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Abstract

This paper considers unified estimation and inference in panel autoregressive (AR)

models. The AR coefficients are assumed to contain a latent group structure that allows

the degree of persistence for each time series to be heterogeneous and unknown. We pro-

pose a novel penalized weighted least squares approach to simultaneously identifying the

unknown group membership and consistently estimating the AR coefficients, regardless

of whether the underlying AR process is stationary, unit-root, near-integrated, or even

explosive. Theoretically, we establish the classification consistency, oracle properties,

and unified asymptotic normal distributions for the proposed Lasso-type estimators.

Empirically, we apply our data-driven method to uncover the existence of firm-level

hidden bubbles in the U.S. stock market that have been unaccounted for in previous

studies.
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1 Introduction

The statistical inference of autoregressive (AR) coefficients has received considerable atten-

tion because of its theoretical challenges and empirical relevance. From a theoretical per-

spective, the asymptotic theorems of AR coefficients suffer from the issue of discontinuity as

the underlying time series may exhibit stationary, (near) unit-root/integrated, or explosive

behavior, see Phillips (1987), Phillips and Magdalinos (2007), Mikusheva (2007), and Chan,

Li and Peng (2012). For example, the convergence rate of the least squares (LS) estimator

changes from the standard rate (
√
T ) to super-consistency (T ) when the AR coefficient varies

from less than unity to unity. From an empirical perspective, the AR coefficients measure the

degree of persistence of the underlying time series and have meaningful economic insights.

For example, the random walk process is linked to the fundamental values of asset prices

in the efficient market hypothesis, and explosive deviations from those fundamental values

are defined as bubbles (Fama (1970), Diba and Grossman (1988), and Phillips, Shi and Yu

(2015a)). Although various time-series methods have been established to bridge the dis-

continuities among stationary, unit-root, and nearly explosive cases, such as grid bootstrap

(Hansen (1999)), block formation (Phillips, Moon and Xiao (2001)), uniform normalization

(Mikusheva (2007)), and weighted score equations (So and Shin (1999), Chan, Li and Peng

(2012)), few studies employ the advantages of panel data to resolve the discontinuity problem

in the AR coefficients, which could be considered as parameter heterogeneity in the panel

framework.

This paper proposes a unified approach to estimate panel autoregressive (PAR) models

when the degree of persistence is unknown for the underlying time series. Our approach

combines advantages in weighted score equations (Chan, Li and Peng (2012)), grid bootstrap

(Hansen (1999), Mikusheva (2007)) in time-series models, and latent grouped patterns in

panel data (Su, Shi and Phillips (2016)) to detect the unknown heterogeneity in the PAR co-

efficients and effectively establish uniform asymptotic limits and confidence intervals for the
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PAR coefficients. In particular, we relax the common homogeneity assumption in classical

panel data models and allow the PAR coefficients to contain an unobserved group structure.

This structure can provide different time-series properties across groups in which the un-

derlying AR process captures stationary, (near) unit-root, or explosive behavior. This new

framework also provides a novel approach to detecting the unobserved common bubbles in

large-dimensional financial systems, which is in contrast to the existing time-series bubble de-

tection models that rely on the recursive right-tailed unit-root tests, where unit-root periods

capturing normal market behavior and explosive deviations mimicking market exuberance;

see Phillips, Shi and Yu (2015a) and Phillips and Shi (2018). Although there are undoubt-

edly important findings to the time-series bubble detection methods such as Phillips, Wu

and Yu (2011), Etienne, Irwin and Garcia (2015), and Anundsen et al. (2016), we argue

that the existing methods ignore potential heterogeneity in large-dimensional financial sys-

tems. Since bubbles are only identified on aggregate-level time-series data such as the S&P

500 index, NASDAQ index, and country-level house prices, researchers may rush to bubble

conclusions for the whole market, failing to recognize explosive deviations occurring in sub

sectors. For example, the dot-com bubble in the late 1990s was driven by massive growth

in internet-related companies. Therefore, our panel approach helps detect the firm-specific

hidden bubbles, enriching heterogeneous time-series patterns across different assets.

In this context, we consider a PAR model yi,t = µi + βiyi,t−1 + ui,t with latent group

structures in βi to capture the unknown persistent behavior in each time series. Specifically,

we assume the AR coefficient βi is heterogeneous across groups and can take different values

around unity, such as βi < 1, βi = 1− ci
n and βi > 1. Doing so allows our PARmodel to contain

stationary, (nearly) unit-root, and explosive series across groups. While within a group we

maintain the homogeneity assumption on the PAR coefficients to achieve estimation efficiency

by pooling cross-section information, the estimation and asymptotic inference are complicated

by the unobserved group structure and issue of discontinuity in autoregressive process with or

near unit roots. We modify the objective function in the classifier-Lasso (C-Lasso) method to

3



overcome these challenges with weighted score equations. The modified C-Lasso estimation

considers a penalized weighted least squares (PWLS) objective function that combines the

weighted least squares (WLS) function proposed by Chan, Li and Peng (2012) as a method to

resolve the issue of discontinuity with a C-Lasso penalty term of Su, Shi and Phillips (2016)

to detect latent group structures in the PAR coefficients. Minimizing the PWLS objective

function simultaneously estimates the group-specific AR coefficients while recovering the

unobserved group memberships on the AR coefficients. Given the estimated group structures,

we obtain group-specific post-Lasso estimators of the AR coefficients by WLS. The Lasso-type

estimators enjoy efficiency gains by pooling the within-group individuals while also having

enough flexibility to capture different degrees of persistence for the underlying time series.

Theoretically, we establish the convergence rate, classification consistency, and uniform

asymptotic normality for Lasso-type estimators. First, we show that the point-wise conver-

gence rate of the PAR coefficients depends on each time series’ unknown degree of persistence.

We unify these convergence rates with a weighted second moment of the underlying time se-

ries {yi,t}, which is denoted as G(yi, δ) = 1
T

∑T
t=1

y2i,t−1

(δ+y2i,t−1)
1/2 , δ > 0. This result resolves

the issue of discontinuity in convergence rates. Second, we consistently recover the unknown

group structure in which all individuals are classified into the correct groups with probability

approaching 1 (w.p.a.1). Lastly, we uniformly establish the asymptotic normal distributions

for both the modified C-Lasso and post-Lasso estimators, regardless of the degree of per-

sistence in the time series, with a group-normalized uniform convergence rate for the AR

coefficient in group k (see Theorem 3.3 below). Besides, when estimating the PAR models

with drifts, we apply Zhu, Cai and Peng’s (2014) “long-run difference” (LRD) transformation

and provide theoretical results for this scenario. In addition, we employ the grid bootstrap

proposed by Hansen (1999) to construct the confidence interval of the AR coefficients. Our

simulation studies demonstrate good finite sample performance of our unified estimators.

In the empirical application, we employ our method to detect hidden bubbles in the U.S.

stock market, which will allow for heterogeneous price behaviors across firms. In particular,
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we study the firm-level dividend-adjusted prices panel using our PAR models with latent

group patterns. The sample covers all available common stocks in the NYSE, AMEX, and

NASDAQ markets from January 1926 to March 2022. Using our novel framework, we first

confirm heterogeneous asset price behaviors and group structures across firms in the U.S.

stock market. By comparing the AR coefficients with some threshold values near unity, we

uncover hidden bubbles that exist in some subset and cannot be recognized by the aggregate

data using some existing bubble detection techniques. Furthermore, we explain our firm-level

bubble results by examining the firms’ fundamental characteristics, where stocks with better

operating performance and fewer debts are more likely to be explosive in their asset prices.

In sum, our panel framework provides an informative and flexible approach to investigating

firm-level bubbles and their potential determinants.

Compared with the literature, the main contribution of this paper is to develop a panel

methodology that consistently estimates the unknown group-specific AR coefficients, iden-

tifies latent group structures, and further detects the unobserved explosive behaviors in the

sub-panels. To the best of our knowledge, no existing works have employed group patterns to

model unobserved heterogeneity in the AR coefficients and resolve the issue of discontinuity.

The existing methods to estimate unobserved group patterns of heterogeneity, for example,

Su, Shi and Phillips (2016), Wang and Su (2021), or Huang et al. (2021), focus on either sta-

tionary or nonstationary panels, respectively. By combining the advantages of panel data and

weighted score equations, we provide a unified approach to consistently estimating the PAR

models and simultaneously identifying the unknown group membership. The by-products

of the group-specific results further provide theoretical support for empirical researchers to

detect hidden bubbles in sub-panels.

The rest of the paper is organized as follows. Section 2 introduces a PAR model with

latent group structures and develops the PWLS estimation procedure. Section 3 provides the

main asymptotic properties of the estimators for the PAR models without and with drifts.

Section 4 reports the simulation results. Section 5 empirically detects the firm-level hidden

5



bubble in the U.S. stock markets and explores the firm-specific of the stock market bubbles.

Section 6 concludes. The online appendix provides the proofs of the main theoretical results

in Section 3, along with some additional empirical results.

NOTATION. Let 1{·} be an indicator function. Let M denote a generic positive constant

whose value can vary in different places. Let $x% denote the largest integer less than or equal

to x. The operators
p→ and ⇒ denote convergence in probability and weak convergence,

respectively. Unless indicated otherwise, we use (T,N) → ∞ to signify that T and N pass

to infinity jointly and use (T,N)
seq.→ ∞ to signify that T and N pass to infinity sequentially.

2 Model and Estimation

This section introduces a PAR model with a latent group structure and unknown degree of

persistence. The PWLS estimation method is then proposed to estimate the AR coefficients

and unobserved group structure.

2.1 Model setup

Consider the following autoregressive process:

yi,t = µi + βiyi,t−1 + ui,t, (2.1)

where t = 1, . . . , T and i = 1, . . . , N , yi,0 = 0, ui,t is an error term with a mean of zero and

variance of σ2
u,i, and µi is a drift term and could be regarded as fixed effects in the panel

setup. For each individual i, yi,t is a stochastic process whose degree of persistence depends

on the unknown autoregressive coefficient βi, which is typically non-negative in economics

and finance. When βi < 1 (fixed), βi = 1 − ci
T for some ci ∈ R and βi > 1 (fixed), yi,t is

stationary, (near) unit-root/integrated, and explosive, respectively. Here, “βi < 1 (fixed)”

means that βi < 1 takes a fixed value that does not depend on N or T ; this also holds for
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“βi > 1 (fixed).” Below, we will suppress the modifier “fixed.” We will discuss the two cases

without and with drifts separately, viz., µi = 0 and µi *= 0.

To model the unobserved heterogeneity, the autoregressive coefficients βi are assumed to

have a latent group structure. That is, βi are the same within each group but differ across

groups. Specifically, we allow the true values of βi, which are denoted as β0
i , to follow an

unknown group pattern:

β0
i =

K0∑

k=1

α0
k1
{
i ∈ G0

k

}
, (2.2)

where α0
j *= α0

k for any j *= k, ∪K0
k=1G

0
k = {1, 2, · · · , N}, and G0

j ∩ G0
k = ∅ for any j *= k.

All values of α0
k could be further classified into three categories: stationary, (near) unit-root,

and explosive groups. We allow multiple groups in each category. Let Nk = #G0
k denote

the cardinality of the set G0
k. Both the number of groups K0 and group membership are

unknown. Note that the time-varying group structures are not considered in this framework,

so the model implicitly requires that individual group membership does not vary over time.

Let α ≡ (α1, · · · ,αK0) and β ≡ (β1, · · · , βN). We denote the corresponding true values

as α0 ≡ (α0
1, · · · ,α0

K0
) and β0 ≡ (β0

1 , · · · , β0
N). The goal of this paper is to develop a uniform

estimation method for the group-specific coefficients α0, regardless of whether the underlying

autoregressive process is stationary, (near) unit-root, or explosive.

2.2 Penalized Weighted Least Squares Estimation

In what follows, we introduce a four-step estimation procedure to obtain the two Lasso-type

estimators for the autoregressive coefficients.

Step 1: Data processing. Prepare the transformed sequence ỹi,t for estimation. If µi = 0,

that is, with no drift, then ỹi,t = yi,t. If µi *= 0, that is, with drifts, we consider the

LRD transformation proposed by Zhu, Cai and Peng (2014) to eliminate the drift. More

specifically, let m = $T/2%, and denote ỹi,t = yi,t − yi,t+m for t = 1, · · · ,m, and each i =
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1, · · · , N . Then, the model in (2.1) becomes:

ỹi,t = βiỹi,t−1 + ũi,t. (2.3)

Step 2: Initial estimation. We focus on the autoregressive process of ỹi,t and obtain

the initial estimates of β̃i from the WLS estimation method proposed by Chan, Li and Peng

(2012). For simplicity, we define
∑

t and
∑

t such that
∑

t =
∑T

t=1,
∑

t =
1
T

∑T
t=1 when using

the original data and
∑

t =
∑m

t=1,
∑

t =
1
m

∑m
t=1 when using the long-run differenced data.

For each time-series regression, we obtain the WLS estimator β̃i by minimizing a weighted

average of squared residuals with data-dependent weights:

β̃i = argmin
βi

∑
t

(ỹi,t − βiỹi,t−1)2

(δ + ỹ2i,t−1)
1/2

=

(
∑

t

ỹ2i,t−1

(δ + ỹ2i,t−1)
1/2

)−1(∑

t

ỹi,t−1ỹi,t
(δ + ỹ2i,t−1)

1/2

)
, (2.4)

where δ is a non-negative constant. The WLS estimator degenerates to the Cauchy estimate

proposed in So and Shin (1999) when δ = 0. In this context, we set δ > 0 and suggest δ = 1,

as in Chan, Li and Peng (2012), to which we refer the readers for more details regarding the

choice of δ.

Step 3: Penalized WLS estimation. We combine the C-Lasso methodology of Su, Shi

and Phillips (2016) with the WLS estimation method to uniformly obtain the group-specific

autoregressive coefficient estimator α̂k. At this moment, we assume the number of groups

K0 is known, which can either be determined by prior economic theory or by a data-driven

information criterion, as proposed in Section 3.3. Using the initial estimates of β̃i as starting

values, we minimize the following PWLS objective function:

Q̃K0,λ
NT (β,α) =

1

N

N∑

i=1

∑
t

(ỹi,t − βiỹi,t−1)2

(δ + ỹ2i,t−1)
1/2

+
λ

N

N∑

i=1

K0∏

k=1

‖βi − αk‖ , (2.5)

where λ = λ(N, T ) is a tuning parameter. Unlike Su, Shi and Phillips’s (2016) penalized least
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squares criterion function, the first component in (2.5) is a weighted average of the squared

residuals with data-dependent weights, thus facilitating unified AR coefficient estimates for

time series with an unknown degree of persistence. Minimizing the criterion function in

(2.5) produces our modified C-Lasso estimates {β̂i, α̂k}, based on which, we define the group

identities as follows: Ĝk = {i ∈ {1, 2, . . . , N} : β̂i = α̂k} for k = 1, · · · , K0. In finite

samples, if
∑K0

k=1 1{β̂i = α̂k} = 0, we classify i ∈ Ĝl for some l = 1, . . . , K0 if |β̂i − α̂l| =

min1≤k≤K0 |β̂i − α̂k|.

Step 4: Post-Lasso estimation. Given the estimated group identities {Ĝk, k = 1, ..., K0},

we can pool the observations within each estimated group to obtain the post-Lasso estimator:

α̂post

Ĝk
=




∑

i∈Ĝk

∑

t

ỹ2i,t−1

(δ + ỹ2i,t−1)
1/2




−1


∑

i∈Ĝk

∑

t

ỹi,t−1ỹi,t
(δ + ỹ2i,t−1)

1/2



 (2.6)

for k = 1, ..., K0. It is well known that the tests based on the asymptotic critical values

do not properly control for Type I errors in the local-to-unity framework (see, e.g., Basawa

et al. (1991), Stock (1991), and Mikusheva (2007)). Hence, we adopt Hansen’s (1999) grid

bootstrap method in the panel autoregressive setting and uniformly construct the confidence

intervals for the group-specific autoregressive coefficients, regardless of the underlying time-

series properties.

3 Asymptotic Results

In this section, we study the asymptotic properties of two Lasso-type estimators.

3.1 Main assumptions

Let Fi,t = σ (ui,t, ui,t−1, ...), the minimal sigma-field generated by ui,t, ui,t−1, ... To study the

asymptotic properties of our estimators, we first impose the following three assumptions.
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Assumption 3.1 (MDS Errors)

(i) For each i, let {ui,t,Fi,t} be a martingale difference sequence with zero mean E(ui,t|Fi,t−1) =

0 and variance E(u2
i,t|Fi,t−1) = σ2

u,i; supN≥1 max1≤i≤N E[ |ui,t|2q+ε] < M with q ≥ 4 and ε is

an arbitrarily small positive constant.

(ii) {ui,t}t≥1 are independent across i.

Assumption 3.2 (Parameters Separability and Tuning Parameter)

(i) For each k = 1, ..., K0, Nk/N → τk ∈ (0, 1) as N → ∞.

(ii) min1≤k %=j≤K0

∣∣α0
k − α0

j

∣∣ ≥ cα for some fixed cα > 0.

(iii) As (N, T ) → ∞, λ(log T )ε → 0, λT 1/2N−1/q/(logN)(1+ε)/2 → ∞, and T−1/2N1/q(logN)(1+ε)/2

→ 0, where q ≥ 4.

Assumption 3.1 imposes conditions on the error term and requires that ui,t be a martin-

gale difference sequence (MDS) across time and independently distributed across individuals.

For cases in which there is no drift, we follow Mikusheva (2007) to relax the independence

assumption along the time dimension, which is commonly assumed in autoregressive mod-

els (see Hansen (1999), Phillips and Magdalinos (2007), Phillips (2014), Zhu, Cai and Peng

(2014)). Along the cross-section dimension, we retain the cross-sectional independence as-

sumption and leave the case of cross-sectional dependence for future research.

Assumption 3.2(i) is the same as Assumption A1(vii) in Su, Shi and Phillips (2016); this

implies that the number of individuals in each group grows at the same rate as N → ∞;

thus, no group is asymptotically negligible. Assumption 3.2(ii) is the same as Assumption

A1(vi) in Su, Shi and Phillips (2016); it specifies that parameters of different groups are

well separated from each other. Similar conditions are assumed in the panel literature with

latent group patterns; see, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), and

Huang et al. (2021). Assumption 3.2(iii) specifies the conditions on the permissible range of

tuning parameter λ and the relative rates at which N and T pass to infinity. It ensures the

pointwise consistency of the AR coefficients and classification consistency of the unknown
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group structures. In addition, the choice of tuning parameter is uniform to the underlying

time series with different degree of persistence as we employ the data-dependent weights in

our PWLS objective function. One can verify that the permissible range of values for λ

that satisfy Assumption 3.2(iii) is λ ∝ T−a for a ∈ (0, 12). This range is the same as that

in stationary panels but different from that in nonstationary panels (see, e.g., Su, Shi and

Phillips (2016), Huang et al. (2021)).

3.2 Main theoretical results

3.2.1 The case with no drift

We first discuss the asymptotic results for the pure autoregressive model when µi = 0 in

(2.1).

Let G(yi, δ) = 1
T

∑T
t=1

y2i,t−1

(δ+y2i,t−1)
1/2 . We can define three sets of groups, Gstat,Gur, and

Gexp, which corresponds to the stationary, the (near) unit-root, and the explosive groups,

respectively. Define

Γ(T,α0
k) = T−1/21

{
α0
k < 1

}
+ T−11

{
α0
k = 1− c0k

T

}
+ T 1/2(α0

k)
−(T−1)

1
{
α0
k > 1

}
.

The following theorem establishes the consistency of β̂i and α̂k.

Theorem 3.1 Suppose that Assumptions 3.1 and 3.2 hold. Then

(i) G(yi, δ)
(
β̂i − β0

i

)
= Op(T−1/2 + λ), for i = 1, ..., N.

(ii) (a) 1
N

∑N
i=1 G(yi, δ)2

(
β̂i − β0

i

)2
= Op(T−1);

(b) 1
N

∑
i∈G0

k

(
β̂i − β0

i

)2
= Op(T−1) for G0

k ∈ Gstat;

(c) 1
N

∑
i∈G0

k

(
β̂i − β0

i

)2
= Op(T−2) for G0

k ∈ Gur;

(d) 1
N

∑
i∈G0

k

(
β̂i − β0

i

)2
= Op(T (α0

k)
−2(T−1)) for G0

k ∈ Gexp.

(iii) α̂k − α0
k = Op(

∑K0

l=1 Γ(T,α
0
l )) for k = 1, . . . , K0.
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Theorem 3.1(i) and (ii) establishes the preliminary pointwise and mean-square conver-

gence rates for {β̂i}, respectively. Compared with the standard pointwise and mean-square

convergence rates in the stationary and nonstationary settings, Theorem 3.1 introduces a

data-dependent “normalization function,” G(yi, δ), which exhibits different asymptotic be-

haviors for autoregressive series with different degrees of persistence. With G(yi, δ), we are

able to provide unified inference for {β0
i }. Compared with the normalization function in

Mikusheva (2007), our data-dependent “weight” is applied within the summation operator
∑

t. The pointwise convergence rate in Theorem 3.1(i) depends on T−1/2+λ, which is consis-

tent with existing C-Lasso limit theory in stationary panels (e.g., Su, Shi and Phillips (2016)).

Theorem 3.1(ii) reports the mean-square convergence rates for three different groups, viz.,

stationary groups, (near) unit-root groups, and explosive groups. This theorem uncovers the

conventional rates of consistency within each specific group, which are the same as those

in the literature. For example, Theorem 3.1(ii)(b) indicates that the estimators have the

standard T−1-rate of mean-square convergence when the autoregressive coefficients lie in the

stationary regime. Theorem 3.1(iii) indicates that the group-specific parameters {α0
k} can be

estimated consistently by {α̂k}. As we remarked in the proof of the above theorem, the rates

cannot be improved without showing the uniform classification consistency.

We now study classification consistency. Define ÊkNT,i = {i *∈ Ĝk|i ∈ G0
k} and F̂kNT,i =

{i *∈ G0
k|i ∈ Ĝk}, where i = 1, ..., N and k = 1, ..., K0. Let ÊkNT = ∪i∈Ĝk

ÊkNT,i and

F̂kNT = ∪i∈Ĝk
F̂kNT,i. The events ÊkNT and F̂kNT mimic type I and type II errors in sta-

tistical tests. Following Su, Shi and Phillips (2016), we say that a classification method is

individually consistent if P (ÊkNT,i) → 0 as (N, T ) → ∞ for each i ∈ G0
k and k = 1, ..., K, and

P (F̂kNT,i) → 0 as (N, T ) → ∞ for each i ∈ G0
k and k = 1, ..., K0. It is uniformly consistent

if P (∪K0
k=1ÊkNT ) → 0 and P (∪K0

k=1F̂kNT ) → 0 as (N, T ) → ∞.

The following theorem establishes the uniform classification consistency.

Theorem 3.2 Suppose that Assumptions 3.1 and 3.2 hold. Then
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(i) P (∪K0
k=1ÊkNT ) ≤

∑K0

k=1 P (ÊkNT ) → 0 as (N, T ) → ∞,

(ii) P (∪K0
k=1F̂kNT ) ≤

∑K0

k=1 P (F̂kNT ) → 0 as (N, T ) → ∞.

Theorem 3.2 implies uniform classification consistency – all individuals within a certain

group, say G0
k, can be simultaneously and correctly classified into the same group (denoted

as Ĝk) w.p.a.1. Conversely, all individuals that are classified into the same group, say Ĝk,

simultaneously belong to the same group (G0
k) w.p.a.1. Let N̂k = #Ĝk. One can easily show

that P (Ĝk = G0
k) → 1 so that P (N̂k = Nk) → 1.

To ensure the asymptotic normality for the modified C-Lasso and post-Lasso estimators,

we first specify the following covariance conditions.

Assumption 3.3 (Covariance) Let Qi = limT→∞
1
T

∑T
t=1

y2i,t−1

δ+y2i,t−1
.

(i) For each k = 1, · · · , K0, Σk = limN→∞
1
Nk

∑
i∈G0

k
σ2
u,iQi exists and Σk > 0.

(ii) For each k = 1, · · · , K0, Qk = limN→∞
1
Nk

∑
i∈G0

k
Qi exists and Qk *= 0.

We now examine the oracle properties of the two Lasso-type estimators. If the group

membership is known, the oracle WLS estimator of α0
k is given by

α̂G0
k
= argmin

αk

1

NkT

∑

i∈G0
k

T∑

t=1

(yi,t − αkyi,t−1)2

(δ + y2i,t−1)
1/2

. (3.1)

The following theorem reports the oracle properties and establishes the asymptotic nor-

mality for the modified C-Lasso estimator α̂k and post-Lasso estimator α̂post

Ĝk
.

Theorem 3.3 Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Define

Υk =




∑

i∈Ĝk

T∑

t=1

y2i,t−1

δ + y2i,t−1




−1/2


∑

i∈Ĝk

T∑

t=1

y2i,t−1

(δ + y2i,t−1)
1/2



 .

Then, as (T,N)
seq.→ ∞, it holds that

(i) Υk (α̂k − α0
k) ⇒ N(0,Q−1

k Σk),
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(ii) Υk

(
α̂post

Ĝk
− α0

k

)
⇒ N(0,Q−1

k Σk),

where Qk and Σk are defined in Assumption 3.3.

Theorem 3.3 implies that, under Assumptions 3.1–3.3, the modified C-Lasso estimator

α̂k and the post-Lasso estimator α̂post

Ĝk
are asymptotically equivalent and achieve the same

limit distribution as the oracle estimator α̂G0
k
, thus enjoying the asymptotic oracle proper-

ty. Here, we introduce a data-dependent convergence rate, Υk. Much like with G(yi, δ), Υk

exhibits different asymptotic behaviors for autoregressive series with different degrees of per-

sistence. Given the group-specific data-dependent rate Υk, we provide the unified asymptotic

distribution for the estimators of the group-specific parameters.

3.2.2 The case with drifts

Now, we discuss the asymptotic results of the model with drifts, that is, µi *= 0 in (2.1),

where we use the LRD for data transformation. We first lay out the modified assumption

required in this scenario.

Assumption 3.4 (Independent Errors) {ui,t} are independent across i and t such that

E(ui,t) = 0, E(u2
i,t) = σ2

u,i, and supN,T≥1max1≤i≤N max1≤t≤T E(u4
i,t) < M .

Assumption 3.4 strengthens Assumption 3.1 and imposes the error term to be independent

but not identically distributed. Under the original MDS setting, the LRD transformation

induces serial correlations, and the desired central limit theorem fails. Thus, a stronger

assumption is required in the case with drifts. Similar independence conditions are required

in the time-series autoregressive model with drifts (see, e.g., Hansen (1999), Phillips (2014)).

In addition, we notice that Zhu, Cai and Peng (2014) relax the independence assumption to

allow for serially correlated errors in the autoregressive predictors; however, the errors in the

main predictive regression are still assumed to be independent.

Assumption 3.5 (Covariance-LRD) Let Q̃i = limT→∞
1
T

∑m
t=1

ỹ2i,t−1

δ+ỹ2i,t−1
.

14



(i) For each k = 1, · · · , K0, Σ̃k = limN→∞
1
Nk

∑
i∈G0

k
2σ2

u,iQ̃i exists and Σ̃k > 0.

(ii) For each k = 1, · · · , K0, Q̃k = limN→∞
1
Nk

∑
i∈G0

k
Q̃i exists and Q̃k *= 0.

Assumption 3.5 is an analogy of Assumption 3.3. It specifies the conditions to ensure the

asymptotic normality for the modified C-Lasso and post-Lasso estimators when we use the

LRD in the data transformation.

Define

Γ̃(m,α0
k) = m−1/21

{
α0
k < 1

}
+m−3/21

{
α0
k = 1− c0k

T

}
+m1/2(α0

k)
−2m

1
{
α0
k > 1

}
.

The following theorem establishes the consistency of β̂i and α̂k.

Theorem 3.4 Suppose that Assumptions 3.2 and 3.4 hold. Let G(ỹi, δ) =
1
m

∑m
t=1

ỹ2i,t−1

(δ+ỹ2i,t−1)
1/2 .

(i) G(ỹi, δ)
(
β̂i − β0

i

)
= Op(m−1/2 + λ), for i = 1, ..., N.

(ii) (a) 1
N

∑N
i=1 G(ỹi, δ)2

(
β̂i − β0

i

)2
= Op(m−1);

(b) 1
N

∑
i∈G0

k

(
β̂i − β0

i

)2
= Op(m−1) for G0

k ∈ Gstat;

(c) 1
N

∑
i∈G0

k

(
β̂i − β0

i

)2
= Op(m−3) for G0

k ∈ Gur;

(d) 1
N

∑
i∈G0

k

(
β̂i − β0

i

)2
= Op(m(α0

k)
−4m) for G0

k ∈ Gexp.

(iii) α̂k − α0
k = Op(

∑K0

l=1 Γ̃(m,α0
l )) for k = 1, . . . , K0.

The following theorem establishes the uniform classification consistency.

Theorem 3.5 Suppose that Assumptions 3.2, 3.4, and 3.5 hold. Then

(i) P (∪K0
k=1ÊkNT ) ≤

∑K0

k=1 P (ÊkNT ) → 0 as (N, T ) → ∞,

(ii) P (∪K0
k=1F̂kNT ) ≤

∑K0

k=1 P (F̂kNT ) → 0 as (N, T ) → ∞.

The following theorem reports the oracle property of the Lasso estimator α̂k and the

post-Lasso estimator α̂post

Ĝk
.
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Theorem 3.6 Suppose that Assumptions 3.4, 3.2, and 3.5 hold. Let

Υ̃k =




∑

i∈Ĝk

m∑

t=1

ỹ2i,t−1

δ + ỹ2i,t−1




−1/2


∑

i∈Ĝk

m∑

t=1

ỹ2i,t−1

(δ + ỹ2i,t−1)
1/2



 .

Then, as (T,N)
seq.→ ∞, it holds that

(i) Υ̃k (α̂k − α0
k) ⇒ N(0, Q̃−1

k Σ̃k),

(ii) Υ̃k

(
α̂post

Ĝk
− α0

k

)
⇒ N(0, Q̃−1

k Σ̃k),

where Q̃k and Σ̃k are defined in Assumption 3.5.

Theorems 3.4–3.6 parallel Theorems 3.1–3.3. They provide the asymptotics for the estima-

tors when the LRD is used in the data transformation. In this scenario, the data-dependent

scaling, G(ỹi, δ) and Υ̃k, are functions of the transformed data ỹi instead. In particular, the

rates of consistency of β̂i for different groups are different from those in Theorem 3.1(ii)(b)–

(d), resulting from the different asymptotic behaviors of unit-root processes with and without

drifts. Our simulation studies also confirm the faster convergence rates in this scenario.

3.3 Determination of the Number of Groups

In practice, the exact number K0 of groups is typically unknown. When K0 is unknown,

we assume K0 is bounded from above by a finite integer Kmax and determine the number

of groups using some information criterion (IC). In this subsection, we discuss the general

framework with and without drifts. Recall that ỹi,t = yi,t if µi = 0 and ỹi,t = yi,t − yi,t+m if

µi *= 0. Similarly, we use Υ̃k to denote the scaling for both cases.

Replacing K0 in the PWLS criterion function in (2.5) by K, we obtain the modified

C-Lasso estimators {β̂i(K,λ), α̂k(K,λ)} of (βi,αk), which depends on (K,λ). We classi-

fy individual i into group Ĝk(K,λ) if and only if β̂i(K,λ) = α̂k(K,λ). Let Ĝ(K,λ) ≡
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{Ĝ1(K,λ), · · · , ĜK(K,λ)}. The post-Lasso WLS estimate of α0
k can be denoted as follows:

α̂post

Ĝk(K,λ)
=




∑

i∈Ĝk(K,λ)

∑

t

ỹ2i,t−1

(δ + ỹ2i,t−1)
1/2




−1


∑

i∈Ĝk(K,λ)

∑

t

ỹi,t−1ỹi,t
(δ + ỹ2i,t−1)

1/2



 .

We propose selecting K by minimizing the following IC:

IC(K,λ) = log σ̂2
Ĝk(K,λ)

+ ρNTpK, (3.2)

where σ̂2
Ĝk(K,λ)

≡ 1
N

∑K
k=1

∑
i∈Ĝk(K,λ)

∑
t(ỹi,t− α̂post

Ĝk(K,λ)
ỹi,t−1)2 and ρNT is a tuning parameter.

Then, the number of groups is determined as K̂(λ) ≡ argmin1≤K≤Kmax IC(K,λ).

Let G(K) ≡ (GK,1, · · · , GK,K) be any K-partition of {1, 2, · · · , N} and GK a collection

of all such partitions. Let σ̂2
G(K) ≡ 1

N

∑K
k=1

∑
i∈GK,k

∑
t(ỹi,t − α̂GK,k

ỹi,t−1)2, where α̂GK,k
≡

argminαk
1
Nk

∑
i∈GK,k

∑
t
(ỹi,t−αkỹi,t−1)2

(δ+ỹ2i,t−1)
1/2 . We add the following two assumptions.

Assumption 3.6 As (N, T ) → ∞, min1≤K<K0 infG(K)∈GK
σ̂2
G(K)

p→ σ2 > σ2
0, where σ2

0 ≡

lim(N,T )→∞
1
N

∑K0

k=1

∑
i∈G0

k

∑
t(ỹi,t − α0

kỹi,t−1)2.

Assumption 3.7 As (N, T ) → ∞, ρNT → 0 and ρNT

(
minK0

k=1 Υ̃
2
k

)
→ ∞.

The following theorem justifies the use of (3.2) as a selector criterion for K.

Theorem 3.7 Suppose Assumptions 3.1 or 3.4, 3.2, 3.3 or 3.5, 3.6, and 3.7 hold. Then,

P
(
K̂(λ) = K0

)
→ 1 as (T,N)

seq.→ ∞.

Assumptions 3.6–3.7 are adapted from Assumptions A4–A5 in Su, Shi and Phillips (2016).

Assumption 3.6 requires that asymptotic mean squared errors of all under-fitted models are

larger than that of the true models. Assumption 3.7 imposes conditions on ρNT , hence

ensuring the consistency of model selection. Different from Su, Shi and Phillips (2016), the

convergence rate of ρNT in this unified framework depends on Υ̃k. Theorem 3.7 indicates

that, as long as λ satisfies Assumption 3.2(iii) and ρNT satisfies Assumption 3.7, we have
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inf1≤K≤Kmax,K %=K0 IC(K,λ) > IC(K0,λ) as (N, T ) → ∞. Theoretically, the minimizer of

IC(K,λ) with respect to K selects the true K0 with the probability approaching 1 for a

variety of choices of λ. In practice, we can further specify the constant multiplier in λ over a

finite grid of values to minimize IC(Kλ,λ) to search for the number of groups. The simulation

section provides more details.

4 Monte Carlo Simulations

In this section, we conduct simulations to evaluate the finite sample performance of the group

classification, estimation accuracy, and bubble detection.

4.1 Finite sample performance of the classification and estimation

We consider a panel autoregressive model with unobserved grouped heterogeneous AR coeffi-

cients. The observations in each of these DGPs are generated based on the following design.

For i = 1, ..., N and t = 1, ..., T,

yi,t = µi + βiyi,t−1 + ui,t,

where ui,t
i.i.d∼ (0, 1), and yi,0

i.i.d∼ N(0, 1).

DGP 1: Panel AR with no drift. We consider a panel autoregression with no drift

such that µi = 0 and the AR coefficients βi are fixed parameters drawn from three groups

with the group-specific number of observations N1 : N2 : N3 = 0.3 : 0.4 : 0.3 and the

group-specific coefficients αk = {0.5, 1, 1.1}.

DGP 2: Panel AR with drifts. We consider a panel autoregression with drifts such

that µi
i.i.d.∼ N(0.2, 1) and the AR coefficients βi are the same as those in DGP 1.

Our simulation studies include two exercises. The first exercise assesses how well the

proposed information criterion in (3.2) selects the correct number of groups, as both the
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classification consistency and asymptotic properties hinge on the correct number of groups.

Although, all sequences ρNT work asymptotically as long as Assumption 3.6 is satisfied. In

practice, we use ρNT = 1/3
(
minK0

k=1 Υ̃
2
k

)−1/2

throughout the simulations. The second exer-

cise assesses the classification consistency and modified C-Lasso and post-Lasso estimation

accuracies given the true number of groups. Regarding the modified C-Lasso tuning param-

eter, we specify λ = c ∗T−1/3 throughout the simulations.1 In each exercise, we consider four

combinations of sample sizes with N = 100, 200 and T = 100, 200 in the “with no drift” cases

and N = 100, 200 and T = 200, 400 in the “with drifts” cases as we apply the LRD trans-

formation and lose half of the time dimensional sample. All simulation results are obtained

from 500 replications.

Table 1 reports the probability that a particular number of groups from 1 to 6 is selected

according to the IC in (3.2) when the true number of groups is K0 = 3. The results demon-

strate the usefulness of the IC for various DGPs and sample sizes. For DGP 1, the correct

determination rate is above 90% when (N, T ) = (100, 100), and the IC achieves perfect selec-

tion of the true group number with a moderately large time dimension when T = 200. For

DGP 2, when we apply the LRD transformation and use half of the sample for estimation,

the correct determination rate is above 90% when (N, T ) = (100, 200), and the IC achieves

perfect selection with (N, T ) = (200, 400).

Table 2 shows the performance of the classification and modified C-Lasso and post-Lasso

estimators discussed in Section 2. Column 4 of Table 2 reports the average correct clas-

sification rate of the N individuals over all replications. For each replication, the correct

classification rate is calculated as 1
N

∑K0

k=1

∑
i∈Ĝk

1{β0
i = α0

k}. The results imply that the

percentage of correct group classification is approaching 100% as (N, T ) increase for various

DGPs, demonstrating the uniform classification consistency in Theorem 3.2. The remaining

columns summarize the performance of the modified C-Lasso and post-Lasso estimators for

1The choice of the constant c has only minor effects on the classification consistency and estimation
accuracy. Because of space limits, we only report the results for c = 0.1. Robust results are available upon
request.
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each coefficient, including the average root-mean-squared error (RMSE), bias, and coverage

rate of the two-sided nominal 95% confidence interval over all replications. The confidence

interval is the panel version of the grid bootstrap procedure proposed by Hansen (1999).

For comparison, we also report the corresponding statistics of the oracle estimator, which

uses the true group membership for estimation. As expected, the oracle estimators typically

outperform the modified C-Lasso and post-Lasso estimators, that is, with smaller RMSE and

bias and larger coverage rates. In addition, the post-Lasso estimators typically perform bet-

ter than the C-Lasso estimators. For all DGPs, as (N, T ) increase, the modified C-Lasso and

post-Lasso estimators’ RMSEs and biases decrease and the coverage rates approach 95%. In

addition, the estimators of the unit-root and explosive coefficients generally outperform the

stationary coefficients, which is consistent with the different group-specific convergence rates

discussed in Theorems 3.1–3.3. For the explosive case, both RMSE and bias are negligible

and all values are times 1000. In particular, the unit-root and explosive coefficient estimators’

performances are generally comparable to that of the oracle estimators.

Table 1: Frequency of selecting K = 1, ..., 6 groups when K0 = 3

The table reports the frequency of selecting the correct number of groups for DGPs 1–2, where
the true number of groups K0 = 3 and estimated number of groups is obtained by minimizing the
information criterion function (3.2).

DGP 1: Panel AR without fixed effects
N T 1 2 3 4 5 6
100 100 0 0.018 0.942 0.040 0 0
200 100 0 0.034 0.922 0.044 0 0
100 200 0 0 1 0 0 0
200 200 0 0 1 0 0 0

DGP 2: Panel AR with fixed effects (long-run difference transformation)
N T 1 2 3 4 5 6
100 200 0 0 0.906 0.094 0 0
200 200 0 0 0.914 0.086 0 0
100 400 0 0 0.996 0.004 0 0
200 400 0 0 1 0 0 0
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4.2 Bubble Detection

In this subsection, we consider a DGP that is motivated by our empirical study, in which

we apply our framework to detect hidden bubbles in the U.S. stock market (Section 5). We

detect the unknown firm-specific bubbles when their dividend-adjusted price series exhibit

an explosive pattern. Therefore, when the group-specific AR coefficient estimator is greater

than 1, those firms are classified into the “bubble group.” The following simulations show

the classification and estimation performance of the “bubble group” when T is short with

respect to N .

DGP 3: Mimicking the empirical set-up. We consider panel data of N = 1000

individuals covering T = 100 and T = 200 periods with fixed effects such that µi
i.i.d.∼

N(0.05, 0.25), ui,t
i.i.d.∼ N(0, 0.01), and yi,0 = 0. The AR coefficients βi are fixed parameters

drawn from five groups with N1 : N2 : N3 : N4 : N5 = 0.04 : 0.12 : 0.25 : 0.22 : 0.21

and α0
k = {0.79, 0.91, 0.96, 0.99, 1.01}. The sample sizes, (N, T ) = (1000, 100) and (N, T ) =

(1000, 200), approximate the average dimensions of each rolling window using half-year and

yearly historical daily stock prices panels, respectively. The group-specific AR coefficient (α0
k),

as well as group-specific number of individuals (Nk), are calculated as the average estimates

across the rolling windows. Compared with DGPs 1 and 2, the ratios of T/N are 0.1 and 0.2,

respectively, which are relatively small here in DGP 3, and the parameters of some groups

are not separated far apart from each other. Especially, the group-specific AR coefficients α0
k

for k = 3, 4 are very close, and both groups can be regarded as the “local-to-unity” group for

T = 100, 200.2 It is hard to identify these groups in this set-up; however, our empirical study

focuses on the “bubble group,” that is, the firms with explosive autoregressive coefficients.

Thus, we show next that, in this specific setting, our method works well in identifying and

estimating the bubble group with group-specific explosive autoregressive coefficients.

2In our framework, local-to-unity individuals are in the same group as the unit-root ones. Theoretically,
we cannot distinguish between group 3 (α0

k = 0.96) and group 4 (α0
k = 0.99), which correspond to 1− c

T with
c = 4 and 1 for T = 100, respectively.
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Table 3 summarizes the classification estimation results from our modified C-Lasso method

discussed in Section 2 and time-series right-tailed sup ADF tests in Phillips, Shi and Yu

(2015b). Rows 2 and 11 report the overall correct classification rates of the N individuals

classified into a specific group, which is the same measure we report in column 4 of Table

2. The results imply that the percentage for correct group classification among all groups is

not very good when our methods fail to distinguish between the two “local-to-unity” groups

(α0
k = 0.96, 0.99). When we combine the two “local-to-unity” groups and focus on how the

N individuals are classified into the combined four groups, rows 3 and 12 show that the

overall correct classification rates improve from 63% to 85%. Moreover, rows 6–7 and 15–16

summarize the correct and incorrect classification rates of individuals in the “bubble group”

over all replications. For each replication, the correct and incorrect bubble detection rates

are calculated as 1
Ne

∑
i∈Ĝe

1{β0
i = 1.01} and 1

N−Ne

∑
i∈Ĝe

1{β0
i *= 1.01}, respectively. Even

though the overall classification results are not ideal, the percentage of correct bubble detec-

tion is approaching 100% when T = 100, 200. Moreover, the percentage of incorrect bubble

detection is quite small. To demonstrate the advantages of pooling cross-section information,

we also report the correct and incorrect classification rates obtained from the time-series sup

ADF tests. For each time series in our simulated panel, we implement the right-tailed sup

ADF tests and use the 95% critical value to determine bubble behaviors. Specifically, if the

calculated sup ADF test statistic is large than the 95% critical value, we mark this time series

as an explosive one and vice versa. Combining these results, we notice that the classification

performance of our panel approach dominates the time-series test in both size and power.

Lastly, the RMSE and bias of the explosive AR coefficient, as reported in rows 4–5 and 13–

14 in the table, further indicate good finite sample performance of the “bubble group.” This

simulation results validate our data-driven methodology to detect hidden bubbles in the U.S.

stock market.
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Table 3: Classification and estimation performance of bubble group

The table compares the percentage of correct (incorrect) bubble detection (% correct (incorrect)
bubble detection) between the proposed panel C-Lasso method for heterogeneous AR coefficients
and the time-series sup ADF test. For the panel C-Lasso method, the table reports the percentage
of correct group classification (% Correct specification and % Correct specification (combine) when
two local-to-unit groups are combined)), RMSE, and bias of the explosive AR coefficients.

N=1000, T=100
Panel C-Lasso method % Correct specification 63.58

% Correct specification (combine) 84.07
RMSE of α0

k = 1.01 0.0002
Bias α0

k = 1.01 -0.0001
% Correct bubble detection 98.35
% Incorrect bubble detection 3.15

Time-series sup ADF test % Correct bubble detection 76.80
% Incorrect bubble detection 10.10

N=1000, T=200
Panel C-Lasso method % Correct specification 63.79

% Correct specification (combine) 85.47
RMSE α0

k = 1.01 0.0001
Bias α0

k = 1.01 0.0000
% Correct bubble detection 99.64
% Incorrect bubble detection 2.67

Time-series sup ADF test % Correct bubble detection 96.98
% Incorrect bubble detection 6.00

5 Empirical Study

Bubble detection is a longstanding question in financial econometrics; here bubbles are mod-

eled by mildly explosive behaviors in prices series. A “benchmark” model in the literature

is Phillips, Shi and Yu (2015a) who used several right-tailed sup ADF tests and empirically

identified bubble periods in the S&P 500 stock market index. However, the bubble detection

algorithms of Phillips, Shi and Yu (2015a) are designed for aggregate time series rather than

panels where individual stock price series may exhibit heterogeneous time-series properties

in terms of stationarity, nonstationarity, or even explosiveness and where useful information

may be lost when applying the time-series tests on a single stock market index series to
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identify the bubbles.

In this empirical study, we apply our data-driven panel methodology to reinvestigate

whether there are bubbles in the stock market by allowing for heterogeneous price behaviors

across firms. Our results are more informative in identifying firm-specific unknown bubble

behaviors. In particular, we impose latent group structures on the autoregressive coefficients

of each stock price series. Our empirical analyses include several stages and answer the

following questions: (i) Do bubbles exist in the stock market? If yes, can the latent group

structure reflect the hidden bubbles that may exist in some subset and cannot be recognized

by the aggregate data using the existing techniques? (ii) What firm-level characteristics can

explain the bubble behaviors? In addition, we investigate how the the detected stock market

bubbles respond to the aggregate shocks. The detailed procedure and results for this stage

are reported in the online appendix.

We consider an extended panel dataset of historical daily adjusted prices of all available

common stocks listed on NYSE, AMEX, and NASDAQ. Our data are from the Center for

Research in Security Prices (CRSP) in Wharton Research Data Services (WRDS). The sample

is an unbalanced panel sampling daily from January 1926 to March 2022.3 To calculate the

adjusted prices, we use the daily close prices and cumulative factor to adjusted prices before

then taking the logarithm of all individual stock prices.

5.1 Detecting bubbles in the stock market

We apply our novel methodology in the first stage to detect firm-level hidden bubbles using

a rolling window scheme. We explicitly allow the presence of individual effects (µi) for

each time series. At each month in time, we use data from the most recent three months,

which have been long-run differenced using data from the next three months, for the PWLS

estimation and repeat this procedure. More precisely, in the first estimation, we use daily

3Following the literature, we drop all firms with daily prices of less than 5 dollars. The number of firms
differs across time, ranging from 89 to 5587.
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data from January 1926 to March 1926, apply the LRD transformation using the data from

April 1926 to June 1926, estimate the panel autoregressions of 89 individual time series with a

latent group structure, and obtain the group-specific AR coefficients, as well as the unknown

group memberships. At each month t, we obtain α̂post
k , that is, β̂i, for each series i. We

claim that a bubble exists in series i at month t, denoted as Bi,t = 1, if there are explosive

coefficients, that is, maxk α̂
post
k is above some thresholds, here following Phillips, Wu and

Yu’s (2011) guidance on the parameter values of explosive trajectories in practice. All firms

with explosive coefficients are classified into a “bubble group.” As a robustness check, we

obtain results of the “bubble group,” which is defined by α̂e = maxk α̂
post
k > {1.005, 1.002, 1},

respectively.4 In addition, we claim that a bubble exists in the market at month t if Bi,t = 1

for some i.

We further compute the bubble fraction, that is, the ratio of the number of firms (NB
t ) in

the “bubble group” and total number of the firms (Nt) for estimation at that point in time,

bubble fraction πt =
# firms classified into the bubble group NB

t

# firms with classification estimates Nt
∗ 100% (5.1)

to measure the fraction of the firms in the stock market classified into the “bubble group.”

This fraction reflects the spread of bubbles in the stock market at each point in time. The

higher bubble fraction ratio indicates that more stocks’ adjusted price series exhibit explosive

behavior over the past three months.

Figure 1 reports the fraction of the firms with bubbles (πt) and number of the firms

with bubbles (NB
t ) at each month in time (in red bars with the y-axis on the left) with

different threshold values α̂e = maxk α̂
post
k > {1.005, 1.002, 1}, together with the results of

Phillips, Shi and Yu’s (2015a) bubble detection algorithms applied on the log of the S&P

500 price index for comparison. Phillips, Shi and Yu’s (2015a) results are the backward sup

ADF (BSADF, hereafter) test sequence of statistics (in blue dashed line with the y-axis on

4Phillips, Wu and Yu (2011) point out that, for economic and financial data, typical values of the explosive
slope coefficient are in the region [1.005, 1.05].
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the right) along with its 95% critical values sequences (in black line with the y-axis on the

right), and we denote the bubble periods identified by Phillips, Shi and Yu’s (2015a) bubble

detection algorithms in shaded areas. The red bars imply that bubbles exist in the stock

market over time. As we can see from Figure 1, the numbers of firms with bubbles increase

over time, while the factions of firms with bubbles fluctuate at around 20%, with the highest

fraction reaching 55% around February 1983 for all three threshold values. Compared with

the bubble periods identified by Phillips, Shi and Yu’s (2015a) method when applied to the

aggregate stock market index time series, our method not only detects bubbles in or around

the shaded areas, but it also uncovers more bubbles in the panel of firm-level stock prices

than the shaded areas. This indicates that hidden bubbles exist in subsets of the firms,

which cannot be recognized by the aggregate data when using Phillips, Shi and Yu’s (2015a)

method. In this sense, our results add to Phillips, Shi and Yu’s (2015a) results by uncovering

the heterogeneous patterns in bubbles across firms. In addition, the fraction of firms with

bubbles reflects the overall severity of bubbles in the stock market, which can be seen as

more informative than the bubble indicator provided by the BSADF test.

5.2 What can explain the bubble behavior?

In the second stage, we investigate the potential firm-level explanatory variables of the bub-

bles. To explore this issue, we first construct a yearly explained variable, bubble ratio,

bubble ratio =
# months a stock is classified into the bubble group

# months with classification estimates
∗ 100% (5.2)

to measure how often a stock is classified into the “bubble group” in a year. The bubble ratio

measure is the percentage of months in a year that a stock is classified into the “bubble group.”

A higher bubble ratio implies that the adjusted prices of the stocks are more explosive in that

year. From theoretical models of Scheinkman and Xiong (2003), we note that asset price

bubbles may arise from investors’ disagreements on the firm’s fundamental information, and

27



(a) Fraction of firms with bubble, πt, α̂e > 1.005 (b) Number of firms with bubble, NB
t , α̂e > 1.005

(c) Fraction of firms with bubble, πt, α̂e > 1.002 (d) Number of firms with bubble, NB
t , α̂e > 1.002

(e) Fraction of firms with bubble, πt, α̂e > 1 (f) Number of firms with bubble, NB
t , α̂e > 1

Note: This figure plots the bubble fraction πt and number of the firms with bubbles NB
t defined with

α̂e = {1.005, 1.002, 1} across time (in red bars with the y-axis on the left), together with Phillips, Shi and

Yu’s (2015a) BSADF sequence of statistics (in blue dashed line with the y-axis on the right) and its 95%

critical values sequences (in black line with the y-axis on the right) based on the S&P 500 price index.

Figure 1: Bubble detection results with various α̂e
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the size of a bubble increases with the degree of the investors’ overconfidence and fundamental

volatility of the asset. Therefore, we regress bubble ratio on a wide array of firm-specific

fundamentals, such as firm size, valuation, leverage, profitability, and financial soundness.

Considering potential endogeneity issues among asset price bubbles and firm characteristics,

we employ the one-year lagged variables for all determinants used in the regression.

Table 4 reports the regression results of bubble ratio on a battery of firm-specific char-

acteristics, where the “bubble group” are defined by different threshold values, that is,

α̂e = maxk α̂
post
k > {1.005, 1.002, 1}. We find that larger firms, i.e., firms with higher fractions

of tangible assets and good operating performance, are more often classified into the “bub-

ble group.” The sales-to-equity ratio, which measures the efficiency of utilizing shareholders’

equity to enhance sale growth, is also positively related to our bubble ratio. Moreover, the

higher debt ratio is associated with a lower bubble ratio, which is consistent with our expec-

tation that firms that borrow more capital from the market to fund their operations are more

likely in the case of a business downturn and less likely to be classified into “bubble group.”

In sum, the results in Table 4 show that our data-driven bubble results are in accordance

with the underlying firm-specific fundamentals and consistent with the predictions from the

theoretical models. Therefore, our panel autoregressive model with unobserved group struc-

tures helps identify the hidden bubbles at the firm level and uncover potential fundamental

determinants of those bubbles.

6 Conclusion

We propose a unified approach to estimation and inference for panel autoregressive models

with latent group structures in which the degree of persistence in the AR coefficient is un-

known. Our methods simultaneously provide the group-specific Lasso-type estimators for the

AR coefficients and identify the unknown group structures. We establish the convergence

rate, classification consistency, and uniform asymptotic normality for two Lasso-type estima-
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Table 4: Multivariate tests of the determinants for bubble group classification

This table presents the panel regression results of the bubble ratio, that is, the fraction of months in
a year that stocks are grouped into “bubble group,” on the explanatory variables: firm size, book-
to-market (BM) ratio, sales-to-equity ratio, % tangible assets, leverage, operating profit, debt ratio,
and price-to-earnings (P/E). The definitions of these variables are illustrated in the online appendix.
The estimated classifications are different from column (1) to column (3) by using different threshold
values in defining explosive behavior. *, **, *** denote statistical significance at 10%, 5%, and 1%,
respectively, with associated t -statistics in parentheses. The sample period is from 1970 to 2021
because of the availability of firm-level characteristics.

Bubble ratio
(1) (2) (3)

α̂e > 1.005 α̂e > 1.002 α̂e > 1

Size 0.057** 0.210*** 0.217***
(0.023) (0.030) (0.037)

BM -0.023*** -0.012 -0.025**
(0.009) (0.010) (0.012)

Sales/Equity 0.029** 0.034*** 0.028*
(0.014) (0.013) (0.014)

% Tangible assets 0.604*** 0.657*** 0.849***
(0.179) (0.239) (0.286)

Operating profit 0.023*** 0.038*** 0.045***
(0.001) (0.003) (0.005)

Debt ratio -0.004*** -0.005*** -0.005
(0.000) (0.001) (0.003)

P/E -0.000 -0.000 -0.000
(0.000) (0.000) (0.000)

Constant 0.611*** 0.534*** 1.486***
(0.155) (0.202) (0.245)

Firm FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 114,818 114,818 114,818
Adj. R2 0.245 0.3 0.322
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tors. The simulation results suggest that our method has good finite-sample performance.

An empirical application of detecting hidden bubbles in the U.S. stock market reveals the

advantages of this unified estimation procedure for persistent and even explosive data. There

are several interesting topics for further research. First, it may be interesting to consider

factor structures in the error term, given the extensive literature on modeling cross-sectional

dependence and serial correlation using factor structures. Second, it may be interesting to

relax the assumption on the distance of coefficients of different groups so that mildly explosive

trajectories can be distinguished from explosive ones. Third, our method can be extended to

panel vector autoregressive models. We leave these topics for future research.
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