Screening in Vertical Oligopolies

Hector Chade Jeroen Swinkels
ASU

November 2020

Motivation

- Screening is central in economic theory and empirical work
- Mussa and Rosen (1978), Maskin and Riley (1984), Rothschild-Stiglitz (1976)
- This paper \rightarrow screening with oligopolistic competition
- Important questions:
- What do equilibria look like? Do pure-strategy equilibria exist?
- Who does asymmetric information help or hurt?
- What are the equilibrium effects of entry, or of mergers?

Main Results

■ Necessary conditions for equilibrium

- Sufficiency conditions and existence
- Welfare, entry, mergers

Literature on Oligopolistic Screening

- Spulber (1989)
- Champsaur and Rochet (1989)
- Biglaiser and Mezzetti (1993)
- Stole (1995)
- Jullien (2000)

The Model

Principals and Agents

■ Unit measure of agents (customers or workers)

- $\theta \in[0,1], \theta \sim H, \mathcal{C}^{1}$ density $h>0$
- H and $1-H$ strictly log-concave
- Each agent chooses an observable action $a \geq 0$
- Utility $\mathcal{U}(a)+a \theta-t, \mathcal{U}$ is $\mathcal{C}^{2}, t \in \mathbb{R}$
- N principals (firms)
- Profit $\mathcal{V}^{n}(a)+t, \mathcal{V}^{n}(a)$ strictly $\operatorname{spm}(a, n), \mathcal{C}^{2}$ in a
- Profits additively separable across agents served
- Match surplus between n and θ who chooses a is $V^{n}(a)+a \theta$
- $V^{n}(a)=\mathcal{V}^{n}(a)+\mathcal{U}(a), V^{n}$ strictly concave

Contracts, Surplus, and Profits

- Firm n offers a menu $\left(\alpha^{n}, t^{n}\right)$ (pair of functions)
- $\alpha^{n}(\theta) \rightarrow$ action required of θ by n
- $t^{n}(\theta) \rightarrow$ transfer to θ by n
- Contracts are exclusive, cannot depend on offers of other firms
- Equivalently, $v^{n}(\theta)=\mathcal{U}\left(\alpha^{n}(\theta)\right)+\alpha^{n}(\theta) \theta-t^{n}(\theta)$, and Firm n offers $\left(\alpha^{n}, v^{n}\right)$
- $v^{n}(\theta) \rightarrow$ surplus offered to θ by n
- Menu (α^{n}, v^{n}) incentive compatible iff
- α^{n} increasing
- $v^{n}(\theta)=v^{n}(0)+\int_{0}^{\theta} \alpha^{n}(\tau) d \tau$
- $S^{n} \rightarrow$ incentive compatible menus $s^{n}=\left(\alpha^{n}, v^{n}\right), S=\times_{n=1}^{N} S^{n}$

Contracts, Surplus, and Profits

- Profit to n on θ if surplus to agent is v_{0} and action is a is

$$
\pi^{n}\left(\theta, a, v_{0}\right) \equiv V^{n}(a)+a \theta-v_{0}
$$

- Write $\pi^{n}(\theta, \alpha, v)$ for $\pi^{n}(\theta, \alpha(\theta), v(\theta))$
- Assumption (Relevance) \rightarrow Each firm is uniquely best at serving some type:
- For each n there is a θ such that

$$
v_{*}^{n}(\theta) \equiv \max _{a}\left(V^{n}(a)+a \theta\right)>\max _{n^{\prime} \neq n} v_{*}^{n^{\prime}}(\theta)
$$

- By strictly spm V^{n}, there is then an interval of actions $\left(a_{e}^{n-1}, a_{e}^{n}\right)$, with $V^{n}\left(a_{e}^{n}\right)=V^{n+1}\left(a_{e}^{n}\right)$, such that n is most efficient at action a in the interval

The Game and Equilibrium

- Firms simultaneously post menus $s^{n}=\left(\alpha^{n}, v^{n}\right)$
- Notation: $s^{-n}, s, v^{-n}(\theta)=\max _{n^{\prime} \neq n} v^{n^{\prime}}(\theta), a^{-n}$ slope of v^{-n}
- v^{-n} and a^{-n} summarize everything n cares about
- Agents sort themselves to the most advantageous firm and announce types

■ Firm n wins θ if $v^{n}(\theta)>v^{-n}(\theta)$ and loses if $v^{n}(\theta)<v^{-n}(\theta)$

- Ties broken equiprobably

The Game and Equilibrium

- $\Pi^{n}(s)=\int \pi^{n}\left(\theta, \alpha^{n}, v^{n}\right) \varphi^{n}(\theta, s) h(\theta) d \theta$
- $B R^{n}(s)=\arg \max _{s^{n} \in S^{n}} \Pi^{n}\left(s^{n}, s^{-n}\right)$
- A strategy profile s is a Nash equilibrium of $\left(S^{n}, \Pi^{n}\right)_{n=1}^{N}$ if $\forall n, s^{n} \in B R^{n}(s)$
- Pure strategies
- Refinement: No Extraneous Offers (NEO)
- Equilibrium exhibits NEO if α^{n} is continuous with actions in $\left[a_{e}^{n-1}, a_{e}^{n}\right]$

Necessary Conditions

Positive Profits $(P P)$ and No Poaching (NP)

- $P P \rightarrow$ Probability Firm n serves a type on whom it strictly loses money is 0
- Intuition: given any $s^{n} \in S^{n}$, get rid of losing money contracts (private values)
- Implications: strictly positive expected profits, no cross-subsidization
- $N P \rightarrow$ For all $\theta, v^{O}(\theta) \geq V^{(2)}\left(a^{O}(\theta)\right)+a^{O}(\theta) \theta$
- $v^{O}(\cdot)=\max _{n} v(\cdot), a^{O}(\cdot)$ associated actions, $V^{(2)}(a)$ second largest $V^{n}(a)$
- Imitating θ 's equilibrium contract is unprofitable

Positive Sorting (PS)

■ $P S \rightarrow$ Ordered intervals $\left(\theta_{l}^{n}, \theta_{h}^{n}\right)$

- $\varphi^{n}=1$ on $\left(\theta_{l}^{n}, \theta_{h}^{n}\right)$
- $\varphi^{n}=\frac{1}{2}$ on $\left[\theta_{h}^{n-1}, \theta_{l}^{n}\right]$ and $\left[\theta_{h}^{n}, \theta_{l}^{n+1}\right]$

■ Intuition: Single-crossing

- $S P S \rightarrow \theta_{h}^{n-1}=\theta_{l}^{n}$ for all n (no overlap)
- Implications:
- Competition between adjacent firms can lead to overlap
- Complete profit dissipation on overlapped types
- If firms are differentiated enough, then SPS and gaps in actions
- α^{n} continuous where $v^{n} \geq v^{-n}$ (property of best response)

Strict PS

Internal Optimality (IO)

- Define $\gamma^{n}(\cdot, \kappa)$ by

$$
\pi_{a}^{n}\left(\theta, \gamma^{n}(\theta, \kappa), v\right)=\frac{\kappa-H(\theta)}{h(\theta)}
$$

where $\kappa \in[0,1]$ and $\pi_{a}^{n}=V_{a}^{n}+\theta$

- $I O \rightarrow$ for each n there is $\kappa^{n} \in\left[H\left(\theta_{l}^{n}\right), H\left(\theta_{h}^{n}\right)\right], \kappa^{1}=0$ and $\kappa^{N}=1$, such that $\alpha^{n}=\gamma^{n}\left(\cdot, \kappa^{n}\right)$ on $\left[\theta_{l}^{n}, \theta_{h}^{n}\right]$
- Implications,
- Firm 1 distorts actions upwards, Firm N downwards
- A middle firm n distorts actions downward below $\theta_{0}^{n}=H^{-1}\left(\kappa^{n}\right)$, upwards above
- Proof relies on solution of a relaxed problem

Optimal Boundaries ($O B$)

$$
O B \rightarrow\left\{\begin{array}{l}
\pi^{n}\left(\theta_{h}^{n}, \alpha^{n}, v^{n}\right)+\pi_{a}^{n}\left(\theta_{h}^{n}, \alpha^{n}, v^{n}\right)\left(a^{-n}\left(\theta_{h}^{n}\right)-\alpha^{n}\left(\theta_{h}\right)\right)=0 \\
\pi^{n}\left(\theta_{l}^{n}, \alpha^{n}, v^{n}\right)-\pi_{a}^{n}\left(\theta_{l}^{n}, \alpha^{n}, v^{n}\right)\left(\alpha^{n}\left(\theta_{l}^{n}\right)-a^{-n}\left(\theta_{l}^{n}\right)\right)=0
\end{array}\right.
$$

- Discard the second condition for Firm 1, and the first one for Firm N
- Intuition (with $S P S$) pic
- In contrast to $N P, O B$ is about local changes in who is served
- Implications:
- For $n \neq\{1, N\}, \kappa^{n} \in\left(H\left(\theta_{l}^{n}\right), H\left(\theta_{h}^{n}\right)\right)$, so upward/downward distortions bite
- Most profitable type is interior for $n \neq\{1, N\}$
- π^{n} strictly single peaked at $\theta_{0}, \pi^{n}>0$ on $\left(\theta_{l}^{n}, \theta_{h}^{n}\right)$, and on $\left[\theta_{l}^{n}, \theta_{h}^{n}\right]$ if $S P S$

Sufficiency and Existence

Stacking and Main Result

- Stacking \rightarrow for all $n<N, \gamma^{n+1}(\cdot, 1)>\gamma^{n}(\cdot, 0)$
- Eliminates ties at boundaries; holds if firms are differentiated enough
- v^{n} and v^{n+1} cross strictly; set of types served change continuously in s^{n}
- Given s^{-n} and n, s^{n} and \hat{s}^{n} are equivalent if they differ only where neither wins; strategy profiles s and \hat{s} equivalent if equivalent for each n

Theorem

Assume stacking. Then any strategy profile satisfying PS, IO, and OB is equivalent to a Nash equilibrium, and a Nash equilibrium exists.

■ Result affords easy numeric analysis: $3 N-3$ equations and unknowns

- Sufficiency is hard since $\Pi^{n}\left(\cdot, s^{-n}\right)$ not quasiconcave

■ Existence is hard since Π^{n} not continuous, $\Pi^{n}\left(\cdot, s^{-n}\right)$ not quasiconcave

Sufficiency

- Move from choice by n of s^{n} to a two-dimensional problem
- By IO, $\alpha^{n}(\cdot)=\gamma^{n}\left(\cdot, \kappa^{n}\right)$, and can focus on optimal choice of $\theta_{l}^{n}, \theta_{h}^{n}$
- We restrict menus as follows:
- C1 α^{n} continuous, $\alpha^{n}(\theta) \in\left[\gamma^{n}(\theta, 1), \gamma^{n}(\theta, 0)\right]$ for all θ
- C2 $v^{n} \leq v_{*}^{n}$
- We can then relate n 's original problem with $\max _{\theta_{l}, \theta_{h}} r\left(\theta_{l}, \theta_{h}\right)$

Proposition

Assume stacking. Fix n and s^{-n} satisfying $C 1$ and $C 2$. Then, r has a maximum $\left(\theta_{l}, \theta_{h}\right)$, and \hat{s} is a maximum of $\Pi^{n}\left(\cdot, s^{-n}\right)$ if and only if for some maximum $\left(\theta_{l}, \theta_{h}\right)$ of r, \hat{s} is the single winner on $\left(\theta_{l}, \theta_{h}\right)$, and \hat{s} and $\tilde{s}\left(\theta_{l}, \theta_{h}\right)$ are equivalent.

- Does r have a unique maximum? Yes. Most of the work is here

Sufficiency

- Outline of the proof of sufficiency:
- Let \hat{s} satisfy stacking, $P S, I O, O B$
- Fix n, let $\hat{s}^{n}=(\hat{\alpha}, \hat{v})$ with $\hat{\kappa}$
- $I O \Rightarrow \mathbf{C 1}$ on $\left(\theta_{l}, \theta_{h}\right)$, and with $O B \Rightarrow \pi^{n}>0$ for all $\theta \in\left[\theta_{l}, \theta_{h}\right] \Rightarrow \mathbf{C} 2$ holds
- Redefine ($\hat{\alpha}, \hat{v}$) outside $\left[\theta_{l}, \theta_{h}\right]$ so $\mathbf{C 1}$ and $\mathbf{C} 2$ hold as well \rightarrow equivalent (α, v)
- Do the same for all n to obtain strategy profile s
- Unique maximum property (where profits are positive) of r yields best response property of $s^{n}=(\alpha, v)$ against s^{-n}
- Thus, \hat{s} is equivalent to a Nash Equilibrium

Existence

- Outline of the proof of existence:
- Restrict strategy space so that continuity and convexity of best responses hold

■ C3 uniform bound on γ and its slope; C4 lower bound of surplus at $\theta=1$

- For each n define $S_{R}^{n} \subset S^{n}$ s.t. C1-C4 hold
- If $s^{-n} \in S_{R}^{-n}$, then $B R^{n}\left(s^{-n}\right) \cap S_{R}^{n}$ (sufficiency is key here)
- $\left(S_{R}^{n}, \Pi^{n}\right)_{n=1}^{N}$ has a Nash Equilibrium (all the conditions of Kakutani-Fan-Glicksberg Theorem are satisfied; sufficiency is key here)

Implications and Applications

Welfare Effects

- Consider the complete information version of the model
- In a monopoly world,
- Agents lose all information rents
- Allocation becomes efficient
- Firm is unambiguously better off
- In our setting,
- Agents again lose information rents
- But poaching is easier and so v^{-n} increases
- Agents near the "boundaries" are unambiguously better off
- All agents can be strictly better off

Welfare Effects

Multiplant Monopoly and Mergers

- What are the effects of mergers in our setting?

■ Building block \rightarrow Multiplant monopoly case

- Single firm M controls technologies $V^{n_{l}}, . ., V^{n_{h}}$
- Faces a type dependent outside option \bar{u}, first "shallow" then "steep" (stacking)
- All previous results apply (M serves $\left[\theta_{l}^{M}, \theta_{h}^{M}\right], I O$ with single $\kappa, O B$)
- Finite number of jumps in γ^{M}

Multiplant Monopoly and Mergers

- Oligopoly n_{l}, \ldots, n_{h} versus multiplant monopoly M
- Fixed span: both serve $\left[\theta_{l}, \theta_{h}\right]$ ("must-serve" condition imposed on M)
- All types in $\left(\theta_{l}, \theta_{h}\right)$ are strictly worse off under M
- An interval of low types receive a strictly lower action than before
- An interval of high types receiving a strictly higher action than before
- Intuition \rightarrow more interior types to extract rents from
- Must-serve condition not enough to protect consumers after a merger

Multiplant Monopoly and Mergers

- Without legal constraint, M will not only lower surplus but also shed types

Theorem

Let M optimally serve $\left[\theta_{l}^{M}, \theta_{h}^{M}\right]$. Then $\left[\theta_{l}^{M}, \theta_{h}^{M}\right] \subset\left[\theta_{l}, \theta_{h}\right]$. All types in $\left(\theta_{l}, \theta_{h}\right)$ are strictly worse off compared to oligopoly.

- What if M is just a subset of all firms?
- There are countervaling forces Marger
- M lowers surplus and sheds types \rightarrow incentives for other firms to lower surplus

■ Adjacent firms to M can gain types "cheaply" \rightarrow incentives to increase surplus

- All computed examples show first effect dominates, and also that it is better to have a merger than to let a firm exit ("failing-firm" defense)

Conclusion

■ Screening among heterogeneous oligopolists

- Higher-index firms serve higher intervals of types
- Equilibrium pinned down by intuitive local conditions
- Implications for welfare, mergers, and entry
- Many open questions
- Horizontal differentiation
- Common values
- Moral hazard

Competitive Limit

- Forces that affect equilibrium surplus of any given type:
- Action is distorted; firm and type mismatched; firm that serves type earns profits
- As number of firms grows we obtain efficiency and all surplus goes to agents
- Firms enter at a cost $F>0$ and choose $z \in[\underline{z}, \bar{z}], V(\cdot, z)$
- For any N, there is $\left[z_{l}, z_{h}\right]$ s.t. $z_{l} \leq z^{1}<\cdots<z^{N} \leq z_{h}$, so $V^{n}(a)=V\left(a, z^{n}\right)$
- Equilibrium with endogenous entry $(E E E): \Pi^{n} \geq F$, no new entrant can do so

Theorem

In any $E E E$ with $N E O$, there is $\rho \in(0, \infty)$ s.t. $1 /\left(\rho F^{1 / 3}\right) \leq N \leq\left(\rho / F^{1 / 3}\right)+2$, while π, and difference between $v(\theta)$ earns and $v_{*}(\theta)$ are each of order $1 / N^{2}$.

Examples

- Product market with quality differentiation:
- $\mathcal{V}^{n}(a)=-c^{n}(a), c^{n}$ cost to Firm n of quality a, c^{n} is convex, strictly sbm
- $\mathcal{U}(a)+a \theta=\sqrt{\rho+a}+a \theta, \rho>0$ small, be the value to θ of product quality a
- $V^{n}(a)=\sqrt{\rho+a}-c^{n}(a)$
- Labor market:
- $\mathcal{V}^{n}(a)=\zeta^{n}+\beta^{n} \log (\rho+a), \rho>0$ small, β^{n} is strictly increasing in n
- Worker's effort disutility $c(a)-a \theta, c$ convex, and thus $\mathcal{U}(a)+a \theta=-c(a)+a \theta$
- $V^{n}(a)=\zeta^{n}+\beta^{n} \log (\rho+a)-c(a)$

Relaxed Problem

$$
\begin{aligned}
& r\left(\theta_{l}, \theta_{h}\right)=\max _{(\alpha, v)} \int_{\theta_{l}}^{\theta_{h}} \pi(\theta, \alpha, v) h(\theta) d \theta \\
& \qquad \text { s.t. } v\left(\theta_{l}\right) \geq v^{-n}\left(\theta_{l}\right) \\
& v\left(\theta_{h}\right) \geq v^{-n}\left(\theta_{h}\right), \text { and } \\
& v(\theta)=v(0)+\int_{0}^{\theta} \alpha(\tau) d \tau \text { for all } \theta
\end{aligned}
$$

- Solution is unique on $\left[\theta_{l}, \theta_{h}\right]$ and with the $I O$ form
- Elsewhere set $\alpha(\theta)=\alpha\left(\theta_{h}\right)$ for all $\theta \geq \theta_{h}, \alpha(\theta)=\alpha\left(\theta_{l}\right)$ for all $\theta \leq \theta_{l}$

Numeric Analysis

■ Unknowns: $N v^{n}(0)$'s, $N-1 \theta^{n}$'s, $N-2 \kappa^{n}$'s, so $3 N-3$ unknowns

- Equations:

$$
\begin{aligned}
v^{n}\left(\theta^{n}\right)-v^{n+1}\left(\theta^{n}\right) & =0 \\
\pi^{n}\left(\theta^{n}, \gamma^{n}\left(\cdot, \kappa^{n}\right), v^{n}\right)+\left(\kappa^{n}-\theta^{n}\right)\left(\gamma^{n+1}\left(\theta^{n}\right)-\gamma^{n}\left(\theta^{n}\right)\right) & =0 \\
\pi^{n+1}\left(\theta^{n}, \gamma^{n+1}\left(\cdot, \kappa^{n+1}\right), v^{n+1}\right)+\left(\kappa^{n+1}-\theta^{n}\right)\left(\gamma^{n}\left(\theta^{n}\right)-\gamma^{n+1}\left(\theta^{n}\right)\right) & =0
\end{aligned}
$$

- N equal surplus at boundaries, $2(N-1) O B$, so $3 N-3$ equations

Multiplant Monopoly and Mergers

Multiplant Monopoly and Mergers

