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Abstract

A firm selects applicants to hire based on hard information, such as a test
result, and soft information, such as a manager’s evaluation of an interview.
The contract that the firm offers to the manager can be thought of as a restric-
tion on acceptance rates as a function of test results. I characterize optimal
acceptance rate functions both when the firm knows the manager’s mix of infor-
mation and biases and when the firm is uncertain. These contracts may admit
a simple implementation in which the manager can accept any set of applicants
with a sufficiently high average test score.
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1 Introduction

A firm making hiring decisions gets both “hard” and “soft” information about the

quality of its job applicants. Hard information is directly observable to the firm.

For instance, the applicants’ education histories and years of experience at previous

jobs are listed on their CVs, and the firm sees the applicants’ results on any pre-

employment tests that it administers. Soft information, by contrast, is reported to

the firm by an agent: a hiring manager interviews each applicant and subjectively

judges his or her fit for the position. Similarly, in college admissions, there is hard

information on applicant quality in the form of grades and test scores, plus soft

information from an admissions officer’s reading of the essays and recommendation

letters. A bank deciding which loan applications to approve has access to hard credit

scores as well as the soft evaluations of a loan officer.
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In each of these cases the agent observing the soft information may have prefer-

ences that are only imperfectly aligned with those of the organization. The hiring

manager may be idiosyncratically biased in favor of or against certain applicants –

she likes the ones who come off as friendly during the interview. Or the manager may

have a more systematic bias. She is skilled at evaluating social skills, say, and at the

same time overweights the importance of social skills on the job.

If the manager were given full discretion to hire any applicants she wanted, her

choices would be distorted by these biases. Instead the firm might require the manager

to hire those with the most favorable hard information. This no-discretion policy

would inevitably screen out some “diamonds in the rough,” high quality candidates

who showed their worth only on the softer measures. But, as pointed out by Hoffman

et al. (2016), no discretion would improve on full discretion if the manager’s biases

were sufficiently strong.

Of course, the firm is not limited to the two extreme policies of no discretion or

full discretion. The firm can get some input from the manager while still using hard

information to constrain her decisions. In this paper I search for the optimal such

policy, posed as a contract offered by a principal to an agent.

Spelling out some key features of the model, there is a large number (continuum)

of applicants, of whom some share will be accepted. For each applicant there is public

or hard information about quality as well as a private or soft signal observed only by

an agent. The agent also has some bias in favor of or against each applicant. The

principal writes a contract to determine which applicants the agent may accept. The

principal’s objective is to maximize the average quality of the selected applicants,

whereas the agent cares about quality plus bias. As in what is called the delegation

literature, the only outcome of the contract is the determination of the decisions in

question, i.e., which applicants are accepted. There are no transfer payments.

I begin my analysis by supposing that the firm knows the manager’s “type” – the

distribution of her information and bias across applicants. Here, the optimal policy

takes the form of a specified acceptance rate at each realization of hard information,

e.g., at each test result. The manager chooses which applicants to hire subject to

this acceptance rate. I provide a general approach for finding the optimal acceptance

rate function, essentially by equalizing the quality of the marginal accepted applicant

across test results. I then apply the results to a benchmark normal specification:

normal distribution of applicant quality, one-dimensional normal signals of quality
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from both hard and soft sources, and normally distributed idiosyncratic biases. Under

the normal specification, the acceptance rate should follow a normal CDF function –

an S-curve, in which a higher share of applicants are accepted at higher test results.

A manager with either stronger biases or less information faces a steeper acceptance

rate function, corresponding to a contract with less discretion: her hiring depends

more on the test and less on her personal judgment.

There is also an alternative implementation of these optimal contracts. Realiza-

tions of hard information are first mapped into a one-dimensional score. Then the

contract specifies that the manager may accept any applicants she wants, subject to

fixing the average score of those who are accepted. (Equivalently, the contract spec-

ifies a minimum average score, in which case the manager selects applicants so that

the floor is binding.) Under the normal specification, the score can be set to be equal

to the test result: the manager has the freedom to accept any set of applicants with

an appropriate average test result. This contract offers less discretion to the agent

when the required average is higher.

Next, I consider the possibility that the firm is uncertain about the manager’s type.

Different hiring managers may be better or worse at judging applicant quality, and

may also have preferences that are more or less aligned with those of the firm. The firm

can screen across types by allowing the manager to select from a menu of acceptance

rate functions. Under the normal specification, I find conditions under which the firm

again has a simple optimal policy. The manager can select applicants according to

any normal CDF acceptance rate that is sufficiently steep. Alternatively, the firm

specifies a minimum average test result. The floor is binding for more informed or

more biased managers, while less informed and less biased ones select applicant pools

with average test results above this floor.

The bulk of the work on delegation involves a single one-dimensional decision to be

made. See, for example, Holmström (1977, 1984) and Melumad and Shibano (1991)

for early work, or Alonso and Matouschek (2008) and Amador and Bagwell (2013)

more recently. Papers on delegation or cheap talk – commitment or no commitment

– over multiple decisions include Chakraborty and Harbaugh (2007), Frankel (2014),

and Frankel (2016). Indeed, if in the current paper there were no hard information

available to guide decisions, then the problem would reduce to a straightforward

delegation problem over multiple binary decisions; the principal would essentially

only be able to give the agent full discretion to accept her favorite applicants or to
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randomize acceptances. What is novel in the current paper, both in terms of the

tradeoffs it generates and in the contracting levers it makes available, is the existence

of distinct realizations of hard information across decisions.

Heuristically, one can reinterpret the problem of selecting applicants as a single-

decision – though not necessarily one-dimensional – delegation problem. The accep-

tance rate function takes the role of the action, and the agent’s information and bias

type (which determines players’ preferences over actions) takes the role of the state of

the world. Section 4, which constitutes the main technical contribution of the paper,

exploits this connection in solving for optimal screening contracts when the princi-

pal does not know the agent’s type. In particular, I show that, under the normal

specification, there is in fact a formal translation of the principal’s problem into a

one-dimensional delegation problem. The one-dimensional action corresponds to the

average test result of the hired applicants, or equivalently the steepness of a normal

CDF acceptance rate function. After performing this translation, I can solve for the

optimal contract as a floor on this action by applying the one-dimensional delegation

results of Amador et al. (2018).

The problem of combining information from hard and soft sources is becoming

increasingly relevant as “big data” and the spread of IT supplement traditional sub-

jective evaluations with newly available, or newly quantifiable, hard information. Ac-

cording to the Wall Street Journal (2015), for instance, the number of US employers

using pre-employment tests rose from 26% in 2001 to 57% in 2013.1 Through a mix

of theory and data, Autor and Scarborough (2008) and Hoffman et al. (2016) shed

light on how pre-employment tests have affected firm hiring, while Einav et al. (2013)

looks at the impact of automated credit scoring in the market for consumer loans. In

particular, Hoffman et al. (2016) addresses the question of how much discretion to

grant to a potentially biased agent. That paper compares full discretion, the policy

used by the firm in their data set, to a hypothetical policy of no discretion.

In related theoretical work, Che et al. (2013) looks at the role of hard and soft

information in hiring, where hard information is modeled via asymmetric priors on

1The article describes these tests as follows:

Tests in the past gauged only a few broad personality traits. But statistical modeling
and better computing power now give employers a choice of customized assessments
that, in a single test, can appraise everything from technical and communication skills
to personality and whether a candidate is a good match with a workplace’s culture—even
compatibility with a particular work team.
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applicants’ quality.2 Beyond the fact that Che et al. (2013) looks at hiring a single

worker instead of many, there is a key difference in the modeling of the agent’s bias.

Their misalignment is over how many candidates to hire, whereas in this paper it is

over which candidates to hire. In particular, the agent in that paper has the same

ranking of candidates as does the principal, but has a bias towards hiring: one of the

candidates will be hired, or none will be. I fix the (large) number of candidates to be

hired, but take the agent’s preferences over candidates to be imperfectly correlated

with those of the principal.3

I now move into the analysis. Proofs can be found in Appendix G.

2 The model

2.1 Players, payoffs, and information

There is a firm (principal), a manager (agent), and a mass 1 of ex ante identical job

applicants. An exogenous fraction k ∈ (0, 1) of the applicants will be hired (accepted).

The firm and manager are the two players in the game; applicants are nonstrategic.

The firm will specify rules determining the process by which the manager makes hiring

decisions.

Each applicant is associated with a vector of four characteristics: quality Q ∈ R,

hard information or “test result” T ∈ T , soft information or “private signal” S ∈ S,

and bias B ∈ R. I label generic realizations of Q, T , S, and B by the lowercase q, t,

s, and b.

The quality Q indicates the firm’s marginal utility of hiring an applicant. The

manager’s marginal utility is quality plus bias, Q + B. That is, the bias for a given

applicant is the difference between the manager’s marginal utility and the firm’s. The

principal’s and agent’s realized payoffs will be their average marginal utilities across

the hired applicants.

2Some other models of applicant selection include hard but not soft information. Chan and Eyster
(2003) study the effects of banning affirmative action in college admissions. In their model, colleges
make up-or-down admissions decisions on the basis of test scores and, possibly, minority status.
Alonso (2018) studies how much information firms should gather information about job applicants’
fit when application decisions are endogenous.

3Armstrong and Vickers (2010) and Nocke and Whinston (2013) consider a different sort of
mechanism design problem relating to the acceptance or rejection of a single proposed candidate.
In their work, the agent’s private information is over the set of candidates that may be proposed.
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Quality is never directly observed by the players. It can only be inferred from

the two pieces of information, T and S. The test result T for an applicant is “hard”

in the sense that it is publicly observed by both the firm and the manager and it

can be contracted upon. The private signal S is “soft,” as is the manager’s bias B:

they are privately observed by the manager, are noncontractible, and can never be

externally verified or audited. The realizations of T , S, and B for all applicants are

observed automatically by the appropriate parties. In particular, the agent observes

her private signals without undertaking any costly investment of time or effort.4

Denote the distribution of applicant quality Q in the population by FQ, the dis-

tribution of the test result T conditional on Q by FT |Q, and the distribution of the

private signal S conditional on Q and T by FS|Q,T . We see that T and S are infor-

mative about quality in that their distributions may depend on Q. In examples, I

often take the signals T and S to be real-valued. In general, though, their realization

spaces T and S need not be ordered, and may be highly dimensional.

The final applicant characteristic is the bias, B. Assume that the distribution of B

conditional on T and S is independent of Q, and thus that its conditional distribution

can be denoted by FB|Q,T,S = FB|T,S. In other words – and without loss of generality

– the agent’s bias contains no information on quality beyond what is captured by her

soft information. (Any information in B can be assumed to be included in S as well.)

An acceptance rule χ(t, s, b) describes the probability that an applicant with test

result T = t, private signal S = s, and bias B = b – the three characteristics ever

observed by some player – is hired. Formally, χ : T × S ×R→ [0, 1] is a measurable

function satisfying the budget constraint E[χ(T, S,B)] = k.5 The contracting game

that determines the equilibrium acceptance rule is introduced in the next section.

Under a given acceptance rule, we can define a random variable Hired ∈ {0, 1} that

describes whether a randomly drawn applicant is hired (1) or not (0). Conditional

on Q, T , S, and B, Hired takes value 1 with probability χ(T, S,B) and 0 otherwise.

4If the agent were required to put in a costly investment in order to observe her private signal,
realizations of hard information might be used as a first screen to decide which applicants to evaluate
privately. The Wall Street Journal (2014) reports that at many companies, job applicants who do
poorly on pre-employment tests will not have their resumes looked at or will not get interviews.

5As discussed below, I consider the possibility that the principal may be uncertain about the
joint distribution of Q,T, S,B – specifically, he may have priors over FS|Q,T and FB|T,S without
knowing their true realizations. Unless explicitly indicated otherwise, the expectation operator E
always refers to expectations taken under the true distributions. Hence, from an uncertain principal’s
perspective, the budget constraint of hiring k applicants is “ex post” rather than “ex ante.”
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The principal’s and agent’s realized payoffs in the game, VP and VA, are defined as

their respective average marginal utilities over the hired applicants:6

VP ≡ E[Q|Hired = 1] =
1

k
E[χ(T, S,B)Q]

VA ≡ E[Q+B|Hired = 1] =
1

k
E[χ(T, S,B)(Q+B)].

Players make decisions in order to maximize expected payoffs.

We see that the model primitives consist of one scalar parameter and four dis-

tribution functions: the share k of applicants hired, the quality distribution FQ, the

public and private signal distributions FT |Q and FS|Q,T , and the bias distribution

FB|T,S. I call the first three objects k, FQ, and FT |Q “principal fundamentals,” as

they are properties of the applicant pool and how it is judged by the firm. The two

distributions FS|Q,T and FB|T,S then describe the extent of the manager’s information

and biases. I call FS|Q,T and FB|T,S the agent’s type.

It may be that in the universe of potential hiring managers, some are better than

others at evaluating job applicants, and also some care more about hiring the right

applicants for the firm rather than the ones they personally like. That is, the potential

managers may not all have the same distributions of private information FS|Q,T and

bias FB|T,S. In the upcoming analysis, I will separately analyze cases where the agent’s

type is known to the principal (Section 3) and where the principal has a prior over

the agent’s type but does not know its realization (Section 4). Regardless of whether

the agent’s type is known to the principal, the agent does know her own type; in

particular, the agent knows FS|Q,T and hence knows how to interpret realizations of

her private signal S.

While the principal may be uncertain about the agent’s type, I assume throughout

the paper that there is common knowledge over the principal fundamentals.

Assumption 1. The share of applicants to be hired k, the quality distribution FQ,

and the test score distribution FT |Q are commonly known at the start of the game.

Recall that there is a continuum of applicants, where FQ and FT |Q are the dis-

tributions of Q and T |Q. So common knowledge of FQ establishes that there is no

6For any random variable Y (Q,T, S,B) defined as a function of applicant characteristics, the
average of Y over hired applicants can be equivalently written as E[Y (Q,T, S,B)|Hired = 1] or as
1
kE[χ(T, S,B) · Y (Q,T, S,B)].
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aggregate uncertainty over the distribution of quality in the applicant pool. Common

knowledge of FT |Q further implies that there is no aggregate uncertainty over the

distribution of test results, nor over the conditional distribution of applicant quality

at each test result.

2.2 Contracting

The principal writes a contract that specifies the rules by which the agent selects

applicants. The principal has the power to commit to accept any applicant set that

the agent selects, and the agent is assumed to participate in whatever contract the

principal writes. The only outcome of this contracting relationship is the determina-

tion of which applicants are accepted. That is, this model considers a “delegation”

framework in which there are no monetary transfers (or other extrinsic incentives)

that condition on the agent’s behavior or on the realized quality distribution of the

accepted applicants.

The contracting mechanism has access to every applicant’s public test result. How-

ever, it cannot directly condition on the agent’s type or the realizations of the agent’s

private signals and biases for the different applicants. Accordingly, the mechanism

asks the agent to make some reports. As discussed below, it is without loss of gener-

ality to consider a mechanism in which the agent simply reports the probability with

which each applicant is to be accepted.7 The contract itself is a restriction on the

joint distribution of observable test results and the reported acceptance probabilities.

The formal timing of the game is as follows.

(1) The principal gives the agent a contract and the agent’s type is realized.

(2) All applicants’ test results are publicly observed. At the same time, the agent

observes her private signals and biases for each applicant.

(3) The agent reports a probability of acceptance for each applicant, subject to the

contractual restrictions.

(4) Applicants are hired according to the stated probabilities.

At step (1) the principal chooses a contract to maximize his subjective expectation

of VP = E[Q|Hired = 1], taking into account his beliefs about the agent’s type and

7I omit mention of the correlation structure over probabilistic acceptances because correlation is
payoff-irrelevant to both players. It does not affect the expected marginal utility of hired applicants.
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behavior when predicting who will be hired (i.e., what the acceptance rule will be).

The agent then makes reports at step (3) to maximize VA = E[Q + B|Hired =

1]. Formally, in making this report, the agent chooses a measurable function from

realizations of T, S,B into distributions over acceptance probabilities, which induces

an acceptance rule χ.

The contract must impose the budget constraint that the agent accepts a share k

of the applicants. Beyond that, there may be arbitrary restrictions on the joint distri-

bution of test results and acceptance probabilities. For instance, the contract could

include a requirement that all applicants at a given test result T = t are accepted;

that anywhere between 10% and 50% of applicants at t are accepted; or that the

maximum share of applicants accepted at t depends on the share accepted at another

test result t′. The contract can also allow for (or require) stochastic acceptances, in

which the agent reports that some applicants are accepted with interior probabilities.

Say that the contract is deterministic if it only allows the agent to report ac-

ceptance probabilities of either 0 or 1, i.e., rejections or acceptances.8 Deterministic

contracts can be described in a fairly simple manner. First, note that the agent’s

reports determine an acceptance rate at each test result, where I use α : T → [0, 1]

to denote a generic such acceptance rate function:

α(t) = E[Hired|T = t].

Any two deterministic reports that induce the same acceptance rate function neces-

sarily have the same joint distribution over test results and acceptance probabilities.

So any contract either allows both of them or forbids both of them. Hence, deter-

ministic contracts can be fully summarized by the menu of acceptance rate functions

from which the agent may choose.9

Now let us return to the issue of why it is sufficient to consider contracts of the

form above, with steps (1) - (4), rather than working with direct revelation contracts.

8Even in a deterministic contract the agent can “mix” and accept some share of applicants at a
given realization of (T, S,B) while rejecting the others. This might be necessary if at T = t there is
an atom of probability on a particular realization of (S,B) = (s, b), and the contract prohibits the
agent from either accepting all of the applicants at the atom or from rejecting all of them. I will
rule out the possibility of such atoms in Assumption 2 below.

9Stochastic contracts may be more complicated. For instance, two distinct ways to induce the
same constant acceptance rate function of α(T ) = 1/2 are for the agent to deterministically accept
one half of applicants at each test result, and to accept each applicant with probability 1/2. A
deterministic contract would impose the former rather than the latter.
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A direct revelation contract would differ from the above in two ways. First, in between

the agent’s type realization at step (1) and the arrival of applicants at step (2) – call

this step (1.5) – the agent would be asked to report her type. (This step could be

omitted if the agent’s type were common knowledge.) Second, at messaging step (3)

she would report her private signal and bias realization for each applicant instead of

an acceptance probability.

The fact that the agent’s direct reports at step (3) can be replaced with acceptance

probabilities follows from the standard logic of delegation mechanisms: the agent

knows how her reports will be translated into acceptances, so she may as well just

report the acceptances.10 The fact that the type reporting at step (1.5) can be

omitted, even when the agent’s type is not commonly known, is a consequence of

Assumption 1. Specifically, Assumption 1 ensures that once the agent knows her type,

she faces no aggregate uncertainty about the future. She knows the joint distribution

over private signals, biases, and test results of the applicants who have yet to arrive.

So if at step (3) the agent would ever be able to identify an ex-post profitable deviation

to having previously misreported her type, the agent would have already had all of

the information at step (1.5) to know that the deviation would be profitable. Hence,

the principal has no reason not to delay all agent reports until step (3).

2.3 Examples of information and biases

To make the model more concrete, I now introduce two examples to illustrate the

kinds of information structures and biases that may arise in applications. In the

normal specification, the agent has an “idiosyncratic” bias for each applicant, inde-

pendent of all other terms. The two-factor model then shows how one might capture

a “systematic” bias in which the soft and hard information are informative about dif-

ferent aspects of a job applicant, and the agent values these aspects differently than

does the principal. In Appendix D.2, I describe how to capture some other forms of

systematic bias that also induce correlation between signals and biases. For instance,

the principal may be in favor of affirmative action for job applicants with certain

observable attributes while the agent disagrees.

10Recall that test results are publicly observed. If the principal could withhold test results from
the agent, then the agent would not in fact know how her reports would translate into acceptances.
I discuss how the principal might be able to benefit from withholding test results in Section 5.2.

10



2.3.1 Normal Specification

In the normal specification, assume that

Q ∼ N (0, σ2
Q), (FQ)

T |Q ∼ N (Q, σ2
T ), (FT |Q)

S|Q, T ∼ N (Q, σ2
S), (FS|Q,T )

B|T, S ∼ N (0, σ2
B), (FB|T,S)

where N (µ, σ2) indicates a univariate normal distribution with mean µ and variance

σ2. All variances are taken to be positive and less than infinity.

This specification lets us capture the key forces of the model with a small number

of parameters – one variance parameter for each distribution. (Indeed, it would be

without loss to further normalize one of the variances to 1.) The parameter σ2
Q is the

variance of quality in the population, with mean normalized to 0. Then σ2
T and σ2

S

describe how informative the public and private signals are about quality: variance

going to 0 would be perfectly informative, and variance going to infinity would be

uninformative. Finally, σ2
B tells us the strength of the agent’s biases.11 The agent’s

marginal utility for an applicant is Q+B, so an agent with higher σ2
B is more biased

in that her utility comparisons across applicants depend less on variation in Q and

more on variation in B. The agent’s type consists of the two dimensions (σ2
S, σ

2
B), the

extent of her information and bias.

2.3.2 Two-Factor Model

In the two-factor model, let quality Q be decomposed as

Q = Q1 +Q2.

The two quality factors Q1 and Q2 follow some joint distribution FQ1,Q2 . The test

result and private signal then follow conditional distributions FT |Q1,Q2 and FS|Q1,Q2,T .

Assume further that the private signal S does not add any information about the first

11The normalization of the mean of B to 0 is without loss of generality. Adding a constant to the
agent’s marginal utilities would not change her preferences over sets of hired applicants.
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quality factor Q1 beyond what is known from the test result:

E[Q1|S, T ] = E[Q1|T ].

In other words, the agent gets private information only about the second factor.

Think of the public test as measuring a job candidate’s technical ability, while the

private interview with a hiring manager yields information about the candidate’s

social skills. Or, in college admissions, an applicant’s public SAT score and GPA

reveal his or her academic skills, whereas the admissions officer subjectively assesses

other “holistic” aspects. In the same vein, the agent might be an expert brought in

to evaluate applicants only on features related to her specialty: a writing instructor

reads and scores the application essays.

Let the agent’s objective be given by

VA = E[Q1 + λQ2|Hired = 1], for λ > 0.

Compared to the principal’s objective of VP = E[Q1 + Q2|Hired = 1], there is a

bias when λ 6= 1. We might expect that a hiring manager would overemphasize the

importance of social skills, or that a writing instructor would overemphasize writing

ability. This “advocate” agent, who values the factor that she evaluates more highly

than does the principal, corresponds to λ > 1. The agent may also be a “cynic” with

λ < 1: an interviewer who thinks that social skills don’t matter much, or a writing

instructor who thinks that writing ability is overrated.12 The agent’s type in the

two-factor model corresponds to a bias parameter λ and a signal structure FS|Q1,Q2,T .

Let us now rewrite the agent’s payoff in the notation of Section 2.1, in which the

agent’s marginal utility is Q+B. The agent’s marginal utility in the two-factor model

was given as Q1+λQ2 = Q+(λ−1)Q2, and so the agent maximizes E[Q+B|Hired = 1]

for B = (λ − 1)E[Q2|T, S].13 We see that the “systematic” bias manifests itself as a

correlation between bias B and signals T, S: an advocate with λ > 1, for instance,

will be biased in favor of applicants for whom the signals reveal positive news on Q2.

12The bias can also be interpreted as a reduced form for disagreement arising from beliefs rather
than preferences. An agent with λ > 1 would be one who thinks that her private signal S is more
informative on quality than the principal thinks it is (and the players “agree to disagree”).

13As required by the formulation of Section 2.1, the (degenerate) distribution of the bias depends
only on the realizations of the signals. I have also written primitive distributions with Q1 separate
from Q2, but we can translate to the appropriate distributions FQ, FT |Q, and FS|Q,T .
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A richer formulation could of course add an idiosyncratic bias term – an inde-

pendent “epsilon” – to the agent’s utility for each applicant. In Appendix E I write

down and analyze an example which combines the systematic biases of the two-factor

model with the idiosyncratic biases of the normal specification.

One distinction to highlight between the two-factor model and the normal specifi-

cation is that under the normal specification, signals were assumed to be conditionally

independent given Q. In the two-factor model, the fact that signals are informative

about distinct “quality factors” leads to conditional dependence. Indeed, suppose

that the distribution of T depends only on Q1; the distribution of S depends only on

Q2; and that Q1 and Q2 are independent. Then T and S would be unconditionally

independent. But we would expect T and S to be negatively correlated conditional

on Q. Fixing Q = Q1 + Q2, an applicant with higher Q1 would mechanically have

lower Q2.

2.4 Preliminary Analysis

Given the agent’s observation of both the public and private signals, her expectation

of an applicant’s quality is E[Q|T, S]. Let her corresponding expectation of her own

marginal utility from hiring an applicant be given by UA:

UA ≡ E[Q|T, S] +B. (1)

I informally refer to UA as the agent utility.

The agent’s message in a contract assigns applicants to acceptance probabilities

based on (T, S,B). At a given test result, the agent prefers to assign higher acceptance

probabilities to applicants with higher utility UA. That is, at any fixed test result

T = t, the agent will report acceptance probabilities that are weakly increasing –

monotonic – in UA.

For all of the analysis that follows, I maintain the following technical assumption

stating that the agent almost surely has a strict preference between any two applicants

with the same test result. This condition could arise from continuously distributed

biases or from a continuously distributed belief on quality arising from the agent’s

private signals.

Assumption 2. For each t ∈ T , the distribution of UA|T = t has no atoms.
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Combining monotonicity with Assumption 2, any two applicants with the same

realizations of both T and UA will (almost surely) be accepted with the same prob-

ability, even if they differ on S and B.14 In other words, applicants with the same

test score T and same agent utility UA cannot be distinguished by any contract the

principal offers. Formalizing the above discussion:

Observation 1. Fix a contract, a test result t ∈ T , and two pairs of private signal

and bias realizations (s1, b1) and (s2, b2) in S ×R. For each i = 1, 2, let the expected

agent utility UA of an applicant with test result t, private signal si, and bias bi be

denoted by uiA = E[Q|T = t, S = si] + bi. Then under any equilibrium acceptance

rule χ:15

1. Distinguishability. If u1
A = u2

A then χ(t, s1, b1) = χ(t, s2, b2). That is, at test

result t, applicants with the same UA have the same probability of acceptance

as one another.

2. Monotonicity. If u1
A > u2

A then χ(t, s1, b1) ≥ χ(t, s2, b2). That is, at test result

t, applicants with higher UA have weakly higher acceptance probabilities.

Distinguishability establishes that all applicants with the same test score and

same agent utility are treated identically. Some of them may have high perceived

quality E[Q|T, S] and low bias B, while others have low quality and high bias. But

no contract can induce the agent to distinguish these applicants. Define UP (t, uA) to

be the average quality of applicants with test result T = t (observed by the principal)

and agent utility UA = uA (unobserved by the principal):

UP (t, uA) ≡ E[Q|T = t, UA = uA]. (2)

I informally refer to UP as the principal utility.

Given distinguishability, we can rewrite acceptance rules as mappings from (T, UA)

– rather than (T, S,B) – into acceptance probabilities. As such, going forward, I take

acceptance rules to be functions χ : T × R → [0, 1] where χ(t, uA) indicates the

14Given monotonicity, at any given T = t there can be only countably many values uA at which
applicants with UA = uA have different acceptance probabilities. (A correspondence that is mono-
tonic in the strong set order can have only countably many points for which it is not single-valued.)
Assumption 2 says that it is zero probability that UA is in any specified countable set.

15Any equilibrium acceptance rule yields identical payoffs for both parties as one which satisfies
these properties. But the agent can always “deviate” on a set of applicants of probability 0 without
affecting payoffs.
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probability of accepting an applicant with T = t and UA = uA. The principal’s payoff

VP – the average quality of hired applicants – under acceptance rule χ can now be

written as

VP =
1

k
E[χ(T, UA) · UP (T, UA)]. (3)

Monotonicity establishes that any acceptance rule χ(t, uA) is weakly increasing in

uA for every t. A deterministic contract will yield acceptance rules χ(t, uA) that are

step functions in uA, taking on values in {0, 1}.

3 Common knowledge of agent type

In this section I consider optimal contracts under common knowledge of the agent’s

type: the distributions FS|Q,T and FB|T,S are known to the principal prior to contract-

ing. Combining common knowledge of the agent’s type with common knowledge of

FQ and FT |Q from Assumption 1, the principal knows the induced joint distribution of

test result T and agent utility UA across applicants. The principal knows the function

UP mapping (T, UA) to average quality. And, given any contract, the principal can

predict in advance the acceptance rule χ that will be induced by the agent’s choices.

It must hold that the induced acceptance χ rule selects a total of k applicants,

and that it is monotonic in agent utility. Writing out these two necessary conditions:

E[χ(T, UA)] = k (4)

For all t, χ(t, uA) is weakly increasing in uA. (5)

In fact, any acceptance rule χ satisfying these two conditions can be implemented

by some contract. Take some such χ; this χ induces a (commonly known) distribution

of acceptance probabilities at each test result. A contract can then specify that at

each test result, the agent selects applicants satisfying this distribution of acceptance

probabilities. Given such a contract, the agent’s optimal behavior of monotonically

assigning higher acceptance probabilities to higher agent utilities recovers χ.

So the principal’s problem under common knowledge the agent’s type can be

stated as maximizing the objective (3) over the choice of function χ : T ×R→ [0, 1],

subject to the constraints (4) and (5).
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3.1 Solving a relaxed problem

One upper bound on the principal’s payoff would result from maximizing the objective

(3) subject to the budget constraint (4), without imposing the monotonicity constraint

(5). Denote this upper bound acceptance rule (UBAR) as χUBAR. If the solution to

this relaxed problem satisfies monotonicity (5) then it is a solution to the original

problem, i.e., it is implementable as an optimal contract.

UBAR can be described in the following manner. First, find the level of principal

expected utility ucP such that a share of k agents have UP ≥ ucP ; formally,

ucP ≡ sup {uP ∈ R | Prob[UP (T, UA) ≥ uP ] ≥ k} . (6)

UBAR accepts all applicants with UP above the cutoff and rejects all of those below:

χUBAR(t, uA) = 1 if UP (t, uA) > ucP and χUBAR(t, uA) = 0 if UP (t, uA) < ucP . If there

is a mass of applicants with UP (T, UA) = ucP , then there is flexibility over which of

these applicants are accepted in order to get k applicants to be hired in total. In

that case, over any region of flexibility let χUBAR take values in {0, 1} and let it be

monotonic in UA.16

If χUBAR is monotonic, then it is implementable as an optimal contract. More-

over, χUBAR is deterministic by construction: it takes values only in {0, 1}. So if it

is monotonic then the contract can be implemented by specifying the appropriate

acceptance rates at each test result. Let αUBAR(t) be the share of applicants accepted

at test result T = t under χUBAR:

αUBAR(t) ≡ E[χUBAR(T, UA)|T = t].

Sufficient conditions for monotonicity. The following alignment condition guar-

antees monotonicity of the upper bound acceptance rule.

Definition. Utilities are aligned up to distinguishability if for all t, the principal’s

expected utility UP (t, uA) is weakly increasing in uA over the support of UA|T = t.

Loosely speaking, utilities are aligned up to distinguishability if applicants who

are more preferred by the agent are of higher average quality. Think of the agent

16That is, on those values (t, uA) for which UP (t, uA) = ucP , let χUBAR(t, uA) = 0 for uA below
some t-specific cutoff agent utility and let χUBAR(t, uA) = 1 for uA above the cutoff.
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utility UA = E[Q|T = t, S] + B as a noisy signal of perceived quality E[Q|T = t, S];

the condition states that higher realizations of UA uniformly imply a higher average

E[Q|T = t, S].

Under alignment, at every test result the ordering of applicants by agent utility

UA is the same as by principal utility UP . Therefore UBAR will be monotonic: it

accepts applicants with higher UA over those with lower UA.17 Figure 1 illustrates

UBAR when alignment up to distinguishability does and does not hold.

I confirm below that alignment up to distinguishability holds for the normal spec-

ification (Section 3.3), the two-factor model (Appendix D.1), and for a mixture of the

two (Appendix E). However, under particular joint distributions of Q, T , S, and B,

it is possible that alignment can be violated, even when the bias B is independent

of the soft information S: some high realization of UA may indicate a very high bias

combined with negative information on quality. That said, the following log-concavity

condition on the bias distribution guarantees alignment up to distinguishability re-

gardless of the quality and signal distributions.

Lemma 1. Suppose that for all t ∈ T , the bias distribution FB|T=t,S is independent

of S and is log-concave.18 Then utilities are aligned up to distinguishability.

The hypothesis of Lemma 1 can easily be checked from the primitives of the

problem. For instance, any time the bias is independent of the private signal and

is normally distributed (as it is in the normal specification) then utilities must be

aligned up to distinguishability.

The optimal contract as an acceptance rate function.

Proposition 1. Under common knowledge of the agent’s type, suppose that utilities

are aligned up to distinguishability. Then the deterministic contract characterized

by requiring acceptance rate at test result t of αUBAR(t) implements the upper bound

acceptance rule. This contract is an optimal contract.

17Alignment up to distinguishability is sufficient but not necessary for UBAR to be monotonic.
Holding fixed all other primitives while varying k, however, alignment up to distinguishability is
necessary and sufficient for UBAR to be monotonic for all possible k ∈ (0, 1).

18A distribution F on R is said to be log-concave if it admits a pdf f with convex support, and if
log f is a concave function over the support.
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Figure 1: Alignment up to distinguishability and the upper bound acceptance rule

t
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Reject

UP

(a) Aligned
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Reject

UP

UP

(b) Not aligned

The dashed curves show possible principal indifference (iso-UP ) curves in (t, UA)-space. The ar-
rows indicate the direction of higher principal utility. Utilities are aligned up to distinguishability
in panel (a) but not panel (b). Under UBAR, applicants with principal utility above some cutoff
are accepted; acceptance regions are shaded. UBAR is monotonic, and therefore implementable
as the optimal contract, in panel (a) but not panel (b).

The optimal contract as an average score. The contract of Proposition 1 sep-

arately describes the acceptance rate at every test result. There is another imple-

mentation of UBAR that may in some cases be simpler to express. This alternative

implementation first specifies a “score function” mapping every realization of the

(arbitrary-dimensional) hard information into a real number. The contract then asks

the agent to select k applicants subject to a restriction only on the average score of

those selected.19

In order to construct the score function, recall that under a monotonic and de-

terministic acceptance rule, every applicant with UA above some test-result-specific

cutoff is accepted and every applicant with UA below the cutoff is rejected. We can

define the appropriate score function based on these agent utility cutoffs from the

upper bound acceptance rule. Specifically, let ucA(t) be the cutoff at test result T = t:

19According to the Wall Street Journal (2014), in many pre-employment tests, “responses to an
online personality test are fed into an algorithm that scores each applicant, sometimes on a scale of
red, yellow and green. Scoring systems vary by testing provider, and the companies can customize
their methods to fit an employer’s demands.” These scores may be used not only for contractual
restrictions (as in the current paper) but also to help the manager make sense of the test result.
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take ucA(t) ∈ R∪{−∞,∞} such that for t ∈ T and uA in the support of UA|T = t, it

holds that χUBAR(t, uA) = 1 if uA > ucA(t) and χUBAR(t, uA) = 0 if uA < ucA(t).20 In

other words, ucA(t) is the function describing the cutoff indifference curve of Figure 1

panel (a), for which UP (t, ucA(t)) = ucP at all t.

Now define a score function C : T → R ∪ {−∞,∞} to be any negative affine

transformation of ucA, i.e., C(t) = a0 + a1u
c
A(t) for some a1 < 0.

Proposition 2. Under common knowledge of the agent’s type, suppose that utilities

are aligned up to distinguishability. Let C be a score function, and suppose further that
1
k
E[χUBAR(T, UA)C(T )] – the expected score of those applicants hired under UBAR –

is finite and equal to κ ∈ R. Then the contract that asks the agent to deterministically

select any k applicants satisfying E[C(T )|Hired = 1] = κ implements the upper bound

acceptance rule. This contract is an optimal contract.

For intuition, consider the following informal Lagrangian argument. Let λ0 be the

multiplier representing the shadow cost on the agent of hiring more applicants and

let λ1 be the shadow cost of increasing the average score of those who are hired. At

the optimum, the agent hires an applicant if UA ≥ λ0 + λ1C(T ). For score function

C(T ) = a0 + a1u
c
A(T ), plug in the multipliers λ0 = −a0/a1 and λ1 = 1/a1: the agent

hires an applicant if UA ≥ ucA(T ), which is the condition defining UBAR.

The role of taking the score function to be a negative affine transformation of

ucA is to ensure that, on the margin, the agent prefers to decrease the average score.

(With a positive affine transformation, the agent would prefer to increase the average

score.) In the Lagrangian argument above, the fact that the agent wants to decrease

the score follows from the multiplier λ1 = 1/a1 being negative. More intuitively,

perhaps, consider relaxing the constraint E[C(T )|Hired = 1] = κ. The agent would

now prefer to reject some applicants at test results with low ucA – the agent utility of

the marginal applicant – and hire more at test results with high ucA. Taking C as a

negative transformation of ucA means that the newly hired applicants have lower score

than the newly rejected ones.

Hence, we can equivalently implement the contract of Proposition 2 as a floor on

the average score, replacing the constraint E[C(T )|Hired = 1] = κ with E[C(T )|Hired =

1] ≥ κ. In response, the manager chooses an average score exactly at the minimum.

20At T = t, if the agent utility can be unboundedly negative [or positive] and the agent is to
accept [or reject] all applicants, then ucA(t) = −∞ [or +∞].
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As discussed in Section 3.4, the floor interpretation may be preferred when we think

about applying this form of contract to a setting with aggregate uncertainty.

In Sections 3.3, D.1, and E.2 I apply Propositions 1 and 2 to characterize the

optimal contract under common knowledge of the agent’s type for the normal speci-

fication, the two-factor model, and for a combination of the two.

3.2 The general solution

In Appendix A, I solve for the optimal contract – maximizing (3) subject to (4) and

(5) – in the general case where alignment up to distinguishability need not hold, and

thus the upper bound acceptance rule may not be implementable.

The solution involves “ironing” test result by test result. For instance, at some

test result the agent may be required to treat all applicants from the 70th through

80th percentiles of UA identically. If the agent is to accept less than 20% of the

applicants at this test result, she deterministically accepts her favorites. If she is to

accept (20+x)% for 0 < x < 10, she accepts her favorite 20% deterministically, and

gives each of the 10% of applicants in the pooling range an x/10 chance of acceptance.

If she is to accept 30% of applicants or more, she once again deterministically accepts

her favorites. After ironing applicants in an appropriate manner, the problem can be

solved using an approach similar to that in Section 3.1.

To see the potential benefit of randomization, consider the special case in which

there is no meaningful hard information at all. Under alignment up to distinguishabil-

ity – higher agent utility UA implies higher principal utility UP – the optimal contract

would be to give the agent full discretion. Under the extreme case of anti-alignment,

though, with higher UA corresponding to lower UP , the principal would do better by

randomly accepting applicants. If UP were nonmonotonically increasing, decreasing,

and increasing in UA, then the principal might let the agent accept some applicants

deterministically and others probabilistically.

One conclusion from Appendix A is that, despite the potential benefit of random-

ized acceptances, randomization need only be used on at most a single test result.

So when test results are continuously distributed, and thus behavior at any single

test score is irrelevant, we still get a deterministic optimal contract that can be im-

plemented by specifying an acceptance rate function. This optimal contract may

perform worse than UBAR, though.
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3.3 The normal specification

Let us now apply the results of Section 3.1 to solve for the optimal contract under

the normal specification with common knowledge of the agent’s type.

Using standard rules for Bayesian updating with normal priors and normal signals,

one can solve for E[Q|T, S] in the normal specification as

E[Q|T, S] =
σ2
Sσ

2
QT + σ2

Tσ
2
QS

σ2
Qσ

2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

. (7)

The agent utility is UA = E[Q|T, S] + B. From the joint distributions of S, T , and

B, one can derive UP (T, UA), the average quality conditional on the test result and

the agent utility, as below; see details of the calculations in Appendix G.1.

UP (T, UA) =βT · T + βUA · UA, for (8)

βT =
σ2
Bσ

2
Q

(σ2
Q + σ2

T )(η + σ2
B)
, (9)

βUA =
η

η + σ2
B

, (10)

with η ≡
σ4
Qσ

4
T

(σ2
Q + σ2

T )(σ2
Qσ

2
T + σ2

Qσ
2
S + σ2

Tσ
2
S)
.21 (11)

The principal utility UP is linear in both T and UA, with respective coefficients βT > 0

and βUA > 0. The fact that βUA is positive confirms that utilities are aligned up to

distinguishability, as implied by Lemma 1: principal utility is increasing in agent

utility. So the upper bound acceptance rule is implementable.

We also see that βUA < 1. Under the normalization that the agent and principal

both value quality at the same rate, an applicant who is thought to be one utility

unit better by the agent is somewhat less than one utility unit better to the principal.

The increased agent utility is inferred as partly due to higher quality and partly due

to higher bias.

The linearity of UP in T and UA means that the principal indifference curves are

linear in (T, UA)-space, with slope − βT
βUA

< 0. UBAR accepts all applicants “up and

to the right” of a cutoff indifference curve. See Figure 2.

21Equation (15), below, gives an economic interpretation of η. Conditional on a given test result,
η is the variance in the agent’s beliefs on applicant quality arising from her private signal.
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Figure 2: Upper Bound Acceptance Rule for the Normal Specification
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c

uA
c (T):

The dashed curves are principal indifference curves, each a line with slope −βT /βUA
. The arrow

indicates that higher indifference curves represent higher principal utilities UP , i.e., that utilities
are aligned up to distinguishability. Under UBAR, applicants are accepted above the cutoff
indifference curve at principal utility UP = ucP , which induces a mass of k to be accepted in
total. This cutoff indifference curve is denoted by ucA(T ).

Following Proposition 1, one implementation of UBAR as an optimal contract

specifies acceptance rates at each test result. Applicants’ test results and agent utili-

ties (T, UA) are distributed joint normally and are positively correlated. So the share

of applicants above the cutoff indifference curve – a downward sloping line – is increas-

ing and follows a normal CDF function. Indicating the CDF of a standard normal

distribution by Φ, the share of applicants accepted under UBAR at test result T

works out to αUBAR(T ) = Φ(γ∗TT − γ∗0), with γ∗T > 0 given by

γ∗T ≡
σ2
Q

√
η + σ2

B

η(σ2
Q + σ2

T )
. (12)

The value of γ∗0 – for which I do not provide an explicit formula – is then set so that

a total of k applicants are accepted.

We can equivalently express this contract in the alternative manner of Proposition

2: the agent picks any k applicants subject to E[C(T )|Hired = 1] = κ (or ≥ κ), for

some score function C and average score κ. The score function can be chosen as any

negative affine transformation of the cutoff indifference curve of Figure 2. Indifference
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curves are downward sloping lines and so C can be any increasing linear function. For

the normal specification I take the convention of setting C(T ) = T , i.e., setting the

score equal to the test result. (In the context of the normal specification, I hereafter

go back and forth between calling T a test result and a test score.) That is, the

contract requires the agent to choose any k applicants with a specified average test

score. Denote the optimal choice of average test score by κ∗.22

The following Proposition formalizes these results.

Proposition 3. Under the normal specification with common knowledge of the agent’s

type, the optimal contract can be implemented in either of the following ways. The

agent is allowed to hire any set of k applicants, subject to:

1. An acceptance rate function of α(T ) = Φ(γ∗TT − γ∗0); or,

2. An average test result of accepted applicants, E[T |Hired = 1], equal to κ∗.

Let us focus on the first implementation, the acceptance rate function. The op-

timal contract induces a normal CDF acceptance rate – an S curve – of the form

α(t) = Φ(γT t − γ0). More applicants are accepted at higher test results, with the

share of applicants accepted approaching 0 as t→ −∞ and approaching 1 as t→∞.

The contracts are characterized by a one-dimensional statistic, the steepness γT . A

steeper contract with a higher γT would correspond to a higher average test score in

the second implementation. See Figure 3 for an illustration of such contracts.

Heuristically, a steeper contract means that hiring depends more on the test and

less on the agent’s input: steeper contracts give the agent “less discretion.” Being

more precise, in Appendix B I show that the Full Discretion contract, in which the

agent selects her favorite applicants, would induce a normal CDF acceptance rate

with steepness γFD
T satisfying 0 < γFD

T < γ∗T . The agent prefers a flatter acceptance

rate than does the principal (γFD
T < γ∗T ) because she cares about idiosyncratic factors

in addition to quality. So in the range of contracts that an agent may face (α(T ) =

Φ(γTT − γ0) with γT > γFD
T ), a steeper contract requires the agent to pick fewer

applicants with low test scores, whom she prefers on the margin. Taking γT to

infinity would yield the No Discretion contract in which all applicants below some

test score cutoff are rejected and all applicants above are accepted.

22A formula for κ∗ in terms of the primitive parameters is given by Equation (53) in Appendix

G.3, plugging in for σ2
UP

from (18): κ∗ =
σ2
Q

√
σ2
Q + σ2

T ·R(k)√
σ2
Q + η2

η+σ2
B

, with R(k) as defined below in (22).
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Figure 3: Contracts with α(T ) = Φ(γTT − γ0) for different γT .

Low γT : Flat contract,
Low avg test result

High γT : Steep contract,
High avg test result
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The first row illustrates the share of applicants accepted at each test score T under a rule
specifying an acceptance rate function of Φ(γTT − γ0). Adjusting γ0 would translate these
functions left or right. The solid curves in the second row show the pdf of test results for those
accepted, with a grey line at the mean; dashed curves indicate the pdf of test results for the full
applicant pool. Steeper contracts with higher γT yield higher average test results. In the example
the unconditional distribution of test scores is N (0, 1), the low value of γT is .5 and the high
value is 3, and k = .5, implying γ0 = 0 for both low and high γT . The flat contract with γT = .5
yields E[T |Hired = 1] = .357 and the steep contract with γT = 3 yields E[T |Hired = 1] = .757.
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We can now explore comparative statics on the optimal steepness γ∗T with respect

to the five parameters. One qualification to bear in mind is that, as we vary σ2
Q or

σ2
T , the unconditional variance of the test scores, σ2

Q + σ2
T , varies as well. So the

interpretation of the steepness coefficient as a measure of discretion changes. For

instance, if we kept the coefficient γT fixed as we increased the variance of test scores,

the test would become “more predictive” of hiring – a one standard deviation increase

in test scores would have a larger effect on hiring rates. The corrected coefficient,

which tells us the impact of a one standard deviation rather than a one unit increase

in test scores, is γ∗T

√
σ2
Q + σ2

T .23 In the following Proposition, I include comparative

statics on this renormalized coefficient when relevant (parts 2 and 5).

Proposition 4. In the contract of Proposition 3 part 1, the contracting parameter

γ∗T given by (12) has the following comparative statics and limits:

1. γ∗T is independent of k.

2. γ∗T and γ∗T

√
σ2
Q + σ2

T decrease in σ2
T , with limσ2

T→0 γ
∗
T = limσ2

T→0 γ
∗
T

√
σ2
Q + σ2

T =

∞ and limσ2
T→∞ γ

∗
T = limσ2

T→∞ γ
∗
T ·
√
σ2
Q + σ2

T = 0.

3. γ∗T increases in σ2
S, with limσ2

S→0 γ
∗
T ∈ (0,∞) and limσ2

S→∞ γ
∗
T =∞.

4. γ∗T increases in σ2
B, with limσ2

B→0 γ
∗
T ∈ (0,∞) and limσ2

B→∞ γ
∗
T =∞.

5. γ∗T and γ∗T

√
σ2
Q + σ2

T may increase or decrease in σ2
Q, with limσ2

Q→0 γ
∗
T = limσ2

Q→0 γ
∗
T

√
σ2
Q + σ2

T =

∞, limσ2
Q→∞ γ

∗
T ∈ (0,∞), and limσ2

Q→∞ γ
∗
T

√
σ2
Q + σ2

T =∞.

Part 1 reiterates that the steepness of the contract does not depend on the number

of people to be hired. Hiring fewer or more applicants just translates the acceptance

rate function left or right.

Part 2 finds that as the test becomes less informative, the contract gets flatter: it

places less weight on the test results, measured either in absolute or relative terms. As

the test becomes perfectly uninformative, the contract sets a constant acceptance rate

across all scores. As the test becomes perfectly informative, we approach a perfectly

steep No Discretion contract in which hiring is entirely based on the test.

Part 3 finds that as the agent becomes better informed, the contract gets flatter,

giving the agent more discretion. Part 4 finds that as the agent becomes more biased,

23Φ(γ∗TT−γ0) can be rewritten as Φ

(
γ∗T

√
σ2
Q + σ2

T ·
T√

σ2
Q+σ2

T

− γ0
)

, where T√
σ2
Q+σ2

T

is the z-score

of the test result.
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the contract gets steeper, giving the agent less discretion. In the limits where the

agent is fully uninformed or where her preferences are entirely unrelated to quality,

we approach No Discretion.24

Hoffman et al. (2016) studies the use of pre-employment tests in hiring and com-

pares the limit contracts of Full versus No Discretion. They argue that Full Discretion

is preferred to No Discretion when the agent has low bias and high private informa-

tion, but not when the agent has high bias and/or low information. Parts 3 and 4

point to similar tradeoffs in the optimal contracts. One should use a flatter contract,

yielding more discretion, when bias is low or information is high.

Part 5, included for completeness, establishes that the steepness of the contract

can vary nonmonotonically with the variance of quality in the population.

In Appendix B I perform a similar comparative statics analysis for the Full Dis-

cretion outcome. The main takeaway is that the principal and agent agree about the

impact of agent information, but they disagree about the impact of agent bias. When

the agent has better private information (lower σ2
S), the acceptance rate functions in

both the optimal contract and the Full Discretion outcome become flatter. A more

informed agent is better at identifying high quality applicants who tested poorly, and

the principal wants to let her accept more of them. But when the agent is more

biased (higher σ2
B), the optimal contract becomes steeper while the Full Discretion

outcome becomes flatter; the agent wants to accept more low quality applicants who

tested poorly, and the principal wants to stop her from accepting them.

3.4 Discussion: Implementation in finite economies

One important simplification of this paper is to assume that there is a “large number”

of applicants, modeled as a continuum. This assumption allows me to characterize

optimal contracts through two equivalent implementations. First, the firm can specify

the acceptance rate at each realization of hard information. Second, the firm can

assign all applicants a score based on their observables, and require the manager to

select a set of applicants with an appropriate average score.

With a finite number of applicants instead of a continuum, the firm could imple-

24Proposition 4 parts 2 and 4 confirm the so-called “uncertainty principle” and “ally principle” of
delegation, reviewed in Huber and Shipan (2006): a principal should grant more discretion when he
has more uncertainty about what actions to take, and when the agent’s preferences are more aligned
with his own.
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ment approximations of each of these contract forms. These approximated contracts

would no longer necessarily be exactly optimal, of course – nor would approximations

of the two different implementations remain equivalent.

To highlight the distinction between the approximate implementations, suppose

that hard information can take on many values: say that the hard information consists

of a continuous-valued test result. Even with a very large finite number of applicants,

then, no two applicants would be exactly identical on observables.

A natural finite approximation of the acceptance rate implementation might be

to divide realizations of hard information into bins and then specify an acceptance

rate at each bin. For instance, with test results ranging from 0 to 100, the firm may

divide test results into the four bins of 0-25, 25-50, 50-75, and 75-100.25 The firm then

requires the manager to accept zero applicants in the bottom bin, 10% of applicants

in the next higher bin, 25% of applicants in the third bin, and 50% of applicants in

the top bin. The firm here faces a tradeoff over the number versus the size of these

bins. Having fewer bins that each contained more applicants would recover benefits

of aggregation and linking decisions, à la Jackson and Sonnenschein (2007) – the

manager could be asked to select the right tail within each bin instead of selecting all

applicants or none of them. But having fewer bins would restrict the firm’s ability to

force the manager to treat observably distinct applicants differently from one another.

In contrast, the average score contract can be approximated for finite economies

without any need for binning. Take the score function as specified in the continuum

contract, and impose the same form of constraint: the average score of selected ap-

plicants must be at or above a floor. (In the continuum economy, without aggregate

uncertainty, the average score hits the floor precisely.) The score function effectively

puts all applicants into the “same bin” and allows them all to be compared to one

another. For the example above, perhaps the firm specifies a minimum average test

result of 70. If the manager happens to see unexpectedly strong private signals about

some applicants with test results below 50, she has the flexibility to accept more of

these low-scoring applicants as long as she also accepts more high-scoring ones (and

fewer in the middle).

In Appendix C I explore how one might approximate these two finite implemen-

25One might want to condition the cutoffs for these bins on the realized distribution of test results;
for example, the approach in Appendix C would have the top bin out of four contain the top quartile
of test results. Similarly, for the average score implementation below, one might want to adjust the
average score cutoff in response to the realized distribution of test results.
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tations in the context of a normal specification example. I suppose that the firm will

accept 1/3 of N applicants, with N ranging from 12 to 96; principal payoffs under

the two types of finite contracts are reported in Table 1 of Appendix C. I find that,

even for these moderate numbers of applicants, both a binned acceptance rate and

a minimum average score contract do well – they both recover a large share of the

theoretical upper bound on payoffs that is exactly achieved in the continuum model.

Consistent with the discussion above, I also find that the minimum average score

implementations do perform better than binned acceptance rates.

4 Unknown agent type in the normal specification

Now consider the possibility that the agent’s type is unknown to the principal. To

analyze the uncertainty in a Bayesian manner, I need to make stronger parametric

assumptions. Accordingly, this section focuses only on the normal specification. Here,

the agent’s type θ ≡ (σ2
S, σ

2
B) describes how informed she is and how strong are her

idiosyncratic biases. Let G be the principal’s prior belief over the agent’s type θ in

R2
++. In Appendix E.3, I extend the results of this section to a combined model that

puts together the normal specification and two-factor model. There, agents may be

heterogeneous on the three type dimensions of information, idiosyncratic bias, and

systematic bias.

4.1 Connection to one-dimensional delegation

Before moving to the analysis, it will be helpful to recall the one-dimensional dele-

gation problem, introduced by Holmström (1977, 1984). In that problem, the agent

observes a one-dimensional state, which determines principal and agent preferences

over a one-dimensional action. The contract takes the form of a “delegation set”

specifying the actions that the agent may choose. A common result in this literature

is that, under some functional form and distributional assumptions, an interval dele-

gation set is optimal. For instance, an agent who is biased towards high actions may

be given a cap, and an agent who is biased towards low actions may be given a floor.

Versions of such a result appear in Melumad and Shibano (1991), Martimort and

Semenov (2006), Alonso and Matouschek (2008), Goltsman et al. (2009), Kováč and

Mylovanov (2009), Amador and Bagwell (2013), Ambrus and Egorov (2015), Amador
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and Bagwell (2016), and Amador et al. (2018). The latter six of these papers also

consider the possibility of some form of “money burning,” an auxiliary action that

reduces the payoffs of both players – for instance, money burning may be caused

by taking a random rather than a deterministic decision action. These papers give

various conditions under which money burning is or is not used in conjunction with

optimal (interval) delegation sets.

The problem of selecting applicants is posed as a higher-dimensional one. The

action effectively corresponds to the entire function mapping test scores to accep-

tance rates. (In fact, that action space would only describe deterministic contracts;

stochastic contracts could be more general.) The players’ preferences over this ac-

tion are determined by the agent’s two-dimensional type. When the agent’s type was

known, and thus the principal faced no aggregate uncertainty, Section 3 found that it

was optimal to specify a single acceptance rate function, i.e., a single action. When

the agent’s type is unknown, however, the principal may offer a menu of acceptance

rates to screen across agent types.26

I will be able solve for this optimal menu under the normal specification. I do

so below by formally transforming the problem of selecting applicants into a one-

dimensional delegation problem with money burning.27 The agent’s behavior in any

contract is determined by a one-dimensional projection of her two-dimensional type.

Moreover, there is a one-dimensional set of “frontier” actions – the normal CDF

acceptance rates, parametrized by steepness γT . Any other acceptance rate function

gives the players the payoffs of some normal CDF acceptance rate, minus money

burning that harms both players. After the appropriate transformation, I can apply

conditions from the one-dimensional delegation analysis of Amador et al. (2018) to

characterize the optimal contract as one that sets a floor on actions and does not burn

money.28 Translating back into acceptance rate functions, the contract gives the agent

a menu of normal CDF acceptance rates with a floor on the steepness. That is, the

26In a one-dimensional delegation problem, if the agent has some private information prior to
contracting, then the principal may benefit from an additional screening step in which the agent is
offered a menu over delegation sets; see Krähmer and Kováč (2016) or Tanner (2018).

27Guo (2014) similarly solves a contracting problem without transfers by reducing a highly di-
mensional action space into a one-dimensional frontier plus money burning, then treating it as a
one-dimensional delegation problem.

28Amador and Bagwell (2013) provides conditions to verify whether a proposed interval is an
optimal delegation set. Amador et al. (2018) builds on these results to give sufficient conditions
guaranteeing that there exists some interval that is an optimal delegation set.
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agent may go steeper, but not flatter – she must follow the test sufficiently closely.

The contract can also be implemented by allowing the agent to select any applicants

subject to a floor on their average test score.

4.2 Rewriting payoffs

As a preliminary step, let us calculate the distribution of principal and agent utilities

at each test result for a fixed agent type θ. The conditional distribution of agent

utilities UA given test score T is derived in the proof of Proposition 1 part 1 as

UA|T ∼ N
(
µUA(T ), σ2

UA
(θ)
)
, for (13)

µUA(T ) =
σ2
Q

σ2
Q + σ2

T

T (14)

σ2
UA

(θ) = η(θ) + σ2
B. (15)

The mean µUA(T ) is linear in the test result T but does not depend on the agent’s

type θ. The variance σ2
UA

(θ) is constant in T but depends on the type θ. Recall that

η(θ), defined in (11), depends on the agent’s type through σ2
S but not σ2

B.29

Continuing to fix θ, equations (8) - (10) give us the principal utility of UP (T, UA) =

βT (θ)T + βUA(θ)UA. Plugging into (13) - (15), we can calculate the distribution of

UP (T, UA) conditional on T but not UA.

UP (T, UA)|T ∼ N
(
µUP (T ), σ2

UP
(θ)
)
, for (16)

µUP (T ) = µUA(T ) =
σ2
Q

σ2
Q + σ2

T

T (17)

σ2
UP

(θ) = β2
UA

(θ) · σ2
UA

(θ) =
η(θ)2

η(θ) + σ2
B

. (18)

The means µUP and µUA are the same because the agent’s bias is uncorrelated with

the test result; the average principal and agent utilities across applicants at a test

result are both equal to the average quality. Then each unit of higher utility for the

agent translates into βUA(θ) higher utility for the principal, so the principal’s variance

is scaled by β2
UA

(θ). Recall that 0 < βUA(θ) < 1, implying that 0 < σUP (θ) < σUA(θ).

29In this section I write η as a function of θ to emphasize its dependence on the agent’s type, and
similarly for some other terms such as βT and βUA

.
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Let Z indicate the agent utility z-score of an applicant, relative to that applicant’s

test result:

Z ≡ UA − µUA(T )

σUA(θ)
. (19)

The z-score captures how much the agent likes an applicant, controlling for the public

information. Since UP is increasing in UA, this term also describes the applicant’s

relative quality for the principal (up to distinguishability). Of course, while an ap-

plicant with a high z-score and low test result is good relative to that test result,

this applicant might give lower utility to the agent and principal than an average

applicant (z-score of 0) who has a high test result.

I now rewrite the principal and agent utilities in terms of T and Z:

UA = µUA(T ) + σUA(θ) · Z =
σ2
Q

σ2
Q + σ2

T

· T + σUA(θ) · Z

UP (T, UA) = µUP (T ) + σUP (θ) · Z =
σ2
Q

σ2
Q + σ2

T

· T + σUP (θ) · Z.

For a given set of k hired applicants, let τ ≡ E[T |Hired = 1] be the average

test score and let ζ ≡ E[Z|Hired = 1] be the average agent utility z-score. Taking

expectation over the expressions above, the payoffs to the agent and principal from a

set of hired applicants are

VA(τ, ζ; θ) =
σ2
Q

σ2
Q + σ2

T

· τ + σUA(θ) · ζ (20)

VP (τ, ζ; θ) =
σ2
Q

σ2
Q + σ2

T

· τ + σUP (θ) · ζ. (21)

The players’ payoffs have been reduced to increasing linear functions of two moments:

the average test score τ and the average z-score ζ. The agent’s preferences over (τ, ζ)

depend on the agent’s type θ = (σ2
S, σ

2
B) through the induced value σUA(θ), and

likewise the principal’s preferences through σUP (θ). Lemma 2 looks at how σUA and

σUP vary with the two components of the type.

Lemma 2.

1. σUA(σ2
S, σ

2
B) and σUP (σ2

S, σ
2
B) both decrease in σ2

S.

31



2. σUA(σ2
S, σ

2
B) increases in σ2

B and σUP (σ2
S, σ

2
B) decreases in σ2

B.

3. Across θ = (σ2
S, σ

2
B) ∈ R2

++, the image of σUA(θ) is R++. Given σ̃UA ∈ R++, the

image of σUP (θ) over θ satisfying σUA(θ) = σ̃UA is the interval
(

0,min
{
σ̃UA ,

σ2
Qσ

2
T

σ2
Q+σ2

T

1
σ̃UA

})
.

Part 1 confirms that the effect of making the agent more informed (lower σ2
S) is to

increase both σUA and σUP , putting more weight on utility z-scores. A more informed

agent has higher variance of utilities across applicants at a given test score, and these

utility differences become more meaningful to the principal as well. Part 2 shows that

as the agent’s bias σ2
B increases, the agent and principal variances move in opposite

directions: σUA increases while σUP declines. The agent’s utilities become more spread

out as her biases grow. But because this dispersion is driven by idiosyncratic factors,

the principal infers a smaller change to his own utilities from a one standard deviation

change in agent utilities.

Part 3 describes the set of possible pairs of σUA and σUP across all values of θ;

see Figure 4. To interpret the upper bound for σUP at a given σUA , first note that if

the agent has no information (σ2
S →∞) and no bias (σ2

B → 0), then σUP = σUA = 0.

Improving information moves us up the y = x line in (σUA , σUP )-space. The maximum

possible value of σUP is achieved when the agent has no bias (σ2
B → 0) and perfect

information (σ2
S → 0), with σUP = σUA =

σQσT√
σ2
Q+σ2

T

. The value of σUA can then be

increased without bound by increasing the bias, but increasing the bias lowers σUP at

a rate of 1
σUA

.

4.3 Rewriting the contracting space

Players’ preferences over average test scores τ and average z-scores ζ depend on the

agent’s type θ through Equations (20) - (21). Given a contract and given her type,

the agent will choose the message that maximizes (20). In other words, any contract

reduces to a set of possible (τ, ζ) from which the agent may choose. What pairs of

average test scores τ and average z-scores ζ are possible?

As a first step, for x ∈ (0, 1), let R(x) denote the expected value of the top x

quantiles of a standard normal distribution. That is, R(x) is the mean of a standard

normal that is truncated below at a point r such that x = 1−Φ(r). Letting φ be the
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Figure 4: The region of possible (σUA(θ), σUP (θ)).
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The shaded region shows the possible values of σUA
(θ) and σUP

(θ) across θ = (σ2
S , σ

2
B) ∈ R2

++.
Increasing information (reducing σ2

S) moves the values up and right in the region; see the dashed
curves. Increasing the bias σ2

B moves the values down and right; see dotted curves.

pdf of a standard normal and Φ−1 the inverse cdf, standard results imply that

R(x) =
φ(Φ−1(1− x))

x
. (22)

The function R(x) decreases from infinity to 0 as x goes from 0 to 1.

Lemma 3. Let W ⊆ R2 be defined as

W ≡
{

(τ, ζ) | τ
2

R2
T

+
ζ2

R2
Z

≤ 1

}
, with (23)

RT ≡
√
σ2
Q + σ2

T ·R(k) (24)

RZ ≡ R(k). (25)

There exists a set of k applicants yielding average test scores and z-scores (τ, ζ) if and

only if (τ, ζ) ∈ W .

That is, the set W of possible (τ, ζ) is an ellipse centered at (0, 0) with principal

axes RT and RZ ; see Figure 5. For intuition, recall that the empirical distribution of

test scores is normal with mean 0 and variance σ2
Q + σ2

T , while the distribution of z-
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scores at every test result is normal with mean 0 and variance 1. The highest possible

average test score for any set of k applicants comes from selecting the k applicants

with the highest test results (a step function acceptance rate), yielding τ = RT and

ζ = 0. The highest possible average z-score comes from selecting the k applicants

with the highest z-scores (a constant acceptance rate function), yielding τ = 0 and

ζ = RZ . We get the opposite points if we select applicants with the lowest test

results or the lowest z-scores. The boundary connecting these four extreme points is

an ellipse, in some sense following the elliptical shape of the joint normal distribution.

As previously discussed (Proposition 3), if a contract asks an agent to select any set

of applicants subject only to a given average test score, that contract induces a normal

CDF acceptance rate. Such a contract can now be interpreted as one which restricts τ

but not ζ. Given that the agent’s payoff is increasing in ζ, we see that the agent must

be choosing ζ on the upper frontier of W . In other words, the (τ, ζ) values on the

upper boundary of the ellipse in Figure 5 are those induced by deterministic contracts

with normal CDF acceptance rates of the form α(T ) = Φ(γTT −γ0). Applicant pools

with τ > 0 correspond to γT > 0; the value (τ, ζ) = (0, RZ) is achieved by a constant

acceptance rate, γT = 0; and τ < 0 is achieved by γT < 0.

Any contract can be characterized as some subset W ⊆ W of feasible (τ, ζ) pairs.

The contract can specify any (measurable) subset of possible τ in [−RT , RT ], since

test scores are observable. Then, for each allowed τ in W , there is some range of

possible ζ.30 Monotonicity – Observation 1 part 2 – implies that the highest possible

ζ at each allowed τ must be weakly positive. (Otherwise the agent could “permute”

her report, listing her less preferred applicants as more preferred, to flip the sign of ζ.)

And for any chosen τ the agent would always pick this highest ζ. For the purposes of

contracting, then, we can restrict attention to the subset of W with ζ ≥ 0; graphically,

the upper half of the ellipse in Figure 5.

The principal’s contracting problem can now be stated as a choice of W , a subset

of (the top half of) W . Given W , the agent observes σUA(θ) and chooses (τ, ζ) ∈ W
to maximize VA from (20). The principal chooses the set W to maximize Eθ∼G[VP ]

from (21), taking into account predictions of the agent’s behavior at each type.

30The average test score of any set of selected applicants is directly contractible. The possible
z-scores at a given average test score can be inferred from the rules of the contract.
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Figure 5: The space of feasible (τ, ζ) values, W .
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4.4 Projecting the type space to one dimension

Equations (20) and (21) show that the principal and agent preferences over (τ, ζ)

depend on θ only through the standard deviation terms σUA(θ) and σUP (θ). Indiffer-

ence curves are downward sloping and linear in (τ, ζ)-space. A higher value of the

respective standard deviation leads to a higher weight on ζ relative to τ , implying

flatter indifference curves. Because σUP (θ) < σUA(θ), the agent has flatter indifference

curves than does the principal. The ideal point for each player is on the upper-right

frontier of the ellipse W , defined in Lemma 3 and illustrated in Figure 5. Due to her

flatter indifference curves, the agent’s ideal point has a higher average z-score ζ and

a lower average test score τ than the principal’s.

The agent’s utility over (τ, ζ) depends on θ only through the one-dimensional

statistic σUA(θ); we can equivalently write VA(τ, ζ; θ) as VA(τ, ζ;σUA(θ)). Hence, the

principal can never separate any two agent types θ with the same σUA(θ). They

choose the same (τ, ζ) given any contract.31 So in solving for the optimal contract,

it is without loss of generality to average the principal’s payoffs across types θ with

31I impose the standard contracting assumption that, if the agent is indifferent between two (τ, ζ)
outcomes, she will break her indifference in the principal’s favor. Since σUA

(θ) > σUP
(θ) for all

θ, we see from the payoff expressions (20) and (21) that this tie-breaking rule always chooses the
outcome with higher τ and lower ζ. Hence, agent types with the same σUA

(θ) act identically even at
possible indifferences. (Under the contract I derive in Proposition 5, there will actually be no such
indifferences.)
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the same σUA(θ). Formally, I now replace the principal’s objective function VP (τ, ζ; θ)

from (21), the payoff given an agent of type θ, with V̂P (τ, ζ;σUA(θ)), the principal’s

subjective expectation of VP (τ, ζ; θ) conditional on σUA(θ):

VA(τ, ζ;σUA(θ)) =
σ2
Q

σ2
Q + σ2

T

· τ + σUA(θ) · ζ (26)

V̂P (τ, ζ;σUA(θ)) ≡ Eθ∼G[VP (τ, ζ; θ)|σUA(θ)]

=
σ2
Q

σ2
Q + σ2

T

· τ + Eθ∼G[σUP (θ)|σUA(θ)] · ζ

=
σ2
Q

σ2
Q + σ2

T

· τ + σ̂UP (σUA(θ)) · ζ, (27)

for σ̂UP (σ̃UA) ≡ Eθ∼G[σUP (θ)|σUA(θ) = σ̃UA ].

The function σ̂UP (σ̃UA) describes the principal’s belief on the expectation of σUP (θ)

across all agent types with σUA(θ) = σ̃UA . To understand this function, it may help

to recall that for any fixed σ̃UA , the range of possible σUP (θ) across types such that

σUA(θ) = σ̃UA is described by Lemma 2 part 3. The average across all such types lies

in the same range. Graphically, then, σ̂UP is some function mapping realizations of

σUA(θ) into the shaded region of Figure 4.

We have now effectively projected the type space from the two-dimensional θ

to the one-dimensional σUA(θ). The two-dimensional distribution G over the type θ

determines both the distribution of the projected type σUA(θ) and the function σ̂UP (·)
summarizing the principal’s preferences at a given realization of σUA(θ). Let H denote

the cdf of σUA(θ) induced by θ ∼ G.

4.5 Projecting the action space to one dimension plus money

burning

Focus on the top half of the ellipse W of Figure 5, the values of (τ, ζ) that may be

induced by an agent’s choices in a contract. Any pool of applicants with (τ, ζ) off of

the upper-right frontier of the (half-)ellipse – an acceptance rate that is not of the

form Φ(γTT − γ0), for γT ≥ 0 – is dominated. There is another pool of k applicants

with strictly higher τ at the same ζ that improves the payoff of both players. It

is as if there is a one-dimensional action space along this upper-right frontier, plus

36



the possibility of joint “money burning” that hurts both players. Let us make that

formal.

For ζ ∈ [0, RZ ], define τ̄(ζ) as the maximum possible τ given ζ, from Lemma 3:

τ̄(ζ) ≡ RT ·

√
1− ζ2

R2
Z

=
√

(σ2
Q + σ2

T ) · (R(k)2 − ζ2). (28)

The minimum possible τ given ζ is −τ̄(ζ).

Now take any (τ, ζ) in the upper half of the ellipse. From (26) and (27), the agent

and principal payoffs can be written as

VA(τ, ζ;σUA(θ)) =

[
σ2
Q

σ2
Q + σ2

T

· τ̄(ζ) + σUA(θ) · ζ

]
− δ (29)

V̂P (τ, ζ;σUA(θ)) =

[
σ2
Q

σ2
Q + σ2

T

· τ̄(ζ) + σ̂UP (σUA(θ)) · ζ

]
− δ (30)

for δ =
σ2
Q

σ2
Q + σ2

T

· (τ̄(ζ)− τ).

The bracketed terms give the payoff from an applicant pool with the same ζ, but with

τ projected to τ̄(ζ) on the right edge of the ellipse. We then subtract the “money

burning cost” of δ ≥ 0, the loss from taking τ below rather than equal to τ̄(ζ).

Importantly, the money burning cost δ is the same for both players, and does

not depend on the agent’s type θ. This will mean that it fits the framework of one-

dimensional delegation with money burning developed in Amador and Bagwell (2013).

Instead of thinking about an applicant pool as having payoff-relevant moments τ and

ζ, we can equivalently think about it as having payoff-relevant moments ζ and δ. An

outcome of a contract corresponds to an average z-score ζ ∈ [0, RZ ] along with a level

of money burning δ ≥ 0.32

4.6 Optimal contracts

We can now formally translate the current model into a one-dimensional delegation

model. Treat ζ as a one-dimensional “action” to be taken, and allow for the possibility

32Given ζ, the money burning cost δ cannot exceed 2τ̄(ζ)
σ2
Q

σ2
Q+σ2

T
. I will focus on contracts in which

money burning is not used even when any δ ≥ 0 is feasible, so the upper limit of δ will not bind.
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of required money burning δ(ζ) ≥ 0 when action ζ is taken. Payoffs over actions are

determined by a one-dimensional “state,” σUA(θ). The agent is biased towards higher

actions than the principal: her ideal ζ is larger for every realization of σUA(θ), because

σ̂UP (σ̃UA) < σ̃UA for all σ̃UA . This is the one-dimensional delegation setting in which –

under appropriate regularity conditions – action ceilings are often found to be optimal.

Specifically, Amador et al. (2018) provides regularity conditions on utility functional

forms and distributions to guarantee that a ceiling on actions without money burning

is optimal. Their results imply conditions on H and σ̂UP (·) – implicitly, conditions

on G – guaranteeing that an optimal contract can be expressed as a choice over any

ζ less than or equal to a ceiling. Money burning is identically 0, meaning that given

ζ the agent chooses τ = τ̄(ζ).

More meaningfully, a ceiling on the unobservable ζ is exactly equivalent to a floor

on the observable average test score τ of accepted applicants. In either case, the agent

picks (τ, ζ) from an interval on the upper-right frontier of the ellipse W . See Figure

6.

We can also interpret this contract as specifying a menu of acceptance rate func-

tions. As we have seen, when given the freedom to choose any applicants subject

to a restriction on average test scores, the agent’s picks generate a normal-CDF ac-

ceptance rate of the form Φ(γTT − γ0). A floor on τ corresponds to a floor on the

coefficient γT . Proposition 5 gives the formal result.33

Proposition 5. Let the distribution H have continuous pdf h over its support, with

the support a bounded interval in R+, and let σ̂UP (·) be continuous over the support. If

H(σ̃UA) + (σ̃UA − σ̂UP (σ̃UA))h(σ̃UA) is nondecreasing in σ̃UA, then the optimal contract

is deterministic and can be characterized in either of the following two ways:

1. The agent is given a floor on the steepness of the acceptance rate function. She

may select any k applicants she wants as long as the induced acceptance rate

α(T ) is of the form Φ(γTT − γ0), with γT at or above some specified level Γ > 0.

2. The agent is given a floor on the average test score. She may select any k

applicants she wants, subject to the average test score of hired applicants τ being

at or above some specified level κ > 0.

As in Amador and Bagwell (2013) and other papers on one-dimensional delegation,

33Proposition 9 in Appendix E.3 derives these same contract forms as optimal in a model combining
the idiosyncratic biases of the normal specification with the systematic biases of the two-factor model.
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Figure 6: The contract as a floor on the average test score.

-RT RTFloor on τ
τ
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Here I highlight on the upper-half of the ellipse W from Figure 5. An agent of any type values
both τ and ζ positively. So if the agent is given a ceiling on ζ, she chooses some (τ, ζ) point on
the thick black curve on the upper-right frontier, and has full flexibility among these points. The
agent acts identically if given a corresponding floor on τ .

the floor (Γ or κ) is set to a level that is correct, on average, for the agents who are

bound by the floor.34 It is possible that the floor always binds – that all agent types

choose the same average test score of κ. Or the principal might “screen” agent types

by setting the floor to be low enough that agents sometimes exceed it.35

Returning to the intuition behind the possible benefit of screening, there are two

34By itself, the first-order condition on how the floor is set only implies that there is no benefit
from making the minimum acceptance rate steeper or shallower in the class of normal CDFs; it does
not imply that there is no benefit from pointwise increases or decreases in the acceptance rate at
individual test results that take us outside the normal CDF class. However, this latter claim also
holds. To see why, consider applying an arbitrary newly proposed acceptance rate function (which
still accepts k applicants) to the set of agents who are currently bound at the floor. This new
acceptance rate function induces some average test score and average z-score (τ, ζ) in the ellipse W
(see Lemma 3) – the same pair (τ, ζ) for each of the agents. Any (τ, ζ) is weakly dominated for the
principal by some point on the frontier, induced by a normal CDF acceptance rate; and the current
normal CDF acceptance rate has been established to be preferred to any other.

35Call the principal’s ex ante preferred test score the one he would set if he were restricted to
giving the agent a (no-screening) contract that fixed the average test score. By Lemma 2 of Amador
et al. (2018), the floor in the contract of Proposition 5 will be always-binding if and only if the
agent’s highest possible ideal average test score over the type support is below the principal’s ex
ante preferred test score. In this case the principal would set the floor at his ex ante preferred level
and the agent would always want a lower score.

One sufficient condition for a non-binding floor is that the support of H extends to σ̃UA
= 0, in

which case any floor would be nonbinding for those agents with σUA
(θ) small enough.
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reasons why an agent would prefer lower average test scores: because she has better

information, or because she is more biased. As discussed above in Section 3.3 and

Lemma 2, the principal and agent are aligned with respect to information σ2
S and

misaligned with respect to bias σ2
B. If an agent wants lower average test scores

because she is more informed, the principal also wants lower test scores; if an agent

wants lower test scores because she is more biased, the principal wants higher test

scores. Hence, any benefit of screening – of allowing the agent some flexibility over the

average test score – would seem to come from the principal’s uncertainty about the

agent’s information, not about her bias. Let us formalize this intuition by considering

uncertainty about only one of bias or information at a time.

Commonly known information, uncertain bias.

Proposition 6. Suppose that the agent’s information level σ2
S is commonly known.

Then the optimal contract can be characterized in either of the following two ways:

1. The agent is allowed to choose any k applicants as long as the induced acceptance

rate α(T ) is Φ(γTT − γ0), with γT equal to some specified level Γ > 0.

2. The agent may select any k applicants as long as the average test score of hired

applicants τ is equal to some specified level κ > 0.

Proposition 6 states that when the agent’s bias is uncertain but her information

is commonly known, the principal doesn’t screen across agent types and simply fixes

the acceptance rate function, or the average test score, in advance. Additional distri-

butional assumptions such as those in Proposition 5 are not needed. (Once again, the

agent interprets this equality constraint as a floor: given flexibility, she would choose

weakly flatter acceptance rate functions and lower average test scores.)

In fact, Proposition 6 follows from the slightly stronger result of Proposition 10

in Appendix G. Proposition 10 shows that there will likewise be no screening if the

principal’s minimum ideal τ over all possible types is above the agent’s maximum

ideal τ – that is, if the maximum σ̂UP (σUA(θ)) in the support is below the minimum

σUA(θ). For instance, the conclusions of Proposition 6 apply any time σ̂UP (σ̃UA) is

always decreasing in σ̃UA . Commonly known information is sufficient to imply that

σ̂UP is decreasing (as seen in Lemma 2 part 2 and in Figure 4) but is not necessary.
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Commonly known bias, uncertain information. In the reverse case with com-

monly known bias but uncertain information, there is a potential benefit from flexi-

bility. I still require the distributional assumptions of Proposition 5 in order to derive

the optimal mechanism as a (possibly binding) floor on steepness or the average test

score. But I can give a slightly simpler sufficient condition for these assumptions to

hold.

Lemma 4. Let bias σ2
B be commonly known, and let the distribution H have contin-

uous pdf h over its support, with the support a bounded interval in R+. If h(σ̃UA) is

increasing in σ̃UA over the support, then the hypotheses of Proposition 5 are satisfied:

σ̂UP (σ̃UA) is continuous and H(σ̃UA) + (σ̃UA − σ̂UP (σ̃UA))h(σ̃UA) is nondecreasing.

5 Discussion and extensions

In the Harvard Business Review, McAfee (2013) reports that algorithms have been

trained to outperform human experts in making medical diagnoses, in predicting

the recidivism of parolees or the outcomes of sports matches, and in many other

domains. Algorithms often even improve on experts who first observe the algorithm’s

suggestions – human decisionmakers introduce biases and add noise. But, as McAfee

writes, information from human experts can still be valuable: “things get a lot better

when we flip this sequence around and have the expert provide input to the model,

instead of vice versa. When experts’ subjective opinions are quantified and added to

an algorithm, its quality usually goes up.”

The current paper can be thought of as studying how subjective opinions should

be incorporated into an algorithm when the agent may be biased. I take the machine

learning or statistics problem of optimal prediction from a variety of information

sources as a black box. Instead, I focus on a strategic issue. If an agent is biased,

then any mechanism that allows for her soft information to influence outcomes must

be allowing her biases to do so as well. The information that one recovers will depend

on the mechanism that is to be used. The contracts I study make the best possible

use of the agent’s soft information, subject to incentive-compatibility.

I conclude by discussing some issues that have been raised by the above analysis.
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5.1 Statistical discrimination and commitment

Becker (1957) and the subsequent literature suggests a test for bias – “taste-based”

rather than “statistical” discrimination – when an agent makes a number of binary

decisions. Suppose one wants to test for, say, racial discrimination in hiring. After

an applicant is hired, we observe his or her race as well as a measure of ex post

quality. The hiring manager is demonstrated to be biased if the quality of the marginal

applicants – the ones she was just indifferent about hiring – varies across races.

In this paper, I begin with the assumption that an agent is in fact biased and I

search for an optimal contract restricting her behavior. Unsurprisingly, though, there

is a connection to the problem of testing whether an agent is biased with respect

to observables. When the bias and information structure are known, the “upper

bound acceptance rule” of Propositions 1 and 2 equalizes marginal qualities across

realizations of hard information. In other words, it “de-biases” the agent by inducing

her to select applicants in a manner that passes the bias test.

Interestingly, agents are not necessarily fully de-biased by the optimal contract

when their types are unknown. The screening contract of Proposition 5 proposes a

floor on the steepness of the acceptance rate as a function of the test score. First

consider the agents who find this floor binding: a mix of those with good information

and/or a strong bias. Those with a stronger bias will pick worse marginal applicants at

low test scores, and those with better information will pick better marginal applicants

at low test scores. Averaged across all agents at the floor, the quality of the marginal

applicant is indeed equalized across scores – the agents collectively pass the bias

test.36 Now consider those agents who choose steeper acceptance rates than required:

those with poor information and/or a weak bias. They hire their first-best pool of

applicants. The marginal applicants they hire at high test scores are of higher quality,

on average, than those at low test scores. These agents fail the bias test.

The bias test has a nice connection to the role of the principal’s commitment

power. If an agent’s choices pass the bias test, the principal does not want to adjust

acceptance rates ex post. When the bias test is failed, though, the principal is tempted

to intervene. He wants the agent to accept more applicants at test results with high

marginal quality, and fewer at test results with low marginal quality. In particular,

36Recall from footnote 34 that the acceptance rate at the floor is the principal-optimal acceptance
rate function for the distribution of agents who are bound by the floor. This fact implies that,
averaging across these agents, marginal quality is equalized across test scores.
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if an agent facing the contract of Proposition 5 chooses an acceptance rate steeper

than what is required, the principal wants to force this agent to go back and choose

an even steeper acceptance rate. Of course, the agent would alter her initial choice

of applicants if she did not trust the principal to honor the contract; the principal is

ex ante better off by committing not to change the rules after the fact.

This commitment logic is analogous to that explored in one-dimensional delegation

problems. Suppose an agent is always biased towards an action below what the

principal wants, and so the principal sets a floor on the agent’s actions. The floor is

optimally set so that, across all of the agents who choose an action at the floor, the

action is correct on average. But when an agent chooses an action above the floor,

the principal would want to intervene and choose an even higher action.

5.2 Hidden test results and multiple agents

If the principal can hide the test results from the agent, he can potentially improve

on the contracts that I consider. As a simple illustration, consider the normal specifi-

cation with known agent type. There, when test results can be hidden, the principal

can actually achieve his first-best outcome. One such contract would be as follows.

The principal hides the test results T and asks the agent to report her privately

observed signal S for every applicant. The principal then calculates the variance of

the reported values of S as well as the covariance of S with T . If the agent were

in fact to report each S truthfully, the variance of S reports would be σ2
S + σ2

Q and

the covariance between S and T would be σ2
Q. Any misreport that maintained the

variance of S would reduce the covariance. So, if the variance and covariance match

the predictions, the principal infers that S has been truthfully reported and the con-

tract implements the principal’s first best. If not, the contract chooses applicants

uniformly at random. Because the agent prefers some discretion to none, the threat

of random selection incentivizes her to report truthfully.

Now return to public test results, but suppose that multiple agents evaluate each

applicant. From the perspective of one agent, another agent’s soft reports are exactly

like hidden test results – they are observed by the principal, but can be hidden from

the agent in question. Once again, the ability to hide these reports gives the principal

levers to extract additional information from the agent(s).
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5.3 Inference from performance data

This paper has been studying the principal’s problem of choosing a contract given

some specified beliefs about an agent’s type. Now suppose that the principal is

looking to set the contract for an agent of unknown type by using data from past

hires. In particular, the principal has access to ex post performance data – quality

realizations – of previously hired applicants. How might this performance data be

used to determine contracts going forward?

To remain consistent with the previous analysis, assume that the newly introduced

performance data will only used to design new contracts: there is still no way to

directly reward agents for hiring applicants who end up performing better.37

One simple exercise is as follows. Suppose that (i) we are in the environment

described by the normal specification; (ii) an agent had previously been given full

discretion to hire her favorite k applicants; and (iii) this agent made these past de-

cisions “myopically” – she selected applicants without realizing that the principal

would use her behavior to change the contract in the future. The principal is now

setting a new contract after observing the agent’s previous acceptance rate, as well

as the distribution of realized quality of the accepted applicants, at each test result.

In fact, the principal can infer the agent’s type, and thus implement the optimal

contract of Proposition 3 going forward, by looking at just two moments of the data.

The principal need only calculate the average test score of previously accepted ap-

plicants, and their average quality. In Appendix F, I give an explicit formula for the

optimal contract as a function of these two moments. An agent whose previous hires

were of higher average quality tends to be less biased and/or more informed, and

should be given a flatter contract. Fixing the average quality, an agent who chose a

higher average test score should be given a steeper contract.

There are two obvious objections to the above exercise. First, the agent might

not act myopically – she might alter her hiring behavior at early periods if she knows

that her behavior will affect the contract she is offered in later periods. Second,

performance data for one agent’s hires might only be available after a long delay.

A more reasonable exercise may be to suppose that the principal does not use any

37Also maintain the assumption that “principal fundamentals” – the distribution of applicant
quality in the population and the informativeness of the test – are known. It is an interesting
question in its own right to consider how the principal would best learn about these fundamentals
from the data. See the discussion “Inferring σ2

Q and σ2
T ” in Appendix F.
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individual agent’s past performance to update her own contract. Instead, he gathers

performance data from a pool of agents and uses the aggregated results to determine

contracts.

Sticking with the normal specification, if we take the model literally then the

principal can give a sample of agents full discretion; observe the average test score

and average performance of each agent; then use this information to infer the joint

distribution of bias and information (σ2
S, σ

2
B) in the population. The principal then

imposes the optimal contract for that joint distribution. Alternately, one can take a

first-order approach. Proposition 5 highlights a one-dimensional parametric class of

contracts, those which give a floor on the average test score or on the steepness of the

acceptance rate. The principal can try different floors, look at average performance

at each floor, and adjust over time until he finds the floor yielding the highest quality

hired applicants.
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A Common knowledge without alignment

Under alignment up to distinguishability, the monotonicity constraint is not binding

in searching for the optimal contract under common knowledge of agent type. This

section shows how to apply now-standard “ironing” logic (see, e.g., Myerson (1981))

to solve the optimal contracting problem when alignment up to distinguishability

does not hold, and thus when the monotonicity constraint may be binding.

First, let us rewrite the function describing the principal’s utility for an appli-

cant. Previously I defined the expected quality in (T, UA)-space through UP (t, uA) =

E[Q|T = t, UA = uA]. Now define a similar function, l, which tells us the expected

quality at a given test result and a quantile (rather than a realization) of UA. Specif-

ically, at each test result t, there is a continuous conditional distribution of UA which

can be rewritten in terms of its quantiles (i.e., by going from a CDF to an inverse

CDF): UA increases in quantile at each t, with quantile 0 at the infimum of the sup-

port of UA|T = t and quantile 1 at the supremum. For t ∈ T and x ∈ [0, 1], let l(t, x)

be equal to UP (t, uA) for uA at the xth quantile of the distribution of UA|T = t. Higher

x gives higher uA; alignment up to distinguishability is equivalent to the statement

that l(t, x) is weakly increasing in x for every t.

When alignment up to distinguishability fails, there exist test results t for which

l(t, ·) is not weakly increasing. At these test results, define an ironed version of the
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function l as follows. First integrate l over quantiles to get L(t, x) ≡
∫ x

0
l(t, x′)dx′.

Now “iron” L, separately at each test result t, by defining L(t, ·) to be the convex hull

of L(t, ·), i.e., the highest convex function that is weakly below L(t, ·). Finally, let

the ironed l be defined as l(t, x) ≡ ∂L
∂x

(t, x). The function l is defined for almost every

x ∈ [0, 1] by convexity of L(t, x) in x, and furthermore l(t, x) is weakly increasing in x

at every t. At any t for which l(t, ·) is weakly increasing, it holds that l(t, x) = l(t, x)

for all x.38

To restate, the principal’s utility for an applicant with test result t and agent

utility quantile x is l(t, x). The ironed principal utility is l(t, x). Loosely speaking,

we now proceed as if we were solving for UBAR as in Section 3.1, after replacing true

principal utilities for each applicant with ironed – and therefore aligned – utilities.

More formally, let us now write an acceptance rule as χ : T × [0, 1] → [0, 1],

mapping test result and quantile (t, x) into an acceptance probability. As before,

implementable acceptance rules must be monotonic – the acceptance rate weakly

increases in x – and lead to a total mass of k acceptances. A new ironing constraint

also states that any applicants with the same test result and the same ironed principal

utility must be given the same acceptance rate:

For any x, x′, t with l(t, x) = l(t, x′), it must hold that χ(t, x) = χ(t, x′).

Continuing the ironing procedure, the optimizing acceptance rule χ is constructed

as follows: accept k applicants so as to maximize the average ironed principal utility

of those accepted, 1
k
E[χ(T,X) · l(T,X)], for X uniformly drawn on [0, 1]. The value

of this problem is unaffected by the ironing constraint, so that constraint can be

costlessly imposed. The constructed acceptance rule will satisfy monotonicity because

l(t, x) is weakly increasing in x even if l(t, x) is not.

This acceptance rule amounts to first finding the cutoff ironed principal utility

level lc that will lead to accepting k applicants. The acceptance rule then accepts

applicants (t, x) with l(t, x) > lc and rejects those with l(t, x) < lc. One can choose

arbitrary acceptance probabilities in [0,1] when l(t, x) = lc as long as the total share

of applicants accepted is k, and as long as we satisfy the ironing constraint at each t.

One way of satisfying this ironing constraint is to choose a single acceptance

38If l(t, x) is increasing in x, then L(t, x) is convex in x with ∂
∂xL(t, x) = l(t, x). Convexity of

L(t, x) in x implies that L(t, x) = L(t, x) for every x, and therefore that l(t, x) = ∂
∂xL(t, x) =

∂
∂xL(t, x) = l(t, x).
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probability in [0, 1] for all applicants (t, x) with l(t, x) = lc, where the probability is

set so that a total of k applicants are accepted. This does indeed give an optimal

(implementable) acceptance rule. It involves randomization at any test result t for

which there is an interval of x over which l(t, x) = lc.

Alternatively, we can satisfy the ironing constraint by choosing acceptance proba-

bilities for those applicants with l(t, x) = lc that are constant in x (as above) but may

vary in t. For instance, it is always possible to order the possibly multidimensional

test results in T in such a manner that the acceptance probability for applicants with

l(t, x) = lc is set at 1 for test results t below a threshold t∗; 0 for test results above

t∗; and some intermediate level in [0,1] for the single threshold test result t∗.

In this alternative way of satisfying the ironing constraint, there is at most a single

test result for which an interior acceptance rate is ever used. That is to say, it is always

possible to find an optimal contract which is either deterministic, or in which there are

stochastic acceptances at just a single test result. When test results are continuously

distributed, of course, behavior at any single test result can be disregarded. So with

continuously distributed test scores there exists a deterministic optimal contract.

B Full Discretion under the normal specification

An agent who has full discretion to select k applicants will choose those with UA above

some fixed level – in Figure 2, above a horizontal line. We can solve explicitly for

this Full Discretion acceptance rate under the normal specification. Working through

the algebra of Section 3.3, but replacing the UBAR acceptance cutoff line ucA(T )

with a constant in T , under Full Discretion the agent chooses an acceptance rate of

Φ(γFD
T T − γ0) for

γFD
T =

σ2
Q

(σ2
Q + σ2

T )
√
σ2
B + η

, (31)

with η as defined in (11). Putting together (12) and (31), γ∗T = γFDT +
σ2
Qσ

2
B

η(σ2
Q+σ2

T )
√
σ2
B+η

,

and hence 0 < γFD
T < γ∗T . The agent with Full Discretion accepts a greater share

of applicants at higher test scores (0 < γFD
T ) because she places some weight on

quality. But, as discussed in Section 3.3, the Full Discretion outcome is flatter than

the principal’s optimal contract under knowledge of the agent’s type (γFD
T < γ∗T ).
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We can replicate the comparative statics of Proposition 4 for the Full Discretion

outcome rather than the optimal contract, where γFD
T

√
σ2
Q + σ2

T is the coefficient on

the z-score of the test result.

Proposition 7. Under the normal specification, the Full Discretion steepness param-

eter γFD
T from (31) has the following comparative statics and limits:

1. γFD
T is independent of k.

2. γFD
T and γFD

T

√
σ2
Q + σ2

T decrease in σ2
T , with limσ2

T→0 γ
FD
T ∈ (0,∞), limσ2

T→0 γ
FD
T

√
σ2
Q + σ2

T ∈

(0,∞), and limσ2
T→∞ γ

FD
T = limσ2

T→∞ γ
FD
T

√
σ2
Q + σ2

T = 0.

3. γFD
T increases in σ2

S, with 0 < limσ2
S→0 γ

FD
T < limσ2

S→0 γ
∗
T and limσ2

S→∞ γ
FD
T ∈

(0,∞).

4. γFD
T decreases in σ2

B, with limσ2
B→0 γ

FD
T = limσ2

B→0 γ
∗
T and limσ2

B→∞ γ
FD
T = 0.

5. γFD
T and γFD

T

√
σ2
Q + σ2

T increase in σ2
Q, with limσ2

Q→0 γ
FD
T = limσ2

Q→0 γ
FD
T

√
σ2
Q + σ2

T =

0, 0 < limσ2
Q→∞ γ

FD
T < limσ2

Q→∞ γ
∗
T , and limσ2

Q→∞ γ
FD
T

√
σ2
Q + σ2

T =∞.

There are a few main observations to make. The first is that, relative to Proposi-

tion 4, the sign is the same on the derivative with respect to the agent’s information

σ2
S (part 3) but is reversed for the derivative with respect to her bias σ2

B (part 4). As

discussed in the main text, the principal and agent agree that a more informed agent

should have a flatter acceptance rate function. But when the agent is more biased,

she prefers flatter acceptance rates, while the principal prefers steeper ones.

Second, part 4 confirms that as the agent’s bias disappears, the agent’s preferred

outcome goes to that of the principal’s optimal contract: γFD
T → γ∗T . Without bias,

the incentives of the two parties are perfectly aligned.

Third, we now get a clean comparative static on σ2
Q, whereas its sign under the

optimal contract was ambiguous. The Full Discretion acceptance rate gets steeper

with respect to test scores (in both absolute and relative terms) when the variance of

population quality increases. When this variance goes to zero, the agent’s preferences

are entirely driven by bias, and so the Full Discretion outcome becomes flat even as

the principal-optimal contract becomes infinitely steep.
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C Approximated mechanisms in a finite economy

In this section, I explore how one might implement finite approximations of the op-

timal contract when the agent’s type is commonly known. The body of the paper

develops two characterizations of the continuum optimal contract, through the ac-

ceptance rate function of Proposition 1 and the average score of Proposition 2, which

are summarized for the normal specification in Proposition 3 parts 1 and 2. Here, I

separately explore approximations of these two contract forms through binned accep-

tance rates and a minimum average score. This exercise is intended to illustrate how

one might put these contract forms into practice, while also giving insight into how

the two contract forms compare.

C.1 A finite example

Example primitives. In the continuum model of the paper, there is a mass 1 of

applicants, of which k will be accepted. The aggregate distributions of applicant

characteristics Q, T , S, and B are given by FQ, FT |Q, FS|T,Q, and FB|T,S. For this

section, I instead suppose that that there is a finite number N of applicants with

characteristics drawn iid from these distributions, from which kN will be accepted.

Specifically, let the distributions follow the normal specification, with parameters

set to σ2
Q = 1, σ2

T = 4, σ2
S = 1, and σ2

B = 1. The agent will accept a share k = 1/3 of

the applicants.39 I will consider finite economies with N = 12, 24, 48, or 96 applicants,

out of which 4, 8, 16, or 32 will be accepted.

Overview of the mechanisms. In the context of this example, I will go through

what I view as the most natural finite approximations of the two contract forms of

Proposition 3, with technical details in Appendix C.2. Of course, the exact imple-

mentations I consider are certainly not the only possible ways of approximating the

continuum contracts for a finite economy. It is doubtless the case that some further

tuning could improve payoffs.

To approximate the acceptance rate function of Proposition 3 part 1, I use a

binned acceptance rate implementation: applicants are divided into bins based on

39The numbers were chosen in part to guarantee that in the continuum economy, the optimal
contract does considerably better than contracts which give the agent either No Discretion or Full
Discretion. See numerical details in Appendix C.2.1.
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their test scores, and then the agent chooses a specified number of applicants from

each bin. I consider bins that put together a uniform number of applicants M for

every possible bin size M that is a factor of N . For instance, at N = 24, I consider

M = 1, 2, 3, 4, 8, 12, 24. (The numbers of applicants N have been chosen as multiples

of 12 to allow for many possible bin sizes.) The top M scores are binned together,

then the next M , and so forth. The manager then selects some predetermined number

of applicants from each bin. At the extremes, M = 1 corresponds to No Discretion,

in which applicants are selected based only on their test scores; and M = N corre-

sponds to Full Discretion, in which the manager can select any kN applicants. After

calculating the principal’s expected payoffs for every possible M at some fixed N , we

can say that the value M yielding the highest payoff is the preferred bin size.

To approximate the average score contract of Proposition 3 part 2, I use a mini-

mum average score implementation: the manager can select any kN applicants whose

average test score is sufficiently high. I consider two possible floors for the average

score. The first is the “naive floor” that is set in advance at the level that is optimal

for the continuum contract. Among other concerns with this naive floor, it may be the

case that realized test scores were lower than expected and no set of kN applicants

have average scores at or above this level. I correct the naive implementation in an ad

hoc manner by supposing that if the floor is not achievable, then the manager must

select the applicants with the top kN test scores. The second floor I consider is a

“responsive floor” that adjusts the floor up or down when the applicant pool has high

or low realized test scores; see Appendix C.2.5 below for the adjustment formula. For

instance, under the responsive floor, if all test scores go up by some increment, then

the floor itself shifts up by the same amount. Moreover, the applicants with the top

kN test scores are guaranteed to have an average score above the floor. I consider

the responsive floor to be the preferred floor in every case, but I include analysis of

the naive floor for comparison.

Numerical results and takeaways. I numerically simulated the principal’s ex-

pected payoffs for each of the contract implementations and values of N discussed

above. Table 1 summarizes the results. There are three main takeaways that I draw

from this table.

First, we see that for both the binned acceptance rate and the minimum average

score contracts, payoffs of the preferred implementation improve as we increase the
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Table 1: Principal payoffs in finite economies for different contract implementations.

N = 12
Accept 4

N = 24
Accept 8

N = 48
Accept 16

N = 96
Accept 32

Continuum
Accept 1/3

Benchmarks
(Principal Payoff )

No Discretion .4556 .4712 .4794 .4836 .4878
Full Discretion .4537 .4693 .4775 .4817 .4859

UBAR upper bound .5516 .5706 .5805 .5856 .5907
Binned Acc Rate
(No Disc to UBAR % )

Bin size M = 1 0% 0% 0% 0%
2 40 36 34 33
3 42 48 52 51
4 59 56 62 60
6 53 68 72 73
8 71 76 77

12 -2 57 80 83
16 77 84
24 -2 63 85
32 81
48 -2 68
96 -2

Min Avg Score
(No Disc to UBAR % )

Naive floor 32 43 62 77
Responsive floor 72 82 93 96

Payoffs for the binned acceptance rate and minimum average score contracts are reported as a
percentage of the way from the No Discretion to the UBAR payoff for the corresponding value of
N , rounded to the nearest percent. For each N , I have bolded the best payoff within each contract
type. Binned acceptance rate payoffs for bins of size M with 1 < M < N and all minimum average
score payoffs are calculated from simulations with 100,000 draws each; the standard error of each
such payoff is between .5 and 1.6 percentage points.

number of applicants N . Moreover, as we would expect, with larger N the payoffs

seem to be approaching those from the “large numbers” continuum model.

Putting numbers to those points, for each of these finite economies I first derive

the principal payoffs from the No Discretion and Full Discretion contracts, which

can both easily be implemented (by mechanically selecting the applicants with the

top test scores, or by letting the agent choose her favorite applicants). It turns out
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that under the given parameters, the No Discretion contract does slightly better.

Next, I derive the payoffs from the outcomes of the upper bound acceptance rule,

which is a theoretical upper bound on the performance of an optimal contract that

is exactly achieved in the continuum limit (see Appendix C.2.2). Finally, I simulate

the performance of the various binned acceptance rate and minimum average score

implementations. These simulations find that when accepting 4 out of 12 applicants, a

binned acceptance rate contract already achieves 59% of the benefit of moving from No

Discretion to the Upper Bound; a minimum average score contract does even better,

achieving 72% of the benefit. Accepting 32 out of 96 applicants, a binned acceptance

rate contract achieves 85% while a minimum average score contract achieves 96%. It

is not shown in the table, but a minimum average score contract achieves about 99%

of this theoretical upper bound when accepting 100 out of 300 applicants.40

In other words, the analysis from the continuum model translates well to a fi-

nite model of reasonable size. Without solving for exactly optimal contracts in the

finite model, I can confirm that these straightforward translations of continuum con-

tracts into finite ones deliver a high share of any possible payoff gains from optimal

discretion.

Second, we see that the responsive average score implementation gives higher

payoffs than any of the binned acceptance rate implementations. This numerical

result does not prove that there would not have been a different finite approximation

of “binned acceptance rates” that did even better, of course. But the observation is

consistent with the informal argument of Section 3.4 that, in a finite economy, we

might expect to prefer some version of a minimum average score contract. Binned

acceptance rates impose a number of constraints on the agent while a minimum

average score contract links all of the constraints into a single inequality, which can

mitigate sampling variation.

Finally, fixing the number of applicants N , we see evidence of the tradeoff over

bin size versus number of bins in the binned acceptance rate implementation. As we

move from many small bins to fewer large bins by increasing M , the principal payoff

tends to increase and then decrease.

40Simulating 500,000 draws of N = 300 applicants, I found that the principal’s payoff from the
responsive minimum average score was 98.9% of the way from the No Discretion benchmark to the
UBAR upper bound, estimated with a standard error of .1%.
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C.2 Implementation Details

C.2.1 Continuum benchmark

For this running example, the (continuum) optimal contract can be expressed in two

equivalent ways. First, as an acceptance rate function, the manager accepts a share

Φ(γ∗T t − γ∗0) of applicants with test score t, where from (12) we have γ∗T =
√

549
1280
'

.6549 and we can numerically calculate that γ∗0 ' .7638 given k = 1/3. Second, as an

average test score restriction, the manager accepts her favorite k applicants subject

to their average test score being at or above κ∗ ' 2.0143, which is the average test

score of accepted applicants when using the above acceptance rate function. (The

floor will be binding.)

Applicants have a mean quality of 0 with a standard deviation of 1. Hence, if

applicants were accepted completely randomly, the principal payoff (the expected

quality of hired applicants) would be 0. On the other hand, if quality were perfectly

observable and the firm could accept the 1/3 of applicants with the highest quality,

the principal payoff would work out to 1.0908.

The optimal contract, which implements the upper bound acceptance rule, leads

to a principal payoff of .5907. By comparison, under the No Discretion contract in

which the applicants with the highest 1/3 of test scores were hired automatically, the

principal’s payoff would be .4878. Under the Full Discretion contract in which the

manager selected her favorite 1/3 of applicants, the principal’s payoff would be .4859.

C.2.2 Finite economy benchmarks

Under the No Discretion outcome, the applicants with the top kN out of N test

scores are accepted. Under the Full Discretion outcome, the applicants with the top

kN out of N realizations of UA = E[Q|T, S] + B are accepted. Under the Upper

Bound Acceptance Rule (UBAR) outcome, the applicants with the top kN out of N

realizations of UP (T, UA) = E[Q|T, UA] are accepted. Note that UBAR is not neces-

sarily implementable by any incentive compatible contract in the finite economy, but

it provides an upper bound for what any incentive compatible contract can achieve.

As we vary N , the No Discretion, Full Discretion, and UBAR benchmark payoffs

all scale linearly with each other as some constants times the expectation of the top kN

draws out of N from a standard normal distribution. This expectation term increases

56



in N , asymptoting to the expectation of an appropriately truncated normal.41

C.2.3 Further notation for the finite economy

Denote the realized test score of applicant i ∈ {1, ..., N} by ti, where without loss of

generality we label scores so that t1 ≤ t2 ≤ · · · ≤ tN .

I now define a term αi,N , which is a finite approximation of the continuum con-

tract’s acceptance rate of the applicant with the ith lowest test score out of N . Re-

calling that the distribution of test scores in the population is N (0, σ2
Q +σ2

T ), the “ith

lowest test score out of N” essentially corresponds to test scores ranging from the i−1
N

to i
N

quantiles of this distribution. This range of quantiles corresponds to test scores

in the interval [xi−1,N , xi,N ] for

xi,N ≡
√

(σ2
Q + σ2

T )Φ−1

(
i

N

)
.

In the continuum economy, the optimal acceptance share at test score t is Φ(γ∗T t−γ∗0).

Integrating the acceptance share over this range of quantiles, the finite approximation

of the acceptance rate of the ith lowest scoring applicant out of N , αi,N , is given by

αi,N ≡ N√
(σ2

Q + σ2
T )

∫ xi,N

xi−1,N

Φ(γ∗T t− γ∗0)φ

(
t√

(σ2
Q+σ2

T )

)
dt.

C.2.4 Approximate Implementation #1: Binned acceptance rates

Here we approximate the continuum contract through one that imposes a specified

acceptance rate on some binned sets of applicants. Fixing the number of applicants

N , we will have one parameter to optimize over, the bin size M .

For any bin size M that is a factor of the number of applicants N , now create

N/M bins of size M each. Given the notation that applicants are labeled in order

of lowest to highest test scores, the first bin βM,N
1 = {1, ...,M} consists of the M

lowest-scoring applicants, the jth bin are applicants βM,N
j = {(j − 1)M + 1, ..., jM},

and so on up to the highest-scoring applicant bin βM,N
N/M = {N −M + 1, ..., N}.

41It holds for any distribution that the expectation of the top kN draws of out N is increasing in
N . For instance, with k = 1/2, the top 1 draw out of 2 from a U [0, 1] distribution has an expectation
of 2/3, while for large N the expectation of the average of the top N/2 draws out of N approaches
3/4.
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Fixing M and N , we will determine the number of applicants to accept in bins

βM,N
1 , ... , βM,N

N/M as follows. At the jth such bin βM,N
j , recall that the finite approx-

imation of the acceptance rate of applicants in this bin is given by the real number∑
i∈βM,Nj

αi,N . We will simply round these values to integers to find the number of

applicants to accept at bin βM,N
j . We do the least rounding possible consistent with

making sure that the when we add up across all bins j, we accept a total of kN

applicants.

For instance, suppose we will accept 4 out of N = 12 applicants using six bins

that are each of size M = 2. Adding up the αi,N values, we get – prior to rounding –

that we should accept .0084 from the first bin, .0853 from the second bin, .2905 from

the third bin, .6556 from the fourth bin, 1.1816 from the fifth bin, and 1.7785 from

the top bin. Rounding these values, we accept 0 of the applicants from the bottom

three bins (the bottom six test scores); 1 of the applicants with the next two higher

test scores; 1 of the applicants with the next two higher test scores; and, finally, both

of the applicants with the top two test scores. Similarly, when N = 12 and M = 3,

adding up the αi,N values implies that we should accept .0344 from the bottom bin,

then .3498 from the next bin, then 1.1721 from the next one, and finally 2.4437 of the

top bin. Rounding as little as possible to get to a total of four accepted applicants,

we accept 0 of the applicants with the bottom three test scores, 0 of the next three,

1 of the next three, and finally all 3 of the top three scoring applicants.

From Table 1, the best bin size at N = 12 is M = 4. For N = 12 and M = 4, the

number of applicants accepted from each of the three bins – from lowest scoring to

highest – is 0, 1, 3. The best bin size at N = 24 is M = 8, in which case the number

of applicants accepted from each of the three bins is 0, 2, 6. The best bin size at

N = 48 is M = 12, in which case the number of applicants accepted from each of the

four bins is 0, 1, 5, 10. Finally, the best bin size at N = 96 is M = 24, in which case

the number of applicants accepted from the four bins is 0, 3, 9, and 20.

C.2.5 Approximate Implementation #2: Minimum average scores

Here we approximate the continuum contract through one that lets the agent accept

any applicants she wants subject to a constraint on the minimum average test score

of those that she hires. I will introduce two possible test score floors. The naive floor

is set in advance, while the responsive floor depends on the realized distribution of

test scores.
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Let the naive floor be equal to the predetermined value of κ∗ = 2.0143. Unfortu-

nately, sometimes the top kN applicants have test scores that actually average less

than κ∗; in simulations, this happens about 38% of the time with N = 12 and 9% of

the time with N = 96. When this is the case, we simply use the ad hoc correction

that the agent must default to the No Discretion rule of accepting the applicants with

the top kN test scores.

To motivate the construction of a responsive floor, recall that the naive floor is

determined by solving for the average test score of accepted applicants in the contin-

uum limit. This can be thought of as taking a weighted mean over the theoretical

distribution of population test scores, with weights given by the acceptance shares.

We will create a new responsive floor that is based on a similar weighted average

of the realized rather than theoretical distribution of test scores. We will use the

weights that we have already solved for above, the αi,N values that give us the finite

approximation of the theoretical acceptance rate for the applicant with the ith lowest

test score out of N .

In particular, let the responsive floor given N applicants with ordered realized

test scores {t1, ..., tN} be equal to
∑

i
αi,N

kN
ti. Since the weights αi,N

kN
are all in [0, 1]

and add up to 1, we know that the responsive floor is always less than the average of

the top kN test scores. Hence, it is always possible to find at least one combination

of kN applicants whose average test scores are above the responsive floor.

D Additional analysis of systematic biases

D.1 Two-factor model under common knowledge of agent

type

Consider the two-factor model of Section 2.3.2 under common knowledge of the agent’s

type (consisting of FS and λ). Recalling that E[Q1|T, S] = E[Q1|T ], it holds that

UA = E[Q1|T ] + λE[Q2|T, S]. Rearranging,

E[Q2|T, S] =
UA − E[Q1|T ]

λ
.
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The principal’s utility UP (T, UA) is therefore

UP (T, UA) = E[Q1 +Q2|T, UA] = E[Q1|T ] +
UA − E[Q1|T ]

λ
=

(λ− 1)

λ
E[Q1|T ] +

UA
λ
.

Given the assumption that λ > 0, the coefficient 1
λ

on UA is positive. Hence, utilities

are aligned up to distinguishability.

The sign of the coefficient λ−1
λ

on E[Q1|T ] in the expression for UP depends on the

agent’s bias term λ. Supposing that test results are real numbers normalized so that

higher t yields higher E[Q1|T = t], the sign determines whether indifference curves in

(T, UA)-space are sloped upwards or downwards. (Under a further normalization to

E[Q1|T = t] = t, we would get linear indifference curves.)

For the advocate with λ > 1, there is a positive coefficient on E[Q1|T ], so the

principal has downward-sloping indifference curves – just as with the normal specifi-

cation. Think of an agent with λ = 2 who is indifferent between an applicant with a

low test result t indicating E[Q1|T = t] = 0, and an applicant with a high test score

t indicating E[Q1|T = t] = 1. For the agent to be indifferent, it must be that the

agent observes that E[Q2|T, S] is one-half a unit lower for the applicant with the high

test result. So the principal prefers the applicant with the high test result: one unit

higher Q1 and one-half unit lower Q2.

For the cynic with λ < 1, however, we get upward-sloping indifference curves. If

an agent with λ = 1
2

is indifferent between low and high test result applicants, then

the principal prefers the applicant with the lower test result: one unit lower Q1 and

two units higher Q2.

One implementation of the upper bound acceptance rule is to specify the accep-

tance rate α(T ) at αUBAR(T ). This acceptance rate is determined only by the joint

distribution of E[Q1|T ] and E[Q2|T, S]; the principal selects the k applicants with

the highest E[Q1|T ] + E[Q2|T, S] as if T and S were both observable. This contract

implements the principal’s first-best outcomes, thanks to the assumed absence of id-

iosyncratic biases. Moreover, while the acceptance rate function αUBAR depends on

the agent’s information structure, it does not depend on the bias term λ. Restating

this point, the same acceptance rate function would be optimal for a principal with

any beliefs on λ, even if λ is not commonly known.

We can also implement UBAR in the alternative manner in which we fix the

average of a score function. For the advocate with λ > 1, for which indifference
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curves were downward sloping in E[Q1|T ], we can choose the score function as C(T ) =

E[Q1|T ]. For the cynic with λ < 1 and upward sloping indifference curves, we can

choose the score function as C(T ) = −E[Q1|T ]. The contract then specifies that

E[C(T )]|Hired = 1] = κ, for some κ. The different signs of C(T ) based on the

magnitude of λ do not actually affect the form of the optimal contract when stated

as an equality constraint – we fix the average value of E[Q1|T ] either way. Rather,

the different signs indicate that advocates prefer to push E[Q1|T ] to be lower than

what the principal wants, whereas cynics prefer E[Q1|T ] to be higher.

D.2 Utility weight on a public signal

One source of systematic bias which is not covered by the two-factor model is that

the principal or agent may care directly about the realization of an applicant’s hard

information. Think about two specific applications.

First, there may be a third party ranking organization (e.g., US News) that rates

colleges based on the public hard information of the applicants who matriculate. The

college cares about its rankings in addition to the “true quality” of its students. So

the school is willing to admit a slightly worse applicant who looks better on paper

– a worse essay paired with a better SAT score. The admissions officer doesn’t care

about rankings, though, and just wants to maximize true student quality.

Second, one or both of the principal and agent may be “prejudiced” or may support

“affirmative action” based on an observable characteristic such as race, included as

one component of the vector T . This induces a bias – misaligned objectives – if the

racial preferences are not perfectly shared by both parties.

To model this, let an applicant’s “true quality” be denoted by Q1. We have

distribution Q1 ∼ FQ1 of true quality, with corresponding signal distributions T ∼
FT |Q1 and S ∼ FS|Q1,T . The expected value of true quality given all information is

E[Q1|S, T ].

Then there is an addition to the principal utility, Q2P (T ), and an addition to agent

utility, Q2A(T ), where Q2P (·) and Q2A(·) are arbitrary functions of the realization of

hard information. Marginal utilities for the two players are as follows:

P : Q1 +Q2P (T ) = Q

A : Q1 +Q2A(T ) = Q+B, for B = Q2A(T )−Q2P (T ).
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We see that this form of systematic bias shows up as a relationship between the bias

realization B and the hard information.

Utilities are aligned up to distinguishability: at any test result, applicants more

preferred by the agent are more preferred by the principal. Formally, given T and

UA = E[Q1|S, T ] + Q2A(T ), we can rearrange to get E[Q1|S, T ] = UA −Q2A(T ). The

induced principal utility UP (T, UA) is

UP (T, UA) = E[Q1|S, T ] +Q2P (T ) = UA −Q2A(T ) +Q2P (T )

which is increasing in UA. Hence, we can apply the results of Section 3 to solve for the

optimal acceptance rate function. Just as with the analysis of the two-factor model

in Section D.1, this acceptance rate does not depend on the agent’s bias function

Q2A(·). Likewise, due to the assumed lack of idiosyncratic bias, the optimal contract

implements the first-best payoff for the principal.

E Combining idiosyncratic and systematic biases

This section puts together the idiosyncratic biases of the normal specification with

the systematic biases of the two-factor model into a combined model. I show that the

qualitative results for the normal specification in Sections 3.3 and 4 extend to the

combined model.

E.1 Setup of the combined model

As in the two-factor model, quality Q in the combined model can be decomposed

into two quality factors Q1 and Q2, and the test result reveals everything that can be

inferred about Q1: E[Q1|T, S] = E[Q1|T ]. The private signal S then gives additional

information about quality factor Q2. Now, adding normally distributed idiosyncratic

biases to the payoffs of the two-factor model, assume that principal cares about

Q = Q1 +Q2 and the agent cares about Q1 +λQ2 +εB, for εB ∼ N (0, σ2
B) independent

of T, S, and with λ and σ2
B are in R++. All together, then, conditional on signals T
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and S, the principal and agent marginal utilities of hiring an applicant are given by

Principal: E[Q|T, S] = E[Q1 +Q2|T, S] = E[Q1|T ] + E[Q2|T, S]

Agent: UA ≡ E[Q1 + λQ2|T, S] + εB = E[Q1|T ] + λE[Q2|T, S] + εB.

I will now add additional distributional assumptions on the two signals. In partic-

ular, rather than specifying the conditional distributions FT |Q and FS|Q,T , I will write

out the expectations of Q1 and Q2 given the signals in linear reduced forms. Let the

signal realization spaces T and S both be equal to R and assume that

E[Q1|T ] = T

E[Q2|T, S] = rT + S

for some r ∈ R. Finally, assume that the distribution of S conditional on T (but

unconditional on the quality factors) is given by S|T ∼ N (0, l · σ2
2) for l ∈ (0, 1) and

σ2 ∈ R++. Note that, while I do not commit to the details of the updating model

that would get us these posteriors, it would be straightforward to “microfound” these

reduced form assumptions through appropriate joint-normal priors on the two quality

factors and normally distributed signals.42

We have introduced five relevant parameters: r, σ2
2, l, λ, and σ2

B. Two of these,

λ and σ2
B, are familiar as the systematic bias term of the two-factor model and the

idiosyncratic bias term of the normal specification. The interpretation of the other

three parameters is as follows. First, conditional on the observation of T = t, the

distribution of Q2 has mean rt and variance of σ2
2. A value r > 0 indicates a positive

correlation of the two quality factors, and r < 0 a negative correlation. The parameter

l corresponds to the level of the agent’s information on Q2: a more informative private

signal means higher l. An agent who perfectly observed the realization of Q2 would

42Here is one collection of primitives that would give rise to these reduced form distributional
assumptions. Take Q1 and Q2 to be joint normally distributed, and have T perfectly reveal Q1 –
it has a degenerate distribution at T = Q1. (I have not specified the distribution of T outside of
this footnote, but under this assumption the empirical distribution would be normal.) The mean
of Q2, unconditional on other signals, will be linear in T with slope depending on the variances
and covariance of Q1 and Q2. The agent then receives a private signal equal to Q2 plus some
normally distributed noise (where a higher variance of noise corresponds to less information, and so
lower l); normalize the signal S to be the resulting deviation of the posterior belief from the mean.
The agent’s posterior expectation on Q2 is normally distributed about the mean with a variance
somewhere between 0 (no information) and σ2

2 (full information).
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have l→ 1, and one who received no private information would have l→ 0.

Putting these assumptions together, we can rewrite the principal and agent marginal

utilities as

Principal: E[Q1|T ] + E[Q2|T, S] = (1 + r)T + S

Agent: E[Q1|T ] + λE[Q2|T, S] + εB = (1 + λr)T + λS + εB.

In the notation Q = Q1 + Q2, we have that the agent maximizes the expectation of

Q+B for B = (λ− 1)(rT + S) + εB.

The agent’s type θ consists of three parameters: l ∈ (0, 1) for information (replac-

ing, but analogous to, σ2
S in the normal specification), σ2

B ∈ (0,∞) for idiosyncratic

bias, and λ ∈ (0,∞) for systematic bias.43 In line with Assumption 1, I take all other

parameters to be commonly known.

Conditional on T = t (but unconditional on S or εB), it holds that E[Q|T = t, S]

and UA are normally distributed. The marginal distribution of UA is given by

UA|T = t ∼N
(
µUA(t), σ2

UA

)
, for (32)

µUA(t) = t(1 + λr) (33)

σ2
UA

= λ2lσ2
2 + σ2

B. (34)

The marginal distribution of E[Q|T = t, S] is normal with mean t(1+ r) and variance

lσ2
2. The covariance of E[Q|T = t, S] with UA|T = t is λlσ2

2. Hence, we can calculate

43The combined model here embeds the normal specification after a notational adjustment. Call
S and T the signals in the normal specification, and S′ and T ′ the signals in the combined model.
The normal specification maps into the combined model if we take λ = 1, along with

S′ = (S − T
σ2
Q

σ2
Q + σ2

T

) ·
σ2
Tσ

2
Q

σ2
Sσ

2
T + σ2

Qσ
2
S + σ2

Qσ
2
T

T ′ = T ·
σ2
Sσ

2
Q

σ2
Sσ

2
T + σ2

Qσ
2
S + σ2

Qσ
2
T

σ2
2 =

σ2
Qσ

2
T

σ2
Q + σ2

T

l =
σ2
Qσ

2
T

σ2
Sσ

2
T + σ2

Qσ
2
S + σ2

Qσ
2
T

r =
σ2
Qσ

2
T

σ2
S(σ2

Q + σ2
T )
.
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UP (t, uA) = E[Q|T = t, UA = uA] = E[E[Q|T = t, S]|T = t, UA = uA] as

UP (t, uA) = βT t+βUAuA, for (35)

βT = 1− λlσ2
2 − rσ2

B

λ2lσ2
2 + σ2

B

(36)

βUA =
λlσ2

2

λ2lσ2
2 + σ2

B

. (37)

The coefficient βUA on agent utility is positive, implying that utilities are aligned

up to distinguishability. Larger idiosyncratic biases σ2
B reduce this coefficient, making

beliefs on quality less responsive to agent utilities, but do not affect the sign. Let us

look next at the coefficient βT on test scores. Without idiosyncratic shocks – that is,

plugging in σ2
B = 0 – βT reduces to λ−1

λ
as in the two-factor model (Appendix D.1).

Adding idiosyncratic shocks through σ2
B pulls the coefficient βT towards 1+r. Putting

the effects on βUA and βT together, we see that increasing the idiosyncratic preference

shocks (larger σ2
B) takes the principal’s belief, at any given test score T = t and utility

realization UA = uA, in the direction of (1 + r)t – the estimate of quality given T = t,

and unconditional on UA. In the case where there is weakly positive correlation of the

two factors (r ≥ 0), larger idiosyncratic shocks monotonically increase the coefficient

βT . In particular, with r ≥ 0, the sign of βT is always positive for advocates (λ > 1).

The sign of βT can be negative for cynical agents (λ < 1) but it switches to positive

for sufficiently large idiosyncratic biases σ2
B.

From (35), we see that the distribution of UP (t, UA) – that is, expected quality

conditional on T = t across realizations of UA – has mean and variance of

µUP (t) = t(1 + r)

σ2
UP

= β2
UA
σ2
UA

=
(λlσ2

2)
2

λ2lσ2
2 + σ2

B

.

In the normal specification, the principal and agent had equal mean utilities con-

ditional on test score T . But now the coefficients on T differ if the quality factors are

correlated (r 6= 0) and the agent has a systematic bias (λ 6= 1). The coefficient on

T for the principal is 1 + r, compared to the agent’s 1 + λr. When there is positive

correlation between the two quality factors (r > 0), the mean as a function of test

score will have a steeper slope for an advocate agent than for the principal, and a
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flatter slope for a cynic.

E.2 Contracting with known agent type

Under common knowledge of agent type, we can solve for the optimal policy exactly as

in the normal specification and two-factor model. The upper bound acceptance rule

sets a cutoff utility ucP and accepts all applicants with UP ≥ ucP . This is implemented

by a normal CDF acceptance rate, α(T ) = Φ(γTT−γ0), at some appropriate steepness

γT = γcomb
T . We can solve for this optimal coefficient from the equations for the

distribution of UP (t, UA) as

γcomb
T =

1 + r

σUP
=

(1 + r)
√
λ2lσ2

2 + σ2
B

λlσ2
2

. (38)

The acceptance rate is increasing in the test score (positive γcomb
T ) even if βT is

negative, as long as r ≥ −1. This holds because higher quality applicants tend to

have higher test scores, so the principal wants to accept more of them. If there is

a sufficiently strong negative correlation between quality factors that r < −1, then

higher quality applicants tend to have lower test scores (they are lower on the first

quality factor), and γcomb
T is negative.44

Thanks to the linearity of UP (T, UA) in both T and UA, the policy could also be

implemented by fixing the average test score of hired workers at some level κcomb (for

which I do not provide a formula). Gathering together these observations:

Proposition 8. Under the combined model with common knowledge of the agent’s

type, the optimal contract can be implemented in either of the following ways. The

agent is allowed to hire any set of k applicants, subject to:

1. An acceptance rate function of α(t) = Φ(γcomb
T T − γ0); or,

2. An average test score of accepted applicants equal to some value κcomb.

44While we might expect T to be normally distributed, as it would be under the normal
prior/normal signal microfoundation of footnote 42, this result did not impose any assumptions
on the distribution of T . The distribution of T affects which γ0 will set the aggregate share of ac-
ceptances to k, but does not affect the coefficient γT on test scores in the acceptance rate function.
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E.3 Contracting with unknown agent type

With uncertainty over the agent’s type θ = (l, λ, σ2
B), we can replicate much of the

analysis of Section 4 in solving for the optimal policy. Say that θ follows distribution

function G. Going forward, I write µUA , σUA , and σUP as functions of θ. For this

analysis assume that the unconditional distribution of test scores T is normally dis-

tributed, with mean normalized to 0 and variance of VarT , as motivated in footnote

42.

As in the main text, define Z as an agent utility z-score for a given applicant, and

τ and ζ as the average test score and average z-score for a pool of accepted applicants:

Z ≡ UA − µUA(T ; θ)

σUA(θ)

τ ≡ E[T |Hired = 1]

ζ ≡ E[Z|Hired = 1].

The outcome space in terms of (τ, ζ) is exactly as in Lemma 3, with RZ = R(k) =
1
k
φ (Φ−1(1− k)) and RT =

√
σ2
Q + σ2

TR(k). As before, let τ̄(ζ) ≡ RT ·
√

1− ζ2

R2
Z

be

the maximum possible τ for a given ζ ∈ [−RZ , RZ ].

When the agent is of type θ, hiring an applicant with test score T and utility

z-score Z gives marginal utilities to the agent and principal of

UA = µUA(T ; θ) + σUA(θ)Z = (1 + λr)T + σUA(θ)Z

UP (T, UA) = µUP (T ) + σUP (θ)Z = (1 + r)T + σUP (θ)Z

In terms of τ and ζ, agent and principal payoffs for hiring a pool of applicants are

A: VA = σUA(θ)ζ + (1 + λr)τ

P: VP = σUP (θ)ζ + (1 + r)τ.

We see that the agent’s behavior depends only on the ratio of σUA(θ) to (1 + λr);

her problem is equivalent to maximizing
σUA (θ)

1+λr
ζ+ τ , or to maximizing σUA(θ) 1+r

1+λr
ζ+

(1 + r)τ . Define ρ as this coefficient on ζ:

ρ(θ) ≡ σUA(θ)
1 + r

1 + λr
=
√
λ2lσ2

2 + σ2
B

1 + r

1 + λr
.
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The coefficient ρ(θ) is a one-dimensional sufficient statistic for the agent’s preferences.

For any ρ̃, all agent types θ with ρ(θ) = ρ̃ act identically. Let the distribution of ρ(θ)

induced by θ ∼ G be given by the cdf H.

Because the principal can never distinguish agents with the same ρ(θ), it is conve-

nient to define the principal’s average value of σUP across all agent types with ρ(θ) = ρ̃

as σ̂UP (ρ̃):

σ̂UP (ρ̃) ≡ Eθ∼G [σUP (θ) | ρ(θ) = ρ̃] .

Now rewrite the principal and agent maximization problems as

Agent: max
(
ρ(θ) · ζ + (1 + r)τ̄(ζ)

)
− δ (39)

Principal: maxEρ(θ)∼H

[(
σ̂UP (ρ(θ)) · ζ + (1 + r)τ̄(ζ)

)
− δ
]

(40)

for δ ≡ (1 + r)(τ̄(ζ)− τ). (41)

Once again δ represents “money burning” due to taking τ below its maximum possible

value. The contract induces a menu of (ζ, δ) from which the agent may select, given

her observation of ρ(θ).

We can now give the analog of Proposition 5.

Proposition 9. In the combined model, let the distribution H have continuous pdf

h over its support, with the support a bounded interval in R+, and let σ̂UP (·) be

continuous over the support. If H(ρ̃) + (ρ̃− σ̂UP (ρ̃))h(ρ̃) is nondecreasing in ρ̃, then

the optimal contract can be characterized in either of the following two ways:

1. The agent is given a floor on the steepness of the acceptance rate function. She

may select any k applicants she wants as long as the induced acceptance rate

α(T ) is of the form Φ(γTT − γ0), with γT at or above some specified level Γ > 0.

2. The agent is given a floor on the average test score. She may select any k

applicants she wants, subject to the average test score of hired applicants τ being

at or above some specified level κ > 0.

This result embeds Proposition 5 – up to some changes of notation – when there

is no systematic bias, i.e., λ = 1. In that case the projection of the agent’s type

ρ(θ) = σUA(θ) 1+r
1+λr

is exactly just σUA(θ). But we also now have a generalization of

the conditions under which the simple contract forms from the body of the paper
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remain optimal even when agents have a commonly known systematic bias λ 6= 1, or

when there is a distribution of λ across agents.

F Inference from performance data

Consider the normal specification, and take σ2
Q and σ2

T to be commonly known while

the agent’s type, (σ2
S, σ

2
B), is not known. (Below, I address how one might also infer

σ2
Q and σ2

T if those were unknown.) I proceed here in a prior-free manner and thus

do not specify the principal’s prior beliefs over the agent’s type.

Let there be two periods over which the agent’s type is persistent. In the first

period the principal gives the agent a Full Discretion contract in which she chooses

k applicants. For each applicant that is hired, the principal observes the public test

result T and also the quality Q – the realized performance. Then in the second period

the principal uses the first-period data to choose a contract that will select another

k applicants.

Assume that the agent selects applicants myopically, i.e., her behavior in the first

period maximizes her first period payoff. That is, she has no dynamic consideration

for how her behavior affects the contract she will be offered in the future.

In the second period, the principal has access to the acceptance rate as a function

of test results, plus the entire distribution of realized qualities for the accepted appli-

cants at each score. I will find that this data is sufficient for the principal to perfectly

infer the agent’s type, and therefore to set the optimal contract in the second period

given the knowledge of her type. Indeed, the principal only needs to look at two

moments of the data. Let τ1 be the average test score of the applicants accepted in

the first period, and let ξ1 be the average realized quality. The principal can calculate

the optimal second-period contract from τ1 and ξ1. As in Proposition 3 part 2, the

contract can be summed up as a requirement that the average test score of accepted

applicants in the second period, τ2, must equal some level κ∗.

Lemma 5. Given τ1 and ξ1, the principal’s period-2 optimal contract allows the agent

to accept any k applicants with average test score τ2 equal to κ∗, with

κ∗ =
R(k)σ2

Q

√
σ2
Q + σ2

T√
σ2
Q +

(ξ1(σ2
Q+σ2

T )−σ2
Qτ1)2

(σ2
Q+σ2

T )((σ2
Q+σ2

T )R(k)2−τ21 )

(42)
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and R(·) given by (22). Moreover, over the domain of possible ξ1 and τ1, it holds that

κ∗ decreases in ξ1 and increases in τ1.

That is, for any fixed average test score in the Full Discretion first period, better

ex post performance of the hired applicants ξ1 leads to a lower required average test

score (a flatter contract, one closer to the agent’s preferred outcome) in the second

period. On the other hand, an agent who picks a higher average test score τ1 (steeper

contract) in the first period is required to pick a higher average test score (steeper

contract) in the second period.

Inferring σ2
Q and σ2

T .

What if the principal fundamentals σ2
Q and σ2

T will be the same from period 1 to

period 2, but the values are not known in advance? In fact, these two parameters

can also be inferred from the period-1 Full Discretion data. Their imputed values can

then be plugged into the formulas above.

To see this, first define VarT as the empirical variance of the test score distribution

across all applicants. This empirical variance is directly observable in period 1. Under

the predictions of the model, VarT will be equal to σ2
Q + σ2

T .

Next, let q̄1(t) indicate the average realized period-1 quality of accepted applicants

at test score t. Suppose that, under full discretion, a share α(t) of applicants are

accepted at this test score. Then the model predicts that

q̄1(t) =
σ2
Q

σ2
Q + σ2

T

t+ σUP (θ)R(α(t)) =
σ2
Q

VarT
t+ σUP (θ)R(α(t)).

The value of σUP (θ) can be inferred from performance data, with the formula given in

(54) in the proof of Lemma 5. Plugging in that formula, and replacing all occurrences

of σ2
Q + σ2

T with VarT , we get:

q̄1(t) =
σ2
Q

VarT
t+

(
ξ1VarT − σ2

Qτ1√
VarT (VarTR(k)2 − τ 2

1 )

)
R(α(t)).

Solving this equation for σ2
Q gives a separate estimate of σ2

Q at each test score t:

σ2
Q =

q̄1(t)
√

VarT (R(k)2VarT − τ 2
1 )−R(α(t))VarT ξ1

t
√

(R(k)2 − τ 2
1 )/VarT −R(α(t))τ1

. (43)
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Of course, under the theoretical model the estimate should be identical at every t.

With actual performance data, one would presumably want to take an average or a

weighted average of these estimates across all of the test scores. At any rate, given

an estimate of σ2
Q from (43), we have σ2

T = VarT − σ2
Q.

G Proofs

G.1 Proofs for Section 2 and 3

Proof of Lemma 1. Consider two independent random variables X and Y , for which

Y has a log-concave distribution. I seek to show that E[X|X + Y = z] is weakly

increasing in z. Conditioning on T = t and interpreting X as E[Q|S, T ], Y as B,

and z as uA will then yield the desired conclusion that UP (t, uA) is increasing in

uA. Specifically, these substitutions give us X + Y = E[Q|S, T ] + B = UA, and

E[X|X + Y = z, T = t] = E[E[Q|S, T ]|UA = uA, T = t] = E[Q|UA = uA, T = t] =

UP (t, uA), where the second-to-last equality holds by the law of iterated expectations.

To show that E[X|X + Y = z] is weakly increasing in z (for any prior over X),

it suffices to show that the distribution of X + Y |X = x satisfies the monotone

likelihood ratio property in x, and thus that higher realizations of X + Y indicate

higher posteriors on X. By independence of X and Y , it holds that X + Y |X = x

follows the distribution of Y + x. In other words, it suffices to show that Y + x has

monotone likelihood ratio in x. Indeed, log-concavity of Y implies that Y + x has

monotone likelihood ratio in x; see, e.g., Marshall and Olkin (2007, Example 2.A.15).

To give some intuition for that final step, indicate the pdf of Y by fY and the

pdf of Y + x by fY+x, where fY+x(z) = fY (z − x). The random variable Y + x has

monotone likelihood ratio in x if (ignoring zeroes in the denominator) it holds that

for all z > z and x > x,

fY+x(z)

fY+x(z)
≥ fY+x(z)

fY+x(z)
, i.e.,

fY (z − x)

fY (z − x)
≥ fY (z − x)

fY (z − x)
.

And log-concavity of Y is equivalent to fY (z−x)fY (z−x) ≥ f(z−x)f(z−x) for all

z > z, x > x (Marshall and Olkin, 2007, Proposition 21.B.8), yielding the expression

above.

Proof of Proposition 1. The bulk of the argument is in the text. The only missing
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step is to prove that alignment up to distinguishability implies monotonicity of χUBAR.

To see that this is so, take some test result t and some agent utilities uA < uA.

Alignment implies that UP (t, uA) ≤ UP (t, uA). I seek to confirm that χUBAR(t, uA) ≤
χUBAR(t, uA). If UP (t, uA) < ucP then the desired inequality holds because χUBAR(t, uA) =

0; similarly if UP (t, uA) > ucP , the desired inequality holds because χUBAR(t, uA) = 1.

The remaining possibility is that UP (t, uA) = UP (t, uA) = ucP . In that case, accep-

tance probabilities are ordered due to the selection of χUBAR as monotonic over the

flexible region.

Proof of Proposition 2. Take some cutoff function ucA(t) and a corresponding score

function C(t) = a0 + a1u
c
A(t) for a1 < 0. Rearranging, ucA(t) = C(t)

a1
− a0

a1
. It is

assumed that the expectation of C(T ) exists and is finite, which implies that C(·)
and ucA(·) are almost everywhere finite-valued.

The agent chooses an acceptance rule χ, a map from test results and agent utilities

to acceptance probabilities. Her problem is to choose χ to maximize her objective
1
k
E[χ(T, UA) · UA], subject to the two constraints of accepting k applicants and of

setting the expectation of C(T ) conditional on hiring to κ:

E[χ(T, UA)] = k (44)

1

k
E[χ(T, UA) · C(T )] = κ. (45)

I claim that this problem is solved by χ = χUBAR.

By construction, χUBAR satisfies the constraints (44) and (45). Suppose for the

sake of a contradiction that χ̂ also satisfies the constraints, but yields a strictly higher

value of the objective:

1

k
E[χ̂(T, UA)UA] >

1

k
E[χUBAR(T, UA)UA]

⇒ 1

k
E[χ̂(T, UA)UA]− κ

a1

+
a0

a1

>
1

k
E[χUBAR(T, UA)UA]− κ

a1

+
a0

a1

.

Now apply (44) and (45) to both χ̂ and χUBAR to bring the extra terms inside the
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expectations:

1

k
E
[
χ̂(T, UA) ·

(
UA

C(T )

a1

+
a0

a1

)]
>

1

k
E
[
χUBAR(T, UA) ·

(
UA −

C(T )

a1

+
a0

a1

)]
⇒ 1

k
E [χ̂(T, UA) · (UA − ucA(T ))] >

1

k
E
[
χUBAR(T, UA) · (UA − ucA(T ))

]
.

But this last line yields a contradiction, because χUBAR maximizes χ(T, UA)(UA −
ucA(t)) pointwise over realizations of (T, UA), subject to the constraint that χ takes

values in [0, 1]. It sets χ to 1 if UA > ucA(T ), and to 0 if UA < ucA(T ).45

Before I address the proofs of the formally stated results of Section 3.3, let me

work out the derivations of formulas (8) - (11) in the text of that section. These will

follow from standard updating rules of normal distributions. First, take a multivariate

normal random vector X that can be decomposed as X = (X1, X2) with mean (µ1, µ2)

and covariance matrix

[
Σ11 Σ12

Σ21 Σ22

]
. The conditional distribution of X1 given X2 = x2

is given by

X1|X2 = x2 ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
. (46)

Lemma 6. The variables (Q, T, UA) are joint normally distributed, with means of 0

and covariance matrix of
σ2
Q σ2

Q

σ4
Q(σ2

T+σ2
S)

σ2
Qσ

2
T+σ2

Qσ
2
S+σ2

T σ
2
S

σ2
Q σ2

Q + σ2
T σ2

Q
σ4
Q(σ2

T+σ2
S)

σ2
Qσ

2
T+σ2

Qσ
2
S+σ2

T σ
2
S

σ2
Q

σ4
Q(σ2

T+σ2
S)

σ2
Qσ

2
T+σ2

Qσ
2
S+σ2

T σ
2
S

+ σ2
B

 .
Given Lemma 6, we can apply (46) to calculate UP (T, UA), defined as the expec-

tation of Q conditional on T and UA, by taking Q as X1 and (T, UA) as X2. Working

out the algebra yields Equations (8) - (11).

Proof of Proposition 3.

45While I do not formally work with Lagrangians to avoid technical complications, this proof
follows a standard Lagrangian-style argument for showing that a constrained maximization problem
can be replaced with an unconstrained one having the same objective minus a multiplier times each
constraint. The implied Lagrange multipliers would be λ0 = −a0a1 on constraint (44) and λ1 = 1

a1
on constraint (45).
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1. Utilities are aligned up to distinguishability, and so we can apply Proposition 1

to find one implementation of the optimal contract. To show the desired result,

then, it suffices to show that for any fixed principal utility cutoff ucP , as we vary

t the share of applicants with UP (t, UA) ≥ ucP takes the form Φ(γ∗T t− γ0) for γ∗T
as in (12) and for some γ0.

The first step is to calculate the conditional distribution of UA given T . Applying

Lemma 6 and (46), taking T as X1 and UA as X2, we find that

UA|T ∼ N
(
µUA(T ), σ2

UA

)
, for (13)

µUA(t) =
σ2
Q

σ2
Q + σ2

T

t (14)

σ2
UA

= η + σ2
B. (15)

(These equations appear in the body of the paper as well, in Section 4.2.)

Restating (13), for any t,

UA − µUA(t)

σUA

∣∣T = t ∼ N (0, 1) . (47)

For any t and any ucP , we can now calculate the acceptance rate under UBAR.

An applicant with T = t is accepted under UBAR if

βT t+ βUAUA ≥ ucP

⇐⇒ UA − µUA(t)

σUA
≥

ucP−βT t
βUA

− µUA(t)

σUA
.

Conditional on T = t, the LHS of the last line is distributed according to a

standard normal. Plugging in µUA(t) from (14) on the RHS and collecting terms,

the acceptance condition can be rewritten as

UA − µUA(t)

σUA
≥ γ0 − γ∗T t,
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for γ0 =
ucP

βUAσUA
and

γ∗T =
βT

βUAσUA
+

σ2
Q

(σ2
Q + σ2

T )σUA
.

So the share of applicants with UP (t, UA) ≥ ucP at test score T = t is 1−Φ(γ0−
γ∗T t) = Φ(γ∗T t− γ0).

As stated in the text, I will not explicitly calculate the optimal value of γ0 as

a function of primitives, as ucP is itself a function of k. But plugging (9), (10),

and (15) into the above expression for γ∗T and simplifying yields the expression

(12) for γ∗T .

2. From Proposition 2, it suffices to derive the formula for a cutoff indifference

curve, ucA(t), and set C(t) as any negative affine transformation. Solving for

ucA(t) as the solution to UP (t, ucA(t)) = ucP for a given ucP :

UP (t, ucA(t)) = ucP
Eq (8)
=⇒ βT t+ βUAu

c
A(t) = ucP

=⇒ ucA(t) =
ucP − βT t
βUA

.

C(t) = t is a negative affine transformation of ucA(t), a linear function of t with

a negative slope.

Proof of Proposition 4. Restating (11) and (12),
γ∗T =

σ2
Q

√
η+σ2

B

η(σ2
Q+σ2

T )

γ∗T

√
σ2
Q + σ2

T =
σ2
Q

√
η+σ2

B

η
√
σ2
Q+σ2

T

,

for η =
σ4
Qσ

4
T

(σ2
Q + σ2

T )(σ2
Qσ

2
T + σ2

Qσ
2
S + σ2

Tσ
2
S)
.

1. The parameter k does not appear in the formula for γ∗T .

2. Taking γ∗T =
σ2
Q

√
η+σ2

B

η(σ2
Q+σ2

T )
as a function of σ2

Q, σ
2
B, σ2

T , and η, we can write
dγ∗T
dσ2
T

as
∂γ∗T
∂σ2
T

+
∂γ∗T
∂η

dη
dσ2
T

. It is easy to confirm by routine differentiation that
∂γ∗T
∂σ2
T
< 0,

∂γ∗T
∂η

< 0, and dη
dσ2
T
> 0. Therefore

dγ∗T
dσ2
T
< 0.
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Taking γ∗T

√
σ2
Q + σ2

T =
σ2
Q

√
η+σ2

B

η
√
σ2
Q+σ2

T

as a function of σ2
Q, σ

2
B, σ2

T , and η, we can write

d(γ∗T
√
σ2
Q+σ2

T )
dσ2
T

as
∂(γ∗T
√
σ2
Q+σ2

T )
∂σ2
T

+
∂(γ∗T
√
σ2
Q+σ2

T )
∂η

dη
dσ2
T

. Once again,
∂(γ∗T
√
σ2
Q+σ2

T )
∂σ2
T

< 0,

∂(γ∗T
√
σ2
Q+σ2

T )
∂η

< 0, and ∂η
∂σ2
T
> 0. Therefore

d(γ∗T
√
σ2
Q+σ2

T )
dσ2
T

< 0.

Taking limits,

lim
σ2
T→0

γ∗T = lim
σ2
T→0

γ∗T

√
σ2
Q + σ2

T =∞, because lim
σ2
T→0

η = 0

lim
σ2
T→∞

γ∗T = lim
σ2
T→∞

γ∗T

√
σ2
Q + σ2

T = 0, because lim
σ2
T→∞

η =
σ4
Q

σ2
Q + σ2

S

.

3. The parameter σ2
S appears in γ∗T only through η. Routine differentiation shows

that
∂γ∗T
∂η

< 0 and dη
dσ2
S
< 0, and so by the chain rule

dγ∗T
dσ2
S
> 0.

Taking limits,

lim
σ2
S→0

γ∗T =
1

σ2
T

√
σ2
Tσ

2
Q

σ2
Q + σ2

T

+ σ2
B, because lim

σ2
S→0

η =
σ2
Tσ

2
Q

σ2
Q + σ2

T

lim
σ2
S→∞

γ∗T =∞, because lim
σ2
S→∞

η = 0.

4. The value η remains constant as we vary σ2
B. Taking the derivative of γ∗T with

respect to σ2
B gives

σ2
Q

2η(σ2
Q + σ2

T )
√
η + σ2

B

> 0.

Taking limits,

lim
σ2
B→0

γ∗T =
σ2
Q

(σ2
Q + σ2

T )
√
η

lim
σ2
B→∞

γ∗T =∞.

5. Numerical examples (not shown) verify that, depending on parameters, both γ∗T
and γ∗T

√
σ2
Q + σ2

T can either be locally increasing or decreasing in σ2
Q.

It is easy to verify that lim
σ2
Q→0

σ2
Tσ

2
Q

σB
γ∗T → 1. Therefore lim

σ2
Q→0

γ∗T = lim
σ2
Q→0

γ∗T

√
σ2
Q + σ2

T =
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∞. Taking σ2
Q →∞, we get lim

σ2
Q→∞

η =
σ4
T

σ2
T + σ2

S

and so

lim
σ2
Q→∞

γ∗T =
(σ2

T + σ2
S)
√

σ4
T

σ2
T+σ2

S
+ σ2

B

σ4
T

lim
σ2
Q→∞

γ∗T

√
σ2
Q + σ2

T =∞.

G.2 Proofs for Section 4

Proof of Lemma 2. Rewriting (15), (18), and (11),

σUA(θ) =
√
η + σ2

B

σUP (θ) =
η√

η + σ2
B

for η =
σ4
Qσ

4
T

(σ2
Q + σ2

T )(σ2
Tσ

2
Q + σ2

Sσ
2
T + σ2

Sσ
2
Q)
.

1. Observe that η decreases in σ2
S. Fixing σ2

B, both σUA and σUP increase in η.

2. The term η is constant in σ2
B. Fixing σ2

S, σUA increases in σ2
B while σUP decreases

in σ2
B.

3. Fixing σUA(θ) = σ̃UA > 0, the range of possible σUP is an open interval in

R+. One can achieve the minimum of this interval by taking σB → σ̃UA and

σS → ∞, implying σUP → 0. It remains to show that the supremum of σUP (θ)

given σUA(θ) = σ̃UA is min
{
σ̃UA ,

σ2
Qσ

2
T

σ2
Q+σ2

T

1
σ̃UA

}
, or equivalently that this supremum

is σ̃UA for σ̃UA ≤
σQσT√
σ2
Q+σ2

T

and is
σ2
Qσ

2
T

σ2
Q+σ2

T

1
σ̃UA

for σ̃UA >
σQσT√
σ2
Q+σ2

T

.

The term η is independent of σ2
B, and decreases from

σ2
Qσ

2
T

σ2
Q+σ2

T
to zero as σ2

S in-

creases from zero to infinity. From Parts 1 and 2, we maximize σUP (θ) given

σUA(θ) = σ̃UA over θ = (σ2
S, σ

2
B) by finding the mixture of the lowest σ2

S (most

information) and the lowest σ2
B (least bias) consistent with σUA(θ) = σ̃UA .

For σ̃UA ≤
σQσT√
σ2
Q+σ2

T

, we achieve a supremum for σUP of σ̃UA by taking σ2
B → 0

and setting σ2
S so that η = σ̃2

UA
, implying σUA(θ) = σ̃UA .

For σ̃UA >
σQσT√
σ2
Q+σ2

T

, take σ2
S → 0, which implies η → σ2

Qσ
2
T

σ2
Q+σ2

T
; and set σ2

B = σ̃2
UA
−η

to get σUA(θ) = σ̃UA . Plugging η → σ2
Qσ

2
T

σ2
Q+σ2

T
into the identity σUP (θ) = η/σUA(θ) =
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η/σ̃UA then gives σUP →
σ2
Qσ

2
T

σ2
Q+σ2

T

1
σ̃UA

.

Proof of Lemma 3.

Step 1. Fixing k, let us start by deriving the “upper-right frontier” of (τ, ζ), the pairs

that maximize pτ + (1− p)ζ for some p ∈ [0, 1]. One maximizes pτ + (1− p)ζ by

selecting the k applicants with the highest values of pT+(1−p)Z. (For p ∈ (0, 1),

these are exactly the applicants above a downward sloping line in (T, UA)-space

– accepting such applicants induces a normal CDF acceptance rate.) In the

population, T and Z are independently normally distributed with means of 0,

and respective variances of σ2
Q + σ2

T and 1. Therefore pT + (1− p)Z has mean 0

and variance σ2
comb, for σcomb ≡

√
p2(σ2

Q + σ2
T ) + (1− p)2. The applicants with

the k highest values of pT + (1 − p)Z are those with pT+(1−p)Z
σcomb

≥ r∗, for r∗

satisfying Φ (r∗) = 1 − k. I seek to calculate the expected value of T and of Z

conditional on pT+(1−p)Z
σcomb

≥ r∗.

We have the following joint normal distribution among the three random vari-

ables T , Z, and pT+(1−p)Z
σcomb

:

 T

Z
pT+(1−p)Z

σcomb

 ∼ N

0

0

0

 ,
 σ2

Q + σ2
T 0 p

σcomb
(σ2

Q + σ2
T )

0 1 1−p
σcomb

p
σcomb

(σ2
Q + σ2

T ) 1−p
σcomb

1


 .

As in expression (46) of Appendix G.1, we can calculate conditional means of T

and Z conditional on any realization pT+(1−p)Z
σcomb

= r:

E[T |pT + (1− p)Z
σcomb

= r] =
p(σ2

Q + σ2
T )

σcomb

r

E[Z|pT + (1− p)Z
σcomb

= r] =
1− p
σcomb

r.

This holds for every realization r. Therefore, for every r,

E[T | pT + (1− p)Z
σcomb

≥ r] =
p(σ2

Q + σ2
T )

σcomb

E[
pT + (1− p)Z

σcomb

| pT + (1− p)Z
σcomb

≥ r]

E[Z | pT + (1− p)Z
σcomb

≥ r] =
1− p
σcomb

E[
pT + (1− p)Z

σcomb

| pT + (1− p)Z
σcomb

≥ r].
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And given that pT+(1−p)Z
σcomb

follows a standard normal, the truncated mean E[pT+(1−p)Z
σcomb

|
pT+(1−p)Z

σcomb
≥ r] is equal to φ(r)

1−Φ(r)
. Evaluating the above expressions at r = r∗:

τ = E[T | pT + (1− p)Z
σcomb

≥ r∗] =
p(σ2

Q + σ2
T )

σcomb

φ(r∗)

1− Φ(r∗)
=

p(σ2
Q + σ2

T )√
p2(σ2

Q + σ2
T ) + (1− p)2

R(k)

ζ = E[Z | pT + (1− p)Z
σcomb

≥ r∗] =
1− p
σcomb

φ(r∗)

1− Φ(r∗)
=

1− p√
p2(σ2

Q + σ2
T ) + (1− p)2

R(k).

As p goes from 0 to 1, τ goes from 0 to RT =
√
σ2
Q + σ2

TR(k) and ζ goes from

RZ = R(k) to 0. For any p ∈ [0, 1],

τ 2

R2
T

+
ζ2

R2
Z

=
1

σ2
Q + σ2

T

p2(σ2
Q + σ2

T )2

p2(σ2
Q + σ2

T ) + (1− p)2
+

(1− p)2

p2(σ2
Q + σ2

T ) + (1− p)2

=
p2(σ2

Q + σ2
T ) + (1− p)2

p2(σ2
Q + σ2

T ) + (1− p)2
= 1.

So we see that varying p ∈ [0, 1] traces out the upper-right boundary of the

ellipse W .

Step 2. We can proceed similarly to show that we trace out the entire boundary of

the ellipse as we maximize the four combinations of ±pτ ± (1−p)ζ for p ∈ [0, 1].

In other words, every (τ, ζ) that is a boundary point of W is achieved by some

set of k applicants. Moreover, no set of k applicants achieves a pair (τ, ζ) that is

outside the boundaries of this ellipse, the interior of which is convex – otherwise

this point would yield a higher value of an appropriately signed ±pτ ± (1− p)ζ
than any value on the boundary.

Step 3. Finally, the set of achievable (τ, ζ) across applicant pools is convex: choosing

a convex combination of applicants from the two pools yields the same convex

combination of the average test score and average z-score (τ, ζ). So all points in

the interior of W are achievable as well.

Proof of Proposition 5. I will show this result as an application of the one-dimensional

delegation results in Amador et al. (2018), an extension of Amador and Bagwell

(2013). Specifically, Lemma 2 of Amador et al. (2018) provides sufficiency conditions

for the optimality of an action ceiling. As a delegation problem in the framework of

those two papers, let the “state” σUA(θ) be distributed according to H, let ζ ∈ [0, RZ ]
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be the contractible “action,” and let the level of joint “money burning” be δ ∈ R+.46

Those papers take a contract to be an arbitrary set of allowed actions ζ and an

arbitrary function from allowed actions to nonnegative money burning; in my problem

money burning is restricted, bounded at δ ≤ 2τ̄(ζ) under action ζ. However, under the

conditions of Lemma 2 in Amador et al. (2018), money burning will be identically

zero in the optimal delegation contract; any upper bound on money burning will

therefore not be binding.47

Following the notation of those other papers, the agent’s payoff over the state and

action, prior to money burning, can be written as

σUA(θ) · ζ + b(ζ), for b(ζ) ≡
σ2
Q

σ2
Q + σ2

T

RT ·

√
1− ζ2

R2
Z

. (48)

The principal’s payoff prior to money burning can be written as w(σUA(θ), ζ), with

w(σ̃UA , ζ) ≡ σ̂UP (σ̃UA) · ζ + b(ζ). (49)

Money burning of δ reduces both payoffs by that same amount. These payoffs are

not just of the general form considered in Amador and Bagwell (2013), but of the

form in Equation (6) of Amador et al. (2018): w(σUA(θ), ζ) = A[b(ζ) + B(σUA(θ)) +

C(σUA(θ))ζ] for A = 1, B(σUA(θ)) = 0, and C(σUA(θ)) = σ̂UP (σUA(θ)).

Denote the agent’s interim optimal action at state σUA(θ) – her “flexible” action

– as ζf (σUA(θ)). Taking the first order condition of (48),

ζf (σUA(θ)) =
σUA(θ)RZ√

σUA(θ)2 +
σ4
Q

(σ2
Q+σ2

T )2
R2
T

R2
Z

. (50)

46The notation of Amador and Bagwell (2013) and ? has state γ distributed according to cdf F ,
with pdf f ; action π; and money burning t. They use πf (γ) for the function describing the agent’s
ideal action, what I will call ζf (σUA

(θ)); and the latter paper uses π∗ for the principal’s ex ante
optimal action, what I will call ζ∗. I follow these papers in using b(·) as the component of the agent’s
payoff function that depends on the action, despite my previous use of b as the bias realization for
a given applicant; there should be no confusion between the two distinct terms.

47A delegation contract takes a delegation set of allowed actions and a money burning function as
direct objects of choice, whereas these are induced objects – expectations over a selected applicant
pool – in the problem of the current paper. Hence, even if a delegation contract satisfies the
necessary condition of δ ≤ 2τ̄(ζ) at each ζ, I still need to show how to find a contract in my setting
that implements this delegation outcome.
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Denote the principal’s ex ante optimal action by ζ∗, the arg max over ζ of the

expectation of (49):

ζ∗ = arg max
ζ∈[0,RZ ]

EσUA (θ)∼H [σ̂UP (σUA(θ))]ζ + b(ζ). (51)

Because σ̂UP (σUA(θ)) ∈ (0, σUA(θ)), and because the Proposition assumes that σUA(θ)

has bounded support, it holds that EσUA (θ)∼H [σ̂UP (σUA(θ))] is finite and strictly pos-

itive. Moreover, the derivative of b(ζ) is 0 as ζ → 0 and minus infinity as ζ → RZ .

Therefore ζ∗ is interior, contained in (0, RZ); we have now verified Assumption 2 of

Amador et al. (2018).

We can now verify the regularity conditions of Assumption 1 of Amador et al.

(2018). Going through the list, (i) w is continuous; (ii) w(σ̃UA , ·) is concave and

twice differentiable for every σ̃UA ; (iii) b(·) is strictly concave and twice differentiable;

(iv) ζf (·) is twice-differentiable and strictly increasing; and (v) the function wζ , the

derivative of w with respect to ζ, is continuous.

Next, let us evaluate wζ at the agent’s ideal point from (50). Putting together

wζ(σ̃UA , ζ) = σ̂UP (σ̃UA) + b′(ζ) with the fact that the agent’s ideal point ζf (σUA(θ)) is

derived from the first order condition b′(ζf (σ̃UA)) = −σ̃UA , it holds that

wζ(σ̃UA , ζf (σ̃UA)) = σ̂UP (σ̃UA)− σ̃UA . (52)

From (52) combined with σ̂UP (σ̃UA) ∈ (0, σ̃UA), we see that wζ(σ̃UA , ζf (σ̃UA)) is

strictly negative at each σ̃UA > 0, and is equal to zero in the limit as σ̃UA → 0 (if this

limit is in the support of H); in economic terms, the agent’s bias is always towards

higher ζ. Therefore wζ(σ̃UA , ζf (σ̃UA)) satisfies the sign restrictions of Lemma 2 of

Amador et al. (2018) for σ̃UA at the lower and upper bounds of the support.

To apply that Lemma 2, it remains only to check condition (Gc1) of Amador et al.

(2018). The parameter κ appearing in (Gc1) is equal to 1 because – as mentioned

above – the payoffs are of the form in Equation (6) of that paper, with A = 1.

Plugging in κ = 1 and wζ(σ̃UA , ζf (σ̃UA)) = σ̂UP (σ̃UA) − σ̃UA , condition (Gc1) states

that H(σ̃UA) + (σ̃UA − σ̂UP (σ̃UA))h(σ̃UA) is nondecreasing over σ̃UA in the support of

H. This condition is exactly what is assumed in the statement of the proposition.

We have now confirmed all of the hypotheses of Lemma 2 of that paper. We can

therefore conclude that in the delegation problem with money burning allowed, the
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optimal delegation set is of the form of a ceiling on ζ – possibly everywhere binding,

implying a one-point delegation set of ζ = ζ∗ – with money burning δ identically

equal to 0.

Finally, as discussed in the body of the paper and illustrated in Figure 6, a ceiling

on ζ and no money burning corresponds to an applicant selection contract that takes

the form of a floor on the average test score τ . Furthermore, as in Section 3.3, each

average test score that the agent may choose is equivalent to a normal CDF acceptance

rate function, with higher test scores mapping to steeper normal CDFs.

Proof of Proposition 6. Follows immediately from Proposition 10, below.

Proposition 10. Suppose that supσ̃UA∈SuppH σ̂UP (σ̃UA) ≤ inf σ̃UA∈SuppH σ̃UA. Then the

optimal contract can be characterized in either of the following two ways:

1. The agent is allowed to choose any k applicants as long as the induced acceptance

rate α(T ) is Φ(γTT − γ0), with γT equal to some specified level Γ > 0.

2. The agent may select any k applicants as long as the average test score of hired

applicants τ is equal to some specified level κ > 0.

Proof of Proposition 10. Step 1. Take σ̃lUA < σ̃hUA , and take points (τ l, ζ l) and

(τh, ζh) in W . Suppose an agent with σUA(θ) = σ̃lUA weakly prefers (τ l, ζ l) to (τh, ζh),

and an agent with σUA(θ) = σ̃hUA weakly prefers (τh, ζh) to (τ l, ζ l). I claim that

if σ̂UP (σ̃UA) ≤ σ̃lUA , then conditional on σUA(θ) = σ̃UA the principal weakly prefers

(τ l, ζ l) to (τh, ζh).

This claim follows as a straightforward single-crossing argument from (26) and

(27). From the two preference orderings, it must be that τ l ≥ τh and ζ l ≤ ζh. Now,

writing out the agent’s choice given σUA(θ) = σ̃lUA , it holds that

σ2
Q

σ2
Q + σ2

T

· τ l + σ̃lUA · ζ
l ≥

σ2
Q

σ2
Q + σ2

T

· τh + σ̃lUA · ζ
h.

Because ζ l ≤ ζh, the same inequality holds when σ̃lUA is replaced by σ̂UP (σ̃UA) ≤ σ̃lUA .

Step 2. By the claim in Step 1, under any contract, the principal prefers the

(τ, ζ) pair chosen by the agent with σUA(θ) equal to the minimum of the support of

H to that chosen by any other agent type. So the contract is weakly improved by

one which requires the agent to always choose that value (τ, ζ). This new contract,
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in turn, can be improved by one that specifies that the agent always chooses the

principal’s ex ante preferred (τ, ζ): the value on the payoff frontier which maximizes

σ2
Q

σ2
Q + σ2

T

· τ + Eσ̃UA∼H [σ̂UP (σ̃UA)] · ζ.

This can be implemented by fixing the appropriate average test score, or by setting

the appropriate normal CDF acceptance rate function.

Proof of Lemma 4. It is sufficient to confirm that σ̂UP (σ̃UA) is differentiable over the

support when the bias is commonly known (and is therefore continuous), and that

σ̂′UP (σ̃UA) ≤ 2. In that case Lemma 7 below implies the result: for σ̂UP differentiable,

condition (iii) of Lemma 7 amounts to σ̂′UP (σ̃UA) ≤ 2.

From (15) and (18),

σ̂UP (σ̃UA) =
σ̃2
UA
− σ2

B

σ̃UA
= σ̃UA −

σ2
B

σ̃UA

Taking the derivative, σ̂′UP (σ̃UA) = 1 +
σ2
B

σ̃2
UA

. To show that σ̂′UP (σ̃UA) ≤ 2, it suffices

to show that σ̃2
UA

> σ2
B; and this follows directly from (15), which states that for any

agent type θ = (σ2
S, σ

2
B) it holds that σ2

UA
(θ) = η + σ2

B, with η > 0.

Lemma 7. Suppose that (i) the distribution H has pdf h, (ii) h(σ̃UA) is nondecreasing

in σ̃UA over the support of the distribution, and (iii) (2σ̃UA− σ̂UP (σ̃UA)) is nondecreas-

ing in σ̃UA. Then H(σ̃UA) + (σ̃UA − σ̂UP (σ̃UA))h(σ̃UA) is nondecreasing in σ̃UA.

Proof of Lemma 7. Let ∆(σ̃UA) ≡ σ̃UA − σ̂UP (σ̃UA). It holds that ∆(σ̃UA) > 0. As-

sumption (iii), that 2σ̃UA − σ̂UP (σ̃UA) is nondecreasing, can be equivalently stated as

∆(σ̄) + σ̄ ≥ ∆(σ) + σ for any σ̄ > σ in the support of σ̃UA . In other words, (iii) is

equivalent to (iii′):

∆(σ̄)−∆(σ) ≥ σ − σ̄ for any σ̄ > σ. (iii′)

I seek to prove that for any σ̄ > σ,

(H(σ̄) + ∆(σ̄)h(σ̄))− (H(σ) + ∆(σ)h(σ)) ≥ 0.
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Rewriting the LHS,

(H(σ̄)+∆(σ̄)h(σ̄))− (H(σ) + ∆(σ)h(σ))

= H(σ̄)−H(σ) + ∆(σ̄)h(σ̄)−∆(σ)h(σ) + [∆(σ̄)h(σ)−∆(σ̄)h(σ)]

= [∆(σ̄)(h(σ̄)− h(σ))] + [H(σ̄)−H(σ)] + [h(σ)(∆(σ̄)−∆(σ)]

≥ [∆(σ̄)(h(σ̄)− h(σ))] + [h(σ)(σ̄ − σ)] + [h(σ)(∆(σ̄)−∆(σ))] by (ii)

≥ [∆(σ̄)(h(σ̄)− h(σ))] + [h(σ)(σ̄ − σ)] + [h(σ)(σ − σ̄)] by (iii′)

= ∆(σ̄)(h(σ̄)− h(σ)) ≥ 0 by (ii).

G.3 Additional Appendix proofs

Proof of Proposition 7. Restating (11) and (31),

γFD
T =

σ2
Q

(σ2
Q + σ2

T )
√
σ2
B + η

and

γFD
T

√
σ2
Q + σ2

T =
σ2
Q√

σ2
Q + σ2

T

√
σ2
B + η

,

for η =
σ4
Qσ

4
T

(σ2
Q + σ2

T )(σ2
Qσ

2
T + σ2

Qσ
2
S + σ2

Tσ
2
S)
.

1. The parameter k does not appear in the formula for γFD
T .

2. Taking γFD
T =

σ2
Q

(σ2
Q+σ2

T )
√
σ2
B+η

as a function of σ2
Q, σ2

B, σ2
T , and η, we can write

dγFD
T

dσ2
T

as
∂γFD
T

∂σ2
T

+
∂γFD
T

∂η
dη
dσ2
T

. It is easy to confirm that
∂γFD
T

∂σ2
T
< 0,

∂γFD
T

∂η
< 0, and

dη
dσ2
T
> 0. Therefore

dγFD
T

dσ2
T
< 0.

Taking γFD
T

√
σ2
Q + σ2

T =
σ2
Q√

σ2
Q+σ2

T

√
σ2
B+η

as a function of σ2
Q, σ

2
B, σ2

T , and η,

we can write
d(γFD

T

√
σ2
Q+σ2

T )
dσ2
T

as
∂(γFD

T

√
σ2
Q+σ2

T )
∂σ2
T

+
∂(γFD

T

√
σ2
Q+σ2

T )
∂η

dη
dσ2
T

. Once again,

∂(γFD
T

√
σ2
Q+σ2

T )
∂σ2
T

< 0,
∂(γFD

T

√
σ2
Q+σ2

T )
∂η

< 0, and ∂η
∂σ2
T
> 0. Therefore

d(γFD
T

√
σ2
Q+σ2

T )
dσ2
T

<

0.
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Taking limits,

lim
σ2
T→0

γFD
T =

1

σB
, because lim

σ2
T→0

η = 0

lim
σ2
T→∞

γFD
T = 0, because lim

σ2
T→∞

η =
σ4
Q

σ2
Q + σ2

S

lim
σ2
T→0

γFD
T

√
σ2
Q + σ2

T =
σQ
σB

, because lim
σ2
T→0

η = 0

lim
σ2
T→∞

γFD
T

√
σ2
Q + σ2

T = 0, because lim
σ2
T→∞

η =
σ4
Q

σ2
Q + σ2

S

.

3. The parameter σ2
S appears only in γFD

T through η. Routine differentiation shows

that
dγFD
T

dη
< 0 and dη

dσ2
S
< 0, and so by the chain rule

dγFD
T

dσ2
S
> 0.

Taking limits,

lim
σ2
S→0

γFD
T =

σ2
Q

(σ2
Q + σ2

T )

√
σ2
Qσ

2
T

σ2
Q+σ2

T
+ σ2

B

, because lim
σ2
S→0

η =
σ2
Qσ

2
T

σ2
Q + σ2

T

lim
σ2
S→∞

γFD
T =

σ2
Q

σB(σ2
Q + σ2

T )
, because lim

σ2
S→∞

η = 0.

From the proof of Proposition 4, limσ2
S→0 γ

∗
T = 1

σ2
T

√
σ2
Qσ

2
T

σ2
Q+σ2

T
+ σ2

B. On the other

hand, limσ2
S→0 γ

FD
T can be written as

lim
σ2
S→0

γFD
T =

σ2
Q

σ2
Q + σ2

T

(
σ2
B +

σ2
Qσ

2
T

σ2
Q+σ2

T

)√ σ2
Qσ

2
T

σ2
Q + σ2

T

+ σ2
B.

Observing that
σ2
Q

σ2
Q+σ2

T

(
σ2
B+

σ2
Q
σ2
T

σ2
Q

+σ2
T

) = 1

σ2
T+

σ2
B
σ2
Q

(σ2
Q+σ2

T )
< 1

σ2
T

, we see that γFD
T < γ∗T .

4. The value η remains constant as we vary σ2
B. Taking the derivative of γFD

T with

respect to σ2
B gives

−
σ2
Q

2(σ2
Q + σ2

T )(η + σ2
B)

3
2

< 0.
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Taking limits,

lim
σ2
B→0

γ∗FD =
σ2
Q

(σ2
Q + σ2

T )
√
η

lim
σ2
B→∞

γFD
T = 0.

From the proof of Proposition 4, we see that limσ2
B→0 γ

∗
FD = limσ2

B→0 γ
∗
T .

5. Taking γFD
T =

σ2
Q

(σ2
Q+σ2

T )
√
σ2
B+η

as a function of σ2
Q, σ2

B, σ2
T , and η, we can write

dγFD
T

dσ2
Q

as

dγFD
T

dσ2
Q

=
∂γFD

Q

∂σ2
Q

+
∂γFD

T

∂η
· dη
dσ2

Q

=
σ2
T

(σ2
Q + σ2

T )2
√
σ2
B + η

−
σ2
Q

2(σ2
Q + σ2

T )(σ2
B + η)

3
2

·
σ2
Qσ

6
T (2σ2

Qσ
2
S + σ2

Qσ
2
T + 2σ2

Sσ
2
T )

(σ2
Q + σ2

T )2(σ2
Qσ

2
S + σ2

Qσ
2
T + σ2

Sσ
2
T )

=
σ2
T

(σ2
Q + σ2

T )2
√
σ2
B + η

−
σ2
Q

2(σ2
Q + σ2

T )(σ2
B + η)

3
2

·
ησ2

T (2σ2
Qσ

2
S + σ2

Qσ
2
T + 2σ2

Sσ
2
T )

σ2
Q(σ2

Q + σ2
T )(σ2

Qσ
2
S + σ2

Qσ
2
T + σ2

Sσ
2
T )

=
σ2
T

(σ2
Qσ

2
T )2(σ2

B + η)
3
2

(
σ2
B + η − η ·

2σ2
Qσ

2
S + σ2

Qσ
2
T + 2σ2

Sσ
2
T

2(σ2
Qσ

2
S + σ2

Qσ
2
T + σ2

Sσ
2
T )

)
> 0.

And without doing more algebra, if γFD
T is positive and increasing in σ2

Q, and if√
σ2
Q + σ2

T is positive and increasing in σ2
Q, then clearly their product γFD

T

√
σ2
Q + σ2

T

is increasing in σ2
Q.

Taking limits, as σ2
Q → 0 it is easy to see from the above formulas that limσ2

Q→0 γ
FD
T =

limσ2
Q→0 γ

FD
T

√
σ2
Q + σ2

T = 0. As σ2
Q →∞, we have η → σ4

T

σ2
T+σ2

S
and so

lim
σ2
Q→∞

γFD
T =

1√
σ2
B +

σ4
T

σ2
T+σ2

S

lim
σ2
Q→∞

γFD
T

√
σ2
Q + σ2

T =∞.

We can rewrite limσ2
Q→∞ γ

FD
T as

(σ2
Q+σ2

T )

√
σ2
B+

σ4
T

σ2
T
+σ2

S

σ4
T+σ2

B(σ2
T+σ2

S)
which is less than limσ2

Q→∞ γ
∗
T =
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(σ2
T+σ2

S)

√
σ2
B+

σ4
T

σ2
T
+σ2

S

σ4
T

from the proof of Proposition 4 part 5.

Proof of Proposition 8. Follows from arguments in the text.

Proof of Proposition 9. Given the notation that has been introduced, all of the argu-

ments follow exactly as in Section 4 and Proposition 5.

Proof of Lemma 5. 1. The optimal period-2 contract under common knowledge of

the agent’s type sets the average test score to some value κ∗. I first show how

to derive κ∗ in terms of the period 1 outcome.

As a preliminary step, recall that in the notation of Section 4.2, conditional on

any agent type, the payoffs from any set of accepted applicants are determined

by the average test score τ and the average z-score ζ. Since the agent accepts k

applicants, and applicant test scores have an unconditional distribution that is

normal with mean 0 and variance σ2
Q + σ2

T , the range of possible τ is [−RT , RT ],

for RT =
√
σ2
Q + σ2

TR(k), as in (22) and (24). Now let ζ̄(τ) be the highest

possible ζ at an average test score τ , from Lemma 3, plugging in RT and RZ in

terms of R(k):

ζ̄(τ) ≡

√
R(k)2 − τ 2

(σ2
Q + σ2

T )
.

Now suppose that the agent is given full discretion to hire her favorite set of

applicants in period 1 and she acts myopically. The average test score τ1 ∈
[−RT , RT ] is observable to the principal. The average z-score is not directly

observable, but the principal can infer that – since the agent’s payoff increases

in ζ – the average z-score must have been the highest possible level consistent

with τ1, i.e., ζ1 = ζ̄(τ1).

If the principal knows the agent type θ, and therefore the induced quantity

σUP (θ), then the principal’s preferences over (τ, ζ) are given by (21). The prin-

cipal’s optimal contract specifies that τ2 = κ∗, where κ∗ is the τ component of
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the pair (τ, ζ) that optimizes (21). Hence, κ∗ solves

κ∗ = arg max
τ

σ2
Q

σ2
Q + σ2

T

τ + σUP (θ)ζ̄(τ)

⇒ 0 =
σ2
Q

σ2
Q + σ2

T

+ σUP (θ)ζ̄ ′(κ∗)

⇒ κ∗ =
R(k)σ2

Q

√
σ2
Q + σ2

T√
σ2
Q + σ2

UP
(θ)

. (53)

Of course, σUP (θ) depends on the agent’s type, which the principal is trying to

learn from the data.48 But the principal knows his payoff from the first-period

choices – this is exactly the average quality level ξ1. So the principal can plug

τ1 and ξ1 into (21) (with VP = ξ1 and ζ = ζ̄(τ1)) to infer σUP (θ):

ξ1 =
σ2
Q

σ2
Q + σ2

T

τ1 + σUP (θ)ζ̄(τ1)

⇒ σUP (θ) =
ξ1(σ2

Q + σ2
T )− σ2

Qτ1√
(σ2

Q + σ2
T )((σ2

Q + σ2
T )R(k)2 − τ 2

1 )
. (54)

Now plug this value of σUP (θ) into (53) to get (42), i.e.,

κ∗ =
R(k)σ2

Q

√
σ2
Q + σ2

T√
σ2
Q +

(ξ1(σ2
Q+σ2

T )−σ2
Qτ1)2

(σ2
Q+σ2

T )((σ2
Q+σ2

T )R(k)2−τ21 )

.

The optimal contract in the second period lets the agent accept any k applicants

she wants, subject to requiring the period-2 average test score to be κ∗ in (42).49

2. Now consider the comparative statics on κ∗ with respect to τ1 and ξ1.

We know that τ1 can be any value in [0, RT ], with RT =
√
σ2
Q + σ2

T · R(k) for

48Note that one could also solve for the optimal contract even if the observable parameters (k,
σ2
Q, σ2

T ) were to change from period 1 to 2. But one would no longer plug in the period-1 value of

σUP
(θ) into the period-2 payoff expression, since σUP

(θ) depends on σ2
T and σ2

Q.
49One could also solve for the optimal contract even if the observable parameters (k, σ2

Q, σ2
T ) were

to change from period 1 to 2. But one would not simply plug in the period-1 value of σUP
(θ) from

(54) into the period-2 expression (53). The value of σUP
(θ) depends on σ2

T and σ2
Q, which might

change from period to period.
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R(k) in (22). Let us bound the range of ξ1 consistent with an observed τ1.

The principal’s payoff in the first period, ξ1, is equal to
σ2
Q

σ2
Q+σ2

T
τ1 + σUP (θ)ζ̄(τ1)

from (21). And σUP (θ) must be in the range (0, σUA(θ)) from Lemma 2 part 3.50

So, given τ1,
σ2
Q

σ2
Q + σ2

T

τ1 < ξ1 <
σ2
Q

σ2
Q + σ2

T

τ1 + σUA(θ)ζ̄(τ1).

Moreover, σUA(θ) can be inferred from τ1: the model predicts that the agent

has chosen τ1 to maximize (20) over τ , with ζ = ζ̄(τ). Taking the first order

condition and solving for σUA(θ) gives

σUA(θ) =
σ2
Q

τ1

√
R(k)2 − τ 2

1

σ2
Q + σ2

T

.

Plugging this value of σUA(θ) along with ζ̄(τ1) into the above sequence of in-

equalities, we get (after some simplification)

σ2
Q

σ2
Q + σ2

T

τ1 < ξ1 <
σ2
QR(k)

τ1

. (55)

Now, return to the comparative statics of κ∗ given by (42). κ∗ moves in the

opposite direction as the fraction
(ξ1(σ2

Q+σ2
T )−σ2

Qτ1)2

(σ2
Q+σ2

T )((σ2
Q+σ2

T )R(k)2−τ21
as we vary ξ1 or τ1.

And it is immediate that the fraction is increasing in ξ1 as long as ξ1(σ2
Q +σ2

T )−
σ2
Qτ1 > 0, which holds by the left inequality of (55). Next, differentiating, it

is straightforward to show that the sign of the derivative of the fraction with

respect to τ1 is equal to the sign of (ξ1(σ2
Q + σ2

T )− σ2
Qτ1)(τ1ξ1 − σ2

QR(k)2). The

first parenthetical term is positive, as just described; the second parenthetical

term is negative by the second inequality in (55). So κ∗ decreases in ξ1 and

increases in τ1.

Proof of Lemma 6. From the specified joint distributions of Q and T , it follows that

Var(Q) = σ2
Q, Var(T ) = σ2

Q + σ2
T , and Cov(T,Q) = σ2

Q. It remains to calculate

Var(UA), Cov(T, UA), and Cov(Q,UA).

It will be helpful to note as well that Cov(S,Q) = σ2
Q, Cov(S, T ) = σ2

Q, and

Var(S) = σ2
S + σ2

Q. The bias term B has variance σ2
B, and has 0 covariance with S,

50The upper bound here need not be tight, depending on parameters.
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T , or Q.

From (7),

UA = E[Q|T, S] +B =

T
σ2
T

+ S
σ2
S

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

+B.

Cov(q, ũA) is given by

Cov(Q,UA) =

Cov(Q,T )

σ2
T

+ Cov(Q,S)

σ2
S

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

=

σ2
Q

σ2
T

+
σ2
Q

σ2
S

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

=
σ4
Q(σ2

S + σ2
T )

σ2
Qσ

2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

.

Cov(T, UA) is given by

Cov(T, UA) =

Var(T )

σ2
T

+ Cov(T,S)

σ2
S

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

=

σ2
Q+σ2

T

σ2
T

+
σ2
Q

σ2
S

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

= σ2
Q

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

= σ2
Q.

And finally, Var(UA) is given by

Var(UA) =

Var(T )

σ4
T

+ Var(S)

σ4
S

+ 2Cov(T,S)

σ2
T σ

2
S(

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

)2 + σ2
B =

σ2
Q+σ2

T

σ4
T

+
σ2
Q+σ2

S

σ4
S

+ 2
σ2
Q

σ2
T σ

2
S(

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

)2 + σ2
B

= σ2
Q

(
1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

)(
1
σ2
T

+ 1
σ2
S

)
(

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

)2 + σ2
B = σ2

Q

1
σ2
T

+ 1
σ2
S

1
σ2
Q

+ 1
σ2
T

+ 1
σ2
S

+ σ2
B

=
σ4
Q(σ2

S + σ2
T )

σ2
Qσ

2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

+ σ2
B.
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