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Abstract

Consider a group of individuals with unobservable perspectives (subjective prior beliefs) about a

sequence of states. In each period, each individual receives private information about the current

state and forms an opinion (a posterior belief). She also chooses a target individual and observes

the target’s opinion. This choice involves a trade-off between well-informed targets, whose

signals are precise, and well-understood targets, whose perspectives are well known. Opinions

are informative about the target’s perspective, so observed individuals become better understood

over time. We identify a simple condition under which long-run behavior is history independent.

When this fails, each individual restricts attention to a small set of experts and observes the

most informed among these. A broad range of observational patterns can arise with positive

probability, including opinion leadership and information segregation. In an application to areas

of expertise, we show how these mechanisms generate own-field bias and large field dominance.
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1 Introduction

The solicitation and interpretation of opinions plays a central role in information gathering. In

academic professions, for instance, reviews and recommendation letters are important inputs in

graduate admissions, junior hiring, publications in scientific journals, and internal promotions.

However, opinions convey not just objective information but also subjective judgments that are not

necessarily shared or even fully known by an observer. For example, a reviewer’s recommendation

might depend on her subjective views and the reference group she has in mind, and the most crucial

assessments are often conveyed using ambiguous terms such as excellent or interesting. Hence, as

informative signals, opinions are contaminated with two distinct sources of noise, one stemming

from the imprecision of opinion holder’s information, and the other from the observer’s uncertainty

about the subjective perspective of the opinion holder.

In choosing which opinions to observe, one therefore faces a trade-off between well-informed

sources—with more precise information—and well-understood sources—with better known per-

spectives. Here, a person is well-understood by another if the opinion of the former reveals her

information to the latter with a high degree of precision. The better one knows a source’s perspec-

tive, the easier it becomes to extract information from the source’s opinion. One may therefore

be able to extract more information from the opinion of a less well-informed source if this source

is sufficiently well-understood. For example, in choosing reviewers for a promotion case, one may

prefer a senior generalist with a long track record of reviews to a young specialist with deep exper-

tise in the specific area but possibly strong subjective judgments that are unknown to observers.

Similarly, in graduate admissions, one may rely on recommenders with long track records whose

opinions have become easier to interpret over time. And in forecasting elections, one might learn

more from pollsters whose methodological biases or house effects are well known than from those

with larger samples but unknown biases.

This trade-off between being well-informed and being well-understood has some interesting

dynamic implications, since the observation of an opinion not only provides a signal about the

information that gave rise to it, but also reveals something about the observed individual’s per-

spective. In other words, the process of being observed makes one better understood. This can give

rise to unusual and interesting patterns of linkages over time, even if all individuals are identical

to begin with. It is these effects with which the present paper is concerned.

Specifically, we model a finite set of individuals facing a sequence of periods. Corresponding to

each period is a distinct, unobserved state. Individuals all believe that the states are independently

and identically distributed, but differ with respect to their prior beliefs about the distribution from

which these states are drawn. These beliefs, which we call perspectives, are themselves unobserv-

able, although each individual holds beliefs about the perspectives of others. In each period, each

individual receives a signal that is informative about the current state; the precision of this signal

is the individual’s expertise in that period. The expertise levels are stochastic and their realized
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values are public information. Individuals update their beliefs on the basis of their signals, result-

ing in posterior beliefs that we call opinions. Each person then chooses a target individual, whose

opinion is observed. This choice is made by selecting the target whose opinion reveals the most

precise information about the current state.

The observation of an opinion has two effects. First, it makes the observer’s belief about the

current period state more precise. Second, the observer’s belief about the target’s perspective itself

becomes more precise. Because of the latter effect, the observer develops an attachment to the tar-

get, in that the target becomes more likely to be selected again in subsequent periods. Importantly,

the level of attachment to previously observed targets depends on the expertise realizations of both

observer and observed in the period in which the observation occurs. Better informed observers

learn more about the perspectives of their targets since they have more precise beliefs about the

signal that the target is likely to have received. This gives rise to symmetry breaking over time:

two observers who select the same target initially will develop different levels of attachment to that

target. Hence they might make different observational choices in subsequent periods, despite the

fact that all expertise realizations are public information.

In the long-run, an individual i may develop so great an attachment to some set of experts that

she stops observing all others. Over time, she learns the perspectives of these long-run experts to an

arbitrarily high level of precision, and eventually chooses among them on the basis of their expertise

alone. Due to the symmetry breaking effects, ex ante identical individuals may end up with very

different—or even non-overlapping—sets of long-run-experts. However, when the precision of initial

beliefs about the perspectives of others is above a certain threshold, we show that all individuals

become long-run experts, and everyone links to the most informed individual in each period. All

effects of path-dependence eventually disappear, and we have long-run efficiency.

When the precision of initial beliefs about the perspectives of others is below this threshold, we

show that each individual’s set of long-run experts is likely to be small, containing only a negligible

fraction of all individuals in large populations. The mechanism giving rise to this is the following.

In any period, each individual i links to a more familiar expert unless there is a less familiar expert

who is substantially better informed. That is, there is a pecking order for potential experts based

on i’s familiarity with them: the most familiar expert is observed with greatest likelihood, and

so on. Hence, if there are already m experts who are more familiar than a potential expert j,

individual i will link to j only if j is substantially more informed than each of these m experts.

This is an exponentially long shot event. Therefore, before i chooses to observe any such individual

j, she links to more familiar individuals many times, learning more about them on each occasion,

and develops so much attachment to these that she stops observing j permanently.

A similar result holds even if individuals are forward-looking. In this case individuals may

choose to observe a less informative opinion in the current period in order to build familiarity with

someone who could be useful to them in future periods. The benefit of doing so, relative to the

cost, is exponentially decreasing in the number of already familiar targets. We show that when
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the initial precision of beliefs about the perspectives of others is below the threshold for long-run

efficiency, the cost of building familiarity with new potential experts quickly exceeds the benefit,

resulting in a small set of long-run experts. As before, this set contains only a negligible fraction of

all individuals in large populations. The welfare loss, relative to the case of observable perspectives,

can be substantial.

Under certain conditions, the long-run expert sets of various individuals are not only small

but also overlapping. That is, a few individuals emerge as opinion leaders, and are observed even

when some individuals outside this set are better informed. But as a consequence of symmetry

breaking, a variety of other complex and interesting observational patterns can also arise. For

intermediate levels of the precision of initial beliefs about the perspectives of others, we show that

any given network emerges as the long-run network with positive probability. In this case the long

run outcome is a static network, with each individual observing the same target in each period,

regardless of expertise realizations. Another interesting linkage pattern is information segregation:

the population is partitioned into subgroups, and individuals observe only those within their own

subgroup. In fact, for any given partition of individuals to groups with at least two members, we

show that information segregation according to the given partition emerges in the long run with

positive probability as long as initial uncertainty about the perspectives of others is neither too

high nor too low.

As an application of the model, we consider the case of a principal with a given area of expertise,

dealing with a sequence of cases that may lie within or outside this area. We show that principals

will tend to consult experts within their own area of expertise even when the case in question

lies outside it, a phenomenon we call own-field bias. One consequence of this is that those with

expertise in larger fields—in which individual cases are more likely to lie—will be consulted on

cases outside their area of expertise with disproportionately high frequency.

Our approach to social communication may be contrasted with the literature descended from

DeGroot (1974), which deals with the spread of a given amount of information across an exogenously

fixed network, and focuses on the possibility of double counting and related inference problems. We

believe that in many applications information is relatively short-lived, while the manner in which

it is subjectively processed by individuals is enduring. By observing a given person’s opinion,

one learns about both the short-lived information and the more enduring subjective perspective

through which it is filtered. This makes one more inclined to observe the opinions of the person on

other issues. This is the environment we explore here, with particular attention to the endogenous

formation of social communication networks.

The remainder of the paper is structured as follows. We develop the baseline model in Section

2, and examine the evolution of beliefs and networks as individuals make observational choices

in Section 3. The set of networks that can arise in the long run are characterized in Section 4.

Section 5 identifies conditions under which various network structures, such as opinion leadership

and information segregation, can emerge with positive probability. Bounds on the size of long-run
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expert sets are obtained in Section 6. The application to areas of expertise and own-field bias is

developed in Section 7. Section 8 extends our results to allow for forward-looking agents, and other

extensions and variations of the model are discussed in Section 9. A review of related literature is

contained in Section 10, and Section 11 concludes. The appendix contains omitted proofs, and a

supplementary appendix (available online) contains a number of additional results.

2 The Model

Consider a population N = {1, . . . , n}, and a sequence of periods T = {0, 1, 2, . . .}. In each period

t ∈ T , there is an unobservable state θt ∈ R. All individuals agree that the sequence of states

θ1, θ2, . . . are independently and identically distributed, but they disagree about the distribution

from which they are drawn. According to the prior belief of each individual i, the states are

normally distributed with mean µi and variance 1:

θt ∼i N(µi, 1).

We shall refer to the prior mean µi as the perspective of individual i. This is not directly observable

by any other individual, but it is commonly known that the perspectives µ1, ..., µn are independently

distributed according to

µi ∼ N(µi, 1/v0)

for some real numbers µ1, ..., µn and v0 > 0. This describes the beliefs held by individuals about

each others’ perspectives prior to the receipt of any information. Note that the precision in beliefs

about perspectives is symmetric in the initial period, since v0 is common to all. This symmetry is

broken as individuals learn about perspectives over time, and the revision of these beliefs plays a

key role in the analysis to follow.

In each period t, each individual i privately observes an informative signal

xit = θt + εit,

where εit ∼ N(0, 1/πit). The signal precisions πit capture the degree to which any given individual

i is well-informed about the state in period t. We shall refer to πit as the expertise of individual i

regarding the period t state.

We allow expertise levels πit to be random and vary over time. For our general analysis, we

only assume that these are uniformly bounded:

a ≤ πit ≤ b

everywhere for some positive constants a and b with a < b. That is, no individual is ever perfectly

informed of the state in any period, but all signals carry at least some information. Finally, we

assume that the expertise levels πit are publicly observable at t.
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Remark 1. Since priors are heterogenous, each individual has her own subjective beliefs. We use

the subscript i to denote the individual whose belief is being considered. For example, we write

θt ∼i N (µi, 1) to indicate that θt is normally distributed with mean µi according to i. When all

individuals share a belief, we drop the subscript. For example, εit ∼ N (0, 1/πit) means that all

individuals agree that the noise in xit is normally distributed with mean 0 and variance 1/πit.

While an individual j does not infer anything about θt from the value µi, j does update her belief

about θt upon receiving information about xit. For a more extensive discussion of belief revision

with incomplete information and unobservable, heterogenous priors, see Sethi and Yildiz (2012),

where we study repeated communication about a single state in a group of individuals with equal

levels of expertise.

Having observed the signal xit in period t, individual i updates her belief about the state

according to Bayes’ rule. This results in the following posterior belief for i:

θt ∼i N
(
yit,

1

1 + πit

)
, (1)

where yit is the expected value of θt according to i and 1+πit is the precision of the posterior belief.

We refer to yit as individual i’s opinion at time t. The opinion is computed as

yit =
1

1 + πit
µi +

πit
1 + πit

xit. (2)

A key concern in this paper is the process by means of which individuals choose targets whose

opinions are then observed. We model this choice as follows. In each period t, each individual i

chooses one other individual, denoted by jit ∈ N , and observes her opinion yjitt about the current

state θt. This information is useful because i then chooses an action θ̂it ∈ R in order to minimize

E[(θ̂it − θt)2]. (3)

This implies that individuals always prefer to observe a more informative signal to a less informative

one. We specify the actions and the payoffs only for the sake of concreteness; our analysis is valid

so long as the desire to seek out the most informative signal is assumed. (In many applications this

desire may be present even if no action is to be taken.)

The timeline of events at each period t is as follows:

1. The levels of expertise (π1t, . . . , πnt) are realized and publicly observed.

2. Each i observes her signal xit, forms her opinion yit, and chooses a target jit ∈ N\ {i}.

3. Each i observes the opinion yjitt of her target and takes an action θ̂it.

It is convenient to introduce the variable ltij which takes the value 1 if jit = j and zero otherwise.

That is, ltij indicates whether or not i observes j in period t, and the matrix [ltij ] defines a directed
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graph that describes who listens to whom. Consistent with this interpretation, we shall say that i

links to j in period t if j = jit. It is more convenient to represent such directed graphs by functions

g : N → N with g(i) 6= i for each i ∈ N . We write G for the set of all such functions.

Remark 2. We assume to begin with that individuals are myopic, do not observe the actions or

past targets of others, and do not observe the realization of the state. As shown in Sections 8-9

and the supplementary appendix, our results extend for the most part to the case of forward-looking

behavior, as well as delayed observability of states, actions, and the past targets of others.

Remark 3. The inference problems at any two dates t and t′ are related because each individual’s

ex-ante expectation of θt and θt′ are the same; this expectation is what we call the individual’s

perspective. As we show below, any information about the perspective µj of an individual j is

useful in interpreting j’s opinion yjt, and this opinion in turn is informative about j’s perspective.

Consequently the choice of target at date t affects the choice of target at any later date t′. In

particular, the initial symmetry is broken after individuals choose their first targets, potentially

leading to highly asymmetric outcomes.

3 Evolution of Beliefs and Networks

We now describe the criterion on the basis of which a given individual i selects a target j whose

opinion yjt is to be observed, and what i learns about the state θt and j’s perspective µj as a result

of this observation. This determines the process for the evolution of beliefs and the network of

information flows.

Under our assumptions, the posterior beliefs held by any individual about the perspectives of

any other will continue to be normally distributed throughout the process of belief revision. Write

vtij for the precision of the distribution of µj according to i at beginning of t. Initially, these

precisions are identical: for all i 6= j,

v0ij = v0. (4)

The precisions vtij in subsequent periods depend on the history of realized expertise levels and

observational networks. These precisions of beliefs about the perspectives of others are central to

our analysis; the expected value of an individual’s perspective is irrelevant as far as the target

choice decision is concerned. What matters is how well a potential target is understood, not how

far their perspective deviates from that of the observer.

3.1 Interpretation of Opinions and Selection of Targets

Suppose that an individual i has chosen to observe the opinion yjt of individual j, knowing that

yjt is formed in accordance with (2). Since xjt = θt + εjt, this observation provides the following
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signal regarding θt:
1 + πjt
πjt

yjt = θt + εjt +
1

πjt
µj .

The signal is noisy in two respects. First, the information xjt of j is noisy, with signal variance εjt.

Second, since the opinion yjt depends on j’s unobservable perspective µj , the signal observed by i

has an additional source of noise, reflected in the term µj/πjt.

Taken together, the variance of the additive noise in the signal observed by i is

γ(πjt, v
t
ij) ≡

1

πjt
+

1

π2jt

1

vtij
. (5)

Here, the first component 1/πjt comes directly from the noise in the information of j, and is simply

the variance of εjt. It decreases as j becomes better informed. The second component, 1/(π2jtv
t
ij),

comes from the uncertainty i faces regarding the perspective µj of j, and corresponds to the variance

of µj/πjt (where πjt is public information and hence has zero variance). This component decreases

as i becomes better acquainted with the perspective µj , that is, as j becomes better understood

by i.

The variance γ reveals that in choosing a target j, an individual i has to trade-off the noise

1/πjt in the information of j against the noise 1/(π2jtv
t
ij) in i’s understanding of j’s perspective,

normalized by the level of j’s expertise. The trade-off is between targets who are well-informed

and those who are well-understood.

Since i seeks to observe the most informative opinion, she chooses to observe an individual for

whom the variance γ is lowest. For completeness we assume that ties are broken in favor of the

individual with the smallest label:

jit = min

{
arg min
j 6=i

γ(πjt, v
t
ij)

}
. (6)

Note that jit has two determinants: the current expertise levels πjt and the precision vtij of beliefs

regarding the perspectives of others. While πjt is randomly drawn from an exogenously given

distribution, vtij is endogenous and depends on the sequence of prior target choices, which in turn

depends on previously realized levels of expertise.

3.2 Evolution of Beliefs

We now describe the manner in which the beliefs vtij are revised over time. In particular we show

that the belief of an observer about the perspective of her target becomes more precise once the

opinion of the latter has been observed, and that the strength of this effect depends systematically

on the realized expertise levels of both observer and observed.

Suppose that jit = j, so i observes yjt. Recall that j has previously observed xjt and updated

her belief about the period t state in accordance with (1-2). Hence observation of yjt by i provides
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the following signal about µj :

(1 + πjt)yjt = µj + πjtθt + πjtεjt.

The signal contains an additive noise term πjtθt + πjtεjt, the variance of which is

π2jt

(
1

1 + πit
+

1

πjt

)
.

This variance depends on the expertise of the observer as well as that of the target, through the

observer’s uncertainty about θt. Accordingly, the precision of the signal is ∆(πit, πjt), defined as

∆(πit, πjt) =
1 + πit

πjt(1 + πit + πjt)
. (7)

Hence we obtain

vt+1
ij =

{
vtij + ∆(πit, πjt) if jit = j

vtij if jit 6= j,
(8)

where we are using the fact that if jit 6= j, then i receives no signal of j’s perspective, and so her

belief about µj remains unchanged. This leads to the following closed-form solution:

vt+1
ij = v0 +

t∑
s=0

∆(πis, πjs)l
s
ij . (9)

Each time i observes j, her beliefs about j’s perspective become more precise. But, by (7), the

increase ∆ (πit, πjt) in precision depends on the specific realizations of πit and πjt in the period of

observation, in accordance with the following.

Lemma 1. ∆ (πit, πjt) is strictly increasing in πit and strictly decreasing in πjt. Hence,

∆ ≤ ∆(πit, πjt) ≤ ∆

where ∆ ≡ ∆(a, b) > 0 and ∆ ≡ ∆(b, a).

In particular, if i happens to observe j during a period in which j is very precisely informed

about the state, then i learns very little about j’s perspective. This is because j’s opinion largely

reflects her signal and is therefore relatively uninformative about her prior. If i is very well informed

when observing j, the opposite effect arises and i learns a great deal about j’s perspective. Having

good information about the state also means that i has good information about j’s signal, and is

therefore better able to infer j’s perspective based on the observed opinion.

The fact that individuals with different expertise levels learn about the perspective of a common

target to different degrees can result in symmetry breaking, as the following example illustrates.

Suppose that n = 4, and π1t > π2t > π4t > π3t at t = 0. Then individual 1 links to 2 and all

the others link to 1. The resulting graph is shown in the left panel of Figure 1, where a solid line
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Figure 1: Asymmetric effects of first period observations on second period links.

indicates links in both directions. In the initial period, individuals 2, 3, and 4 all learn something

about the perspective of individual 1, but those who are better informed about the state learn more:

v221 > v241 > v231. Now consider period t = 1, and suppose that this time π2t > π1t > π4t > π3t.

There is clearly no change in the links chosen by individuals 1 and 2, who remain the two best

informed individuals. But there is an open set of expertise realizations for which individuals 3 and

4 choose different targets: 3 switches to the best informed individual while 4 links to her previous

target. This outcome is shown in the right panel of Figure 1.

In this example, the difference between the expertise levels of 1 and 2 in the second period is

large enough to overcome the attachment of 3 to 1, but not large enough to overcome the stronger

attachment of individual 4, who was more precisely informed of the state in the initial period,

and hence learned more about the perspective of her initial target. Hence two individuals with a

common observational history can start to make different choices over time.

3.3 Network Dynamics

Given the precisions vtij at the start of period t, and the realizations of the levels of expertise πit,

the links chosen by each individual in period t are given by (6). This then determines the precisions

vt+1
ij at the start of the subsequent period in accordance with (8), with initial precision v0ij = v0.

For any period t, let ht := (vt
′
ij)t′<t denote the history of precisions of beliefs (regarding per-

spectives) up to the start of period t; h0 denotes the initial empty history. Observe that for t ≥ 1,

ht also implicitly contains information about all past links. The target choice jit (ht, πt) in period

t is a function of ht and the realized values of expertise levels πjt. Hence, ht induces a probability

distribution on all subsequent links.
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We say that the link ij is active in period t if jit = j. Given any history ht, we say that the link

ij is broken in period t if, conditional on ht, the probability of jit = j is zero. It is easily verified

that if a link is broken in period t then it is broken in all subsequent periods. This follows from the

fact that the precisions vtij are non-decreasing over time, and vij increases in period t if and only if

jit = j. Finally, we say that a link ij is free in period t conditional on history ht if the probability

that it will be broken in this or any subsequent period is zero conditional on ht. If a link ij is free

at time t, there is a positive probability that jis = j for all s ≥ t.

We next identify conditions under which a link breaks or becomes free. Define a threshold

v =
a

b(b− a)
,

for the precision vij of an individual’s belief about another individual’s perspective. Note that v

satisfies the indifference condition

γ (a,∞) = γ (b, v)

between a minimally informed individual whose perspective is known and a maximally informed

individual whose perspective is uncertain with precision v. Define also the function β : (0, v)→ R+,

by setting

β (v) =
b2

a2

(
1

v
− 1

v

)−1
.

This satisfies the indifference condition

γ (a, β (v)) = γ (b, v)

between a maximally informed individual whose perspective is uncertain with precision v and a

minimally informed individual whose perspective is uncertain with precision β (v). When vtik >

β(vtij) for some k, individual i never links to j because the variance γ(πkt, v
t
ik) of the information

from k is always lower than the variance γ(πjt, v
t
ij) of the information from j. Since vtij remains

constant and vtik cannot decrease, i never links to j thereafter, i.e., the link ij is broken. Conversely,

if vtik < β(vtij) for all k, i links to j when j is sufficiently well-informed and all others are sufficiently

poorly informed.

When vtij(ht) > β(vtik(ht)) for all k ∈ N\ {i, j}, all links ik are broken, so i links to j in

all subsequent periods and ij is free. Moreover, assuming that the support of πt remains [a, b]n

throughout, when vij > v, i links to j with positive probability in each period, and each such link

causes vij to increase further. Hence the probability that i links to j remains positive perpetually,

so ij is free. Conversely, in all remaining cases, there is a positive probability that i will link to

some other node k repeatedly until vik exceeds β(vtij(ht)), resulting in the link ij being broken.

(This happens when i links to k at least (β(vtij(ht))− vtik(ht))/∆ times in a row.) Note that along

every infinite history, every link eventually either breaks or becomes free.

Define the cutoff ṽ ∈ (0, v) as the unique solution to the equation

β (ṽ)− ṽ = ∆. (10)
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Figure 2: Regions of state space with broken and free links

Note that β(v) − v is increasing, so if the initial precision v0 (of beliefs about the perspectives of

others) is below ṽ, then each individual will link in all periods to their first period target. This

is because if v0 < ṽ and i observes k initially, then v2ik ≥ v0 + ∆, and hence v2ik > β(v0) = β(vij)

for all j 6= k. All links except those that form initially break by the second period, and the initial

observational network is persistent.1

To illustrate these ideas, consider a simple example with N = {1, 2, 3}. Figure 2 plots regions

of the state space in which the links 3 → 1 and 3 → 2 are broken or free, for various values of

v31 and v32 (the precisions of individual 3’s beliefs about the perspectives of 1 and 2 respectively).

The figure is based on parameter values a = 1 and b = 2, which imply v = 0.5. In the orthant

above (v, v), links to both nodes are free. Individual 3 links to each of these nodes with positive

probability thereafter, eventually learning both their perspectives with arbitrarily high precision.

Hence, in the long run, she links with likelihood approaching 1 to whichever individual is better

1Note that the thresholds v and ṽ both depend on the support [a, b] from which expertise realizations are drawn,

though we suppress this dependence for notational simplicity. We are assuming a < b throughout, but it is useful to

briefly consider the limiting case of constant expertise (a = b). In this case v = ∞, so no link is free to begin with,

no matter how great the initial precision in beliefs about perspectives happens to be. Moreover, β(v) = v, so (10)

has no solution, and all links break except those that form in the initial period. The resulting outcome is efficient

because of symmetry in initial beliefs about perspectives, but in asymmetric models with constant expertise levels,

individuals may attach to targets who are initially more familiar but have less expertise throughout. This clarifies

the importance for our analysis of the assumption that issues vary across periods and expertise accordingly varies

across individuals.
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informed in any given period. This long-run behavior is therefore independent of past realizations

when the initial precision in beliefs about perspectives is sufficiently high.

When v32 > β(v31), the region above the steeper curve in the figure, the link 3 → 1 breaks.

Individual 3 links only to 2 thereafter, learning her perspective and therefore fully incorporating

her information in the long run. But this comes at the expense of failing to link to individual 1

even when the latter is better informed. Along similar lines, in the region below flatter curve, 3

links only to to 1 in the long run.

Now consider the region between the two curves but outside the orthant with vertex at (v, v).

Here one or both of the two links remains to be resolved. If v < v32 < β(v31), then although the link

3→ 2 is free, the link 3→ 1 has not been resolved. Depending on subsequent expertise realizations,

either both links will become free or 3→ 1 will break. Symmetrically, when v < v31 < β(v32), the

link 3 → 1 is free while 3 → 2 will either break or become free in some future period. Finally, in

the region between the two curves but below the point (v, v), individual 3 may attach to either one

of the two nodes (with the other link being broken) or enter the orthant in which both links are

free. But when v0 < ṽ ∼= 0.07, then any link not formed in the initial period will break right away,

so there is no possibility of both links becoming free. Hence, other things equal, the likelihood that

all links will become free is increasing in the initial precision in beliefs about perspectives.

4 Long-Run Experts

In this section we show that in the long run, each individual has a history-dependent set of experts,

and links with high probability to the most informed among them.

For each infinite history h, define the mapping Jh : N → 2N as

Jh (i) = {j | jit (h) = j infinitely often} (∀i ∈ N) . (11)

Here Jh (i) is the (nonempty) set of individuals to whom i links infinitely many times along the

history h; these are i’s long run experts. On this path, eventually, the links ij with j ∈ Jh (i)

become free, and all other links break. Individual i then links exclusively to individuals j ∈ Jh (i).

But each time i links to j, vtij increases by at least ∆. Hence, given the history h, i knows the

perspective of j with arbitrarily high precision after a finite number of periods. This, of course,

applies to all individuals j ∈ Jh (i), so i comes to know all perspectives within Jh (i) very well, and

chooses targets from within this set largely on the basis of their expertise levels. This leads to the

following characterization.

Proposition 1. For every ε > 0 and history h, there exists a period τ (h) such that

jit (ht, πt) ∈
{
j ∈ Jh (i) | πjt ≥ πj′t − ε ∀j′ ∈ Jh (i)

}
(∀i ∈ N, ∀t ≥ τ (h)) .
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Proof. Observe that there exists vε <∞ such that if vtij > vε and πjt > πj′t + ε, then jit 6= j′. By

Lemma 1, for every i, j ∈ N with j ∈ Jh (i), we have vtij (ht)→∞. (This follows from the fact that i

observes each j ∈ Jh(i) infinitely often along h.) Hence, there exists τijε (h) such that vtij (ht) > vε

whenever t ≥ τijε (h). Since N is finite, we can set τ (h) = max
{
t (h) ,maxi∈N,j∈Jh(i) τijε (h)

}
,

where t (h) = max {t | jit 6∈ Jh (i) for some i} is the last time a transient link occurs along h. Then,

for any t > τ (h), we have jit (ht, πt) ∈ Jh (i) (because t > t (h)) and πjit(ht,πt)t ≥ πjt − ε for all

j ∈ Jh (i) (because vtij > vε)—as claimed.

This result establishes that for any given history of expertise realizations and any ε > 0, there

exists some period τ after which each individual i’s target has expertise within ε of the best-informed

individual among her long run experts Jh (i). There may, of course, be better informed individuals

outside Jh (i) to which i does not link. The requirement that all individuals simultaneously link

to the best-informed among their long-run experts sharply restricts the set of possible graphs. For

example, in the long run, if two individuals i and i′ each links to both j and j′, then i cannot link

to j in a period in which i′ links to j′.

In the supplementary appendix we show that when expertise levels (π1t, . . . , πnt) are serially

i.i.d., the long run graphs are also serially i.i.d. with a history-dependent long-run distribution.

Moreover, the long-run distribution is revealed at a finite, history-dependent time τ , in that Jh = Jh′

for continuations h and h′ of hτ with probability 1. Furthermore, if it has been revealed at a history

ht that the set of long run experts is J , then for all ε > 0, there exists t∗ > t such that

P

(
jit′ ∈ arg max

j∈J(i)
πjt′ |ht

)
> 1− ε (12)

for all t′ > t∗ and i ∈ N . That is, given ε arbitrarily small, after a known finite time t∗, everyone

links to her best-informed long run expert with arbitrarily high probability 1− ε.

Since we have abstracted from strategic concerns, the outcome in our model is necessarily ex-

ante optimal, maximizing the payoff of the myopic self at t = 0. This of course does not mean that

future selves do not regret the choices made by earlier ones. Indeed, if expertise levels (π1t, . . . , πnt)

are serially i.i.d., at any history h, the expected payoff at the start of each period t converges to

u∞,i,h = −E
[

1

1 + πi + maxj∈Jh(i) πj

]
.

We call u∞,i,h the long-run payoff of i at history h. This payoff is an increasing function of the

cardinality of the set Jh (i) of long-run experts, and maximized at Jh (i) = N\ {i}.

5 Long-Run Observational Networks

We have established that, in the long run, individuals restrict attention to a history-dependent and

individualized set Jh of long-run experts and seek the opinion of the most informed among these.
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We next describe several observational patterns that might result, each corresponding to a specific

mapping Jh, and characterize the parameter values (a, b, v0) under which each of these arises with

probability 1 or with positive probability. We start by describing these patterns.

Long-run Efficiency We say that long-run efficiency obtains at history h if

Jh (i) = N\ {i} (i ∈ N) .

This outcome maximizes the log-run payoff.

Static Networks We say that the static network g ∈ G emerges at history h if

Jh (i) = {g (i)} (i ∈ N) .

That is, independent of expertise levels, each individual i links to g(i), the target that graph

g assigns to her.

Extreme Opinion Leadership We say that extreme opinion leadership emerges at history h if

there exist individuals i1 and i2 such that

Jh (i1) = {i2} and Jh (i) = {i1} (∀i 6= i1) .

That is, all individuals link to a specific individual i1, who links to i2, regardless of expertise

realizations. When players are ex ante identical, extreme-opinion leadership minimizes the

long-run payoffs of all individuals, although it may not be the worst possible situation in

asymmetric environments—for example if i1 is expected to be better informed than others.

Information Segregation We say that segregation over a partition {S1, S2, . . . , Sm} ofN emerges

at history h if

Jh (i) ⊂ Sk (i ∈ Sk, ∀k) .

Under information segregation, clusters emerge in which individuals within a cluster link only

to others within the same cluster in the long run. In this case there may even be a limited form

of long-run efficiency within clusters, so that individuals tend to link to the best informed in

their own group, but avoid linkages that cross group boundaries.

These patterns are clearly not exhaustive. For example, a weaker form of opinion leadership

can arise in which some subset of individuals are observed with high frequency even when their

levels of expertise are known to be low, while others are never observed.

To identify conditions under which each of the above patterns arise, we make the following

assumption.

Assumption 1 (Full Support). For every non-empty open subset Π of [a, b]n, there exists λ (Π) > 0

such that the conditional probability that (π1t, . . . , πnt) ∈ Π given any history of expertise levels is

at least λ (Π).
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That is, the support of the expertise levels (π1t, . . . , πnt) remains [a, b]n at all histories, and the

probability of a given open subset is uniformly bounded away from zero. This is more demanding

than required for our results; for the most part, it suffices that we have positive probabilities at all

corners.

Proposition 2. Under Assumption 1, for any v0 6∈ {ṽ, v}, the following are true.

(a) Long-run efficiency obtains with probability 1 if and only if v0 > v.

(b) Extreme opinion leadership emerges with positive probability if and only if v0 < v, and with

probability 1 if and only if v0 < ṽ.

(c) For any partition {S1, S2, . . . , Sm} of N such that each Sk has at least two elements, there is

segregation over {S1, S2, . . . , Sm} with positive probability if and only if v0 ∈ (ṽ, v −∆).

(d) Assume that v0 < v − ∆ (b, b) and suppose that there exists π ∈ (a, b) such that γ (π, v0) <

γ (a, v0 + ∆ (π, b)) and γ (b, v0) < γ (π, v0 + ∆ (π, b)). Then every g ∈ G emerges as a static

network with positive probability.

Proposition 2 identifies conditions under which a variety of long-run outcomes can arise. Parts

(a) and (b) are highly intuitive. If v0 > v then all links are free to begin with so long-run efficiency

is ensured. If this inequality is reversed, then no link is initially free. This implies that extreme

opinion leadership can arise with positive probability, for the following reason. Any network that

is realized in period t has a positive probability of being realized again in period t+ 1 because the

only links that can possibly break at t are those that are inactive in this period. Hence there is

a positive probability that the network that forms initially will also be formed in each of the first

s periods for any finite s. For large enough s all links must eventually break except those that

are active in all periods, resulting in extreme opinion leadership. This proves both that extreme

opinion leadership arises with positive probability when v0 < v, and that long-run efficiency is not

ensured.

Moreover, when v0 < ṽ, we have v0 + ∆ > β (v0) and each individual adheres to their very

first target regardless of subsequent expertise realizations. The most informed individual in the

first period emerges as the unique information leader and herself links perpetually to the individual

who was initially the second best informed. Hence if v < ṽ we get extreme opinion leadership with

certainty.

While the emergence of opinion leadership is intuitive, convergence to a segregated network or

an arbitrary static network is much less so. Since all observers face the same distribution of expertise

in the population, and all but one link to the same target in the initial period, the possibility that

they may all choose different targets in the long run, or may be partitioned into segregated clusters,

is counter-intuitive. Nevertheless, there exist sequences of expertise realizations that result in such

strong asymmetries.
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Segregation can arise only if v0 < v (otherwise we obtain long-run efficiency). Furthermore, if

v0 > v−∆, all links to the best informed individual in the first period become free. This is because

all such links are active in the first period, and the precision of all beliefs about this particular

target’s perspective rise above v0 + ∆ > v. This clearly rules out segregation. So v0 cannot be too

large if segregation is to arise. And it cannot be too small either: extreme opinion leadership is

inconsistent with segregation and arises with certainty when v0 < ṽ.

The strength of Proposition 2(c) lies in showing that not only is v0 ∈ (ṽ, v −∆) necessary for

segregation, it is also sufficient for segregation over any partition to arise with positive probability.

Even more surprisingly, there exists an open set of parameter values for which any arbitrarily given

network can emerge as a static network with positive probability. That is, each individual may be

locked into a single, arbitrarily given target in the long run.

Proposition 2(d) goes a step further, establishing that any static network can arise with positive

probability if a further condition is satisfied. This condition may be understood as follows. There

exists some feasible expertise level π such that: (i) a previously unobserved target with expertise

π is strictly preferred to a once-observed target with minimal expertise, provided that the latter

had maximal expertise while the observer had expertise π in the period of prior observation, and

(ii) a previously unobserved target with maximal expertise is strictly preferred to a once-observed

target with expertise π, provided that the latter had expertise π while the observer had maximal

expertise in the period of prior observation. This allows us to construct a positive probability event

that results in convergence to an arbitrarily given static network.2

We have assumed to this point that all individuals are symmetrically placed, in the sense that

they are both observers and potential experts. For some applications, it is more useful to consider

a population that is partitioned into two groups: a set of observers or decision markers who are

never themselves observed, and a set of potential experts whose opinions are solicited but who do

not themselves seek opinions. We examine this case in the supplementary appendix, obtaining a

crisper version of Proposition 2. When v0 > v and v0 < ṽ, we have long-run efficiency and extreme

opinion leadership, respectively, as in the baseline model. For intermediate values v0 ∈ (ṽ, v −∆),

each pattern of long-run behavior identified in Proposition 2—including information segregation

and convergence to an arbitrary static network—emerges with positive probability.

Another variant of the model allows for states to be publicly observable with some delay. If

the delay is zero, the period t state is observed at the end of the period itself; an infinite delay

corresponds to our baseline model. This case is also examined in the supplementary appendix.

Observability of past states retroactively improves the precision of beliefs about the perspectives of

those targets who have been observed at earlier dates, without affecting the precision of beliefs about

other individuals, along a given history. Such an improvement only enhances the attachment to

2Note that the assumption holds whenever v0 > v∗ where v∗ is defined by β (v∗) − v∗ = 2∆ (b, b). A sufficient

condition for such convergence to occur is accordingly v0 ∈ (v∗, v −∆(b, b)), and it is easily verified that this set is

nonempty. For instance if (a, b) = (1, 2), then (v∗, v −∆(b, b)) = (0.13, 0.20).
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previously observed individuals. This does not affect our results concerning any single individual’s

behavior, such as the characterization of long-run outcomes in Proposition 1. Nor does it affect

patterns of behavior that are symmetric on the observer side, such as long-run efficiency and opinion

leadership in parts (a) and (b) of Proposition 2.

However, observability of past states has a second effect: two individuals with identical obser-

vational histories have identical beliefs about the perspectives of all targets observed sufficiently

far in the past. This makes asymmetric linkage patterns—such as non-star-shaped static networks

and information segregation—less likely to emerge. Nevertheless, with positive delay, private sig-

nals do affect target choices, and symmetry breaking remains possible. Our results on information

segregation and static networks extend to the case of delayed observability for a sufficiently long

delay.

6 The Size of Expert Sets and a Law of the Few

We have focused to this point on long-run outcomes that can or will emerge for various parameter

values. In particular, when v0 < v, individuals may limit themselves to a small set of potential

experts even when individuals outside this set are better informed. This begs the question of how

likely such outcomes actually are. Indeed, in proving Proposition 2, we use specific scenarios that

arise with positive but possibly very low probability.

The following result identifies bounds on the probability distribution over long-run expert sets,

and shows that these are very likely to be small in absolute size. In large populations, therefore,

expert sets constitute a negligible fraction of all potential targets.

Proposition 3. Assume that πit are independently and identically distributed with distribution

function F , such that 0 < F (π) < 1 for all π ∈ (a, b). Then, for any v0 < v, we have

Pr (|Jh (i)| ≤ m) ≥
(

1− F (π̂)

1− F (π̂) +mF (π̂)m

)β(v0)−v0
∆(a,b)

≡ p∗ (m) (∀i ∈ N, ∀m) ,

where π̂ = min {π | γ(π, v0 + ∆ (a, b)) ≤ γ(b, v0)} < b. In particular, for every ε > 0, there exists

n <∞ such that

Pr

(
|Jh (i)|
n− 1

≤ ε
)
> 1− ε (∀i ∈ N, ∀n > n) .

Proof. The second part immediately follows from the first because mF (π̂)m → 0 as m → ∞ and

the lower bound does not depend on n. To prove the first part, we obtain a lower bound on the

conditional probability that |Jh (i)| ≤ m given that i has linked to exatly m distinct individuals

so far; we call these m individuals insiders and the rest outsiders. This is also a lower bound on

the unconditional probability of |Jh (i)| ≤ m.3 Now, at any such history ht, a lower bound for the

3For each history h, define τ (h) as the first time i has linked to m distinct individuals, where τ (h) may be ∞.

Observe that Pr
(
|Jh (i)| ≤ m |hτ(h)

)
= 1 if τ (h) =∞ and Pr

(
|Jh (i)| ≤ m |hτ(h)

)
≥ p∗ (m) otherwise.
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probability that i links to the j with the highest vtij is

(1− F (π̂)) /m.

To see this, observe that vtij ≥ vtij′ ≥ v0 + ∆ (a, b) > vtij′′ = v0 for all insiders j′ and outsiders j′′.

Hence, if πjt > π̂, individual i prefers j to all outsiders j′′. Moreover, since vtij ≥ vtij′ for all insiders

j′, the probability that i prefers j to all other insiders is at least 1/m, and this is also true when

we condition on πjt > π̂. Thus, the probability that i prefers j to all other individuals is at least

(1− F (π̂)) /m. Likewise, the probability that i links to an outsider cannot exceed

F (π̂)m

because i links to an insider whenever there is an insider with expertise exceeding π̂. Therefore,

the probability that i links to the best known insider at the time (i.e., the j′ with highest vt
′
ij′ at

date t′) for k times before ever linking to an outsider is(
(1− F (π̂)) /m

(1− F (π̂)) /m+ F (π̂)m

)k
.

Note that the best-known insider may be changing over time since this event allows paths in which

i links to lesser-known insiders until we observe k occurrences of linking to the initially best-known

insider. Now, at every period t′ in which i links to the best-known individual, her familiarity

v∗t′ ≡ maxj v
t′
ij with the latter increases by at least ∆ (a, b). Hence, after k occurrences, we have

v∗t′ ≥ v0 + ∆ (a, b) + k∆ (a, b). Therefore, for any integer k > (β (v0)− v0) /∆ (a, b) − 1, after k

occurrences, we have v∗t′ > β (v0). Links to all outsiders are accordingly broken, since vt
′
ij′′ remains

equal to v0 for all outsiders j′′ throughout.

The first part of this result provides a lower bound p∗ (m) on the probability Pr (|Jh (i)| ≤ m)

that the size of the set of long run experts does not exceed m, uniformly for all population sizes

n. Here, p∗ (m) depends on the distribution F of expertise levels and the parameter v0, and is

decreasing in v0 and F (π̂). Since p∗ (m) approaches 1 as m gets large, and is independent of n,

the fraction of individuals in the set of long run experts becomes arbitrarily small, with arbitrarily

high probability, as the population grows large.

As an illustration of Proposition 3, consider a binomial distribution of expertise, with πit = b = 2

with probability q and πit = a = 1 with probability 1−q. From (2), an individual with low expertise

puts equal weight on her prior and her information, and one with high expertise puts weight 2/3

on her information and 1/3 on her prior. Note that v = 0.5 and ṽ ∼= 0.07 in this case, and suppose

that v0 = 0.3. In Figure 3, we plot simulated values of |Jh(i)|, averaged across all individuals

i and across 1000 trials, for various values of n as a function of q. We also plot the theoretical

upper bound for the expected value of |Jh(i)| obtained from p∗, as well as two tighter bounds that

are discussed below. As the figure demonstrates, the set Jh(i) is small in absolute terms: when

q ≥ 1/2, the average expert set has at most 4 members in all simulations, and our theoretical
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Figure 3: The average number of links per person as a function of q in the binomial example. Solid

lines are simulation results, and dashed lines are theoretical upper bounds, which apply to all n

uniformly.

bounds imply that the expected value of the number of members cannot exceed 5 no matter how

large the population.

The mechanism giving rise to an absolute bound on the expected size of expert sets is the

following. Given a history of expertise realizations and observational networks, each individual i

faces a ranking of potential experts based on their familiarity to her. If there are m experts who

are already more familiar than some potential expert j in this ranking, i will link to j only if the

latter is substantially better informed than each of the m individuals who are more familiar. This

is an exponentially long shot event. Before i elects to observe any such j, she will link with high

probability to more familiar individuals many times, learning more about them on each occasion,

until her link to j breaks permanently.

Proposition 3 contains a simple but loose lower bound p∗ (m) on the probability that once the

set of insiders reaches size m, no outsider is ever observed. Using this, one can obtain a tighter but

more complicated lower bound:

Pr (|Jh (i)| ≤ m) ≥
∑
k≤m

(
p∗ (k)

∏
k′<k

(
1− p∗

(
k′
)))
≡ p∗∗ (m) .
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Moreover, the probability that i links to the most familiar insider is usually higher than the lower

bound (1− F (π̂)) /m used in the proof of the result. For instance, in the binomial case, i links to

one of the most familiar insiders whenever any such individual has expertise b. The probability of

this is at least q, from which we obtain a tighter lower bound:

Pr (|Jh (i)| ≤ m) ≥
(

q

q + (1− q)m
)β(v0)−v0

∆(a,b)

≡ p∗b (m) .

One can then obtain even a tighter bound p∗∗b by substituting p∗b for p∗ in the definition of p∗∗.

Note that p∗ is not monotonic: it decreases up to 1/ log (1/F (π̂)) and increases after that. One

can therefore obtain a tighter bound p∗ by ironing p∗, where p∗ (m) = maxm′≤m p
∗ (m). In the

binomial example, p∗ = p∗ when q ≥ 1/2. Now, the bounds p∗, p∗∗, p∗b , and p∗∗b are all (weakly

increasing) cumulative distribution functions, and they all first-order stochastically dominate the

distribution over |Jh(i)| generated by the model. In Figure 3, which is based on the binomial

example, the three upper bounds are the expected values of expert set sizes under p∗, p∗b , and p∗∗b .

These expected values are upper bounds for the expected value of |Jh(i)| uniformly for all n, where

p∗ and p∗∗b yield the loosest and the tightest bounds respectively.

While Proposition 3 tells us that the size of expert sets is small for each individual, it does

not tell us the extent to which these sets overlap. It has been observed that, in practice, most

individuals get their information from a small core of experts; Galeotti and Goyal (2010) refer to

this as the law of the few. In their model individuals can obtain information either directly from a

primary source or indirectly through the observation of others. In an equilibrium model of network

formation, they show that a small group of experts will be the source of information for everyone

else. The equilibrium experts in their model are either identical ex ante to those who observe them,

or have a cost advantage in the acquisition of primary information.

Building on Proposition 3, we can show that the law of the few is also predicted by a variant

of our model, but through a very different mechanism and with the potential for experts to be

consulted even when better information is available elsewhere:

Corollary 1. Consider the two-sided model, in which the population N is partitioned into decision-

makers Nd and potential experts Ne, and suppose that the state θt becomes publicly observable at

the end of period t for each t. Then, for every history h, there exists a set J∗h ⊂ Ne of experts,

such that Jh (i) = J∗h for every i ∈ Nd. Moreover, for every ε > 0, there exists n < ∞ such that,

whenever |Ne| > n, we have

Pr

(
|J∗h|
|Ne|

≤ ε
)
> 1− ε.

Proof. The first part follows from the observability of the state in two-sided model. If vtij = vti′j
for all j ∈ Ne, then vt+1

ij = vt+1
i′j = vtij + ltij/πjt. Since v0ij = v0i′j = v0, this shows that vtij = vti′j

throughout, yielding jit = ji′t everywhere. Therefore, Jh (i) = Jh (i′) for all i, i′ ∈ Nd. The
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second part follows from the first part and Proposition 3, which holds for the two-sided model with

observable states.

Hence there is a history-dependent set J∗h of core experts who become opinion leaders. Every

decision-maker seeks the opinion of the best-informed core expert in the long run. Moreover, as the

set of potential experts becomes large, the fraction who are actually consulted becomes negligible,

and we obtain a law of the few. In contrast with Galeotti and Goyal (2010), however, the group of

observed individuals may have poorer information than some who remain unobserved.

7 Areas of Expertise and Own-Field Bias

The framework developed here can be applied to a number of settings, and we now explore one

such application in detail.

Consider a principal who faces a sequence of decisions that we call cases, each of which lie in one

of two areas of expertise or fields 1 and 2. For concreteness, one may think of a journal editor facing

a sequence of submissions, or a university administrator facing a sequence of promotion cases; in

either scenario the principal must make a decision based on an assessment of quality. For each case,

the principal can consult an outside expert or referee drawn from a pool of potential experts.

All individuals (principals and experts) themselves have expertise in one of the two fields. In

addition, all individuals have prior beliefs regarding the quality of each case, and these are drawn

independently and identically from a normal distribution with precision v0 as before. The field to

which any given case belongs is observable.

We adopt the convention of using i1 and i2 to denote principals with expertise in fields 1 and 2,

respectively, and j1 and j2 for experts in these respective fields. If the period t case lies in field 1,

then a principal i1 has expertise πi1t = b, while a principal i2 has expertise πi2t = a < b. If the case

lies instead in field 2 these expertise levels are reversed, and we have πi1t = a and πi2t = b. The

same applies to experts: those asked to evaluate a case in their field have expertise b while those

whose field is mismatched with that of the case have lower expertise a.4

As before, we assume that in any given period, the principal consults the expert whose opinion

on the current case is most informative. It is clear that in the initial period, since no expert is

better understood than any other, the principal will choose an expert to match the field of the case

(regardless of the field to which the principal herself belongs). This follows directly from the fact

that γ(b, v0) < γ(a, v0). Furthermore, if there exists a period t in which the fields of the case and

4Experts in any given field are ex ante identical, though they may have different realized priors over the quality

of the cases. Given that a previously consulted expert becomes better understood by a principal, and thus certain to

be selected over previously unobserved experts in the same field, nothing essential is lost by assuming that there are

just two experts in the pool, one in each field.

21



the chosen expert differ, then the same expert will also be selected in all subsequent periods.

Hence, along any history of cases h, a principal i selects an expert who is matched to the field

of the case until some period ti ≤ ∞, and subsequently chooses the same expert regardless of field

match. If ti(h) = ∞ then we have long-run efficiency: experts and cases are always matched by

field. Otherwise the principal i attaches to an expert in a specific field, which may or may not

match the field in which the principal herself has expertise.

Note that when faced with the same history h, the principal i1 may behave differently from the

principal i2: they may attach to experts in different fields, and may do so at different times, or one

may attach while the other does not. But not all events can arise with positive probability:

Proposition 4. Given any history h, if principal i1 attaches to expert j2 in period ti1(h), then

principal i2 must attach to j2 in some period ti2(h) ≤ ti1(h).

Proof. The result follows from the following claim: given any history h, if principal i1 consults

expert j2 in any period t, then principal i2 also consults j2 in t. We prove this claim by induction.

It is clearly true in the first period, since j2 is consulted by each type of principal if any only if the

first case is in field 2. Suppose the claim is true for the first t− 1 ≥ 1 periods, and let η denote the

proportion of these periods in which i1 consults j2. Then, since ∆(a, b) < ∆(b, b), and i2 consults

j2 at least η(t− 1) times in the first t− 1 periods by hypothesis, we obtain

vti1j2 = v0 + η(t− 1)∆(a, b) < v0 + η(t− 1)∆(b, b) ≤ vti2j2 . (13)

Similarly,

vti1j1 = v0 + (1− η)(t− 1)∆(b, b) > v0 + (1− η)(t− 1)∆(a, b) ≥ vti2j1 . (14)

If i1 consults j2 in period t along h, then it must be because

γ(πj2t, v
t
i1j2) ≤ γ(πj1t, v

t
i1j1).

But given (13–14), this implies

γ(πj2t, v
t
i2j2) < γ(πj1t, v

t
i2j1),

so i2 also consults j2 in period t.

This result rules out many possibilities. When facing a common history of cases h, if i1 attaches

to j2, then so must i2, ruling out the possibility that i2 attaches to j1 or attaches to no expert

at all (thus matching the field of the expert to that of the case in all periods). This leaves four

qualitatively different possibilities: (i) dominance by a field (both principals attach to the same

expert), (ii) partial dominance by a field (one principal attaches to an expert in her own field while

the other does not attach at all), (iii) segregation (each principal attaches to an expert in her own

field), and (iv) long-run efficiency (neither principal attaches to any expert).
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Since total or partial dominance can involve either one of the two fields, we have six possible

outcomes in all. Each of these can be represented by a function J : {i1, i2} → 2{j1,j2}\ {∅},
where J(i) denotes the set of experts consulted infinitely often by principal i. Each function J

corresponds to a distinct event, and following table identifies the six events that can arise with

positive probability (and the three that are ruled out by Proposition 4):

J(i2) = {j1} J(i2) = {j1, j2} J(i2) = {j2}
J(i1) = {j1} Dominance by 1 Partial Dominance by 1 Segregation

J(i1) = {j1, j2} — Long-Run Efficiency Partial Dominance by 2

J(i1) = {j2} — — Dominance by 2

Note that segregation can arise despite priors about case quality being independently and

identically distributed across principals and experts. This happens because a principal is able

to learn faster about the prior beliefs of an expert when both belong to the same field and are

evaluating a case within that common field.5

A key observation in this section is that experts in larger fields are more likely to rise to

dominance, in the sense that their opinions are solicited even for cases on which they lack expertise.

In order to express this more precisely, let p1 denote the (time-invariant) probability that the period

t case is in field 1, with p2 = 1− p1 being the probability that it is in field 2. Assume without loss

of generality that p1 ≥ p2. For each principal i and event J , define

qi (J) =
|J (i) ∩ {j1}|
|J (i)|

.

This is the frequency with which expert j1 is consulted by principal i in the long-run. For instance,

dominance by field 1 corresponds to q1 = q2 = 1, efficiency to q1 = q2 = 0.5, segregation to

(q1, q2) = (1, 0), and partial dominance by field 1 to (q1, q2) = (1, 0.5). We can use this to define a

partial order on the set of six positive probability events identified above:

J � J ′ ⇐⇒
[
∀i, qi (J) ≥ qi

(
J ′
)]
.

That is, J � J ′ if and only if both principals consult expert j1 with weakly greater long-run

frequency. Note that segregation and long-run efficiency are not comparable, and moving upwards

and/or to the left in the above table leads to events that ordered higher:

D1 � PD1 � S,LRE � PD2 � D2.

5This mechanism is quite different from that driving other models of information homophily. For instance, Baccara

and Yariv (2013) consider peer group formation for the purpose of information sharing. In their model individuals have

heterogeneous preferences with respect to the issues they care about and, in equilibrium, groups are characterized by

preference homophily. This then implies information homophily, since individuals collect and disseminate information

on the issues of greatest concern to them.
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We can also partially order individual histories according to the occurrence of field 1 as follows:

h � h′ ⇐⇒
[
∀t, πi1t (h) < πi2t (h)⇒ πi1t

(
h′
)
< πi2t

(
h′
)]
.

That is, h � h′ if and only if the case in each period is in field 1 under h whenever it is in field 1

under h′.

Next, we define the probability distribution P (· | p1) on mappings J , by assigning the probability

of {h | Jh = J} under p1 to J for each J . We are interested in the manner in which this distribution

varies with p1. Accordingly, we rank probability distributions on mappings J according to first-

order stochastic dominance with respect to the order � :

P �FOSD Q ⇐⇒
[
∀J, P

({
J ′ | J � J ′

})
≥ Q

({
J ′ | J � J ′

})]
.

with strict inequality for some J .

The following proposition formalizes the idea that experts in larger fields are consulted dispro-

portionately often, in the sense that they are more likely to be consulted on cases outside their area

of expertise:

Proposition 5. The following are true for all h, h′, p1, and p′1:

1. if h � h′, then Jh � Jh′

2. if p1 > p′1, then P (·| p1) �FOSD P (·| p′1)

3. limp1→1 P (D1| p1) = 1

This result establishes that experts in larger fields are more likely to be consulted on cases

outside their area of expertise than experts in smaller fields. Here a larger field is interpreted as

one in which an arbitrary case is more likely to lie. The first part establishes this by comparing

realized histories, and the second by comparing ex ante probabilities.6

To summarize, when decision makers, experts, and cases are all associated with specific areas

of specialization, the heterogeneity and unobservability of perspectives gives rise to two sharp

predictions: own-field bias (other things equal, principals are more likely to consult experts in their

own fields) and large field dominance (experts in larger fields are more likely to be consulted on

cases outside their area of expertise).

6Observe that when h � h′, the expert in field 1 is, if anything, better-informed under h than h′ at all periods,

i.e., πj1t (h) ≥ πj1t (h′) and πj2t (h) ≤ πj2t (h′). It is tempting to conclude from this that experts in larger fields

become more prominent simply because they are better informed, but this is not the case. To see this, suppose that

the first case lies in field 1, and change the expertise level of j1 at t = 1 to b′ > b keeping the rest—including the

realization of cases and expertise levels in all other periods—as before. This change will only lower vtij1 for all i and

t and will make this expert less likely to be selected in the future. It is easy to construct examples in which field 1

will dominate without the above change while field 2 dominates with the change.
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8 Forward-Looking Behavior

In order to explore the trade-off between well-informed and well-understood targets, we have as-

sumed to this point that individuals seek the most informative opinion in each period. But one

might expect that forward-looking individuals may sometimes choose to observe an opinion that is

relatively uninformative about the current period state, in order to build familiarity with a target,

in the hope that this might be useful in future periods. We now examine this case, in a simpli-

fied version of the baseline model, and show that it leads to qualitatively similar results. Like

their myopic counterparts, forward-looking individuals restrict attention to a relatively small set of

long-run experts, and link to the most informed among them, even when there are better-informed

individuals outside this set.

Simplified Forward-Looking Model Each individual i learns the perspective of jit at the end

of period t, and maximizes the expected value of the sum of discounted future payoffs, with

discount factor δ for some δ ∈ (0, 1):

(1− δ)
∑
t

δtui
(
πit, πjt, v

t
ij

)
where

ui (πi, πj , vij) ≡ 1− 1

1 + πi + 1/γ (πj , vij)
;

we set ui (πi, πj ,∞) ≡ 1−1/(1+πi+πj). Expertise levels πit are independently and identically

distributed with distribution function F such that 0 < F (π) < 1 for all π ∈ (a, b).

The key simplifying assumption here is that an individual observing yj completely learns µj at

the end of the period. This holds approximately when b is small, since signals carry little information

and opinions are close to priors. Our preferred interpretation is that a period corresponds to a

series of interactions during which expertise levels remain constant and after which i faces little

uncertainty about µj .

For any history h and individual i, let

Jh (i) = {jit (h) | t ∈ T}

be the set of targets to whom i links along the history h, learning their perspectives after the first

observation in each case. Since N is finite, there is some finite time τ (h), at which individual i

knows the perspectives of all individuals j ∈ Jh (i). For all t ≥ τ (h) and πt ∈ [a, b]n, we have

jit (ht, πt) ∈ Jh (i). Optimality requires that

jit (ht, πt) ∈ arg max
j∈Jh(i)

πjt (∀t ≥ τ (h) , ∀πt) . (15)

Just like their myopic counterparts (in Proposition 1), forward-looking individuals limit themselves

to a set Jh (i) of long-run experts and eventually link to the best informed within this set.
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The set Jh (i) can be viewed as a portfolio of experts who benefit i by providing information

whenever their expertise is higher than that of others in the portfolio. By (15), the long-run value

of a portfolio Jh (i) with size |Jh (i)| = m is

U (m) =

∫
U
(
πJh(i)

)
dFm

(
πJh(i)

)
(16)

where Fm is the distribution of the maximum πJh(i) = maxj≤m πj of m expertise levels, and

U (πj) =

∫
ui (πi, πj ,∞) dF (πi) (17)

is the expected utility of receiving a signal with precision πj in addition to one’s own signal. Note

that U (m) is strictly increasing and converges to U (b) as m goes to ∞. That is, the marginal

benefit U (m+ 1) − U (m) of adding another expert once an individual has already observed m

distinct targets goes to zero as m gets large. Hence the value V (m) of having m experts in the

portfolio at the beginning of a period under the optimal strategy lies between U (m) and U (b).

The optimal strategy solves the following dynamic investment problem. At any given (ht, πt),

individual i faces one of the following two choices. On the one hand, i can invest in a previously

unobserved individual j 6∈ Jh,t (i) ≡ {jit′ (h) | t′ < t} by linking to j and learning µj . This raises

her future value to V (m+ 1) and generates a current return ui (πit, πjt, v0), yielding the payoff

δV (m+ 1) + (1− δ)ui (πit, πjt, v0) .

Alternatively, i can link to the best-informed known individual j′ ∈ Jh,t (i). This leaves her contin-

uation payoff at V (m) but results in a possibly higher current return of ui(πit, πJh,t(i),∞), where

πJh,t(i) ≡ maxj′∈Jh,t(i) πj′t. This alternative has payoff

δV (m) + (1− δ)ui(πi, πJh,t(i),∞).

Overall, investment in an additional expert has a return

R (m) = V (m+ 1)− V (m) , (18)

which is obtained in the next period and onwards, and has a one-time opportunity cost

C(πi, πJh,t(i), πjt, v0) = ui(πit, πJh,t(i),∞)− ui (πit, πjt, v0) (19)

that is incurred in the current period. The return R (m) is positive and depends only on m. This

comes from the simplifying assumption that i fully learns µj after observing j. The opportunity

cost C(πi, πJh,t(i), πjt, v0) depends only on the various expertise levels and v0. Hence, i invests in

the best-informed unknown expert j 6∈ Jh,t (i) ∪ {i} if and only if

δR (m) > (1− δ)C(πi, πJh,t(i), πjt, v0).
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One can then write the value function as

V (m) = U (m) +

∫
δR>(1−δ)C

(δR (m)− (1− δ)C (πi, πJ , πj , v0)) dF (πi) dF
m (πJ) dFn−m−1 (πj) .

(20)

That is, the continuation payoff under the optimal strategy is her payoff from observing the best-

informed known expert j ∈ Jh,t (i) from now on, plus the expected net payoff from investment

whenever investment is beneficial.

When does she invest? First consider the case v0 > v. Then, the cost is negative whenever an

unknown expert is highly informed while all known experts have low expertise: C (πi, a, b, v0) < 0.

Hence, she invests in new experts with positive probability until we reach Jh,t (i) = N\ {i}. This

results in long-run efficiency, as in the case of myopic behavior.

Next consider the case v0 < v. Now, the opportunity cost C is always positive:

C ≥ Cmin (v0) ≡ C (b, a, b, v0) > 0.

Hence, investment is beneficial only when R (m) is sufficiently high. Since R (m)→ 0, investment

stops at some m with probability 1, regardless of n. Intuitively, if i were to invest naively by

comparing the long-run benefit δ (U (m+ 1)− U (m)) to the opportunity cost (1− δ)C, she would

keep investing until δ (U (m+ 1)− U (m)) goes below the minimum cost (1− δ)Cmin (v0), stopping

when we reach the smallest integer m∗ with

δ (U (m∗ + 1)− U (m∗)) ≤ (1− δ)Cmin (v0) . (21)

Under such a strategy, almost surely, the size of the long-run portfolio is m∗. It turns out that this

is also true under the optimal strategy because V (m) = U (m) in the long run. Our next result

establishes this fact, thus showing that forward-looking and myopic individuals behave in similar

fashion in the long run.

Proposition 6. In the simplified forward-looking model, under the optimal strategy, almost surely,

jit (h) ∈ arg max
j∈Jh(i)

πjt (∀h,∀t ≥ τ (h) , i ∈ N) .

Moreover, almost surely,

|Jh (i)| =

{
n− 1 if v0 > v

min {m∗, n− 1} if v0 < v,
(22)

where m∗ is as defined in (21). In particular, when v0 < v, for every ε > 0, there exists n < ∞
such that, almost surely,

|Jh (i)|
n− 1

≤ ε (∀i ∈ N, ∀n > n) . (23)
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Long-run behavior under the optimal strategy is history-dependent, and two individuals may

have very different sets of long-run experts. Individuals invest in new experts when the opportunity

cost is low, which happens when their own expertise is high. Hence distinct individuals invest at

distinct times, and choose different targets in general. Despite this asymmetry, Proposition 6

establishes that the number |Jh (i)| of long run experts is history independent and given by (21–22)

for all individuals.

For the economically interesting case of v0 < v, one can derive intuitive properties of |Jh (i)|
from (21). First, since m∗ does not depend on n, the fraction |Jh (i)| / (n− 1) of individuals that

are included in the set of long run experts goes to zero as n gets large, as stated in the last part

of the proposition. This extends Proposition 3 to the case of forward-looking individuals. Second,

m∗ is increasing in the discount factor δ, yielding |Jh (i)| = m∗ = 1 when i is very impatient, and

long-run efficiency (i.e. |Jh (i)| = n − 1) when i is very patient.7 Third, m∗ is decreasing in the

minimum cost Cmin (v0) and hence increasing in v0; it takes the value n− 1 when v0 is close to v.

To see that the welfare implications of perspective unobservability can be large even with

forward-looking behavior, consider the case of binomially distributed expertise: πit = a with prob-

ability 1 − q and πit = b with probability q for some q ∈ (0, 1). In this case the long-run payoff is

given by

U (m) = U (b)− (1− q)m
(
U (b)− U (a)

)
,

where (1− q)m
(
U (b)− U (a)

)
can be viewed as the inefficiency incurred by restricting attention

to Jh (i) because U (m)→ U (b) as m→∞. The ex-ante payoff is V (0). Since

V (0) ≤ V (m∗) = U (m∗) , (24)

the long-run payoff provides a loose upper bound for the ex-ante payoff. The marginal contribution

of an additional expert is

U (m+ 1)− U (m) = q (1− q)m
(
U (b)− U (a)

)
.

Intuitively, the additional expert contributes U (b) − U (a) when she is the only target with high

expertise, which happens with probability q (1− q)m. Then, by (21), the long-run payoff is approx-

imately

U (m∗) = U (b)− 1− δ
δq

Cmin (v0) , (25)

up to a correction for an integer constraint.

The long-run payoff is decreasing in the minimal cost Cmin (v0) and hence increasing in v0,

approaching the maximum payoff U (b) as v0 → v. It is also increasing in δ. When δ is low, the

long-run outcome is highly inefficient, yielding the lowest payoff U (1). On the other hand, the

7The result for high impatience is a direct consequence of our assumption here that perspectives are fully learned

after a single period of observation; this blocks the more complex observational patterns we uncovered in the case of

myopia.
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long-run payoff approaches the maximum payoff U (b) as δ → 1. Interestingly, the payoff is also

increasing in the probability q of high expertise. When q is low, the inefficiency (1−δ)Cmin (v0) /δq

can be arbitrarily high, and the long-run payoff is at its lowest attainable level of U (1). Intuitively,

when q is low, the return from investment in a previously unobserved individual becomes very small.

Hence individuals settle on a small set of experts with low levels of overall expertise 1− (1− q)m.

Of course, in large populations, there are likely to be some individuals with high expertise, and an

observer could obtain nearly the highest attainable payoff U (b) in expectation if perspectives were

observable. Since they are unobservable, and forming a sufficiently large portfolio is prohibitively

costly, experts sets are chosen to be small.

9 Extensions and Variations

We have already considered some extensions to our baseline model, including the important case of

forward-looking behavior, and briefly discussed the two-sided case (with distinct groups of observers

and experts) as well as observable states. In this section we consider a few other extensions and

variants of the model. Some of these are explored in detail in the supplementary appendix, while

others are largely left for future research.

9.1 Observational Learning with Unobservable Preferences

In our baseline model, we use heterogeneous priors to represent perspectives and study the signal

extraction problem that arises when these priors are unknown. The same underlying forces are

at work in other contexts, including observational learning with payoff uncertainty and common

priors.

In the supplementary appendix, we present a model of observational learning with common

priors where individuals have privately known preference biases as in Crawford and Sobel (1982).

Instead of observing opinions, people observe actions, but since preferences are unobserved these

actions do not reveal the private signals received by targets. The resulting signal extraction problem

is similar to the one considered here, but the observational learning model leads to more path

dependence and less long-run efficiency. That is, we show that the cutoff v for long-efficiency is

scaled up while the cutoff β(v) for links to be broken is scaled down. Under the new cutoffs, our

results extend verbatim: we have long-run efficiency with probability 1 when v0 > v and extreme

opinion leadership with positive probability when v0 < v. Subject to the revised thresholds, the

probability distribution over long-run experts is constrained by the bounds p∗(m) identified in

Proposition 3; hence the sets of long-run experts contain a negligible fraction of all individuals in

large populations.
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9.2 Shifting Perspectives

We have assumed throughout that perspectives are fixed: each individual believes that θt is i.i.d.

with a specific distribution, and does not update her beliefs about this distribution as she observes

realizations of θt or signals about θt—even when the emerging data is highly unlikely under the

presumed distribution. This is motivated by our interpretation of a perspective as a stable char-

acteristic of individual cognition that governs the manner in which information about a variety of

issues is processed; see Section 10 for more on the existence of such frames of reference. Perspectives

in this sense can sometimes be subject to sudden and drastic change, as in the case of ideological

conversions, but will not generally be subject to incremental adjustment in the face of evidence.

Nevertheless, it is worth considering the theoretical implications of continuously and gradually

changing perspectives. If one views a perspective as a model of the world, perspectives can adapt

to incoming data if there is model uncertainty. In the supplementary appendix, we present an

extension in which individuals update their perspectives as they observe θt, while recognizing that

others are also doing so. As might be expected, all perspectives converge to the publicly observed

empirical frequency in the long run, and all individuals eventually link to the most informed person

in the population at large.

While this result is of theoretical interest, it is subject to a couple of caveats. First, when initial

beliefs about the distribution of θt are firm, perspectives are slow to change and the medium-run

behavior of the learning model resembles long-run behavior with fixed perspectives. And second,

we show in the supplementary appendix that learning actually strengthens path dependence in

early periods: relative to the baseline model it induces individuals to discount expertise vis-à-vis

familiarity with the target. Intuitively, model uncertainty implies a more diffuse prior over the

state, which makes expertise realizations that differ from the prior mean less surprising, and makes

posteriors less sensitive to private signals. The effective expertise level of targets is accordingly

lower, and the trade-off between being well-informed and being well-understood is shifted as a

result. This effect is eventually overwhelmed by knowledge of the empirical frequency of states,

and the fact that all perspectives converge to this empirical distribution.8

9.3 Correlated Perspectives

When perspectives are correlated, knowledge of one’s own perspective is informative about the

perspectives of others. Furthermore, observed opinions can be informative not only about the

8The convergence of all perspectives to the empirical distribution requires that individuals know the exact relation

between the distribution of θt and the signals they observe. This is quite demanding when individuals observe only

signals rather than the state itself. Acemoglu et al. (2015) show that when individuals learn about the relation

between signals and states, the intuition provided by the learning model is fragile. Although individuals manage to

learn the frequency of future signals, their asymptotic beliefs about the underlying parameters are highly sensitive

to their initial beliefs about the relation between signals and states.
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perspective of the target individual, but also about the perspectives of third parties.

Suppose that it is commonly known that the perspectives µ = (µ1, ..., µn) are jointly distributed

according to

µ ∼ N(µ,Σ),

where µ = (µ1, ..., µn) is the expected value of the vector of n perspectives as before, and Σ is a

variance-covariance matrix with typical element σij . Let σii = σ2 for all i in the variance-covariance

matrix Σ, but allow arbitrary correlations by setting σij = σji = ρijσ
2. Now there is an initial

mutual attraction among individuals with highly correlated perspectives because they can deduce

something about each other’s perspectives from knowledge of their own. In this case even the

first period network will exhibit asymmetries and opinion leadership becomes less likely. When

heterogeneity in expertise levels is limited, each individual initially links with high likelihood to

the target j with highest correlation ρij . In general, this may lead to a wide range of networks, as

i links to j while j links to some other individual.

However, if perspectives are highly correlated within identity groups (defined by race, ethnicity

or religion for example) but largely independent across groups, then an individual who chooses

a target from a different group will develop an attachment not only to the observed target but

also—to a lesser degree—to others in the target’s group. We conjecture that this would lead to

long-run observational patterns in which there is a high density of connections within groups along

with sparse but persistent links across groups, as those who step outside group boundaries once

become more inclined to do so repeatedly.9

9.4 Multiple Targets

We have assumed throughout that each individual can observe only one target in any period.

Extending our results to the case of k targets per period, for some fixed positive k < n − 1, is

straightforward. In this case a link ij becomes free if vtij > v (as in the baseline model) and breaks

if there are k individuals j′ ∈ N\ {i, j} with vtij′ > β(vkij). In the long run, each individual links to

her k best informed long-run experts. As in the baseline model, we have long-run efficiency when

v0 > v. Extreme opinion leadership must now be redefined to mean that a set of k individuals

constitute the long-run experts for all those outside this set. Given this, we obtain extreme opinion

leadership with certainty when v0 < ṽ, and with positive probability when ṽ < v0 < v. Our result

concerning arbitrary static networks—with k targets for each individual—can also be extended,

but the necessary condition is more demanding. And our bound on the size of long-run expert sets

also extends to case of multiple targets—albeit with necessary modifications in the formula.

9The property that one finds signals from one’s own group more informative than those from other groups is

commonly treated as a primitive in the literature on statistical discrimination descended from Phelps (1972) and

Aigner and Cain (1977). Allowing for correlated perspectives can deepen our understanding of the foundations and

limitations of this hypothesis.
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One can also extend our results to allow for a cost of observing opinions. Suppose, for instance,

that individuals pay a fixed cost c > 0 for each opinion observed. Now there exists a cutoff v̂(c)

such that individuals do not link to anyone when v0 < v̂(c), where v̂(c) is obtained by equating the

cost c to the benefit for an individual with expertise level a of observing the opinion of a target

with expertise level b and familiarity v0 = v̂(c). If v0 > v̂(c), then in any given period, individuals

link to a set of targets with lowest γ, and eventually choose from among their long-run experts

based only on expertise levels. But the number of opinions observed must vary across individuals

and over time. This is because the marginal benefit of an additional opinion depends both on the

observer’s expertise level in the period of observation, and extent of her familiarity with others in

the population. We obtain long-run efficiency with probability 1 if and only if v0 > max{v, v̂(c)}.

9.5 Indirect Observation and Social Networks

We have assumed that individuals observes the opinions of their selected targets after all private

signals have been received and processed, but before the targets have learned from the opinions of

their own respective targets. This allows us to focus on unobservable perspectives without dealing

with the orthogonal problem of double-counting associated with untangling sources of information.

However, it also rules out flows of information through a chain of connected individuals. One could

generalize the model by allowing for multiple rounds of opinion observation within each period. In

this case the first round observation reveals something about about the target’s private signal, the

second round observation additionally reveals something about the private signal of the target’s own

target, and so on. Although this is a very promising direction for future research, we do not pursue it

here. We have also assumed that any individual in the population is a potential target for anyone

else, so that the resulting communication network is fully endogenous. In principle, one could

impose a prior social structure on the model that restricts target choices, so that communication

occurs only between social neighbors. One could then explore the question of how changes in social

networks affect the size and structure of the endogenous communication subnetwork.

9.6 Observability of Targets and Actions

We have assumed throughout that individuals’ actions and target choices are not observable by

others. If one could observe the actions of one’s target, as well as their own choice of target,

one could infer something about the perspective of the latter. This would then affect subsequent

observational choices. However, observing the targets of others (without observing their actions)

would be irrelevant for our analysis. This is because individuals do not learn anything from the

target choices of others: i can compute jit using publicly available data even before jit has been

observed.10 This simplifies the analysis considerably, due to the linear formula for normal variables;

10One can prove this inductively as follows. At t = 1, one can compute jit from (6) using (π1t, . . . .πnt) and v0

without observing jit. Suppose now that this is indeed the case for all t′ < t for some t, i.e., jit does not provide
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see (26) in the Appendix. In a more general model, one may be able to obtain useful information

by observing jit. For example, without linearity, vt+1
ij − vtij could depend on yjt for some i with

jit = j. Since yjt provides information about µj , and vt+1
ij affects jit′ for t′ ≥ t+ 1, one could then

infer useful information about µj from jit′ for such t′. The formula (8) would not be true for t′ in

that case, possibly allowing for other forms of inference at later dates.

10 Related Literature

A key idea underlying our work is that there is some aspect of cognition that is variable across

individuals and stable over time, and that affects the manner in which information pertaining to

a broad range of issues is filtered. This aspect of cognition is what we have called a perspective.

In our model, knowledge of others’ perspectives changes endogenously through the observation of

their opinions. Differences in political ideology, cultural orientation and even personality attributes

can give rise to such stable variability in the manner in which information is interpreted. This is a

feature of the cultural theory of perception (Douglas and Wildavsky, 1982) and the related notion

of identity-protective cognition (Kahan et al., 2007).

Evidence on persistent and public belief differences that cannot realistically be attributed to

informational differences is plentiful. For instance, political ideology correlates quite strongly with

beliefs about the religion and birthplace of Barack Obama, the accuracy of election polling data,

the reliability of official unemployment statistics, and even perceived changes in local temperatures

(Thrush 2009, Pew Research Center 2008, Plambeck 2012, Voorhees 2012, Goebbert et al., 2012).

Since much of the hard evidence pertaining to these issues is in the public domain, it is unlikely that

such stark belief differences arise from informational differences alone. In some cases observable

characteristics of individuals (such as racial markers) can be used to infer biases, but this is less

easily done with biases arising from different personality types or worldviews.

Our analysis is connected to several stands of literature on observational learning, network

formation, and heterogeneous priors.11 Two especially relevant contributions from the perspective

of our work are by Galeotti and Goyal (2010) and Acemoglu et al. (2014). Galeotti and Goyal

any additional information about µi. Then all beliefs about perspectives are given by (8) up to date t. One can

see from this formula that each vtij is a known function of past expertise levels (π1t′ , . . . , πnt′)t′<t, all of which are

publicly observable. That is, one knows vtij for all distinct i, j ∈ N . Using (π1t, . . . .πnt) and these values, one can

then compute jit from (6).
11For a survey of the observational learning literature, see Goyal (2010). Early and influential contributions include

Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sorensen (2000) in the context of sequential choice. For

learning in networks see Bala and Goyal (1998), Gale and Kariv (2003), DeMarzo et al. (2003), Golub and Jackson

(2010), Acemoglu et al. (2011), Chatterjee and Xu (2004), and Jadbabaie et al. (2012). For surveys of the network

formation literature see Bloch and Dutta (2010) and Jackson (2010). Key early contributions include Jackson and

Wolinsky (1996) and Bala and Goyal (2000); see also Watts (2001), Bramoulle and Kranton (2007), and Bloch et

al. (2008).
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(2010) develop a model to account for the law of the few, which refers to the empirical finding

that the population share of individuals who invest in the direct acquisition of information is small

relative to the share of those who acquire it indirectly via observation of others, despite minor

differences in attributes across the two groups. All individuals are ex-ante identical in their model

and can choose to acquire information directly, or can choose to form costly links in order to obtain

information that others have paid to acquire. All strict Nash equilibria in their baseline model have

a core-periphery structure, with all individuals observing those in the core and none linking to those

in the periphery. Hence all equilibria are characterized by opinion leadership: those in the core

acquire information directly and this is then accessed by all others in the population. Since there

are no problems with the interpretation of opinions in their framework, and hence no variation in

the extent to which different individuals are well-understood, information segregation cannot arise.

Acemoglu et al. (2014) also consider communication in an endogenous network. Individuals

can observe the information of anyone to whom they are linked either directly or indirectly via

a path, but observing more distant individuals requires waiting longer before an action is taken.

Holding constant the network, the key trade-off in their model is between reduced delay and a

more informed decision. They show that dispersed information is most effectively aggregated if the

network has a hub and spoke structure with some individuals gathering information from numerous

others and transmitting it either directly or via neighbors to large groups. This structure is then

shown to emerge endogenously when costly links are chosen prior to communication, provided that

certain conditions are satisfied. One of these conditions is that friendship cliques, defined as sets

of individuals who can observe each other at zero cost, not be too large. Members of large cliques

are well-informed, have a low marginal value of information, and will not form costly links to

those outside the clique. Hence both opinion leadership and information segregation are possible

equilibrium outcomes in their model, though the mechanisms giving rise to these are clearly distinct

from those explored here.

The literature on communication in organizations also explicitly considers the precision of mes-

sages sent and received, in an environment in which adaptation to local information and coordina-

tion of actions across individuals both matter; see Dessein et al. (2015) for a recent contribution.

Message precision is an object of choice, subject to costs and determined endogenously. This litera-

ture is concerned with questions related to organizational form and focus, somewhat orthogonal to

those considered here. Most closely related is work by Calvó-Armengol et al. (2015), who explore

the extent of influence exerted by individuals at different points in an exogenously given network.

A trade-off between being well-informed and well-understood appears in Dewan and Myatt

(2008), who consider communication by leaders of political parties. As in the literature on commu-

nication in organizations, both adaptation to information and coordination of actions matter, but

instead of local states there is a global state and only leaders receive signals regarding its value.

Leaders vary in the degree to which they are well-informed (their sense of direction, in the language

of the authors) and also vary in the clarity with which they can communicate their information.
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Influential leaders have the right mix of attributes, which the authors show is tilted towards clarity

of communication. The potential for clear communication is a parameter in their static model,

rather than a consequence of prior observation as in ours.

Finally, strategic communication with observable heterogeneous priors has previously been con-

sidered by Banerjee and Somanathan (2001), Che and Kartik (2009), and Van den Steen (2010)

amongst others. Dixit and Weibull (2007) have shown that the beliefs of individuals with hetero-

geneous priors can diverge further upon observation of a public signal, and Acemoglu et al. (2015)

that they can fail to converge even after an infinite sequence of signals. In our own previous work,

we have considered truthful communication with unobservable priors, but with a single state and

public belief announcements (Sethi and Yildiz, 2012). Communication across an endogenous net-

work with unobserved heterogeneity in prior beliefs and a sequence of states has not previously

been explored as far as we are aware. Furthermore, the theory we offer to account for the size and

structure of expert sets, own-field bias, and large field dominance is novel, and this constitutes our

main contribution to the literature.

11 Conclusion

Interpreting the opinions of others is challenging because such opinions are based in part on private

information and in part on prior beliefs that are not directly observable. Individuals seeking

informative opinions may therefore choose to observe those whose priors are well-understood, even

if their private information is noisy. This problem is compounded by the fact that observing

opinions is informative not only about private signals but also about perspectives, so preferential

attachment to particular persons can develop endogenously over time. And since the extent of

such attachment depends on the degree to which the observer is well-informed, there is a natural

process of symmetry breaking. This allows for a broad range of networks to emerge over time,

including opinion leadership and information segregation. We have shown that when there is

sufficient initial uncertainty about the perspectives of others, individuals limit attention to a small

set of experts who have become familiar through past observation, and neglect others who may be

better-informed on particular issues. These sets are of negligible relative size in large populations,

even when individuals are forward-looking.

Our basic premise is that it is costly to extract information from less familiar sources. These

costs arise from the difficulty of making inferences when opinions are contaminated by unobserved

prior beliefs. The degree of such difficulty changes endogenously in response to historical patterns

of observation. We have explored one application of this idea in detail, showing that it gives rise to

own-field bias when a principal is tasked with evaluating a sequence of cases, and leads to experts

in larger fields being consulted with disproportionately high frequency on cases outside their area

of expertise. We believe that the framework developed here can be usefully applied to a variety of

other settings, including but not limited to informational segregation across identity groups.
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Appendix

The following formula is used repeatedly in the text and stated here for convenience. Given a prior θ ∼
N(µ, 1/v) and signal s = θ + ε with ε ∼ N(0, 1/r), the posterior is θ ∼ N(y, 1/w) where

y = E[θ|s] =
v

v + r
µ+

r

v + r
s (26)

and w = v + r.

As a step towards proving Proposition 2, following lemma identifies sufficient conditions for a link to be

broken or free; see the supplementary appendix for a full characterization.

Lemma 2. Under Assumption 1, at a history ht, a link ij is free if vtij (ht) > v and broken if there exists

k ∈ N with vtik (ht) > β
(
vtij (ht)

)
.

Proof of Lemma 2. To prove the first part, take any i, j with vtij (ht)> v. Then, by definition of v, for any

k /∈ {i, j},
γ
(
b, vtij (ht)

)
< γ (b, v)≤ γ

(
a, vtik (ht)

)
,

where the first inequality is because γ is decreasing in v and the second is by definition of v. Hence, by

continuity of γ, there exists η > 0 such that for all k /∈ {i, j},

γ
(
b− η, vtij (ht)

)
< γ

(
a+ η, vtik (ht)

)
.

Consider the event Π in which πjt ∈ [b− η, b] and πkt ∈ [a, a+ η] for all k 6= j. This has positive probability

under Assumption 1, and on this event jit = j. For any s ≥ t, since vsij ≥ vtij ≥ v, we have Pr(jis = j) > 0,

showing that the link ij is free.

To prove the second part, take vtik (ht) > β
(
vtij (ht)

)
. By definition of β,

γ
(
a, vtik (ht)

)
< γ

(
a, β

(
vtij (ht)

))
= γ

(
b, vtij (ht)

)
where the inequality is by monotonicity of γ and the equality is by definition of β. Hence, Pr

(
ltij = 1|ht

)
= 0.

Moreover, by (9), at any ht+1 that follows ht, v
t+1
ij (ht+1) = vtij (ht) and vt+1

ik (ht+1) ≥ vtik (ht), and hence

the previous argument yields Pr
(
lt+1
ij = 1|ht

)
= 0. Inductive application of the same argument shows that

Pr
(
lsij = 1|ht

)
= 0 for every s ≥ 0, showing that the link ij is broken at ht.

Proof of Proposition 2. (Part 1) Assume v0 > v for all distinct i, j ∈ N . Then, for each ht, the probability

of jit (ht) = j is bounded from below by λ (Π) > 0 for the event Π defined in the proof of Lemma 2. Hence,

with probability 1, i links to j infinitely often, showing that j ∈ Jh (i).

(Part 2) Clearly, when v0 > v, the long-run outcome is history independent by Part 1, and hence opinion

leadership is not possible. Accordingly, suppose that v0 < v. Consider the positive probability event A that

for every t ≤ t∗, π1t > π2t > maxk>2 πkt for some t∗ ≥ (β (v0)− v0) /∆. Clearly, on event A, for any t ≤ t∗

and k > 1, jkt = 1 and j1t = 2, as the targets are best informed and best known individuals among others.

Then, on event A, for ij ∈ S ≡ {12, 21, 31, . . . , n1},

vt
∗+1
ij = v0 +

t∗∑
t=0

∆(πis, πjs) ≥ v0 + (t∗ + 1) ∆ > β (v0)
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while vt
∗+1
ik = v0 for any ik 6∈ S. (Here, the equalities are by (9); the weak inequality is by Lemma 1, and

the strict inequality is by definition of t∗.) Therefore, by Lemma 2, all the links ik 6∈ S are broken by t∗,

resulting in extreme opinion leadership as claimed.

To prove the second part of the statement, note that for any v0 ≤ ṽ and i ∈ N ,

v1iji1 = v0 + ∆ (πi1, πij1) ≥ v0 + ∆ ≥ β (v0)

while v1ik = v0 for all k 6= ji1, showing by Lemma 2 that all such links ik are broken after the first period.

Since ji1 = min arg maxi πi1 for every i 6= min arg maxi πi1, this shows that extreme leadership emerges at

the end of first period with probability 1. The claim that extreme opinion leadership arises with probability

less than 1 if v0 > ṽ follows from Part 3 below.

(Part 3) Given the parameter values for which it applies, Part 4 implies Part 3, as there are graphs that

partition N as claimed. See the supplementary appendix for a direct proof of Part 3 that applies for all

v0 ∈ (ṽ, v −∆).

(Part 4) Take v0 as in the hypothesis, and take any g : N → N . We will construct some t∗ and a

positive probability event on which

jit = g (i) ∀i ∈ N, t > n+ t∗.

Now, let π be as in the hypothesis. By continuity of ∆ and γ, there exists a small but positive ε such that

γ (π, v0) < γ (a, v0 + ∆ (b− ε, π + ε)) (27)

γ (b− ε, v0) < γ (π + ε, v0 + ∆ (π + ε, b− ε)) (28)

∆ (b− ε, π + ε) > ∆ (π + ε, b− ε) . (29)

Fix some

t∗ > (β (v0 + ∆ (π + ε, b− ε))− v0) /∆,

and consider the following positive probability event:

πt,t−1 ≥ b− ε > π + ε ≥ πg(t),t−1 ≥ π > a+ ε ≥ πj,t−1 (∀j ∈ N\ {t, g (t)} ,∀t ∈ N) ,

(π1t, . . . .πnt) ∈ A (∀t ∈ {n, . . . , n+ t∗ − 1})

where

A ≡ {(π1, . . . , πn) |γ (πi, v0 + ∆ (π + ε, b− ε)) > γ (πj , v0 + ∆ (b− ε, π + ε))∀i, j ∈ N} .

Note that A is open and non-empty (as it contains the diagonal set). Note that for every t ∈ N , at date

t−1, the individual t becomes an ultimate expert (with precision nearly b), and her target g (t) is the second

best expert.

We will next show that the links ij with j 6= g (i) are all broken by n + t∗. Towards this goal, we will

first make the following observation:

For every t ∈ N , at date t− 1, t observes g (t); every i < t observes either t or g (i), and every

i > t observes t.
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At t = 0, the above observation is clearly true: 1 observes g (1), while everybody else observes 1. Suppose

that the above observation is true up to t− 1 for some t. Then, by date t− 1, for any i ≥ t, i has observed

each j ∈ {1, . . . , t− 1} once, when her own precision was in [a, π + ε] and the precision of j was in [b− ε, b].
Hence, by Lemma 1, vt−1ij ≤ v0 + ∆ (π + ε, b− ε). She has not observed any other individual, and hence

vt−1ij = v0 for all j ≥ t. Thus, by (28), for any i > t, γ
(
πt,t−1, v

t−1
it

)
< γ

(
πj,t−1, v

t−1
ij

)
for every j ∈ N\ {i, t},

showing that i observes t, i.e., ji,t−1 = t. Likewise, by (27), for i = t, γ
(
πg(t),t−1, v

t−1
tg(t)

)
< γ

(
πj,t−1, v

t−1
tj

)
for every j ∈ N\ {t, g (t)}, showing that t observes g (t), i.e., jt,t−1 = g (t). Finally, for any i < t, by the

inductive hypothesis, i has observed any j 6= g (i) at most once, yielding vt−1ij ≤ v0 + ∆ (π + ε, b− ε). Hence,

as above, for any j ∈ N\ {i, t, g (i)}, γ
(
πt,t−1, v

t−1
it

)
< γ

(
πj,t−1, v

t−1
ij

)
, showing that i does not observe j,

i.e., ji,t−1 ∈ {g (i) , t}.

By the above observations, after the first n period, each i has observed any other j 6= g (i) at most once,

so that

vnij ≤ v0 + ∆ (π + ε, b− ε) (∀j 6= g (i)) . (30)

She has observed g (i) at least once, and in one of these occasions (i.e. at date i), her own precision was in

[b− ε, b] and the precision of g (i) was in [π, π + ε], yielding

vnig(i) ≥ v0 + ∆ (b− ε, π + ε) . (31)

By definition of A, inequalities (30) and (31) imply that each i observes g (i) at n. Consequently, the

inequalities (30) and (31) also hold at date n+ 1, leading each i again to observe g (i) at n+ 1, and so on.

Hence, at dates t ∈ {n, . . . , t∗ + n− 1}, each i observes g (i), yielding

vn+t
∗

ig(i) ≥ vnig(i) + t∗∆ > v0 + ∆ (b− ε, π + ε) + β (v0 + ∆ (π + ε, b− ε))− v0
> β (v0 + ∆ (π + ε, b− ε)) .

For any j 6= g (i) , since vn+t
∗

ij = vn+1
ij , together with (30), this implies that

vn+t
∗

ig(i) > β
(
vn+t

∗

ij

)
.

Therefore, by Lemma 2, the link ij is broken at date t∗ + n.

Proof of Proposition 5. (Part 1) Take any h and h′ with h � h′ and any principal i. Consider first the case

that ti (h) ≥ ti (h′), i.e., i attaches to an expert under h′ at an earlier date ti (h′). If ti (h′) = ∞, we have

Jh (i) = Jh′ (i), and the claim clearly holds. If ti (h′) is finite, then we must have

v
ti(h′)
ij1

(h) ≥ vti(h
′)

ij1
(h′) and v

ti(h′)
ij2

(h) ≤ vti(h
′)

ij2
(h′) .

This follows from the facts that (i) at any t ≤ ti (h′) at which behavior under h and h′ are different, i

observes j1 instead of j2, so vij1 increases and vij2 remains constant under h, while vij2 increases and vij1
remains constant under h′, and (ii) at any t ≤ ti (h′) at which behavior under h and h′ are the same, vij1
and vij2 change by the same amount. Hence, if i attaches to j1 at ti (h′) under h′, she must also attach to

j1 under h at this period or earlier. That is:

v
ti(h′)
ij1

(h) ≥ vti(h
′)

ij1
(h′) > β

(
v
ti(h′)
ij2

(h′)

)
≥ β

(
v
ti(h′)
ij2

(h)

)
,
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where the strict inequality is because i attaches to j1 at ti (h′) under h′, and the last inequality is because

β is increasing. Hence qi (Jh) ≥ qi (Jh′). Similarly, if i attaches to j2 under h at some finite ti (h), then she

must also attach to j2 under h′ at ti (h) or earlier, so qi (Jh) ≥ qi (Jh′). Since this is true for both principals,

we have Jh � Jh′ .

(Parts 2-3) By Part 1, it suffices to show that we can obtain the distribution on the set of all histories under

p1 from the distribution under p′1 by the following transformation. For each history h′ of realized expertise

levels under p′1, change every πt with πj1t (h′) = a < b = πj2t (h′) to πj2t (h′) = a < b = πj1t (h′) with

probability p̂ = (p1 − p′1) / (1− p′1) ∈ [0, 1] independently. That, is flip the case to field 1 with probability

p̂ if it happens to be in field 2. This leads to a probability distribution on histories h with h � h′, whence

Jh �1 Jh′ (by Part 1). Observe that the resulting probability distribution is also i.i.d., with probability that

a case is in field 1 being p′1 + p̂ (1− p′1) = p1. To complete the proof, we show that p1 > p′1 implies

P (D1| p1) > P (D1| p′1) .

Let n denote the largest integer such that

v0 + n∆(b, b) < v,

and for each m = 0, 1, ..., n define km as the smallest integer such that

v0 + km∆(a, b) > β (v0 +m∆(b, b)) .

Note that principal i2 attaches to expert j1 if and only if at least km of the first km + m cases lie in field

1 for some m ≤ n. From Proposition 4, i1 must also attach to j1 in this case, so D1 occurs. It is easily

verified that the probability of this event is strictly increasing in p1 (which completes the proof of Part 2),

and approaches 1 as p1 → 1 (proving Part 3).

Proof of Proposition 6. It suffices to prove (22), which implies (23). To this end, first consider the case v0 >

v. Since Cmin (v0) < 0 and C is continuous, the probability of the event ΠJ =
{
π |C

(
πi, πJ , πN\(J∪{i})

)
< 0
}

is uniformly bounded away from zero for all proper subsets J of N\ {i}. Hence, the event ΠJ occurs

infinitely often for each J almost surely. But, whenever πt ∈ ΠJh(i),i, we have jit (h, πt) 6∈ Jh,t (i), yielding

|Jh,t+1 (i)| = |Jh,t (i)|+ 1 until |Jh,t (i)| = n− 1. Now, consider the case, v0 < v. It suffices to show that

δR (m) > (1− δ)Cmin (v0) ⇐⇒ m < m∗;

as in the previous case, this implies that investment occurs until we reach min {m∗, n− 1} almost surely,

and investment occurs with zero probability thereafter. Since R (m)→ 0, there exists some m (independent

of n) such that δR (m) < (1− δ)Cmin (v0) whenever m ≥ m. Now, towards an induction, assume that

δR (m+ 1) < (1− δ)Cmin (v0) for some m ≥ m∗. Then, by (20), we have V (m+ 1) = U (m+ 1). Hence,

δR (m) = δ (V (m+ 1)− V (m)) = δ (U (m+ 1)− V (m)) ≤ δ (U (m+ 1)− U (m))

≤ (1− δ)Cmin (v0) ,

where the first equality is by definition, the next equality is by the inductive hypothesis, the next inequality

is by V (m) ≥ U (m) and the last inequality is by m ≥ m∗. For the converse, suppose that δR (m) ≤
(1− δ)Cmin (v0) at some m < m∗. Then, V (m) = U (m) and V (m+ 1) ≥ U (m), and hence

δR (m) = δ (V (m+ 1)− V (m)) ≥ δ (U (m+ 1)− U (m)) > (1− δ)Cmin (v0) ,

a contradiction.
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Supplementary Appendix (for online publication)

In this appendix we consider some additional properties of long-run dynamics in Section A. A direct proof

of Proposition 2(c) for the full range of parameter values is contained in Section B. Section C contains three

variants of our model: a two-sided case in which the sets of observers and experts are disjoint, a case with

delayed observability of states, and a case with common priors but unobserved preferences. A model of

shifting perspectives is explored in Section D.

A Further Properties of Long-Run Dynamics

We write btij = 1 if the link ij is broken at t.

The following corollary of Proposition 1 establishes the frequency with which each g ∈ G is realized in

the long run, where jt = (j1t, . . . , jnt) is the history-dependent network realized at time t.

Corollary 2. If expertise levels are serially i.i.d then, almost surely, the long-run frequency

φ∞ (g|h) = lim
t→∞

# {s ≤ t | js (h) = g}
t

(∀g ∈ G)

exists, and

φ∞ (g|h) = P

(
g(i) = arg max

j∈J(i)
πj ∀i ∈ N

)
.

When expertise levels are serially i.i.d., then the realized networks are also i.i.d. in the long-run, where

the history-dependent long-run distribution is obtained by selecting the best-informed long-run expert for

each i. This generates a testable prediction regarding the joint distribution of behavior in the long run: if

both j and j′ are elements of Jh(i) ∩ Jh(i′), then i cannot link to j while i′ links to j′. Furthermore, each

pattern of linkages identified in Proposition 2 has an associated long-run distribution: long run efficiency

is characterized by an i.i.d. distribution on star networks, in which all players link to one player and that

player links to another; the static network g is characterized by a point mass on g, and extreme opinion

leadership is characterized by a point mass on a specific star network.

We now prove Corollary 2 and establish some additional results regarding long-run behavior. Let

Dλ = {(π1, . . . , πn) | |πi − πj | ≤ λ}

denote the set of expertise realizations such that each pair of expertise levels are within λ of each other. For

any given J , let

pJ,λ(g) = Pr

(
g(i) = arg max

j∈J(i)
πj ∀i ∈ N | π 6∈ Dλ

)
denote the conditional probability distribution on g obtained by restricting expertise realizations to lie outside

the set Dλ. Finally, for any probability distribution p on G, let

Bε(p) = {q | |q (g)− p (g)| < ε ∀g ∈ G}
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denote the set of probability distributions q on G such that q(g) and p(g) are within ε of each other for all

g ∈ G.

We say that φt (· |h) ∈ Bε (p) eventually if there exists t such that φt (· |h) ∈ Bε (p) for all t > t. The

following basic observations will also be useful in our analysis.

Observation 1. The following are true.

1. For every ε > 0, there exists λ (ε) ∈ (0, ε) such that Pr
(
Dλ(ε)

)
< ε.

2. For every λ > 0, there exists vλ <∞ such that if vtij > vλ and πjt > πj′t + λ, then jit 6= j′.

The first of these observations follows from the fact that Pr(Dλ) is continuous and approaches 0 as

λ→ 0, and the second can be readily deduced using (5).

Next we establish that, along every history, each link is eventually either broken or free. Define

J̃h (i) =
{
j | lim

t→∞
vtij (h) > v

}
as the set of individuals j for which the link ij becomes free eventually. For any J : N → 2N with i 6∈ J (i),

we also define

H̃J =
{
ht | vtij (ht) > v and bij′ (ht) = 1 (∀i ∈ N, ∀j ∈ J (i) ,∀j′ 6∈ J (i))

}
as the set of histories in which all links ij with j ∈ J (i) are free and all links ij′ with j′ 6∈ J (i) are broken.

We define H̃ = ∪JH̃J as the set of all histories at which all the links are resolved in the sense that they

are either free or broken. Finally, we define the stopping time τ̃ as the first time the process enters H̃, i.e.,

hτ̃ ∈ H̃ but ht 6∈ H̃ for any t < τ̃ .

Lemma 3. The stopping time τ̃ is finite, i.e., for every h, there exists τ̃ (h) <∞ such that hτ̃(h) ∈ H̃ but

ht 6∈ H̃ for all t < τ̃ (h). Moreover, conditional on hτ̃ , almost surely,

Jh = J̃h = J̃hτ̃

where J̃hτ̃ is uniquely defined by hτ̃ ∈ H̃ J̃hτ̃ . Finally, Jh = J̃h almost surely.

Proof. Consider any h. By definition, for every i, j ∈ N with j ∈ J̃h (i), the link ij becomes free for the first

time at some τij (h). Moreover, by Lemma 1, for every i, j ∈ N with j ∈ Jh (i), we have limt v
t
ij (ht) = ∞.

Hence, by Lemma 2, for every j′ 6∈ J̃ , the link ij is broken for the first time at some τij (h).12 Therefore,

hτ̃(h) ∈ H̃ for the first time at τ̃ (h) = maxi∈N,j∈Jh(i) τij (h).

To prove the second part, observe that J̃h = J̃hτ̃ by definition. Moreover, Jh ⊆ J̃h because limt v
t
ij (ht) =

∞ whenever j ∈ Jh (i). It therefore suffices to show that, conditional on hτ̃ , each i links to each j ∈ J̃hτ̃ (i)

infinitely often almost surely. To establish this, take any i and j with j ∈ J̃hτ̃ (i). Since vτ̃ij (hτ̃ ) > v, we

have

γ
(
b, vτ̃ij (hτ̃ )

)
< γ (b, v) ≤ γ (a, v) (∀v) ,

12By Observation 1 and definition of h, supt v
t
ij′ (h) < v.
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where the first inequality is because γ is decreasing in vτ̃ij (hτ̃ ) and the second is by definition of v. Hence,

by continuity of γ, there exists η > 0 such that

γ
(
b− η, vτ̃ij (hτ̃ )

)
< γ (a+ η, v) (∀v) .

Since vtij (ht) ≥ vτ̃ij (hτ̃ ) > v for all continuations ht of hτ̃ , this further implies that

γ
(
b− η, vtij (ht)

)
< γ

(
a+ η, vtik (ht)

)
for every history ht that follows hτ̃ , for every k distinct from i and j, and for every t. Consequently, lt+1

ij = 1

whenever πjt > b− η and πkt ≤ a+ η for all other k. Thus,

Pr(lt+1
ij = 1) ≥ F (a+ η)

n−2
(1− F (b− η)) > 0

after any history that follows hτ̃ and any date t ≥ τ̃ . Therefore, lt+1
ij = 1 occurs infinitely often almost surely

conditional on hτ̃ . The last statement of the lemma immediately follows from the first two.

Lemma 3 establishes that at some finite (history-dependent) time τ̃ (h), all the links become either free

or broken and remain so thereafter. That is when the set J̃h (i) of free links along infinite history h becomes

known. Although the set Jh (i) of long run experts is contained in this set, some of the free-links may not be

activated after a while by chance. Lemma 3 establishes that such an event has zero probability, and all the

free links are activated infinitely often. In that case, after a while, all individuals learn the perspectives of

their long run experts to a high degree, and the behavior approaches the long-run behavior, each individual

linking to her most informed long-run expert.

Although the set of all long-run experts is known at time τ̃ (h), it may take considerably longer for

behavior approach the long-run limit. Towards determining such time of convergence, for an arbitrary ε > 0,

which will measure the level of approximation, and for any J : N → 2N with i 6∈ J (i), define the event

Ĥλ,J =
{
ht|vtij (ht) > vλ and bij′ (ht) = 1 (∀i ∈ N, ∀j ∈ J (i) ,∀j′ 6∈ J (i))

}
where vλ is as in Observation 1. Define the event

Hε =
⋃

J
Ĥλ(ε),J

where λ (ε) is as defined in Observation 1. When the process is in Hε, we will have approximately the

long-run behavior as identified in Proposition 1. Define the stopping time τ̂ as the first time the process

enters Hε, i.e., hτ̂ ∈ Hε but ht 6∈ Hε for any t < τ̂ . Define also Jhτ̂ by hτ̂ ∈ Ĥλ(ε),Jhτ̂ ; this is well-defined

because such Jhτ̂ is unique. As discussed above, τ̂ may be infinite at some histories, but the total probability

of such histories is zero by the last statement of Lemma 3. When τ̂ (h) is finite, we can take τ̂ (h) as τ (h)

in Proposition 1. The next proposition summarizes our findings about the long-run behavior.

Proposition 7. For every ε ∈ (0, 1/n), there exist a set Π ⊂ [a, b]
n

with Pr (πt ∈ Π) ≥ 1− ε such that for

all continuations ht of all hτ̂

1. jit (ht, πt) ∈ {j ∈ Jhτ̂ (i) | πjt ≥ πj′t − ε ∀j′ ∈ Jhτ̂ (i)} for all i ∈ N ;

2. jit (ht, πt) = arg maxj∈Jhτ̂ (i) πjt for all i ∈ N whenever πt ∈ Π;
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3.
∣∣∣Pr (jt (ht) = g)− pJhτ̂ (g)

∣∣∣ ≤ ε for all g ∈ G;

4. Jh = Jhτ̂ conditional on hτ̂ almost surely.

Proof. Fix an arbitrary ε > 0, and set Π = [a, b]
n \Dλ(ε). Now, the first part of the proposition is by the

definition. Indeed, for any continuation ht of hτ̂ , vtij (ht) ≥ vλ(ε) whenever j ∈ Jhτ̂ (i), and the link ij

is broken whenever j 6∈ Jhτ̂ (i). Hence, the statement follows from Observation 1 and from the fact that

λ (ε) < ε. The second statement also immediately follows from the first one. Now, since jit differs from

arg maxj∈Jhτ̂ (i) only when πt ∈ Dλ(ε), we have∣∣∣Pr (jt (ht) = g)− pJhτ̂ (g)
∣∣∣ ≤ Pr

(
Dλ(ε)

)
< ε,

proving the third part. To see the fourth part, for any j ∈ Jhτ̂ (i), observe that Pr
(
j = arg maxj′∈Jhτ̂ (i) πj

′

)
=

1/ |Jhτ̂ (i)| > 1/n. Hence, by part 3, Pr (jit = j|hτ̂ ) > 1/n− ε > 0 for all continuations. Therefore, by Kol-

mogorov’s zero-one law, conditional on hτ̂ , jit = j infinitely often, i.e., j ∈ Jh (i), among any continuation h

almost surely.

Ignoring the zero probability event in which the set of long run experts (determined by Jh) differs from

the set of eventually free links (determined by J̃h), Proposition 7 can be understood as follows. At some

history-dependent time τ̂ , all individuals learn the perspectives of all their long-run experts approximately.

The first part states that they link to an approximately best-informed long-run expert thereafter. The

second part states that they link to precisely the best-informed long-run expert with high probability. The

third part states that, thereafter, the endogenous networks are approximately independently and identically

distributed with pJhτ̂ , the distribution generated by selecting the most informed expert j ∈ Jhτ̂ (i) for each

i. Since pJhτ̂ is history dependent, from and ex-ante perspective the long-run exogenous networks are only

exchangeable (i.i.d. with unknown distribution).

In the remainder of this section, we will prove Corollary 2, establishing the long-run frequency of en-

dogenous networks. The following lemma is a key step.

Lemma 4. For any λ ∈ (0, 1), t0, J , and ht0 ∈ Ĥλ,J and for any ε > Pr
(
Dλ
)
,

Pr (φt (· | ·) ∈ Bε (pJ,λ) eventually |ht0) = 1.

Proof. For each g ∈ G and each continuation history h of ht0 , φt (g |h) can be decomposed as

φt (g |h) = φt0 (g |ht0)
t0
t

+ φt,1 (g |h) + φt,2 (g |h)

where

φt,1 (g |h) =
#
{
t0 < s ≤ t | jis (h) = g (i)∀i ∈ N and πs ∈ Dλ

}
t

and

φt,2 (g |h) =
#
{
t0 < s ≤ t | jis (h) = g (i)∀i ∈ N and πs 6∈ Dλ

}
t

=
#
{
t0 < s ≤ t | g (i) = arg maxj∈J(i) πjs ∀i ∈ N and πs 6∈ Dλ

}
t

.
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Here, the last equality is by the hypothesis in the lemma and by the definition of vλ in Observation 1. Hence,

by the strong law of large numbers, as t→∞,

φt,2 (g |h)→ Pr

(
g (i) = arg max

j∈J(i)
πjs ∀i ∈ N and πs 6∈ Dλ

)
= pJ,λ (g) (1− Pr(Dλ)),

where the last equality is by definition. Thus, almost surely,

lim sup
t
φt (g |h) = lim sup

t
φt,1 (g |h) + pJ,λ (g) (1− Pr(Dλ))

≤ pJ,λ (g) + Pr(Dλ),

where the inequality follows from the fact that lim supt φt,1 (g |h) ≤ Pr(Dλ), which in turn follows from the

strong law of large numbers and the definition of φt,1. Likewise, almost surely,

lim inf
t
φt (g |h) = lim inf

t
φt,1 (g |h) + pJ,λ (g) (1− Pr(Dλ))

≥ pJ,λ (g)− Pr(Dλ),

where the inequality follows from lim inft φt,1 (g |h) ≥ 0 and pJ,λ (g) ≤ 1. Hence for any ε > Pr(Dλ), for

almost all continuations h of ht0 , there exists t such that φt (g |h) ∈ (pJ,λ (g)− ε, pJ,λ (g) + ε) for all g. That

is, φt (·|h) ∈ Bε (pJ,λ) eventually, almost surely.

Proof of Corollary 2. Ignore the zero probability event in which J̃h 6= Jh and τ̂ is infinite (see Lemma 3).

Then, by the third part of Proposition 7, Jh = Jhτ̂ almost surely, where hτ̂ is the truncation of h to the time

the process enters Hε (along h). Define

Ĥε = {h ∈ H |φt (· |h) ∈ B2ε (pJh) eventually} ,

and observe thatφt (· |h) ∈ B2ε (pJh) wheneverφt (· |h) ∈ Bε
(
pJh,λ(ε)

)
. But Lemma 4 states that, condi-

tional on hτ̂ , φt (· |h) ∈ Bε
(
pJh,λ(ε)

)
eventually with probability 1. That is, Pr(Ĥε|hτ̂ ) = 1 for each hτ̂ .

Therefore,

Pr(Ĥε) = 1.

Clearly, Ĥε is increasing in ε, and as ε→ 0,

Ĥε → Ĥ0 = {h ∈ H |φt (· |h)→ pJh} .

Therefore,

Pr(Ĥ0) = lim
ε→0

Pr(Ĥε) = 1.

B Information Segregation

We next present a direct proof of Proposition 2(c), which applies to the full range of parameter values claimed

in the result.
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Proof of Proposition 2(c). Take any v0 ∈ (ṽ, v − δ) and any partition {S1, . . . , Sm} where each cluster Sk

has at least two elements ik and jk. We will now construct a positive probability event on which the process

exhibits segregation over partition {S1, . . . , Sm}. Since v0 ∈ (ṽ, v − δ), there exists a small ε > 0 such that

v0 + δ (a+ ε, b− ε) < min {β (v0) , v} (32)

and

δ (b− ε, b) > δ (a+ ε, b− ε) . (33)

By (33) and by continuity and monotonicity properties of γ, there also exist π∗ ∈ (a, b) and ε′ > 0 such that

γ (π∗ − ε′, v0 + δ (b− ε, b)) < γ (b, v0) (34)

γ (π∗ + ε′, v0 + δ (a+ ε, b− ε)) > γ (b− ε, v0) .

For every t ∈ {2, . . . ,m}, the realized expertise levels are as follows:

πitt > πjtt > πit > b− ε (∀i ∈ St)
π∗ + ε′ > πikt > πjkt > πit > π∗ − ε′ (∀i ∈ Sk, k < t)

πit < a+ ε (∀i ∈ Sk, k > t) .

Fixing

t∗ > (β (v0 + δ (a+ ε, b− ε))− v0) /δ,

the realized expertise levels for t ∈ {m+ 1, . . . ,m+ t∗} are as follows:

π∗ + ε′ > πikt > πjkt > πit > π∗ − ε′ (∀i ∈ Sk,∀k)

The above event has clearly positive probability. We will next show that the links ij from distinct clusters

are all broken by m+ t∗ + 1.

Note that at t = 1, ji11 = j1 and ji1 = i1 for all i 6= i1. Hence,

v2ii1 ≥ v0 + δ (b− ε, b) > v0 + δ (a+ ε, b− ε) ≥ v2ji1 (∀i ∈ S1,∀j 6∈ S1) ,

where the strict inequality is by (33).Therefore, by (34), at t = 2, each i ∈ S1 sticks to her previous link

ji11 = j1 and ji1 = i1 ∀i ∈ S1\ {i1} ,

while each i 6∈ S1 switches to a new link

ji22 = j2 and ji2 = i2 ∀i ∈ N\ (S1 ∪ {i2}) .

Using the same argument inductively, observe that for any t ∈ {2, . . . ,m}, for any i ∈ Sk and i′ ∈ Sl with

k < t ≤ l, and for any s < t,

vtiji(t−1)
≥ v0 + δ (b− ε, b) > v0 + δ (a+ ε, b− ε) ≥ v2i′ji′s .

Hence, by (34),

jit =


ji(t−1) if i ∈ Sk for some k < t

jt if i = it

it otherwise.
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Figure 4: Emergence of segregated clusters. Each column corresponds to a period. The top row

shows links formed, the middle row links broken, and the bottom row links free

In particular, at t = m, for any i ∈ Sk, jim = ik if i 6= ik and jikm = jk. Once again,

vtijim ≥ v0 + δ (b− ε, b) .

Moreover, i could have observed any other j at most once, when πit < a∗ + ε and πjt > b− ε, yielding

vtij ≤ v0 + δ (a+ ε, b− ε) .

Hence, by (34), i sticks to jim by date m+ t∗, yielding

vm+t∗+1
ijim

≥ v0 + δ (b− ε, b) + t∗δ > β (v0 + δ (a+ ε, b− ε)) ≥ β
(
vm+t∗+1
ij

)
for each j 6= jim. By Lemma 2, this shows that the link ij is broken. Since jim ∈ Sk, this proves the

result.

The forces that give rise to information segregation can be understood by considering the example

depicted in Figure 4, where two segregated clusters of equal size emerge in a population of size 6. Reading

anti-clockwise from the top, nodes 1, 2 and 3 are the best informed, respectively, in the first three periods.

After period 4, all links from this cluster to the nodes 4–6 are broken. Following this, the nodes 4–6 are best

informed and link to each other, but receive no incoming links. Although the network is not yet resolved

by the end of the sixth period, it is clear that segregation can arise with positive probability because any

finite repetition of the period 6 network has positive probability, and all links across the two clusters must

break after a finite number of such repetitions. Here a very particular pattern of expertise realizations is
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required to generate segregation, and segregation over a different partition may require a very different set of

expertise realizations. Nevertheless, any partition of the population into segregated clusters can arise with

positive probability.

C Variations of the Model

The Two-Sided Case

Suppose that the set N of individuals is partitioned to two disjoint subsets: a set ND of decision makers,

and a set NE of potential experts. Only decision makers make observational choices, and they can observe

only potential experts. The domain and the range of graphs are modified accordingly; for example jit ∈ NE ,

and it is defined only for i ∈ ND. The definitions of the various patterns of long-run behavior are also

adjusted accordingly. For example, opinion leadership is defined by Jh (i) = {j∗} for all i ∈ ND, and long-

run efficiency is defined by Jh (i) = NE for all i ∈ ND. In all other respect the model is exactly as in the

baseline case.

Our results concerning the behavior of a single individual clearly apply also to this variation. This

includes our characterization of long run behavior in Proposition 1, our bound on the expected number

long run experts in Proposition 3, and our characterization of the long-run behavior of forward looking

individuals in Proposition 6. The following result presents a crisper version of Proposition 2 for the two-

sided model. In this version, within (ṽ, v −∆ (a, b)), every graph emerges as a stable network with positive

probability. Since the networks that involve seggregation cannot arise outside of this region, this yields a

sharp characterization.

Proposition 8. Under Assumption 1, for any v0 6∈ {ṽ, v}, the following are true.

(a) Long-run efficiency obtains with probability 1 if and only if v0 > v.

(b) Extreme opinion leadership emerges with positive probability if and only if v0 < v, and with probability

1 if and only if v0 < ṽ.

(c) For every v0 ∈ (ṽ, v −∆), every g : ND → NE emerges as a static network with positive probability.

Proof. The proofs of parts (a) and (b) are as in the one-sided model. The proof of part (c) is as follows. Fix

any v0 ∈ (ṽ, v −∆), where v0 + ∆ (a, b) < min {β (v0) , v}. By continuity of ∆ and γ and by definition of β,

there exists ε ∈ (0, (b− a) /3) such that v0 + ∆ (a+ ε, b− ε) < min {β (v0) , v},

∆ (b− ε, b) > ∆ (a+ ε, b− ε) , (35)

and

γ (b− ε, v0) < γ (a+ ε, v0 + ∆ (a+ ε, b− ε)) . (36)

Fix any such ε. Finally, fix any g : ND → NE and denote g (ND) = {j0, . . . , jk}. Consider the following

event Π: At any t = 0, . . . , k, the expertise levels of jt and all i with g (i) = jt are greater than b− ε, and the
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expertise levels of all other individuals are less than a + ε. For t = k + 1, . . . , k + K with v0 + K∆ (a, b) >

β (v0 + ∆ (a+ ε, b− ε)), all the expertise levels are in a neighborhood of the diagonal such that

γ (πjt, v0 + ∆ (b− ε, b)) < γ (πj′t, v0 + ∆ (a+ ε, b− ε)) (37)

for all j, j′ ∈ NE . There is such an open non-empty neighborhood by (35). Now, at any t = 0, . . . , k, if

jit = jt, then vt+1
ijit

> vtijit + ∆ (b− ε, b) when g (i) = jt and vt+1
ijit

< vtijit + ∆ (a+ ε, b− ε) when g (i) 6= jt.

Hence, by (36), we have jit = jt for all i with g (i) = jk′ with k′ ≥ t, and jit ∈ {g (i) , jt} for all other i. Thus,

vk+1
ig(i) > v0 + ∆ (b− ε, b) and vk+1

ij < v0 + ∆ (a+ ε, b− ε) for all i and j 6= g (i). Then, by (37), jit = g (i)

for all i and all t = k + 1, . . . , k +K. Therefore, all the links ij with j 6= g (i) are broken at k +K + 1, and

Jh (i) = {g (i)} for all i and all h ∈ Π.

Using the ideas in the previous proofs, the following result delineates a subset of (ṽ, v) on which every

non-empty correspondence J : ND ⇒ NE arises with positive probability. That is, one cannot say more than

Proposition 1 about the behavior that arises with positive probability in the long run.

Proposition 9. Assume that there exists an integer m such that

v0 +m∆ (a, b) < v, (38)

v0 +m∆ (b, b) > v, (39)

v0 + ∆ (b, b) < β (v0) . (40)

Then, for every non-empty J : ND ⇒ NE, there exists a positive probability event on which Jh = J .

Proof. Given the stated assumptions, there clearly exists ε ∈ (0, (b− a) /3) such that

v0 +m∆ (a+ ε, b− ε) < v, (41)

v0 +m∆ (b− 2ε, b) > v, (42)

v0 + ∆ (b− ε, b− ε) < β (v0) , (43)

γ (a+ ε, v0 + ∆ (b− ε, b− ε)) > γ (b− ε, v0) , (44)

where (43) and (44) follow from (40). Fix any non-empty correspondence J : ND ⇒ NE , and define

J (ND) = ∪i∈NDJ (i). For the first m |J (ND)| periods, consider the periodic sequence of experts j∗t ∈ J (ND)

obtained by cycling through the members of J (ND). That is, j∗1 is the first member of J (ND), j∗2 is the

second member of J (ND), . . . , j∗|J(ND)| is the last member of J (ND), and j∗k|J(ND)|+t = j∗tt . At any

t ≤ m |J (ND)|, we have

πj,t ∈


[b− ε, b] if j = j∗t
[b− 2ε, b− ε) if j ∈ J−1 (j∗) ≡ {i ∈ NE |J (i) = j∗}
[a, a+ ε] otherwise.

That is, j∗t has the highest expertise, the decision makers who would have j∗ a long-run expert according to

J have the second highest level of expertise, and all the other individuals have the lowest level of expertise.

Note that that, by (43), in the first iteration of the cycle (the first |J (ND)| periods), we have jit = j∗t for
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each i ∈ NE . Since β (v) − v is non-decreasing, this further implies that jit = j∗t for each i ∈ NE at every

t ≤ m |J (ND)|. Therefore, by the definition of m, at the end of period m |J (ND)|, we have the link ij free

(i.e. vij > v) if and only if j ∈ J (i).

Observable States

Next, we consider the possibility that states are publicly observable with some delay. In particular, we

assume that there exists τ ≥ 0 such that, for all t, θt becomes publicly observable at the end of period t+ τ .

Note that τ = 0 corresponds to observability of θt at the end of period t itself, as would be the case if one’s

own payoffs were immediately known. At the other extreme is the case where the state is never observed (as

in our baseline model), which corresponds to the limit τ =∞.

With observable states, given any history at the beginning of date t, the precision of the belief of an

individual i about the perspective of individual j is

vtijτ = v0ij +
∑

{t′<t−τ :jit′=j}

1/πjt′ +
∑

{t−τ≤t′<t:jit′=j}

∆ (πit′ , πjt′) . (45)

For t′ < t − τ , individual i retrospectively updates her belief about the perspective of her target j at t′ by

using the true value of θt′ instead of her private signal xit′ . This causes her belief about j’s perspective to

become more precise, rising by 1/πjt′ instead of ∆(πit′ , πjt′). Note that knowledge of the state does not

imply knowledge of a target’s perspective, since the target’s signal remains unobserved.

This is the main effect of observability of past states: it retroactively improves the precision of beliefs

about the perspectives of those targets who have been observed at earlier dates, without affecting the

precision of beliefs about other individuals, along a given history. Such an improvement only enhances the

attachment to previously observed individuals. This does not affect our results concerning one individual’s

behavior, such as the characterization of long-run behavior in Proposition 1 and the bound on the expected

number of long run experts in Proposition 3. Nor does it affect results concerning patterns of behavior that

are symmetric on the observer side, such as long-run efficiency and opinion leadership in the first two parts

of Proposition 2.13

Observability of states has a second effect, which relates to the asymmetry of observers. For t′ < t− τ ,

since an individual i already observes the true state θt′ , her signal xit′ does not affect her beliefs at any fixed

history, as seen in (45). Consequently, two individuals with identical observational histories have identical

beliefs about the perspectives of all targets observed before t− τ . This makes asymmetric linkage patterns,

such as non-star-shaped static networks and information segregation, less likely to emerge. Nevertheless,

when τ > 0, individuals do use their private information in selecting targets until the state is observed.

Therefore, under delayed observability, individuals’ private signals do impact their target choices, leading

13To be precise, with observable states we have long-run efficiency whenever v0 > v, opinion leadership with

positive probability when v0 < v, and opinion leadership with probability 1 when v0 < ṽ (as in the first two parts

of Proposition 2). However the probability of opinion leadership may be 1 even when v0 > ṽ. Indeed, when τ = 0,

opinion leadership emerges with probability 1 whenever v0 < ṽ′, where ṽ′ > ṽ is defined by β (ṽ′)− ṽ′ = 1/b.
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them to possibly different paths of observed targets. Indeed, our results about information segregation and

static networks extend to the case of delayed observability for a sufficiently long delay τ .

Specifically, for a sufficiently long delay, every network emerges as the static network with positive

probability. The reason for this is quite straightforward. Without observability, on a history under which

g emerges as a static network, individuals become attached to their respective targets under g arbitrarily

strongly over time. Hence, even if individuals start observing past states and learn more about other targets,

the new information will not be sufficient to mend those broken links once enough time has elapsed. Moreover,

for any partition of the population into sets of two or more individuals, there exists some g ∈ G that maps

each player i to a member of the same set in the partition. In this case we have information segregation over

the given partition.

To summarize, allowing for the observability of states with some delay does not alter the main message

of this paper, and in some cases gives it greater force. The trade-off between being well-informed and

being well-understood has interesting dynamic implications because those whom we observe become better

understood by us over time. This effect is strengthened when a state is subsequently observed, since an even

sharper signal of a target’s perspective is obtained.

Observational Learning with Unobservable Preferences

There is a close connection between communication with unobservable priors and observational learning with

payoff uncertainty, which we explore next. Modify the information structure in our model by imposing a

common-prior: the states θt are independently and identically distributed with N (0, 1), i.e., it is common

knowledge that µ1 = · · · = µn = 0; the signals xit and the expertise levels πit are as in model. Rather than

having heterogenous priors, the individuals have heterogenous preferences now:

ui (ait, θt) = − (ait − θt −Bi)

where ait ∈ R is the action of i at t and Bi is a preference parameter (namely preferncial bias) of i,

privately known by i and i.i.d. with N(0, 1/v0)—as in Crawford and Sobel (1982); in our model we set

B1 = · · · = Bn = 0. As in the two sided model, partition the set N of individuals to decision makers ND

and experts NE . Each expert j takes her action ajt based on her information xjt. Each decision maker i

can (only) observe the action ajit of her target before taking her action ait.

By substituing Bj and ajt for µj and yjt, respectively, one can apply our results to this model as follows.

Now,

ajt = Bj +
πjt

1 + πjt
xjt. (46)

Accordingly, as a signal for θt, the noise variance in ajt is

γ (πjt, vjt) =
1

πjt
+

(1 + πjt)
2

π2
jt

1

vtij
.

Viewed as a signal for Bj , (46) leads to vt+1
ij = vtij + ∆ (πit, πjt) where

∆ (πit, πjt) =
1 + πit

πjt(1 + πit + πjt)
(1 + πjt)

2
.
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Because of slight difference in (46), the functions γ and ∆ are slightly different from their counterparts in

our models. This leads to a scaling of the key variables

v =
a

b (b− a)
(b+ 1)

2

β (v) =

(
b

a

)2
vv

v − v

(
1 + a

1 + b

)2

.

Here, the last multiplicative term in each formula is new, scaling up v by (b+ 1)
2

and scaling down β (v) by

((1 + a)/(1 + b))
2
. This implies a higher threshold for links to be free, and links break with greater likelihood,

resulting to an increased probability of path dependence. Our qualitative results, however, remain intact.

Once again, we have long-run efficiency with probability 1 when v0 > v and extreme opinion leadership with

positive probability v0 < v (although the cutoff v is now higher). Our Proposition 3 extends to this model

verbatim

Pr (|Jh (i)| ≤ m) ≥ p∗ (m) =

(
1− F (π̂)

1− F (π̂) +mF (π̂)
m

) β(v0)−v0
∆(a,b)

,

but of course using the new functions β, γ, and ∆, leading to smaller sets of long-run experts. Likewise, our

Proposition 6 extends to the new model verbatim with the new utility and cost functions.

D Shifting Perspectives

In our baseline model we assumed that all perspectives were fixed: each individual assumes that θt is i.i.d.

with a known distribution, and does not update her beliefs about this distribution as she observes realizations

of θt or signals about θt. We now consider the possibility that individuals recognize that they do not know

the mean of θt and update their perspectives over time. We take

θt = µ+ zt (47)

where the random variables (µ, z1, z2, . . .) are stochastically independent and

µ ∼i N (µi0, 1) , (48)

zt ∼ N (0, 1/α0) . (49)

Recall that ∼i indicates the belief of individual i, who believes that θt is i.i.d. with mean µ and variance 1,

but does not know the mean µ; she believes—initially—that µ is normally distributed with mean µi0 and

precision α0. We refer to the mean µi0 as the initial perspective of i, and to the precision α0 as the initial

firmness of her perspective. We assume that θt is publicly observed at the end of the period t—as in the

case of τ = 0 in our discussion of observable states. This simplifies the analysis because individuals update

their perspectives purely based on θt, rather than the signals and opinions they observe at t.

At the end of period t, the perspective of an individual i is

µit ≡ E (µ | θ1, . . . , θt) =
α0

α0 + t
µi0 +

t

α0 + t

θ1 + · · ·+ θt
t

, (50)

and the firmness of her perspective (i.e. the precision of the belief about µ) is

αt ≡ α0 + t. (51)
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Note that the perspective µit is a convex combination of the initial perspective µi0 and the empirical average

θt = (θ1 + · · ·+ θt) /t of the realized states with deterministic weights α0/αt and t/αt, respectively.14 As

time progresses, the weight α0/αt of the initial perspective decreases and eventually vanishes, while the

weight t/αt of the empirical average approaches 1.

Individuals other than i have two sources of information about the revised perspective µit: (i) the past

opinions of i, which are endogenously and privately observed and are the only sources of information about

the initial perspective µi0, and (ii) the realization of past states, which are exogenously and publicly observed

and provide information about the data that individual i uses to update her perspective.

In earlier periods, their main information comes endogenously from the first source, as in our baseline

model. However, in the long-run, the accumulated data coming from the public source dominates the

privately obtained information, as the perspective approaches the empirical average of the realized states.

They eventually learn the perspective of each individual so precisely that they choose their targets based

purely on expertise levels, as in the case of known perspectives. Hence efficiency is the only possible outcome

in the long run. Nevertheless, the speed of convergence is highly dependent on the initial firmness α0 of each

perspective. The long-run behavior can be postponed indefinitely by considering firmer and firmer initial

perspectives. Moreover, under such firm perspectives, the belief dynamics will also be similar to those in

our baseline model, which corresponds to infinite initial firmness. Hence, the behavior will be similar to the

long-run behavior in the baseline model in those arbitrarily long stretches of time before the perspectives

are learned—as we establish below.

Effect of Learning on Choosing Targets

We next describe how individuals choose their targets. We show that, in comparison with the baseline

model, there is a stronger motive to listen to better-understood targets vis-a-vis better-informed ones, and

this motive decreases over time and approaches the baseline model in the limit. That is, learning strengthens

path dependence early on.

At the beginning of period t, the belief of any individual j about the state is

θt ∼j N
(
µj(t−1), 1 + 1/αt−1

)
.

This is as in our baseline model, except that the individual faces additional uncertainty about the underlying

distribution, so the variance is 1 + 1/αt−1 rather than 1. Her opinion is accordingly

yjt =
1

1 + π̂jt
µj +

π̂jt
1 + π̂jt

xjt

where

π̂jt = πjt/ (1 + 1/αt−1) . (52)

That is, opinions are formed as in our baseline model, but with individuals having effectively lower expertise,

reflecting their uncertainty about the underlying process. The effective expertise level π̂jt approaches the

14Note also that the perspective µit is a random variable, as it depends on an empirical average, while its firmness

αt is deterministic and increasing in t.
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nominal expertise level πjt of our baseline model as t → ∞. This modification can be incorporated into

our earlier analysis by modifying the distribution of expertise levels at each period, taking the bounds of

expertise to be

at = a/ (1 + 1/αt−1) and bt = b/ (1 + 1/αt−1) , (53)

which converge to the original bounds a and b, respectively, as t→∞.

Writing vtij for the precision of the belief of i about the perspective µj(t−1) of player j at the beginning

period t, the opinion yjt provides a noisy signal

1 + π̂jt
π̂jt

yjt = θt + εjt +
1

π̂jt
µj(t−1),

as in the baseline model. Once again, the variance of the additive noise in the signal observed by i is

γ(π̂jt, v
t
ij) ≡

1

π̂jt
+

1

π̂2
jt

1

vtij
.

This leads to the same behavior as in the baseline model, with effective expertise replacing nominal expertise:

jit = min

{
arg min
j 6=i

γ(π̂jt, v
t
ij)

}
. (54)

Here, individual i simply discounts the expertise levels of her potential targets, making expertise less valuable

vis-à-vis familiarity, tilting the scale towards better-understood targets. That is, in the short run, learning

actually increases the attachment to previously observed targets, leading to stronger path-dependence. To-

wards stating this formally, we define the marginal rate of substitution of expertise level πjt for the precision

vtij of variance at t as

MRStπ,v ≡ −
∂γ(π̂jt, v

t
ij)/∂πjt

∂γ(π̂jt, vtij)/∂v
t
ij

=
1

1 + αt−1
+ 2vtij/∂πjt.

In the baseline model, the marginal rate of substitution is

MRSπ,v ≡ −
∂γ(πjt, v

t
ij)/∂πjt

∂γ(πjt, vtij)/∂v
t
ij

= 1 + 2vtij/∂πjt.

The following proposition immediately follows from the above expressions.

Proposition 10. The marginal rate of substitution of πjt for the precision vtij of variance is higher in the

model with learning:

MRStπ,v > MRSπ,v.

Moreover, MRStπ,v is decreasing in t and converges to MRSπ,v as t→∞. In particular, for any i, j and j′

with fixed vtij > vtij′ , if i prefers j to j′ at t in the baseline model, she also prefers j to j′ at t in the model

with learning.

That is, learning increases attachment to familiar targets at the expense of more informed ones when we

fix beliefs about the other players’ perspectives. However, the beliefs about the other players perspectives is

different under learning—as we show next.

Belief Dynamics
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The updating of beliefs about perspectives is somewhat more interesting. At any history h at the

beginning of a date t, write vtij = 1/V ar
(
µj(t−1) |h

)
and vtij0 (h) = 1/V ar (µj0 |h) for the precisions of the

beliefs of i about the current and the initial perspective of j, respectively. By (50), the variance of the

current perspective µj(t−1) is

V ar
(
µj(t−1) |h

)
=

1

vtij0 (h)

(
α0

αt

)2

+
1

t

(
t

αt

)2

. (55)

Here, the first term reflects the uncertainty about the initial perspective and depends on previous observa-

tions. The second term reflects the flow of public information, depending only on time and the firmness of

beliefs. Then, the precision of beliefs about the current perspective is

vtij = 1/V ar
(
µj(t−1)|h

)
=

α2
t v
t
ij0 (h)

α2
0 + tvtij0 (h)

. (56)

Since αt = α0 + t, we observe that vtij is an increasing function of both vtij0 (reflecting the information

gathered by observing the opinions directly) and t (reflecting the flow of public information).

To determine vtij , we next determine vtij0. As in the baseline model, observation of yjt by i provides the

following signal about µj(t−1):

(1 + π̂jt)yjt − π̂jtθt = µj(t−1) + π̂jtεjt.

Together with (50), this leads to the following signal about µj0:

αt−1
α0

(1 + π̂jt)yjt −
[
θ1 + · · ·+ θt−1

α0
+
αt−1
α0

π̂jtθt

]
= µj0 +

αt−1
α0

π̂jtεjt.

The precision of this signal (i.e., the inverse of the variance of the additive noise term at−1

α0
π̂jtεjt) is

∆t(πjt) =
α2
0 (1 + αt−1)

2

α4
t−1

1

πjt
.

As in the baseline model, this leads to the following closed-form solution:

vtij0 = v0 +

t−1∑
s=1

∆s(πjs)l
s
ij , (57)

where lsij is 1 if i links to j at s and 0 otherwise. By substituting (57) into (56), we also obtain a formula

for vtij .

Note that one applies to each variance 1/πjs a weight that is decreasing in s, where the weight is

approximately (α0/αs−1)
2
. That is, earlier observations add more precision to the belief about µj0—because

those opinions reflect the initial perspective more strongly. As time progresses, the opinions become less

valuable sources of information about the initial perspective, and their impact on vt+1
ij0 eventually becomes

negligible. Note also that the precisions vtij0 are uniformly bounded from above.

Long-run Behavior and the Robustness of the Baseline Model

Since the precisions vtij0 are uniformly bounded, the long-run behavior is driven by the flow of public

information. Indeed, by (56), when t� α0, vtij is approximately t, regardless of the history. Hence, for any

fixed α0, as t→∞, vtij also goes to ∞, leading to long-run efficiency.
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Proposition 11. In the model with learning, for any fixed α0, we have long-run efficiency.

Proof. Since vtij0 ≥ v0 and vtij is an increasing function of vtij0, we can conclude from (56) that

vtij (h) ≥ α2
t v0

α2
0 + tv0

=
(α0 + t)

2
v0

α2
0 + tv0

(∀h ∈ H) .

Hence, for every history h ∈ H,

lim
t→∞

vtij (h) ≥ lim
t→∞

(α0 + t)
2
v0

α2
0 + tv0

=∞.

Despite this, the long-run outcome can be postponed indefinitely by choosing firmer initial beliefs, and

the medium-run behavior is similar to the long-run behavior of our baseline model. In a nutshell, this can

be gleaned from (56) and (57) as follows. In (56), for any fixed
(
t, vtij0

)
, limα0→∞ vtij = vtij0. At the same

time, in (57),

lim
α0→∞

vtij0 = v0 +

t−1∑
s=1

lsij/πjs ≡ vtij ,

where vtij is the precision of the belief of i about the perspective of j in the baseline model with observable

states. Hence,

lim
α0→∞

vtij = v0 +

t−1∑
s=1

lsij/πjs ≡ vtij . (58)

That is, the beliefs as functions of past behavior remain close to those in the baseline model when the initial

conviction in perspectives is sufficiently high. Since past behavior is also a function of past beliefs, this

further implies that the behavior and the beliefs remain close to their counterparts in the baseline model.

This is formalized in the next result. The first part states that, with high probability, the individuals choose

their target between dates t and t+ l according to the long-run behavior without learning. The second part

states then that the possible patterns of behavior within that (arbitrarily long) time interval coincide with

the patterns possible under the long-run behavior of the baseline model.

Proposition 12. For every ε > 0 and any positive integer l, there exists a date t < ∞ and α < ∞ such

that

Pr

(
jit (h) ∈ arg max

j∈Jh(i)
πjt ∀t ∈

{
t, t+ 1, . . . , t+ l

})
> 1− ε ∀α0 > α,

where Jh (i) is the set of long-run experts in the baseline model with observable states. Moreover, for any

mapping J : N → 2N\ {∅}, we have Pr
(
Jh = J

)
> 0 if and only if

Pr

(
jit (h) ∈ arg max

j∈Jh(i)
πjt ∀t ∈

{
t, t+ 1, . . . , t+ l

}
|ht ∈ HJ

)
> 1− ε ∀α0 > α

for some positive probability event HJ .

Proof. Fix positive ε and l as in the proposition. There then exists ε′ > 0 such Pr(Πε′) > (1− ε/4)
1/l

where

Πε′ = {π| |πi − πj | > ε′}. There also exists finite t such that Pr (H ′) > 1− ε/4 for H ′ =
{
h ∈ H|τ (h) < t

}
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where the τ (h) is defined for ε′/2 in Proposition 1. Note that there exists λ > 0 such that whenever

(π1t, . . . πnt) ∈ Πε′ and t ≥ t > τ (h), we have γ(πj∗it(h)t, v
t
ij∗it(h)

(h)) < γ
(
πjt, v

t
ij (h)

)
− λ for all j ∈

N\ {i, j∗it (h)} where j∗it (h) = arg maxj∈Jh(i) πjt and vtij (h) is the precision of belief of i about the perspective

of j in the baseline model under observable states. One can further show that there exists λ′ ∈ (0, λ) such

that the probability of the event

H ′′ =
{
h ∈ H|γ

(
πj∗it(h)t, v

t
ij∗it(h)

(h)
)
< γ

(
πjt, v

t
ij (h)

)
− λ′ ∀t ≤ t, j ∈ N\ {i, j∗it (h)}

}
also exceeds 1 − ε/4. Consider the set Ĥ of histories in the intersection of the events H ′, H ′′, and that all

the realizations of expertise levels between t and t+ l are in Πε′ . Clearly, Pr(Ĥ ) > 1−ε, as the probabilities

of the excluded events add up to 3ε/4. Note however that, since vtij (h) ≥ v0 throughout, there then exists

λ′′ > 0 such that, for all∥∥vti (h)− vti (h)
∥∥ < λ′′ ⇒ γ

(
πj∗it(h)t, v

t
ij∗it(h)

(h)
)
< γ

(
πjt, v

t
ij (h)

)
∀h ∈ Ĥ, t ≤ t+ l, j ∈ N\ {i, j∗it (h)} .

But, since the limit in (58) is uniform over all hitories with t ≤ t + l, there also exists α such that∥∥vti (h)− vti (h)
∥∥ < λ′′ for all histories with t ≤ t+ l whenever α0 > α.

The second part of the proposition can be obtained from the first part using Proposition 7.
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