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Goal: Is Selectivity Excellence?

▶ Colleges advertise “selectivity”
▶ U.S. News and World Report college rankings puts 12.5%

weight on selectivity
▶ The Princeton Review weights it as one of seven factors

▶ Should the best colleges have the highest rejection rates?
▶ Should the best journals have the highest rejection rates?
▶ Better journals have higher standards, but get better papers.

Why should the former effect dominate?
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Selectivity Need Not Be Excellence

▶ Short run — shrink your college and your rejection rate rises
▶ Chade, Lewis, and Smith “Student Portfolios and the College

Admissions Problem” (REStud, 2014)
- An elite college 1 and a safety college 2 respectively offer
students a fixed high and low payoff

- A continuum of heterogeneous students each choose to apply
to stretch college 1, or safety college 2, or both, or neither;
each application costs c > 0

- Student evaluation is noisy: Colleges choose admission
thresholds for random signals generated by students

- Proposition: If college 2 shrinks its student capacity enough,
(a) better students need not apply more ambitiously, and
(b) college 1 has lower admission standards than college 2
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Static Game of Incomplete Information
Step 1 An endogenous pool of journals publicize and commit to

standards and “calibers”
Step 2 As a function of his paper quality, each author submits to a

single journal, seeking to maximize caliber × admission chance
Step 3 Rational expectations: Acceptance decisions ensure that

average acceptance quality equals advertised caliber
▶ Similar to Bayesian persuasion’s cheap talk with commitment
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Benchmark Model: The Author Knows His Paper Quality

▶ Continuum Mass of Heterogenous Authors/Papers
▶ Each has a unique paper with some quality x
▶ Density of paper qualities on [x,∞), where 0 < x <∞

▶ No Market Power: Continuum Mass of Journals
▶ Journal caliber is the average quality of accepted papers
▶ Caliber is in monetary value units: a quality v publication is

worth v to the author
▶ Free entry and exit of journals of any caliber
▶ Knowing his paper quality, author picks a journal to submit to

▶ Submission and Stochastic Evaluation
▶ Journals see a noisy signal σ of the quality of any submitted

paper, and choose whether to accept or reject it
▶ Evaluation noise has location family: a quality x paper yields a

signal realization σ, where σ − x has a probability density g.
▶ Example: Gaussian noise g(σ − x) = 1√

2π e−
1

2ϕ2 (σ−x)2
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A Robust Assumption on Signal Noise

▶ log-concave signal density g (eg. Gaussian, Gamma, uniform)
⇒ signal cdf G is log-concave (and thus continuous)
⇒ hazard rate g(t)

1−G(t) is increasing.
⇒ The density is positive on a connected interval
⇒ No signal is perfectly revealing
▶ assume this interval has upper bound ∞

⇒ every paper has a positive chance at every journal
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Equilibrium Analysis
▶ Journal Motivations

▶ Rational Expectations: promised caliber is realized
▶ intuitive long-run steady-state with journal reputations
▶ Short-run: Fly-by-night (or “predatory”) journals reimburse

authors for gap between their promised and delivered caliber
▶ Journals publicly commit to acceptance standards

⇒ Journal v accepts when signal σ≥θ(v), acceptance threshold

▶ Author Payoffs
▶ Author’s payoff is caliber times acceptance chance

⇒ subsumes dynamic case with resubmission and discounting
when the author cares about (1 − δ) times this

▶ Author of quality x paper who submits to a caliber v journal
with threshold θ gets payoff

(1− G(θ − x)) · v

⇒ acceptance threshold θ depends only on caliber v, for authors
clearly submit to the lowest threshold journal for any caliber

8 / 48
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Authors Play a Separating Equilibrium

Lemma
Every author submits to a journal equal to his caliber.
▶ Proof Sketch

▶ Assume pooling occurs ⇒ multiple papers go to same journal
▶ Rational expectations ⇒ some paper exceeds journal caliber:

x′ > κ
⇒ A journal κ′ in (κ, x′) can enter and skim off x′ (log-concavity)
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Separating Equilibrium Proof
▶ By rational expectations, it suffices to preclude pooling

equilibria, where a journal v1 (with threshold θ1) attracts two
or more paper qualities x < v1 and x′ > v1.

⇒ Claim: If so, a new journal skim off best papers at v1
▶ Proof of Claim: Let a new journal promise caliber v2 ∈ (v1, x′)

and choose a threshold θ2 > θ1 that makes type x′ indifferent,
so that [1− G(θ2 − x′)]v2 = [1− G(θ1 − x′)]v1, then

⇒ 1− G(θ2 − x′)
1− G(θ1 − x′) =

v1
v2

∈ (0, 1) (♣)

LHS = 1 at θ2 = θ1, and continuously falls to zero as θ2 ↑ ∞.
▶ By log-concavity of G, the left side of (♣) increases in x′, since

log(1− G(θ2 − x′))− log(1− G(θ1 − x′)) increases in x′
▶ Papers x′′ > x′ prefer journal v2, and papers x′′ < x′ prefer v1.
▶ Journal v2 attracts only quality x′′ ≥ x′, but promise a caliber

v2 < x′, earning profits. Contradiction.
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Journal Equilibrium: A Reduced Form Description

▶ A journal equilibrium is a threshold function θ(v) for which it
is optimal for every author x ∈ [x,∞) to submit to the same
caliber journal v = x
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The Worst Journal is not Selective

Lemma
The worst journal has caliber x, and accepts all submissions.
▶ Proof: Since we ruled out pooling in equilibrium, the least

caliber journal cannot exceed x
▶ If the least journal x sometimes rejects, a new journal can

enter, always accept, and attract all paper qualities just over
x > 0 (making profits) □
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The Equilibrium First Order Condition

▶ Author optimality, given paper of quality x:

max
v

(1− G(θ(v)− x)) v

▶ The interior FOC is

(1− G(θ(v)− x))− g(θ(v)− x)θ′(v)v = 0

▶ By rational expectations, this must hold at v = x:

⇒ θ′(v) = 1
v · 1− G(θ(v)− v)

g(θ(v)− v) [FOC*]

▶ The SOC holds, given log-concavity

13 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Journal Selectivity is Hump-Shaped

▶ equilibrium toughness τ(v) = θ(v)− v
▶ equilibrium rejection rate is R(v) = G(τ(v)).

Proposition
(a) There exists a unique equilibrium.
(b) The rejection rate is hump-shaped for all small x>0.
▶ The rejection rate is hump-shaped if τ(v) is hump-shaped.
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Proof of Hump-Shaped Toughness
▶ Recall equilibrium FOC:

⇒ θ′(v) = 1
v · 1− G(θ(v)− v)

g(θ(v)− v) [FOC*]

▶ Let’s rewrite equilibrium FOC using τ :

τ ′(v) = 1
v · 1− G(τ(v))

g(τ(v)) − 1 (⋆)

▶ First, (⋆) ⇒ τ ′(x) > 0 for small enough x
▶ By log-concavity, the reciprocal hazard rate (1− G)/g falls
▶ So τ(v) weakly rising implies τ ′(v) strictly falling
⇒ any critical point is a max: τ ′(v) = 0 ⇒ τ ′′(v) < 0
▶ But τ(v) cannot rise forever: For if so, the RHS of (⋆) tends

to −1, contradiction
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An Intuition for the Hump-Shape
▶ Rewrite the equilibrium FOC with θ as independent variable:

v′(θ)
v(θ) =

g(θ − v(θ))
1− G(θ − v(θ)) (⋆)

▶ Aside: The rate of increase in the journal caliber matches the
(absolute) rate of fall of the acceptance rate in toughness:

[log v(θ)]′ = −[log(1− G(t))]′
∣∣∣∣
t=θ−v(θ)

▶ Whenever the rejection rate is increasing in θ
⇒ equilibrium toughness t(θ) = θ − v(θ) is increasing in θ
⇒ Differentiating, 0 < t(θ) = 1− v′(θ)
⇒ If rejection rate always increases: v′(θ)

v(θ) <
1

v(θ) ↓ 0 at high θ
▶ But an increasing rejection rate G(τ) in θ

⇒ increasing g(t)/[1− G(t)], by log-concavity
⇒ monotone increasing v′(θ)/v(θ), by (⋆)

▶ So forever increasing rejection rate ⇒ contradiction
16 / 48
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Matching Frictions and Caliber
▶ The rejection rate is an informational market friction.
▶ Here, all rejections are mistakes.
▶ We plot the expected payoff for each caliber of paper.
▶ The sorting losses reflect the hump-shaped rejection rates
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Solved Exponential Noise Example

▶ Assume g(t) = λe−λt and G(t) = 1− e−λt

▶ The equilibrium FOC is

θ′(v) = 1
v ·

(
1− G(θ(v)− v)

g(θ(v)− v)

)
=

1
λv ⇒ θ(v) = 1

λ
log v + C

▶ Boundary condition:
Sure acceptance at journal x ⇒ θ(x) = x and C = x − 1

λ log x
⇒ Journal threshold θ(v) = x + 1

λ log v
x .

⇒ Rejection rate

R(v) = G(θ(v)− v) = 1− e−λ(θ(v)−v) = 1− x
veλ(v−x)
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Solved Exponential Noise Example Grows Noisier
▶ Case 1: Precise signals: λ > 1/x

▶ corner solution θ(v) = v, and zero rejection chance in
equilibrium for all qualities.

▶ Case 2: Noisy signals: λ < 1/x
▶ A hump shape emerges
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How Evaluation Noise Impacts Rejection Rates

▶ Old school: mean preserving spread. Not strong enough.
▶ Dispersion measures how “spread out” a distribution is
▶ G2 is more dispersed than G1

⇔ G−1
2 (b)− G−1

2 (a) ≥ G−1
1 (b)− G−1

1 (a) for any b > a
⇔ g2(G−1

2 (a)) < g1(G−1
1 (a)) for any a ∈ (0, 1), with a density

▶ So the difference between any two quantiles (or percentiles) is
higher under the more disperse distribution

▶ For many distributions, e.g. exponential and Gaussian, higher
dispersion ⇐⇒ higher variance

Proposition (Increasing Rejection Rates)
The rejection rate rises and peaks later if the evaluation noise G
grows more disperse
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Rejection Rate Rises in Evaluation Noise Dispersion

▶ The equilibrium FOC∗ is

θ′(v) = 1− G(θ(v)− v)
vg(θ(v)− v) =

1− G(τ(v))
vg(τ(v))

▶ The rejection rate R(v) = G(τ(v)) has slope

R′(v) = g(τ(v))τ ′(v) = g(τ(v))[θ′(v)− 1]

⇒ R′(v) = 1− R(v)
v − g(G−1(R(v)) (⋆)
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More Dispersion ⇒ Higher Rejection Rates

▶ Assume density g2 is more disperse than g1
▶ Let rejection rates R1,R2 satisfy

R′
i(v) =

1− Ri(v)
v − gi(G−1

i (R(v))) (⋆)

▶ Claim: R1(v) = R2(v) ⇒ R′
2 > R′

1
▶ Apply (⋆) and g2(G−1

2 (x)) < g1(G−1
1 (x)) ∀x

⇒ R2(v) can only upcross through R1(v)
⇒ Since R1(x) = R2(x) = 0, there is no no crossing
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More Dispersion ⇒ Later Peak Rejection Rate
▶ Andrea show that R′

1 = R′
2 ≥ 0 ⇒ R′′

2 > R′′
1

⇒ The peak of R2 is right of the peak of R1.
▶ But Andrea also claim she is not rejected:
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Increasing Dispersion with Exponential Noise

As Signal Noise Rises, Rejection Rates Rise & Peak Later

The plots assume a worst paper x = 1.
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Gaussian Noise

As Signal Noise Rises, Rejection Rates Rise & Peak Later
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What if Authors Do Not Know Paper Quality?

▶ Authors may be unsure of their paper’s quality — just as a
student may not know how good he is (e.g. Ramanujan)

▶ In this case, our one-shot model would not recur every period,
but learning would occur.

▶ Our results should still inform what happens in the stage
game, but it is a hard learning exercise.
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General Model: Authors Do Not Know Their Paper Quality
▶ Journals see a noisy signal σ of the quality x of any submitted

paper, where σ − x has a density g(σ − x).
▶ Each author sees a noisy signal ψ of his paper quality x, where
ψ − x has a density h(ψ − x).

▶ Until now, the paper quality distribution was irrelevant for the
conclusion, for neither authors nor journals needed Bayes rule

▶ Quality density f is log-concave on support [x,∞) (say x=1)
▶ A journal equilibrium is an application strategy and acceptance

threshold obeying author optimality and rational expectations
▶ Rational expectations trickier: Each journal’s caliber equals

the expected average quality of papers it accepts
▶ As before, authors don’t mix and no one pools in equilibrium

▶ Higher author types ψ are more ambitious: V(ψ) is increasing
▶ Better journals v set higher standards: θ(v) is increasing
▶ both maps V(ψ) and θ(v) are differentiable
▶ Note: Since V′ > 0, we instead find the inverse ψ(v) of V(ψ)
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General Journal Equilibrium
▶ θ(v) is the equilibrium threshold of journal v (with θ′(v) > 0)
▶ Author type ψ(v) submits to journal v (with ψ′(v) > 0)
▶ The density of accepted paper qualities x by journal v is:

αv(x) ∝ f(x)h(ψ(v)− x)(1− G(θ(v)− x))
▶ The rational expectations (RE) condition is now more

involved because journals publish a continuum of qualities:

RE v =

∫ ∞

x
xαv(x)dx

▶ A journal equilibrium (ψ, θ) obeys (RE) and author optimality:

FOC* 1
vθ′(v) =

∫ ∞

x

g(θ(v)− x)
1− G(θ(v)− x)αv(x)dx

▶ This is the analogue of our earlier equilibrium FOC:

θ′(v) = 1
v · 1− G(θ(v)− v)

g(θ(v)− v)
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Equilibrium Rejection Rate

▶ The density of submitted paper qualities x at journal θ

ζv(x) ∝ f(x)h(ψ(v)− x)

▶ The equilibrium rejection rate is then

R(v) =
∫ ∞

x
ζv(x)G(θ(v)− x)dx

▶ Higher-caliber journals
▶ reject more often, with higher thresholds (θ ↑)
▶ get submissions from stochastically better papers (ψ ↑)

▶ The rejection rate is hump-shaped if first “direct effect”
dominates at low qualities, and second “paper selection
effect” at high qualities
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Journal Equilibrium Equations, Reformulated
▶ equilibrium toughness τ(v) ≡ θ(v)− v is again the excess of

the journal threshold over its caliber
▶ author’s equilibrium sheepishness ξ(v) ≡ ψ(v)− v is the

excess of the author’s type over journal caliber he submits to
▶ Caliber-quality gap z ≡ v − x
▶ We can reformulate the accepted density in terms of

sheepishness and toughness:

αv(v − z) ∝ f(x)h(ψ(v)− x)(1− G(θ(v)− x))
∝ f(v − z)h(ξ(v) + z)(1− G(τ(v) + z))

▶ Equilibrium equations (recalling that paper quality x ≥ x = 1)

RE 0 =
∫ v−1
−∞ αv(v − z)zdz

FOC* 1
v(τ ′(v)+1) =

∫ v−1
−∞ αv(v − z) g(τ(v)+z)

1−G(τ(v)+z)dz

▶ RE requires a zero average accepted caliber-quality gap

30 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Journal Equilibrium Equations, Reformulated
▶ equilibrium toughness τ(v) ≡ θ(v)− v is again the excess of
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▶ Equilibrium equations (recalling that paper quality x ≥ x = 1)
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∫ v−1
−∞ αv(v − z)zdz

FOC* 1
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−∞ αv(v − z) g(τ(v)+z)

1−G(τ(v)+z)dz

▶ RE requires a zero average accepted caliber-quality gap
30 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Goals

1. Equilibrium toughness τ(v) ≡ θ(v)− v is hump-shaped in
journal caliber (as before)

2. Hump-shaped toughness ⇒ hump-shaped rejection rate
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Quasiconcave Toughness

▶ Say that a density µ is decreasingly log-concave if:

(logµ)′′ ≤ 0 ≤ (logµ)′′′

▶ Met by many typical log-concave distributions, eg Gaussian,
exponential, uniform, Chi-squared, extreme value

Lemma
Assume densities f and h are decreasingly log-concave. Then
equilibrium toughness is hump-shaped if author noise is not too
dispersed, and otherwise toughness is increasing.
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Comparative Statics Under Uncertainty Primer
▶ A function ϕ(x, y) is LSPM (log-supermodular) if log ϕ is

supermodular in (x, y) — ditto LSBM for log-submodular
▶ If ϕ and γ are LSPM / LSBM, then so too is the product ϕγ
▶ If a density γ is log-concave, then

▶ Prekopa Theorem: Its cdf Γ and survivor 1− Γ are log-concave
▶ the kernel ϕ(v, x) = γ(v − x) is LSPM in (v, x)
▶ the kernel ϕ(v, x) = γ(v + x) is LSBM in (v, x)

▶ Karlin and Rubin (1956): The expectation
∫
ϕ(v, x)u(x)dx of

an increasing function u(x) with respect to a LSPM / LSBM
kernel ϕ(v, x) is increasing / decreasing in v.

▶ Proof:∫
[ϕ(v2, x)− ϕ(v1, x)] u(x)dx =

∫ (
ϕ(v2, x)
ϕ(v1, x)

− 1
)

u(x)ϕ(v1, x)dx

▶ by Tchebyshev’s inequality, this is positive if u(x) and(
ϕ(v2,x)
ϕ(v1,x) − 1

)
are comonotone, negative if reverse comonotone
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Toughness Proof Sketch: A Failed Attempt

FOC* :
1

v(τ ′(v) + 1) ≡
∫ v−1

−∞
αv(v − z) g(τ(v) + z)

1− G(τ(v) + z)dz

▶ Equilibrium toughness is quasiconcave if any critical point is a
maximum (sufficient condition)

⇒ it suffices that τ ′(v) falls at a critical point τ ′(v) = 0
⇒ it suffices that v(τ ′(v) + 1) falls at a critical point τ ′(v) = 0
⇒ it suffices that the RHS of FOC* increases in v
▶ This is guaranteed if αv(v − z) is LSPM in (v, z), since hazard

rate increases in z by log-concavity of g, when τ ′(v) = 0
▶ But in that case,

∫
αv(v − z)zdz ↑ in v, violating RE (zero

average accepted paper quality-caliber gap). Contradiction.
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Getting Over the Hump for Hump-Shaped Toughness

▶ Recall the density of accepted paper qualities

αv(v − z) ∝ f(v − z)h(ξ(v) + z)(1− G(τ(v) + z))

▶ First factor: f(v-z) is LSPM in (v, z)
▶ Middle factor: h(ξ(v) + z) is LSBM in (ξ(v), z)
▶ Last factor: (1−G(τ(v)+ z)) is LSBM in (τ(v), v), by Prekopa

▶ So αv(v − z) would be LSPM in (v, z) if
▶ ξ(v) is decreasing, and
▶ τ ′(v) = 0 (namely, a critical point)

▶ But we just showed αv(v − z) is not LSPM at a critical point
⇒ ξ(v) must be increasing ⇒ h(ξ(v) + z) is LSBM
⇒ αv(v − z) is a product of a LSPM and a LSBM function
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Decreasingly Log-concave to the Rescue

▶ The density of accepted paper qualities

αv(v − z) ∝ f(v − z)h(ξ(v) + z)(1− G(τ(v) + z))

has cdf Av(x), i.e. A′
v(x) = αv(x)

Insight (⋆)

If f and h are decreasingly log-concave, then the cdf difference
Av1(v1 − z)− Av2(v2 − z) is upcrossing in z (though 0) for v2 > v1,
and so is the slope − d

dvAv(v − z).
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Comparative Statics Under Uncertainty Primer, Part II

Fact (The Folk Single Crossing Property for Integrals)
Let a(x) be an upcrossing function with

∫
a(x)dx = 0. Then∫

a(x)b(x)dx ≥ 0 (or ≤ 0) if b(x) is increasing (or decreasing).
Proof.
▶ Let a(x) be upcrossing say at x0, and b(x) increasing

=⇒
∫

a(x)b(x)dx =

∫ x0

−∞
a(x)︸︷︷︸
−

b(x)︸︷︷︸
≤b(x0)

dx +
∫ ∞

x0

a(x)︸︷︷︸
≥0

b(x)︸︷︷︸
≥b(x0)

dx

≥ b(x0)

∫
a(x)dx = 0

□
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Toughness is Quasiconcave: Easy Case
▶ If the journal hazard rate r(x) := g(x)/(1− G(x)) is convex

(eg Gaussian), then toughness is quasiconcave
▶ Integrate RE by parts and then differentiate in v:

0 =
d
dv

∫ v−1

−∞
αv(v − z)zdz =

∫ v−1

−∞
− d

dvAv(v − z)dz (1)

▶ Integrate FOC* by parts, & differentiate in v when τ ′(v) = 0:

d
dv

1
v(τ ′(v) + 1) =

∫ v−1

−∞
− d

dvAv(v − z)r′(τ(v) + z)dz (2)

▶ − d
dv Av(v − z) is upcrossing by Insight (⋆),

▶ − d
dv Av(v − z) integrates to zero by (1)

▶ The FOC derivative (2) is positive, by the folk SCP, since r′ is
increasing by convexity

▶ Hence, τ ′(v) = 0 ⇒ v(τ ′(v) + 1) is falling ⇒ τ ′′(v) < 0
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Toughness is Quasiconcave: Hard Case
▶ For most log-concave distributions g, the hazard rate r is

convex-then-concave
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Equilibrium Rejection Rates

▶ With known author types, hump-shaped toughness was
necessary and sufficient for a hump-shaped rejection curve, via

R(v) ≡ G(τ(v))

▶ For our unknown-types case, hump-shaped toughness is
necessary (but not sufficient) for hump-shaped rejection rates:

1− R(v) =
∫

f(v − z)h(ξ(v) + z)(1− G(τ(v) + z)dz∫
f(v − z)h(ξ(v) + z)dz

▶ We show that rising toughness ⇒ rising rejection rates
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Equilibrium Rejection Rates
▶ For our unknown-types case, hump-shaped toughness is a

necessary (but not sufficient) condition for a hump-shaped
equilibrium rejection rate:

1
1− R(v) =

∫ v−1

−∞
αv(v − z)

(
1

1− G(τ(v) + z)

)
dz

▶ Now, 1
1−G(τ(v)+z) is convex in z, by log-concavity of G

▶ Mimicking earlier integration by parts analysis:
▶ (1− R(v))−1 increases in v when τ ′(v) = 0
▶ The derivative in v is

∫
− d

dv Av(v − z) · d
dz

(
1

1−G(τ(v)+z

)
dz: the

first term is upcrossing and integrates to zero, and the second
increases by convexity

▶ clearly, it is also increasing in τ(v)
▶ Increasing toughness ⇒ increasing rejection rate
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Hump-Shaped Rejection Rates

Mavi’s Ruff Result
If the author signal is sufficiently less noisy than the journal signal,
then the rejection rate R(v) is hump-shaped; otherwise, it is
everywhere increasing.

Mavi’s Second Ruff Result
The rejection rate rises — and its peak shifts out — as the journal
or author signal noise increases.
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Gaussian Noise
As Signal Noise Rises, Rejection Rates Rise & Peak Later

Assume an improper uniform prior f, standard normal author signal
distribution, and journal signal as above.
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Humps Emerge with More Precise Author Information

▶ paper prior f = Γ[2, 1], author signal h = Γ[2, 1]
▶ Blue journal signal g = Γ[2, 1], orange g = Γ[2, 2]
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Mavi’s Sheep
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Journal Rejection Rates

Hamermesh (2008), ”How to Publish in a Top Journal”
▶ QJE 4%, JPE 5%, AER 7%, APSR 8%, JoLE 8%
▶ Econometrica 9%, EER 9%
▶ Journal of Human Resources 10%, Economica 11%
▶ RAND 11%, REStat 12%, Economics Letters 17%
▶ Canadian Journal of Economics 18%
▶ Industrial and Labor Relations Review 18%
▶ Journal of Monetary Economics 20%
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