Screening in Vertical Oligopolies

Hector Chade ASU Jeroen Swinkels NWU–Kellogg

November 2020

Motivation

- Screening is central in economic theory and empirical work
 - Mussa and Rosen (1978), Maskin and Riley (1984), Rothschild-Stiglitz (1976)
- This paper \rightarrow screening with oligopolistic competition
- Important questions:
 - What do equilibria look like? Do pure-strategy equilibria exist?
 - Who does asymmetric information help or hurt?
 - What are the equilibrium effects of entry, or of mergers?

Main Results

- Necessary conditions for equilibrium
- Sufficiency conditions and existence
- Welfare, entry, mergers

Literature on Oligopolistic Screening

- Spulber (1989)
- Champsaur and Rochet (1989)
- Biglaiser and Mezzetti (1993)
- Stole (1995)
- Jullien (2000)

The Model

Principals and Agents

Unit measure of agents (customers or workers)

$$\theta \in [0,1], \ \theta \sim H, \ \mathcal{C}^1 \ \text{density} \ h > 0$$

• H and 1 - H strictly log-concave

Each agent chooses an observable action $a \ge 0$

• Utility $\mathcal{U}(a) + a\theta - t$, \mathcal{U} is \mathcal{C}^2 , $t \in \mathbb{R}$

■ N principals (firms)

- Profit $\mathcal{V}^n(a) + t$, $\mathcal{V}^n(a)$ strictly spm (a, n), \mathcal{C}^2 in a
- Profits additively separable across agents served

• Match surplus between n and θ who chooses a is $V^n(a) + a\theta$

• $V^n(a) = \mathcal{V}^n(a) + \mathcal{U}(a)$, V^n strictly concave

Examples

Contracts, Surplus, and Profits

- Firm n offers a menu (α^n, t^n) (pair of functions)
 - $\blacksquare \ \alpha^n(\theta) \rightarrow \text{action required of } \theta \text{ by } n$
 - $t^n(\theta) \to \text{transfer to } \theta$ by n
- Contracts are exclusive, cannot depend on offers of other firms
- Equivalently, $v^n(\theta) = \mathcal{U}(\alpha^n(\theta)) + \alpha^n(\theta)\theta t^n(\theta)$, and Firm *n* offers (α^n, v^n)
 - $v^n(\theta) \rightarrow \text{surplus offered to } \theta$ by n
- Menu (α^n, v^n) incentive compatible iff
 - α^n increasing

•
$$v^n(\theta) = v^n(0) + \int_0^\theta \alpha^n(\tau) d\tau$$

• $S^n \to \text{incentive compatible menus } s^n = (\alpha^n, v^n), \ S = \times_{n=1}^N S^n$

Contracts, Surplus, and Profits

Profit to n on θ if surplus to agent is v_0 and action is a is

$$\pi^n(\theta, a, v_0) \equiv V^n(a) + a\theta - v_0$$

- Write $\pi^n(\theta, \alpha, v)$ for $\pi^n(\theta, \alpha(\theta), v(\theta))$
- Assumption (Relevance) \rightarrow Each firm is uniquely best at serving some type:
 - For each n there is a θ such that

$$v_*^n(\theta) \equiv \max_a(V^n(a) + a\theta) > \max_{n' \neq n} v_*^{n'}(\theta)$$

By strictly spm V^n , there is then an interval of actions (a_e^{n-1}, a_e^n) , with $V^n(a_e^n) = V^{n+1}(a_e^n)$, such that n is most efficient at action a in the interval

The Game and Equilibrium

- Firms simultaneously post menus $s^n = (\alpha^n, v^n)$
 - Notation: s^{-n} , s, $v^{-n}(\theta) = \max_{n' \neq n} v^{n'}(\theta)$, a^{-n} slope of v^{-n}

• v^{-n} and a^{-n} summarize everything n cares about

- Agents sort themselves to the most advantageous firm and announce types
- Firm n wins θ if $v^n(\theta) > v^{-n}(\theta)$ and loses if $v^n(\theta) < v^{-n}(\theta)$
- Ties broken equiprobably

The Game and Equilibrium

$$\Pi^n(s) = \int \pi^n(\theta, \alpha^n, v^n) \varphi^n(\theta, s) h(\theta) d\theta$$

$$BR^{n}(s) = \arg \max_{s^{n} \in S^{n}} \Pi^{n}(s^{n}, s^{-n})$$

• A strategy profile s is a Nash equilibrium of $(S^n, \Pi^n)_{n=1}^N$ if $\forall n, s^n \in BR^n(s)$

- Pure strategies
- Refinement: No Extraneous Offers (NEO)

Equilibrium exhibits *NEO* if α^n is continuous with actions in $[a_e^{n-1}, a_e^n]$

Necessary Conditions

Positive Profits (PP) and No Poaching (NP)

- $\blacksquare PP \rightarrow \mathsf{Probability}\ \mathsf{Firm}\ n$ serves a type on whom it strictly loses money is 0
 - Intuition: given any $s^n \in S^n$, get rid of losing money contracts (private values)
 - Implications: strictly positive expected profits, no cross-subsidization
- $NP \to \text{For all } \theta, v^O(\theta) \ge V^{(2)}(a^O(\theta)) + a^O(\theta)\theta$
 - $v^{O}(\cdot) = \max_{n} v(\cdot), a^{O}(\cdot)$ associated actions, $V^{(2)}(a)$ second largest $V^{n}(a)$
 - Imitating θ 's equilibrium contract is unprofitable

Positive Sorting (PS)

- $PS \rightarrow \text{Ordered intervals } (\theta_l^n, \theta_h^n)$
 - $\varphi^n = 1$ on (θ_l^n, θ_h^n)
 - $\varphi^n = \frac{1}{2}$ on $[\theta_h^{n-1}, \theta_l^n]$ and $[\theta_h^n, \theta_l^{n+1}]$
- Intuition: Single-crossing
- $SPS \rightarrow \theta_h^{n-1} = \theta_l^n$ for all n (no overlap)
- Implications:
 - Competition between adjacent firms can lead to overlap
 - Complete profit dissipation on overlapped types
 - \blacksquare If firms are differentiated enough, then SPS and gaps in actions
 - α^n continuous where $v^n \ge v^{-n}$ (property of best response)

Strict PS

Internal Optimality (IO)

 $\hfill \hfill \hfill$

$$\pi_a^n(\theta, \gamma^n(\theta, \kappa), v) = \frac{\kappa - H(\theta)}{h(\theta)}$$

where $\kappa \in [0,1]$ and $\pi_a^n = V_a^n + \theta$

- $IO \rightarrow$ for each n there is $\kappa^n \in [H(\theta_l^n), H(\theta_h^n)]$, $\kappa^1 = 0$ and $\kappa^N = 1$, such that $\alpha^n = \gamma^n(\cdot, \kappa^n)$ on $[\theta_l^n, \theta_h^n]$
- Implications,
 - Firm 1 distorts actions upwards, Firm N downwards
 - A middle firm n distorts actions downward below $\theta_0^n = H^{-1}(\kappa^n)$, upwards above

Proof relies on solution of a relaxed problem

Relaxed

Optimal Boundaries (OB)

$$OB \rightarrow \begin{cases} \pi^n(\theta_h^n, \alpha^n, v^n) + \pi^n_a(\theta_h^n, \alpha^n, v^n)(a^{-n}(\theta_h^n) - \alpha^n(\theta_h)) = 0\\ \pi^n(\theta_l^n, \alpha^n, v^n) - \pi^n_a(\theta_l^n, \alpha^n, v^n)(\alpha^n(\theta_l^n) - a^{-n}(\theta_l^n)) = 0 \end{cases}$$

- Discard the second condition for Firm 1, and the first one for Firm N
- Intuition (with SPS) ▶
- In contrast to NP, OB is about local changes in who is served
- Implications:
 - For $n \neq \{1, N\}$, $\kappa^n \in (H(\theta_l^n), H(\theta_h^n))$, so upward/downward distortions bite
 - Most profitable type is interior for $n \neq \{1, N\}$
 - π^n strictly single peaked at θ_0 , $\pi^n > 0$ on (θ_l^n, θ_h^n) , and on $[\theta_l^n, \theta_h^n]$ if SPS

Sufficiency and Existence

Stacking and Main Result

- Stacking \rightarrow for all $n < N, \gamma^{n+1}(\cdot, 1) > \gamma^n(\cdot, 0)$
 - Eliminates ties at boundaries; holds if firms are differentiated enough
 - v^n and v^{n+1} cross strictly; set of types served change continuously in s^n
- Given s⁻ⁿ and n, sⁿ and ŝⁿ are equivalent if they differ only where neither wins; strategy profiles s and ŝ equivalent if equivalent for each n

Theorem

Assume stacking. Then any strategy profile satisfying PS, IO, and OB is equivalent to a Nash equilibrium, and a Nash equilibrium exists.

- Result affords easy numeric analysis: 3N 3 equations and unknowns end
- Sufficiency is hard since $\Pi^n(\cdot, s^{-n})$ not quasiconcave
- Existence is hard since Π^n not continuous, $\Pi^n(\cdot, s^{-n})$ not quasiconcave

Sufficiency

- \blacksquare Move from choice by n of s^n to a two-dimensional problem
 - By IO, $\alpha^n(\cdot) = \gamma^n(\cdot, \kappa^n)$, and can focus on optimal choice of θ^n_l, θ^n_h
- We restrict menus as follows:
 - **C1** α^n continuous, $\alpha^n(\theta) \in [\gamma^n(\theta, 1), \gamma^n(\theta, 0)]$ for all θ

C2
$$v^n \le v^n_*$$

• We can then relate n's original problem with $\max_{\theta_l, \theta_h} r(\theta_l, \theta_h)$

Proposition

Assume stacking. Fix n and s^{-n} satisfying C1 and C2. Then, r has a maximum (θ_l, θ_h) , and \hat{s} is a maximum of $\Pi^n(\cdot, s^{-n})$ if and only if for some maximum (θ_l, θ_h) of r, \hat{s} is the single winner on (θ_l, θ_h) , and \hat{s} and $\tilde{s}(\theta_l, \theta_h)$ are equivalent.

Does r have a unique maximum? Yes. Most of the work is here

Sufficiency

- Outline of the proof of sufficiency:
 - Let \hat{s} satisfy stacking, *PS*, *IO*, *OB*
 - Fix n, let $\hat{s}^n = (\hat{\alpha}, \hat{v})$ with $\hat{\kappa}$
 - $IO \Rightarrow C1$ on (θ_l, θ_h) , and with $OB \Rightarrow \pi^n > 0$ for all $\theta \in [\theta_l, \theta_h] \Rightarrow C2$ holds
 - **Redefine** $(\hat{\alpha}, \hat{v})$ outside $[\theta_l, \theta_h]$ so **C1** and **C2** hold as well \rightarrow equivalent (α, v)
 - Do the same for all n to obtain strategy profile s
 - Unique maximum property (where profits are positive) of r yields best response property of sⁿ = (a, v) against s⁻ⁿ
 - **Thus**, \hat{s} is equivalent to a Nash Equilibrium

Existence

Outline of the proof of existence:

- Restrict strategy space so that continuity and convexity of best responses hold
- **C3** uniform bound on γ and its slope; **C4** lower bound of surplus at $\theta = 1$
- For each n define $S_R^n \subset S^n$ s.t. **C1–C4** hold
- If $s^{-n} \in S_R^{-n}$, then $BR^n(s^{-n}) \cap S_R^n$ (sufficiency is key here)
- (Sⁿ_R, Πⁿ)^N_{n=1} has a Nash Equilibrium (all the conditions of Kakutani-Fan-Glicksberg Theorem are satisfied; sufficiency is key here)

Implications and Applications

Welfare Effects

- Consider the complete information version of the model
- In a monopoly world,
 - Agents lose all information rents
 - Allocation becomes efficient
 - Firm is unambiguously better off
- In our setting,
 - Agents again lose information rents
 - \blacksquare But poaching is easier and so v^{-n} increases
 - Agents near the "boundaries" are unambiguously better off
 - All agents can be strictly better off

Welfare Effects

TWO shorter.pdf

- What are the effects of mergers in our setting?
- Building block → Multiplant monopoly case
 - Single firm M controls technologies $V^{n_l}, .., V^{n_h}$
 - Faces a type dependent outside option \bar{u} , first "shallow" then "steep" (stacking)
 - All previous results apply (M serves $[\theta_l^M, \theta_h^M]$, IO with single κ , OB)
 - Finite number of jumps in γ^M Multiplant

- Oligopoly $n_l, ..., n_h$ versus multiplant monopoly M
 - Fixed span: both serve $[\theta_l, \theta_h]$ ("must-serve" condition imposed on M)
- All types in (θ_l, θ_h) are strictly worse off under M
 - An interval of low types receive a strictly lower action than before
 - An interval of high types receiving a strictly higher action than before
- Intuition \rightarrow more interior types to extract rents from
- Must-serve condition not enough to protect consumers after a merger

 \blacksquare Without legal constraint, M will not only lower surplus but also shed types

Theorem

Let M optimally serve $[\theta_l^M, \theta_h^M]$. Then $[\theta_l^M, \theta_h^M] \subset [\theta_l, \theta_h]$. All types in (θ_l, θ_h) are strictly worse off compared to oligopoly.

- What if M is just a subset of all firms?
- There are countervaling forces Merger
 - $\blacksquare~M$ lowers surplus and sheds types \rightarrow incentives for other firms to lower surplus
 - Adjacent firms to M can gain types "cheaply" \rightarrow incentives to increase surplus
 - All computed examples show first effect dominates, and also that it is better to have a merger than to let a firm exit ("failing-firm" defense)

Conclusion

- Screening among heterogeneous oligopolists
 - Higher-index firms serve higher intervals of types
 - Equilibrium pinned down by intuitive local conditions
 - Implications for welfare, mergers, and entry
- Many open questions
 - Horizontal differentiation
 - Common values
 - Moral hazard

Competitive Limit

- Forces that affect equilibrium surplus of any given type:
 - Action is distorted; firm and type mismatched; firm that serves type earns profits
- As number of firms grows we obtain efficiency and all surplus goes to agents
 - Firms enter at a cost F > 0 and choose $z \in [\underline{z}, \overline{z}]$, $V(\cdot, z)$
 - For any N, there is $[z_l, z_h]$ s.t. $z_l \leq z^1 < \cdots < z^N \leq z_h$, so $V^n(a) = V(a, z^n)$
 - Equilibrium with endogenous entry (EEE): $\Pi^n \ge F$, no new entrant can do so

Theorem

In any EEE with NEO, there is $\rho \in (0,\infty)$ s.t. $1/(\rho F^{1/3}) \leq N \leq (\rho/F^{1/3}) + 2$, while π , and difference between $v(\theta)$ earns and $v_*(\theta)$ are each of order $1/N^2$.

Examples

Product market with quality differentiation:

• $\mathcal{V}^n(a) = -c^n(a)$, c^n cost to Firm n of quality a, c^n is convex, strictly sbm

• $\mathcal{U}(a) + a\theta = \sqrt{\rho + a} + a\theta$, $\rho > 0$ small, be the value to θ of product quality a

$$V^n(a) = \sqrt{\rho + a} - c^n(a)$$

Labor market:

- $\mathcal{V}^n(a) = \zeta^n + \beta^n \log(\rho + a), \ \rho > 0$ small, β^n is strictly increasing in n
- Worker's effort disutility $c(a) a\theta$, c convex, and thus $\mathcal{U}(a) + a\theta = -c(a) + a\theta$

$$V^n(a) = \zeta^n + \beta^n \log(\rho + a) - c(a) \xrightarrow{} \text{Back} \xrightarrow{} \text{Stacking}$$

Relaxed Problem

$$\begin{aligned} r(\theta_l, \theta_h) &= \max_{(\alpha, v)} \int_{\theta_l}^{\theta_h} \pi(\theta, \alpha, v) h(\theta) d\theta \\ s.t. \ v(\theta_l) &\geq v^{-n}(\theta_l) \\ v(\theta_h) &\geq v^{-n}(\theta_h), \text{ and} \\ v(\theta) &= v(0) + \int_0^{\theta} \alpha(\tau) d\tau \text{ for all } \theta \end{aligned}$$

Solution is unique on $[\theta_l, \theta_h]$ and with the IO form

Elsewhere set $\alpha(\theta) = \alpha(\theta_h)$ for all $\theta \ge \theta_h$, $\alpha(\theta) = \alpha(\theta_l)$ for all $\theta \le \theta_l$ back

Numeric Analysis

- Unknowns: $N v^n(0)$'s, $N-1 \theta^n$'s, $N-2 \kappa^n$'s, so 3N-3 unknowns
- Equations:

$$v^{n}(\theta^{n}) - v^{n+1}(\theta^{n}) = 0$$

$$\pi^{n}(\theta^{n}, \gamma^{n}(\cdot, \kappa^{n}), v^{n}) + (\kappa^{n} - \theta^{n})(\gamma^{n+1}(\theta^{n}) - \gamma^{n}(\theta^{n})) = 0$$

$$\pi^{n+1}(\theta^{n}, \gamma^{n+1}(\cdot, \kappa^{n+1}), v^{n+1}) + (\kappa^{n+1} - \theta^{n})(\gamma^{n}(\theta^{n}) - \gamma^{n+1}(\theta^{n})) = 0$$

• N equal surplus at boundaries, 2(N-1) OB, so 3N-3 equations • Back

figure1.pdf

