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1 Introduction

Homophily, the observed tendency of agents with similar attributes maintaining relation-

ships, is a salient feature in social and economic networks (Chandrasekhar, 2016; Jackson,

2010, and references therein). Inasmuch as it may drive network formation, homophily

can produce nonnegligible effects in outcomes as diverse as smoking behaviour (Badev,

2017) and test scores (Hsieh and Lee, 2016; Goldsmith-Pinkham and Imbens, 2013). Per-

haps unsurprisingly then, the appropriate modelling of homophily has received quite a deal

of attention in the recent push for estimable econometric models of network formation

(Goldsmith-Pinkham and Imbens, 2013; Chandrasekhar and Jackson, 2016; Mele, 2017;

Graham, 2016, 2017).

A strand of the literature on the topic makes a distinction between homophily that

is due to choice; and homophily that is due to opportunity1. We shall label the former

homophily “in preferences”; and the latter homophily in “meetings”. This distinction has

not only theoretical, but also practical appeal: whereas public policy may be able to

alter the meeting technology between agents (say, by desegregating environments), it may

be less successful in changing preferences. Theoretical models that distinguish between

these mechanisms can be found in Currarini et al. (2009) and Bramoullé et al. (2012)2.

These models have some limitations, though: first, they focus on steady-state or “long-run”

behaviour, which may not be appropriate in settings where transitional dynamics may

matter (as in our applied section); second, they are either purely probabilistic3 (Bramoullé

et al., 2012) or, in the case of Currarini et al. (2009), allow for only a restrictive set of pay-

offs from relationships4. These limitations render these models unfit for some empirical

analyses.

This study aims to fill in the gap by providing an estimable econometric model that

accounts for both homophily in “preferences” and “meetings”. We study identification and
1Cf. Jackson (2010, p. 68) for a discussion.
2See also Currarini et al. (2010) for an attempt at estimation.
3In contrast to strategic models of network formation. See Jackson (2010) and de Paula (2016) for

examples.
4Pay-offs in Currarini et al. (2009) depend only on the number of relationships with individuals of the

same or different types. There is no role for indirect benefits.
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estimation of a sequential network formation algorithm originally found in Mele (2017) (also

Christakis et al. (2010) and Badev (2017)), where agents meet sequentially in pairs in order

to revise their relationship status. The model is well-grounded in the theoretical literature

of strategic network formation (Jackson and Watts, 2002) and allows specifications that

account for both “homophilies”. In spite of that, our approach differs from previous work in

the literature in several aspects. While Mele (2017) discusses identification and estimation

of utility parameters off from the model’s induced stationary distribution under large- and

many-network asymptotics, we study identification and estimation of both preference- and

meeting-related parameters under many-network asymptotics in a setting where networks

are observed in two points of time5. Our results also cover a larger – and arguably less

restrictive – class of pay-offs and meeting processes than those in Mele (2017), where the

author assumes utilities admit a potential function and meeting probabilities do not depend

on the existence of a link between agents in the current network. By studying identification

and estimation of general classes of preference- and matching-related parameters in (possi-

bly) off-stationary-equilibrium settings, we hope to contribute to the model’s applicability

and empirical usefulness, especially in conducting counterfactual analyses.

As an application, we study how “homophilies” structure network formation in primary

schools in Northeastern Brazil (Pinto and Ponczek, 2017). We consider 30 municipal ele-

mentary schools in Recife, Pernambuco, for which baseline (early 2014) and followup (late

2014) data on 3rd- and 5th- grade intra-classroom friendship networks was collected. Us-

ing this information, we are able to assess how changes in the meeting technology between

classmates impact homophily in friendships. Our results suggest that removing biases in

meeting opportunities would actually increase observed homophily patterns in students’

cognitive skills. We also use our estimated model in welfare assessments. We find that

unbiased matching leads to a lower aggregate utility path across the school year; and that

tracking students according to their cognitive skills leads to welfare improvements, though

this benefit appears to diminish in the long run.

In the next sections, we introduce the network formation game under consideration

(Section 2); explore identification when information on the network structure is available
5In fact, as we show in Appendix B, meeting parameters are unidentified in the setting of Mele (2017).
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in two distinct points of time (Section 3); and discuss estimation under both a frequentist

and a Bayesian perspective (Section 4). Section 5 presents the results of our application.

Section 6 concludes.

2 Setup

The setup expands upon Mele (2017). We consider a network game on a finite set of

agents I := {1, 2 . . . N}. Each agent i ∈ I is endowed with a k × 1 vector of exogenous

characteristics Wi. Agents’ vectors are stacked on matrix X :=
[
W1 W2 · · · WN

]′
.

Agents’ characteristics are drawn according to law PX before the game starts and remain

fixed throughout. We denote the support of X by X and a realisation of X by an element

x ∈ X .

Time is discrete. At each round t ∈ N of the network formation process, agents’

relations are described by a directed network. Information on the network is stored on a

N × N adjacency matrix, with entry gij = 1 if i lists j as a friend and 0 otherwise6. By

assumption, gii = 0 for all i ∈ I. We denote the set of all 2N(N−1) possible adjacency

matrices by G.

Agent i’s utility from a network g when covariates are X = x is described by a utility

function ui : G × X 7→ R, ui(g, x). Utility may depend on the entire network and on the

entire set of agents’ covariates.

Agents are myopic, i.e. they form, maintain or sever relationships based on the current

utility these bring. At each round, a matching process mt selects a pair of agents (i, j). A

matching process mt is a stochastic process {mt : t ∈ N} overM := {(i, j) ∈ I×I : i 6= j}.

If the pair (i, j) is selected, agent i will get to choose whether to form/mantain or not

form/sever a relationship with j. After the matching process selects a pair of agents, a pair

of choice-specific idiosyncratic shocks (εij,t(0), εij,t(1)) are drawn, where εij,t(1) corresponds

to the taste shock in forming/maintaining a relationship with j at time t. These shocks

are unobserved by the econometrician and enter additively in the utility of each choice7.
6Our model and main results are easily extended to the case of an undirected network where friendships

are forcibly symmetric.
7Additive separability of unobserved shocks is a common assumption in the econometric literature on
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Given that choice is myopic, agent i forms/maintain a relation with j iff:

ui([1, g−ij], X) + εij,t(1) ≥ ui([0, g−ij], X) + εij,t(0) (1)

where [a, g−ij] denotes an adjacency matrix with all entries equal to g except for entry

ij, which equals a.

The next two assumptions constrain the meeting process and the distribution of shocks.

Assumption 2.1. The meeting process {mt : t ∈ N} is described by a time-invariant

matching function ρ :M×G×X 7→ [0, 1] , where ρ((i, j), g, x) is the probability that (i, j)

is selected when covariates are X = x and the previous-round network was g. Moreover,

for all g ∈ G, x ∈ X , (i, j) ∈M, ρ((i, j), g, x) > 0.

So the matching function assigns positive probability to all possible meetings under

all possible values of covariates and previous-round networks. Note that this allows for

dependence on the existence of previous-round links, which was not permitted in Mele

(2017)8.

Assumption 2.2. Shocks are drawn iid across pairs and time, indenpendently from X,

from a known distribution (ε(0), ε(1))′ ∼ Fε which is absolutely continuous with respect to

the Lebesgue measure on R2 and has positive density almost everywhere.

Conditional on X = x, we have that, under Assumption 2.1 and Assumption 2.2 –

and specifying some initial distribution µ0(x) ∈ ∆(G)9 –, the network game just described

induces a Markov chain {gt : t ∈ N∪{0}} on the set of netwotks G. The 2N(N−1)× 2N(N−1)

transition matrix Π(x) has entries Π(x)gw, g, w ∈ G, which prescribe the probability of

transitioning to w given the current period network g.

For each g ∈ G, define N(g) := {w ∈ G \ {g} : ∃! (i, j) ∈ M, gij 6= wij} as the set of

networks that differ from g in exactly one edge. Entries of Π(x) take the form:

discrete choice and games (Aguirregabiria and Mira, 2010), though it is not innocuous. In our setting, it

precludes randomness in the marginal effect of network covariates on utility (homophily in preferences), as

taste shocks act as pure location shifts.
8Further notice that, differently from Mele (2017), we do not assume utilities admit a potential function.

See Section 3.3 for a discussion.
9We denote by ∆(G) the set of all probability distributions on G.
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Π(x)gw =


ρ((i, j), g, x)Fε(gij)−ε(wij)(ui(w, x)− ui(g, x)) if w ∈ N(g), gij 6= wij∑

(i,j)∈M ρ((i, j), g, x)Fε(1−gij)−ε(gij) (ui(g, x)− ui([1− gij , g−ij ], x)) if g = w

0 elsewhere
(2)

where Fε(1)−ε(0) and Fε(0)−ε(1) denote the distribution function of the difference in shocks.

Remark 2.1. The transition matrix is irreducible and aperiodic. Indeed, by Assump-

tion 2.1 and Assumption 2.2, the first and second cases in (2) are always positive for any

g ∈ G. We can thus always reach any other network w starting from any g with posi-

tive probability in finite time (irreducibility). Since the chain is irreducible and contains a

self-loop (Π(x)gg > 0), it is also aperiodic.

We next look for (conditional) stationary distributions. Recall that a stationary distri-

bution is an element π(x) ∈ ∆(G) satisfying π(x) = Π(x)′π(x).

Remark 2.2. The transition matrix Π(x) admits a unique stationary distribution, which

is a direct consequence of the Perron-Froebenius theorem for nonnegative irreducible ma-

trices (Horn and Johnson, 2012, Theorem 8.4.4). Moreover, as the chain is irreducible

and aperiodic, we have that, for any π0 ∈ ∆(G), limt→∞(Π(x)t)′π0 = π(x) (Norris, 1997,

Theorem 1.8.3), so we may interpret the invariant distribution as a “long-run” distribution.

Remark 2.3. Note that the stationary distribution puts positive mass over all network

configurations. Indeed, first note that there exists some g0 ∈ G such that π(g0|x) > 0.

Fix w ∈ G. Since the chain is irreducible, there exists k ∈ N such that (Π(x)k)g0,w > 0,

where (Π(x)k)g0,w > 0 denotes the (g0, w) entry of Π(x)k. But π(x) = (Π(x)k)′π(x) =⇒

π(w|x) > 0.

3 Identification

In this section, we study identification under many-network asymptotics. In particular, we

assume we have access to a random sample (iid across c) of C networks {GT0
c , G

T1
c , Xc}Cc=1

6



stemming from the network formation game described in Section 210. In this context,

GT0
c and GT1

c are observations of network c over two (possibly nonconsecutive) periods11

(labelled first and second); and Xc is the set of covariates associated with network c. We

recall the law of Xc is PX , as Xc is a copy of X (i.e. a random variable with the same law

as X). As in the previous section, realisations of X are denoted by small case letters, i.e.

elements x ∈ X .

Denote by Π(X; θ0) the transition matrix under covariatesX; and where θ0 := ((ui)
N
i=1, ρ)

are the “true” parameters (functions). Further write τ0 for the number of rounds of the

network formation game taken place between the first and second period. Notice that we

are able to identify Π(X; θ0)
τ0 , the transition matrix to the power of the number of rounds

of the network formation game which took place between the first and second period (τ0),

provided that the first-period conditional distribution, which we denote by π0(X), is such

that π0(X) >> 0 PX-a.s. To see this more clearly, suppose X were empty. In this case,

we could consistently estimate (Πτ0)gw, g, w ∈ G, by (Π̂τ0)gw =
∑C

c=1 1{GT0
c = g,GT1

c =

w}/
∑C

c=1 1{GT0
c = g}12, provided P[GT0

c = g] > 013. The next assumption summarises this

requirement.

Assumption 3.1 (Full support). π0(g|X) > 0 for all g ∈ G PX-a.s.

Since Π(X; θ0)
τ0 is identified from the data under Assumption 3.1, the identification

problem subsumes to (denoting by Θ the parameter space14):
10Under large-network asymptotics, we would have access to a single (a few) network(s) with a large

number of players.
11In Appendix B, we briefly discuss (non)identification when only one period of data stemming from the

stationary distribution of the network formation game is available.
12In our setting, an agent is described by her set of exogenous characteristics Wi. Agents in different

networks are “equal” if their covariates agree. Two networks are thus deemed equal if their adjacency

matrices are equal up to symmetric permutations in their rows and columns; and if agents “agree” in both

networks.
13The case where X has discrete support is similar to the case where no covariates are included. In the

case where X contains continuous covariates, a consistent estimator would be given by a kernel estimator

(Li and Racine, 2006). Clearly, these estimators would behave poorly in many practical settings (especially

if the number of players is moderate to large), though we are not suggesting to use them in practice – we

rely on consistency only as an indirect argument of identification.
14Abstracting from measurability concerns, this is the set of utilities and matching functions satifying
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∀(θ, τ), (θ̃, τ̃) ∈ Θ× N, (θ, τ) 6= (θ̃, τ̃) =⇒ Π(X; θ)τ 6= Π(X; θ̃)τ̃

where the RHS inequality must hold with positive probability over the distribution of

X (Newey and McFadden, 1994).

Observe that, in our statement of the identification problem, the number of rounds in

the network formation game is assumed to be unknown. There is no reason to expect τ0,

the true number of rounds, to be known a priori by the researcher, unless the network

formation algorithm has a clear empirical interpretation. Nonetheless, it is still possible

to identify τ0 under some assumptions. Observe that, for all θ ∈ Θ and x ∈ X , Π(x; θ) is

irreducible and has strictly positive main diagonal. It is then easy to see that the number of

strictly positive entries in Π(x; θ)τ is nondecreasing in τ . Moreover, this number is strictly

increasing for τ ≤ N(N − 1)15 and does not depend on the choice of (x, θ). Thus, provided

that τ0 ≤ N(N − 1), we can identify τ0 by “counting”16 the number of positive entries in

Π(X; θ0)
τ0 .

Assumption 3.2 (Upper bound on τ0). The number of rounds which took place in the

network formation game between the first and second period (τ0) is smaller than or equal

to N(N − 1).

Remark 3.1. Under 3.2, τ0 is identified (in {1, 2 . . . N(N − 1)}).

A similar assumption can be found in Christakis et al. (2010), where it is assumed that

τ0 = N(N − 1)/2 (it is an undirected network) and all meeting opportunities are played

(though in an unknown order). In their setting, however, the assumption is mainly made in

order to reduce the computational toll of evaluating the model likelihood (see Section 4.1.2

for a similar discussion); whereas in our environment we require it in identification. We also

emphasise that the bound in assumption 3.2 will be more or less restrictive depending on

the setting – knowledge of the particular application in mind should help to assess its appro-

priability. Finally, it should be noted that our main identification result (Proposition 3.1)

holds irrespective of the bound, provided that τ0 is identified or known a priori.

the assumptions in Section 2.
15N(N − 1) is the minimum number of rounds required for the probability of transitioning from a “fully

empty” network to a “fully connected” network to be strictly positive.
16We provide a consistent estimator for τ0 in Section 4.1.1.
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Under assumption 3.2, we may thus assume, without loss, τ0 is known.

In the next subsections, we discuss identification of θ.

3.1 Identification without restrictions

To illustrate the difficulty of identification without imposing further restrictions, let us

briefly analyse identification of θ from Π(X; θ). Observe that identification of θ from

Π(X; θ) is a necessary condition for identification of θ from Π(X; θ)τ0 . Indeed, knowledge

of Π(X; θ) implies knowledge of Π(X; θ)τ0 . Thus, in a sense, our analysis in this subsection

provides a “best-case” scenario for achieving identification without additional restrictions.

As we do not impose further restrictions in the model, we essentially view X as non-

stochastic throughout the remainder of this subsection and suppress dependence of Π(X; θ)

on X by writing Π(θ). In order to make the identification problem clearer, define, for all

g ∈ G, w ∈ N(g) with gij 6= wij, Fij(g, w) := Fε(gij)−ε(wij)(ui(w,X)−ui(g,X)). Observe that

Fij(g, w) + Fij(w, g) = 1. Write ρij(g) for ρ((i, j), g,X). Observe that
∑

(i,j)∈M ρij(g) = 1.

Let γ := ((ρij(g))g∈G,(i,j)∈M , (Fij(g, w))g∈G,w∈N(g),gij 6=wij) be a parameter vector, and

γ0 the “true” parameter. Observe that, under assumptions 2.1 and 2.2, the parameter space,

which we denote by Γ, is a subset of Rdim γ
++ , an open set. Put another way, Γ = {γ ∈ Rdim γ

++ :

Fij(g, w) + Fij(w, g) = 1,
∑

(k,l)∈M ρk,l(g) = 1 for all g ∈ G, w ∈ N(g) with gij 6= wij}.

Identification from the transition matrix thus requires us to show that, for all γ, γ′ ∈ Γ,

γ 6= γ′ =⇒ Π(γ) 6= Π(γ′), where Π(γ) is the matrix in (2) constructed under γ. If we can

uniquely recover γ from Π, then we can recover differences in utilities, ui(g,X)−ui(w,X),

for all i ∈ I and g, w ∈ G, as Fε(1)−ε(0) is invertible under assumption 2.2. Levels (and thus

θ) are then identified under a location normalisation on pay-offs (e.g. ui(g0, X) = 0 for all

i and some g0).

Observe that dim γ = N(N − 1)2N(N−1) +N(N − 1)2N(N−1), where the first summand

is the dimension of (pij(g) : g ∈ G, (i, j) ∈M) and the second term is the dimension of

(Fij(g, w) : (i, j) ∈M, g ∈ G, w ∈ N(g), wij 6= gij). Matrix Π(γ) has 2N(N−1)(N(N−1)+1)

strictly positive entries. The parameter space imposes 2N(N−1) restrictions of the type∑
(i,j)∈M ρi,j(g) = 1 andN(N−1)2N(N−1)/2 restrictions of the type Fij(g, w)+Fij(w, g) = 1.

A simple order condition would thus require:
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2N(N−1) [2N(N − 1)] ≤ 2N(N−1) [N(N − 1) + 1 +N(N − 1)/2] =⇒ N(N − 1) ≤ 2 =⇒

=⇒ N ≤ 2

and the model would be identified provided that N = 2. The point is that the map

γ 7→ Π(γ) is nonlinear, so the order condition is nor necessary nor sufficient. Nonetheless,

we are able to show directly that the model is identified when N = 2.

Claim 3.1. If N = 2, then γ is identified from Π(γ) under assumptions 2.2, 2.1 and 3.1.

Proof. See Appendix D.

Extending such a direct argument to N > 2 is not feasible, as Π is a 2N(N−1)× 2N(N−1)

matrix. Notice that the rank condition in Rothenberg (1971) for local identification is not

satisfied (recall the previous order condition). The problem is that, for this condition to

be sufficient for local nonidentification, the Jacobian of Π(γ) must be rank-regular (i.e. it

must have constant rank in a neighbourhood of γ) , which is not trivial to show. Of course,

if that were the case, then we would know the model is nonidentified for N > 2.

Given the difficulty of establishing identification without imposing further restrictions

even when Π(X; θ) is known (or τ0 = 1), in the next subsections we explore the identifying

power of restrictions on: (i) how covariates affect utilities and the matching function; and

(ii) how the network structure affects pay-offs and meetings. To make both the exposition

and proofs clearer, in what follows we maintain the notation introduced in this section, and

dependence of objects on covariates will remain implicit where there is no confusion.

3.2 Identification with covariates

In this subsection, we explore the identifying power of restrictions on covariates. We work

in the environment where we observe two periods of data and τ0 is assumed to be identified

or known a priori. We will follow an identification at infinity approach in order to identify

θ (Tamer, 2003; Bajari et al., 2010).

In order to make explicit the dependency in covariates, we write Xu
i (g) for the covariates

that enter the utility of agent i under network g, i.e. we shall write ui(g,X) = ui(g,X
u
i (g))
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for all i ∈ I, g ∈ G. We use Xm(g) for the covariates that enter the matching function

under network g, i.e. ρ((i, j), g,X) = ρ((i, j), g,Xm(g)) for all (i, j) ∈ M and g ∈ G. We

also define ui(w,Xu
i (w))− ui(g,Xu

i (g)) =: δij(g, w,X
u
ij(g, w)), the gain in utility from each

choice, for all g ∈ G, w ∈ N(g), wij 6= gij. In this case, Xu
ij(g, w) is the subvector of

[Xu
i (g), Xu

i (w)] with the covariates relevant in the marginal gain of i moving from g to w.

We write Π(X)τ0 = Π(X; θ0)
τ0 for the observed transition matrix. Notice that, in our case,

X = [(Xu
ij(g, w))g∈G,w∈N(g),wij 6=gij , (X

m(g))g∈G]. Finally, we will use the notation A \ B for

the subvector of A such that, up to permutations, A = [A \B,B].

We next impose the following assumptions.

Assumption 3.3 (Location normalisation). There exists some g0 ∈ G, ui(g0, Xu
i (g0)) = 0

for all i ∈ I.

Such a normalisation is required in order to identify utilities in levels.

Our exclusion restriction is as follows:

Assumption 3.4 (Large support exclusion restriction). For all g ∈ G, w ∈ N(g), gij 6= wij,

there exists a m× 1 subvector Zu
ij(g, w) of Xu

ij(g, w), i.e. Xu
ij(g, w) = [Zu

ij(g, w), X̃u
ij(g, w)],

such that no covariate in Zu
ij(g, w) is an element ofXm(g). Moreover, Zu

ij(g, w) admits a con-

ditional Lebesgue density f(Zu
ij(g, w)|X̃u

ij(g, w), Xm(g)) that is positive a.e. (for almost all

realisations of [X̃u
ij(g, w), Xm(g)]); and there exists ~r ∈ Rm s.t. limt→∞ δij(g, w, [Z

u
ij(g, w) =

t~r, X̃u
ij(g, w)]) =∞.

Assumption 3.4 requires that, for each g ∈ G, large support covariates be included in the

marginal gain of each agent’s choice under g, but excluded from the matching function under

g. These covariates should admit, with positive probability, sufficiently “high” realisations

s.t. the (conditional on X) probability of an agent “accepting” a transition from g once

selected by the matching process can be made arbitrarily close to unity.

In what follows, write Nk(g), k ∈ N and g ∈ G, for the set of networks that differ from

g in exactly k edges. The previous restrictions imply the next result:

Lemma 3.1. Under Assumptions 2.1, 2.2, 3.1, 3.3 and 3.4, θ0 is identified when τ0 = 1.

Proof. Starting from some w ∈ N(g0), wij 6= g0ij, we can identify ρij(g0, X
m(g)) =

limt→∞(Π(X\Zu
ij(g0, w), Zu

ij(g0, w) = t~rg0w))g0w, which is valid under the (conditional) large

11



support assumption. We are then able to identify ui(w,Xu
i (w)) thanks to the normalisation

on ui(g0, X
u
i (g0)). Proceeding in a similar fashion iteratively on w′ ∈ N2(g0), N

3(g0) . . .,

we identify all objects.

A sufficient condition for identification of θ0 for any τ0 known or identified is provided

in the corollary below.

Corollary 3.1. If θ 7→ Π(X; θ) is a.s. diagonalisable with the appropriate eigenvalue signs

(nonnegative if τ0 even), then, under the assumptions in Lemma 3.1, θ0 is identified for

any τ0 known or identified.

More generally, conditions for uniqueness of a stochastic τ0th root of a transition matrix

are quite complicated. See Higham and Lin (2011) for examples and sufficient conditions.

Remark 3.2. It should also be clear that the result in Lemma 3.1 would similarly hold if

the large suppport variable were included in the matching function (but not in utilities).

This may be more appropriate in some applied settings.

When τ0 ≥ 2 and we do not know if Π(X; θ) is “appropriately” diagonalisable, we need

stronger exclusion restrictions. We state a sufficient version (for all τ0 identified or krnown)

of this assumption below.

Assumption 3.5. The exclusion restriction in 3.4 holds as: no covariate in Zu
ij(g, w)

is included in [Xm(g), Xm(w), (Xu
kl(g, [1− gkl, g−kl]), Xu

kl(w, [1− wkl, w−kl]))(k,l)6=(i,j)]; with

f(Zu
ij(g, w)|X \ Zu

ij(g, w)) positive a.e. (for almost all realisations of [X \ Zu
ij(g, w)]).

This stronger exclusion restriction requires that the large support covariates included in

agent i’s marginal gain of transitioning from g to w be excluded not only from the matching

function under g; but also from the matching function under w and from all other agents’

marginal gain of transitioning from g or w.

We next show identification when τ0 = 2 to get an idea of how the general case would

look like. As one will see, the exclusion restriction given by Assumption 3.5 could be relaxed

in this case, though the latter would then be insufficient for identification when τ0 > 2.

Lemma 3.2. Suppose Assumptions 2.1, 2.2, 3.1, 3.3 and 3.5 hold. Then, if τ0 = 2, the

model is identified.
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Proof. First notice that Π(X; θ)2 takes the form:

(Π(X; θ)2)gw =



ρij(g)Fij(g, [wij , g])ρkl([wij , g])Fkl([wij , g], w)+

+ρkl(g)Fkl(g, [wkl, g])ρij([wkl, g])Fij([wkl, g], w) if w ∈ N2(g), wij 6= gij , wkl 6= gkl

Πggρij(g)Fij(g, w) + ρij(g)Fij(g, w)Πww if w ∈ N(g), wij 6= gij

ΠggΠgg +
∑
s∈N(g) ΠgsΠsg if g = w

0 otherwise
(3)

Fix g ∈ G, w ∈ N(g), gij 6= wij. Notice that, by driving Fij(g, w) → 1 and Fpq(g,m) → 0

for all m ∈ N(g) \ {w}, gpq 6= mpq, the term (Π2)gg identifies:

lim
t∗

(Π2)gg = (1− ρij(g))2

where limt∗ is shorthand for the appropriate limit17. Since limt∗(Π
2)gg ∈ [0, 1], we can

uniquely solve for ρij(g), thus establishing identification of ρij(g).

Next, observe that, by taking Fpq(g,m)→ 0 for all m ∈ N(g) \ {w}, Fpq(w,m)→ 0 for

all m ∈ N(w) \ {g}, the term Πgw identifies:

lim
t∗∗

Πgw = (1− ρij(g)Fij(g, w))ρij(g)Fij(g, w) + ρij(g)Fij(g, w)(1− ρij(w)Fij(w, g)) =

ρij(g)Fij(g, w)(2− ρij(w) + (ρij(w)− ρij(g))Fij(g, w))

where limt∗∗ is shorthand for the appropriate limit18. Since the right-hand term is

strictly increasing in Fij(g, w), the “true” Fij(g, w) uniquely solves the equation, thus es-

tablishing identification.

The previous argument suggests a procedure for the general case.

Proposition 3.1. Suppose Assumptions 2.1, 2.2, 3.1, 3.3 and 3.5 hold. Then the model

is identified for any τ0 known or identified.

Proof. Fix g ∈ G, w ∈ N(g), gij 6= wij. Observe that:

(Πτ0)gg =
∑

m∈N(g)∪{g}

(Πτ0−1)gmΠmg

We first prove the following claim:
17I.e. a limit that drives Fij(g, w)→ 1 and Fpq(g,m)→ 0 for all m ∈ N(g) \ {w}, gpq 6= mpq.
18I.e. a limit that drives Fpq(g,m)→ 0 for all m ∈ N(g) \ {w}, Fpq(w,m)→ 0 for all m ∈ N(w) \ {g}.
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Claim. Under a limit which drives Fpq(w,m) → 0 for all m ∈ N(w), mpq 6= wpq, and

Fkl(g, s)→ 0 for all s ∈ N(g) \ {w}, skl 6= gkl, we have limt∗(Π
τ0)gg = (1− ρij(g))τ0, where

limt∗ is shorthand for the appropriate limit.

Proof. The case τ0 = 1 is readily verified by driving Fkl(g, s) → 0 for all s ∈ N(g) \

{w}, skl 6= gkl and Fij(g, w) → 1. For τ0 > 1, we begin by noticing that we may drive

(Πτ0−1)gm → 0 for all m ∈ N(g) \ {w}. Since m and g differ in exactly one edge (say,

mpq 6= gpq), a transition in edge pq must appear in every summand in (Πτ0−1)gm. Indeed,

(Πτ0−1)gm sums over all possible transitions in edge pq from value gpq to mpq in τ0 − 1

rounds. Put another way, for each summand in (Πτ0−1)gm, there exists t ∈ {0, 1 . . . τ0− 2},

gtpq = gpq and gt+1
pq = mpq

19. Fix a summand in (Πτ0−1)gm. We analyse the following cases:

1. There exists t ∈ {0, 1 . . . τ0 − 2}, gtpq = gpq, gt+1
pq = mpq and gt = g. In this case, by

taking Fpq(g,m)→ 0, we drive the summand to 0.

2. For all t ∈ {0, 1 . . . τ0 − 2} such that gtpq = gpq, gt+1
pq = mpq, we have gt 6= g. Take t∗

to be the smallest t satisfying the above. Observe that t∗ > 0, as g0 = g (we always

start at g). Since gt∗ 6= g, there exists t′ < t∗, gt′ = g and gt
′+1 = z, z ∈ N(g). If

there exists some t′ satisfying this property such that z 6= w (with gkl 6= zkl), then

driving Fkl(g, z) → 0 vanishes the term. If, for all such t′, z = w, take t∗∗ to be

the maximum of such t′. Observe that t∗∗ < t∗. If gt∗ = w, we may safely drive

Fpq(w, [mpq, w−pq])→ 0. If not, then t∗∗+ 1 < t∗ and there exists a transition from w

to some element in N(w) which we can safely drive to 0.

Since the above argument holds irrespective of the summand (the common limit will

vanish all terms), we conclude (Πτ0−1)gm → 0. Since Fij(g, w) → 1, limt∗(Π
τ0−1)gwΠwg =

020. The common limit in the statement of the claim thus leaves us with:

lim
t∗

(Πτ0)gg = lim
t∗

(Πτ0−1)gg lim
t∗

(Π)gg = lim
t∗

(Πτ0−1)gg(1− ρij(g))

Induction then yields the desired result.
19Recall gt is the stochastic process on G induced by the game.
20In all previous arguments, we implicitly use the sandwich lemma to infer that, if one term of the product

goes to zero, the whole product does. This is immediate as we’re working with products of probabilities.
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Since limt∗(Π
τ0)gg ∈ [0, 1], we can uniquely solve for ρij(g), thus establishing identifica-

tion.

Next, we proceed to identification of Fij(g, w). Note that:

(Πτ0)gw =
∑

m∈N(w)∪{w}

(Πτ0−1)gmΠmw

We then prove the following claim:

Claim. Under a limit which drives Fpq(w,m)→ 0 for all m ∈ N(w)\{g}, mpq 6= wpq, and

Fkl(g, s)→ 0 for all s ∈ N(g) \ {w}, skl 6= gkl:

lim
t∗∗

(Πτ0)gw = lim
t∗∗

(Πτ0−1)ggρij(g)Fij(g, w) + lim
t∗∗

(Πτ0−1)gw(1− ρij(w)Fij(w, g))

where limt∗∗ is shorthand for the appropriate limit. We also have that, under such a limit:

lim
t∗∗

(Πτ0)gw + lim
t∗∗

(Πτ0)gg = 1

Proof. Notice that, for τ0 = 1, we have:

lim
t∗∗

(Π)gw = ρij(g)Fij(g, w)

lim
t∗∗

(Π)gg = (1− ρij(g)Fij(g, w))

These expressions follow directly from the limit being taken and equation (2).

Consider next the case τ0 > 1. Observe that the limit in the statement of the lemma

drives (Πτ0−1)gm → 0 for all m ∈ N(w) \ {g}. Indeed, notice that, if m ∈ N(w) \ {g},

then m ∈ N2(g). Recall (Πτ0−1)gm sums over all possible transitions from g to m in τ0 − 1

rounds. Fix a summand in (Πτ0−1)gm. If a transition from g occurs at pair (a, b) ∈ M,

(a, b) 6= (i, j), then the limit vanishes the term. If all transitions from g occur at pair (i, j)

(i.e. g only transitions to w), a transition from w must occur, since m ∈ N2(g). If w only

transitions to g, then either m = g or m = w, which is not true. Therefore, there exists a

transition from w to some z ∈ N(w) \ {g}, so we can vanish the summand. The limit in

the statement thus drives the term (Πτ0−1)gm to zero.

From the above discussion, we thus get:
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lim
t∗∗

(Πτ0)gw = lim
t∗∗

(Πτ0−1)ggΠgw + lim
t∗∗

(Πτ0−1)gwΠww =

lim
t∗∗

(Πτ0−1)ggρij(g)Fij(g, w) + lim
t∗∗

(Πτ0−1)gw(1− ρij(w)Fij(w, g))

which establishes the first part of the claim.

Next, we notice that, under the limit in the statement of the claim:

lim
t∗∗

(Πτ0)gg = lim
t∗∗

(Πτ0−1)gg(1− ρij(g)Fij(g, w)) + lim
t∗∗

(Πτ0−1)gwρij(w)Fij(w, g)

This follows from observation that, in the proof of the previous claim, we can still drive

(Πτ0−1)gm → 0 for all m ∈ N(g) \ {w} even though Fij(g, w) does not vanish21. We are

thus left with the terms related to staying in g or transitioning to w in τ0 − 1 rounds.

Finally, the second part of the claim can be asserted by noticing that limt∗∗(Π)gw +

limt∗∗(Π)gg = 1 and applying this fact inductively on the expression for limt∗∗(Π
τ0)gw +

limt∗∗(Π
τ0)gg = limt∗∗(Π

τ0−1)gw + limt∗∗(Π
τ0−1)gg.

To establish identification of Fij(g, w), we need to show that the the expression for

limt∗∗(Π
τ0)gw is strictly increasing in (0, 1) as a function of Fij(g, w). Denoting byDFij(g,w) limt∗∗(Π

τ0)gw

the derivative of limt∗∗(Π
τ0)gw as a function of Fij(g, w), we get:

DFij(g,w) lim
t∗∗

(Πτ0)gw = DFij(g,w) lim
t∗∗

(Πτ0−1)gw(1− ρij(w) + (ρij(w)− ρij(g))Fij(g, w))

+ρij(g)(1− lim
t∗∗

(Πτ0−1)gw) + ρij(w) lim
t∗∗

(Πτ0−1)gw

where we used that limt∗∗(Π
τ0)gw + limt∗∗(Π

τ0)gg = 1 and Fij(g, w) + Fij(w, g) = 1. By

noticing ρij(g)(1− limt∗∗(Π
τ0−1)gw) + ρij(w) limt∗∗(Π

τ0−1)gw ≥ min{ρij(g), ρij(w)} > 0 and

applying induction on the fact that DFij(g,w) limt∗∗(Π)gw ≥ 0, we get that the derivative is

strictly positive in (0, 1), thus showing the map is invertible and establishing identification

of Fij(g, w).

In Appendix E, we show that identification would similarly hold if an analagous exclu-

sion restriction on the matching function were true.
21Suppose g only transitions to w. Since m 6= w, w must transition to some other z ∈ N(w). If w

only transitions to g, then either m = g or m = w, which is not true. Therefore, we can always vanish a

summand in (Πτ0−1)gm, even though Fij(g, w) does not vanish.
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Remark 3.3 (A possible parametrisation). If we take ρ((i, j), Xm(g)) =
exp(α′gX

m
ij (g))∑

(k,l)∈M exp(α′gX
m
kl (g))

and ui(g,X
u
i (g)) = β′gX

u
i (g), where Xu

i (g) may include other individuals’ characteristics,

then the model is identified under the previous restrictions, provided the usual rank con-

ditions hold (cf. Amemiya (1985, p.286-292); also McFadden (1973))22.

3.3 Identification via the network structure

In Mele (2017), it is assumed that ρij(g,X) = ρij([1−gij, g−ij], X) for all g ∈ G, i.e. meeting

probabilities do not depend on the presence of a link between ij. Notice that this constitutes

an exclusion restriction with identifying power in our environment. Indeed, if τ0 = 1

and this hypothesis holds, Πg,[1−gij ,g−ij ]/Π[1−gij ,g−ij ],g = Fij(g, [1− gij, g−ij])/(1− Fij(g, [1−

gij, g−ij])), which establishes identification of utilities (and meeting probabilities thereupon)

under a location normalisation. For τ0 > 1, identification is not that immediate23, but we

can rely on a sufficient condition such as “appropriate” diagonalisability as in Corollary 3.1

to achieve identification.

If we further assume that: (1) taste shocks are independent EV type 1; and (2) utility

functions admit a potential function24 Q : G×X 7→ R; then the model’s (conditional on X)

network stationary distribution is in the exponential family, i.e. π(g|X) ∝ exp(Q(g,X))

(Mele, 2017, also Appendix C). If we assume that {GT0
c }c are drawn from the model’s sta-

tionary distribution, then the model’s potential (and hence marginal utilities) is identified

under standard assumptions (Newey and McFadden, 1994). Provided that utility functions

in the game played before period T0 remain unaltered in the game played between period

T0 and period T1, we can use the period T0 distribution to help identify the model25. A
22Specifically. we would require E[(Xu

i (w) − Xu
i (g))(Xu

i (w) − Xu
i (g))′] to have full rank for all i ∈ I,

g ∈ G, w ∈ N(g), with Xu
i (g0) = ~0 for all i ∈ I; and E[X̃m(g)′X̃m(g)] to have full rank for

all g, where X̃m(g)′ =
[
(Xm

1,1(g)− X̄m(g))′ (Xm
1,2(g)− X̄m(g))′ . . . (Xm

N,(N−1)(g)− X̄m(g))′
]
and

X̄m(g) =
∑

(i,j)∈M ρ((i, j), g,Xm(g))Xm
ij (g).

23Notice from (3), nonetheless, that (Π2)g,[1−gij ,g−ij ]/(Π
2)[1−gij ,g−ij ],g = Fij(g, [1 − gij , g−ij ])/(1 −

Fij(g, [1 − gij , g−ij ])), which identifies utilities. Identification of meeting probabilities is not immediate

in this case, though.
24A potential function is a map Q : G × X 7→ R satisfying Q([1, g−ij ], X) − Q([0, g−ij , X]) =

ui([1, g−ij ], X)− ui([0, g−ij ], X) for all (i, j) ∈M, g ∈ G.
25Observe we do not need to assume matching functions remain unaltered, just that before period T0
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necessary condition for this equality in utilities, provided that between period T0 and pe-

riod T1 the matching function satisfies the restriction in Mele (2017), is that the period T0

network distribution equals the period T1 distribution26. This is a testable assumption.

More generally, we could try to achieve identification by restricting how pay-offs are

affected by the network structure. This approach is followed by de Paula et al. (2018) and

Sheng (2014), where it is assumed that network observations are pairwise-stable realisations

of a (static) simultaneous-move complete information game. In their setting, pairwise

stability only enables partial identification. We recognise that further restrictions on how

the network structure affects pay-offs may enable point-identification in our setting, though

we do not try to analyse these conditions in a general environment.

4 Estimation

In this section, we will analyse estimation. We have access to a sample of C networks,

{GT0
c , G

T1
c , Xc}Cc=1, stemming from the network formation game previously described.

4.1 Frequentist estimation

4.1.1 Estimating τ0

We first propose to estimate τ0 as follows:

τ̂ = max
c
{‖GT1

c −GT0
c ‖1} (4)

where ‖·‖1 is the L1 norm (a matrix viewed as its vectorisation). This estimator is intuitive:

it amounts to “counting” in each network the number of differing edges between periods

and then taking the maximum. It turns out that, under iid sampling and the bound in 3.2,

τ̂
a.s.→ τ0.

Lemma 4.1. Suppose {GT0
c , G

T1
c , Xc}Cc=1 is a random sample (iid across c). Under assump-

tions 2.1, 2.2 and 3.2, τ̂ a.s.→ τ0.

they obeyed the restriction in Mele (2017).
26If the equality is conditional on X, this is also a sufficient condition, as it is assumed the potential

before period T0 is identified from π0(g|X).
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Proof. Consider the event {τ̂ → τ0}{. Observe that {τ̂ → τ0}{ = ∩c∈N{‖GT1
c −GT0

c ‖1 < τ0}.

Fix k ∈ N and notice that:

P
[
∩kc=1{‖GT1

c −GT0
c ‖1 < τ0}

]
= φk

where φ is the ex-ante (unconditional) probability that GT1
c differs from GT0

c in strictly

less than τ0 edges. Since P[‖GT1
c − GT0

c ‖1 = τ0] ∈ (0, 1) (which follows from 2.1, 2.2 and

3.2), we have φ ∈ (0, 1). Passing k to the limit and using continuity of P from above, we

conclude the desired result.

We may extend the above result in order to allow for a sequence of independent ob-

servations stemming from a game with common parameters but allowing the distribution

of covariates (and the number of players) to vary. In this case, we must restrict the dis-

tribution of covariates to not shift “too” much to high-probability regions. Formally, the

proof would change as the ex-ante probability would now depend on c, i.e. we would have∏k
c=1 φc in the formula. If lim supc→∞ φc < 1, we would get the same result.

4.1.2 Estimation of preference and meeting parameters

Let vector β0 ∈ B ⊆ Rl encompass a parametrisation of peferences and meetings, i.e.

ui(g,X) = ui(g,X; β0) and ρij(g,X) = ρij(g,X; β0) for all (i, j) ∈M, g ∈ G. The network

log-likelihood, conditional on Xc, τ0 and GT0
c is:

lc(G
T1
c |GT0

c , Xc; τ0, β) =
∑
g∈G

1{GT1
c = g} ln

(
(Π(Xc; β)τ0)

G
T0
c g

)
and the sample log-likelihood, under an independent sequence of observations, is:

L({GT1
c }Cc=1|{GT0

c }Cc=1; τ0, β) =
C∑
c=1

∑
g∈G

1{GT1
c = g} ln

(
(Π(Xc; β)τ0)

G
T0
c g

)
The second-step MLE estimator will thus be:

β̂MLE ∈ argmaxβ∈BL({GT1
c }Cc=1|{GT0

c }Cc=1; τ̂ , β)

where τ̂ is the estimator discussed in the previous section. Observe that this formulation

can be easily modified to accommodate for observations of networks with different numbers

of players, provided they have common parameters.
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Numerically, computation of the likelihood is complicated by the fact we need to sum

over all walks between GT0
c and GT1

c . For small τ0, this is feasible, but for higher values of

τ0, it gets impractical.

Given the above difficulty, an interesting alternative is to work with simulation-based

methods which allow us to bypass direct evaluation of the model likelihood. A simulated

method of moments estimator is a possibility in our case, though the nonsmoothness of the

objective function (which would involve indicators of simulated network observations) as

well as the poor properties of GMM estimators with many moment conditions (transition

probabilities) in small samples (Newey and Smith, 2004) are somewhat unappealing. An

indirect inference approach is also unappealing, as low-dimensional sufficient statistics are

unknown in our context. Instead, we opt for a Bayesian approach, which we describe in

detail next.

4.2 Bayesian estimation

As emphasised in Section 4.1.2, the difficulty of evaluating the model likelihood lies in

computing all walks between GT0
c and GT1

c . For a given τ ∈ N, there are [N(N − 1) + 1]τ

walks starting from GT0
c and ending in some network g ∈ G. Evaluating the model likelihood

would require summing over all walks ending in GT1
c . A “recursive” approach for evaluating

the model likelihood would consist in, for each c ∈ {1, 2 . . . C}, “writing down” the formula

for each walk iteratively, i.e. starting from GT0
c , compute all possible N(N-1) transitions

in the first round; then, for each of these N(N-1) possible transitions, compute the N(N-1)

transitions in the second round and multiply each of these probabilities by the probability

of the associated transition in the first round, and so on; and then summing over all walks

ending in GT1
c . Walks that “strand off” from GT1

c in some round r < τ can be excluded

from the next steps in the recursion27, which ameliorates the computational toll, but does

not solve it.

An approach in Bayesian estimation that bypasses evaluating the model likelihood is

likelihood-free estimation (Sisson and Fan, 2011), also known as Approximate Bayesian
27By “strand off” we mean a path of realisations of the stochastic process gtc up to round r such that the

probability of reaching GT1
c in τ0 − r rounds is 0.
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Computation (ABC)28. This method has a close correspondence with Nonparametric (Fre-

quentist) Econometrics (Blum, 2010) and Indirect Inference (cf. Frazier et al. (2018) for a

discussion). The methodology basically requires the researcher be able to draw a sample (or

statistics thereof) from the model given the parameters. Algorithm 1 outlines the simplest

accept-reject ABC algorithm in our setting, where S is the maximum number of iterations

and p0(β, τ) is a prior distribution over B× N.

Algorithm 1 Basic Accept-Reject ABC algorithm
define some tolerance ε > 0

define a vector of m statistics T : GC 7→ Rm

compute the observed sample statistics Tobs := T ({GT1
c }Cc=1)

for s ∈ {1, 2 . . . S} do

draw (βs, τs) ∼ p0

generate an artificial sample {G̃T1
c }Cc=1 given {GT0

c , Xc}Cc=1 and (βs, τs)

compute the simulated statistic Ts := T ({G̃T1
c })

if ‖Ts − Tobs‖ ≤ ε, accept (βs, τs)

end for

In practice, a few improvements can be made upon Algorithm 1 (Li and Fearnhead,

2018). First, we can use importance sampling: instead of drawing from the prior, we may

draw from a proposal distribution q0(β, τ) such that supp p0 ⊆ supp q0. Accepted draws

should then be associated with weights ws := p0(βs, τs)/q0(βs, τs). Second, we can use a

“smooth” rejection rule, i.e. we accept a draw with probability K(‖Ts − Tobs‖/ε) , where

K(·) is a rescaled univariate kernel such that K(0) = 1.

In this methodology, there are two crucial choices to be made by the researcher. One

is the tolerance parameter. Here, we can use the recommendations in Li and Fearnhead

(2018): we may choose ε so the algorithm produces a “reasonable” acceptable rate. The
28An alternative and well-known approach to simplify, but not bypass, a complicated model likelihood

is data-augmentation (Hobert, 2011). This alternative is not very useful in our setting, though, due to the

dimensionality of the support of the meeting process. Thus, an approach that conditions the likelihood

on the (unobserved) matching process (notice that this reduces the number of walks starting at GT0
c from

[N(N − 1) + 1]τ to 2τ ) is not very useful in our case, since we still have to draw from the matching process

distribution conditional on the data and the model parameters.
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second important choice is the vector of statistics to be used. This is closely related to

identification: for a proper working of the ABC algorithm, it is crucial the binding function

(the map b(βs, τs) := plimC→∞Ts) associated with the chosen vector of statistics identifies

the model.

In Appendix F, we show in our setting that, by taking the vector of statistics to be the

data, if we let ε → 0 as S → ∞, then the mean of the accepted draws h(θs) converges in

probability to the expectation of h(·) with respect to the posterior, where h(·) is a function

with finite first moments (with respect to the prior). This result motivates computation

of approximations to the posterior mean and credible intervals, which we undertake in our

application.

5 Application

In our application, we consider data on friendship networks from Pinto and Ponczek (2017).

The dataset comprises information on 3rd and 5th graders from 30 elementary schools

in Recife, Brazil. Data on students’ traits and intraclassroom friendship networks was

collected at the beginning (baseline) and at the end (followup) of the 2014 school year29.

Once missing observations are removed, our working sample comprises 161 classrooms

(networks) totalling 1,589 students30.

As a first step in our analysis, we attest that homophily is indeed a salient feature of

our data. For that, we run regressions of the type:

gij,c,1 = β′Wij,c,0 + αi + γj + εij,c (5)

where gij,c,1 equals 1 if, in classroom c, individual i nominates j as a friend at the followup

period. VectorWij,c,0 consists of pairwise distances in gender, age (in years) and measures of
29More specifically, students could nominate up to 8 classmates in each of the three categories: classmates

whom they would (i) study with, (ii) talk to or (iii) play with. We consider an individual a friend if she

falls in at least one of the three lists. No student exceeds 8 friends, as in most cases the three criteria

coincide. In our raw dataset, only 1.01% of students reported 8 friends at the baseline, and this number

falls to 0.3% at the followup.
30Figure 2 in the Appendix plots one such network.
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cognitive and non-cognitive skills between i and j at the baseline period31. The specification

controls for sender (αi) and receiver (γj) fixed effects. We cluster standard errors at the

classroom level.

Column 1 in Table 1 reports estimates obtained from running the above specification.

Results indicate homophily is pervasive, e.g. same-sex classmates are, on average, 19.8 pp

more likely to be friends, relatively to boy-and-girl pairs.
31Table 4 in the Appendix presents summary statistics of our dyad-level covariates.
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Table 1: Dyadic regressions

Dependent variable:

edge

(1) (2)

distance in classlist −0.002∗∗∗

(0.0005)

distance in age −0.018∗∗∗ 0.002

(0.006) (0.003)

distance in gender −0.198∗∗∗ −0.186∗∗∗

(0.006) (0.006)

distance in cognitive skills −0.254∗∗∗ −0.127∗∗∗

(0.049) (0.034)

distance in conscientiousness −0.031∗∗∗ −0.019∗∗∗

(0.009) (0.006)

distance in neuroticism −0.017∗∗ −0.023∗∗∗

(0.008) (0.005)

Sender fixed effects? Yes No

Receiver fixed effects? Yes No

Time effect? Yes No

Observations 17,736 17,736

R2 0.323 0.064

Adjusted R2 0.185 0.063

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard errors clustered at the classroom-level in parentheses.

As discussed in Section 3, nonparametric identification of our model requires a large-

support pair-level covariate which enters a pair’s marginal utility, but is excluded from

other pairs’ marginal utilities and the matching function (in the current and adjacent

networks). Alternatively, we require a large-support pair-level covariate that enters the

matching function, but is excluded from pairs’ marginal utilities. We focus on the latter
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case and propose to use the distance between two students in the alphabetically-ordered

classlist, interacted with one minus an indicator of a link between the pair in the current

network, as our “instrument”. The intuition is that the position in the classlist should affect

the odds of a pair meeting, e.g. through class activities in groups, but should not enter

marginal utilities. We also speculate this mechanism is important for pairs that are not

currently friends.

Column 2 provides some reduced-form evidence of relevance of our classlist distance

variable. We run the specification in (5), but include our classlist distance variable and

exclude sender and receiver fixed effects. The covariate is statistically significant at the 1%

level and with the expected sign: all else equal, classmates “one more student away” in the

classlist are 0.2 pp less likely to be friends.

In estimating our network formation model, we parameterise the matching function as

follows. For individuals i and j in classroom c, we specify:

ρ((i, j), g,Xc) ∝ exp (β′mWij,c,0 + δ0gij + δ1(1− gij)Zij,c,0)

where Wij,c,0 and Zij,c,0 denote respectively our vector of pair-level covariates and classlist

distance variable at the baseline. Notice our specification allows for explicit dependence of

meetings on a previous-period link between agents. The utility of individual i in classroom

c follows a linear parameterisation of Mele (2017), i.e.

ui(g,Xc) =
∑
k 6=i

β′ud

 1

Wik,c,0

 gik︸ ︷︷ ︸
direct links

+
∑
k 6=i

β′ur

 1

Wik,c,0

 gki︸ ︷︷ ︸
mutual links

+

+
∑
k 6=i

gik
∑
l 6=i
l 6=k

β′un

 1

Wil,c,0

 gkl

︸ ︷︷ ︸
indirect links

+
∑
k 6=i

gik
∑
l 6=i
l 6=k

β′up

 1

Wkl,c,0

 gli

︸ ︷︷ ︸
popularity

where, as in Mele (2017), we impose that βun = βup. This specification accounts for gains in

direct links, reciprocity, indirect links and “popularity” (individuals derive utility of serving

as a “bridge” between agents). The restriction βun = βup is an identification assumption in

Mele’s setting, where networks are draws from the model’s stationary distribution. It is not
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required in our setup; though we enforce it for the sake of comparability. The difference in

preference shocks is drawn from a logistic distribution.

We estimate our model using a two-step approach. In the first step, we estimate τ0

through (4). We then use the likelihood-free procedure outlined in Section 4.2 and Ap-

pendix F to approximate for the posterior of preference- and matching-related parameters,

where we take the first-step estimate of τ0 as given32.

Our first-step estimate of τ0 leads to 76 rounds. The estimator violates the bound

τ̂ ≤ Nc(Nc − 1) for 80 out of 161 networks in our sample, which is somewhat reassuring33.

In the second step, we use independent zero-mean normals with a one-ninth stan-

dard deviation as priors34; and set the number of simulations to 100, 000. We aim for

an acceptance rate of 1%; choose the whole data as our vector of statistics; and com-

pute the distance between simulated and observed networks as ‖{G̃T1
c }Cc=1 − {GT1

c }Cc=1‖ =∑C
c=1‖G̃T1

c −GT1
c ‖1, i.e. we count the number of differing edges in the artificial and observed

datasets. We consider a “smooth” rejection rule, where a draw is accepted with probability

φ(‖{G̃T1
c }Cc=1 − {GT1

c }Cc=1‖/ε)/φ(0). with φ being the pdf of a standard normal. We also

employ importance sampling, where the “efficient” – in terms of minimising the variance

of the approximation to the posterior mean – proposal distribution is chosen according to

the algorithm in Li and Fearnhead (2018).

Table 2 summarises our results. We find that most mean estimates of utility parameters

associated with covariates are negative, which seems to suggest homophily in preferences is

pervasive and not restricted to direct links. Mean estimates of matching parameters are also

mostly negative. In particular, we notice that the posterior probability of the coefficient

associated with our instrument being negative is over 99.9%, which is reassuring. We also

find high posterior probabilities of a negative effect for the role of age in the direct and

indirect components of utility; and for the role of cognitive skills in the reciprocal part of

utility. Interestingly, the reciprocal component in utility associated with socioemotional
32From a frequentist perspective, we can motivate our estimator by appealing to some Bernstein-von-

Mises theorem (Vaart, 1998, chapter 10) which ensures posterior consistency as C →∞. From a Bayesian

point of view, our estimator imposes a degenerate prior on τ0 at the frequentist estimator (4).
33Identification of τ0 in our setting extends immediately to the case where the number of agents in a

network, Nc, is assumed to be random, provided that P[τ0 ≤ Nc(Nc − 1)] > 0.
34Our choice of standard deviation is motivated by the magnitude of reduced-form coefficients in Table 1
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skills appears to be "heterophilious".
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Table 2: Posterior estimates - Optimal proposal method

Mean Q 0.025 Q 0.975 Prob < 0

Meeting process

distance in age 0.0478 -0.0573 0.1409 0.1905

distance in gender 0.0255 -0.1310 0.1526 0.2582

distance in cognitive skills 0.0255 -0.0360 0.0784 0.1503

distance in conscientiousness -0.0059 -0.0877 0.0756 0.5703

distance in neuroticism -0.0157 -0.1034 0.0766 0.6642

g_ij -0.0254 -0.1208 0.0487 0.7685

(1-g_ij)*distance in classlist -0.0967 -0.1566 -0.0342 0.9993

Utility – Direct Links

intercept -0.0327 -0.0972 0.0193 0.8438

distance in age -0.0908 -0.1569 -0.0120 0.9881

distance in gender -0.0119 -0.1409 0.0887 0.5988

distance in cognitive skills -0.0118 -0.1000 0.0765 0.5328

distance in conscientiousness -0.0256 -0.1313 0.0834 0.6768

distance in neuroticism -0.0254 -0.1093 0.0589 0.6377

Utility – Mutual Links

intercept -0.0423 -0.1185 0.0551 0.8452

distance in age -0.0405 -0.1675 0.0617 0.6549

distance in gender -0.0239 -0.0916 0.0515 0.7553

distance in cognitive skills -0.0651 -0.1341 0.0025 0.9590

distance in conscientiousness 0.0431 -0.0033 0.0839 0.0413

distance in neuroticism 0.0454 -0.0173 0.1081 0.0835

Utility – Indirect links/Popularity

intercept -0.0190 -0.0740 0.0310 0.8317

distance in age -0.0859 -0.1633 -0.0211 0.9943

distance in gender -0.0145 -0.0695 0.0532 0.6966

distance in cognitive skills -0.0307 -0.1019 0.0498 0.7346

distance in conscientiousness -0.0300 -0.1138 0.0468 0.7906

distance in neuroticism -0.0266 -0.0871 0.0353 0.7876
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Next, we proceed to counterfactual exercises. We consider the evolution of networks,

starting from their baseline value, under three different sequences of matching parameters:

(i) when these are kept at their estimated value (base case); (ii) when random unbiased

matching is imposed across networks35 (random matching case); (iii) when, keeping grade

and classroom sizes in schools fixed, we track students according to their cognitive skills

(tracking case); and (iv) when, upon meeting, students form a relationship with probability

1/2 (random friendship case).

Table 3 reports posterior means and 95% credible intervals of the projection coefficients

of edge indicators at the followup period (gij,c,1) on an intercept and our main controls at

the baseline. Compared with the observed data, magnitudes in the base case are broadly

in line with the frequentist reduced form (column (2) in Table 1). Nonetheless, we note

our model appears to overstate the role of homophily in age and understate the role of

gender. Comparing the first and second columns, one notices imposing random unbiased

matching slightly increases observed homophily patterns in cognitive skills. This is some-

what intuitive, as the estimated matching function displays heterophily with respect to this

trait. Moving on to the third column, we note that tracking leads to a weak reduced-form

estimate of homophily in cognitive skills, which is expected as students now interact in

homogeneous groups. It also leads to a weaker pattern in the gender coefficient, which

may be due to correlation of this attribute with cognitive skills at the baseline36. Finally,

we note that the imposing random friendship formation eliminates homophily in age, as

expected.
35In other words, for individuals i and j in classroom c, we set ρ((i, j), g,Xc) = 1

Nc(Nc−1)
36Women have, on average, 0.0185 more points in cognitive skills at the baseline than men, and this

difference is statistically significant at the 1% level.
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Table 3: Homophily measures under base counterfactual policies

Base case Random matching Tracking Random friendship

Regression coefficients

distance in classlist -0.0068 -0.0016 -0.0124 -0.0096

[-0.0097;-0.0035] [-0.0024;-6e-04] [-0.0156;-0.0086] [-0.0122;-0.0054]

distance in age -0.0146 -0.0161 -0.0152 0.0011

[-0.0196;-0.0085] [-0.0219;-0.0103] [-0.024;-0.0053] [-0.0047;0.0069]

distance in gender -0.0921 -0.1077 -0.0421 -0.0938

[-0.1068;-0.0775] [-0.1197;-0.0958] [-0.0532;-0.0309] [-0.1055;-0.0849]

distance in cognitive skills -0.0955 -0.1342 0.0322 -0.1096

[-0.1485;-0.0446] [-0.1982;-0.0675] [-0.0468;0.1613] [-0.1557;-0.0529]

distance in conscientiousness -0.0122 -0.0117 -0.0079 -0.0112

[-0.0259;0.0027] [-0.0267;0.0025] [-0.0249;0.0053] [-0.0215;0.0013]

distance in neuroticism -0.0111 -0.0106 -0.0102 -0.0086

[-0.0201;-0.0039] [-0.0215;-0.0023] [-0.0205;0.005] [-0.0251;0.0046]

Degree summary statistics

Avg. degree 0.1935 0.23 0.1709 0.2479

[0.1687;0.2241] [0.207;0.261] [0.1515;0.1967] [0.2136;0.2802]

Var. degree 0.1559 0.177 0.1416 0.1862

[0.1402;0.1739] [0.1641;0.1929] [0.1285;0.158] [0.168;0.2017]

Figure 1 compares the evolution of aggregate utility in the base case with each of

our counterfactual scenarios. We plot posterior means and 95% credible intervals of the

aggregate utility index,
∑C

c=1

∑Nc
i=1 ui(g

t
c, Xc), in the counterfactual scenario minus the

same index in the base case, for each round from the baseline to the followup period. We

normalise the difference in indices by the number of students in our sample times 0.0908,

the absolute value of the direct-link homophily in age mean coefficient (Table 2); so results

can be interpreted as the required change in the age distance of direct links each student

should receive in the base case so they are indifferent between policies (without taking

into account spillovers on the remaining components of utility). One notices that imposing

random matching leads to a lower trajectory in aggregate utility over the school year. We

also see that tracking leads to an improvement in welfare, though this benefit diminishes

as time passes by. Finally, random friendship formation leads to lower welfare.
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Figure 1: Aggregate utility under counterfactual policies
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6 Concluding remarks

In this article, we studied identification and estimation of a network formation model that

distinguishes between homophily that is due to preferences; and homophily that is due to

meeting opportunities. The model builds upon the algorithm in Mele (2017) by allowing

for rather general classes of utilities and meeting processes. It is also well-grounded on

the theoretical literature of network formation (Jackson and Watts, 2002; Jackson, 2010).
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We provided identification results in the case a large-support “instrument” is included in

preferences (meeting process) and excluded from the meeting process (preferences); and

two periods of data from many networks are available. We also discussed a Bayesian

estimation procedure that bypasses direct evaluation of the model likelihood, a task which

can be computationally unfeasible even for a moderate number of rounds of the network

algorithm.

In the applied section of our article, we studied network formation in elementary schools

in Northeastern Brazil. Our results suggest that removing biases in the meeting process

may actually increase homophily in some dimensions. We also find that tracking students

according to their cognitive skills leads to improved welfare, though the benefits diminish

over time. Our counterfactual exercise further shows eliminating biases in meeting oppor-

tunities produces a lower path of aggregate utility, though this evidence should be taken

with caution due to somewhat wide estimated credible intervals.

As emphasised in Section 3.3, analysing how restrictions on the relationship between

the network structure and pay-offs may enable point-identification in our setting is an

open question which may further enhance the model’s applicability – especially if it allows

us to dispense with the exclusion restrictions currently required to identify the model.

Another interesting topic for future research is the study of our model under single-network

asymptotics, which may be more suitable in some applied settings.
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A Application: auxiliary tables

Figure 2: Example: a 3rd grade baseline classroom
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Note: The figure presents a 3rd grade classroom network from our baseline data.

Numbered circles represent students. An arrow stemming from circle “x” to “y”

denotes student “x” nominated “y” as a friend in early 2014.
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Table 4: Pairwise distance in covariates – Summary statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

edge (baseline) 17,736 0.172 0.377 0 0 0 1

edge (followup) 17,736 0.179 0.383 0 0 0 1

distance in classlist (baseline) 17,736 8.009 5.553 1 3 12 30

distance in age (years) (baseline) 17,736 0.827 0.908 0.000 0.249 1.041 6.633

distance in gender (baseline) 17,736 0.502 0.500 0 0 1 1

distance in cognitive skills (baseline) 17,736 0.099 0.081 0.000 0.035 0.144 0.530

distance in conscientiousness (baseline) 17,736 0.568 0.485 0.000 0.207 0.798 3.275

distance in neuroticism (baseline) 17,736 0.676 0.538 0.000 0.249 0.976 3.491

B Identification with one period of data from the sta-

tionary distribution

In this Appendix, we explore identification in a context where we have access to a sample

of C networks stemming from the stationary distribution of the game described in Sec-

tion 2. In particular, we have access to a sample {Xc, Gc}Cc=1. Note from Remark 2.2 that

one may interpret the stationary distribution as a long-run distribution. If one assumes

observed network data (Gc) was drawn from the (conditional) stationary distribution, then

the (conditional) stationary distribution π(X) is identified. Notice that, in this context,

identification of the transition matrix Π(X) is a necessary condition for identification of

((ui)
N
i=1, ρ), the objects of interest. We thus propose to analyse identification of Π(X).

In particular, we explore identification of Π(X) without imposing further restrictions. In

light of this, and without loss of generality, we may essentially view X as nonstochastic

throughout the remainder of this section and suppress dependence of Π(X) on X by writing

Π,

In our setting, the identification problem (of Π) reduces to providing conditions under

which no other transition matrix Π̃ ∈ S is observationally equivalent to Π; where S is the

admissible (by the model) set of Markov chains. In other words, Π is identified if:
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∀ Π̃ ∈ S (I − Π̃′)π = 0 =⇒ Π̃ = Π (6)

If S were the set of all row-stochastic matrices, Π would clearly not be identified, as

I2N(N−1)×2N(N−1) is observationally equivalent. But S is not the set of all Markov matrices.

Indeed, the model imposes restrictions on the set of admissible Markov matrices. These are

summarised by (2). As we do not impose further restrictions on utilities and the matching

function, S is the set of all 2N(N−1)× 2N(N−1) row-stochastic matrices with strictly positive

entries Πgw for all g ∈ G, w ∈ N(g) ∪ {g}, and 0 otherwise.

Do the restrictions implied by the model identify Π? The next lemma is a negative

result.

Lemma B.1 (Non-identification). Under Assumption 2.1 and Assumption 2.2, and if

Fε(e0, e1) = exp[− exp(e0) − exp(e1)] (i.e. (ε(0), ε(1)) are independent EV type 1), then

the model is not identified.

Proof. Fix Π0 ∈ S and let π0 be the (unique) solution to (I − Π′0)π0 = 0, π′0ι = 1.

The proof consists in presenting a family of observationally equivalent versions of the

model in Mele (2017), albeit in a more general setting. Consider a family of utilities

(ui)
N
i=1 where ui(g,X) = ln(π0(g)) for all i ∈ I and all g ∈ G. These utilities are well

defined, as π0 >> 0 from Remark 2.3. Moreover, fix some arbitrary ρ satisfying (i)

Assumption 2.1; and (ii) ρ((i, j), [0, g−ij], X) = ρ((i, j), [1, g−ij], X) for all (i, j) ∈ M,

g ∈ G (the matching probability does not depend on the existence of a link between i

and j). These choices satisfy Assumption 2.1 and Assumption 2.2. Therefore, there exists

a unique stationary distribution π̃ associated with the chain Π̃ from this game. Further

notice that the family of utilities admits a potential function Q : G × X 7→ R satisfying

Q([1, g−ij], X)−Q([0, g−ij, X]) = ui([1, g−ij], X)− ui([0, g−ij], X) for all (i, j) ∈M, g ∈ G.

Indeed, Q(g,X) = ln(π0(g)) is a potential function for this class of utilities. But then, this

distribution has a closed form expression: π̃(g) = exp(Q(g,X))∑
w∈G exp(Q(w,X))

= π0(g). To see this,

one can follow the argument in Theorem 1 of Mele (2017) and verify that this distribution

satisfies the flow balancedness condition π̃gΠ̃gw = π̃wΠ̃wg for all g, w ∈ G37. But then the
37See Appendix C.
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stationary distribution does not depend on the matching probabilities, so the Markov ma-

trix is not identified, as it is always possible to choose ρ satisfying (i) − (ii) s.t. Π̃ 6= Π0

(and π0 = π̃ follows, as we saw).

We interpret this result as suggestive of the need to impose further restrictions in order

to identify Π. Note that verification of the flow balancedness condition relies crucially on

the functional form of the distribution function for the error term. One approach would

then be to restrict analysis to different distributions. We do not follow this approach, as

it is not grounded in knowledge regarding the social interactions being analysed (identifi-

cation by functional form). Moreover, it is immediate to see the identification at infinity

strategy discussed in Section 3.2 does not bring additional identifying power in the set-

ting of Lemma B.1 without further restrictions on the matching function and/or utilities.

In particular, it would require restricting ((ui)
N
i=1, ρ) to classes where the assumptions in

Mele (2017) regarding the matching function and/or utilities do not hold. Since this would

restrict the generality and applicability of the model, we refrain from further analysing

identification with one period of data from the stationary distribution.

C Flow balancedness condition

We also show the flow balancedness condition in the model of Mele (2017) holds:

Claim C.1 (Mele (2017)). In the model of Mele (2017), the flow-balancedness condition

π̃gΠ̃gw = π̃wΠ̃wg for all g, w ∈ G holds.

Proof. Fix g, w ∈ G. Note that if g and w differ in more than one node, the condition

trivially holds. This is also the case when g = w. Consider then the case where g and w
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differ exactly in one node, say gij = 1 and wij = 0 for some i, j ∈ I. We then have that

π̃gΠ̃gw =
exp(Q(g,X))∑
s∈G exp(Q(s,X))

× ρ((i, j), g,X)
exp(Q(w,X)−Q(g,X))

1 + exp(Q(w,X)−Q(g,X))
=

=
exp(Q(g,X)−Q(w,X) +Q(w,X))∑

s∈G exp(Q(s,X))
× ρ((i, j), g,X)

exp(Q(w,X)−Q(g,X))

1 + exp(Q(w,X)−Q(g,X))

=
exp(Q(w,X))∑
s∈G exp(Q(s,X))

× ρ((i, j), g,X)
1

1 + exp(Q(w,X)−Q(g,X))
=

=
exp(Q(w,X))∑
s∈G exp(Q(s,X))

× ρ((i, j), g,X)
exp(Q(g,X)−Q(w,X))

1 + exp(Q(g,X)−Q(w,X))

(ii)
=

(ii)
=

exp(Q(w,X))∑
s∈G exp(Q(s,X))

× ρ((i, j), w,X)
exp(Q(g,X)−Q(w,X))

1 + exp(Q(g,X)−Q(w,X))
= π̃wΠ̃gw

(7)
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D Proof of Claim 3.1

Observe that Π(γ) is written as:

Π(γ) =

(0, 0) (1, 0) (0, 1) (1, 1)


ρ12(0, 0)F12((1, 0), (0, 0)) + ρ21(0, 0)F21((0, 1), (0, 0)) ρ12(0, 0)F12((0, 0), (1, 0)) ρ21(0, 0)F21((0, 0), (0, 1)) 0 (0, 0)

ρ12(1, 0)F12((1, 0), (0, 0)) ρ12(1, 0)F12((0, 0), (1, 0)) + ρ21(1, 0)F21((1, 1), (1, 0)) 0 ρ21(1, 0)F21((1, 0), (1, 1)) (1, 0)

ρ21(0, 1)F21((0, 1), (0, 0)) 0 ρ12(0, 1)F12((1, 1), (0, 1)) + ρ21(1, 1)F21((0, 0), (0, 1)) ρ12(0, 1)F12((0, 1), (1, 1)) (0, 1)

0 ρ21(1, 1)F21((1, 1), (1, 0)) ρ12(1, 1)F12((1, 1), (0, 1)) ρ12(1, 1)F12((0, 1), (1, 1)) + ρ21(1, 1)F21((1, 0), (1, 1)) (1, 1)

Now suppose there exists γ 6= γ̃, Π(γ) = Π(γ̃). Suppose ρ21(0, 0) > ˜ρ21(0, 0). The argument is symmetric for the remaining

parameters. Since objects are observationally equivalent, it must be that F21((0, 0), (0, 1)) < ˜F21((0, 0), (0, 1)), which in

its turn yields F21((0, 1), (0, 0)) > ˜F21((0, 1), (0, 0)). This implies ρ21(0, 1) < ˜ρ21(0, 1); consequently, ρ12(0, 1) > ˜ρ12(1, 0)

and F12((0, 1), (1, 1)) < ˜F12((0, 1), (1, 1)) thereafter. But then F12((1, 1), (0, 1)) < ˜F12((1, 1), (0, 1)), leading to ρ12(1, 1) >

˜ρ12(1, 1), ρ21(1, 1) < ˜ρ21(1, 1), F21((1, 1), (1, 0)) > ˜F21((1, 1), (1, 0)). Proceeding analogously, we will get ρ21(1, 0) > ˜ρ21(0, 1),

F12((0, 0), (1, 0)) < ˜F12((0, 0), (1, 0)) and finally ρ12((0, 0)) > ˜ρ12(0, 0). But we also had ρ21(0, 0) > ˜ρ21(0, 0), leading to 1 > 1,

a contradiction.
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E Identification with exclusion restriction on matching

function

In this section, we analyse how our main identification result (Proposition 3.1) would change

if large support variables were included in the matching function (ρ), but not in utilities.

Fix g ∈ G, w ∈ N(g), gij 6= wij. We start by establishing the following claim:

Claim E.1. Under a limit which drives ρij(g) → 1 and ρij(w) → 1; but leaves Fij(g, w)

unaltered, we have:

lim
t∗

(Πτ0)gw = Fij(g, w)

Proof. The case where τ0 = 1 is immediate, since limt∗(Π
τ0)gw = Fij(g, w) follows directly

from (2). Suppose τ0 > 1. Recall that:

(Πτ0)gw =
∑

m∈N(w)∪{w}

(Πτ0−1)gmΠmw

Using a similar argument as in Proposition 3.1, we can show the limit in the statement

of the Claim is such that limt∗(Π
τ0−1)gm → 0 for all m ∈ N(w) \ {g}38. We are thus left

with:

lim
t∗

(Πτ0)gw = lim
t∗

(Πτ0−1)gwΠww + lim
t∗

(Πτ0−1)ggΠgw = (lim
t∗

(Πτ0−1)gw + lim
t∗

(Πτ0−1)gg)Fij(g, w)

Next, we note that, under the limit in the statement of the claim:

lim
t∗

(Πτ0)gg = (lim
t∗

(Πτ0−1)gw + lim
t∗

(Πτ0−1)gg)Fij(w, g)

which follows from (Πτ0)gg =
∑

m∈N(g)∪{g}(Π
τ0−1)gmΠmg and an argument similar to the

previous one. We then get:
38If m ∈ N(w) \ {g}, then m ∈ N2(g). Fix a summand in (Πτ0−1)gm. If a transition from g to m occurs

at pair (k, l) 6= (i, j), the limit in the statement of the Claim drives the summand to 0, If all transitions

occur at pair (i, j), a transition from w to some z ∈ N(w) \ {g} must occur, for, if not, then either m = g

or m = w, which is not true. The limit in the statement of the Claim thus drives the summand to zero.
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lim
t∗

(Πτ0)gw + lim
t∗

(Πτ0)gg = lim
t∗

(Πτ0−1)gw + lim
t∗

(Πτ0−1)gg

Induction on limt∗(Π)gw + limt∗(Π)gg = 1 then yields the desired result.

The previous argument suggests that, if large support variables included in ρij(g) and

ρij(w) – but excluded from Fij(g, w) – may be shifted in a direction that (simultaneously)

drives the probability of selecting pair (i, j) under networks w and g to 1; then marginal

utilities are identified.

Identification of the matching process in this setting is more intricate, as we require the

“feasibility” of a different limit. We consider the case where τ0 ≤ N(N−1) (Assumption 3.2

holds). Fix some s ∈ N τ0(g) such that gij 6= sij. Denote by D ⊆ M be the set of pairs

where g and s differ. We then have:

(Πτ0)gs =∑
(a1,a2...aτ0 )∈P (D)

ρa1(g)Fa1(g, [1− ga1 , g−a1 ])×

ρa2([1− ga1 , g−a1 ])Fa2([1− ga1 , g−a1 ], [1− ga1 , 1− ga2 , g−a1,−a2 ])× . . .

×ρaτ0 ([1− ga1 , 1− ga2 . . . 1− gaτ0−1 , g−a1,−a2...−aτ0−1 ])×

Faτ0 ([1− ga1 , 1− ga2 . . . 1− gaτ0−1 , g−a1,−a2...−aτ0−1 ], s)

where P (D) is the set of all vectors constructed from permutations of the elements in

D. If there exists a limit that vanishes all summands not starting on ρij(g) (but leaves the

latter unchanged); and if it is further feasible to simultaneously drive ρij(g) to 1, then a

ratio of limits identifies matching probabilities.

F Approximate Bayesian Computation (ABC) algorithm

In this section, we show our likelihood-free algorithm provides an approximation of moments

of the posterior distribution. As in our main text, we observe a sample {GT0
c , G

T1
c , Xc}Cc=1

from the model. As our focus lies on the posterior distribution, we essentially view this sam-

ple as fixed (nonstochastic) throughout the remainder of this section. The model parame-

ters are (β, τ) ∈ B× N. The prior density is p0, and the model likelihood is P(·|XC ; β, τ),
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where XC := {Xc, G
T0
c }Cc=1. Approximate Bayesian Computation requires we be able to

draw samples from P(·|XC ; β, τ) and compare it with the data YC := {GT1
c }Cc=1. In par-

ticular, we consider computing (approximations of) moments of the posterior distribution

P(·|XC ,YC) according to Algorithm 2, where K(ỸCs,YC ; ε) is a rescaled kernel and q0 is

a proposal density.

Algorithm 2 Approximating posterior moments
define some tolerance ε > 0

define a function h : B× N 7→ Rm

for s ∈ {1, 2 . . . S} do

draw (βs, τs) ∼ q0

generate an artificial sample ỸCs ∼ P(·|XC ; βs, τs)

accept (βs, τs) with probability K(ỸCs,YC ; ε)

end for

compute the approximation to the posterior mean of h using the accepted draws according

to ĥ :=
∑

s:accepted h(βs, τs)ws/
∑

s:acceptedws, where ws := p0(βs, τs)/q0(βs, τs)

The next proposition shows that, if we let ε→ 0 as S →∞, our approximation will be

consistent for the posterior mean EP(·|XC ,YC)[h(·)].

Proposition F.1. Suppose that: (1) the prior distribution admits a density p0 with respect

to some measure µ on B × N; (2) the proposal density q0 is such that supp p0 ⊆ supp q0;

and (3) the map K : GC × GC × R+ 7→ [0, 1] is such that (3.i) K(Y1,Y2, ·) is continuous

at 0 for all (Y1,Y2) ∈ GC × GC; and (3.ii) K(Y1,Y2, 0) = 1{Y1 = Y2}. Then, for any

h : B×N 7→ Rm such that
∫
‖h(β, τ)‖p0(β, τ)dµ <∞, the approximation ĥ in Algorithm 2

is such that ĥ p→ EP(·|XC ,YC)[h(·)] as ε→ 0 and S →∞.

Proof. Observe that ĥ may be written as:

ĥ =
S−1

∑S
s=1 h(βs, τs)ws1{us ≤ K(ỸJs,YC ; ε)}

S−1
∑S

s=1ws1{us ≤ K(ỸJs,YC ; ε)}
(8)

where {us}Ss=1 are iid draws from a Uniform distribution; independently from {βs, τs, ỸCs}Ss=1.

We next note the random map a(ε) = h(βs, τs)ws1{us ≤ K(ỸCs,YC ; ε)} is almost

surely continuous at 0, for P[{a is discontinuous at 0}] ≤ P[us = 1] = 0. Moreover, we
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have that E[supε≥0‖a(ε)‖] ≤ E[‖h(βs, τs)‖ws] =
∫
‖h(β, τ)‖p0(β, τ)dµ < ∞. Then, by

applying Lemma 4.3 in Newey and McFadden (1994), we have that, as S →∞ and ε→ 0:

S−1
S∑
s=1

h(βs, τs)ws1{us ≤ K(ỸJs,YC ; ε)} p→ E[h(βs, τs)ws1{us ≤ K(ỸJs,YC ; 0)}] (9)

But we further have that:

E[h(βs, τs)ws1{us ≤ K(ỸJs,YC ; 0)}] = E[h(βs, τs)ws1{ỸJs = YC}] =

= E[h(βs, τs)wsE[1{ỸJs = YC}|βs, τs]] = E[h(βs, τs)wsP[YC |XC ; βs, τs]] =

=

∫
h(βs, τs)P[YC |XC ; βs, τs]p0(βs, τs)dµ

An analogous argument establishes the denominator converges in probability to∫
P[YC |XC ; βs, τs]p0(βs, τs)dµ, which establishes the desired result.

Examples of maps that satisfy our required property are:

K(Y1,Y2; ε) = 1{‖Y1 −Y2‖ ≤ ε}

which corresponds to the “sharp” rejection rule in Algorithm 1 of the main text. A

“smooth” alternative is:

K(Y1,Y2; ε) =

φ(‖Y1 −Y2‖/ε)/φ(0) ε > 0

1{Y1 = Y2} ε = 0

where φ is the standard normal pdf. This rule is used in our our application (Section 5).
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