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Abstract

We provide a finite sample inference method for the structural parameters of a semiparametric binary

response model under a conditional median restriction originally studied by Manski (1975, 1985). Our

inference method is valid for any sample size and irrespective of whether the structural parameters are

point identified or partially identified, for example due to the lack of a continuously distributed covariate

with large support. Our inference approach exploits distributional properties of observable outcomes

conditional on the observed sequence of exogenous variables. Moment inequalities conditional on this

size n sequence of exogenous covariates are constructed, and the test statistic is a monotone function

of violations of sample moment inequalities. The critical value used for inference is provided by the

appropriate quantile of a known function of n independent Rademacher random variables. We investigate

power properties of the underlying test and provide simulation studies to support the theoretical findings.
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1 Introduction

In Chapter 41 of Volume 4 of the Handbook of Econometrics on the estimation of semiparametric models,

Powell (1994) on page 2488 cites Manski (1975) as the earliest example of semiparametric analysis of limited

dependent variable models. Subsequently Manski (1985) provided further analysis for the binary outcome

version of the model, in which the outcome is determined by the same linear index formulation as in the

binary probit model,

Y = 1{Xβ + U ≥ 0}, (1.1)

for obervable variables Y ∈ {0, 1} and X a row vector in RK , but where the unobservable variable U is

restricted to satisfy a conditional median restriction

Q1/2 (U | X) = 0, (1.2)

rather than full independence from X and normality.1 This semiparametric model is thus distribution-free

with regard to unobservable U , and allows for the conditional distribution of U given X = x to vary with

the conditioning value x, for instance accommodating general forms of heteroskedasticity. Under both a

rank condition and a large support condition on a continuous regressor Manski (1985) established point

identification of β as well as the large deviations convergence rate of the maximum score estimator in the

model given by (1.1) and (1.2).

Several further analyses of the maximum score and similar estimators for this and closely related semi-

parametric binary response models have since been provided, and the literature on the asymptotic properties

of the maximum score estimator is now vast. Kim and Pollard (1990) showed that the convergence rate

of the maximum score estimator is cube-root and established its nonstandard asymptotic distribution af-

ter appropriate centering and scaling. Horowitz (1992) developed a smoothed maximum score estimator

that converges faster than the n−1/3 rate and is asymptotically normal under some additional smoothness

assumptions. Additional papers that study large sample estimation and inference in the maximum score

context include Manski and Thompson (1986), Delgado, Rodŕıguez-Poo, and Wolf (2001), Abrevaya and

Huang (2005), Léger and MacGibbon (2006), Komarova (2013), Blevins (2015), Chen and Lee (2017, 2018),

and Cattaneo, Jansson, and Nagasawa (2018).

In contrast to prior approaches for inference on β that employ asymptotic distributional approximations,

in this paper we develop a method for conducting finite sample inference on β. To do this we employ a

conditional moment inequality characterization of the observable implications of the binary response model

in the finite sample. Moment inequality characterizations of the model’s implications have been previously

used by Komarova (2013), Blevins (2015), and Chen and Lee (2017), but none of these papers proposed a

method for conducting finite sample inference. As was the case in the analysis provided in these papers,

we do not require that β is point identified. For instance, we do not require that any component of X is

continuously distributed, much less with large support.

In fact, even if β is point identified, and regardless of the support of X in the population, in any finite

sample the observable support of X is discrete. Indeed, Manski (1985, page 320) defines “the maximum score

estimate B̂n to be the set of solutions to the problem maxb∈B Sn(b)” where B is the parameter space and

Sn(·) denotes the sample score function.2 He shows that if β is point identified, then the distance between

1As noted in Manski (1985), his analysis easily generalizes to cover the restriction that Qτ (U | X) = 0 for any τ ∈ (0, 1).
2Manski (1985) used B to denote the parameter space and upper case N to denote sample size, which we have changed to

B and lower case n to match our notation.
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B̂n and β converges almost surely to zero, implying consistency of any sequence of β̂n ∈ B̂n for β. Intuitively,

the set of possible maximum score point estimators shrinks to a point as n→∞. Given that our aim in this

paper is to conduct finite sample inference, we must own up to the fact that even if β is point identified,

there is a proper set of values b to which β is observationally equivalent on the basis of only values of X

observed in the finite sample.

We thus introduce the concept of the finite sample identified set as the set of parameters vectors b ∈ B
that satisfy the observable implications of the binary response model conditional on a size n sequence of

observable covariate vectors Xn ≡ (X1, ..., Xn). Our finite sample inference approach is driven by observable

implications regarding Y1, ...., Yn conditional on Xn, and will be explicit in not being able to detect violations

of conditional moment inequalities that condition on values of X not observed in the sample.

The approach taken here exploits the implication of the binary response model that conditional on Xn,

each outcome Yi is distributed Bernoulli with parameter p (Xi, β). In practice the Bernoulli probabilities

p (Xi, β) are unknown. Nonetheless, conditional on Xn, each p (Xi, β) is bounded from above or below by 1/2

according to the sign of Xiβ. Consequently, for any nonnegative-valued function g (·) : Xn → R, the finite

sample distributions of ω+
i (β, g) ≡ (2Yi−1)1{Xiβ ≥ 0}g (Xi) and ω−i (β, g) ≡ (1−2Yi)1{Xiβ ≤ 0}g (Xi) can

be bounded from below. The test statistic Tn(b) that we use to implement our test of the null hypothesis

H0 : β = b is a supremum of sample averages of ω+
i (β, g) and ω−i (β, g), where the supremum is taken over

particular collections of functions g (·). The test statistic Tn(b) is shown to be bounded above by a function

T̄n (b) of n independent Rademacher random variables, such that the exact distribution of T̄n (b) is known.

Then, under the null hypothesis, we have that

P (Tn(b) > q1−α | X1, . . . , Xn) ≤ α,

where q1−α is the 1 − α quantile of T̄n (b). We establish that if particular functions g (·) are used, the

moment functions which Tn(b) incorporates preserve all the identifying information contained in finite sample

identified set, and we establish a power result for alternatives that lie outside this set.

Among the aforementioned papers from the literature on maximum score, the most closely related is that

of Chen and Lee (2017), who also cast the implications of Manski’s (1985) model as conditional moment

inequalties for the sake of delivering a new insight, albeit one that is entirely different from ours. Chen and Lee

(2017) expand on the conditional moment inequalities used by Komarova (2013) and Blevins (2015) to develop

a novel conditional moment inequality characterization of the identified set which involves conditioning on

two linear indices instead of on the entire exogenous covariate vector. They apply intersection bound inference

from Chernozhukov, Lee, and Rosen (2013) to this conditional moment inequality characterization to achieve

asymptotically valid inference. This cleverly exploits the model’s semiparametric linear index restriction in

order to side step the curse of dimensionality. Although a good deal of focus is given to Manski’s (1985)

binary response model, their method can also be applied to other semiparametric models.

To the best of our knowledge, this paper is the first to propose a method for finite sample inference on

β in Manski’s (1985) semiparametric binary response model. It is also the first to introduce the concept of

a finite sample identified set, explicitly defining the set of model parameters logically consistent with the

modeling restrictions and only information that can be gathered from observable implications conditional

on realizations of exogenous variables observed in the finite sample. There are however two precedents for

employing finite sample inference in the context of two rather different partially identifying models. Manski

(2007) considers the problem of predicting choice probabilities for the choices individuals would make if sub-

jected to counterfactual variation in their choice sets. In the absence of the structure afforded by commonly
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used random utility models, he shows that counterfactual choice probabilities are partially identified, and

proposes a procedure for inference using results from Clopper and Pearson (1934). Chernozhukov, Hansen,

and Jansson (2009) propose a method for finite sample inference in quantile regression models in which the

outcome is continuously distributed. Their approach exploits a “conditionally pivotal property” to bound

the finite sample distribution of a GMM criterion incorporating moment equalities, but which does not re-

quire point identification for its validity. The approach taken in this paper for finite sample inference in the

context of Manski’s (1985) binary response model is different from both of these.

The rest of this paper is organized as follows. Section 2, formally sets out the testing problem and the

moment inequality representation of the finite sample identified set. Section 3 lays out the construction

of the test statistic and corresponding critical value, and establishes the finite sample validity of the test.

Section 4 provides a result concerning the power of the test. Section 5 demonstrates the performance of the

approach by reporting results from Monte Carlo simulation and Section 6 concludes. The proofs are in the

Appendix.

2 Testing Problem and Moment Restrictions

This section is divided into two subsections, the first of which formally presents the modeling restrictions

imposed, and the testing problem at hand. The second subsection describes the observable implications of

the binary response model conditional on a size n sequence of covariate vectors, Xn, in contrast to those

observable implications obtainable from knowledge of the population distribution of observable variables.

Based on these observable implications, this second subsection introduces our definition of the finite sample

identified set. It clarifies what violations of our model’s implications the proposed test could feasibly detect,

which is useful for power considerations. The developments of Subsection 2.2 are however not essential for

establishing the size control of the test presented in Section 3.

2.1 Model and Test

The following assumption formalizes the restrictions of the semiparametric binary response model under

study and the requirements on the sampling process.

Assumption 1. (i) Random vectors {(Yi, Xi, Ui) : i = 1, ..., n} reside on a probability space (Ω,F ,P), where

F contains the Borel sets on Ω. (ii) Variables {(Yi, Xi) : i = 1, ..., n} are observed. (iii) There is a β ∈ RK

such that

P (Yi = 1{Xiβ + Ui ≥ 0} | Xn) = 1

and P (Ui ≥ 0 | Xn) = 1/2 for every i = 1, . . . , n. (iv) There is a known set B ⊆ RK to which β belongs. (v)

The events {{Ui ≥ 0} : i = 1, . . . , n} are independent given Xn.

The requirements of Assumption 1 are slightly weaker than those required by (1.1) and (1.2) in the Intro-

duction. Parts (i), (ii) and (iv) are standard. Although it is not necessary in this paper, the parameter space

B can be restricted by imposing one of the usual scale normalizations from the literature, such as |b1| = 1 for

all b ∈ B. Part (iii) imposes the binary response structure and the requirement that P (Ui ≥ 0 | Xn) = 1/2

for each i. Binary response models typically requre that Ui is continuously distributed in a neighborhood of

zero, in which case this is implied by the usual conditional median restriction. Strictly speaking, we do not

need to impose that each Ui is continuously distributed at zero, and hence we replace the median restriction
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with this requirement. Part (v) of Assumption 1 holds if (Yi, Xi, Ui) are independent and identically dis-

tributed, but is much more general. The observations {(Yi, Xi) : i = 1, ..., n} can be non-independent and

non-identically distributed. Throughout the text, E[·] is used to denote population expectations taken with

respect to P, and En[·] ≡ n−1
∑n
i=1[·].

For a given value b ∈ B, in this paper we consider the hypothesis test

H0 : β = b

H1 : β 6= b

on the basis of n observations {(Yi, Xi) : i = 1, ..., n} following the restrictions of the semiparametric binary

response model given by Assumption 1. These restrictions all hold in the typical semiparametric binary

response models in which the maximum score estimator has been studied. As noted in the Introduction, our

method does not require point identification of β, and thus we do not assume sufficient conditions for point

identification. Most notably, the existence of a continuous covariate – much less one with full support on R
– is not required.

2.2 Observable Implications Conditional on Xn
To conduct finite sample inference, we focus solely on the implications obtainable from a sequence of n

draws of (Y,X) in a sample {(Yi, Xi) : i = 1, ..., n} and not on features of the population distribution of

these variables that could be obtained on the basis of infinitely many observations. Consequently our focus

is not on the identified set that could be obtained from knowledge of the population distribution of (Y,X) in

an infinitely large population, but rather on the set obtainable solely from knowledge of a size n sample of

observations in accord with Assumption 1. By definition, this is the set of parameter vectors b ∈ B such that,

conditional on Xn, the observed distribution of Y1, ..., Yn matches that of 1{Xib+ Ũi ≥ 0} for a sequence of

random variables Ũ1, ..., Ũn that satisfy the restrictions placed on the conditional distribution of U1, ..., Un

in Assumption 1. We refer to this set as the finite sample identified set and denote it as B∗n.

Definition 1. The finite sample identified set for β under Assumption 1, denoted by B∗n, is the set of

b ∈ B for which there are n random variables {Ũi : i = 1, ..., n} such that P
(
Yi = 1{Xib+ Ũi ≥ 0} | Xn

)
= 1

and P
(
Ũi ≥ 0 | Xn

)
= 1/2 for every i = 1, . . . , n, and that {{Ũi ≥ 0} : i = 1, . . . , n} are independent given

Xn.

Our next task is to express B∗n with a moment inequality representation useful for inference. The following

lemma sets out two observable implications that will be useful for this purpose.

Lemma 1. Let Assumption 1 hold. Then

Xiβ ≥ 0 =⇒ E[2Yi − 1 | Xn] ≥ 0, (2.1)

Xiβ ≤ 0 =⇒ E[2Yi − 1 | Xn] ≤ 0. (2.2)

From the inequalities of the lemma, it further follows that if Xiβ = 0 then E[2Yi − 1 | Xn] = 0, and

furthermore that

E[2Yi − 1 | Xn] > 0 =⇒ Xiβ > 0,
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and

E[2Yi − 1 | Xn] < 0 =⇒ Xiβ < 0.

Moreover (2.1) and (2.2) and the implications of them described above hold with β replaced by any b that is

an element of the finite sample identified set B∗n, which can be proven by following precisely the same steps

as in the lemma with Ũi from Definition 1 replacing Ui.

With Lemma 1 in hand, the following theorem provides a moment inequality characterization of the finite

sample identified set.

Theorem 1. The finite sample identified set for β under Assumption 1 is

B∗n =

{
b ∈ B : ∀i = 1, . . . , n,

E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0,

E [(1− 2Yi) 1{Xib ≤ 0} | Xn] ≥ 0.

}
. (2.3)

The conditional moment inequalities characterizing B∗n in (2.3) are equivalent to (2.1) or (2.2) for all

i = 1, . . . , n. However, using this conditional moment inequality representation to conduct inference on β is

complicated by the fact that in a sample of n observations the distribution of Yi given Xn can vary across i,

even if (Yi, Xi) : i = 1, ..., n are identically distributed.

Some level of aggregation of these implications across i is therefore required. One way to do this is

to interact the expressions inside the conditional expectation operators in (2.3) with nonnegative-valued

instrument functions and take sample averages. Specifically, consider the conditional moment inequalities

m+
n

(
b, v+

)
≡ E

[
En
[
(2Y − 1)1{Xb ≥ 0}g+(X, v+)

]
| Xn

]
≥ 0, v+ ∈ V+

n , (2.4)

m−n
(
b, v−

)
≡ E

[
En
[
(1− 2Y )1{Xb ≤ 0}g−(X, v−)

]
| Xn

]
≥ 0, v− ∈ V−n , (2.5)

where g+(·, v+) and g−(·, v−) are collections of such instrument functions indexed by v+ ∈ V+
n and v− ∈ V−n ,

respectively. The inequalities (2.4) and (2.5) are valid for all b ∈ B∗n because they are implications of the

conditional moment inequalities characterizing B∗n in (2.3). Indeed, they are valid for any such collections of

nonnegative-valued instrument functions. A potential drawback to aggregation of the conditional moment

however is that (2.4) and (2.5) do not in general characterize B∗n, so that using the latter inequalities can

result in a loss of identification power.

Collections {g+(·, v+) : v+ ∈ V+
n } and {g−(·, v−) : v− ∈ V−n } are now defined so as ensure preservation

of the full identifying power of the conditional on Xn moment inequalities in (2.3). These collections differ

from those used by Andrews and Shi (2013) for translating the identifying power of conditional moment

inequalities to a collection of unconditional moment inequalities. In the present setting, there is no issue of

converting inequalities conditional on continuous variables to unconditional ones, because the conditioning

set in the inequalities characterizing B∗n is finite. Instead, the problem to be addressed is how best to

aggregate these implications across observations i given the non-i.i.d. nature of Yi conditional on Xn. In

constructing our collection of information-preserving instrument functions, we exploit two features specific

to the task at hand, namely first that our focus is on finite sample inference conditional on Xn and second

that whether or not E [2Yi − 1 | Xn] ≥ 0 (≤ 0) depends only on whether the linear index Xiβ is at least (at

most) zero.
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First, consider the following two sequences of binary indicators:

r+n (b) ≡ (1{X1b ≥ 0}, ..., 1{Xnb ≥ 0}) ,

r−n (b) ≡ (1{X1b ≤ 0}, ..., 1{Xnb ≤ 0}) .

Note that irrespective of how g+(X, v+) and g−(X, v−) are defined, m+
n (b, v+) = m+

n (b′, v+) whenever

r+n (b) = r+n (b′) and m−n (b, v−) = m−n (b′, v−) whenever r−n (b) = r−n (b′). Using the functions r+n (·) and

r−n (·), we denote by V+
n the coimage of the function r+n (·) on B, and by V−n that of the function r−n (·).3

The collections V+
n and V−n consist of sets whose members b all produce the same sequences of inequalities

Xib ≥ 0 and Xib ≤ 0, i = 1, ..., n, respectively. Since n is finite, there are only finitely many elements of

each of V+
n and V−n . With regard to the inequalities (2.4) and (2.5), all members v+ of any set in V+

n and all

members v− of any set in V−n ) produce the same values of m+
n (b, v+) and m−n (b, v−) for any b ∈ B. Thus it

will suffice to work with a single representative from each set, i.e., the full identifying power is preserved as

long as V+
n and V−n have a representative from each element of V+

n and V−n , respectively.

With sets V+
n and V−n now defined, the following Theorem establishes a representation of the finite sample

identified set B∗n given in (2.3) that takes the form of a finite collection of unconditional inequalities of the

form (2.4) and (2.5).

Theorem 2. Let Assumption 1 hold and let b ∈ B. If b ∈ B∗n then

∀v+ ∈ V+
n : E

[
En
[
(2Y − 1)1{Xb ≥ 0}1{Xv+ < 0}

]
| Xn

]
≥ 0, (2.6)

and

∀v− ∈ V−n : E
[
En
[
(1− 2Y )1{Xb ≤ 0}1{Xv− > 0}

]
| Xn

]
≥ 0. (2.7)

Moreover, the converse also holds if V+
n and V−n have at least one element from each member of V+

n and V−n ,

respectively.

The moment inequalities (2.6) and (2.7) are conditional on Xn and are thus different from those employed

previously in the literature. Our representation is perhaps most closely related to that of Chen and Lee (2017)

for the identified set in the underlying population. Their characterization uses inequalities that condition

on the values of two linear indices in X: Xb and Xγ, leading to significant dimension reduction when

estimating conditional moments employed for asymptotic inference. In this paper our goal is finite sample

inference, made operational by conditioning on Xn. Our construction leading to (2.6) and (2.7) exploits the

finite nature of Xn. This is done by establishing that given Xn, one can partition the parameter space B
into equivalence classes V+

n and V−n whose members comprise elements that all produce the same values of

moment functions m+
n (b, v+) and m−n (b, v−), respectively. Then, using our proposed instrument functions

the moment inequalities (2.6) and (2.7) aggregate values of 2Yi− 1 and 1− 2Yi according to whether a pairs

of indices Xb and Xv in each of the two inequalities disagree in particular directions.

3The coimage of a function f is defined as the quotient set of the equivalence relation defined by f .
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3 Test Statistic and Critical Value

To perform inference, we incorporate sample analogs of the moments appearing in (2.6) and (2.7), which are

m̂+
n

(
b, v+

)
≡ En

[
(2Y − 1)1{Xb ≥ 0, Xv+ < 0}

]
, v+ ∈ V+

n ,

m̂−n
(
b, v−

)
≡ En

[
(1− 2Y )1{Xb ≤ 0, Xv− > 0}

]
, v− ∈ V−n ,

into our test statistic Tn (b) ≡ max{0, T+
n (b) , T−n (b)} , where

T+
n (b) ≡ sup

v+∈V+
n

√
n

−m̂+
n (b, v+)

max{ε,
√
En[1{Xb ≥ 0, Xv+ < 0}]− m̂+

n (b, v+)
2}

,

and

T−n (b) ≡ sup
v−∈V−

n

√
n

−m̂−n (b, v−)

max{ε,
√
En[1{Xb ≤ 0, Xv− > 0}]− m̂−n (b, v−)

2}
.

Here ε is an arbitrarily small positive number taken to ensure a non-zero denominator.

Instead of deriving the finite sample distribution of Tn (b) under H0, we construct a random variable

T̄n (b) which has a known finite sample distribution given Xn such that

Tn(b) ≤ T̄n(b) under H0 : b = β. (3.1)

We define Ȳ1, . . . , Ȳn by

Ȳi = 1{Ui ≥ 0}

for every i = 1, . . . , n. Define T̄n (b) = max{0, T̄+
n (b) , T̄−n (b)}, where

m̄+
n

(
b, v+

)
= En

[
(2Ȳ − 1)1{Xb ≥ 0, Xv+ < 0}

]
, v+ ∈ V+

n ,

m̄−n
(
b, v−

)
= En

[
(1− 2Ȳ )1{Xb ≤ 0, Xv− > 0}

]
, v− ∈ V−n ,

T̄+
n (b) = sup

v+∈V+
n

√
n

−m̄+
n (b, v+)

max{ε,
√
En[1{Xb ≥ 0, Xv+ < 0}]− m̄+

n (b, v+)
2}

,

T̄−n (b) = sup
v−∈V−

n

√
n

−m̄−n (b, v−)

max{ε,
√

En[1{Xb ≤ 0, Xv− > 0}]− m̄−n (b, v−)
2}
.

Note that the finite sample distribution of T̄n (b) given Xn is known, since T̄n (b) is a function of (2Ȳ1 −
1, . . . , 2Ȳn − 1) given Xn and (2Ȳ1 − 1, . . . , 2Ȳn − 1) are independent Rademacher random variables.

Thus, for a given level α ∈ (0, 1), the critical value used for our test is the conditional 1− α quantile of

T̄n (b) given Xn, namely

q1−α ≡ inf{c ∈ R : P
(
T̄n(b) ≤ c | Xn

)
≥ 1− α}.

It can be computed up to arbitrary accuracy by drawing a large number of simulations, each of which

comprises a sequence of n independent Rademacher random variables.

The relationship between Tn(b) and T̄n(b) in (3.1) implies Theorem 3, establishing finite sample size

control of the proposed test. As is the case with all formal mathematical results stated in the paper, the

proofs of inequality (3.1) and Theorem 3 are in the Appendix.
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Theorem 3. Under the null H0 : β = b, P(Tn(b) ≤ q1−α | Xn) ≥ 1− α.

Theorem 3 establishes finite sample size control. While it is possible that P (Tn(β) ≤ q1−α | Xn) strictly

exceeds 1−α, the following theorem shows that a test with a smaller critical value cannot achieve size control

if the critical value is a deterministic function of Xn. It should however be noted that Theorem 4 is silent

with regard to critical values that are a function of both X1, ..., Xn and Y1, ..., Yn.

Theorem 4. Suppose cv is a random variable which depends on Xn. Assume that cv < q1−α given Xn.

There is a distribution of (U1, . . . , Un) given Xn under which cv does not achieve size control:

P(Tn(β) ≤ cv | Xn) < 1− α.

4 Power Properties

In this section, we establish a power result for the proposed test. This result imposes an additional restriction

relative to Assumption 1, namely that the binary variables Y1, ..., Yn are independently distributed conditional

on Xn. Then Hoeffding’s inequality is used to establish a lower bound on finite sample power for certain

violations of the inequalities (2.6) and (2.7) from Theorem 2. The result is given in the following Theorem.

Theorem 5. Let ρ be any number in (0, 1). Assume Y1, . . . , Yn are independent given Xn. If there is

v+ ∈ V+
n such that

E
[
En
[
(2Y − 1)1{Xb ≥ 0, Xv+ < 0}

]
| Xn

]
≤ − 1√

n

(
q1−α max

{
ε,

√
En[1{Xb ≥ 0, Xv+ < 0}]

1 + q21−α/n

}
+
√

2 log(1/ρ)En[1{Xb ≥ 0, Xv+ < 0}]

)
, (4.1)

or there is v− ∈ V−n such that

E
[
En
[
(1− 2Y )1{Xb ≤ 0, Xv− > 0}

]
| Xn

]
≤ − 1√

n

(
q1−α max

{
ε,

√
En[1{Xb ≤ 0, Xv− > 0}]

1 + q21−α/n

}
+
√

2 log(1/ρ)En[1{Xb ≥ 0, Xv− < 0}]

)
,

then the rejection probability is at least 1− ρ, i.e.,

P(Tn(b) > q1−α | Xn) ≥ 1− ρ.

5 Monte Carlo Experiments

In this section, we present some Monte Carlo results on the performance of our method as well as that of the

intersection bound test in Chernozhukov, Lee, and Rosen (2013) – henceforth CLR – applied to the moment

inequalities of which our test statistic Tn(b) is comprised. The sample size in the Monte Carlo experiments

reported here is 250 and the number of simulations is 500. The variable ε was set to MATLAB’s eps value of

approximately 2.2 ·10−16. To compute the critical value, we use 500 random draws of n Rademacher random

variables {ωi : i = 1, . . . , n} and 500 samples for the multiplier bootstrap in our application of CLR. The

implementation of CLR is described further in Section 5.3.
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We considered eight designs for these Monte Carlo experiments, four in which there is a continuous

covariate with large support resulting in point identification of β up to scale, and four in which covariates

are discretely distributed and point identification is lacking. We normalize the first component of β so that

β = (1, θ)′ for an unknown parameter θ. In all cases we considered tests with size α = 0.10.

5.1 Designs with point identification

In this subsection we report the results of Monte Carlo experiments using the simulation designs in Horowitz

(1992). X = (X1, X2) is a bivariate normal random vector with E[X1] = 0, E[X2] = 1, V ar(X1) =

V ar(X2) = 1 and Cov(X1, X2) = 0.

The distribution of unobservable U in each design is as follows.

• Design 1: U is distributed according to the logistic distribution with mean zero and variance one.

• Design 2: U is uniformly distributed on [−
√

12/2,
√

12/2].

• Design 3: U is distributed according to the Student’s t distribution normalized to have variance one.

• Design 4: U = 0.25(1 + 2Z2 + Z4) where Z = X1 +X2 and V is distributed according to the logistic

distribution with mean zero and variance one.

Figure 1 presents non-rejection frequencies for θ ranging from 0 to 3 for α = 0.10. The non-rejection

frequency is maximized around the population value of θ = 1 and exceeds 0.90 in a range spanning from

about 0.6 to 1.7. Our finite sample inference method performs slightly better than our implementation of

CLR does here, applied to the same moment inequalities. The CLR critical value makes use of an asymptotic

Gaussian approximation for studentized versions of each of the sample moments. Although our finite sample

approach does slightly better, the figure suggests that the asymptotic approximation is quite accurate at

this moderate sample size of n = 250. The CLR approach also incorporates a moment selection procedure

(described in Section 5.3) that in a first step discards moment inequalities that are sufficiently far from

binding, which can lead to power improvements relative to no moment selection. Our finite sample inference

approach has no such moment selection step.4

Since our method and our implementation of CLR use precisely the same moment inequalities, their only

difference stems from their use of different critical values. Figure 2 depicts these critical values, which in all

cases were somewhere between 2.5 and 3. The figure shows that for each θ the CLR critical value is slightly

higher than our proposed critical value. This comparison between the two critical values held up similarly

across each of Designs 1-4. In order to economize on space the comparison is only illustrated for Design 1.

Figures 3-5 show the analog of Figure 1, depicting non-rejection probabilities across θ for each of Designs

2-4. The qualitative comparison between the two approach is similar to that for Design 1, with the finite

sample valid critical value achieving size control, while also having an equal or slightly lower non-rejection

frequency across all values of θ, which translates to slightly greater power.

The finite sample approach to inference seems to perform well in these experiments. Future Monte Carlo

experiments will additionally compare the approach to other inference methods from the maximum score

literature, while also experimenting with both larger and smaller sample sizes.

4Moment selection approaches from the literature on inference based on moment inequalities guarantee that binding moments
are selected with probability approaching one as n → ∞. This is sufficient to guarantee asymptotic validity, but not for finite
sample validity.
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5.2 Designs without point identification

In this subsection, we consider designs in which the covariates are discrete and point identification fails. We

modify the distribution of X such that X1 takes −1 and 1 with equal probabilities and X2 takes 0 and 2

with equal probabilities. This distribution was used because X1 and X2 have the same means and variances

as in the previous designs. The identified set is θ ≥ 1/2.

The designs implemented were as follows:

• Design 5: U is distributed according to the logistic distribution with mean zero and variance one.

• Design 6: U is uniformly distributed on [−
√

12/2,
√

12/2].

• Design 7: U is distributed according to the Student’s t distribution normalized to have variance one.

• Design 8: U = 0.25(1 + 2Z2 + Z4) where Z = X1 +X2 and V is distributed according to the logistic

distribution with mean zero and variance one.

The nonrejection frequencies of both our finite sample procedure and the CLR procedure in Design 5 are

reported in Figure 6. The results reflect an earlier finding from Komarova (2013), where it was shown that

under mild conditions with discrete covariates an analog set estimator for the identified set for β converges to

the identified at an arbitrarily fast polynomial rate.5 In our simulations both procedures appear to internalize

this super consistency property, producing non-rejection probabilities of one for elements of the identified

set, and rejection probabilities of one for all elements not in the identified set. Figure 7 additionally reports

the critical values attained by each procedure. The CLR intersection bound procedure produces a smaller

critical value for all sample sizes in these experiments, although as Figure 6 illustrates, the difference has no

effect on the outcome of the test for any of the parameter values considered.

The Monte Carlo results for Designs 6-8 bore identical results to those of Design 5 in terms of non-rejection

probabilities, and a similar qualitative comparison between critical values. Due to the close similarity of the

results to those for Design 5 reported in Figures 6 and 7, figures for these results are omitted.

5.3 Implementation of Chernozhukov, Lee, and Rosen (2013)

Using the test statistic Tn (b) we also implement the inference method in CLR to compute an asymptotically

valid critical value based on a large sample Gaussian approximation to each of the constituent moments.

The implementation is similar to that of Chen and Lee (2017), but instead applied to the moment functions

described here, and with the supremum applied over finite sets of v+ and v− indexing the instrument

functions g+(·, v+) and g−(·, v−).

The critical value cv2 is computed in two steps. Consider n independent standard normal random

variables (η1, . . . , ηn). Denote by cv1 the 1− 0.1/ log(n) quantile of

max

{
0, sup
v+∈V+

n

µ̂+∗
n

(
b, v+; η1, . . . , ηn

)
, sup
v−∈V−

n

µ̂−∗n
(
b, v−; η1, . . . , ηn

)}
5That is, for any c > 0, ncρ(B̂, BI)

p−→ 0 as n → ∞, where B̂ denotes the set estimator and BI denotes the population
identified set. See also Blevins (2015).
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given {(Yi, Xi, Ui) : i = 1, ..., n}, where

µ̂+∗
n

(
b, v+; η1, . . . , ηn

)
≡
√
n
−En [η((2Y − 1)1{Xb ≥ 0, Xv+ < 0} − m̂+

n (b, v+))]

max{ε,
√
En[1{Xb ≥ 0, Xv+ < 0}]− m̂+

n (b, v+)
2}

, v+ ∈ V+
n ,

µ̂−∗n
(
b, v−; η1, . . . , ηn

)
≡
√
n
−En [η((1− 2Y )1{Xb ≤ 0, Xv− > 0} − m̂−n (b, v−))]

max{ε,
√
En[1{Xb ≤ 0, Xv− > 0}]− m̂−n (b, v−)

2}
, v− ∈ V−n .

The critical value cv1 is used to implement the adaptive inequality selection step of CLR. Moment inequalities

that are sufficiently far from binding can be safely discarded, and those that remain are collected in the sets

V̂+
n and V̂−n defined as

V̂+
n =

v+ ∈ V+
n :
√
n

−m̂+
n (b, v+)

max{ε,
√
En[1{Xb ≥ 0, Xv+ < 0}]− m̂+

n (b, v+)
2}

> −2cv1


V̂−n =

v− ∈ V−n :
√
n

−m̂−n (b, v−)

max{ε,
√

En[1{Xb ≤ 0, Xv− > 0}]− m̂−n (b, v−)
2}

> −2cv1

 .

The critical value used for the test statistic Tn(b) based on CLR is then cv2, defined as the 1−α quantile of

max

{
0, sup
v+∈V̂+

n

µ̂+∗
n

(
b, v+; η1, . . . , ηn

)
, sup
v−∈V̂−

n

µ̂−∗n
(
b, v−; η1, . . . , ηn

)}

conditional on the data {(Yi, Xi) : i = 1, ..., n}.

6 Conclusion

In this paper we have proposed an approach to conduct finite sample inference on the parameters of Manski’s

(1985) semiparametric binary response model, for which the maximum score estimator has been shown to

be cube-root consistent with a non-normal asymptotic distribution. Our finite sample inference approach

circumvents the need to accommodate the complicated asymptotic behavior of this point estimator. Since our

goal was finite sample inference, we considered the problem of making inference conditional on n covariate

vectors observable in a finite sample. With covariates having only finite observed values, the parameter

vector β is not point-identified. We therefore employed moment inequality implications for β for the sake

of constructing our test statistic for inference, as the moment inequalities are valid no matter whether β

is point identified. In order to exposit what observable implications can be distilled on only the basis of

exogenous variables observed in the finite sample, we defined the notion of a finite sample identified set.

We showed how to make use of the full set of observable implications conditional on the size n sequence

of exogenous variables in our construction of a test statistic Tn(b). Finite sample valid critical values were

established, and were shown to be easily computed by making use of many simulations of size n sequences of

independent Rademacher variables. A finite sample power property was presented and various Monte Carlo

experiments were reported.
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Figure 1: Non-rejection frequencies with 1− α = 90% for Design 1 with n = 250.
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Figure 2: Differences between the critical values in this paper and Chernozhukov, Lee, and Rosen (2013) for
Design 1 with n = 250.

Figure 3: Non-rejection frequencies with 1− α = 90% for Design 2 with n = 250.
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Figure 4: Non-rejection frequencies with 1− α = 90% for Design 3 with n = 250.

Figure 5: Non-rejection frequencies with 1− α = 90% for Design 4 with n = 250.

15



Figure 6: Non-rejection frequencies with 1− α = 90% for Design 5 with n = 250.

Figure 7: Differences between the critical values in this paper and Chernozhukov, Lee, and Rosen (2013) for
Design 5 with n = 250.

16



References

Abrevaya, J., and J. Huang (2005): “On the Bootstrap of the Maximum Score Estimator,” Econometrica,
73(4), 1175–1204.

Andrews, D. W. K., and X. Shi (2013): “Inference Based on Conditional Moment Inequalities,” Econo-
metrica, 81(2), 609–666.

Blevins, J. R. (2015): “Non-standard Rates of Convergence of Criterion-Function-Based Set Estimators
for Binary Response Models,” The Econometrics Journal, 18(2), 172–199.

Cattaneo, M. D., M. Jansson, and K. Nagasawa (2018): “Bootstrap-Based Inference for Cube Root
Consistent Estimators,” Working paper, arXiv:1704.08066.

Chen, L.-Y., and S. Lee (2017): “Breaking the Curse of Dimensionality in Conditional Moment Inequalities
for Discrete Choice Models,” CeMMAP working paper CWP 51/17.

(2018): “Best Subset Binary Prediction,” Journal of Econometrics, 206(1), 39 – 56.

Chernozhukov, V., C. Hansen, and M. Jansson (2009): “Finite Sample Inference for Quantile Regres-
sion Models,” Journal of Econometrics, 152(2), 93 – 103.

Chernozhukov, V., S. Lee, and A. M. Rosen (2013): “Intersection Bounds: Estimation and Inference,”
Econometrica, 81(2), 667–737.

Clopper, C., and E. S. Pearson (1934): “The Use of Confidence or Fiducial Limits Illustrated in the
Case of the Binomial,” Biometrika, 26(4), 404–413.
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A Proofs

Proof of Lemma 1. If Xiβ ≥ 0, then

Yi = 1{Xiβ + Ui ≥ 0} ≥ 1{Ui ≥ 0}

and therefore

E[2Yi − 1 | Xn] ≥ 2P(Ui ≥ 0 | Xn)− 1 = 0.

If Xiβ ≤ 0, then

Yi = 1{Xiβ + Ui ≥ 0} ≤ 1{Ui ≥ 0}

and therefore

E[2Yi − 1 | Xn] ≤ 2P(Ui ≥ 0 | Xn)− 1 = 0.

Proof of Theorem 1. That b ∈ B∗n implies E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0 and E [(1− 2Yi) 1{Xib ≤ 0} | Xn] ≥
0 follows directly from Lemma 1. To demonstrate the other direction, let b be any element of B such that

E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0 and E [(1− 2Yi) 1{Xib ≤ 0} | Xn] ≥ 0 for every i = 1, . . . , n. For any such

b:

Xib ≥ 0 =⇒ P(Yi = 1 | Xn) ≥ 1/2, (A.1)

Xib ≤ 0 =⇒ P(Yi = 1 | Xn) ≤ 1/2. (A.2)

To show that b is in B∗n as defined in Definition 1, we now construct a sequence of random variables {Ũi : i =

1, ..., n} such that for all i = 1, ..., n: (i) P(Yi = 1{Xib + Ũi ≥ 0} | Xn) = 1, and (ii) P(1{Ui ≥ 0} = 1{Ũi ≥
0} | Xn) = 1. To do so, let κi : i = 1, ..., n be n random variables defined on (Ω,F ,P) each with support on

(0,∞) and consider each of the cases Xiβ < 0, Xiβ = 0, and Xiβ > 0 in turn as follows.

Case 1: Xiβ < 0: Let

Ũi ≡ 1{Ui ≥ −Xiβ} ·max{−Xib, 0}+ 1{0 ≤ Ui < −Xiβ} · 0 + 1{Ui < 0} · (min{−Xib, 0} − κi).

From this construction of Ũi, 1{Ũi ≥ 0} = 1{Ui ≥ 0}, which verifies (ii). To verify (i), we use the following

equality:

1{Xib+ Ũi ≥ 0} = Yi + 1{0 ≤ Ui < −Xiβ,Xib ≥ 0}. (A.3)

If Xib < 0 then (A.3) implies 1{Xib+ Ũi ≥ 0} = Yi, which verifies (i) when Xib < 0. For the rest of Case 1,

we assume Xib ≥ 0. (2.2) and (A.1) imply that P(Yi = 1 | Xn) = 1/2. Therefore,

P(0 ≤ Ui < −Xiβ | Xn) = P(Ui ≥ 0 | Xn)− P(Ui ≥ −Xiβ | Xn) = P(Ui ≥ 0 | Xn)− P(Yi = 1 | Xn) = 0.

Thus, together with (A.3),

P(Yi = 1{Xib+ Ũi ≥ 0} | Xn) = P(1{0 ≤ Ui < −Xiβ} = 0 | Xn) = 1,

which verifies (i).
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Case 2: Xiβ = 0: Let

Ũi ≡ 1{Ui ≥ 0} ·max{−Xib, 0}+ 1{Ui < 0} · (min{−Xib, 0} − κi).

Then 1{Ũi ≥ 0} = 1{Ui ≥ 0}, which verifies (ii). Since Xiβ = 0, we have 1{Xib + Ũi ≥ 0} = 1{Ui ≥ 0} =

1{Xiβ + Ui ≥ 0}, which verifies (i).

Case 3: Xiβ > 0: Let

Ũi ≡ 1{Ui ≥ 0} ·max{−Xib, 0}+ 1{−Xiβ ≤ Ui < 0} · (−Xib) + 1{Ui < −Xib} · (min{−Xib, 0} − κi).

From this construction of Ũi,

1{Xib+ Ũi ≥ 0} = 1{Ui ≥ −Xiβ} = Yi,

which verifies (i). To verify (ii), we use the following equality:

1{Ũi ≥ 0} = 1{Ui ≥ 0}+ 1{−Xiβ ≤ Ui < 0,−Xib ≥ 0}. (A.4)

If Xib > 0 then (A.4) implies 1{Ũi ≥ 0} = 1{Ui ≥ 0}, which verifies (ii) when Xib > 0. For the rest of Case

3, we assume Xib ≤ 0. (2.1) and (A.2) imply that P(Yi = 1 | Xn) = 1/2. Therefore,

P(−Xiβ ≤ Ui < 0 | Xn) = P(Ui ≥ −Xiβ | Xn)− P(Ui ≥ 0 | Xn) = P(Yi = 1 | Xn)− P(Ui ≥ 0 | Xn) = 0.

Thus, together with (A.4),

P(1{Ũi ≥ 0} = 1{Ui ≥ 0} | Xn) = P(1{−Xiβ ≤ Ui < 0} = 0 | Xn) = 1,

which verifies (ii).

Proof of Theorem 2. That b ∈ B∗n implies (2.6) and (2.7) is immediate. To demonstrate the other direction,

we are going to show that (2.6) and (2.7) imply that

E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0 and E [(1− 2Yi) 1{Xib ≤ 0} | Xn] ≥ 0 (A.5)

for every i = 1, . . . , n. Note that under Assumption 1 (iii), there is a v+ ∈ V+
n and a v− ∈ V−n such that
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r+n (v+) = r+n (β) and r−n (v−) = r−n (β). Lemma 1 implies

−En [|E [2Y − 1 | Xn] |1{Xb ≥ 0, Xβ < 0}]

= En [E [2Y − 1 | Xn] 1{Xb ≥ 0, Xβ < 0}]

= En
[
E [2Y − 1 | Xn] 1{Xb ≥ 0, Xv+ < 0}

]
= E

[
En
[
(2Y − 1)1{Xb ≥ 0, Xv+ < 0}

]
| Xn

]
≥ 0 (A.6)

−En [|E [2Y − 1 | Xn] |1{Xb ≤ 0, Xβ > 0}]

= En [E [1− 2Y | Xn] 1{Xb ≤ 0, Xβ > 0}]

= En
[
E [1− 2Y | Xn] 1{Xb ≤ 0, Xv− > 0}

]
= E

[
En
[
(1− 2Y ) 1{Xb ≤ 0, Xv− > 0}

]
| Xn

]
≥ 0. (A.7)

Since both |E [2Y − 1 | Xn] |1{Xb ≥ 0, Xβ < 0} and |E [2Y − 1 | Xn] |1{Xb ≤ 0, Xβ > 0} are non-negative,

we have

|E [2Yi − 1 | Xn] |1{Xib ≥ 0, Xiβ < 0} = |E [2Yi − 1 | Xn] |1{Xib ≤ 0, Xiβ > 0} = 0 (A.8)

for every = 1, . . . , n. For every i with E [2Yi − 1 | Xn] = 0, Eq. (A.5) holds with equality. For every i with

E [2Yi − 1 | Xn] > 0, we have Xiβ > 0 from Lemma 1, and therefore Eq. (A.8) implies Xib > 0, which in

turn implies Eq. (A.5). For every i with E [2Yi − 1 | Xn] < 0, we have Xiβ < 0 from Lemma 1, and therefore

Eq. (A.8) implies Xib < 0, which in turn implies Eq. (A.5).

Proof of Theorem 3. If Eq. (3.1) holds under H0, then

P (Tn(β) ≤ q1−α | Xn) ≥ P
(
T̄n(β) ≤ q1−α | Xn

)
≥ 1− α.

For the rest of the proof, we are going to show Eq. (3.1) under H0. SinceYi ≥ Ȳi if Xiβ ≥ 0

Yi ≤ Ȳi if Xiβ ≤ 0,

for every i = 1, . . . , n, we have

m̂+
n

(
β, v+

)
≥ m̄+

n

(
β, v+

)
, v+ ∈ V+

n

m̂−n
(
β, v−

)
≥ m̄−n

(
β, v−

)
, v− ∈ V−n .

By the construction of T̄n (β) and Tn (β), it suffices to show that, for every v+ ∈ V+
n , the function

f(t) ≡ max

{
0,
√
n

−t
max{ε,

√
En[1{Xβ ≥ 0, Xv+ < 0}]− t2}

}
(A.9)
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is weakly decreasing and that, for every v− ∈ V−n , the function

t 7→ max

{
0,
√
n

−t
max{ε,

√
En[1{Xβ ≥ 0, Xv− < 0}]− t2}

}

is weakly decreasing. For the rest of the proof, we focus on the mapping in Eq. (A.9). Consider t1 and t2

with t1 < t2. If t2 ≥ 0, we have f(t1) ≥ 0 = f(t2). So we assume t1 < t2 < 0. Since t22 < t21, we have

En[1{Xβ ≥ 0, Xv+ < 0}]− t21 < En[1{Xβ ≥ 0, Xv+ < 0}]− t22,

so

0 < max

{
ε,
√

En[1{Xβ ≥ 0, Xv+ < 0}]− t21
}
≤ max

{
ε,
√

En[1{Xβ ≥ 0, Xv+ < 0}]− t22
}
.

Since −t1 > −t2 > 0, we have

−t1
max{ε,

√
En[1{Xβ ≥ 0, Xv+ < 0}]− t21}

>
−t2

max{ε,
√

En[1{Xβ ≥ 0, Xv+ < 0}]− t22}
.

Therefore, f(t1) > f(t2).

Proof of Theorem 4. We have

P
(
T̄n(β) ≤ cv | Xn

)
< 1− α− η.

for some η. Consider a conditional distribution of (U1, . . . , Un) given Xn under which U1, . . . , Un are inde-

pendent given Xn and Ui | Xn ∼ N(0, σ2) for every i = 1, . . . , n, where σ is defined by

σ−nφ(0)n
n∏
i=1

|Xiβ| = 1− η.

For every i = 1, . . . , n, define Di = 1{Yi = Ȳi}. Note that if Di = 1 for every i = 1, . . . , n, then Tn(β) =

T̄n(β). Then

P (Tn(β) ≤ cv | Xn) ≤ P (Tn(β) ≤ cv ∧ Di = 1 for every i = 1, . . . , n | Xn)

+1− P (Di = 1 ∀i = 1, . . . , n | Xn)

= P
(
T̄n(β) ≤ cv ∧ Di = 1 for every i = 1, . . . , n | Xn

)
+1− P (Di = 1 ∀i = 1, . . . , n | Xn)

= P
(
T̄n(β) ≤ cv | Xn

)
+ 1− P (Di = 1 ∀i = 1, . . . , n | Xn)

< 1− α− η + 1− P (Di = 1 ∀i = 1, . . . , n | Xn) .
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The statement of this theorem follows from

P (Di = 1 for every i = 1, . . . , n | Xn) =

n∏
i=1

P (Di = 1 | Xn)

≤
n∏
i=1

(
Φ

(
|Xiβ|
σ

)
− 1

2

)

≤
n∏
i=1

|Xiβ|
σ

φ(0)

= η.

Proof of Theorem 5. In this proof, we focus on Eq. (4.1). Define W = (2Y − 1)1{Xb ≥ 0, Xv+ < 0}.
First, we are going to show that

√
nEn[W ] < −q1−α max

{
ε,

√
En[W 2]

1 + q21−α/n

}
=⇒ Tn(b) > q1−α. (A.10)

Suppose
√
nEn[W ] < −q1−α max

{
ε,
√

En[W 2]
1+q21−α/n

}
. Note that

En[W ] < 0 (A.11)

and

nEn[W ]2 > max

{
ε2q21−α,En[W 2]

q21−α
1 + q21−α/n

}
.

The second inequality implies

nEn[W ]2 > max{ε2q21−α,En[W 2]q21−α − En[W ]2q21−α}.

Using Eq. (A.11),

−
√
nEn[W ] > q1−α max{ε,

√
En[W 2]− En[W ]2}.

Then
√
n

−En[W ]

max{ε,
√
En[W 2]− En[W ]2}

> q1−α

which implies Tn > q1−α.

Then, we are going to show P(Tn > q1−α | Xn) ≥ 1− ρ. Using Eq. (A.10), we have

P(Tn > q1−α | Xn) ≥ P

(
√
nEn[W ] < −q1−α max

{
ε,

√
En[W 2]

1 + q21−α/n

}
| Xn

)
.
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Eq. (4.1) implies

P(Tn > q1−α | Xn) ≥ P

(
En[W ] < E [En[W ] | Xn] +

√
2 log(1/ρ)En[1{Xb ≥ 0, Xv+ < 0}]

n
| Xn

)

= 1− P

(
En[W ] ≥ E [En[W ] | Xn] +

√
2 log(1/ρ)En[1{Xb ≥ 0, Xv+ < 0}]

n
| Xn

)
.

Since

−1{Xb ≥ 0, Xv+ < 0} ≤Wi ≤ 1{Xb ≥ 0, Xv+ < 0}

for every i = 1, . . . , n, Hoeffding (1963)’s inequality implies

P(Tn > q1−α | Xn) ≥ 1− exp

−
2n2

(√
2 log(1/ρ)En[1{Xb≥0,Xv+<0}]

n

)2

4
∑n
i=1 1{Xib ≥ 0, Xiv+ < 0}

 = 1− ρ.
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