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ABSTRACT. We examine the relation among measures of credit expansion, measures of fi-
nancial market stress, and standard macroeconomic aggregates. We use a structural model
that is ”lightly” identified — a form of structural VAR — and that uses monthly data on
up to 10 variables. The model explains observed variation as driven by 10 mutually inde-
pendent structural disturbances, one of which emerges as representing monetary policy.
There is more than one financial stress shock, suggesting that attempts to create a one-
dimensional index of financial stress may be misguided. In pseudo-out-of-sample fore-
casting tests, neither bond spreads, interbank spreads, nor credit aggregates had much
predictive value far in advance of the 2008-9 downturn, though spreads (but not credit ag-
gregates) were helpful in recognizing the downturn once it had begun. No strong pattern
of credit expansion preceding output declines emerges. Some of these results are in appar-
ent conflict with previous empirical work in this area, and we show that our model can
explain the previous results.

I. INTRODUCTION

In the long run, credit aggregates tend to expand with GDP, and indeed expand faster

than GDP, so that the ratio of credit to GDP is larger in rich countries and tends to grow

over time. Figure 1 illustrates this with a plot of the log of real household credit against

the log of real GDP, which (except for a couple of small loops) is a nearly straight line

with slope well above one. In studies of economic development, the ratio of credit to

GDP is sometimes used as a measure of “financial depth,” which is thought to contribute

positively to economic growth.1 On the other hand a number of recent studies, among

them Mian, Sufi and Verner (2015), Schularick and Taylor (2012), and Jordà, Schularick

and Taylor (2014), claim to have demonstrated a predictive relation between rapid growth

of credit and future low GDP growth or higher likelihood of crisis.

Date: September 1, 2016.
This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License. http://creativecommons.org/licenses/by-nc-sa/3.0/.
1Some earlier studies on this topic include Shaw (1973), McKinnon (1973), and Goldsmith (1969).
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FIGURE 1. US real GDP and household credit (BIS quarterly aha series)

Monetary policy has strong effects on GDP growth and also, unsurprisingly, strong

effects on credit growth and on spread variables that measure financial stress. Monetary

policy also plausibly responds to rapid credit growth or contraction and to changes in

spreads. To understand the policy implications of correlations or predictive regressions

relating financial variables to GDP growth, it is essential that we understand the extent to

which these correlations are generated by, or mediated by, monetary policy itself.

The structural VAR literature on monetary policy effects succeeded in separating two

channels of relation between inflation and interest rates — policy-generated changes in

interest rates tend to reduce inflation, while interest rates on average endogenously rise

with inflation to compensate investors for inflation-generated losses. For the reasons

we have listed here, it seems likely that there are multiple causal channels connecting
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spreads, credit aggregates and business activity, and that some of these channels oper-

ate with opposite signs. It therefore seems appropriate to estimate a multiple equation

model connecting these variables and to imitate if possible the structural VAR literature’s

approach to unraveling feedbacks in the data.

Most of the existing empirical literature in this area has used short lists of variables

and has not attempted to separate monetary policy from other channels of connection

between financial variables and the macroeconomy. Studies of the predictive power of

credit growth have primarily used single-equation projection methods (e.g., Mian, Sufi

and Verner (2015), Jordà, Schularick and Taylor (2014), and Jordà, Schularick and Tay-

lor (2015)) or binary outcome (i.e., crisis or no crisis) predictive models (e.g., Schularick

and Taylor (2012) and Drehmann and Juselius (2014)).2 Studies focused on the informa-

tion in credit spreads have looked extensively at single-equation models (e.g., Lopez-

Salido, Stein and Zakrajsek (2015), and Krishnamurthy and Muir (2016)) and reduced

form multi-equation models (Gilchrist, Yankov and Zakrajšek (2009) and Gilchrist and

Zakrajšek (2012)). Gertler and Karadi (2015) and Caldara and Herbst (2016) have intro-

duced credit spread variables into structurally identified, multiple-equation frameworks

with monetary policy. But these authors do not focus on what including monetary policy

does to the rest of the system (including possible “credit distress” channels) and ignore

the role of credit aggregates.3

There have been other studies in this area based on fully interpreted structural dynamic

stochastic general equilibrium models, which of course have included estimated effects

2Mian, Sufi and Verner (2015) is unique among these for using data outside of identified “crisis episodes.”
It also contains a small-scale multivariate example, with three variables (real GDP, household credit to
GDP ratio, and business credit to GDP ratio), but does not endogenize interest rate dynamics or separately
identify monetary policy.
3Krishnamurthy and Muir (2016) does look at both aggregates and spreads, but they look mainly at inter-
actions of credit growth and credit spreads, instead of both as jointly endogenous parts of a system.
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of monetary policy.4 These DSGE models, though, have not considered as many finan-

cial variables jointly as we consider here and have imposed more, and more arguable,

identifying restrictions than we impose here.

Our model uses monthly data on industrial production (IP), the personal consumption

expenditure deflator (P) household credit (HHC) business loan credit (BC), money supply

(M1), the federal funds rate (R), a commodity price index (PCM), the 10 year over 3-month

Treasury term spread (TS), the Gilchrist and Zakrajšek (2012) bond spread (GZ) and the 3-

month Eurodollar over Treasury spread (ES).5 The sample period runs from January 1973

to June 2015.

We use the identification-through-heteroskedasticity approach pioneered in economics

by Rigobon (2003). This approach assumes that the pattern by which disturbances feed

through the economy is stable across time, but that the relative sizes of the independent

sources of structural disturbance in the system varies across historical periods. We began

modeling time variation in disturbance variance because it is so clearly needed to accu-

rately describe financial variables and some macroeconomic variables. We discovered as

we proceeded that we obtained stable, interpretable results from this assumption alone,

without the need for the usual short or long run restrictions on dynamics usually applied

to structural VAR’s. Details of the model specification are in Section II below.

Here is a qualitative summary of our results. Details and quantitative results are in

Section III below.

One of our 10 shocks, indeed the one with the most widespread effects across variables

in the system, we interpret as a monetary policy shock. Responses to it match what is

4Christiano, Motto and Rostagno (2014), for instance, estimate a monetary DSGE model based on the con-
tract enforcement friction of Bernanke, Gertler and Gilchrist (1999) and find that “risk shocks” which can
be measured in observed credit spreads drive a significant portion of U.S. business cycle dynamics. The
model uses data on credit spreads (BAA-AAA) and firm credit in addition to “standard” macro aggregates.
Del Negro and Schorfheide (2013) provide a detailed comparison of the forecasting performance of this
model, a standard Smets and Wouters (2007) DSGE model, and various reduced-form models.
5Details of the data and their sources are laid out in Section III below.
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usually assumed about the responses to a monetary policy shock in SVAR models.6 This

shock produces a sustained and non-trivial increase in the interbank spread (ES) variable.

There are shocks, distinct from the monetary policy shock, that move the GZ and ES

spread variables, and then later move IP in the opposite direction. These fit the idea that

disturbances that originate in financial markets can have macroeconomic effects.

Several shocks generate substantial movement in the credit variables HHC and BC,

and all but one of them move IP in the same direction as the credit aggregates. This fits

the idea that most movements in credit aggregates accompany expansion of activity and

do not predict future slowdowns. There is a disturbance that moves HHC up, and then

with a delay moves IP down. but the downward movement in IP is small and barely

statistically significant. There may be periods where this shock is important, so that the

credit expansion does predict future contraction in business activity, but a quantitative

model that can identify such “bad” credit expansions and thereby allow a policy response

would have to be multivariate, to separate this component of credit growth.

In Section IV we conduct pseudo-out-of-sample forecasting experiments to see what

predictive value arises from including the spread and credit aggregate variables in the

system. We find that the model gives little advance warning of the 2008-9 crash, whether

or not the financial variables are included, but that the model tracks the course of the

recession considerably better when they are included7. Most of the improved tracking of

the crisis period comes from including the spread variables, not the credit aggregates.

The limited predictive value for credit aggregates in our system may appear difficult

to reconcile with the results of previous studies with smaller models that have found

substantial predictive value for credit aggregates in forecasting future business activity

or future crises. In Section V we try to account for which aspects of the differences in

6Though we pick the shock we label “monetary policy” by looking at the sign and shape of its impulse
responses, this is not the same as the frequently applied “sign restriction” approach to SVAR identifica-
tion. Sign restriction identification does not lead, even asymptotically, to point identification of responses,
whereas our approach, if its assumptions are correct, does provide point identification.
7This is similar to the conclusion of Del Negro and Schorfheide (2013), who compare a New Keynesian
DSGE model with and without financial frictions of the form in Christiano, Motto and Rostagno (2014) and
Bernanke, Gertler and Gilchrist (1999).
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specification account for the apparent difference in results. We conclude that the results

others have obtained with smaller models would not be unlikely if our estimated model

represented the true structure of the economy.

II. MODELING FRAMEWORK

This section describes our empirical approach. The first two parts introduce the multi-

variate time series models we consider and the third part describes our Bayesian estima-

tion method.

II.1. The Basic Model. We specify structural vector auto-regressive (SVAR) models with

variances changing at exogenously specified dates. They can be described by the system

of dynamic stochastic equations

A0yt =
p

∑
j=1

Ajyt−j + C + εt (1)

where yt is an n× 1 vector of observed variables, A0 is an n× n matrix which determines

simultaneous relationships, the Aj are n× n matrices of coefficients at each lag j, C is an

n × 1 vector of constants, and εt is a vector of independent shocks. In the base model,

these are Gaussian (normally distributed).

We exogenously separate the time span {1 . . . T} into M subperiods and set

E
[
εtε
′
t
]
= Λm if t is in period m ∈ {1 . . . M} (2)

where Λm is a diagonal matrix. Thus the variance of the structural shocks changes across

periods, but the dynamic relationship among the variables, as determined by A0 and

the Aj, remain fixed. In different terms, the impulse responses to structural shocks will

have the same shape across variance periods, but their scales will vary. Our choice of

variance regimes in estimated models (discussed in Section III and displayed in Table

2) is motivated by the variation of the time series and outside knowledge about policy

changes.
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We could fairly easily have allowed for regime changes to evolve as a Markov-switching

stochastic process, as in Sims and Zha (2006). However, so long as the regimes are per-

sistent, few in number, and well-determined by the data, inference about the model’s dy-

namics is not likely to be strongly affected by conditioning on the regime switch dates as

if known. Of course it is plausible that the variance regime switches are not only random,

but endogenously determined. Allowing for that would greatly complicate the model

and, since the regime switches are few in the data, might leave the nature of the regime

switch endogeneity ill-determined by the data. We leave this to future research.

Our set-up can also be illustrated in the reduced form,

yt =
p

∑
j=1

Bjyt−j + D + ut (3)

with

E
[
utu′t

]
= A−1

0 Λm

(
A−1

0

)′
if t is in period m ∈ {1 . . . M} (4)

Some normalization is required, as we could multiply the rows of A0 and Λ by scale

factors without changing the implied behavior of the data. We impose the restriction

1
m

M

∑
m=1

λm,i = 1 ∀i ∈ {1 . . . n}

where λm,i is the ith diagonal element of Λm. This makes the cross-period average struc-

tural variance 1 in each equation. It can be shown that, given such a normalization and

the technical condition that each pair of equations differs in variance in at least one pe-

riod, we can uniquely identify all n2 parameters of A0 (up to flipping the sign of an entire

row, or permuting the order of rows).8 Thus the variance switching eliminates the need

for short-term timing restrictions (i.e., zero elements in A0) or linear restrictions on Ai for

8The intuition is that if Σj is the reduced form residual covariance matrix for period j, the expression

Σ−1
i Σj = A′0Λ−1

i Λj

(
A−1

0

)′
has the form of an eigenvalue decomposition, with the columns of A′0 the eigenvectors. As long as the
eigenvalues, the diagonal elements of Λ−1

i Λj, are unique (i.e., there is no k, l such that λj,k/λi,k = λj,l/λi,l),
the rows of A0 are therefore uniquely determined up to scale once we know Σi and Σj.
A more formal proof of this can be found, for instance, in Lanne, Lütkepohl and Maciejowska (2010).
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i > 0 (as in identification through long run restrictions). The fully identified model can

allow for every variable to respond to every structural shock in the initial period. A priori,

this seems quite reasonable at monthly and lower frequencies.

While under the model’s assumptions the impulse responses of the system will be con-

sistently estimated in large enough samples, the model does not give names to the shocks

that drive it. We pick out one of our 10 estimated shocks as a monetary policy shock,

and two others as reflecting disturbances originating in financial markets. Our choices of

names for these shocks reflect a priori assumptions about what shocks with these names

should look like, in terms of the responses they generate. This is similar in spirit to the

“sign restriction” approach to SVAR identification. However sign restrictions on impulse

responses by themselves do not provide point identification, whereas our approach does

allow point identification.

From a purely econometric standpoint, then, our model has two major advantages over

any “plain” SVAR model without regime-switching variances. The procedure will be

more efficient for the same reasons as standard generalized least squares (GLS): it pre-

vents periods of large shocks from inefficiently dominating the likelihood. And it allows

more modeling flexibility, since with it we avoid making arguable linear restrictions on

the (Ai)i≥0 matrices.

II.2. Further Correction for Extreme Events. The previous section’s correction for het-

eroskedasticity will work best if volatilities mainly change at low frequencies. But it does

not allow for the possibility of a few isolated large disturbances or outliers. For instance,

the bankruptcy of Lehman Brothers in October 2008 and the 650 basis point drop in the

Federal Funds rate from April to May 1980 generate outliers of around 6 standard devi-

ations that do not disappear when we allow variance-regime switches. To guard against

such large shocks distorting inference, we consider alternative specifications in which
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structural errors εt have normal-mixture distributions, or Gaussian distributions with

random variances.9

In the model notation, we can introduce random parameters ξi,t such that

εi,t ∼ Normal (0, λi,tξi,t) (5)

We can also think of these objects as shocks which capture, in a simple way, a high-

frequency component of volatility. This structure allows the data to decide whether to

downweight certain residuals for “idiosyncratic” (i.e., independent of equation or time

period) reasons.

Our goal is to generate a shock distribution with “fat tails” (i.e., a higher chance of high

deviation events). This can be achieved by setting several possible distributions for the

ξi,t. The first case we consider is setting

ξi,t ∼ Inverse Gamma(shape = α/2, rate = 2/α) . (6)

This implies that each εi,t has an independent Student’s T distribution with α degrees of

freedom and unit scale.

We also look at an alternative case with
√

ξi,t as independent k-multinomial with

ξi,t = βi with probability αi for i ∈ {1 . . . k} (7)

We choose k = 3 and set β1 < β2 < β3, which provides an intuition of “low, medium,

and high” variance options for each observation.

In both cases, we tune hyperparameters of these specifications to match the distribution

of estimated residuals from the Gaussian-errors model. We chose parameters for each

distribution based on residuals for the original model. The t-distributed errors model

9Models with mixture-of-normals disturbances have appeared previously in the empirical macroeconomics
literature. Lanne and Lütkepohl (2010) introduce a maximum likelihood approach to estimating a discrete
normal mixture SVAR model, and Chiu, Mumtaz and Pinter (2015) describe a Bayesian Gibbs sampling al-
gorithm with an application to a model with stochastic volatility for U.S. data. Chib and Ramamurthy (2014)
present a Gibbs sampling method for estimating a DSGE model with t-distributed shocks and Cúrdia,
Del Negro and Greenwald (2014) find that the assumption improves the fit of a New Keynesian DSGE
model that already includes low-frequency volatility changes.
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has degrees of freedom 5.7 and unit scale. The multinomial normal mixture has possible

standard deviations .68, 1.17, and 2.55 with prior probabilities .59, .39 and .02.10

II.3. Econometric Methodology. Equations (1) and (2), combined with the normalization

of variances, describe a model with n2 free parameters in A0, (M− 1)n free parameters in

the Λm, and n2p free parameters in the Aj. Each of the “extreme events” variations has an-

other nT parameters.11 We use Bayesian methods to update beliefs about the parameters

conditional on observed data {y1 . . . yT} and initial conditions {y−p−1 . . . y0}.

On A0 we specify independent Gaussian priors on all elements, centered around 100

times the identity matrix, with standard deviation 200. For λ·,i = {λ1,i . . . λM,i}, the vector

of variances in each equation i, we put a Dirichlet prior (with α = 2) on λ·,i/M. This has a

compact support on [0, 1]M and centers belief around variances being equal in all periods.

We use a variation of the “Minnesota prior” described in Sims and Zha (1996) on the

reduced form parameters in the matrices Bj and D of Equation (3). These priors, described

in more detail in Appendix 1, center belief loosely around independent random walks in

each variable. They also imply that constant terms should not interact with near unit roots

to imply rapid trend growth and that, if the dynamics are stationary, initial conditions

should not be too far from the model’s implied unconditional means. Conditional on A0,

these priors imply Gaussian priors on the Aj matrices.

In the basic case, without outlier correction, we sample from the posterior distribution

for these parameters in a two-step process that exploits the fact that, conditional on know-

ing A0 and {Λ1 . . . ΛM}, we can treat (1) as a system of n independent linear regressions

which can be estimated with weighted least squares. In the first step of the sampling

process, we use a Random Walk Metropolis algorithm to sample the elements of A0 and

{Λ1 . . . ΛM} using the likelihood integrated over the Aj (which is available analytically).

10All that matters to the likelihood is the shape of these distributions, not their scale, since A0 can absorb
differences in scale. However because our prior on A0 is not scale invariant, results might have been slightly
different if we had used the fitted scale for the t-distributed shocks (.78).
11As mentioned previously, the ξit can equally well be called parameters or shocks. The fact that there
are so many of them does not mean they cause difficulties in estimation, because each has a specified
distribution. This is a special case of the general point that Bayesian inference treats parameters and shocks
symmetrically. They are all unknown objects with distributions.
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Then, after drawing a large MCMC sample from the marginal posterior distribution of A0

and {Λ1 . . . ΛM} we can, for each of the A0, Λ draws, sample from the coefficients in the

Aj which have a known conditional normal distribution. Appendix 3 reports more details

about the convergence of the Monte Carlo portion of the method in multiple simulation

chains started from dispersed points in the parameter space.

The outlier correction requires adding a Gibbs sampling step to the algorithm. The first

step, a Monte Carlo update of A0 and {Λ1 . . . ΛM} conditional on the ξi,t, has the same

form as the first step in the Gaussian model. But now we need to draw Aj for j > 0 after

each draw of A0, Λ, so that we can form the implied normalized residuals ui,t. The ξi,t,

conditional on the ui,t are distributed independently across i and t, allowing us to draw

directly from their exact conditional posterior distribution.

For a given set of model parameters, we could change the sign of the coefficients in

an equation (a row of (A0, A1, . . . )) or change the order of the equations (permute the

rows of (A0, A1, . . . )), without changing the implied distribution of the data. The like-

lihood maximum therefore recurs through the parameter space at every permutation or

sign change of the parameters. This means that a complete MCMC sampling of the pos-

terior distribution would show identical impulse response distributions for all shocks, all

centered at zero response — but only if the prior itself were invariant to permutations of

the orderings or signs of the equations.

Our prior, because it puts positive prior means on the diagonal elements of A0, is not

invariant to permutations and scale changes of equation coefficients. As a result, we find

no indication that our posterior sampling scheme is distorting results by not eliminating

draws that are permutations or sign-switches of each other. Nonetheless these methods,

if applied on data where identification did not emerge as strongly, might need to test for

and eliminate permuted or sign-switched models.12

This probability model implies prior and posterior distributions for all (potentially non-

linear) transformations of the coefficients, including the reduced form coefficients Bj and

12This is a special case of the kind of normalization issue discussed by Hamilton, Waggoner and Zha (2007).
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Abbv. Description
IP Industrial production
P Personal consumption expenditures price index
HHC Sum of commercial bank real estate and consumer loans
BC Commercial bank commercial & industrial loans
M1 M1 money supply
R Federal funds rate
PCM CRB/BLS spot (commodity) price index
TS Term spread of 10 year over 3 month Treasuries
GZ Gilchrist and Zakrajšek (2012) bond spread
ES “TED spread” of 3-month Eurodollars over 3 month Treasuries

TABLE 1. Data series used in model estimation.

the impulse response functions for variable i to each shock j. In all reported results, fol-

lowing Sims and Zha (1999), we report horizon-by-horizon 68% and 90% posterior den-

sity regions as “error bands.”

III. DATA AND RESULTS

Our main specification uses monthly data on 10 time series (listed in Table 1) from

January 1973 to June 2015. We include data through the 1970s because they are a valuable

source of variation in the time series and because correction for time-varying variance can

account for what otherwise might be interpreted as regime change in monetary policy

(e.g., as in Sims and Zha (2006)).

Our measures of “household” and “business” credit are based on the Federal Reserve’s

weekly surveys of U.S. commercial banks.13 These data are different from the quar-

terly and annual series, based on a more comprehensive survey of lenders and catego-

rized based on the borrower type (including “households and non-profits,” “nonfinan-

cial noncorporate business,” and “nonfinancial corporate business”), used in some other

research.14 Appendix F includes a more detailed discussion of the differences. Although

our “household credit” series includes commercial real estate loans (which cannot be sep-

arately identified for the entire sample in the data) and our “business credit” data seems

13These are published in the H.8 “Assets and Liabilities of Commercial Banks in the United States” release.
14In particular, the cross-country database, assembled by the BIS (and described in Dembiermont,
Drehmann and Muksakunratana (2013)) uses these quarterly data
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Start End Description
1 Jan 1973 Sep 1979 Oil crisis, stagflation, and Burns Fed
2 Oct 1979 Dec 1982 Volcker disinflation
3 Jan 1983 Dec 1989 Recovery from Reagan recession
4 Jan 1990 Dec 2007 Great Moderation, Greenspan Fed
5 Jan 2008 Dec 2010 Great Recession
6 Jan 2011 Jun 2015 Zero Lower Bound, Recovery from Great Recession

TABLE 2. Dates for variance regimes in full model specification.

to have more high-frequency variation than the corresponding quarterly series, we be-

lieve these data capture the majority of the low-frequency behaviors that are critical for

existing empirical evidence of their forecasting power.15

The inclusion of three credit spreads (of interest rates over short-term Treasuries) is

meant to capture several possible dimensions of credit market stress: the term spread

captures uncertainty about future movements in fundamentals, the bond spread captures

tightness in business financing, and the TED spread captures tightness in bank financing.

The first was also expected to, along with the Federal Funds rate, M1, and commodity

prices, provide a sharper identification of a monetary policy shock.

We separate the full sample into six variance regimes described in Table 2. From the

standpoint of estimation efficiency, we expect the separate treatment of the Volcker disin-

flation and Great Recession to discourage overfitting of high monetary policy and finan-

cial stress variations respectively by allowing the model to “down-weight” these periods’

residuals.

Table 4 displays estimates of the marginal data densities of the base model, the model

with a mixture of three normals for structural shocks, and the model with Student’s t

distributed shocks.These are reported in a log points scale, so a difference of over 100 is

extremely strong evidence (i.e., more than an e100 odds ratio) in favor of the better model.

15One practical complication is dealing with breaks in the credit series introduced by changes in account-
ing standards and the transfer of assets among classes of bank (e.g., the conversion of a thrift bank to a
commercial bank). Our spcific calculations for eliminating these breaks, which are particularly large in the
real estate credit series, are detailed in the Appendix F.
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Jan 1973 –
Sep 1979

Oct 1979 –
Dec 1982

Jan 1983 –
Dec 1989

Jan 1990 –
Dec 2007

Jan 2008 –
Dec 2010

Jan 2011 –
Jun 2015

1 1.404 1.335 0.694 0.553 1.563 0.450
2 0.675 1.242 1.176 1.161 0.892 0.854
3 0.332 0.334 0.273 1.193 3.293 0.575
4 1.408 0.557 1.176 1.092 1.126 0.641
5 0.207 0.534 0.378 0.820 2.361 1.701
6 0.568 4.850 0.400 0.062 0.118 0.002
7 1.361 0.802 0.698 0.745 1.811 0.583
8 0.969 2.547 0.762 0.414 0.980 0.328
9 0.631 0.334 0.315 0.595 3.717 0.408
10 1.541 1.790 0.460 0.209 1.997 0.004
TABLE 3. Relative variances for each of ten shocks in six periods. Point
estimates are posterior medians and numbers in parentheses are 90% bands
of posterior draws.

Model Marginal data density
No heteroskedasticity, Gaussian errors —
Heteroskedasticity, Gaussian errors 51530.5
Heteroskedasticity, 3-Gaussian mix errors 52281.4
Heteroskedasticity, t errors 52293.2

TABLE 4. Marginal data densities for four VAR models for our 10 time se-
ries. (The first row is not yet computed, and the other three come from
Monte Carlo runs that are probably not yet fully converged. The next draft
of the paper will have more complete results.)

The improvement in fit from the normal mixture or t model is large, and those two models

have similar fit.16

Figure 2 shows the impulse response over five years of all 10 variables to the model’s

orthogonal structural shocks, scaled to unit draws from a standard t distribution with 5.7

degrees of freedom. Since the diagonal of Λi is normalized to sum to one across regimes,

these responses are a kind of average across regimes. The model, despite the lack of any

identifying restrictions, fits identifiable monetary policy (number 6) and credit spread (9-

10) shocks with significant long-term real consequences. Shock 6 is the only one that has

16The numbers shown in the table are preliminary, as we are not sure the Monte Carlo calculations used to
compute them are fully converged, and we do not yet have the value for the model without heteroskedas-
ticity. The improvement in fit from the fat tailed residual distributions seems likely to be robust, however.
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an immediate positive R response, a delayed negative IP response, a negative (though ill-

determined) long run P response, negative responses to M1 and the two credit aggregates,

and a negative response of the term spread (as would be expected if the shock raises

current interest rates and lowers expectations of future inflation).

The ninth and tenth shocks are the most important sources of variation in the GZ spread

and the ES spread, respectively. The two spreads do not tend to move together in response

to these shocks, and two have different patterns of effects on other variables. Both depress

IP. Both depress P, though in the case of shock 10 this effect is statistically weak. Shock 9,

which immediately impacts the GZ spread, has a strong delayed effect in depressing BC,

but modest and indeterminate-signed effect on HHC, while shock 10, which immediately

impacts ES, strongly depresses HHC with ill-determined effect on BC. Shock 10 produces

an expansionary movement in R, while shock 9 does not. These patterns seem to fit an

interpretation that distinguishes a banking credit shock (10) from a non-bank financial

disturbance (shock 9). All the effects of these shocks on other variables are delayed, while

their effects on the spread variables are immediate. This all fits an interpretation that they

reflect disturbances originating in financial markets, with monetary policy at most (with

shock 10) trying to partially offset their effects.

The third shock, which starts with an impulse to household credit (net of inflation) and

leads to a persistent long-term decline in output, seems to match the “excessive credit

growth” story demonstrated empirically by Mian, Sufi and Verner (2015), Schularick and

Taylor (2012), and others. There are two major caveats, however. First, the output re-

sponse with 90% confidence bands is barely significantly less than zero at the five-year or

smaller horizon (and the 95% band would not be significant). Second, this shock is one of

many in the system, and most of the others would create positive covariances in output

and credit over short and long horizons.

The seventh shock accounts for a substantial component of variation in IP and P. Its

immediate effect is to increase commodity prices, and to some degree to increase the

GZ spread. The effect on commodity prices is persistent. With some delay, P (the PCE
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deflator) moves up and IP moves down. Neither BC nor HHC moves much. This looks

like a “supply shock” originating in commodity markets.

These core impulse response results seem robust to the alternative error specifications.

Median impulse responses calculated from the Gaussian model are nearly the same as

those calculated from the t or mixed-normal model when put on a common scale. The

main difference is that most of the error bands are somewhat narrower for the models

based on normal mixture residuals. This is what would be expected if the normal mix-

ture models were correct. The impulse responses from the misspecified Gaussian model

in that case would be consistent, but somewhat inefficient estimates. Figure 3 compares

the median impulse responses for IP, R, GZ and ES to shocks 6 (monetary policy), 9 (GZ)

and 10 (ES), with each shock scaled so that its largest initial component (R, GZ and ES,

respectively) is the same size for both the t and Gaussian models. It is clear that the dif-

ferences between them are well within the error bands. On the other hand, the Gaussian

model does just barely include zero within the entire 90% error band around the response

of IP to shock 3, which we have interpreted as possibly corresponding to an “unhealthy”

expansion of household credit. Full impulse responses from the Gaussian errors model,

and a model with multinomial normal mixture errors, can be found in Appendix E.

The picture is also very similar if we estimate with data only up to December 2007

(Figure 4). In particular, the identification of monetary policy and spread effects is very

stable. There is additional (weak) evidence that a shock which induces business credit

expansion (ordered fourth) has a negative long-term output effect, of a similar magnitude

as the effect of the third (household credit) shock.

Our results suggest that the variances of these shocks change substantially among pe-

riods. Table 3 reports the variances of each of the ten structural shocks in the posterior

mode Gaussian errors model, over the full sample. 90% probability bands for these rela-

tive variances are quite tight, mostly within 0.8 to 1.2 times the posterior median estimate.

In general, there is strong evidence of time-varying variance. Several of the shocks spike

in variance during the financial crisis (period 5). The sixth shock, which we identify as
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a monetary policy shock, has a considerably inflated variance in the Volcker disinflation

period and almost zero variance in the most recent period (near the Zero Lower Bound).

While the variance differences among regimes are large, the model still needs the nor-

mal mixture assumption to justify large residuals. Table 5 lists the 10 largest posterior

median ξi,t, or “variance adjustments” for individual equations and time periods. These

are in standard deviation units and are still associated with large residuals — so the equiv-

alent residuals in the Gaussian error models are all larger than 4, with tail probabilities

lower than 0.0006!17 The biggest of these shocks were those in the fifth disturbance at

and just after September 11, 2001. This shock primarily affects M1, with small effects on

other variables, and these two shocks reflect an accommodated brief increase in demand

for liquidity. The next largest is a surprise easing of monetary policy in June 1980, during

the recession of that year. Interest rates had already been brought down sharply by the

Fed, and the model is surprised at a further decrease. October 1987 was the time of a

stock market crash, that shows up in the model as a large upward shock to the interbank

spread.

The remainder of these “top 10” shocks occurred during 2007-2008. One, in September

2008, was to the first disturbance, which weights heavily on industrial production. One,

at the time of the Bear-Stearns crisis (March 2009), was a surprise monetary policy easing.

The remaining four were all upward shocks to disturbance 10, which we have interpreted

as an interbank spread shock or, in one case, disturbance 9, the corporate spread shock.

These large shocks have reasonable economic interpretations, and the model avoids hav-

ing several supposedly independent shocks coincidentally extremely large at the same

date. The surprising sequence of upward shocks in spreads, even when higher volatility

in this period has been allowed for, fits the descriptions by policy-makers of their uncer-

tainties during 2007-2008. Yet the shocks are not enough for the model to predict a sharp

downturn very far in advance.

17The Gaussian errors model, at the posterior mode, has 42 residuals larger than 3 in absolute value, 14
greater than 4, and 4 greater than 5. For independent standard normal draws, the expected values should
be 13.5, 0.3, and 0.002 respectively.
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Date Shock ξ Value Diagonal impact
11/2001 5 4.82 -0.0128
10/2001 5 4.27 0.0133
6/1980 6 3.71 -0.0224
11/2008 9 3.39 0.0089
9/2007 10 3.35 0.0025
11/1987 10 3.18 0.0033
9/2008 1 1 2.98 -0.0147
1/2008 10 2.98 0.0023
12/2007 10 2.93 0.0018
3/2008 6 2.90 -0.0028

TABLE 5. Largest ξi,t values in t-errors model, with dates and “diagonal”
impacts. The latter are the effects of the shocks on the variable with the
shock’s number. 5 is M1, 6, is Fed Funds, 9 is coporate spread, 10 is in-
terbank spread, and 1 is industrial production. Units are logs for M1 and
industrial production, raw annual rates (not per cent) for interest rate and
spread variables.

These largest shocks do concentrate on just a few of the structural disturbances and,

despite our attempt to allow for extended periods of high and low variance, the extreme

shocks concentrate in 2007-2008. This suggests we might in future work modify the dates

of our regimes or try estimating the regime switches using a Markov-switching extension

of the model.

The remainder of this section reviews the model dynamics of key shocks in greater

detail.

III.1. The Credit Channel of Monetary Policy. The sixth ordered shock of Figure 2 satis-

fies the description of a monetary policy shock in the initial impulse to the Federal Funds

rate, initial decrease in the 10 year over 3 month Treasury term spread, and persistent neg-

ative impact on output. At the 68% level, there is stil substantial uncertainty about the

responses of both consumer and commodity prices, but point estimates from the posterior

mode model show persistent declines. This identification comes despite the lack of any

identifying restrictions on contemporaneous responses (or the monetary policy reaction

function). 18.

18It is interesting that the uncertainty about the sign of the responses of P and PCM to this shock arises
only from the data after 2007, as can be seen by comparing Figures 2 and 4. Apparently the positive interest
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The model provides substantial evidence that the effect of short rate movements is am-

plified by corresponding movements in interest rate spreads. In particular, the 3-month

Eurodollar spread over Treasuries increases about 1 basis point per 3 in the Federal Funds

rate and decays over a similar horizon. There is very scant evidence, in contrast, that the

bond premium moves in the short run (i.e., within the first 6 months) and no evidence

that the effect persists longer. The general finding of financial “amplification” of mone-

tary policy shocks is consistent with the empirical results of Gertler and Karadi (2015) and

a variety of theoretical models which suggest that risk premia should move in response to

monetary policy (e.g., Drechsler, Savov and Schnabl (2016) and Brunnermeier and San-

nikov (2016)). Our empirical result is focused, however, on inter-bank credit conditions

separate from firm-level credit conditions. This is concurrent with our broader empirical

point that the information content of credit spreads in the multi-variate model is multi-

dimensional–movements in different spreads forecast different macro-financial dynamics

and, potentially, relate to different economic mechanisms.

The model’s opposite implications for household and business lending, the former of

which sharply declines over all horizons and the latter of which increases slightly over

the 18 months, potentially speaks to the differential access of large and small borrowers to

credit at the onset of a recession. The theory and empirical result in monetary VARs goes

back to Gertler and Gilchrist (1993), and a version of it is corroborated in bank balance

sheet data in the recent financial crisis by Ivashina and Scharfstein (2010).

III.2. Spread Spikes and Early Warning. Three independent shocks, ordered eight to

ten, can be identified by sharp increases in spreads at t = 0. The eighth shock hits the

term spread only and has no long-term consequences for output growth. In contrast,

the tenth shock, which hits both the term spread and the interbank spread, results in a

sharp recession and contraction in household credit. The ninth shock, which begins with

a change in the corporate bond premium and small associated movements in ES or TS,

rates in 2008-9, when the model expected to see them go negative, appeared to the model as a contractionary
monetary policy shock with surprisingly little negative effect on prices
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is followed by a slightly longer recession and a major contraction in business rather than

household credit.

The fitting of two independent stress shocks suggests the importance of a multidimen-

sional approach to measuring financial stress. In their long-run macro implications, the

two shocks can be distinguished by sharply different implications for credit aggregates

and prices. The “bond spread shock” is associated with a persistent reduction in the con-

sumer and commodity price level and a significant decline in loans to businesses. The

“inter-bank shock,” in contrast, has no long-term price effect and predicts a significant

long-term contraction in household, not business, credit. It also seems to pick up some

delayed monetary loosening, potentially in response to the generated recession.

In the historical record, inter-bank shocks have almost as high a variance in the early

sample (1973 to 1982) as they do in the financial crisis (Table 3). With post-2009 interbank

rates very close to short rates at zero, this channel almost completely shuts down in the

final variance period. The corporate bond spread shock, in contrast, is by some margin

highest variance during the 2008 financial crisis.

Taken together, the impulse response and the estimated variances suggest that the

macro importance of spread shocks—closely related to the forecasting value of the spread

variables—is concentrated during certain high variance episodes and largest at short hori-

zons. Both spread spikes only precede the trough of the output effect by six months to

a year. This is enough “early warning” to react more quickly at the onset of a recession,

but likely not enough to steer an economy around the risk completely through policy

intervention.

III.3. Credit Growth and Recessions. Our model offers some support, within 90% error

bands, of the hypothesis that excessive growth in household credit can forecast negative

long-term real output growth. The shape of our estimated output response to shock three,

with a short-term output boost and long-term contraction, matches that of the small-

system (household credit to GDP, business credit to GDP, and real GDP) VAR of Mian,

Sufi and Verner (2015). Because our system has many more variables, we can be more
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confident that the result does not pick up the effects of financial stress, monetary tight-

ening, or inflation. Furthermore, like the single-equation results of Mian, Sufi and Verner

(2015), our results suggest that movements in household credit are substantially more

predictive than those in business credit. More specifically, the jump of the former inde-

pendent of the latter seems to be the “signal” for this particular shock.

That said, our results still raise questions about the importance of this phenomenon

and the wisdom of encouraging policy to actively “lean against it.” First, the estimated

magnitude of this credit to real output channel is still relatively low, with a one per cent

expansion of household credit over about 2.5 years followed by an output decline reach-

ing 25 basis points below trend after five years. Since the structural shocks are t dis-

tributed with 5.7 degrees of freedom, this would need to be scaled up by 1.24 to be a

one-standard-deviation shock, or by 1.1 to be at the same quantile (.84) of its distribution

as a one-standard-deviation normal shock. In the period before the 2008 crisis, our model

has this shock scaled up by a factor 1.18. But even rescaled by 1.18 · 1.24 = 1.46, this

shock’s predicted output decline is considerably less than the 2.1 percentage point GDP

response to a one-standard deviation event (a credit-to-GDP shock) reported by Mian,

Sufi and Verner (2015). It is comparable to, but still smaller than, the response observed

in the same authors’ 3-variable VAR system (close to 0.7 percentage points over 10 quar-

ters).

One way of quantifying the importance of this credit shock relative to others in the-

model is to calculate forecast error variance decompositions (Figure 5).19 The importance

of third shock for explaining credit variation starts very high (as it has by far the largest

contemporaneous impact on credit) and decays over time. Over the “long-run” of five

years, this shock explains only about 20 percent of household credit variation, while other

shocks with “passive” credit reactions moving in the same direction as output explain the

19These are the squared impulse responses scaled to sum to one for each response variable in each period.
Precisely, the variance decomposition of variable i is, for each j and each time horizon s, the proportion of
s-step ahead forecast error variance in variabale i attributable to shock j.
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remainder. At this same horizon, the explanatory percentage for output is, at the poste-

rior mode estimate, is only about 10%. This story mostly holds in all variance periods,

including the two in which the credit shock is the largest (1/1990-12/2007 and 1/2008-

12/2010). In these periods the shock explains a greater proportion of household credit

variation (44% and 56% respectively), but close to the same amount of output variation

(10% and 8%).

IV. CREDIT CONDITIONS AND FORECASTING

So far we have demonstrated that credit variables have an interesting interpretation

within the model. But are they practically helpful to include, and could this have been

realized before the 2008 financial crisis? We find that information in spreads can be use-

ful for short-term forecasting at the onset of a crisis. The model with spreads does not,

however, provide much advanced warning of a crisis or any clear advantage in “normal”

times outside of recessions.

IV.1. Forecasting in the Recent Financial Crisis. We first focus on the 2007-08 financial

crisis and its immediate aftermath. At each month between January 2007 and December

2010, we estimate (posterior modes of) models with and without credit variables using

data only up to that point and then calculate 12-month forecasts. This “pseudo-out-of-

sample forecasting” exercise offers a dimension in which to compare models with dif-

ferent data lists and gives a sense of how much changing the emphasized data in macro

models would have helped in real time.We focus on the Gaussian errors specification, de-

spite its fitting more poorly than the t model, because it seems to capture the main model

dynamics and is much easier to do recursive computations with.

Figures 6, 7, and 8 plot posterior mode forecasts from our (Gaussian error) model with

10 variables, a version without the credit aggregates, and a version without the spreads,

respectively, at 3-month intervals from January 2007 to October 2010. The model without

spreads (Figure 8) never fully “accepts” the crisis, predicting a return to near pre-crisis

growth rates at each point during the deepest contraction. The models with spreads (with
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or without credit aggregates) give slightly less optimistic forecasts in early 2008, at which

point the bond and inter-bank spreads have elevated slightly over mid-2000s levels. But

the most obvious improvement is the models’ ability to grasp the severity of the crisis

during the deepest fall from mid 2008 to mid 2009. This observation is consistent with

the previous section’s analysis of impulse responses, which suggested that the model

could identify spread shocks which have macro effects within the first few months. The

spreads provide little advance warning of severe recession but do enhance recognition of

the severe recession, and its likely persistence, once it is underway.

The addition of credit aggregates seems considerably less important. With or with-

out credit aggregates, the model is quicker to recognize a persistent downturn. While

forecasts of IP are little affected by excluding credit aggregates the model without them

consistently predicts that interest rates will start reverting to positive values from the zero

lower bound, though this seems to have limited effects on forecasted output or consumer

prices.

IV.2. Forecasting Power in the Entire Sample. We generalize the exercise of the previous

section by calculating forecasts with versions of the main model, the no spreads model,

and the no credit model estimated up to each month from October 1979 to June 2015.20

We focus on root mean squared error (RMSE) for forecasts of all variables common to the

models.

Figures 9 and 10 display the evolution of these RMSE for the base model with all

variables (blue), a model without spreads (red), and a model without credit aggregates

(green). As suspected from the previous section, the models with spreads does a signif-

icantly better job predicting output just before and during the 2007-2009 financial crisis

and recession. The model’s internal projections for the Federal Funds rate are quite a bit

20The truncation at the beginning of the sample comes from the requirement of having two variance regimes
to identify the parameters. Unfortunately, this cuts out some interesting macreconomic turbulence in the
1970s.
Additionally, for the period October 1979 to December 1982, we use models with six lags because of the
smaller availability of data.
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better at the zero lower bound, though this comes at the cost of one set of very poor fore-

casts right around the final major reduction in the rate in late 2008. Any advantages in

forecasting the price level and credit aggregates in the crisis are less obvious.

Outside the recent financial crisis, and potentially the early 1980s and early 2000s reces-

sions, the no spread model seems to perform just as well if not better. We might suspect

that a formal or informal comparison of models before 2008 would not clearly support

the inclusion of the financial variables, even if the estimated dynamics from such a model

look like they have “economically interesting” transmissions from spreads to macro vari-

ables. Alternatively, the model with spreads might only be better for forecasting when

economic conditions worsen.21

The model without credit aggregates, but with credit spreads, seems to match the full

model quite closely throughout the sample. One exception seems to be the early part

of the 1981-1982 recession and the subsequent uptick in growth around 1984. In several

periods, including post-recession growth in the early 90s and 2010s, the no credit model

is significantly better at predicting output. In general there is no clear pattern of the model

with credit aggregates, after including spreads, doing a better job of forecasting the timing

or severity of U.S. recessions.

V. WHY DO CREDIT AGGREGATES HAVE LOW PREDICTIVE VALUE?

Our results de-emphasizing the negative growth consequences of credit growth are at

odds with a recent literature that empirically claims to show that credit expansion predicts

negative growth and/or financial crises. The goal of this section is to demonstrate how

our findings are compatible with others from smaller models. We first show that our main

result is not affected by the frequency or transformation of our credit variables. We then

discuss how both specification of a larger model and the assumption of heteroskedasticity

21These nuances could be captured formally by taking posterior forecasts averaged across an “ensemble” of
models, the weights on which change over time (for instance, with some approximation of posterior odds).
To capture them within the model might require some more complex (and possibly endogenous) modeling
of regime switching.
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combine to reduce the prominence of apparently negative consequences of credit growth

in simpler models.

V.1. Data Transformation. We estimate our main specifications at the monthly frequency

in order to exploit the higher frequency variation in credit spreads and more precisely

identify the horizons at which “financial stress shocks” propagate to the macroeconomy.

The majority of empirical studies showing high credit growth to predict long-term output

declines have used lower frequency data, often with other transformations applied. We

find that several alterations of our analysis along these lines do not change our main

results.

V.1.1. Frequency. To check whether the level of time aggregation explains why our re-

sults show at most small negative effects on output of credit expansion, we estimate the

model with quarterly averages of the same data. We also try replacing the averages of

our monthly credit data with the quarterly credit data made available by the U.S. Federal

Reserve and Bank of International Settlements.22

Models estimated with quarterly data, using credit series from either source and an

SVAR with time varying variances like our monthly model, give results quite similar to

our monthly model In particular, they show only one shock in which a credit variable

moves promptly and IP moves with a delay in the opposite direction. As in our monthly

model, this shock shows up as the third shock. With our monthly credit data simply

aggregated to quarterly, the negative response of output to this shock is very similar in

magnitude to what we found with the monthly data (left panel of Figure 11).

When we use the BIS quarterly credit series, the situation is slightly more complicated.

Of the ten shocks, two are candidates for “dangerous credit growth.” The first involves

substantial nominal, but not real, credit growth. This suggests the credit growth is a

response to inflation, and we therefore think it more reasonable to interpret it as a sup-

ply shock than as reflecting independent excessive credit growth. The second does have a

larger output response than the equivalent in the monthly data model, though the implied

22We use the “credit to households” and “credit to non-financial corporations.”
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timing (with the majority of the output and credit movement within the first quarter) is

very different than what the explosive growth hypothesis predicts. This shock still ex-

plains only 6.6 percent of output variation and 5.0 percent of houeshold credit variation at

the five-year horizon with “average” scaling.23 In the “Great Moderation” period of 1990:I

to 2007:IV, these increase to 16.0 and 11.0% respectively, but not because of increases in the

size of these shocks. The other structural shocks had low variance in this period, both in

the quarterly model with BIS data and in our monthly model, shrinking the denominator

of “percentage of variance explained”. While with the BIS data give stronger evidence for

a “dangerous credit growth” hypothesis than our monthly frequency results, we still do

not think it constitutes the type of result reported in the single-equation literature. 24

V.1.2. Long-term Growth Rates. Another possible issue is that we use only 10 months of

information. A p lag system can fit dynamics with any linear combination of the vari-

ables including an m ≤ p month difference, but would not capture even lower frequency

growth rate effects. As a check, we try estimating our main (Gaussian errors) specification

with three-year growth rates of household and business credit instead of levels. Figure

12 displays the impulse responses of output, prices, and the differenced credit aggregates

in this model’s two “credit aggregate” shocks. The household credit shock in this model

explains a large proportion of long-term variation in the growth rate (49% at 5 years), but

still only a modest amount (9%) of GDP variation at the same horizon.

We can directly and easily compare the fit of this model and the original models through

posterior odds conditional on initial conditions.25 The differences model fits considerably

worse than the levels model, with an estimated marginal likelihood of 51244.7 (compared

to 51530.5).

23At the posterior median of draws.
24These models use a slighly different Minnesota prior than the monthly ones, with tightness 5 and decay
1.
25The Jacobian of any linear transformation like this is one. But now, if the model is with three lags, we
are implicitly conditioning on the values of {c0 − c−36, c1 − c−37, . . .}, where ct is the credit variable. This is
different but not higher dimensional information.
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V.1.3. Non-linear Transformation. Potentially our method is failing to capture a positive

long-term relationship because it considers only linear effects. This implies that small

credit movements have effects in proportion to large ones, and that negative ones should

have the opposite effect.26

While extensive exploration of possible nonlinearities in the model would have to be

a new research project, we did try applying a smooth non-linear transformation to the 3-

year growth rates of credit that allowed increased weight on large positive growth rates.

The idea was to explore the hypothesis, put forward in other research, that modest credit

expansion has no negative effects, while unusually rapid credit expansion does create

future problems. We considered transforming credit growth according to the function

f (ct) =


ct if ct < a

α1 + α2ct + α3c2
t if a ≤ ct < b

βct if ct ≥ b

for ct as credit growth rates, b > a > 0, and with the coefficients αi and β calibrated to

make slopes and levels continuous at a and b. This allowed the “extra weight” f ′(ct) to get

larger without getting unboundedly big. We looked for a posterior mode optimizing over

a, b, and β, as well as the other parameters of the model.27 In all optimization exercises to

find the posterior mode of such a model, the data favored models without any nonlinear

transformation.28

V.2. Model Size and Underspecification. In smaller models estimated with the same

methods, it is possible to recover results suggesting that impulses to the credit aggregates

lead to negative output growth. Figure 13 presents the impulse response of a model (es-

timated with heteroskedasticity, like the base model) with four variables: real output, the

26Jordà, Schularick and Taylor (2013), for instance, focus on upper n percentile credit growth events.
27In our trials so far, we have used a coarse grid over a and b (based on matching quantiles of the observed
distribution) and searched continuously over β, with an exponential prior with parameter 2
28In this specification, β1 = 1, α1 = α3 = 0, α2 = 1.
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price level, nominal household credit, and nominal business credit. This is the small-

est model that accounts for “standard” linear combinations of these variables (like credit

to output ratios or real credit levels). In such a model, a shock associated a persistent

increase in business loans is associated with a greater than half a percentage persistent

reduction in output. This shock (at posterior mode parameters) accounts for 73% of busi-

ness loan variation and 10% of output variation in one-step ahead forecasts, and 19%

and 25% respectively in four-year-ahead forecasts. One might conclude from estimating

this small system that business loans are a strong driving force in the macroeconomy and

predictor of future economic activity over long horizons, though in the large system this

quite clearly is not the case.

We can conclude that the same data will imply, when analyzed with our 10-variable

model identified through heteroskedasticity, that credit expansion is rarely and weakly

associated with low future IP growth, and, when analyzed with small models omitting

spread and interest rate variables, that credit expansion reliably predicts low future IP

growth. This could have two interpretations. One is that the big model has become so

complicated that it is missing an important and powerful regularity in the data. The other

is that the small models are too simple to give a clear picture. The first interpretation

implies that the large model is incorrectly specified.

We can shed some light on this by simulating data from the posterior mode point esti-

mates of the large model, then estimating the same small models on the simulated data.

If the large model were misspecified, the apparent predictive power of credit expansion

for future low IP growth should not be reproduced with the simulated data. We find that

in fact it is reproduced.

In tests with 5000 simulated samples from the 10-variable estimated model with Gauss-

ian innovations, we find that in a four-variable VAR (IP, PC, HHC, BC) we get a negative

response of IP to a one-standard-deviation credit shock of one percent or larger at the

three-year horizon with the probabilities shown in Table V.2. These are done with data

at different frequencies, aggregated by taking averages of the monthly data our model
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BC Shock HHC Shock
Monthly .271 .001
Quarterly .680 .018
Yearly .670 .358

TABLE 6. Probability, in simulated data, of a -0.5 per cent 3-year response
of IP to a positive credit shock in a 4-variable VAR

Lagged IP?
No Yes

HHC .033 .128
BC .553 .603

TABLE 7. Probability of finding a coefficient of -.2 or larger in a regression
of 3-year IP growth on lagged 3-year credit growth

generates. By this metric, our own observations of approximately a 0.5 percentage point

negative response in output to a business loans shock, in monthly data, would not be so

uncommon. As the frequency is reduced, seeing similar results with a household credit

shock is also quite possible.

When we imitate the “projection method” regressions of Mian, Sufi and Verner (2015)

(with and without lagged output growth),29 we find the probability of a coefficent of -.2 on

lagged three-year credit growth in predicting three-year IP growth as in Table V.2. Again,

these probabilities are reasonably high, suggesting that this one-equation model could

suggest strong predictive power when the fully specified structural model attributes a

limited causal role to credit innovations.

V.3. The Importance of Identification through Heteroskedasticity. So far we have tried

to argue that model size does matter and that data selection and treatment do not mat-

ter in obtaining our core conclusions about the role of credit spreads and aggregates in

29We imitate these exactly by using three-year forward differences on real output (IP) as the dependent
variable, three-year forward differences in real credit (credit over price level) over output as the main in-
dependent variable, and lags of first differences of output as an extra independent variable. Everything is
aggregated to the annual frequency.
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linear models. We have not yet fully explored the importance of our assumption of het-

eroskedasticity and corresponding identification of contemporaneous relations.

As a frist exercise, Figure 14 shows the impulse response of a “full-sized” ten variable

constant-variance model identified through triangular (Cholesky) restrictions and with

no allowance for changing covariances of shocks. This model, like a small four-variable

model with or without heteroskedasticity, includes a rather large output reduction in re-

sponse to a poositive “business loans” shock. Unlike the corresponding shock in the full

model estimated with heteroskedasticity and without triangular restrictions on A0, the

fourth shock of this model includes immediate and substantial increases in the corpo-

rate bond spread (GZ), interbank lending spread (ES), and Federal Funds Rate (R). We

might suspect this is a shock that represents business (but not household) borrowing in

the midst of financial stress and monetary policy stringency.

Which of the two changes—adding heteroskedasticity or removing restrictions—seems

more important in this context? To investigate, we can estimate a model with regime-

switching heteroskedasticity and over-identifying triangular restrictions. The impulse re-

sponse of such a model (with Gaussian errors) is plotted in Figure 15. The fourth shock of

this model has a considerably smaller (and less confidently measured) output effect. We

consider this to be evidence that downweighting high variance observations, perhaps to

a greater extent than removing contemporaneous restrictions, has a large effect on results.

VI. CONCLUSION

Credit conditions, monetary policy, and real activity interact dynamically through mul-

tiple channels. To study these interactions, we construct and estimate structural multiple-

equation models that are identified without strong a priori assumptions. Our analysis

distinguishes impulses and feedbacks that focused study of individual channels might

miss.
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Our main model includes ten independent shocks that are identified by substantially

changing volatilities across exogenously specified regimes. The data strongly favor addi-

tional corrections for “fat tails” in the distributions of the structural innovations, though

the main qualitative conclusions are the same without them. Further refining (and possi-

bly endogenizing) a model specification for volatility remains a task for future research,

but addressing the issue in some way greatly improves model fit and affects implied dy-

namics.

Monetary policy is identified without any timing restrictions and seems to be ampli-

fied through inter-bank credit spreads. Two other model shocks look like “stress shocks”

which originate in the financial sector and propagate to the real economy after several

months of delay. The distinction between these shocks, which start with impulses to cor-

poate bond spreads and interbank rate spreads respectively, is potentially very important

for emerging research on the role of lending frictions and risk premia in the macroe-

conomy. A related takeaway for forecasters is that one-dimensional metrics of financial

conditions may be insufficient for capturing risks for the real economy.

While these credit spread shocks do have strong real effects, they do not provide more

than a few months of “advance warning” of an output contraction. In recursive-out-

of-sample forecasts around the 2008 financial crisis, including additional credit spread

variables only improves forecasts in a narrow window at the beginning of the downturn.

Across the entire data sample, there is no clear evidence that including credit variables

improves forecasting performance.

Credit aggregates, in this framework, almost always moving “passively” in the same

direction as output. A single shock generates opposite movements in household (real

estate plus consumer) credit and output, but in all periods the magnitude of this effect is

relatively small. To the extent that this effect is quantitatively important, a multivariate

model is necessary to properly separate it from other effects. We run multiple checks that

suggest that models with fewer variables and no correction for heteroskedasticity can

imply drastically more statistically and economically significant effects of credit growth
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on output even if credit is mostly passive. A more comprehensive check of all possible

non-linearities and verification against an international panel of data is left to further

research. But our results demonstrate how multiple time-series analysis, without strong a

priori restrictions, can shed light on complex interactions among policy, financial markets,

and the real economy.
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and economic fluctuations: Evidence from corporate bond and stock markets.” Journal

of Monetary Economics, 56(4): 471 – 493.

Goldsmith, Raymond. 1969. Financial Structure and Development. Yale University Press.

Hamilton, James D., Daniel F. Waggoner, and Tao Zha. 2007. “Normalization in Econo-

metrics.” Econometric Reviews, 26(2-4): 221–252.

Ivashina, Victoria, and David Scharfstein. 2010. “Bank lending during the financial cri-

sis of 2008.” Journal of Financial Economics, 97(3): 319 – 338. The 2007-8 financial crisis:

Lessons from corporate finance.
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FIGURE 2. Impulse responses to the ten orthogonal structural shocks in the
model with t distributed errors over 60 months, with 68% (dark blue) and
90% (light blue) posterior uncertainty regions. Scaled to an “average” pe-
riod with unit variances. Variables are in the order listed in Table 1.
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FIGURE 14. Impulse responses to 10 structural shocks in a Cholesky-
identified VAR with constant structural variances over 60 months, with 68%
(dark blue) and 90% (light blue) posterior uncertainty regions.
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FIGURE 15. Impulse responses to 10 structural shocks in a model with tri-
angular restrictions and heteroskedasticity over 60 months, with 68% (dark
blue) and 90% (light blue) posterior uncertainty regions.


	I. Introduction
	II. Modeling Framework
	II.1. The Basic Model
	II.2. Further Correction for Extreme Events
	II.3. Econometric Methodology

	III. Data and Results
	III.1. The Credit Channel of Monetary Policy
	III.2. Spread Spikes and Early Warning
	III.3. Credit Growth and Recessions

	IV. Credit Conditions and Forecasting
	IV.1. Forecasting in the Recent Financial Crisis
	IV.2. Forecasting Power in the Entire Sample

	V. Why Do Credit Aggregates Have Low Predictive Value?
	V.1. Data Transformation
	V.2. Model Size and Underspecification
	V.3. The Importance of Identification through Heteroskedasticity

	VI. Conclusion
	References

