message m and evidence e
is realized. In addition, we say there is mild agreement if for every pair ℓ′, ℓ′′ ∈ Supp(G),
∃e ∈ Supp(F ) : xℓ′(e) = xℓ′′(e), i.e. no two ℓ types always choose different actions in
equilibrium.

Theorem 1. Ex-ante signaling delivers the highest P(a = 1) among all equilibria, i.e., V α(F ) ≥
V E(F ) ∀E . Given that there is mild agreement, this comparison is strict if and only if E has residual
strategic uncertainty.

Depending on the parameters, many LIS may correspond to the same equilibrium out-
comes as ex-ante signaling; for example, all equilibria have the same outcomes if the distri-
bution of evidence is degenerate. On the other hand, the theorem says that whenever the
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action is not completely predictable at the decision stage, the equilibrium delivers differ-
ent outcomes than ex-ante signaling; in particular, a strictly lower conviction probability.21

All imperfectly informative LIS are associated with an equilbrium with residual strategic
uncertainty if and only if each ℓ type’s conviction probability (i.e., 1− F (ẽℓ)) is different.

Note that Theorem 1 implies that if the investigator could select the equilibrium, then
he would select ex-ante signaling. This is important because in many settings, whether
ex-ante signaling outcomes prevail is a design decision. In Subsection 6.1 we discuss how
endowing the DM with commitment to a contingent action plan (before e is realized) can
select ex-ante signaling outcomes. In Subsection 6.2, we discuss how whether ex-post or ex-
ante signaling outcomes arise depends on the investigator’s timing of information disclo-
sure. For example, government agencies like the FDA and FTC could require that officials
commit to an acceptance threshold, at the inception of a proposal, rather than deciding on
a case-by-case basis after the results of the trial or investigation are realized. If these agen-
cies are worried that their officials are unduly biased against approval then such a policy
would be beneficial.

Given that a = 1 is taken most often under ex-ante signaling, a natural follow up ques-
tion is whether the same holds for each level of evidence. While the answer to this question
is difficult to answer in general, we show such a ranking does indeed hold when comparing
ex-ante signaling to the equilibrium associated with the uninformative LIS (i.e., a babbling
equilibrium). We refer to this equilibrium as ex-post signaling and denote it equilibrium
β. Under ex-post signaling, it is as if every type of DM sends the same message interpreted
as “I will wait and see until the investigation concludes.” Ex-post signaling “usually” ad-
mits residual strategic uncertainty; if and only if there exist two leniency types that convict
with different probability. Denote ψE(e) as the probability of a = 1 given evidence e under
equilibrium E .

Proposition 1. ψα(e) ≥ ψβ(e) for all e ∈ Supp(F ).

Thus, even if the investigator has a higher preference for a = 1 after higher evidence
realizations (but still always prefers a = 1 to a = 0), ex-ante signaling will be investigator
preferred relative to ex-post signaling. When viewing the distinction between these two
equilibria as a difference in the timing of communication (i.e., whether communication
happens before or after evidence is disclosed), Proposition 1 implies that such an evidence-
sensitive investigator will prefer to delay evidence disclosure until after communication

21 Mild agreement rules out cases in which P ’s decision over which ℓ type to mimic is unchanged between
the communication stage and the decision stage. An example of such a case is where ℓ is supported on some
interval [ℓ, ℓ] and F is completely supported outside of [ẽℓ, ẽℓ].
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takes place.

It is worth noting that there is nothing “mechanical” about ex-ante signaling that leads
to lower conviction probability. Under ex-ante signaling, P could announce a very high
threshold. It is also not clear whether ex-ante or ex-post signaling provides higher repu-
tation incentives to take a = 1, and why this shouldn’t depend on the parameters. Under
ex-post signaling, following evidence realization e, P considers whether to convict and
pool with ℓ > e + c, or to acquit and pool with ℓ < e + c, while under ex-ante signaling,
P can directly target any specific leniency type. That is, ψβ(e) depends only on G(e + c)

whereas ψα(e) on the whole distribution G and the investigation F . The next subsections
develop intuition for why the broad comparison in Theorem 1 holds.

4.1. Intuition for Theorem 1 with Binary Leniency Types

Suppose G is supported on two leniency types ℓ < ℓ, F is supported on the entire real
line which guarantees minimal agreement, and c = 1 for notational convenience. Under
ex-ante signaling, P will mix between mℓ and mℓ so that

ρ (Rα(mℓ)−Rα(mℓ)) = F (ẽℓ)− F (ẽℓ),

where Rα(mℓ) ≡ P(θ ∈ L|mℓ) = qmℓ
. That is, the difference in reputation at mℓ relative to

mℓ is proportional to the difference in probability with which type ℓ takes a = 1 relative to
ℓ.

Now let us compare the probability of conviction for each evidence realization between
ex-post and ex-ante signaling. If e < ẽℓ or e > ẽℓ, then Lemma 1 implies that all DM types
take the same action—acquittal and conviction respectively—under all equilibria. Thus
the comparison turns on that for e ∈ [ẽℓ, ẽℓ). Under ex-ante signaling, P convicts with
probability σα(mℓ|P ). Under ex-post signaling, P similarly convicts with the probability
that he mimics the ℓ type which is determined by

ρ
(
Rβ(1, e)−Rβ(0, e)

)
= 1,

where Rβ(a, e) is the reputation from choosing action a given evidence e under ex-post
signaling. Like under ex-ante signaling, the difference in reputation between mimicking ℓ,
i.e., choosing a = 1, and mimicking ℓ, i.e., choosing a = 0, is proportional to the difference
in probabilities that these ℓ types convict. Figure 1 illustrates how P shifts his strategy
so that the reputation incentives compensate him for the difference in conviction rates be-
tween ℓ and ℓ. Under ex-post signaling, conditional on evidence e ∈ [ẽℓ, ẽℓ), the difference

15



F(e

ℓ ) -F(e


ℓ )

1

ρR( · )

ψα
P 1 - ψβ

P1 - ψα
Pψβ

P

Figure 1: Reputation as a function of the partisan’s strategy in the binary example where
ψE
P is the probability P takes a = 1 at e ∈ (ẽℓ, ẽℓ) in E .

in conviction rates from pooling with ℓ or ℓ is 1, compared with F (ẽℓ) − F (ẽℓ) < 1 under
ex-ante signaling. In order to create a higher reputation difference in the ex-post case, P
must mimic ℓ less frequently, which in turn means they convict less frequently. Since the
ℓ types’ conviction rates do not depend on the equilibrium, this argument establishes that
V α(F )− V β(F ) > 0 in this binary type example.

The underlying force behind the above argument is that the P type is willing to promise
more ex-ante because this promise will only be called for some evidence realizations. Un-
der ex-ante signaling, mimicking ℓ as compared to ℓ yields extra reputation regardless of
whether these two types take different decisions ex-post.22,23

While this intuition is compelling, it is difficult to extend this argument directly to show
a similar ranking holds with more leniency types or across other equilibria. Instead, we
now take a different approach, one that proves useful when studying optimal information
design and provides additional insights into the forces behind Theorem 1.

22 The intuition in the binary type case generalizes beyond our baseline model. For instance, one can show
that it extends to the case in which different leniency types merited different reputational payoffs in the eyes
of the public relative to the partisan type, and to the case in which there is some heterogeneity in the disutility
c partisans face from taking a = 1.

23 This intuition echoes discussions from the expressive voting literature (e.g., Brennan and Hamlin (1998))
which argue that in elections where the voter is unlikely to be pivotal, the inherent value of expressing certain
preferences dominates in their voting decision relative to the instrumental value of implementing a preferred
policy.
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4.2. Proof Sketch of Theorem 1

We first establish an inverse relationship between the P ’s equilibrium utility and the
equilibrium probability of conviction. We think this relationship has independent interest,
and it turns out to be useful in the subsequent information design problem as well. Here,
it means that proving Theorem 1 comes down to proving that P ’s equilibrium utility is
lowest under ex-ante signaling. We then show this comparison can be seen from convexity
of P ’s equilibrium expected utility under ex-ante signaling utility in the investigation F .
This convexity is driven by an underlying convexity of Bayesian updating.

Lemma 3 (Opposing Interests).
For every equilibrium E ,

V E(F ) =
1

c

(
ρq − UE

P (F )
)
.

We present the proof here because of its simplicity.

Proof. Take any equilibrium E . Because of Lemma 1, P is indifferent across mimicking the
strategy of any leniency type ℓ, i.e.,

UE
P (F ) =

∫
E

(
− cxℓ(e) + ρR(m,xℓ(e), e)

)
dF (e) ∀m, ℓ : ℓ ∈ Lm.

Taking the expectation over (m,x) ∈ M × X with respect to the equilibrium distribution,
and applying the law of iterated expectations, gives UE

P (F ) = ρq − cV E(F ). Q.E.D.

We label this as opposing interests because the investigator’s interests oppose P ’s inter-
ests in equilibrium. In particular, it says that P and the investigator cannot be made simul-
taneously better off through equilibrium selection. This relationship may seem intuitive as
P and investigator have opposing interests concerning the probability of conviction. How-
ever, the game is not one of opposing interests between the investigator and P because (i)
there is a third party—the N type—and (ii) even fixing N ’s equilibrium behavior, P ’s pay-
offs also depend on reputation. That is, both the investigator and P could be made better
off by P choosing a strategy which provides him with a higher expected reputation and a
higher probability of conviction. Lemma 3 shows that this is not possible in equilibrium.

Another notable feature of the relationship between V E(F ) and UE
P (F ) is its simplicity.

In particular, conditional on the value of UE
P (F ), it does not depend on the investigation

F , or the distribution of leniency G. This makes the opposing interests lemma useful in
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thinking about the investigator designing F in Section 5—they will seek to minimize P ’s
utility.

Given Lemma 3, we can focus on analyzing P ’s equilibrium utility UE
P (F ). We next

make two observations. First, note that all equilibria yield equivalent outcomes when F

is degenerate, as in this case, there is no difference between the decision stage and the
communication stage. Second, note that Uβ

P (F ) is linear in F : by definition, nothing hap-
pens at the communication stage under ex-post signaling, so F only impacts the outcome
separably through the probability of evidence e. Putting these points together gives,

Uβ
P (F ) = E[Uβ

P (δe)|e ∼ F ] = E[Uα
P (δe)|e ∼ F ],

where δe denotes the degenerate distribution on e. Thus, the comparison that Uα
P (F ) ≤

Uβ
P (F ) holds if Uα

P (F ) is convex in F , which we establish in the next lemma.

Lemma 4. Uα
P (F ) is convex in the investigation F .

Combining Lemma 3 and Lemma 4 completes the argument for the fact that ex-ante
signaling has a higher conviction probability than ex-post signaling.

The intuition for Lemma 4 follows from a fundamental property about Bayesian updat-
ing: adding probability that a given type sends some signal changes the corresponding
update on that type less if they already send that signal with high probability. In our set-
ting, this means that the belief that the DM is a P type following any message is concave
in the probability that P sends that message, or equivalently, the DM’s reputation for be-
ing an N type is convex in P ’s strategy. This convexity is illustrated in Figure 1. To see
how convexity of reputation relates to convexity of Uα

P (F ), consider two investigations
F1 and F2 with corresponding reputation functions Rα

1 and Rα
2 . For some λ ∈ (0, 1), let

Fλ = λF1 + (1 − λ)F2. P ’s equilibrium expected utility from sending message mℓ for any
F is ρRα(mℓ)− c(1− F (ẽℓ)). This means that, when sending mℓ, P chooses a = 1 under Fλ

with probability equal to the average of that under F1 and F2. However, P cannot achieve
the average reputation at every mℓ because reputation is convex in the rate at which he
declares each message, and therefore does worse under Fλ.24

Ex-Ante Signaling vs. Other Equilibria We have shown that ex-ante signaling has a
higher conviction probability than ex-post signaling. However, Theorem 1 says that ex-

24 In order to maintain the reputation λRα
1 (mℓ) + (1− λ)Rα

2 (mℓ), the convexity of the reputation implies P
would need to, for all ℓ ∈ L, declare mℓ at a rate less than the average across the equilibria induced by F1 and
F2. But this cannot be since the total measure of P ’s messages must equal one.
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ante signaling delivers a higher conviction probability than any other equilibrium. Our
proof shows how to use the first comparison to prove the second.

The idea is as follows. Fix an equilibrium E . Note that P ’s expected utility conditional
on sending an on path message m, i.e., UE

P (F ), is the ex-post signaling equilibrium utility
with prior equal to the interim belief (qm, Gm). Using the comparison between ex-post and
ex-ante signaling, we obtain that P ’s expected utility conditional on sending message m is
higher than if one were to instead conduct ex-ante signaling with prior (qm, Gm).

Now consider an alternative messaging strategy which first selects a message accord-
ing to the original equilibrium strategy under E , and then sends a follow up message mℓ

according to the ex-ante signaling equilibrium given prior (qm, Gm). Conditional on send-
ing each initial message under this new strategy, the above logic implies that P ’s expected
utility is lower than under the original equilibrium E . The only remaining issue, is that
P may not be indifferent across messages. However, because this comparison holds for
every message, when P adjusts his strategy to reestablish indifference across all messages,
the resulting equilibrium is ex-ante signaling, and his new equilibrium expected utility is
still lower than in the original equilibrium.

4.3. Comparing the DM’s Utility

Combining the investigator’s preference for ex-ante signaling with the fact that his in-
terests oppose that of P immediately yields that ex-ante signalling is P ’s least favorite
equilibrium. However, the properties of equilibria in Lemma 1 facilitate extending this
comparison to all DM types.

Corollary 1. For any F and two equilibria E , E ′,

1. UE
θ (F )− UE ′

θ (F ) is constant across θ ∈ Θ.

2. Uα
θ (F ) ≤ UE

θ (F ) ∀θ ∈ Θ; under mild agreement, the inequality is strict if and only if E has
residual strategic uncertainty.

Given Theorem 1 and Lemma 3, the second point follows directly from the first. The first
point says that the difference in utility between any two equilibria is type independent.
The idea is that (i) each ℓ type chooses xℓ in every equilibrium, so their utility difference
is just given by the expected reputation difference, and (ii) P is indifferent between mim-
icking any ℓ type, and so this expected utility difference must be constant across ℓ. This
provides one rationalization for why politicians may “dodge the cameras” and admissions
committees may favor non-transparency—or, in our terminology, favor ex-post signaling.
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This points to interesting questions about equilibrium selection issues, which we address
in Subsection 6.1.

5. Optimal Investigations

Having studied the impact of communication on signaling incentives for arbitrary fixed
F , we now turn to the investigator’s problem of designing an optimal investigation. For
the results in Section 3 and Section 4, we can be relatively agnostic about what the evidence
represents: while it is natural to think that it represents a belief about or expected value of
an unknown state, nothing in our setup requires such an interpretation. However, when
considering the investigator’s problem, what e represents will impose different restrictions
on the set of F which are feasible. For simplicity, we focus on the case where e represents
a belief about an unknown binary state, and adopt the standard Bayesian persuasion ap-
proach of allowing the investigator to choose any F that satisfies a corresponding Bayes
plausibility constraint. In Subsection 6.4, we discuss how our results extend to an investi-
gator designing an experiment over multiple states.

Let ω ∈ {0, 1} with prior e ∈ (0, 1) that ω = 1. In this case, the Bayes plausibility
constraint takes the form

∫ 1

0
edF (e) = e, which we can rewrite as

∫ 1

0
(1−F (e))de = e. To ease

exposition, for the rest of the section we assume henceforth that the leniency distribution
G admits a continuous density g with [c, 1 + c] ⊆ Supp(G); this means that increasing e

always increases the equilibrium rate of conviction among non-partisans.

The design of an optimal investigation depends on the equilibrium that is being played
(which could in principle change depending on F ). We focus on optimal design with the
assumption that the communication equilibrium will be the investigator’s preferred one,
namely ex-ante signaling.25 As mentioned, ex-ante signaling is also salient, because it is
uniquely selected in a natural perturbation of our game (see Subsection 6.1).

5.1. Characterization

To calculate the investigator’s utility, we sum the conviction probability given message
mℓ weighted by the probability that the DM sends message mℓ. Letting F be the set of

25 In Appendix E, we compare the optimal investigation between ex-post and ex-ante signaling.
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CDFs with support on [0, 1], the investigator’s design problem is

max
F∈F

∫
L

(1− F (ẽℓ)) (qg(ℓ)dℓ+ (1− q)dσ(mℓ|P )) ,

such that
∫ 1

0

(1− F (e))de = e.

While the equilibrium strategies of ℓ types are fixed across all choices of F , this is not
true for P , i.e., σ(mℓ|P ) depends on the choice of F . Consider ℓ′ > ℓ′′ who use the cor-
responding decision rules xℓ′ and xℓ′′ . Because xℓ′ chooses a = 1 less often than xℓ′′ , in
terms of material payoffs P prefers sending mℓ′ to sending mℓ′′ . The reputation differ-
ence between mℓ′′ and mℓ′ must compensate P in equilibrium to ensure indifference, i.e.,
Rα(mℓ′′) ≥ Rα(mℓ′). Exactly how much the reputation must compensate P depends on the
choice of F : in switching from mimicking ℓ′′ to ℓ′, the DM changes his action from a = 1

to a = 0 with probability F (ẽℓ′) − F (ẽℓ′′). If the investigator increases this probability then
the equilibrium reputation difference Rα(mℓ′′) − Rα(mℓ′) must also increase. This change
in reputations is achieved through P decreasing the probability with which he mimics ℓ′′

relative to ℓ′. Because P must be indifferent across all messages, this change also has non-
local effects on the equilibrium. Intuitively, if the investigation makes more convincing
evidence realizations (higher e) more likely, P will pretend to possess more forgiving val-
ues (higher ℓ). This response mitigates the gains the investigator realizes from increasing
the probability of high e.

The dependence of σ(·|P ) on F means we cannot solve the investigator’s problem using
standard information design techniques. The probability of a = 1 as a function of the
evidence depends on the investigation and so, in the language of the Bayesian persuasion
literature, the investigator’s value is not linear in F .

In order to make the problem tractable, we use Lemma 3, which shows that maximizing
the investigator’s value is equivalent to minimizing that of P . We can therefore take the
investigator’s problem to be one of choosing F to minimize Uα

P (F ). This is convex in F by
Lemma 4. We then need to pin down how the choice of F determines Uα

P (F ). We show in
the proof of Lemma 4 that Uα

P (F ) is given by the solution U to
∫
L

g(ℓ)qρ
U+c(1−F (ẽℓ))

dℓ = 1.26 These

26 The derivation of this equation uses the following logic. P ’s indifference across messages provides an
expression for Rα(mℓ) in terms of the conviction probability at mℓ—namely, 1−F (ẽℓ)—and Uα

P (F ). Because
g(ℓ)q

Rα(ml)
is equal to the probability or density of mℓ, the sum of this fraction over ml is equal to 1.
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observations allow us to rewrite the investigator’s problem as follows:

min
U≥0, F∈F

U , (1)

such that
∫
L

g(ℓ)qρ

U + c− cF (ẽℓ)
dℓ = 1,∫ 1

0

(1− F (e))de = e.

The first constraint ensures the choice of U in (1) is equal to Uα
P (F ). We show that it is

without loss to relax both constraints to only hold as inequalities. This relaxed version of
the investigator’s problem minimizes a linear objective over a convex constraint set. We
can construct a Lagrangian which, with some standard ironing techniques, allows us to
solve for the optimal investigation.

Let h(e) ≡ g(e + c) ∀e ∈ (0, 1) with H(e) ≡
∫ e

0
h(e)de. Since each ℓ ∈ (c, 1 + c)

chooses a = 1 if and only if e ≥ ẽℓ, H(e) represents the mass of extra ℓ types that choose
a = 1 given evidence e on top of the G(c) who always choose a = 1. Define h as the
decreasing ironed value of h: the smallest decreasing function h̃ : [0, 1] → R+ such that∫ e

0
h(x)dx ≤

∫ e

0
h̃(x)dx ∀e ∈ (0, 1). Thus,

∫ e

c
h(e)de is the concavification of H . Because the

non-partisans use a fixed threshold at the decision stage, H and its concavification capture
the investigator’s design incentives conditional on the DM being an ℓ type.

Theorem 2. For k, U ∈ R, define F (e; k, U) ≡ U/c+ 1− k
√
h(e). The uniquely optimal investi-

gation is given, for e < 1, by

F ∗(e) =


0 if F (e; k, U) < 0,

F (e; k, U) if F (e; k, U) ∈ [0, 1],

1 if F (e; k, U) > 1,

with U = Uα
P (F

∗) as the partisan’s utility given F ∗ and some k > 0.

There are two remaining parameters in the characterization in Theorem 2—Uα
P (F

∗) and
k. These are jointly pinned down by the two constraints in (1). While an explicit expression
is not always feasible, solving these two equations numerically is straightforward.

Figure 2 presents an example of an optimal investigation. In this example, the distri-
bution of non-partisan ideologies is single peaked, and so H is convex for small e, and
concave for large e, as illustrated in the left panel. Correspondingly, the concavification of
H is linear below ê and equal to H above ê, i.e., h is constant below ê and strictly decreas-
ing above ê. This means that the investigator obtains a higher conviction probability from
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Figure 2: L = R, g(ℓ) is a standard logistic distribution with mean 1
2
, c = 1

4
, q = 1

2
, e = 3

10
,

and ρ = 3. We numerically solve for Uα
P (F

∗) = 1.381 and for k = 11.853. By Lemma 3 the
investigator obtains utility V α(F ∗) = .478.

N types by providing information below ê, and withholding information above ê. From
the right panel of Figure 2, we see that F ∗ is consistent with this incentive below ê, but
in contrast, provides some information, in a smooth way, above ê to the detriment of N ’s
conviction probability. We develop the sense in which these properties are general in the
two following immediate corollaries, stated without proof.

Corollary 2. The optimal investigation admits a continuous density on (0, 1); in particular F ∗ has
no interior mass points.

Corollary 2 implies that the uninformative investigation is never optimal. This result is
counterintuitive, as uninformative experiments can be optimal in the Bayesian persuasion
literature (Kamenica and Gentzkow (2011)), in particular, when certain concavity condi-
tions on the distribution of thresholds are met. While given a fixed F , these conditions
can be satisfied in our model, the key difference is that the distribution of thresholds is en-
dogenous to the investigation: P will tend to respond to a high probability of a particular
evidence level by feigning leniency that is just out of reach of such evidence. Given the op-
posing interests lemma, this response by P leads the investigator to minimize predictability
about the realized evidence. Notice that this tendency hinges on the communication stage
being informative. As we show in Appendix E, this “unpredictability” is not a feature of
the optimal investigation under ex-post signaling, i.e., when the communication stage is
uninformative.

Of course, because of the reputational consequences, it is not clear that P would benefit
from mass points in the investigation. For example, when feigning principles just above a
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Figure 3: Locally spreading any mass point harms the partisan.

mass point of evidence, the equilibrium reputation will adjust downwards to reflect the use
of such declarations by P . The ability to target such announcements helps P in equilibrium
because of the same “convexity of reputation” discussed in Subsection 4.2.

Figure 3 depicts two investigations that differ only around evidence e, with c = 1 for
convenience. F has an isolated (for ease of exposition) mass point of size ∆ at evidence e,
while F̃ equally splits this mass point on e to e+ ε and e− ε. When ε is small, because the
density of ℓ types g is continuous, the change in conviction from ℓ types is second order.
However, P ’s conviction rate increases in a first order sense when moving from F to F̃ .

To see why, consider two types ℓ−, ℓ+ as illustrated in the left panel of the figure, with
e − ε < ẽℓ− < e < ẽℓ+ < e + ε. Under F , ℓ− convicts with ∆ higher probability than
ℓ+, so, to preserve P ’s indifference, the equilibrium reputation payoff must be ∆ higher
from sending mℓ− than mℓ+ . In contrast, under F̃ , mℓ− and mℓ+ convict with the same
probability and therefore must command the same reputation. The reputation for these
associated messages as a function of σ(mℓ|P ) is illustrated in the right panel of Figure 3.
This reputation is convex: as P increases σ(mℓ|P ), the marginal decrease in the reputation
for mℓ becomes smaller. The right panel illustrates that, because of this convexity, when
P equalizes his strategy across mℓ+ and mℓ− , the reputation payoff for mℓ− falls by more
than ∆

2
and the reputation payoff for mℓ+ rises by less than ∆

2
. That is, P ’s utility at these

messages has fallen.27 Because of the opposing interests lemma, this change benefits the
investigator.

Corollary 3. The optimal investigation produces full information if and only if h is constant.

27 There are other messages sent under ex-ante signaling, which now have higher utility for P . To restore
equilibrium, P would also have to reallocate some mass from {ℓ−, ℓ+} to these other messages. But this
would serve to decrease the reputation for these messages preserving the conclusion.

24



This corollary is a direct implication of the fact that F ∗(e) ∈ (0, 1) is constant in e if and
only if h is constant. To understand this result, recall that the monotonicity of h captures
the investigator’s design incentives when only facing ℓ types. Therefore, an alternative
statement of Corollary 3 is that the investigator provides full information if and only if
full information maximizes conviction among ℓ types. Since F ∗ balances design incentives
between both types, this means that the investigator’s design goals for P align with that
for ℓ types when h is constant, but are misaligned when h is decreasing.

At a high level, the intuition is as follows. All else equal, P benefits from correlating
his strategy with the ℓ types. When the investigator increases the probability of evidence
in an interval, i.e., increases F (ẽℓ′′)− F (ẽℓ′) for ℓ′′ > ℓ′, P reallocates mass from mimicking
ℓ < ℓ′ to ℓ > ℓ′′. If g is increasing, in which case h is constant, then this response by
P further correlates his strategy with that of the ℓ types, and thereby tends to benefit P .
Conversely, if g is decreasing, this change in the investigation tends to miscorrelate P and
N strategies and thereby harm P . Given the opposing interests lemma, the former change
harms the investigator, while the latter change benefits them. Again, the more precise
intuition revolves around the convexity of reputation mentioned above.

Figure 4 illustrates why the investigator benefits from partial information when g is
decreasing. The left panel shows the fully informative investigation F and a deviation
F̃ which contracts ∆ mass to some interior evidence level e. Consider two types ℓ− and
ℓ+ such that ẽℓ− < e < ẽℓ+ . Because g is decreasing, ℓ types are more prevalent at mℓ−

than at mℓ+ . The right panel illustrates the reputation for ℓ+ (in blue) and ℓ− (in orange)
as a function of σP . Under F , both mℓ− and mℓ+ convict with the same probability and
therefore must have the same equilibrium reputation. This means that P must send mℓ−

with higher probability than mℓ+ . Under F̃ , mℓ− convicts with ∆ higher probability than
mℓ+ . In order to preserve incentives, P must shift probability away from mℓ− towards mℓ+ .
The right panel shows that because of the convexity of reputation, this change harms P :
the proportional decrease in the rate P sends mℓ− , where the rate is already high, is small,
while the proportional increase in the rate P sends mℓ+ , where the rate is low, is large. The
net effect is that P ’s utility decreases and F̃ is worse for P .

5.2. Comparative Statics

We next explore comparatives statics of the investigation design problem and begin by
documenting some basic changes in the parameters that increase the conviction rate.

Proposition 2. Let G̃ be a distribution of ℓ that first-order stochastic dominatesG. For any fixed F ,
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Figure 4: Contracting from full information harms P when g is decreasing.

the investigator’s equilibrium expected utility is higher underG thanG′ and when ρ or q increases.28

Because these comparisons hold for a fixed investigation F , they also hold for the in-
vestigator’s value in the design problem. The intuition for these comparative statics is
straightforward as each change can be seen as increasing the alignment between the DM
and investigator. An increase in q decreases the probability of the P type whose preferences
are at odds with the investigator’s. Similarly, a first-order stochastic decrease in G means
that non-partisan types prefer a = 1 more often. By increasing ρ, we are increasing the
importance of reputation relative to material payoffs in the DM’s utility, which can alter-
natively be interpreted as a decrease in the stakes of the action a. This change then reduces
the misalignment between the partisan and investigator.29

Our next result looks at how the optimal investigation changes with the size of repu-
tation incentives. We can interpret changes in ρ as changes the “stakes” of the decision:
lower ρ corresponds to a higher relative importance of the action. Our next result shows
that higher stake decisions will have more informative investigations.

Proposition 3. The optimal investigation F ∗ is decreasing in informativeness as ρ or q increases.

We illustrate in Figure 5 how the optimal investigation changes with ρ in the example
from Figure 2. In the limiting case when ρ → ∞, P will fully mimic the distribution of ℓ

28 One omitted parameter from this result is c. Although one might naturally conjecture that an increase in
c induces less conviction by P and therefore hurts the investigator, the probability of conviction from ℓ types
is increasing in c (as can easily been seen from Lemma 1). Either force can dominate, making comparative
statics on c ambiguous.

29 Despite also affecting their signaling incentives, a change in ρ has no effect on the non-partisan’s strategy,
and thereby their probability of a = 1.
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types’ messages, and so the distribution of thresholds is investigation independent. This
means that the optimal investigation converges to the Bayesian persuasion solution for the
problem of maximizing conviction from ℓ types: a point mass at 0 and at ê. As ρ decreases,
the optimal investigation maintains 0 mass on [0, ê) where h is flat, but spreads the point
mass on ê to evidence levels in [ê, 1).

To see the intuition for Proposition 3, note first that regardless of ρ and q, the optimal
investigation puts 0 mass on regions where h is increasing. When h is decreasing, the in-
vestigator balances two opposing incentives for the ℓ types and P : the investigator wants
to hedge against P ’s strategic “targeting” by spreading out the distribution of evidence,
but wants to contract the optimal investigation for the ℓ types because their distribution
over thresholds is concave. When q is large the contraction incentives for the ℓ types are
weighted more, and so the optimal investigation is less informative. When ρ is large, P
seeks to mimic the ℓ types more and is therefore less responsive to changes in the investi-
gation. This makes the investigator’s hedging incentive with P less significant and thereby
also leads to a less informative investigation.

Our final comparative statics looks at the impact of mean-preserving spreads of the dis-
tribution ℓ on the investigator’s utility. Such spreads can be interpreted as an increase in
the polarization of non-partisans. The comparative statics for mean-preserving spreads of ℓ
are, in general, ambiguous. However, some of this ambiguity is an artifact of our bounded
evidence space: The ℓ types below the support of F ∗ always take a = 1, and so a spread
of principles in this region can only increase the probability of a = 0. Similarly, a spread
of the distribution of ℓ types in the region above the support of F ∗ can only increase the
probability of a = 1. Our next result shows that, under a regularity condition on g, and
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excluding these changes in “non-pivotal” ℓ types, a spread in the distribution of ideologies
harms the investigator, i.e., decreases the probability of conviction.

Let F ∗ be the optimal investigation given ℓ ∼ G. We say that G̃ (with associated density
g̃) is a pivotal mean-preserving contraction ofG if G̃ is a mean-preserving contraction ofG and
g(ℓ) = g̃(ℓ) for all ℓ such that ẽℓ ̸∈ Supp(F ∗). One simple type of pivotal mean-preserving
contraction is one that contracts probability locally around some ℓ such that F ∗(ẽℓ) ∈ (0, 1).

Proposition 4. Suppose that g is log-concave. If G̃ is a pivotal mean-preserving contraction of G,
then the investigator does better under G̃ than G.

The broad intuition is as follows. Consider spreading ℓ′ and ℓ′′ so that they are further
away from each other. This spreads the conviction probability from mimicking these types
for P as there are new evidence realizations between ẽℓ′ and ẽℓ′′ . As a result the equilibrium
reputation for mℓ′ and mℓ′′ must also spread. However, because reputation is convex, a
similar logic to that in Subsection 4.2 shows that this increases the utility of P , and thereby
harms the investigator. This suggests that P will mimic ℓ′′ more under a spread, however
this spread also changes the conviction rate from ℓ types in a generally ambiguous way:
ℓ′′ convicts less frequently and ℓ′ convicts more frequently. Our regularity assumptions
guarantee that under the optimal investigation, the former effect dominates.

6. Discussion and Extensions

6.1. Commitment and Equilibrium Selection

As with many cheap talk models, our framework admits a wide array of equilibrium
outcomes—one for each LIS. Under our focal equilibrium—ex-ante signaling—this cheap
talk communication is most informative about the eventual decision. There is a strong intu-
ition that providing less information at the communication stage or “dodging the cameras”
would be interpreted negatively, pushing against equilibrium multiplicity. This section
shows that allowing for commitment to a contingent plan uniquely selects ex-ante signal-
ing outcomes. Recall that ex-ante signaling admits no residual strategic uncertainty, i.e.,
it is as if the DM commits to a contingent plan when communicating. However, there are
many natural ways in which exogenous commitment power can arise in our setting; for
example, the DM could publicly delegate the decision, put the decision plan in a legally
binding contract, or simply bear large lying costs (as in Kartik (2009)). In addition, such
commitment can be mandated externally; for example, government agencies and publicly
funded universities can be required to specify approval and admissions criteria respec-
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tively. Motivated by this, we show that ex-ante signaling outcomes are the unique equi-
librium outcomes if either (i) commitment is mandated, or (ii) commitment is available and
the DM has any uncertainty about their preferences at the communication stage that is
privately revealed at the decision stage.

Commitment Model In the commitment model, the DM commits to a publicly observed
contingent plan x ∈ X instead of choosing a messaging and decision strategy. Following
the commitment, evidence is realized, the action is taken according to x, and payoffs are
realized. The preferences of the DM are the same as that in Section 2. We maintain our
focus on equilibria that satisfy the D1 refinement.30

Proposition 5. The commitment model has a unique equilibrium outcome in which each ℓ type
chooses xℓ and P positively mixes over {xℓ}ℓ∈L. The equilibrium outcomes are the same as under
ex-ante signaling in our baseline model.

The interpretation of the proposition can be broken down into two points. First, ex-ante
signaling remains an equilibrium when the DM actually commits to xℓ, instead of sending
a message that is interpreted as such a commitment (as in ex-ante signaling). Second, no
other equilibria can be sustained; in particular, in equilibrium each ℓ type cannot commit
to a contingent plan that yields different outcomes than xℓ. Both points follow from the
fact that xℓ delivers the maximal “signaling value” for type ℓ; i.e., it maximizes the material
utility difference between ℓ and P across all contingent plans. This means that xℓ is always
more tempting for ℓ than for P , so (roughly) whether xℓ is on or off path, it will always be
the best option for type ℓ.

Optional Commitment Model The optional commitment model has two alterations from
our main model. First, at the communication stage, each DM has the option to commit to
an arbitrary contingent plan as a function of the evidence, x ∈ X . However, unlike in the
commitment model, the DM can abstain from commitment and send a cheap talk message
instead, in which case the game proceeds as in our main model.31 For ease of exposition,
we assume F has full support on R, which guarantees mild agreement.

Second, the preferences of the DM are perturbed as follows. The utility of the DM of type
θ, taking action a, given evidence realization e, and reputation µ is given by u(θ, e, a, µ)+εa

30 In the appendix, we provide a formal definition of equilibrium in the commitment model.
31 We continue to apply the D1 refinement, which now has implications at the communication stage. Since

different types have different value from choosing different commitments, the D1 refinement can be used to
rule out certain beliefs following the option to commit.
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where ε is mean 0, independent of other parameters, with support equal to [−δ, δ], with
δ > 0. The DM does not know ε at the communication stage, but privately observes ε at the
decision stage. ε represents changing conditions between the communication and decision
stages: a politician may learn that conviction is actually more or less favorable for their
party than previously expected, or the admissions officer may learn new revelations about
a potential applicant. The variable ε can also represent evidence from the investigation that
is revealed privately to the DM but not to the public. For example, certain findings of the
Trump impeachment inquiry were redacted for the public but revealed to senators making
the impeachment decision.

Proposition 6. For any δ > 0 such that ρ > 2max{ δ
q
, δ
1−q

}, the optional commitment model
admits a unique equilibrium outcome equivalent to that under ex-ante signaling.

Notice that the proposition holds for arbitrarily small preference shocks, but also for
large ones modulated by the weight on reputation ρ.32 The intuition is as follows. Ex-ante
signaling is the unique equilibrium with no residual strategic uncertainty at the decision
stage. Because the DM does not know ε at the communication stage, equilibria with resid-
ual strategic uncertainty provide the benefit of being able to adjust the action choice to the
realization of ε at the decision stage. However, this benefit is greater for P than it is for ℓ
types. The reason is that ℓwill only take ε into account for pivotal evidence realizations, i.e.,
when e − ℓ is close to the difference in reputation between the two actions, while P , who
does not care about evidence, is responsive to ε at any evidence realization. Thus, if there
exists some ℓ who faces residual strategic uncertainty in equilibrium and xℓ goes unused,
then it will be given a reputation of 1, which is not possible given the assumed high value
of reputation. Not committing to a contingent plan signals a desire to be responsive to ε

instead of a desire to be responsive to the evidence.33

6.2. Timing of Evidence Disclosure

In many settings, the timing of evidence disclosure is a choice of the investigator who
can choose to reveal some information before the DM has a chance to announce their con-
tingent plan: an investigation into a political scandal could leak details before the inquiry
is formally announced, or firms could publicly disclose financial records before submitting

32 With arbitrarily large δ, the option value from acting on the realization of ε could exceed the reputational
gains from committing at the communication stage. When the parameters violate the assumption in Propo-
sition 6, each xℓ commitment would still garner a reputation of 1 according to the D1 refinement, but could
go unused.

33 Committing to a policy ex-ante is also used for signaling value in Callander (2008). There, the policy
decision is a scalar rather than a function, however the intuition has similarity in that committing to extreme
policies signals a value for material payoff vs. reputation (in that paper, office motivation).

30



their application for a merger to the FTC. When should the investigator release informa-
tion to the DM and, more broadly, how does the timing of disclosure affect equilibrium
outcomes?

To answer this question, we consider a version of our baseline model with two stages
of evidence disclosure. Before the DM sends a message, they observe an initial public
evidence state ei ∼ Fi. After the message is sent, the final evidence ef ∼ Ff (·|ei) is realized,
and an action is chosen. The preferences of the DM are the same as in Section 2 with
only the final evidence ef being payoff relevant. Let F be the unconditional distribution of
ef .34 We maintain the focus on ex-ante signaling equilibria in each subgame following the
realization of ei, and so our timing results also apply to the commitment model.

Consider an investigator who can choose among different (Fi, Ff ) with the same F . By
choosing different Fi, he can span various timings of evidence disclosure. When Fi is de-
generate, all information is backloaded until after the DM communicates, in which case
equilibrium outcomes correspond to those under ex-ante signaling. When Ff is degener-
ate, all information is front-loaded to before communication, in which case equilibrium
outcomes correspond to those under ex-post signaling. That is, even though we focus on
the ex-ante signaling equilibrium conditional on ei, front-loading disclosure generates ex-
post signaling outcomes due to the fact that when the evidence distribution is degenerate,
ex-ante signaling and ex-post signaling are identical. Our next result shows that the inves-
tigator prefers to backload information relative to any other timing of disclosure.

Proposition 7. Among all Fi and Ff with the same F , Fi = F delivers the lowest P(a = 1), and
Ff (·|·) = F delivers the highest P(a = 1).

This result follows from the convexity of Uα
P (·). Thus, delaying evidence disclosure

(while keeping the final distribution of ef constant) hurts P and benefits the investigator.

6.3. State-Dependent Investigator Preferences

We have so far assumed that the investigator’s preferences are state independent—that
is, the investigator always prefers a = 1 and has a utility independent of e. While we
think this is a reasonable assumption (or approximation) in many settings, it is natural to
ask how our results on investigation design depend on this assumption. Indeed, we used
this assumption to establish the opposing interests lemma which greatly simplifies our
analysis. Nevertheless, many of our main insights continue to hold when the investigator
has state-dependent preferences.

34 More precisely, F (ef ) =
∫
ei
Ff (ef |ei)dFi(ei).
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We maintain that e ∈ [0, 1] represents a posterior belief about a binary state, and G

admits a density. The investigator’s utility from action a and evidence e is now given by
(e−ℓI)awhere ℓI < 1. We make the additional assumption that all ℓ types can be persuaded
by some evidence realization in equilibrium, i.e., that 0 < minℓ∈L ẽℓ < maxℓ∈L ẽℓ < 1.
Because of the high reputation incentives, this guarantees that P is also persuadable in
equilibrium.

Proposition 8. The investigator prefers ex-ante signaling to ex-post signaling. For sufficiently
high ρ, the optimal investigation under ex-ante signaling has no interior mass points.

Because the DM is responsive to evidence, there is no “effective” conflict of interest
when ℓI > 0, and the state is observed. Therefore, the investigator gets his first best utility
from full revelation. The interesting case is when ℓI < 0, i.e. when the investigator prefers
conviction in both states, but has stronger preferences in state 1. In this case, the fact that
the investigator prefers ex-ante signaling to ex-post signaling follows directly from Propo-
sition 1.

To see why the investigator still wants to ensure unpredictability, i.e. set an investiga-
tion with no mass points, recall that the intuition provided for Corollary 2 in Figure 3 used
a local perturbation. Introducing the investigator’s continuous evidence-dependent prefer-
ences affect the tradeoff from locally spreading an evidence mass point in a second order
way and so it remains beneficial. The one subtlety comes from the fact that P responds
by recalibrating the probability with which he mimics ℓ types with non-local thresholds
whose conviction probability is unaffected by the perturbation; and, because the opposing
interests lemma no longer holds, we cannot simply compare P ’s utility to determine the
investigator’s ranking. The proof shows that with high reputation incentives the positive
effect illustrated in Figure 3 dominates.

6.4. Optimal Investigations with Multiple States

While, in our main specification we consider an investigation about a binary state, many
of our results are robust to the case where the investigator specifies an information struc-
ture about a larger state space. As is well known, compactly describing the set of Bayes
plausible experiments quickly becomes intractable as the cardinality of the state space in-
creases. We therefore focus on the case where the ℓ types’ material preferences over actions
depend only the posterior mean about an unknown state. Here, we interpret the evidence
e ∈ E ≡ [0, 1] as the posterior mean about some state ω ∈ [0, 1],35 where the domain is [0, 1]

35 This means that the DM’s underlying objective is linear in ω.
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for expositional convenience. ω is distributed according to CDF K which has strictly pos-
itive density k. Using insights from Gentzkow and Kamenica (2016) and Kolotilin (2018),
a CDF over posterior means F : [0, 1] → [0, 1] is a feasible choice for the investigator if and
only if it satisfies the following Bayes plausibility constraints:∫ e

0

F (e′)de′ ≤
∫ e

0

K(e′)de′ ∀e ∈ E, and∫ 1

0

F (e′)de′ =

∫ 1

0

K(e′)de′. (2)

The investigator’s problem can then be written in the same manner as in (1) substituting the
constraints in (2) for the Bayes plausibility constraint. To avoid ironing complications, we
assume that g is strictly decreasing on [c, 1 + c]. We characterize the optimal investigation
in the Appendix (Proposition 9) and show that, despite the more complicated constraint
set, the main takeaways from Section 5 hold true.

Corollary 4. The optimal investigation has no mass points.

Corollary 5. If g(e+c)

(ρq+c(1−K(e)))2
is strictly increasing in e, then full information is uniquely optimal.

The first corollary shows that the investigator reduces the predictability of the investi-
gation by avoiding mass points. This is despite the fact that, because g is assumed to be
strictly decreasing, providing no information would yield the highest probability of a = 1

from ℓ types. The second corollary says that if the cost of providing information to non-
partisans is small, roughly that g decreases slowly (or more specifically, the condition in
Corollary 5), then full information is optimal.36
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A. Exogenous Investigation Proofs

We let ME denote the set of on-path messages in equilibrium E . For m ̸∈ ME , we set
R(m, a, e) = 0 for all a, e (with Θm = {P}). For notational simplicity, we will often drop
dependence on F in UE

P (F ) in the proofs for Section 3 as it is held fixed.

We first show that a weaker version of the condition in Assumption 1 holds with respect
to each interim belief qm.

Lemma 5. For all m ∈ME , ρ > max{ c
qm
, c

1−qm
}.

Proof. The Lemma holds trivially by Assumption 1 if there is only one on-path message.
Suppose |ME | ≥ 2. Take any message m ∈ Supp(σ(·|P )). P ’s expected equilibrium utility
from sending message m must be UE

P . By Corollary 2 of Hart and Rinott (2020), P ’s ex-
pected reputation conditional on message m is at most qm. Because P ’s expected material
payoff conditional on sending any message is weakly negative, UE

P ≤ ρqm. This bound
must hold for all m′ ∈ME , as any m′ ∈ME\ Supp(σ(·|P )) has qm′ = 1.

We now argue that UE
P ≥ ρqm − c for all m ∈ ME . Take any such m. Bayes plausibility

of the ex-post reputations implies that for each realization of e, there exists an action ae for
which R(m, ae, e) ≥ qm. For following x(e) = ae to not be profitable deviation for P , we
must have

UEP ≥
∫
E

(−cae + ρR(m, ae, e))dF (e) ≥
∫
E

(−c+ ρqm)dF (e) = ρqm − c.

Similar bounds on UE
P hold with respect to q rather than the interim beliefs qm. Bayes

plausibility of the interim reputation implies there exists m,m′ ∈ ME such that qm′ ≤ q ≤
qm. That UE

P ≤ ρqm′ then implies UE
P ≤ ρq. Similarly, that UE

P ≥ ρqm − c implies UE
P ≥ ρq − c.

We now show that ρ > c
qm

for all m ∈ ME . Suppose, for the sake of contradiction,
ρqm ≤ c. Because UE

P ≤ ρqm, we then have UE
P ≤ c. Combining this inequality with

ρq − c ≤ UE
P implies ρq − c ≤ c or ρ ≤ 2c

q
, a contradiction of Assumption 1.

Finally, we show that ρ > c
1−qm

for all m ∈ ME . Suppose, for the sake of contradiction,
ρ(1 − qm) ≤ c, which implies ρ − c ≤ ρqm. We know UE

P ≥ ρqm − c. Because ρqm ≥ ρ − c,
we have UE

P ≥ ρ− 2c. This inequality, when combined with UE
P ≤ ρq, implies ρ− 2c ≤ ρq or

ρ ≤ 2c
1−q

, a contradiction of Assumption 1. Q.E.D.

The next lemma uses the belief restrictions in Lemma 5 to derive an upper-bound on
reputations (on- and off-path) and a lower bound for on-path reputations.
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Lemma 6. Take any m ∈ ME and e ∈ Supp(F ). R(m, a, e) < 1 for all a ∈ {0, 1}. For each on
path a, R(m, a, e) > 0.

Proof. Fix any m ∈ ME and e. For the sake of contradiction, suppose R(m, a, e) = 1 for
some a ∈ {0, 1} (on- or off-path). Bayes plausibility implies R(m, a′, e) ≤ qm and P must
choose a′ ̸= a with probability one after e,m. P ’s utility from choosing a when e is realized
is ρ − ca, while his utility from a′ is at most ρqm − ca′. For a′ to be an equilibrium strategy
for P , it must be that ρ − ca ≤ ρqm − ca′, which simplifies to ρ(1 − qm) ≤ c(a − a′) ≤ c, a
contradiction of Lemma 5.

For the sake of contradiction, suppose a is on-path and R(m, a, e) = 0. Then P must
choose awith positive probability afterm, e, yielding a payoff of −ca+ρR(m, a, e) = −ca ≤
0. By Bayes plausibility, R(m, a′, e) ≥ qm for a′ ̸= a. Choosing a′ after m, e yields a payoff of
−ca′ + ρR(m, a′, e) ≤ −c+ ρqm. For P to weakly prefer a to a′, we must have ρqm − c ≤ 0, a
contradiction of Lemma 5. Q.E.D.

We now show some implications of D1 on the equilibrium actions. Remember that we
are imposing the D1 refinement on the signaling game induced by type space Θm in the
subgame following message m ∈ME and evidence e.

Lemma 7. Let a′ be an off-path action after evidence e ∈ Supp(F ) and message m ∈ ME and
a = 1 − a′. Then R(m, a′, e) = 1 if (e − ẽℓ)(a − a′) < 0 for some ℓ ∈ Lm and R(m, a′, e) = 0 if
(e− ẽℓ)(a− a′) > 0 for all ℓ ∈ Lm.

Proof. Consider the subgame following m ∈ ME and e. Let a′ be an off-path action. Then
R(m, a, e) = qm for a = 1 − a′. Each θ ∈ Θm receives an equilibrium utility of u(θ, e, a, qm).
D1 requires that, if after observing an off-path action a′, the observer place no weight in
their belief on any type θ for which there exists θ′ ∈ Θm such that

{µ ∈ [0, 1] : u(θ, e, a′, µ) > u(θ, e, a, qm)} ⊊ {µ ∈ [0, 1] : u(θ′, e, a′, µ) > u(θ′, e, a, qm)}. (3)

We note that {µ ∈ [0, 1] : u(P, e, a′, µ) > u(P, e, a, qm)} being non-empty is, after some sim-
plification, equivalent to ρ(1− qm) ≥ c(a′ − a), which holds because ρ > c

1−qm
by Lemma 5.

D1 requires R(m, a′, e) = 1 if (3) holds for θ = P and some θ′ ∈ Lm, which simplifies to
(e − ẽℓ)(a − a′) < 0. Similarly, D1 requires R(m, a′, e) = 0 if (3) holds for θ′ = P and all
θ ∈ Lm, which simplifies to (e− ẽℓ)(a− a′) > 0 for all ℓ ∈ Lm. Q.E.D.
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Proof of Lemma 1

Proof. An immediate implication of Lemma 5 is that ∪ℓ∈L Supp(σ(·|ℓ)) = Supp(σ(·|P )) =
ME : otherwise, there would exist m such that qm ∈ {0, 1}, which would violate ρ >

max{ c
qm
, c
1−qm

}. Thus, P ∈ Θm for all m ∈ME .

We now prove point 1 of the lemma. Take any m ∈ ME and ℓ ∈ Lm. Consider the sub-
game after messagem is sent and evidence e is realized. We note that ∪ℓ∈Lm Supp(ζ(·|m, e, ℓ)) =
Supp(ζ(·|m, e, P )); otherwise, R(m, a, e) ∈ {0, 1} for some on-path a, a contradiction of
Lemma 6.

Suppose for the sake of contradiction, that e ̸= ẽℓ and ℓ chooses a = 1(e < ẽℓ) with
positive probability. Then, for a′ = 1− a, we must have

(e− ℓ)a+ ρR(m, a, e) ≥ (e− ℓ)a′ + ρR(m, a′, e). (4)

If P is indifferent between a and a′, then

−ca+ ρR(m, a, e) = −ca′ + ρR(m, a′, e). (5)

Subtracting (5) from (4) and simplifying yields (e − ẽℓ)(a − a′) ≥ 0, a contradiction since
a− a′ > 0 if and only if e− ẽℓ < 0. Therefore, P must choose a with probability one and a′

must be an off-path action. But, by Lemma 7, R(m, a′, e) = 1 because (e − ẽℓ)(a − a′) < 0.
Therefore, ℓ cannot choose a = 1(e < ẽℓ) with positive probability in equilibrium.

Finally, we note that the rest of point 2 of the lemma follows from the characterization
of ℓ’s strategy and that ∪ℓ∈Lm Supp(ζ(·|m, e, ℓ)) = Supp(ζ(·|m, e, P )). Q.E.D.

Proof of Lemma 2

Let (Σ, {Gm}m∈Supp(Σ)) be an LIS and let M ′ = Supp(Σ). Take {σ(·|ℓ)}ℓ∈L to be a set of
messaging strategies such that (Σ, {Gm}m∈M ′) is the LIS associated with {σ(·|ℓ)}ℓ∈L and
σ(·|ℓ) is supported on {m : ℓ ∈ Lm}—that is, no type ℓ sends a message m for which
ℓ ̸∈ Lm. We will construct an equilibrium using these messaging strategies for ℓ types. The
key step in the construction is to pin down P ’s strategies and the reputation function. To
do so, we will set the ℓ types’ action strategies to follow xℓ and look for P ’s strategies (and
corresponding reputations) that leave P indifferent across all messages in M ′ and across
all action strategies corresponding to x ∈ {xℓ}ℓ∈Lm after sending message m ∈M ′.

Given Lemma 1, we know that in any equilibrium inducing interim beliefs {qm}m∈M ′ , P
will be indifferent across all actions used by the ℓ types. We now define a function z that
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will determine the strategy used by P .

Take an arbitrary q̃ ∈ [0, 1] and CDF G̃ over L. If ℓ ∼ G̃ and P(θ = L) = q̃, the reputation
for a = 1 when all ℓ ≤ e + c choose a = 1 and P chooses a = 1 with probability z is

q̃G̃(e+c)

q̃G̃(e+c)+(1−q̃)z
while the reputation for a = 0 is q̃(1−G̃(e+c))

q̃(1−G̃(e+c))+(1−q̃)(1−z)
. Define z(·; q̃, G̃) in the

following way. For e such that G̃(e+c) ∈ (0, 1), let z(e; q̃, G̃) be the unique value of z ∈ [0, 1]

such that

ρ
q̃G̃(e+ c)

q̃G̃(e+ c) + (1− q̃)z
− c = ρ

q̃(1− G̃(e+ c))

q̃(1− G̃(e+ c)) + (1− q̃)(1− z)
, (6)

if such a z exists. Otherwise, the left-hand side above must be lower than the right-hand
side for all z, in which case we take z(e; q̃, G̃) = 0. For e such that G̃(e + c) = 0, we
set z(e; q̃, G̃) = 0 and for e such that G̃(e + c) = 1, we set z(e; q̃, G̃) = 1. Adopting
the convention that 0

0
= 0, we define R̃1(e; q̃, G̃) = q̃G̃(e+c)

q̃G̃(e+c)+(1−q̃)z(e;q̃,G̃)
and R̃0(e; q̃, G̃) =

q̃(1−G̃(e+c))

q̃(1−G̃(e+c))+(1−q̃)(1−z(e;q̃,G̃))
.

We note some properties of z. First, it is easy to see that z(e; q̃, G̃) is continuous in q and
increasing in e. Second, Bayes plausibility and (6) imply

R̃1(e; q̃, G̃) ≥ q̃ ≥ R̃0(e; q̃, G̃).

Finally, for any q̃ such that ρ(1− q̃) > c, G̃(e+ c) ∈ (0, 1) implies z(e; q̃, G̃) ∈ (0, 1).37

In order to find a messaging strategy that leaves P indifferent across m ∈ M ′, we first
need to calculate P ’s expected equilibrium utility from announcing a particular message
given the interim beliefs and P ’s action strategy as described above. For an arbitrary q̃ ∈
[0, 1] and CDF G̃ on L, we define

w(e; q̃, G̃) =


ρq̃ − c if G̃(e+ c) = 1,

ρR̃0(e; q̃, G̃) if G̃(e+ c) ∈ (0, 1),

ρq̃ if G̃(e+ c) = 0.

This corresponds to the payoffs given ℓ’s strategies and P choosing a = 1 after e with
probability z(e; q̃, G̃). We then define the expected payoff from w as

W (q̃; G̃) ≡
∫
E

w(e; q̃, G̃)dF (e).

37 This fact follows from the observation that at z = 1, the right-hand side of (6) is ρ, which is strictly higher
than the left-hand side, while for z = 0 the left-hand side is ρ − c, which is strictly higher ρq̃, which is an
upper-bound for the left-hand side at z = 0.
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Our next lemma gives some properties of W .

Lemma 8. W (q̃; G̃) is continuous and strictly increasing in q̃ with W (q̃; G̃) ∈ [ρq̃ − c, ρq̃].

Proof. Continuity is easily seen from the fact that z(e; q̃, G̃) is continuous in q̃. That W is
increasing follows from the fact that w is strictly increasing in q̃ for all e.38 The fact that
W (q̃, G̃) ∈ [ρq̃ − c, ρq̃] easily follows if we can show ρR̃0(e; q̃, G̃) ∈ [ρq̃ − c, ρq̃]. The upper
bound follows from R̃0(e; q̃, G̃) ≤ q̃. To establish the lower bound, using R̃1(e; q̃, G̃) ≥ q̃ we
have39

ρR̃0(e; q̃, G̃) ≥ ρR̃1(e; q̃, G̃)− c ≥ ρq̃ − c.

Q.E.D.

In any equilibrium, in order to have R(m, a, e) ∈ (0, 1) for all e, m ∈ ME and on-
path a, σ(·|P ) and Σ must be absolutely continuous. We therefore construct P ’s mes-
saging strategy by specifying a Radon-Nikodym derivative r(·) and defining σ(·|P ) via
σ(M̂ |P ) =

∫
M̂
r(m)dΣ(m) for any Borel measurable M̂ ⊂ M . When such strategies are

used, the interim belief qm for m with r(m) = r is given by φ(r) ≡ q
q+(1−q)r

.

For U ∈ [ρq − c, ρq], define s(U ;m) to be the value of r such that U = W (φ(r), Gm). The
function s(U ;m) gives the rate r at which P must declare m (inducing an interim belief
qm = φ(r)) such that P ’s expected utility from announcing m in W (qm;Gm) is equal to U .
We note that such an r exists as W is continuous in q. Using Assumption 1 and the bounds
on W from Lemma 8, we have

lim
r→0

W (φ(r), Gm) ≥ lim
r→0

ρφ(r)− c = ρ− c > ρq, (7)

lim
r→∞

W (φ(r), Gm) ≤ lim
r→∞

ρφ(r) = 0 < ρq − c.

Because W (qm, Gm) is continuous and strictly increasing in qm, s(U ;m) is continuous and
strictly decreasing in U . By (7), s(U ;m) exists for all U ∈ [ρq − c, ρq].

We next identify a unique U∗ such that 1 =
∫
M
s(U∗;m)dΣ(m). U∗ correspond to P ’s

equilibrium expected utility and we will use s(U∗;m) as the Radon-Nikodym derivative
defining P ’s messaging strategy. Uniqueness of the solution implies that s(U∗;m) defines
the unique messaging strategy leaving P indifferent across m ∈ M ′ when payoffs from m

are W (qm, Gm).

38 This is obvious when G̃(e + c) ∈ {0, 1}. When G̃(e + c) ∈ (0, 1), it is straightforward from (6) that
increasing q̃ must strictly increase R̃0(e; q̃, G̃).

39 The first inequality below holds with equality if z(e; q̃, G̃) ∈ (0, 1).
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Lemma 9. There exists a unique U∗ ∈ [ρq − c, ρq] such that 1 =
∫
M
s(U∗;m)dΣ(m). Moreover,

for qm = φ(s(U∗;m)), we have ρ > max{ c
qm
, c
1−qm

}.

Proof. Take anym ∈M ′. We note that φ(r) ⋚ q if and only if 1 ⋚ r. Let U = ρq−c. Because
W (q̃;Gm) ≥ ρq̃ − c for all q̃, we have

ρq − c = U = W (φ(s(U ;m)), Gm) ≥ ρφ(s(U ;m))− c.

Thus, q ≥ φ(s(U ;m)), which implies s(U ;m) ≥ 1 and
∫
M
s(U ;m)dΣ(m) ≥

∫
M
dΣ(m) = 1.

Let U ′ = ρq. Because, W (q̃;Gm) ≤ ρq̃, for all q̃ we have

ρq = U ′ = W (φ(s(U ′;m)), Gm) ≤ ρφ(s(U ′;m))− c.

Thus, q ≤ φ(s(U ′;m)), which implies s(U ′;m) ≤ 1 and
∫
M
s(U ′;m)dΣ(m) ≤

∫
M
dΣ(m) = 1.

Because s(·;m) is continuous and strictly decreasing, there exists a unique U∗ ∈ [ρq − c, ρq]

such that 1 =
∫
M
s(U∗;m)dΣ(m).

We conclude by showing that, for allm ∈M ′, ρ > max{ c
qm
, c
1−qm

} where qm = φ(s∗(U ;m)).
By definition of s(U∗;m),W (qm, Gm) = W (qm′ , Gm′) for allm,m′ ∈M ′. BecauseW (qm, Gm) ∈
[ρqm−c, ρqm], we can apply the same arguments as in Lemma 5 to conclude ρ > max{ c

qm
, c
1−qm

}
for all m ∈M ′. Q.E.D.

We now construct an equilibrium E corresponding to the LIS. Let σE(·|ℓ) = σ(·|ℓ) and
define σE(·|P ) by dσE(·|P ) = s(U∗;m)dΣ(m). Let qm = φ(s(U∗;m)). We define reputations
as RE(m, a, e) = R̃a(e; qm, Gm) for m ∈ME and 0 for m ̸∈ME . For action strategies, we set40

ζE(1|m, e, ℓ) =

xℓ(e) if m ∈ Supp(σ(·|ℓ)),

1(1 ∈ argmaxa u(ℓ, e, a, R
E(m, a, e))) else.

ζE(1|m, e, P ) =

z(e; qm, Gm) if m ∈M ′,

0 else.

It is clear that these strategies generate an expected utility for P of W (qm, Gm) = U∗

when declaring message m ∈M ′ and that, after sending message m, P is indifferent across
following any xℓ for ℓ ∈ Lm. Our next lemma completes the proof of Lemma 2 by showing
that E is an equilibrium; uniqueness of the equilibrium follows immediately from the fact

40 The strategies for ℓ after sending an out of equilibrium message m ̸∈ Supp(σ(·|ℓ)) are a selection from
the set of optimal strategies for ℓ in such subgames. Any selection here will suffice.
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that by Lemma 1, action strategies are pinned down on a probability one set of e, ℓ,m
and that s(U∗;m) defines the unique messaging strategy that leaves P indifferent across
messages.

Lemma 10. E is an equilibrium.

Proof. We start by verifying that P has no incentive to deviate. First, we consider the
action stage. It is clear that P is indifferent over actions when Gm(e + c) ∈ (0, 1). P also
clearly has no incentive to deviate to a = 1 when Gm(e+ c) = 0. Finally, P has no incentive
to deviate to a = 0 when Gm(e + c) = 1 as his payoff from a = 1 is ρqm − c > 0 and his
payoff from a = 0 is zero. There is also no incentive to deviate at the communication stage:
P is indifferent across all m ∈ M ′ and strictly prefers the expected utility of U∗ from any
m ∈M ′ to the expected utility of 0 from sending m ̸∈M ′ because U∗ ≥ ρq − c > 0.

Next, we show that no ℓ type has an incentive to deviate at the action stage follow-
ing m ∈ M ′; that there is no incentive deviate after m ̸∈ M ′ follows immediately from
the definition of ζE . Take an arbitrary ℓ, e. Set a = xℓ(e) and a′ ̸= a. By definition of
z(e; qm, Gm) and ζE(·|m, e, P ), xℓ(e) ∈ Supp(ζE(·|m, e, P )) so P ’s incentive constraint im-
plies −ca + ρRE(m, a, e) ≥ −ca′ + ρRE(m, a′, e). If ℓ has a strict incentive to deviate to a′,
then (e− ℓ)a+ ρRE(m, a, e) < (e− ℓ)a′ + ρRE(m, a′, e). Subtracting P ’s incentive constraint
and simplifying, we get (e− ẽℓ)(a− a′) < 0, a contradiction of the fact that e− ẽℓ < 0 if and
only if a− a′ < 0 by a = xℓ(e).

Next, we consider ℓ’s incentive to deviate at the communication stage. If ℓ has a prof-
itable deviation to announce message m′ and follow contingent plan x′ then, for m ∈
Supp(σ(·|ℓ)), we have∫

E

((e− ℓ)x′(e) + ρR(m′, x′(e), e))dF (e) >

∫
E

((e− ℓ)xℓ(e) + ρR(m,xℓ(e), e))dF (e).

Because P is indifferent across all m′′ ∈M ′ and xℓ for ℓ ∈ Lm′′ , the fact that P does not have
a profitable deviation to sending message m′ and following x′ implies∫

E

(−cxℓ(e) + ρR(m,xℓ(e), e))dF (e) ≥
∫
E

(−cx′(e) + ρR(m,x′(e), e))dF (e).

Adding these inequalities together and simplifying, we get
∫
E
(c+e−ℓ)x′(e)dF (e) >

∫
E
(c+

e− ℓ)xℓ(e)dF (e), contradicting the fact that xℓ ∈ argmaxx
∫
E
(c+ e− ℓ)x(e)dF (e). Therefore,

ℓ must have no incentive to deviate at the communication stage.
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Finally, we show that D1 is satisfied.41 The only off-path actions (after m ∈ M ′) occur
when Gm(e + c) ∈ {0, 1}. If Gm(e + c) = 1, then a = 0 is an off-path action. There are two
cases to consider: when e > maxℓ∈Lm ẽℓ and when e = maxℓ∈Lm ẽℓ. In the first case, by
Lemma 7, D1 requires RE(m, 1, e) = 0 because e − ẽℓ < 0 for all ℓ ∈ Lm. For the second
case, any reputation is consistent with D1. D1 requires no weight be placed on any ℓ ∈ Θm

whenever P has a larger incentive to deviate to a than ℓ, namely

{µ ∈ [0, 1] : µ ≥ e− ℓ

ρ
+ qm} ⊊ {µ ∈ [0, 1] : µ ≥ − c

ρ
+ qm},

which rules out all ℓ < maxLm. However, the above sets are equal for ℓ′ = maxLm, in
which case any beliefs that ascribe probability only on ℓ′ and P are consistent with D1.
Thus,RE ′

(m, 1, e) = 0 is consistent with D1. An analogous argument holds for whenGm(e+

c) = 0. Q.E.D.

Proof of Lemma 4

Proof. We first derive an equation for determining Uα
P (F ). P ’s expected material payoff

from following strategy xℓ is −c(1 − F (ẽℓ)). Conditional on following strategy xℓ after
message mℓ, both P and ℓ pool in their action strategy after each evidence realization,
so Rα(mℓ, xℓ(e), e) = qdG(ℓ)

qdG(ℓ)+(1−q)dσα(mℓ|P )
for all e. Because P is indifferent across all m ∈

{mℓ}ℓ∈L, we have

Uα
P (F ) = −c(1− F (ẽℓ)) + ρ

qdG(ℓ)

qdG(ℓ) + (1− q)dσα(mℓ|P )
∀ℓ ∈ L.

Solving for the probability of messagemℓ, namely qdG(ℓ)+(1−q)dσα(mℓ|P ) and integrating
over L, we have

1 =

∫
L

ρqdG(ℓ)

Uα
P (F ) + c− cF (ẽℓ)

. (8)

41 We restrict attention to verifying this for m ∈ M ′. For m ̸∈ M ′, because Θm = {P}, R(m, a, e) = 0
satisfies D1.
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Take an arbitrary pair of CDFs F1, F2 and λ ∈ (0, 1) and define Fλ = λF1 + (1− λ)F2. Using
(8), we then have∫

L

qρdG(ℓ)

Uα
P (Fλ) + c− cFλ(ẽℓ)

= λ

∫
L

qρdG(ℓ)

Uα
P (F1) + c− cF1(ẽℓ)

+ (1− λ)

∫
L

qρdG(ℓ)

Uα
P (F2) + c− cF2(ẽℓ)

≥
∫
L

qρdG(ℓ)

λUα
P (F1) + (1− λ)Uα

P (F2) + c− c(λF1(ẽℓ) + (1− λ)F2(ẽℓ))

=

∫
L

qρdG(ℓ)

λUα
P (F1) + (1− λ)Uα

P (F2) + c− cFλ(ẽℓ)
,

where the inequality follows from the fact that 1
y

is convex in y. Moreover, the inequality
is strict if and only if there exists L′ ⊆ L such that

∫
L′ dG(ℓ) > 0 and F1(ẽℓ) ̸= F2(ẽℓ) for all

ℓ ∈ L′. This inequality implies Uα
P (Fλ) ≤ λUα

P (F1) + (1− λ)Uα
P (F2), with strict inequality if

and only if such an L′ exists. Q.E.D.

As discussed in the text, Lemma 4 implies Uα
P (F ) ≤ Uβ

P (F ). When |L| ≥ 2, ex-post
signaling under G has some residual strategic uncertainty if and only if there exists L′ ⊆ L

such that
∫
L′ dG(ℓ) > 0 and F (ẽℓ) ̸= F (ẽℓ′) for all ℓ, ℓ′ ∈ L′. Under mild agreement, for

each ℓ′, ℓ′′ ∈ L′, there exists e ∈ Supp(F ) such that δe(ẽℓ′) = δe(ẽℓ′′); residual strategic
uncertainty then implies that there exists e′ ∈ Supp(F ) such that δe′(ẽℓ′) ̸= δe′(ẽℓ′′). This
implies that δe(ẽℓ) ̸= δe′(ẽℓ) for some ℓ ∈ L′. The proof of Lemma 4 shows that Uα

P (F ) ≥∫
E
Uα
P (δe)dF (e) =

∫
E
Uβ
P (δe)dF (e); under mild agreement, the inequality is strict if and only

if there is residual strategic uncertainty. We use this observation in the proof of Theorem 1
below.

Proof of Theorem 1

Proof. Take any equilibrium E and define ΣE(·) =
∫
L
σE(·|ℓ)dG(ℓ). By Lemma 3, it suffices

to show UE
P (F ) ≥ Uα

P (F ), with, under mild agreement, a strict inequality if and only if there
is residual strategic uncertainty.

For m ∈ ME , let Gm and qm be the interim beliefs associated with m in E and define
Uβ
P,m(δe) to be the ex-post signaling utility when ℓ ∼ Gm, P(θ ∈ L) = qm and F = δe. Note

that P ’s utility in E after sending message m ∈ ME when e is realized is equal to Uβ
P,m(δe).

P ’s expected utility from sending message m ∈ ME is then
∫
E
Uβ
P,m(δe)dF (e), which, by

basic equilibrium considerations, must be equal to UE
P (F ).

Define Uα
P,m(F ) to be the (unique) value of U that solves

∫
L

ρqm
U+c−cF (ẽℓ)

dGm(ℓ) = 1; this
corresponds to the solution to the equation for Uα

P (F ) when ℓ ∼ Gm and P(θ ∈ L) =
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qm. That a unique solution exists follows from the fact that ρqm > c by Lemma 5, so∫
L

ρqm
U+c−cF (ẽℓ)

dGm(ℓ) > 1 when U = 0 and that
∫
L

ρqm
U+c−cF (ẽℓ)

dGm(ℓ) is strictly decreasing
in U with a limit of 0 as U → ∞.

Note that Uβ
P,m(δe) = Uα

P,m(δe). By the arguments made in Lemma 4, Uα
P,m(·) is convex42

and so, for all m ∈ME , we have

Uα
P,m(F ) ≤

∫
E

Uα
P,m(δe)dF (e) =

∫
E

Uβ
P,m(δe)dF (e) = UE

P (F ),

with, under mild agreement, strict inequality on a ΣE-probability one set of m if and only
if there is residual strategic uncertainty in equilibrium E .

We now relate Uα
P,m(F ) to Uα

P (F ). Because
∫
L

ρqm
Uα
P,m(δe)+c−c1(e≥ẽℓ)

dGm(ℓ) = 1, we can take
the expectation over both sides with respect to e and m to get

1 =

∫
M

(∫
E

[ ∫
L

ρqmdGm(ℓ)

Uα
P,m(δe) + c− c1(e ≥ ẽℓ)

]
dF (e)

)
(qdΣE(m) + (1− q)dσE(m|P )) (9)

≥
∫
M

[ ∫
L

ρqmdGm(ℓ)

Uα
P,m(F ) + c− cF (ẽℓ)

]
(qdΣE(m) + (1− q)dσE(m|P ))

=

∫
M

[ ∫
L

ρqdG(ℓ)

Uα
P,m(F ) + c− cF (ẽℓ)

]
dσE(m|ℓ),

where the inequality follows from the convexity of Uα
P,m(F ) and is strict (under mild agree-

ment) if and only if there is residual strategic uncertainty.

Because
∫
L

ρqdG(ℓ)
Uα
P (F )+c−cF (ẽℓ)

= 1 as shown in Lemma 4, (9) implies Uα
P (F ) ≤ Uα

P,m(F ) on
a ΣE-probability one set of m, strictly so (under mild agreement) if and only if there is
some residual strategic uncertainty (i.e., the inequality in (9) is strict). Our desired result
then follows from the fact that Uα

P,m(F ) ≤ UE
P (F ) on any probability one set of m, with,

under mild agreement, strict inequality if and only if there is residual strategic uncertainty.
Q.E.D.

Proof of Proposition 1

Proof. Take any evidence level e. The proof is immediate ifG(e+c) = 0 as ψα(e) = ψβ(e) =

0 by Lemma 1 or if G(e+ c) = 1 as ψα(e) = ψβ(e) = 1. Suppose G(e+ c) ∈ (0, 1). Note that
ψα(e) =

∫ e+c

−∞ (qdG(ℓ)+ (1− q)dσα(mℓ|P )). As can easily be seen from the proof of Lemma 4,
qdG(ℓ) + (1 − q)dσα(mℓ|P ) = ρqdG(ℓ)

Uα
P (F )+c−cF (ẽℓ)

, so ψα(e) =
∫ e+c

−∞
qρ

Uα
P (F )+c−cF (ẽℓ)

dG(ℓ). We also

42 The arguments in Lemma 4 showing Uα
P (F ) is convex only relied on the fact that Uα

P (F ) is the solution
to

∫
L

ρqdG(ℓ)
U+c−cF (ẽℓ)

= 1, and so apply to Uα
P,m as well.

46



note that ψβ(e) is pinned down by

ρ
qG(e+ c)

ψβ(e)
− c = ρRβ(m, 1, e)− c = ρRβ(m, 0, e) = ρ

q(1−G(e+ c))

1− ψβ(e)
. (10)

This probability does not depend on F and only depends onG through the value ofG(e+c).

We show that ψα(e) − ψβ(e) ≥ 0 by showing that this inequality holds when we select
the distribution of ℓ types G ∈ Ge ≡ {G̃ : G̃(e+ c) = G(e+ c)} in order to minimize ψα(e).

It is without loss to focus on F such that Supp(F ) lies in a compact interval. For any
F with unbounded support, we can consider a version of F truncated at [−z, z] for some
z ∈ R; taking z → ∞, it is easy to see that the value of ψα(e) under the truncated F will
converge to the value of ψα(e) under the original F .

We construct a minimizing G in two steps. First, we show it is without loss to focus
on G with no mass on (e + c,maxSupp(F ) + c] and at most one point in its support above
maxSupp(F ) + c. Take any G̃ ∈ Ge. For some e′ > maxSupp(F ) + c, let Ĝ be such that
Ĝ(ℓ) = G̃(ℓ) for ℓ ≤ e + c and Ĝ(ℓ) = G̃(e + c) + 1(e ≥ e′)(1 − G̃(e + c)) for ℓ ≥ e + c;
thus, Ĝ ∈ Ge. Let Ũ and Û be the corresponding equilibrium expected utility under ex-ante
signaling for P when ℓ is distributed according to G̃ and Ĝ respectively. For the sake of
contradiction, suppose Û < Ũ . Then

1 =

∫
L

ρq

Ũ + c− cF (ẽℓ)
dG̃(ℓ)

≤
∫ e+c

−∞

ρq

Ũ + c− cF (ẽℓ)
dG̃(ℓ) +

∫ ∞

e+c

ρq

Ũ
dG̃(ℓ)

=

∫ e+c

−∞

ρq

Ũ + c− cF (ẽℓ)
dĜ(ℓ) +

∫ ∞

e+c

ρq

Ũ
dĜ(ℓ)

<

∫ e+c

−∞

ρq

Û + c− cF (ẽℓ)
dĜ(ℓ) +

∫ ∞

e+c

ρq

Û
dĜ(ℓ)

=

∫
L

ρq

Û + c− cF (ẽℓ)
dĜ(ℓ),

a contradiction of
∫
L

ρq

Û+c−cF (ẽℓ)
dĜ(ℓ) = 1. Therefore, Û ≥ Ũ . Because ψα(e) is decreasing in

Uα
P (F ), we conclude that Ĝ must yield weakly lower probability a = 1 at e than G̃.

Next, we argue that that is without loss in our minimization problem to focus on G with
binary supports. Take any G̃ ∈ Ge with no mass on (e+ c,maxSupp(F )+ c] and at most one
point in its support above maxSupp(F ) + c. Let Ĝ be a distribution in Ge with a mass point
of size G(e+ c) strictly below min Supp(F )+ c and a mass point of size 1−G(e+ c) at some
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point strictly above maxSupp(F ) + c. Let Ũ and Û be the equilibrium expected utility for
P under ex-ante signaling when the distribution of ℓ types is G̃ and Ĝ respectively.

For the sake of contradiction, suppose
∫ e+c

−∞
qρ

Ũ+c−cF (ℓ−c)
dG̃(ℓ) <

∫ e+c

−∞
qρ

Û+c−cF (ℓ−c)
dĜ(ℓ).

Ũ is given by the solution to
∫
L

qρ
U+c(1−F (ẽℓ))

dG̃(ℓ) = 1. Because
∫∞
e+c

qρ

Ũ+c(1−F (ẽℓ))
dG̃(ℓ) =

ρq(1−G(e+c))

Ũ
, we have

∫ e+c

−∞

qρ

Ũ + c(1− F (ẽℓ))
dG̃(ℓ) = 1− ρq(1−G(e+ c))

Ũ
.

A similar expression holds for Û . Therefore,
∫ e+c

−∞
qρ

Ũ+c−cF (ℓ−c)
dG̃(ℓ) >

∫ e+c

−∞
qρ

Û+c−cF (ℓ−c)
dĜ(ℓ)

implies ρq(1−G(e+c))

Ũ
> ρq(1−G(e+c))

Û
or equivalently, Ũ < Û . We then have

1 =

∫
L

qρ

Ũ + c− cF (ẽℓ)
dG̃(ℓ) ≥ ρq

Ũ + c
G(e+ c) +

ρq(1−G(e+ c))

Ũ

>
ρq

Û + c
G(e+ c) +

ρq(1−G(e+ c))

Û
=

∫
L

qρ

Û + c− cF (ẽℓ)
dĜ(ℓ),

a contradiction of
∫
L

qρ

Û+c−cF (ẽℓ)
dĜ(ℓ) = 1. Therefore, we must have

∫ e+c

−∞
qρ

Ũ+c−cF (ℓ−c)
dG̃(ℓ) ≥∫ e+c

−∞
qρ

Û+c−cF (ℓ−c)
dĜ(ℓ), that is, ψα(e) is weakly lower under Ĝ than G̃.

The above arguments imply that it is without loss to consider G ∈ Ge with binary sup-
port for our minimization problem. For binary support {ℓ, ℓ}, ψα(e)− ψβ(e) is zero for e ̸∈
[ẽℓ, ẽℓ), and constant for e ∈ [ẽℓ, ẽℓ), so Theorem 1 establishes that ψα(e)−ψβ(e) ≥ 0 ∀e ∈ E,
which completes the proof. Q.E.D.

B. Optimal Investigation Proofs

Proof of Theorem 2

Proof. We first note that∫
L

g(ℓ)qρ

U + c− cF (ẽℓ)
dℓ =

G(c)qρ

U + c
+

∫ 1

0

h(e)qρ

U + c− cF (e)
de+

(1−G(1 + c))qρ

U
.

We solve a relaxed version of the investigator’s problem where we only require the
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constraints to hold as inequalities:

min
U≥0,F∈F

U (11)

subject to
G(c)qρ

U + c
+

∫ 1

0

h(e)qρ

U + c− cF (e)
de+

(1−G(1 + c))qρ

U
≤ 1,∫ 1

0

(1− F (e))de ≤ e.

Both constraints are convex in U and F . By Theorem 1 (Chapter 8) of Luenberger (1997),
there exist multipliers η ≥ 0 and λ ≥ 0 (on the first and second constraints respectively)
such that any solution U∗, F ∗ to (11) will solve43

min
U≥0,F∈F

U + η

[
G(c)qρ

U + c
+

∫ 1

0

h(e)qρ

U + c− cF (e)
de+

(1−G(1 + c))qρ

U
− 1

]
+ λ

[ ∫ 1

0

(1− F (e))de− e

]
.

Moreover, complementary slackness conditions imply η, λ > 0 only if both constraints
bind, in which case the relaxation to inequality constraints is without loss. If η = 0, then
U∗ = 0 is clearly optimal. However, for any choice of F ∗, we have∫

L

g(ℓ)qρ

U∗ + c− cF ∗(ẽℓ)
dℓ =

∫
L

g(ℓ)qρ

c− cF ∗(ẽℓ)
dℓ ≥

∫
L

g(ℓ)qρ

c
dℓ =

qρ

c
> 0,

where the final inequality holds by Assumption 1. Thus, U∗ = 0 is not feasible. Therefore,
η > 0 and U∗ > 0.

Fixing the optimal value of U∗, the optimal investigation F ∗ must solve

min
F∈F

∫ 1

0

(
ηh(e)qρ

U∗ + c− cF (e)
− λF (e)

)
de− η + λ− λe. (12)

It is clear that λ > 0; otherwise F ∗(e) = 0 for all e, which violates
∫ 1

0
(1− F ∗(e))de ≤ e.

The restriction that F be a CDF requires the use of ironing techniques to solve (12). By
Theorem 3.1 of Toikka (2011), F ∗(e) = argminx∈[0,1]

ηh(e)qρ
U∗+c−cx

− λx. Taking the first-order
condition, whenever F ∗(e) ∈ (0, 1), we have

ηh(e)qρ

(U∗ + c− cF ∗(e))2
− λ = 0.

43 This theorem requires a Slater condition hold, namely there exist U,F such that both constraints are
slack. Such U,F can be found by setting F (e) = 1 for all e > 0 and U > qρ.
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Letting k =
√

ηqρ
cλ

, a bit of algebra gives us F ∗(e) = U∗

c
+1−k

√
h(e) whenever F ∗(e) ∈ (0, 1).

F ∗(e) = 0 whenever ηh(e)qρ

c(U
∗
c
+1)2

−λ > 0; this condition simplifies to U∗

c
< k

√
h(e)−1. Similarly,

F ∗(e) = 1 whenever ηh(e)qρ

c(U
∗
c
)2
− λ < 0, or alternatively, when U∗

c
> k

√
h(e). That U∗ = Uα

P (F
∗)

follows from the fact that the first constraint in (11) holds with equality. Q.E.D.

C. Comparative Statics Proofs

In the proofs below, we will use the fact, as shown in the proof of Lemma 3, that Uα
P (F )

is the unique U that solves
∫
L

ρq
U+c−cF (ẽℓ)

dG(ℓ) = 1.

Proof of Proposition 2

Proof. Fix an investigation F and distribution G of ℓ. Taking the derivative of the expres-
sion in (8) with respect to ρ, we have

−dU
α
P (F )

dρ

∫
L

ρq

(Uα
P (F ) + c− cF (ẽℓ))2

dG(ℓ) +

∫
L

q

Uα
P (F ) + c− cF (ẽℓ)

dG(ℓ) = 0.

After some simplification and using Jensen’s inequality, we get44

(
dUα

P (F )

dρ
)−1 = q

∫
L

(
ρ

Uα
P (F ) + c− cF (ẽℓ)

)2

dG(ℓ) ≥ q

(∫
L

ρ

Uα
P (F ) + c− cF (ẽℓ)

dG(ℓ)

)2

=
1

q
.

Thus, dUα
P (F )

dρ
≤ q. By Lemma 3, we have dV α(F )

dρ
= 1

c
[q− dUα

P (F )

dρ
] ≥ 0. An analogous argument

holds for the comparative static on q.

Next, we look at first-order stochastic dominance shifts of the distribution of ℓ. By
Lemma 3, it suffices to show that P ’s equilibrium expected utility is lower under G than
G̃. Let U and Ũ be P ’s equilibrium expected utility under G and G̃ respectively. For the
sake of contradiction, suppose U > Ũ . Because G̃ first-order stochastically dominates G,
we have

1 =

∫
L

qρ

Ũ + c− cF (ẽℓ)
dG̃(ℓ) >

∫
L

qρ

U + c− cF (ẽℓ)
dG̃(ℓ) ≥

∫
L

qρ

U + c− cF (ẽℓ)
dG(ℓ),

which contradicts the fact that
∫
L

qρ
U+c−cF (ẽℓ)

dG(ℓ) = 1. Therefore, Ũ ≥ U . Q.E.D.
44 Here we are using

∫
L

q
Uα

P (F )+c−cF (ẽℓ)
dG(ℓ) = 1

ρ by (8).
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Proof of Proposition 3

Proof. Fix the value of q. Take ρ̃, ρ with ρ̃ > ρ and corresponding optimal investigations F̃
and F . Let Ũ and U be P ’s equilibrium expected utility for ρ̃, F̃ and ρ, F respectively.

We first show that U ≥ U . For the sake of contradiction, suppose U > Ũ . Optimality
of F requires

∫
L

g(ℓ)ρq
U+c−cF (ẽℓ)

dℓ ≤
∫
L

g(ℓ)ρq

U+c−cF̃ (ẽℓ)
dℓ: if not, then the investigator could choose F ′

and some U ′′ < U such that
∫
L

g(ℓ)ρq

U ′′+c−cF̃ (ẽℓ)
dℓ < 1, contradicting the optimality of U and F in

(1) when the weight on reputation is ρ. We then have

1 =

∫
L

g(ℓ)ρq

U + c− cF (ẽℓ)
dℓ ≤

∫
L

g(ℓ)ρq

U + c− cF̃ (ẽℓ)
dℓ <

∫
L

g(ℓ)ρ̃q

U ′ + c− cF̃ (ẽℓ)
dℓ = 1,

a contradiction. Thus, Ũ ≥ U .

By Theorem 2, there exists k and k̃ such that F (e) = F (e; k, U) and F̃ (e) = F (e; k̃, Ũ).
F is first-order stochastically increasing in U and first-order stochastically decreasing in k,
with a similar comparative statics for F̃ with respect to U ′ and k′. Because Ũ ≥ U , Bayes
plausibility (namely,

∫ 1

0
(1 − F (e))de = e =

∫ 1

0
(1 − F̃ (e))de) then requires k̃ ≥ k, with strict

inequality if and only if Ũ > U .

The proposition trivially holds if F̃ = F . Suppose F̃ ̸= F . Then Ũ > U and k̃ > k.
We now argue that F̃ must cross F once and from below, which implies F second-order
stochastically dominates F . For the sake of contradiction, suppose F̃ crosses F from above
(which must occur if F̃ crosses F more than once). Then there exists e1 < e2 such that
F (e1) < F̃ (e1) and F̃ (e2) < F (e2). Because F̃ (e1) ≤ F̃ (e2), we then must have F̃ (e1), F̃ (e2) ∈
(0, 1), which implies

U

c
+ 1− k

√
h(e1) ≤ F (e1) < F̃ (e1) =

Ũ

c
+ 1− k̃

√
h(e1),

Ũ

c
+ 1− k̃

√
h(e2) = F̃ (e2) < F (e2) ≤

U

c
+ 1− k

√
h(e2).

Adding these inequalities together and simplifying, we get
√
h(e1) <

√
h(e2). But this

contradicts the fact that h is decreasing. Therefore, F̃ can cross F at most once and only
from below. That F̃ must cross F follows from Bayes plausibility: if they did not cross and
F̃ ̸= F , then one distribution would strictly first-order stochastically dominate the other, a
contradiction of the fact that they both have the same mean by Bayes plausibility. Because
F and F̃ have the same mean and F second-order stochastically dominates F̃ , the optimal
investigation strategy under ρ̃ is less informative than under ρ. An analogous argument
shows that informativeness is decreasing in q holding ρ fixed. Q.E.D.

51



Proof of Proposition 4

Let g and g̃ be the densities corresponding to G and G̃ respectively and let F ∗ be the
optimal investigation under G. Take h(e) = g(e + c) and h̃(e) = g̃(e + c) for e ∈ (0, 1) and
let h be the ironed version of h. We first prove a useful result given the log concavity of g.

Lemma 11. If g is log concave, then 1√
h(e)

is convex.

Proof. We note that h is decreasing, strictly so on some interval only if h = h and h is
strictly decreasing on that interval; otherwise h is constant. Log concavity of g immediately
implies log concavity of h. Because h is log concave, it is single peaked and there exists a
cutoff ec such that h is constant on [0, ec] and decreasing on [ec, 1]. The derivative of 1√

h(e)
is

0 for e < ec and −h
′
(e)

2h(e)
3
2
≥ 0 for e > ec. To establish global convexity, it suffices to show that

−h
′
(e)

2h(e)
3
2

is increasing on (ec, 1].

For e > ec, h(e) = h(e). Our desired conclusion follows if d
de

−h′(e)

2h(e)
3
2
≥ 0, which holds if

and only if 3
2
h′(e)2 ≥ h′′(e)h(e). That this inequality holds follows from h′′(e)h(e) ≤ h′(e)2

(by log-concavity of h) and h′(e)2 ≤ 3
2
h′(e)2. Q.E.D.

With this result in hand, we turn to the proof of the proposition.

Proof. Let Uα
P (F ; g) and Uα

P (F ; g̃) be P equilibrium expected utility with investigation F

and distribution g and g̃ respectively. Take a distribution F ∗ which is optimal given g. By

Theorem 2, for some k ∈ R+, F ∗(e) =
Uα
P (F ∗;g)

c
+ 1 − k

√
h(e) when in (0, 1). We will show

Uα
P (F

∗; g) ≥ Uα
P (F

∗; g̃).

Let e∗ = min Supp(F ∗) and e∗ = max Supp(F ∗). Because g̃ is a pivotal mean-preserving
contraction of g, h̃(e) = h(e) for all e ̸∈ (e∗, e∗), G̃(c) = G(c) and G̃(1 + c) = G(1 + c). Then

G(c)qρ

Uα
P (F

∗; g) + c
+

∫ 1

0

h(e)qρ

Uα
P (F

∗; g) + c− cF ∗(e)
de+

(1−G(1 + c))qρ

Uα
P (F

∗; g)

− G̃(c)qρ

Uα
P (F

∗; g) + c
+

∫ 1

0

h̃(e)qρ

Uα
P (F

∗; g) + c− cF ∗(e)
de+

(1− G̃(1 + c))qρ

Uα
P (F

∗; g)

=

∫ e∗

e∗

h(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de−

∫ e∗

e∗

h̃(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de

=

∫ e∗

e∗

h(e)

ck
√
h(e)

de−
∫ e∗

e∗

h̃(e)

ck
√
h(e)

de

≥ 0,
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where the inequality follows because 1√
h(e)

is a convex function by Lemma 11 and g̃ is a

pivotal mean-preserving contraction of g.45

For the sake of contradiction, suppose Uα
P (F

∗; g) < Uα
P (F

∗; g̃). Then

1 =

∫
L

g̃(ℓ)ρq

Uα
P (F

∗; g̃) + c− cF ∗(ẽℓ)
dℓ

=
G̃(c)qρ

Uα
P (F

∗; g̃) + c
+

∫ 1

0

h̃(e)qρ

Uα
P (F

∗; g̃) + c− cF ∗(e)
de+

(1− G̃(1 + c))qρ

Uα
P (F

∗; g̃)

<
G̃(c)qρ

Uα
P (F

∗; g) + c
+

∫ 1

0

h̃(e)qρ

Uα
P (F

∗; g) + c− cF ∗(e)
de+

(1− G̃(1 + c))qρ

Uα
P (F

∗; g)

≤ G(c)qρ

Uα
P (F

∗; g) + c
+

∫ 1

0

h(e)qρ

Uα
P (F

∗; g) + c− cF ∗(e)
de+

(1−G(1 + c))qρ

Uα
P (F

∗; g)

=

∫
L

g(ℓ)qρ

Uα
P (F

∗; g) + c− cF ∗(ẽℓ
dℓ

which is a contradiction of
∫
L

g(ℓ)qρ
Uα
P (F ∗;g)+c−cF ∗(ẽℓ

dℓ = 1. Therefore, Uα
P (F

∗; g) ≥ Uα
P (F

∗; g̃),
which, by Lemma 3, implies the investigator is better off under g̃ than g when holding
the investigation fixed at F ∗. Allowing the investigator to optimize the investigation after
moving to g̃ can only make the investigator better off. Q.E.D.

D. Extension Proofs

Before stating the proof of Proposition 7, we first formally define an equilibrium in the
commitment model. We let R(x) denote the reputation from choosing a particular commit-
ment x ∈ X where we endow X with the metric d(x, x′) =

∫
E
|x(e)−x′(e)|dF (e).46 Abusing

notation somewhat, an equilibrium is given by a strategy ξ : Θ → ∆(X ) and R : X → [0, 1]

such that

1. R is obtained from ξ using Bayes rule whenever possible,

2. ξ(·|θ) is supported on argmaxx∈X
∫
E
u(θ, e, x(e), R(x))dF (e).

Proof of Proposition 5

Proof. We split the proof into several steps.

45 It is easy to see that h̃ is a a mean-preserving contraction of h if g̃ is a pivotal mean-preserving contraction
of g.

46 Formally, we take the DM’s choices to be an equivalence class of functions x that differ only on zero
probability events.
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Step 1 (Equilibrium Verification): We first establish that the strategies described con-
stitute an equilibrium and deliver an equilibrium expected utility of Uα

P (F ) to P . Let
each ℓ type choose xℓ with probability one and define P ’s equilibrium mixing strategy
ξ(·|P ) ∈ ∆({xℓ}) by dξ(xℓ|P ) = dG(ℓ) q

1−q
[ ρ
Uα
P (F )+c−cF (ẽℓ)

− 1]. Define the equilibrium rep-

utations by R(x) =
Uα
P (F )+c−cF (ẽℓ))

ρ
for x ∈ {xℓ}ℓ∈L, and R(x) = 0 otherwise. Note that

R(xℓ) =
qdG(ℓ)

qdG(ℓ)+(1−q)dξ(xℓ|P )
accords with Bayes rule given the definition of ξ(·|P ).

We note that this equilibrium generates the same outcomes as in ex-ante signaling.47 P is
indifferent across all {xℓ}ℓ∈L by construction and has no incentive to deviate to x ̸∈ {xℓ}ℓ∈L
as all such x generate an expected utility of at most 0, which is lower than his on-path
equilibrium utility Uα

P (F ).
48 By the arguments in Lemma 10, no ℓ type has an incentive to

deviate.

Finally, we show that the off-path reputations are consistent with D1. Take any x ̸∈
{xℓ}ℓ∈L. D1 rules out R(x) = 0 only if there exists an ℓ such that

{µ ∈ [0, 1] : µ >
−c

∫
E
(xℓ(e)− x(e))dF (e)

ρ
+R(xℓ)}

⊊ {µ ∈ [0, 1] : µ >

∫
E
(e− ℓ)(xℓ(e)− x(e))dF (e)

ρ
+R(xℓ)}.

After some simplification, this is equivalent to∫
E

(c+ e− ℓ)xℓ(e)dF (e) <

∫
E

(c+ e− ℓ)x(e)dF (e),

which contradicts xℓ ∈ argmaxx∈X
∫
E
(c+ e− ℓ)x(e)dF (e). Therefore, R(x) = 0 is consistent

with D1.

Step Two (Outcome Equivalence): We show that all other equilibria are outcome equiv-
alent in two steps. First, we show that in any equilibrium ℓ types must only choose from
Xℓ ≡ argmaxx

∫
E
(c + e − ℓ)x(e)dF (e). Second, we show that, given the first conclusion,

ξ(Xℓ|P ) must take the form specified in Step One.

In order to show uniqueness we first establish that, across all equilibria, the P type’s
strategy puts positive probability on every commitment made by some ℓ type.

Claim 1. R(x) < 1 for all x ∈ X .

Proof of Claim: For the sake of contradiction, suppose there exists x ∈ X such that R(x) =

47 It is straightforward to verify that dξ(xℓ|P ) = dσα(mℓ|P ).
48 As shown in Lemma 2, Uα

P (F ) ≥ ρq − c > 0.
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1. By Bayes’ plausibility, there must exist x′ ∈ Supp(ξ(·|P )) such that R(x′) ≤ q. For x′ to be
an equilibrium strategy for P , we must have

−c
∫
E

x′(e)dF (e) + ρR(x′) ≥ −c
∫
E

x(e)dF (e) + ρ. (13)

Because −c
∫
E
x′(e)dF (e) ≤ 0, −c

∫
E
x(e)dF (e) ≥ −c andR(x′) ≤ q, (13) implies ρq ≥ −c+ρ,

a contradiction of Assumption 1.

Claim 1 implies that Supp(Ξ) ⊆ Supp(ξ(·|P )) where Ξ(·) =
∫
L
ξ(·|ℓ)dG(ℓ). Next, we use

Claim 1 to show Supp(ξ(·|ℓ)) ⊆ Xℓ. Suppose, for the sake of contradiction, that in some
equilibrium, ∃ℓ ∈ L, x ̸∈ Xℓ such that x ∈ Supp(ξ(·|ℓ)). There are two cases to consider:
Supp(Ξ) ∩ Xℓ ̸= ∅ and Supp(Ξ) ∩ Xℓ = ∅. In the first case, take x′ ∈ Supp(Ξ) ∩ Xℓ. Because
Supp(Ξ) ⊆ Supp(ξ(·|P )), we have x, x′ ∈ Supp(ξ(·|P )). This implies P is indifferent between
x and x′ and ℓ prefers x to x′:

−
∫
E

cx(e)dF (e) + ρR(x) = −
∫
E

cx′(e)dF (e) + ρR(x′),∫
E

(e− ℓ)x(e)dF (e) + ρR(x) ≥
∫
E

(e− ℓ)x′(e)dF (e) + ρR(x′).

Subtracting these inequalities and simplifying, we get
∫
E
(c+ e− ℓ)(x(e)− x′(e))dF (e) ≥ 0,

a contradiction to x′ ∈ Xℓ and x /∈ Xℓ.

Now consider the second case, when Supp(Ξ) ∩ Xℓ = ∅. Take any x ∈ Supp(ξ(·|ℓ)). D1
requires that R(xℓ) = 1 if

{µ ∈ [0, 1] : µ >
−c

∫
E
[x(e)− xℓ(e)]dF (e)

ρ
+R(x)} (14)

⊊ {µ ∈ [0, 1] : µ >

∫
E
(e− ℓ)[x(e)− xℓ(e)]dF (e)

ρ
+R(x)}.

The RHS set of (14) is non-empty,49 so, after some simplification, strict inclusion holds if∫
E
(c+e− ℓ)(xℓ(e)−x(e))dF (e) > 0, which holds because x /∈ Xℓ. Thus, R(xℓ) = 1 in any D1

equilibrium. But this contradicts Claim 1. Therefore, we conclude that Supp(ξ(·|ℓ)) ⊆ Xℓ

in any equilibrium. Thus, all equilibrium strategies for a probability one set of ℓ types
are outcome equivalent to xℓ with probability one (the only times they may differ is when
e = ẽℓ, which occurs with only for a probabiliy zero set of (e, ℓ)).

49 Take x′ ∈ Supp(σ(·|P )) such that R(x′) ≤ q (such an x′ exists by Bayes plausibility). This means P ’s
equilibrium utility is less than ρq. But setting µ = 1 is associated with a utility of at least ρ−c which is strictly
larger by Assumption 1. This means P would be willing to deviate for a reputation of 1—namely, µ = 1 is an
element of the RHS set.
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Next, we argue that any equilibrium must have Supp(ξ(·|P )) ⊆ Supp(Ξ). This inclusion
follows from the fact that any x ∈ Supp(ξ(·|P ))\ Supp(Ξ) must have R(x) = 0 and so yields
P an expected utility of 0 for P . But, by Bayes plausibility, there exists x′ ∈ Supp(Ξ) such
thatR(x′) ≥ q, in which case P can achieve a utility of −c

∫
E
x′(e)dF (e)+ρR(x′) ≥ ρq−c > 0.

Thus, choosing x is strictly dominated by x′ and so cannot be an equilibrium strategy for
P . This argument also implies that R(x) > 0 for all x ∈ Supp(ξ(·|P )). Given that all ℓ must
choose only from Xℓ and, for probability one set of ℓ, all x ∈ Xℓ lead to equivalent actions
with probability one, the fact that P has a unique mixing strategy over Xℓ follows from the
same arguments as in Lemma 2. Q.E.D.

Next, we turn to the optional commitment model. Let ν be the distribution over ε. An
equilibrium consists of a strategy at the communication stage σ : Θ → ∆(X ∪M), a follow
up strategy at the decision stage ζ : M × E × [−δ, δ] × Θ → ∆({0, 1}) and reputation
R : X ∪ (M × E × A) → [0, 1] such that

1. R is obtained from Bayes rule whenever possible.

2. For each m, θ, e, ζ(·|m, e, ε, θ) is supported on argmaxa∈{0,1} u(θ, e, a, R(m, a, e)) + εa.

3. For each θ, σ(·|θ) is supported on

arg max
m∈M

∫
E

∫ δ

−δ

(
max
a∈{0,1}

u(θ, e, a, R(m, a, e)) + εa

)
dν(ε)dF (e) ∪ argmax

x∈X

∫
E

u(θ, e, x(e), R(x))dF (e),

where ε does not appear in the second maximization because it is mean zero. Notice that ζ
only takes effect if a cheap talk message is sent.

Proof of Proposition 6

Proof. Suppose there exists an equilibrium where some cheap talk messagem ∈ ∪θ∈Θ Supp(σ(·|θ)).
Note that m ∈ Supp(σ(·|ℓ)) ∩ Supp(σ(·|P )) for some ℓ. Otherwise, the reputation for m
following any action at the decision stage would be always 1 or always 0. By Bayes plau-
sibility, there exists an on-path m′ or x with reputation less than q. If the reputation after
m is always 1, then, m is a profitable deviation from m′ or x for any type of DM as they
can choose an optimal action for each (e, ε) realization and still have a higher reputation. If
the reputation after m is 0, it must be sent by only the P type; P attains a maximum utility
of max{−c + δ, 0} from doing so. However, the P type can attain at least ρq − c − δ by
mimicking some ℓ type whose expected equilibrium reputation is at least q (such ℓ exist by
Bayes plausibility). Because ρq > 2δ and ρq > 2c by Assumption 1, this is a contradiction.
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Let type ℓ send message m in the candidate equilibrium. Now consider the difference in
payoff between sending message m in equilibrium and taking commitment xℓ for types ℓ
and P as a function of e, ε. For type ℓ, this is given by

max{e− ℓ+ ε+ ρR(m, 1, e), ρR(m, 0, e)} − (e− ℓ+ ε)1(e− ℓ ≥ −c)− ρR(xℓ),

and for P , it is given by

max{−c+ ε+ ρR(m, 1, e), ρR(m, 0, e)} − (−c+ ε)1(e− ℓ ≥ −c)− ρR(xℓ).

Notice that the expression for ℓ is weakly less than it is for P for every e, ε. The expression
is strictly less by e−ℓ+c if e−ℓ > −c and both ℓ and P choose a = 0 following (m, e, ε), or by
−(e− ℓ+ c) if e− ℓ < −c and both ℓ and P choose a = 1 following (m, e, ε). If the difference
is strictly less for ℓ than it is for P , previous arguments imply that R(xℓ) = 1 and P would
deviate to xℓ. The above expressions are equal only if, for every ℓ sending m, both P and ℓ

choose xℓ(e) with probability 1 when e ̸= ẽℓ. Note that this can only occur if a single ℓ types
sendsm, otherwise the evidence realizations that induce one ℓ type to choose a = 0 and the
other ℓ type to choose a = 1 would necessitate two different actions from P . This means
that every on-path message is sent by the P type and a single ℓ type, and this message is
followed up by xℓ. Thus, the DM either sends cheap talk messages which lead to actions
following xℓ or chooses some commitment x ∈ X . As shown in the proof of Proposition 7,
each ℓ type can only choose commitment xℓ, and the set of on path commitments chosen
by P is contained in the set {xℓ}ℓ∈L. This means, that at the communication stage, each ℓ

type identifies themselves among L and follows up with xℓ at the decision stage, and the
P type mixes over these options. Outcome equivalence to ex-ante signaling follows from
arguments in Lemma 2. Q.E.D.

Proof of Proposition 7

Proof. P ’s expected utility conditional on ei is Uα
P (Ff (·|ei)). By an analogous proof to that

in Lemma 3, P(a = 1|ei) =
ρq−Uα

P (Ff (·|ei))
c

. Thus, P(a = 1) =
∫
E
P(a = 1|ei)dFi(ei) =

1
c
[ρq−

∫
E
Uα
P (Ff (·|ei))dFi(ei)]. The proposition then follows immediately from convexity of

Uα
P (·). Q.E.D.

Proof of Proposition 8

For ℓI ∈ [0, 1), the investigator can achieve his first-best payoff via full information
disclosure: because 0 < minℓ∈L ẽℓ < maxℓ∈L ẽℓ < 1, e = 0 leads to a = 0 with probability
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one and e = 1 leads to a = 1 with probability one. Therefore, let us focus on the case when
ℓI < 0, that is, the investigator prefers a = 1 at all e ∈ [0, 1].

That the investigator prefers ex-ante to ex-post signaling follows immediately from
Proposition 1. The fact that no mass points are used is shown in the following Lemma.

Lemma 12. For sufficiently high ρ, the optimal investigation has no mass points in (0, 1).

Proof. Take any F with a mass point on ê ∈ (0, 1) and Uα
P (F ) > 0. Take some small

ε > 0. Suppose ê ≤ ℓI . Then because no DM type will choose a = 1 at e ∈ [ê − ε, ê + ε]

for sufficiently small ε, it is without loss to smooth out the mass point to be a continuous
density on [ê − ε, ê + ε] as doing so will not change the probability of a = 1 at such e. Let
us therefore suppose ê > ℓI . Consider Fδ such that Fδ(e) = F (e) for all e ̸∈ (ê − ε, ê + ε)

and Fδ moves δ mass away from ê and splits it equally between ê − ε, ê + ε, so Fδ(e) =

F (e) + δ
2
1(e ∈ [ê− ε, ê))− δ

2
1(e ∈ [ê, ê+ ε]).

Take a distribution of evidence F and let η(ℓ;U, δ) = g(ℓ)qρ
U+c−cFδ(ẽℓ)

. As shown in the proof
of Lemma 3, the distribution of mℓ is qdG(ℓ) + (1− q)dσ(mℓ|P ) = dG(ℓ)qρ

Uα
P (F )+c−cF (ẽℓ)

. The inves-
tigator’s utility is given by∫

E

(e− ℓI)

[ ∫
L

1(ẽℓ ≤ e)(qdG(ℓ) + (1− q)dσ(mℓ|P ))
]
dFδ(e)

=

∫
E

(e− ℓI)

[ ∫
L

1(ẽℓ ≤ e)η(ℓ;Uα
P (F ), δ)dℓ

]
dFδ(e). (15)

For notational ease, we let U = Uα
P (Fδ). Taking the derivative of (15) at F = Fδ with

respect to δ, we have

dU

dδ

∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)
∂η(ℓ;U, δ)

∂U
dℓdFδ(e) +

∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)
∂η(ℓ;U, δ)

∂δ
dℓdFδ(e)

+

∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)η(ℓ;U, δ)dℓ
d

dδ
dFδ(e). (16)

We will show that this expression, for small ε and evaluated at δ = 0, is strictly positive.

We show the first term in (16) is positive. Because dη(ℓ;U,δ)
dU

≤ 0, it suffices to show dU
dδ

≤ 0.
Because Uα

P (Fδ) is characterized by
∫
L
η(ℓ;Uα

P (Fδ), δ)dℓ = 1, we have

0 =
dU

dδ

∫
L

∂η(ℓ;U, δ)

∂U
dℓ+

∫
L

∂η(ℓ;U, δ)

∂δ
dℓ.

Because ∂η(ℓ;U,δ)
∂U

≤ 0, dU
dδ

≤ 0 if and only if
∫
L

∂η(ℓ;U,δ)
∂δ

dℓ ≤ 0. Given the form of Fδ, for

58



sufficiently small ε we have∫
L

∂η(ℓ;U, δ)

∂δ
dℓ =

1

2

[ ∫
L

1(ẽℓ ∈ [ê− ε, ê))
cg(ℓ)qρ

(U + c− cFδ(ẽℓ))2
dℓ

−
∫
L

1(ẽℓ ∈ [ê, ê+ ε])
cg(ℓ)qρ

(U + c− cFδ(ẽℓ))2
dℓ

]
< 0,

where the inequality follows from the fact that, because Fδ has a mass point on ê, F (ẽℓ) is
discretely higher for ẽℓ > ê than for ẽℓ < ê. Thus, dU

dδ
≤ 0.

Next, we show that the second term in (16) is positive. Let ∆F be the size of mass point
on ê. Next, we note that for small ε∫

E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)
∂η(ℓ;U, δ)

∂δ
dℓdFδ(e)

=

∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)
1

2

[
1(ẽℓ ∈ [ê− ε, ê))

cg(ℓ)qρ

(U + c(1− Fδ(ẽℓ)))2

− 1(ẽℓ ∈ [ê, ê+ ε])
cg(ℓ)qρ

(U + c(1− Fδ(ẽℓ)))2
]
dℓdFδ(e)

=
1

2

∫
L

[
1(ẽℓ ∈ [ê− ε, ê))

cg(ℓ)qρ

(U + c(1− Fδ(ẽℓ)))2

∫ ∞

ẽℓ

(e− ℓI)dFδ(e)

− 1(ẽℓ ∈ [ê, ê+ ε])
cg(ℓ)qρ

(U + c(1− Fδ(ẽℓ)))2

∫ ∞

ẽℓ

(e− ℓI)dFδ(e)
]
dℓ

≈ εcg(ê+ c)qρ

2

[
(ê− ℓI)∆F +

∫∞
ê+ε

(e− ℓI)dFδ(e)

(U + c(1− Fδ(ê) + ∆F ))2
−

[
∫∞
ê+ε

(e− ℓI)dFδ(e)

(U + c(1− Fδ(ê)))2

]
We claim the last line above is strictly positive for large enough ρ. Pulling out common
factors and the denominators and doing a bit of simplification, we get that the above ex-
pression is strictly positive if

0 <

∫ ∞

ê+ε

(e− ℓI)dFδ(e)[(U + c(1− Fδ(ê)))
2 − (U + c(1− Fδ(ê) + ∆F ))2]

+ (ê− ℓI)∆F (U + c(1− Fδ(ê)))
2

= ∆F [(ê− ℓI)(U + c− cF (ê))2 −
∫ ∞

ê+ε

(e− ℓI)dFδ(e)(2(U + c(1− Fδ(ê))) + c2∆F )].

Because ê− ℓI > 0, the final line is strictly positive for U large enough. Because U ≥ ρq − c

(as shown in the proof of Lemma 5), the last line above is strictly positive for sufficiency
large ρ.
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Finally, we show the final term in (16) is positive. For small enough ε, we have∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)η(ℓ;U, δ)dℓ
d

dδ
dFδ(e)

=
1

2
(ê− ε− ℓI)

∫
L

1(ẽℓ < ê− ε)η(ℓ;U, δ)dℓ+
1

2
(ê+ ε− ℓI)

∫
L

1(ẽℓ < ê+ ε)η(ℓ;U, δ)dℓ

− (ê− ℓI)

∫
L

1(ẽℓ < ê)η(ℓ;U, δ)dℓ

=
1

2
(ê− ℓI)(

∫
L

1(ẽℓ ∈ [ê, ê+ ε])η(ℓ;U, δ)dℓ−
∫
L

1(ẽℓ ∈ [ê− ε, ê))η(ℓ;U, δ)dℓ)

+
1

2
ε(

∫
L

1(ẽℓ ∈ [ê− ε, ê+ ε])η(ℓ;U, δ)dℓ)

≥ 1

2
(ê− ℓI)(

∫
L

1(ẽℓ ∈ [ê, ê+ ε])η(ℓ;U, δ)dℓ−
∫
L

1(ẽℓ ∈ [ê− ε, ê))η(ℓ;U, δ)dℓ)

≥ 0,

where the final inequality follows from the fact that, for ℓ such that ẽℓ = ê, η(ℓ − z;U, δ) is
discretely lower than η(ℓ+ z;U, δ) for small z due to the mass point on ê.

Having shown that all terms in (16) are positive, we conclude that F can not have been
optimal as moving to Fδ for some δ > 0 strictly increases the investigator’s payoff. Q.E.D.

Optimal Investigation with Multiple States Proofs

Let M(F, e) ≡ g(e+c)ρq

(Uα
P (F )+c(1−F (e)))

2 , which gives the derivative of the density of the DM’s

declaration of mℓ for ℓ = e+ c. Let (e, e) be the min and max over Supp(F ∗) respectively.

Proposition 9. The optimal investigation F ∗ exists and must satisfy the following properties.

1. F ∗ is strictly increasing for e ∈ (e, e)

2. M(F ∗, e) is increasing on [e, e],

3. If
∫ e

0
(F (e′)−K(e′))de′ < 0 for e ∈ (e1, e2) ⊂ [e, e], then M(F ∗, e) is constant on [e1, e2]

Proof. Note that the optimum exists because the constraint set is compact and the objective
is continuous in (F,U). Let U = Uα

P (F
∗) for the optimal F ∗. Then

∫
L

g(ℓ)qρ
U+c−cF ∗(ẽℓ)

dℓ = 1. The
optimal F ∗ must minimize

∫
L

g(ℓ)qρ
U+c−cF (ẽℓ)

dℓ over feasible F ; if not, then the investigator
could choose an alternative F ′ such that

∫
L

g(ℓ)qρ
U+c−cF ′(ẽℓ)

dℓ < 1, in which case Uα
P (F

′) <

Uα
P (F

∗), a contradiction of the optimality of F ∗. The optimal investigation F ∗ must then
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solve

min
F∈F

∫
L

g(ℓ)qρ

U + c− cF (ẽℓ)
dℓ , (17)

such that BP :

∫ e

0

F (e′)de′ ≤
∫ e

0

K(e′)de′ ∀e ∈ E, and∫ 1

0

F (e′)de′ =

∫ 1

0

K(e′)de′.

First, suppose for the sake of contradiction that F ∗ is constant on some interval [e1, e2) =

{e : F ∗(e) = F ∗(e1)}. For ε > 0, consider a perturbation F̃ of F ∗ where

F̃ (e) =


F ∗(e) e < e1 − ε or e ≥ e2 + ε

F ∗(e1)− δ e ∈ [e1 − ε, (e1 + e2)/2],

F ∗(e1) + δ e ∈ [(e1 + e2)/2, e2 + ε],

.

where δ is taken small so that F̃ is a CDF. F̃ clearly satisfies the BP constraints. For suffi-
cently small ε, the impact of this perturbation value of this change on the objective in (17)
as δ → 0 is approximately

−
∫ (e1+e2)/2

e1

M(F ∗, e)de+

∫ e2

(e1+e2)/2

M(F ∗, e)de < 0,

where the inequality holds because g is strictly decreasing and F ∗ is constant on this inter-
val, contradicting the optimality of F ∗.

Next, suppose for the sake of contradiction that M(F ∗, e1) > M(F ∗, e2) for e ≤ e1 < e2 ≤
e. Take ε > 0. If e1 = e and F ∗(e) = 0 then, because M is right continuitous, replace e1 with
e1 + ε so that the inequality on M still holds. Similarly if e = e2 and then replace e2 with
e2 − ε so the inequality on M still holds. Now take the perturbation F̃ of F ∗ given by

F̃ (e) =


F ∗(e) e /∈ [e1 − ε, e1 + ε) ∪ [e2 − ε, e2 + ε)

F ∗(e1)− δ e ∈ [e1 − ε, e1 + ε),

F ∗(e1) + δ e ∈ [e2 − ε, e2 + ε),

where δ is taken small so that F̃ is a CDF. F̃ clearly satisfies the BP constraints. For
small ε, the impact of this perturbation on the objective in (17) as δ → 0 is approximately
2ε(−M(F ∗, e1) +M(F ∗, e2)) < 0, contradicting the optimality of F ∗.

Lastly take a region (e′, e′′) where the BP constraint does not bind, but the constraint
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binds at e′ and e′′. Then both the perturbation above and its opposite are available for
e′ < e1 < e2 < e′′. This means that if M(F ∗, e) is not constant on this interval, F ∗ is not
optimal. Q.E.D.

Proof of Corollary 4

Proof. If F discontinuously jumps at some e, then the BP constraint must not be binding
around e. Because g is continuous, a discontinutity in F ∗ implies M(F ∗, e) is not constant
around e, a contradiction of Proposition 9. Q.E.D.

Proof of Corollary 5

Proof. Take e where the BP constraint binds but does not bind for some region above e.
Note that the constraint always binds at e = 0, so such an e exists. Also at such an e, K(e) =

F ∗(e). This means that M(F ∗, e′) must be constant for e′ ∈ [e, e + ε) with ε sufficiently
small, and as long as the BP constraint continues to not bind. Note that the condition that

g(e′+c)

(ρq+c(1−K(e′)))2
is increasing and fact that Uα

P (F
∗) ≤ ρq50 implies that g(e′+c)

(Uα
P (F ∗)+c(1−K(e′)))

2 is

increasing in e′ on [e, e+ ε) which implies in this region that

g(e′ + c)

(Uα
P (F

∗) + c(1−K(e′)))2
> M(F ∗, e′). (18)

From (18), we conclude K(e′) > F ∗(e′). That is F ∗ grows slower than K, which means
the equality BP constraint cannot be satisfied at any higher evidence level violating the
equality constraint at e = 1. Q.E.D.

E. Optimal Design under Ex-Post Signaling

In this appendix we compare the optimal investigation under ex-ante signaling to that
under ex-post signaling. This comparison gives us insights into how the structure of opti-
mal investigations is shaped by the presence of communication, or alternatively, the timing
of the evidence realization. Note that because of Theorem 1, the investigator will always
prefer the investigation in Theorem 2 to the optimal investigation under ex-post signaling.
However, this does not say anything about the relative informativeness of these investiga-
tions, which is especially important in applications where the evidence may be important
beyond the DM’s choice, e.g., the information a firm submits to the Environmental Pro-
tection Agency about its environmental impact. In such settings a planner may want to

50 This inequality is implied by Lemma 3, since Uα
P (F

∗) > ρq implies the probability of a = 1 is negative.
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impose either ex-ante or ex-post signaling depending on which leads to a more informa-
tive investigation. We will show that the comparison in informativeness depends on the
investigator’s design incentives when facing only non-partisans.

Recall ψβ(e) is the probability of conviction as a function of the evidence given ex-post
signaling . Due to the simplicity of ex-post signaling, we can explicitly derive this convic-
tion probability as

ψβ(e) =
1

2c

(
ρq + c−

√
(ρq + c)2 − 4ρqcG(e+ c)

)
.

Because the messaging strategy under ex-post signaling involves babbling, which is inde-
pendent of F , ψβ(e) does not depend on F . We can write the investigator’s design problem
as

max
F∈F

∫ 1

0

ψβ(e)dF (e),

such that
∫ 1

0

(1− F (e))de = e.

This design problem is a standard Bayesian persuasion problem and the following result
characterizing the optimal information structure follows immediately from Kamenica and
Gentzkow (2011).

Proposition 10. Let Cav(ψβ) be the concavified value of ψβ . There exists an optimal F with
binary support if ψβ(e) < Cav(ψβ)(e) and an optimum with degenerate support on e if ψβ(e) =

Cav(ψβ)(e).

An immediate implication is that if ψβ is strictly concave in e, then an uninformative
investigation is uniquely optimal. Because ψβ is a convex transformation of G, it is not
quite sufficient for the investigator to want to withhold information from the non-partisan.
However, if the investigator is significantly harmed by providing information to the non-
partisan, i.e., G is “sufficiently concave”, then an uninformative investigation will be op-
timal under ex-post signaling.51 Note that in these cases (and in general), the optimal
investigation under ex-ante signaling provides some information; see Corollary 2. Thus,
there are cases, namely those in which ℓ types’ convicts significantly less when given infor-
mation, in which the optimal investigation under ex-ante signaling is more informative in
a Blackwell sense than that under ex-post signaling.

51 An example is when the leniency is distributed according to the standard exponential distribution.
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However, the comparison can also go the other way. Because ψβ is a convex trans-
formation of G, there will be examples where the ex-post signaling optimal investigation
is perfectly informative, but the investigator is harmed by providing information to non-
partisans. In these cases, because concave G implies h is decreasing in e, Theorem 2 says
that the optimal investigation under ex-ante signaling admits a positive density when F ∗

is interior, and is thereby imperfectly informative.

A unifying feature between ex-ante and ex-post signaling is that if information increases
the ℓ types’ conviction probability then full information is optimal under both regimes.
This means that, like under ex-ante signaling, P ’s behavior under ex-post signaling incen-
tivizes the investigator to provide more information.

Corollary 6. If G is convex on [c, 1 + c] then the optimal investigation is fully informative under
both ex-ante and ex-post signaling.
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