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1 Introduction

Researchers often discipline the parameters of structural economic models by calibrating
certain model-implied moments to the corresponding moments in the data (Kydland &
Prescott, 1996; Nakamura & Steinsson, 2018). This calibration strategy can be viewed as a
version of moment matching (or more generally, minimum distance) estimation, as argued
by Hansen & Heckman (1996). Moment matching is popular in diverse fields of applied
structural economics.

Standard moment matching inference requires knowledge of the variance-covariance ma-
trix of the empirical moments, but in practice this matrix is often only partially known.
When the empirical moments are obtained from different data sets, different econometric
methods, or different previous papers, it is usually hard or impossible to estimate the off-
diagonal elements of the variance-covariance matrix. Nevertheless, the diagonal of the matrix
– the variances of the individual empirical moments – is typically estimable. In this paper,
we show that the diagonal suffices to obtain practically useful worst-case standard errors for
the moment matching estimator. Moreover, in the over-identified case, we show that the
moment weighting that minimizes the worst-case estimator variance amounts to a moment
selection problem with a simple solution. Hence, our methods allow researchers to choose
their moments and data sources freely without giving up on doing valid statistical inference.

We show that worst-case standard errors for the structural parameters (or smooth trans-
formations thereof), using only the empirical moment variances, are easy to compute. They
are given by a weighted sum of the standard errors of individual empirical moments, where
the weights depend on the moment weight matrix and the derivatives of the moments with
respect to the structural parameters. The derivatives can be obtained analytically, by auto-
matic differentiation, or by first differences. Using these worst-case standard errors, one can
construct a confidence interval that is valid even under the worst-case correlation structure.
The confidence interval is generally conservative for specific correlation structures, but its
minimax coverage is exact, i.e., under the worst-case correlation structure, which amounts
to perfect positive/negative correlation. The confidence interval is likely to be informative in
many empirical applications, as it is at most √

p times wider than it would be if the moments
were known to be independent, where p is the number of moments used for estimation.

Given knowledge of only the individual empirical moment variances, we show that the
moment weighting scheme that minimizes the worst-case estimator variance amounts to a
moment selection problem. That is, the efficient minimum distance weight matrix attaches
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zero weight to some of the moments. The efficient selection of moments can be conveniently
computed by running a median regression (i.e., Least Absolute Deviation regression) on a
particular artificial data set. The efficient estimator given knowledge of only the moment
variances is generally different from the familiar full-information efficient estimator that
requires knowledge of the entire moment correlation structure.

To understand the intuition behind our results, consider the analogy of portfolio selection
in finance. This analogy is mathematically relevant, as it is well known that any minimum
distance estimator is asymptotically equivalent to a linear combination of the empirical
moments – a “portfolio” of moments – with a linear restriction on the weights to ensure
unbiasedness. When constructing a minimum-variance financial portfolio that achieves a
given expected return, it is usually optimal to diversify across all available assets, except if
the assets are perfectly (positively or negatively) correlated. In the latter extreme case, it is
optimal to entirely disregard assets with sufficiently high variance relative to their expected
return. But it is precisely the extreme case of perfect correlation that delivers the worst-case
variance of a given portfolio. Thus, the portfolio with the smallest worst-case variance across
correlation structures is a portfolio that selects a subset of the available assets. We further
illustrate the analogy between portfolio selection and moment selection in Section 4.

We derive joint tests of parameter restrictions as well as tests of over-identifying restric-
tions. A common form of over-identification test used in the empirical literature is to check
whether the estimated structural parameters yield a good fit of the model to “non-targeted”
moments, i.e., moments that were not exploited for parameter estimation. We show how
to implement a formal statistical test based on this idea in our setup. For joint testing of
parameter restrictions, we propose a Wald-type test. The proof of the validity of this test
relies on tail probability bounds for quadratic forms in Gaussian vectors from Székely &
Bakirov (2003), but the test statistic and critical value are simple and easy to compute.

Finally, we extend our procedures to settings with more detailed knowledge of the co-
variance matrix of empirical moments. This includes settings where the entire correlation
structure is known for some subsets of the moments, or where certain moments are known
to be independent of each other.

We illustrate the usefulness of our procedures through two empirical applications. In the
first one, we estimate and test the Alvarez & Lippi (2014) model of menu cost price setting
in multi-product firms, by matching moments of price changes. In the second application,
we estimate and test a heterogeneous agent New Keynesian model developed by McKay,
Nakamura & Steinsson (2016) and Auclert, Bardóczy, Rognlie & Straub (2021), by matching
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impulse responses for macro time series and cross-sectional micro moments. Our worst-case
standard errors allow for informative inference on several parameters of interest in both
applications. A Monte Carlo simulation study calibrated to the first application indicates
that our methods perform well in finite samples.

Literature. Unlike the literature on correlation matrix completion, we solve the explicit
problem of finding the worst-case correlation structure when estimating parameters in a
structural model. Existing papers (see Georgescu, Higham & Peters, 2018, and references
therein) instead compute positive definite correlation matrices that satisfy various reduced-
form optimality criteria, such as the maximum entropy principle. Our derivations of the
worst-case efficient weight matrix and joint testing procedure do not seem to have parallels
in the matrix completion literature.

While we focus on cases where it is difficult to estimate the correlation structure of
different moments, in some applications it may be possible to model and exploit the precise
relationship between the moments. The literature on estimating heterogeneous agent models
in macroeconomics has recently developed procedures for combining macro and micro data,
as discussed further in Section 7.2. Hahn, Kuersteiner & Mazzocco (2020b) provide advanced
tools for doing inference with a mix of cross-sectional and time series data. These methods,
unlike ours, generally require access to the underlying data, rather than just the moments and
their standard errors. Imbens & Lancaster (1994) consider a microeconometric setting where
certain macro moments are known without error, which is a special case of our framework.
Hahn, Kuersteiner & Mazzocco (2020a) give examples of structural models where both time
series and cross-sectional data are required for identification of structural parameters. Their
insights may help inform the choice of moments for the methods that we develop below.

Outline. Section 2 defines the moment matching setup. Section 3 derives the worst-case
standard errors and the efficient moment weighting/selection. Section 4 presents simple
geometric and analytical illustrations of our results. Section 5 develops tests of parameter
restrictions and of over-identifying restrictions. Section 6 extends our methods to settings
where some off-diagonal elements of the moment covariance matrix are known. Section 7
contains two empirical illustrations. Section 8 concludes. Appendix A contains proofs and
other technical details. Code for implementing our procedures is available online.1

1Matlab: https://github.com/mikkelpm/stderr_calibration_matlab. Python: https://github.
com/mikkelpm/stderr_calibration_python
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2 Setup

Consider a standard moment matching (minimum distance) estimation framework. Let
µ0 ∈ Rp be a vector of reduced-form parameters, which we will refer to as “moments”,
though the method applies more generally. Let θ0 ∈ Θ ⊂ Rk be a vector of structural
model parameters. According to an economic model, the two parameter vectors are linked
by the relationship µ0 = h(θ0), where h : Θ → Rp is a known function implied by the model.
The map h(·) may be computed either analytically or numerically. We have access to an
estimator µ̂ (“empirical moments”) that satisfies

√
n(µ̂ − µ0) d→ N(0, V ) (1)

for a p × p symmetric positive semidefinite variance-covariance matrix V .2 Let Ŵ be a p × p

symmetric matrix satisfying Ŵ
p→ W (we discuss the choice of Ŵ in Section 3.2). Then a

“moment matching” or “minimum distance” estimator of θ0 is given by

θ̂ = argmin
θ∈Θ

(µ̂ − h(θ))′Ŵ (µ̂ − h(θ)). (2)

This estimation strategy is sometimes referred to as “calibration”.
If we were able to estimate the covariance matrix of the empirical moments µ̂ consistently,

it would be straight-forward to construct standard errors for any smooth function of the
estimator θ̂. Suppose we are interested in the scalar transformed parameter r(θ0), where
r : Θ → R. For example, r(·) may equal a particular counterfactual quantity in the structural
model, or we could simply set r(θ) = θi for some index i. Under the standard regularity
conditions listed below in Assumption 1,

√
n(r(θ̂) − r(θ0)) = λ′(G′WG)−1G′W

√
n(µ̂ − µ0) + op(1) (3)

d→ N
(
0, λ′(G′WG)−1G′WV WG(G′WG)−1λ

)
,

where G ≡ ∂h(θ0)/∂θ′ ∈ Rp×k and λ ≡ ∂r(θ0)/∂θ ∈ Rk. See Newey & McFadden (1994)

2Here and below, all limits are taken as the sample size n → ∞. We implicitly think of the sample sizes
for the different moments as being proportional, with the factors of proportionality reflected in V . If some
element µ̂j converges at a faster rate than

√
n, then Vjj = 0. Sample sizes and convergence rates only enter

into our practical procedures through their implicit effect on the calculation of the moment standard errors
σ̂j (discussed below), which is handled automatically by econometric software.
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for details. If the entire asymptotic covariance matrix V of µ̂ were consistently estimable,
the above display would allow computation of standard errors, confidence intervals, and
hypothesis tests.

Unfortunately, the full correlation structure of µ̂ is difficult or impossible to estimate in
certain applications. This may be the case, for example, when the moments µ̂ are obtained
from a variety of different data sources or econometric methods, or from previous studies for
which the underlying data is not readily available. Moreover, if the moments involve a mix of
time series and cross-sectional data sources, it can be difficult conceptually or practically to
estimate correlations across data sources, whether through the bootstrap or the Generalized
Method of Moments (GMM). While the structural model could in some cases be exploited to
estimate the moment covariance matrix, this may require stronger assumptions than what
is needed for point estimation of the structural parameters.3 We illustrate all these points
in the empirical application in Section 7.2. Even in cases where a convenient estimator of
the full asymptotic covariance matrix V is available, the off-diagonal elements may not be
accurately estimated in finite samples (Altonji & Segal, 1996).

Yet, it is often the case that the standard errors of each of the components of µ̂ are
available. These marginal standard errors may be directly computable from data, or they
may be reported in the various papers that the individual elements of µ̂ are gleaned from.
Thus, assume that we have access to standard errors σ̂1, . . . , σ̂p ≥ 0 satisfying

√
nσ̂j

p→ V
1/2

jj , j = 1, . . . , p. (4)

We show in the next section that these marginal standard errors suffice for doing informative
inference on r(θ0).

For ease of reference, we summarize our technical assumptions here:

Assumption 1.

i) The empirical moment vector µ̂ is asymptotically normal, as in (1), and V ̸= 0p×p.

ii) The standard error estimators σ̂j are consistent, as in (4).

iii) h(·) and r(·) are both continuously differentiable in a neighborhood of θ0 (which lies in
the interior of Θ), G ≡ ∂h(θ0)/∂θ′ has full column rank, and λ ≡ ∂r(θ0)/∂θ ̸= 0k×1.

3For example, if we exploit the model’s predictions about second moments for estimation, model-based
estimation of V would require believing the model’s predictions about fourth moments.
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iv) θ̂
p→ θ0.

v) Ŵ
p→ W for a symmetric positive semidefinite matrix W .

vi) G′WG is nonsingular.

Conditions (ii)–(vi) are standard regularity conditions that are satisfied in smooth, locally
identified models (Newey & McFadden, 1994). Note that we allow for the possibility that
some moments are known with certainty (Vjj = 0) as in Imbens & Lancaster (1994). We
will now discuss the key condition (i).

Discussion of joint normality assumption. When the elements of the moment vec-
tor µ̂ are obtained from different data sets, the joint normality assumption (1) requires
justification. This ensures not only that a normal distribution is the appropriate reference
distribution for obtaining critical values, but also that the vector µ̂ can reasonably be viewed
as arising from some joint, repeatable experiment for which the given standard errors σ̂j cap-
ture all sources of uncertainty. The joint normality assumption is most easily understood
and justified under a model-based (e.g., shock-based) perspective on uncertainty. In this
view, there exists a coherent data generating process with both aggregate and idiosyncratic
shocks that affect all of the observed data. The empirical application of Section 7.2 is a
prototypical example of this framework, but such applications are not the only use case.

There are several cases in which the joint normality assumption appears reasonable, but
estimation of the full moment covariance matrix V could be challenging. For example:

1. The moments are obtained from the same or similar data sets, but the underlying data
for some of the moments is not available. For example, some moments may be reported
in previous papers that use proprietary data. See Section 7.1 for an empirical example.

2. Some of the moments are computed from aggregate time series and others from panel
data spanning similar time periods. If the clustering procedure of the panel data
regressions allows for aggregate shocks, and these aggregate shocks also affect the
time series data, then the panel regressions will have correct standard errors but the
coefficients may be correlated with the time series moments.

3. The moments stem from time series data observed at various frequencies, or from
regional data with various levels of geographic aggregation. While careful econometric
analysis may allow the estimation of the full covariance matrix of the moments, this
could be cumbersome in practice.

7



4. We use a combination of aggregate time series moments and micro moments from sur-
veys, and the latter measure time-invariant parameters that are not affected by macro
shocks in the sample. In this case, it is often reasonable to assume that the uncertainty
in the micro moments (arising purely from idiosyncratic noise) is independent of the
uncertainty in the macro moments. Such extra information can be incorporated in our
procedures, as shown in Section 6.

5. The moments are all computed from the same data set, but using a variety of compli-
cated procedures. In this case, it may be difficult to estimate the correlation structure
analytically using, say, GMM, and the bootstrap may be computationally impractical.

However, in certain cases the joint normality assumption may fail. For example:

1. We use a combination of aggregate time series moments and micro moments from
surveys, but the latter are affected by aggregate macro shocks that shift the whole micro
outcome distribution. In this case, standard cross-sectional moments may not even
be consistent for the true underlying population moments, since the aggregate shocks
do not get averaged out (Hahn et al., 2020a, Section 3). Moreover, the usual micro
standard errors will not take into account the combined uncertainty in the macro shock
and idiosyncratic micro noise. Nevertheless, as long as one appropriately accounts
for all types of uncertainty when computing moments and their standard errors, our
methods below can be applied. We illustrate this empirically in Section 7.2.

2. The data used to compute some of the moments is very heavy tailed, or the estimation
procedures are not asymptotically regular. In this case, even marginal normality of
the individual empirical moments may fail. We leave extensions to non-normal limit
distributions as an interesting topic for future research.

3 Standard errors and moment selection

We first derive the worst-case standard errors for a given choice of moment weight matrix.
Then we show that the weighting scheme that minimizes the worst-case standard errors
amounts to a moment selection problem with a simple solution.
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3.1 Worst-case standard errors and confidence intervals

We first compute the worst-case bound on the standard error of the moment matching es-
timator, given knowledge of only the variances of the empirical moments. Although the
argument relies on a straight-forward application of the Cauchy-Schwarz inequality, it ap-
pears that the literature has not realized the practical utility of this result.

Recall that we seek to do inference on the scalar parameter r(θ0). By the standard delta
method expansion (3) under Assumption 1, the estimator r(θ̂) is asymptotically equiva-
lent to a certain linear function x′µ̂ of the empirical moments, where x = (x1, . . . , xp)′ ≡
WG(G′WG)−1λ. We thus seek to bound the variance of an (asymptotically) known lin-
ear combination of µ̂, knowing the variance of each component µ̂j but not the correlation
structure. This worst-case variance is attained when all components of µ̂ are perfectly pos-
itively or negatively correlated (depending on the signs of the elements of x), yielding the
worst-case variance (∑p

j=1 |xj| Var(µ̂j)1/2)2. This elementary result is proved in Lemma 1 in
Appendix A.1.4

We can thus construct an estimate of the worst-case standard error of r(θ̂) as

ŝe(x̂) ≡
p∑

j=1
σ̂j|x̂j|,

where x̂ = (x̂1, . . . , x̂p)′ ≡ Ŵ Ĝ(Ĝ′Ŵ Ĝ)−1λ̂, Ĝ ≡ ∂h(θ̂)
∂θ′ , and λ̂ ≡ ∂r(θ̂)

∂θ
. In practice, the

partial derivatives may be computed analytically, by automatic differentiation, or by finite
differences. Let Φ(·) denote the standard normal distribution function. Then the confidence
interval [

r(θ̂) − Φ−1(1 − α/2)ŝe(x̂), r(θ̂) + Φ−1(1 − α/2)ŝe(x̂)
]

covers r(θ0) with probability at least 1 − α asymptotically. The asymptotic coverage proba-
bility is exactly 1 − α if V happens to have the worst-case structure, i.e., when all elements
of µ̂ are perfectly correlated asymptotically (so V has rank 1). Formally, these results follow
from the fact that, under Assumption 1,

√
n ŝe(x̂) p→

p∑
j=1

V
1/2

jj |xj| = max
Ṽ ∈S(diag(V ))

√
λ′(G′WG)−1G′WṼ WG(G′WG)−1λ,

4The basic insight is that Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y ) ≤ Var(X) + Var(Y ) +
2(Var(X) Var(Y ))1/2 = (Var(X)1/2 + Var(Y )1/2)2 by Cauchy-Schwarz.
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where the equality uses Lemma 1 in Appendix A.1. Here S(diag(V )) denotes the set of
matrices Ṽ that are p × p symmetric positive semidefinite and with diagonal elements Ṽjj =
Vjj for all j.

Remark.

1. By Jensen’s inequality, ∑p
j=1 σ̂j|x̂j| ≤ p1/2(∑p

j=1 σ̂2
j x̂2

j)1/2. Hence, the worst-case stan-
dard errors are at most √

p times larger than the standard errors that assume all
elements of µ̂ to be mutually uncorrelated.

3.2 Efficient moment selection

We now derive a weight matrix W that minimizes the worst-case variance of the estimator,
derived above. We show that this weight matrix puts weight on at most k moments, so the
procedure amounts to efficient moment selection. Since the weight matrix W only matters
in the over-identified case, we assume p > k in this section. Let Sp denote the set of p × p

symmetric positive semidefinite matrices W such that G′WG is nonsingular.5

We seek a weight matrix W that minimizes the worst-case asymptotic standard deviation
of r(θ̂). Let x(W ) denote the vector x defined in Section 3.1, viewed as a function of W .
Then we solve the problem

min
W ∈Sp

max
Ṽ ∈S(diag(V ))

√
λ′(G′WG)−1G′WṼ WG(G′WG)−1λ (5)

= min
W ∈Sp

max
Ṽ ∈S(diag(V ))

(x(W )′Ṽ x(W ))1/2

= min
W ∈Sp

p∑
j=1

V
1/2

jj |xj(W )|,

where the last equality uses the result in Section 3.1 (cf. Lemma 1 in Appendix A.1).
Lemma 2 in Appendix A.1 shows that the solution to the final optimization problem above
is given by

min
W ∈Sp

p∑
j=1

V
1/2

jj |xj(W )| = min
z∈Rp−k

p∑
j=1

|Ỹj − X̃ ′
jz|, (6)

5The latter constraint ensures that the true parameter vector θ0 is a locally unique minimum of the
population minimum distance objective function.
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where we define

Ỹj ≡ V
1/2

jj Gj•(G′G)−1λ ∈ R, X̃j ≡ −V
1/2

jj G⊥′
j• ∈ Rp−k,

G⊥ is any p × (p − k) matrix with full column rank satisfying G′G⊥ = 0k×(p−k), and the
notation Aj• means the j-th row of matrix A. The intuition for the equality (6) is that the set
of all minimum distance estimators for various weight matrices is asymptotically equivalent
to the set of all estimators that are linear combinations of the p moments µ̂, subject to k

asymptotic unbiasedness constraints. We can therefore optimize over a (p − k)-dimensional
linear space.

The final optimization problem (6) is a median regression (Least Absolute Deviation
regression) of the artificial “regressand” {Ỹj} on the p − k artificial “regressors” {X̃j}. This
regression can be executed efficiently using standard quantile regression software.

The solution to the median regression amounts to optimally selecting at most k of the
p moments for estimation. Theorem 3.1 of Koenker & Bassett (1978) implies that there
exists a solution z∗ to the median regression (6) such that at least p − k out of the p median
regression residuals

e∗
j ≡ Ỹj − X̃ ′

jz
∗, j = 1, . . . , p,

equal zero. Hence, an efficient weight matrix W ∗ that achieves the minimum in (6) will
yield a linear combination vector x(W ∗) = (V −1/2

11 e∗
1, . . . , V −1/2

pp e∗
p)′ that attaches nonzero

weight to at most k out of the p empirical moments µ̂. In other words, the solution to
the efficient moment weighting problem is endogenously achieved by an efficient moment
selection. We may pick an arbitrary weight matrix that attaches nonzero weight to only the
efficiently selected moments (the magnitudes of the weights do not matter asymptotically,
as the selected set of moments is just-identified).

Algorithm. The efficient estimator and standard errors can be computed as follows:

i) Compute an initial consistent estimator θ̂init using, say, a diagonal weight matrix with
Ŵjj = σ̂−2

j .

ii) Construct the derivative matrix Ĝ ≡ ∂h(θ̂init)
∂θ′ and vector λ̂ ≡ ∂r(θ̂init)

∂θ
, either analytically

or numerically.
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iii) Solve the median regression (6), substituting Ĝ for G, λ̂ for λ, and σ̂j for V
1/2

jj .6 Compute
the residuals ê∗

j , j = 1, . . . , p, from this median regression. (In the non-generic case
where multiple solutions to the median regression exist, select one that yields at most
k nonzero residuals.)

iv) Construct the efficient linear combination x̂∗ = (x̂∗
1, . . . , x̂∗

p)′ of the p moments, given by
x̂∗

j ≡ σ̂−1
j ê∗

j for j = 1, . . . , p. At least p − k of the elements will be zero, corresponding
to those moments that are discarded by the efficient moment selection procedure.

v) To compute an efficient estimator of r(θ0), either:

a) Compute the just-identified efficient minimum distance estimator θ̂eff of θ0 which uses
any weight matrix that attaches zero weight to those (at least) p − k moments which
receive zero weight in the vector x̂∗. Then estimate r(θ0) by r(θ̂eff). Or:

b) Compute the “one-step” estimator r̂eff-1S ≡ r(θ̂init) + x̂∗′(µ̂ − h(θ̂init)) of r(θ0).7

vi) The worst-case standard error of the estimator from step (v) is given by the value of
the median regression (6) (i.e., the minimized objective function).

Options (a) and (b) in step (v) of the algorithm are asymptotically equivalent. Option (b)
is computationally more convenient as it avoids further numerical optimization, but option
(a) ensures that θ̂eff always lies in the parameter space Θ.

Remarks.

1. One can optionally re-run the median regression with updated Ĝ and λ̂ based on θ̂eff,
but this does not increase asymptotic efficiency.

2. Since all operations involved in computing the efficient linear combination x̂∗ are contin-
uous, x̂∗ converges in probability to the population efficient linear combination x(W ∗).
The only exception may be where the population median regression (6) does not have
a unique minimum, which is a non-generic case. Even in this case, however, the ef-
ficient worst-case standard errors will be consistent (when multiplied by

√
n) under

Assumption 1(i)–(iv), by a standard application of the maximum theorem.

6Remember to omit an intercept from the regression.
7See Newey & McFadden (1994, Section 3.4) for a general discussion of one-step estimators.
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3. The full-information (infeasible) efficient weight matrix that exploits knowledge of all
of V is known to equal W = V −1. This weight matrix in general attaches nonzero
weight to all moments, unlike the limited-information efficient solution derived above.
The worst-case asymptotic standard deviation (6) given limited information is of
course larger than the asymptotic standard deviation (λ′(G′V −1G)−1λ)1/2 of the full-
information efficient estimator of r(θ0).

4. The efficient moment weighting/selection for the limited-information efficient estima-
tors r(θ̂eff) and r̂eff-1S depends on the function r(·) of interest, unlike in the case of
full-information efficient estimation. In practice, we can just re-run the computations
for all functions r(·) of interest (e.g., for all components of θ).

5. It is not restrictive to consider moment matching estimators of the form (2). Consider
instead any estimator ϑ̂ ≡ f̂(µ̂) of θ0, where f̂ : Rp → Rk is a possibly data-dependent
function with enough regularity to satisfy the asymptotically linear expansion

ϑ̂ − θ0 = H(µ̂ − µ0) + op(n−1/2),

for some k × p matrix H. If we restrict attention to asymptotically regular estimators
of θ0 (i.e., estimators that remain asymptotically unbiased under locally drifting pa-
rameters), we need HG = Ik. Among all estimators ϑ̂ satisfying these requirements,
the smallest possible worst-case asymptotic standard deviation of r(ϑ̂) is achieved by
the estimator whose asymptotic linearization matrix H solves

min
H : HG=Ik

max
Ṽ ∈S(diag(V ))

(λ′H ′Ṽ Hλ)1/2.

Lemma 2 in Appendix A.1 shows that the solution to this problem is precisely the value
of the median regression (6). In other words, the minimum distance estimator θ̂ with
(limited-information) efficient weight matrix delivers the smallest possible worst-case
standard errors in a large class of estimators.

6. Our results extend in a straight-forward manner to Generalized Minimum Distance
estimation. In that setting θ0 and µ0 are linked through a possibly non-separable
equation g(θ0, µ0) = 0m×1. The setting in Section 2 is a special case with g(θ, µ) =
µ − h(θ), but our calculations carry over with few changes because the asymptotic
expansions are essentially the same (Newey & McFadden, 1994).
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4 Geometric and analytical illustrations

This section uses two simple toy examples to illustrate geometrically and analytically the
calculations in the previous section. Via direct arguments in these simple examples, we will
arrive at the same efficient worst-case standard errors as the median regression in Section 3.2.
In this section, we remove “hats” on σ̂j to ease notation.

4.1 Geometric intuition: two moments, one parameter

Consider first the simplest possible example of two moments µ̂1, µ̂2 that are jointly normal
in finite samples and are both noisy measures of a scalar structural parameter θ0. In our
notation, this model corresponds to k = 1, p = 2, andµ̂1

µ̂2

 ∼ N

(θ0

θ0


︸ ︷︷ ︸

µ0

,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


︸ ︷︷ ︸

1
n

V

)
, h(θ) =

1
1


︸ ︷︷ ︸

G

θ, θ ∈ R.

Suppose also that the standard deviations of the first and second moments are known to be
σ1 = 1 and σ2 = 2, respectively.

In this particular linear model, it can be shown that the class of minimum distance
estimators of θ0 is precisely the class of weighted sums of the two noisy measures µ̂1 and µ̂2,
where the weights on these moments sum to one:

θ̂(x1, x2) ≡ x1µ̂1 + x2µ̂2, x1 + x2 = 1. (7)

Therefore, we seek the linear combination of the moments θ̂(x1, x2) with the smallest possible
variance, subject to the linear constraint on the weights (x1, x2) given in (7). Note that this
constraint ensures that θ̂(x1, x2) is unbiased.

In this example it is obvious that the worst-case efficient estimation strategy is to use only
the first moment. This is because the worst-case variance of any given estimator θ̂(x1, x2) is
achieved when the two moments are perfectly correlated, and in this extreme case, there is
no benefit from including the high-variance moment µ̂2 in the linear combination θ̂(x1, x2).

We will now present a geometric visualization that delivers this obvious result, illustrated
in the panels of Figure 1 below. Each estimator θ̂(x1, x2) can be represented by a point
(x1, x2) ∈ R2. As discussed above, the set of minimum distance estimators corresponds to
the subset of points (x1, x2) satisfying the unbiasedness constraint in (7), which we represent
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Figure 1: Geometric illustration of worst-case efficient estimator. (a): Optimal estimator given
known correlation structure. (b)+(c): Worst-case correlation structure for two different estimators.
(d) Worst-case efficient estimator. See main text for explanation.

by the thick straight line in all panels of the figure. For any choice of weights (x1, x2) (both
on and off the line) we can compute the variance of the corresponding estimator,

Var[θ̂(x1, x2)] = σ2
1x2

1 + σ2
2x2

2 + 2ρσ1σ2x1x2, (8)

which depends upon the unknown correlation parameter ρ. Dashed ellipses in the figure
represent level sets of the estimator variance (8).

Panel (a) of Figure 1 depicts the efficient estimator in the case where it is known that
ρ ≡ Corr(µ̂1, µ̂2) = 0. The lowest-variance estimator θ̂(x1, x2) is found at the point (x1, x2)
where the elliptical variance level sets are tangent to the straight line that embodies the
unbiasedness constraint (7). Note that it is optimal to use both moments for estimation, i.e.,
x1, x2 > 0. This is the standard diversification motive in financial portfolio construction, as
discussed in Section 1.

Panel (b) of Figure 1 fixes (x1, x2) at the optimum from panel (a) and depicts the stan-
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dard deviation of the corresponding estimator θ̂(x1, x2) for different values of ρ. The ellipses
are again level sets for the variance, now corresponding to ρ ∈ {−0.2, 0.5, 0.9} (the larger ρ,
the larger the area of the ellipse in this plot). For a given level set ellipse, the corresponding
standard deviation of the estimator is given by the x1-coordinate at which the ellipse inter-
sects with the positive half of the x1-axis (since σ1 = 1, cf. (8)). We see from the figure that
the standard deviation of the estimator is increasing in ρ; hence, the worst case is ρ = 1.8

Panel (c) of Figure 1 repeats the exercise from panel (b), except that now we consider a
point (x1, x2) with x2 < 0. The three ellipses correspond to ρ ∈ {0.2, −0.5, −0.9} (the more
negative ρ, the larger the area of the ellipse in this plot). In this case, the figure shows that
the worst-case correlation is ρ = −1.

Finally, panel (d) of Figure 1 finds the estimator θ̂(x1, x2) with the smallest worst-case
standard deviation.9 The figure depicts five possible choices of (x1, x2). For each choice, it
shows the variance level set corresponding to the worst-case correlation, which is ρ = 1 when
x2 > 0 and ρ = −1 when x2 < 0. To simplify the figure we only plot the portion of the
variance “ellipse” (here a line, due to perfect correlation) that intersects the positive half of
the x1-axis. Notice that any choice (x1, x2) on the unbiasedness line with x1 ̸= 1 leads to a
worst-case standard deviation (i.e., intersection with the x1-axis) that is strictly larger than
1. However, at (x1, x2) = (1, 0), the standard deviation at both ρ = 1 and ρ = −1 equals 1.
Hence, the efficient estimator is θ̂(1, 0), which discards the second (higher-variance) moment.
Again, it is worthwhile recalling the portfolio analogy in Section 1, where the diversification
motive disappears if the available assets are perfectly correlated.

The geometry of panel (d) of Figure 1 extends to higher-dimensional settings. The
unbiasedness constraint on θ̂ will always amount to a linear restriction on the weights x.
Meanwhile, the level sets of the worst-case standard error ŝe(x) = ∑p

j=1 σj|xj| look like
diamonds centered at the origin in Rp-space (since the worst-case standard error is a weighted
L1-norm). Any point of tangency of the unbiasedness hyperplane and the diamond level sets
must occur at a vertex of the diamonds. At such a vertex, some of the elements of x equal
zero, corresponding to moment selection (unless the hyperplane is parallel to one of the edges
of the diamond, a non-generic case).

8This panel thus illustrates graphically the inner maximization in (5) for fixed W .
9This task corresponds to the outer maximization in (5).
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4.2 Analytical calculations: three moments, two parameters

We here seek to do inference on the first parameter r(θ0) = θ0,1 (without loss of generality)
in the following linear model with p = 3, k = 2:

h(θ) =


a 0
b c

0 d


︸ ︷︷ ︸

G

θ, θ ∈ R2.

Assume a, b, c, d ̸= 0. In Appendix A.2 we provide detailed derivations that map this toy
example into the general framework and notation of Section 3. In the following we instead
re-derive the optimal estimator from first principles.

As argued in Section 3.2, the task of efficient estimation under worst-case correlation
structure lies in selecting which moments (at most k = 2) should be used for estimating θ0,1.
The third moment, which does not vary with θ1, cannot be used alone. Instead, one option
is to use the first moment alone (it would be necessary to add one of the other moments if
we wanted to also estimate θ0,2). In this case,

θ̂1 = 1
a

µ̂1. (9)

Alternatively, one could use the second and third moments together to estimate the first
parameter, which yields

µ̂2 = bθ̂1 + cθ̂2

µ̂3 = dθ̂2

 =⇒ θ̂1 = 1
b
µ̂2 − c

bd
µ̂3. (10)

The estimator (9) is preferred over (10) under the worst-case correlation structure when
√

Var
(1

a
µ̂1

)
= σ1

|a|
≤ 1

|b|
σ2 +

∣∣∣∣ c

bd

∣∣∣∣σ3 = max
Corr(µ̂1,µ̂2)

√
Var

(1
b
µ̂2 − c

bd
µ̂3

)
.

The worst-case variance expression on the right-hand side follows by recalling from Sec-
tion 3.1 that we need only check whether the worst case is attained at perfect positive or
perfect negative correlation.

We can obtain a useful interpretation of the general approach of Section 3.2 by rewriting
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the above inequality in terms of signal-to-noise ratios:

σ1

|a|
≤ σ2

|b|
+ σ2/|b|

σ2/|c|
× σ3

|d|
. (11)

According to (11), we use the first moment µ̂1 alone for estimation of θ0,1 when the signal-
to-noise ratio |a|/σ1 is relatively large. This occurs when the first moment has low σ1

and therefore is more precisely measured, or when |a| is large so that the first moment is
particularly sensitive to and informative about the parameter of interest θ0,1. In the financial
portfolio analogy of Section 1, |a| captures the expected return of the asset, σ1 measures its
risk, and the worst-case optimal portfolio strategy amounts to selecting the asset with the
highest Sharpe ratio |a|/σ.

As illustrated in this simple example, the median regression approach in Section 3.2 ulti-
mately picks the efficient estimator by comparing the variances of all feasible just-identified
estimators. This amounts to comparing signal-to-noise ratios to ensure that we select the
portfolio of moments that is most precisely measured and sensitive to the components of θ0

that determine the scalar parameter of interest r(θ0).

5 Testing

In this section we develop a joint test of multiple parameter restrictions as well as a test of
over-identifying restrictions.

5.1 Joint testing

We propose a test of the joint null hypothesis H0 : r(θ0) = 0m×1 against the two-sided
alternative. In this section, the continuously differentiable function r : Θ → Rm is allowed to
be multi-valued. Tests of a single parameter restriction (m = 1) can be carried out using the
confidence interval described in Section 3.1. For the case m > 1, we propose the following
testing procedure. Let α ∈ (0, 1) denote the significance level.

i) Compute the Wald-type test statistic

T̂ ≡ r(θ̂)′Ŝr(θ̂),

where Ŝ is a user-specified symmetric positive definite m × m matrix, to be discussed
below.
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ii) Compute the critical value

cvn ≡ max
Ṽ ∈S(diag(V ))

1
n

trace
(
Ṽ WG(G′WG)−1λSλ′(G′WG)−1G′W

)
×
(
Φ−1(1 − α/2)

)2
.

(12)
In practice, we substitute the estimates 1

n
diag(V ) ≈ diag(σ̂2

1, . . . , σ̂2
p), W ≈ Ŵ , S ≈ Ŝ,

G ≈ Ĝ ≡ ∂h(θ̂)
∂θ′ , and λ ≈ λ̂ ≡ ∂r(θ̂)′

∂θ
.

iii) Reject H0 : r(θ0) = 0m×1 if T̂ > cvn.

The maximization problem (12) is a so-called semidefinite programming problem, a special
case of convex programming. Fast and numerically stable algorithms are available in many
computing environments.10

The following proposition shows that, for conventional significance levels α, the asymp-
totic size of this test does not exceed α, regardless of the true correlation structure of the
moments. This holds for any valid choice of weight matrix Ŵ , including – but not limited
to – the limited-information efficient weight matrix derived in Section 3.2.

Proposition 1. Impose Assumption 1, except that we redefine λ ≡ ∂r(θ0)′/∂θ and require
this matrix to have full column rank m. Assume also that Ŝ

p→ S, S is symmetric positive
definite, and α ≤ 0.215. Then, if r(θ0) = 0m×1,

lim sup
n→∞

P (T̂ > cvn) ≤ α.

Proof. Please see Appendix A.1.

Remarks.

1. We do not have formal results on how to choose the weight matrix Ŝ in the test statistic.
A pragmatic ad hoc choice is to set Ŝ = (λ′(G′WG)−1G′WV̄ WG(G′WG)−1λ)−1 (with
consistent estimates plugged in), where V̄ ≡ diag(V11, . . . , Vpp). Then the test statistic
T̂ coincides with the usual Wald test statistic for the case where the moments are
asymptotically independent, though the critical value differs.

2. The above test procedure is generally conservative from a minimax perspective, i.e.,
the size may be strictly smaller than α for all covariance matrices V of the moments.

10See our Matlab and Python code suites discussed in Footnote 1.
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The reason is that the proof of Proposition 1 relies on a tail probability bound for
quadratic forms of Gaussian random vectors (Székely & Bakirov, 2003). This bound
is attained when V has rank 1, but the positive semidefinite maximum (12) need not
be attained at a rank-1 matrix, to our knowledge. It is an interesting topic for future
research to devise a test that has a formal minimax optimality property given the
limited knowledge of V .11

3. The test procedure is consistent against any fixed alternative with r(θ0) ̸= 0m×1 under
the conditions of Proposition 1. This follows from the standard argument that nT̂

diverges to infinity with probability 1 in this case, while cvn = O(n−1) since the largest
eigenvalue of any matrix Ṽ ∈ S(diag(V )) is bounded above by ∑p

j=1 Vjj.

5.2 Over-identification testing

The fit of the calibrated model can be evaluated using over-identification tests when we
have more moments p than parameters k. In this subsection we allow for potential model
misspecification by dropping the assumption in Section 2 that there exists θ0 ∈ Rk such
that h(θ0) = µ0. Let an arbitrary weight matrix Ŵ

p→ W be given, such as the limited-
information efficient weight matrix derived in Section 3.2. Define the pseudo-true parameter
θ̃0 ≡ argminθ∈Rk(µ0 − h(θ))′W (µ0 − h(θ)), assuming the minimizer is unique. We continue
to impose all the assumptions in Section 2, with θ̃0 substituting for θ0.

Suppose we want to know whether the model provides a good fit for a particular moment.
Let j∗ ∈ {1, . . . , p} be the index of the moment of interest. We seek a confidence interval
for the model misspecification measure µ0,j∗ − hj∗(θ̃0), i.e., the j∗-th element of µ0 − h(θ̃0).
It is standard to show that, under Assumption 1,

µ̂ − h(θ̂) − (µ0 − h(θ̃0)) = (Ip − G(G′WG)−1G′W )(µ̂ − µ0) + op(n−1/2). (13)

Let x̄ be the j∗-th column of the matrix Ip − Ŵ Ĝ(Ĝ′Ŵ Ĝ)−1Ĝ′. Then

[
µ̂j∗ − hj∗(θ̂) − Φ−1(1 − α/2)ŝe(x̄), µ̂j∗ − hj∗(θ̂) + Φ−1(1 − α/2)ŝe(x̄)

]
11An alternative valid test rejects whenever infV nr(θ̂)′(λ′(G′WG)−1G′WVWG(G′WG)−1λ)−1r(θ̂) ex-

ceeds the 1 − α quantile of a chi-squared distribution with m degrees of freedom (this approach was sug-
gested to us by Bo Honoré). That is, we search over V for the smallest conventional Wald test statistic.
Unfortunately, this optimization problem appears to be numerically challenging unless p is small.
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is a confidence interval for the difference µ0,j∗ −hj∗(θ̃0), with worst-case asymptotic coverage
probability 1 − α. Note that it can happen that ŝe(x̄) = 0, in which case it is not possible
to test the over-identifying restriction corresponding to the j∗-th moment.

One common use of over-identification testing is to evaluate the estimated model’s fit
on “non-targeted moments”. This corresponds to the special case where the weight matrix
Ŵ zeroes out the corresponding rows and columns of the non-targeted moments, so that
the point estimate θ̂ ignores these moments. Note that in this case p continues to denote
the total number of moments (“targeted” plus “non-targeted”), and in particular Ĝ should
contain derivatives of both kinds of moments.

A joint test of the over-identifying restrictions can be constructed by applying the idea
in Section 5.1. Construct the test statistic T̂overid ≡ (µ̂ − h(θ̂))′Ŝ(µ̂ − h(θ̂)) for some p × p

symmetric positive definite matrix Ŝ (a natural ad hoc choice is Ŝ = Ŵ , in which case the
test statistic equals the minimized minimum distance objective function). We reject correct
specification of the model at significance level α ≤ 0.215 if the test statistic exceeds the
critical value

cvn,overid ≡ max
Ṽ ∈S(diag(V ))

1
n

trace
(
Ṽ (Ip − WG(G′WG)−1G′)S(Ip − G(G′WG)−1G′W )

)
×
(
Φ−1(1 − α/2)

)2
,

where we plug in sample analogues for all the unknown quantities, as in Section 5.1.

6 General knowledge of the covariance matrix

We now consider the general case where any given collection of elements of the asymptotic
covariance matrix V of the moments µ̂ is known (or consistently estimable), while the re-
maining elements are unrestricted. For example, if a pair of elements of µ̂ are known to be
independent, the corresponding off-diagonal elements of V must equal zero. Hence, we may
wish to impose knowledge of some off-diagonal elements in addition to the diagonal.

Letting S̃ denote the given constraint set for V , we can compute the worst-case asymp-
totic standard deviation of r(θ̂) as √

max
Ṽ ∈S̃

x′Ṽ x, (14)
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where x was defined in Section 3.1.12 In the case of interest to us, S̃ is defined by equality
restrictions on a subset of the elements of V , in addition to the restriction that V is sym-
metric positive semidefinite. In this case, the optimization (14) is a (concave) semidefinite
programming problem, for which good numerical algorithms exist, as discussed in Section 5.1.

In the over-identified case p > k, the worst-case efficient weight matrix W can be com-
puted through two nested convex/concave optimization problems:

min
W ∈Sp

max
Ṽ ∈S̃

x(W )′Ṽ x(W ) = min
z∈Rp−k

max
Ṽ ∈S̃

{G(G′G)−1λ + G⊥z}′Ṽ {G(G′G)−1λ + G⊥z}, (15)

where Sp, x(W ), and G⊥ were defined in Section 3.2, and the equality follows from Lemma 2
in Appendix A.1. The inner maximization in (15) is a concave semidefinite program, as
discussed in the previous paragraph. The outer minimization is an unconstrained convex
program since the objective function is a pointwise maximum of convex functions in z. Once
the optimal z has been computed, the corresponding optimal weight matrix is given by the
matrix W (z) defined in the proof of Lemma 2 in Appendix A.1.

To conduct joint hypothesis tests as in Section 5, we can simply replace the constraint
set in the critical value computation (12) with S̃.

Special case: Knowledge of the block diagonal. Suppose we know the block
diagonal of V , while all other elements are unrestricted. That is, suppose the constraint set
S̃ is given by all symmetric positive semidefinite matrices of the form

V =



V(1) ? ? . . . ?
? V(2) ? . . . ?
... . . . ...
... . . . ...
? ? . . . ? V(J)


, (16)

where V(j) are known (or consistently estimable) square symmetric matrices (possibly of
different dimensions) for j = 1, . . . , J . Such a structure may occur if consecutive elements
of µ̂ are obtained from the same underlying data set, facilitating computation of covariances
among these elements. Partition the vector x conformably as x = (x′

(1), . . . , x′
(J))′. The

12Similarly, we could compute the best-case variance by minimizing this objective function. If p = 2 and
V12 is unrestricted, the best-case variance is given by (|x1|V 1/2

11 − |x2|V 1/2
22 )2.
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worst-case asymptotic standard deviation (14), for fixed W , is then given by

√
max
Ṽ ∈S̃

x′Ṽ x =
J∑

j=1
(x′

(j)V(j)x(j))1/2. (17)

This follows from the same logic as in Section 3.1 (see also Lemma 1 in Appendix A.1)
once we recognize that the known block diagonal of V implies that the marginal variance of
x′

(j)µ̂(j) is known for each j = 1, . . . , J , but the correlations among these J variables remain
unrestricted.13 Here we have also partitioned µ̂ = (µ̂′

(1), . . . , µ̂′
(J))′ conformably. In the over-

identified case, the worst-case efficient weight matrix can be computed by substituting the
formula (17) into the nested optimization (15) (with x = G(G′G)−1λ + G⊥z).

7 Empirical applications

We illustrate our methods through two empirical examples. First we fit a model of menu
cost price setting in multi-product firms to scanner data. Then we fit a heterogeneous agent
New Keynesian model to impulse responses that have been estimated from a combination of
micro and macro data.

7.1 Menu cost price setting in multi-product firms

Our first application estimates the Alvarez & Lippi (2014) model of menu cost price-setting
in multiproduct firms. We fit the model to moments of price changes from supermarket
scanner data. This is a small-scale application with k = 3 parameters and p = 4 moments.

Though we in fact have access to the underlying data set, we emulate a hypothetical
situation where the model is matched to moments that were reported in another paper.
We can therefore compare full-information inference, which uses the underlying data, with
limited-information inference, which uses only the moments and their marginal standard
errors. We find that limited-information inference remains informative about the structural
parameters. Moreover, a simulation study calibrated to this application confirms the utility
of our procedures in finite samples.

13The maximum (17) is achieved by V = Var(µ̃), where the random vector µ̃ = (µ̃′
(1), . . . , µ̃

′
(J))′ has the

following representation. Let η = (η′
(1), . . . , η

′
(J))′ have the covariance matrix (16), but with zeros instead of

question marks. Let η̄ be a scalar random variable with variance 1 that is uncorrelated with η. Then set
µ̃(j) ≡ 1√

x′
(j)V(j)x(j)

V(j)x(j)η̄ + (I − 1
x′

(j)V(j)x(j)
V(j)x(j)x

′
(j))η(j), j = 1, . . . , J .
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Model. We give a brief overview of the structural model here and refer the reader to
Alvarez & Lippi (2014) for details. A firm sets prices on N products. The desired log prices
for the products evolve in continuous time as N independent Brownian motions (without
drift); however, the actual prices are fixed until the firm pays a fixed menu cost, at which
point it may reset all N prices simultaneously. The firm’s profit depends negatively on
the squared log deviation between the current and desired price, integrated over time and
averaged across the N products. The model has k = 3 parameters: the number N of
products, the volatility of the desired prices, and the scaled menu cost (relative to the
curvature of the profit function).14 Alvarez & Lippi (2014) derive closed-form expressions
for the frequency of price changes and the moments of the size of price changes. These are
the moments we will match in the data.

Data. We empirically estimate the frequency and moments of price changes in scanner
data from the supermarket chain Dominick’s.15 As described in detail in Appendix A.3, we
clean the data following Alvarez, Le Bihan & Lippi (2016), and in particular we focus on
data from a single store. Unlike those authors, we exclusively use data on beer products,
which arguably increases the interpretability of the results and makes the sample size more
relevant for our subsequent simulation study. The final data set contains weekly prices on
499 beer products (Universal Product Codes, henceforth UPCs), observed for an average of
76 weeks per UPC. The total sample size is n = 37,916. When computing standard errors,
we treat the price changes as i.i.d. across UPCs and time.

The p = 4 reduced-form moments that we match to the structural model are the average
number of price changes per week as well as the empirical first, second, and fourth moments
of the absolute log price changes (conditional on a nonzero change).16 We estimate the
full-information covariance matrix of these moments using the usual nonparametric estimate
(which depends on sample moments of price changes up to order 8). When applying our
limited-information procedures, we use only the diagonal of this covariance matrix.

Results. We consider both just-identified and efficient specifications. We treat the number
N of products as a parameter to be estimated, since there may not be a perfect correspon-

14In the notation of Alvarez & Lippi (2014), these parameters are n, σ, and
√
ψ/B, respectively.

15The data is provided by the James M. Kilts Center, University of Chicago Booth School of Business.
16Before computing moments, we subtract off the overall average log price change (conditional on a nonzero

change), since the Alvarez & Lippi (2014) model abstracts from inflation.
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Price setting application: Parameter estimates

Just-identified specification Efficient specification
# prod. Vol. Menu cost Over-ID # prod. Vol. Menu cost

Full-info 3.012 0.090 0.291 0.002 3.255 0.089 0.305
(0.046) (0.001) (0.003) (0.000) (0.051) (0.001) (0.003)

Independ. 3.012 0.090 0.291 0.002 2.829 0.090 0.280
(0.167) (0.001) (0.010) (0.001) (0.091) (0.000) (0.006)

Worst case 3.012 0.090 0.291 0.002 2.786 0.090 0.278
(0.235) (0.001) (0.016) (0.002) (0.148) (0.001) (0.011)

Table 1: Estimates for the just-identified specification (uses only three moments for estimation)
and the efficient specification (exploits all four moments for estimation). The rows correspond
to full-information inference (exploits knowledge of V̂ ), inference under independence (erroneously
assumes that V̂ is diagonal), and worst-case inference (exploits only diagonal of V̂ without assuming
off-diagonal elements are zero). Parameters: number of products (“# prod.”), volatility of desired
log price (“Vol.”), scaled menu cost (“Menu cost”). Column “Over-ID” displays the error in fitting
the non-targeted mean absolute price change moment, given the just-identified parameter estimates.
Standard errors in parentheses.

dence between a UPC and the structural model’s notion of a “product”. The just-identified
specification uses a weight matrix that attaches zero weight to the first moment of absolute
price changes (i.e., the average), so that the three parameters are estimated from three mo-
ments (this estimator is available in closed form). We can then check whether the model
provides a good fit for the “non-targeted” moment by carrying out the over-identification test
proposed in Section 5.2. The efficient specification exploits all four empirical moments, using
either the conventional full-information procedure or our limited-information procedure in
Section 3.2.17 In addition to the full-information and limited-information procedures, we
report results for a procedure that (erroneously) assumes that the four empirical moments
are mutually independent.

Table 1 shows that the limited-information standard errors are larger than the full-
information ones, but they remain highly informative about the values of the structural
parameters. In the efficient over-identified specification, the worst-case standard errors are
at most 3.7 times larger than the corresponding full-information values.18 Importantly, all

17The efficient estimates are computed using a one-step update of the just-identified estimates.
18The worst-case efficient standard errors are computed separately for each parameter, i.e., setting r(θ) = θi

separately for i = 1, 2, 3.
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worst-case standard errors are arguably small relative to the economic magnitudes of the
parameter estimates. Hence, taking a worst-case perspective still allows for informative in-
ference. In this particular application, the standard errors that assume independence are
mostly intermediate between the full-information and limited-information values.

Though limited-information inference is informative about the structural parameters
themselves, there is a price to pay for the over-identification test in this application. In
particular, Table 1 shows that the limited-information test does not reject the validity of
the non-targeted moment restriction, whereas the full-information test does reject (however,
the economic magnitude of the moment violation is small, as the empirical moment equals
0.145 but the error in fitting the moment is only 0.002). This illustrates the principle that
full-information inference is usually preferable if it is practically feasible. Of course, if we did
not have access to the underlying supermarket scanner data, there would be no alternative
to the limited-information analysis.

Simulation study. In Appendix A.3 we show that our inference procedures perform well
in a simulation study calibrated to the present empirical application. We simulate data
from the Alvarez & Lippi (2014) model conditional on the estimated structural parameters.
While our limited-information tests and confidence intervals have approximately correct
size/coverage given the empirical sample size n (as do the full-information procedures), the
procedures that erroneously assume independence between the reduced-form moments can
over-reject/under-cover.

7.2 Heterogeneous agent New Keynesian model

Our second application estimates a heterogeneous agent New Keynesian general equilibrium
macro model, following McKay et al. (2016) and Auclert et al. (2021). The matched mo-
ments are impulse response functions of macro time series and cross-sectional micro moments
with respect to identified productivity and monetary policy shocks, as estimated by Chang,
Chen & Schorfheide (2021) and Miranda-Agrippino & Ricco (2021). This is a medium-scale
application with k = 7 parameters and p = 23 moments.

Though less efficient, impulse response matching estimation is more robust to modeling
assumptions than full-information likelihood estimation.19 This is because – in the first-order

19Likelihood procedures for estimation of heterogeneous agent models have been proposed by Mongey &
Williams (2017), Winberry (2018), Liu & Plagborg-Møller (2020), and Auclert et al. (2021) among others.
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approximation we consider – the impulse responses with respect to a monetary shock, say,
do not depend on the exogenous processes for the other disturbances (e.g., shocks to the
household discount rate).20 Thus, our application only requires us to specify and estimate
the exogenous processes for productivity and monetary disturbances. We remain agnostic
about the number and nature of other shocks that may be driving the economy.

Likewise, our limited-information approach is simpler and less restrictive than other types
of procedures that attempt to exploit more information. The only data inputs into our
procedure are the impulse response point estimates and confidence intervals reported by
Chang et al. (2021) and Miranda-Agrippino & Ricco (2021). We do not need access to the
underlying data used in those papers, as would be required if one were to estimate the joint
covariance matrix of all empirical moments via the bootstrap or GMM calculations. Unlike
approaches based on bootstrapping or simulating data, we do not need to (repeatedly) re-run
the impulse response estimation routines, and we do not need to fully model the relationship
between the macro and micro data used by Chang et al. (2021) (e.g., by specifying all shocks).

Model. We employ the one-asset heterogeneous agent New Keynesian model described in
Auclert et al. (2021, Appendix B.2); we refer to that paper for details.21 Following McKay
et al. (2016), the model features a continuum of heterogeneous households facing uninsurable
idiosyncratic earnings risk. The households choose their work hours and amount of savings
in a nominal Treasury bond.22 Monopolistically competitive firms set prices subject to a
quadratic adjustment cost, yielding a New Keynesian Phillips curve. Households receive
lump sum distributions of government interest revenue and firm profits. The central bank
sets the nominal interest rate according to a Taylor rule that depends on inflation.

The model is solved through a first-order linearization, using the numerical procedures
developed by Auclert et al. (2021). We study responses to (i) a productivity shock to
the exogenous AR(2) process for the log growth rate of firms’ total factor productivity
(TFP), and (ii) a monetary shock to an exogenous AR(2) process that enters as an additive
disturbance in the Taylor rule.

20Impulse responses to a monetary shock are computed by holding fixed all other exogenous shocks. As a
result, the linearized impulse responses depend only on parameters of the monetary disturbance process as
well as model parameters that govern the endogenous transmission mechanisms.

21The only difference from their paper is that our monetary policy rule depends only on inflation and
not output, as in the excellent GitHub repository produced by Auclert et al. (2021), which we rely on:
https://github.com/shade-econ/sequence-jacobian

22It would be feasible to estimate the two-asset model in Auclert et al. (2021, Appendix B.3), which is in
the spirit of Kaplan, Moll & Violante (2018), but we stick to the simpler one-asset model for clarity.
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Following Auclert et al. (2021), we limit ourselves to estimating structural parameters
that do not affect the steady state of the model. This allows us to avoid repeatedly recom-
puting the steady state, though this would be feasible to do with moderate computational
effort. The steady state parameters are fixed at the values assumed by Auclert et al. (2021,
Table B.2). The k = 7 estimated parameters are: the Taylor rule coefficient on inflation, the
slope of the Phillips curve, the three parameters in the AR(2) process for TFP, and the two
autoregressive coefficients for the monetary disturbance.23

Data. The empirical moments are obtained from two sets of Structural Vector Autoregres-
sion estimates of impulse responses to identified shocks.

Impulse responses with respect to TFP shocks are obtained from Chang et al. (2021, Fig.
7 and 9, blue lines). We use the responses of TFP itself and of GDP (output in the model),
as well as the response of a cross-sectional moment estimated using data from the Current
Population Survey (CPS): the fraction of people earning less than 2/3 of per capita GDP.24

The sophisticated estimation method of Chang et al. (2021) takes into account statistical
uncertainty arising from the limited sample sizes in the CPS. By relying directly on their
reported results, our analysis inherits this desirable feature.

Impulse responses with respect to monetary shocks are obtained from Miranda-Agrippino
& Ricco (2021, Fig. 3). We use the responses of industrial production (output in the model),
the consumer price index (price level in the model), and the 1-year Treasury rate (annualized
nominal interest rate in the model). Since our structural model is quarterly but the Miranda-
Agrippino & Ricco (2021) data is monthly, we use the end-of-quarter impulse responses.

We focus on four impulse response horizons: the impact horizon, and the 1-, 2-, and
8-quarter horizons. When matching the model to the data, we take into account that the
Chang et al. (2021) responses are with respect to a one-standard-deviation shock, while
the Miranda-Agrippino & Ricco (2021) responses are normalized so that the Treasury rate
increases by 100 basis points on impact.25 Since both papers report Bayesian posterior
quantiles, we appeal to the Bernstein-von Mises theorem and define the point estimates to
be the reported posterior medians, while the standard errors are those implied by a normal
approximation of the reported credible intervals.26 In total, we have p = 23 empirical

23We do not need to estimate the standard deviation of the monetary shock, since this parameter does
not affect the normalized impulse responses that we match (see below).

24The factor 2/3 approximately adjusts for the average labor share, see Chang et al. (2021, Sec. 5.1).
25Chang et al. (2021) actually consider a 3-standard-deviation shock, but we divide by 3.
26Thus, if the length of the 1 − α credible interval for θj is L̂j , we set σ̂j = L̂j/(2Φ−1(1 − α/2)).
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Heterogeneous agent application: Parameter estimates

TFP Monetary
Weight matrix TR PC AR1 AR2 Std AR1 AR2
Diagonal 1.409 0.010 0.076 -0.132 0.007 0.713 0.075

(4.243) (0.012) (0.237) (0.377) (0.001) (0.223) (0.185)
Efficient 1.583 0.017 0.060 -0.078 0.007 0.723 0.014

(3.012) (0.010) (0.192) (0.282) (0.000) (0.170) (0.149)

Table 2: Structural parameter estimates with diagonal weight matrix (top row) and efficient
weighting (bottom row). Parameters: Taylor rule coefficient on inflation (“TR”); slope of Phillips
curve (“PC”); first and second autoregressive (“AR1” and “AR2”) and standard deviation (“Std”)
parameters of TFP and monetary disturbance processes. Worst-case standard errors in parentheses.

moments, as we discard the impact response of the bond rate, which is normalized to 1.

Results. The top row of Table 2 shows the parameter estimates obtained by using a
diagonal weight matrix with Wjj = 1/σ̂2

j . The Taylor rule coefficient on inflation is estimated
to be 1.41 with a large standard error. The Phillips curve is positively sloped but statistically
insignificant at conventional significance levels. The TFP growth process is estimated to be
close to white noise, while the monetary disturbance process has some persistence.

Figure 2 compares the model-implied and empirical impulse responses, at the parameter
estimates discussed in the previous paragraph. We see that the model-implied impulse
responses of output to a monetary shock are too small in magnitude relative to the data
at the 2- and 8-quarter horizons, while the opposite is true for the responses of the price
level with respect a monetary shock. To test whether these disparities are too large to be
explained by statistical noise, we conduct the over-identification test proposed in Section 5.2.
The vertical error bars in Figure 2 show the 90% confidence intervals for the differences
between model-implied and empirical moments, centered at the empirical moments for visual
convenience. We see that none of the model-implied impulse responses fall outside their
respective intervals, meaning that we cannot reject the validity of each moment individually.
The joint test of the validity of all p = 23 moments also does not reject at the 10% level.27

The efficient estimation results in the bottom row of Table 2 demonstrate the benefit of
optimally weighting the moments as described in Section 3.2.28 In particular, the t-statistic

27The test statistic equals T̂ = 21.57, while the critical value equals ĉvn = 58.12. Our choice of Ŝ follows
the suggestion in the remark below Proposition 1.

28The efficient estimates are computed via a one-step update, cf. Section 3.2, separately for each parameter.
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Heterogeneous agent application: Impulse responses
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Figure 2: Model-implied impulse responses (thin curves) and corresponding empirical estimates
(circles), with respect to a one-standard-deviation TFP shock (top row) or a monetary policy shock
that raises the bond rate by 1 percentage point on impact (bottom row). Figure titles: response
variables (“% Earn < GDP”: fraction of people earning less than 2/3 of per capita GDP). Vertical
axis units: percentage points. Horizontal axis units: quarters. Vertical error bars: (shifted) 90%
confidence intervals for the differences between the empirical and model-implied moments (not
confidence intervals for the empirical moments themselves).

for the slope of the New Keynesian Phillips curve increases to 1.73, from 0.77 previously.
Thus, our limited-information approach yields moderately informative inference about a
parameter that is often viewed as difficult to pin down in the data (Mavroeidis, Plagborg-
Møller & Stock, 2014). More generally, the efficient standard errors in the bottom row of
Table 2 are 19–29% smaller than the non-efficient ones in the top row.

Table 5 in Appendix A.4 shows that the optimal moment selection procedure in Sec-
tion 3.2 chooses to estimate the three TFP process parameters solely off the responses of
TFP with respect to a TFP shock, while the other four parameters are estimated off a com-
bination of the three impulse response functions with respect to the monetary shock. Hence,
though in principle the output responses with respect to a TFP shock are informative about
five of the seven parameters, those moments are too imprecisely estimated to be useful for
the purpose of limited-information efficient estimation. The same is true for the responses
of the fraction of people with low earnings.
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8 Conclusion

We computed simple, sharp, and informative upper bounds on the standard errors of struc-
tural parameter estimates when the correlation structure of the matched empirical moments
is not fully known. In addition, we proposed an efficient moment weighting procedure in the
over-identified case, as well as valid tests of parameter restrictions and over-identifying re-
strictions. The required inputs are minimal: Other than being able to evaluate the mapping
from structural parameters to model-implied moments (at least numerically), we just need
the empirical moment estimates and their individual standard errors. Our procedures are
computationally tractable even in settings with many moments and/or parameters. A code
suite is available online (see Footnote 1).

We believe our limited-information approach is useful for applied researchers who match
their models to moments obtained from several different data sources, estimation methods,
or previous papers. Our methods obviate the need to estimate the correlation structure
across the various moments, which is sometimes difficult or impossible. Even when the
moment correlation structure is in principle estimable, our methods may be helpful, since
marginal standard errors for individual moments are typically much easier to obtain from
standard econometric software than it is to figure out the joint distribution of all moments, as
illustrated in our empirical applications. If nothing else, the limited-information procedures
can be used to gauge whether it is worthwhile to expend the additional effort required for
full-information analysis.

Our work points to several future research directions. First, the joint test of multiple
parameter restrictions we propose does not have a formal minimax optimality property; we
hope future research will explore the optimality question. Second, it may be interesting to
extend our procedures to settings where the moments have a mixed normal distribution as
in Hahn et al. (2020b). Third, our worst-case standard error formula may be theoretically
useful for analyzing treatment effect estimators in design-based causal inference when some
aspects of the assignment mechanism are unknown (yielding an unknown correlation struc-
ture between certain terms). Finally, the worst-case standard errors might also be helpful
for variational Bayesian inference when it is computationally challenging to characterize the
posterior dependence across parameters.
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A Appendix

A.1 Technical lemmas and proofs

Here we state and prove two technical lemmas referred to in the main text, and we provide
the proof of Proposition 1.

Lemma 1. Let x = (x1, . . . , xp)′ ∈ Rp and σ2
1, . . . , σ2

p ≥ 0. Let S(σ) denote the set of p × p

symmetric positive semidefinite matrices with diagonal elements σ2
1, . . . , σ2

p. Then

max
V ∈S(σ)

√
x′V x =

k∑
j=1

σj|xj|.

Proof. The right-hand side is attained by V = ss′, where s = (σ1 sign(x1), . . . , σp sign(xp))′.
Moreover, for any V ∈ S(σ),

x′V x =
p∑

j=1

p∑
ℓ=1

xjxℓVjℓ ≤
p∑

j=1

p∑
ℓ=1

|xjxℓ| |Vjℓ| ≤
p∑

j=1

p∑
ℓ=1

|xjxℓ| σjσℓ =
 p∑

j=1
σj|xj|

2

,

where the penultimate inequality uses that |Vjℓ|2 ≤ VjjVℓℓ for any symmetric positive semidef-
inite matrix V .

Lemma 2. Assume p, k ∈ N and p > k. Let λ ∈ Rk, and let G ∈ Rp×k have full column
rank. Let G⊥ denote any p×(p−k) matrix with full column rank such that G′G⊥ = 0k×(p−k).
Let Sp denote the set of p × p symmetric positive semidefinite matrices W such that G′WG

is nonsingular. Then

{
WG(G′WG)−1λ : W ∈ Sp

}
= {x : x ∈ Rp, G′x = λ} =

{
G(G′G)−1λ + G⊥z : z ∈ Rp−k

}
.

Proof. We first show that

{
G(G′G)−1λ + G⊥z : z ∈ Rp−k

}
⊂
{
WG(G′WG)−1λ : W ∈ Sp

}
. (18)

Pick any z ∈ Rp−k, and define

W (z) ≡ (G, G⊥)
 Ik λ̃z′

zλ̃′ δIp−k

 G′

G⊥′

 , λ̃ ≡ 1
λ′(G′G)−1λ

λ,
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where δ > 0 is arbitrary but chosen large enough so that W (z) is positive semidefinite. Then

W (z)G = (G, G⊥)
 Ik λ̃z′

zλ̃′ δIp−k

 G′G

0(p−k)×k

 = (G + G⊥zλ̃′)G′G.

Hence,
G′W (z)G = (G′G)2,

implying

W (z)G(G′W (z)G)−1λ = (G + G⊥zλ̃′)(G′G)−1λ = G(G′G)−1λ + G⊥z,

and thus the statement (18) holds.
Now pick any W ∈ Sp. Then x = WG(G′WG)−1λ satisfies G′x = λ. This shows that

{
WG(G′WG)−1λ : W ∈ Sp

}
⊂ {x : x ∈ Rp, G′x = λ} . (19)

Finally, choose any x ∈ Rp satisfying G′x = λ. Since the columns of G and G⊥ are (jointly)
linearly independent, there exist y ∈ Rk and z ∈ Rp−k such that x = Gy + G⊥z. Note that
λ = G′x = G′Gy, so necessarily y = (G′G)−1λ. We have thus shown that

{x : x ∈ Rp, G′x = λ} ⊂
{
G(G′G)−1λ + G⊥z : z ∈ Rp−k

}
. (20)

The set inclusions (18)–(20) together imply the statement of the lemma.

Proof of Proposition 1. Under the null hypothesis,

√
nr(θ̂) d→ λ′(G′WG)−1G′WV 1/2Z,

where V 1/2V 1/2′ = V , and Z = (Z1, . . . , Zp)′ ∼ N(0p×1, Ip). The asymptotic null distribution
of the test statistic T̂ is therefore a Gaussian quadratic form:

nT̂
d→ Z ′QZ, Q ≡ V 1/2′WG(G′WG)−1λSλ′(G′WG)−1G′WV 1/2.

Székely & Bakirov (2003) prove that

P (Z ′QZ ≤ trace(Q) × τ) ≤ P (Z2
1 ≤ τ) (21)
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for any p×p symmetric positive semidefinite (non-null) matrix Q and any τ > 1.5365. Since
(Φ−1(1 − α/2))2 > 1.5365 for α ≤ 0.215, it follows that, under the null,

P (T̂ ≤ cvn) ≥ P
(
nT̂ ≤ trace(Q) × (Φ−1(1 − α/2))2

)
→ P

(
Z ′QZ ≤ trace(Q) × (Φ−1(1 − α/2))2

)
≤ P

(
Z2

1 ≤ (Φ−1(1 − α/2))2
)

= 1 − α.

A.2 Details of the analytical illustration

We here provide detailed derivations that map the illustrative toy example in Section 4.2
into the general framework and notation in Section 3.

Recall that the general median regression in Section 3.2 can be written

min
z∈Rp−k

Ψ(z; λ), Ψ(z; λ) ≡ ι′ diag(V )1/2
∣∣∣G(G′G)−1λ + G⊥z

∣∣∣,
where G⊥ is the p × (p − k) matrix of eigenvectors of Ip − G(G′G)−1G′ corresponding to its
nonzero eigenvalues, ι is the p-dimensional vector with all elements equal to 1, diag(V )1/2

is the p × p diagonal matrix with diagonal elements (σ1, . . . , σp), and the absolute value in
the final expression is taken elementwise. In the toy example we have p − k = 1, so the
minimization is over a scalar z.

The form of G in the toy example implies

G(G′G)−1 = 1
a2c2 + a2d2 + b2d2


ac2 + ad2 −abc

bd2 a2c

−bcd a2d + b2d

 ,

Ip − G(G′G)−1G′ = 1
a2c2 + a2d2 + b2d2


b2d2 −abd2 abcd

−abd2 a2d2 −a2cd

abcd −a2cd a2c2

 .

An eigenvector of Ip − G(G′G)−1G′ with eigenvalue 1 is given by

G⊥ = 1
a2c2 + a2d2 + b2d2


bd

−ad

ac

 .
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Hence, we can write the median regression objective function as

Ψ(z; λ) = 1
a2c2 + a2d2 + b2d2 ι′ diag(V )1/2

∣∣∣∣∣∣∣∣∣


ac2 + ad2 −abc

bd2 a2c

−bcd a2d + b2d

λ +


bd

−ad

ac

 z

∣∣∣∣∣∣∣∣∣ .

For λ = (1, 0)′,

Ψ(z; (1, 0)′) = 1
a2c2 + a2d2 + b2d2

(
σ1

∣∣∣ac2 + ad2 + bdz
∣∣∣+ σ2

∣∣∣bd2 − adz
∣∣∣+ σ3

∣∣∣− bcd + acz
∣∣∣)

= 1
a2c2 + a2d2 + b2d2

(
σ1|bd|

∣∣∣∣∣a(c2 + d2)
bd

+ z

∣∣∣∣∣+ (
σ2|ad| + σ3|ac|

)∣∣∣∣∣bda − z

∣∣∣∣∣
)

.

This latter rewritten objective function makes clear how we can usefully reduce the dimension
of the problem. In particular, we will characterize the solution to the problem

min
z

Ψ̃(z) ≡ min
z

ς1

∣∣∣∣∣βα + z

∣∣∣∣∣+ ς2|α − z|, where ς1, ς2, β ∈ [0, ∞), α ∈ (−∞, ∞).

Any parameters (σ1, σ2, σ3, a, b, c, d) in the original problem map into certain parameters
(ς1, ς2, β, α) in this reduced problem.

Since the function Ψ̃(z) is piecewise linear, the minimum will be at a point where the
slope changes. Therefore, we need only check the points z = −β/α and z = α:

Ψ̃(−β/α) = ς2

∣∣∣∣∣α + β

α

∣∣∣∣∣ , Ψ̃(α) = ς1

∣∣∣∣∣βα + α

∣∣∣∣∣.
Thus, the solution of the reduced problem is given by

Ψ̃(z∗) =

ς1

∣∣∣α + β
α

∣∣∣ if ς1 ≤ ς2,

ς2

∣∣∣α + β
α

∣∣∣ if ς1 > ς2,
z∗ =

α if ς1 ≤ ς2,

−β
α

if ς1 > ς2.

We can map back into a solution of the original problem:

Ψ(z∗; (1, 0)′) = 1
a2c2 + a2d2 + b2d2 ×

σ1|bd|
∣∣∣ bd

a + a(c2+d2)
bd

∣∣∣ if σ1|bd| ≤ σ2|ad| + σ3|ac|,

(σ2|ad| + σ3|ac|)
∣∣∣ bd

a + a(c2+d2)
bd

∣∣∣ if σ1|bd| > σ2|ad| + σ3|ac|,

z∗ =

 bd
a if σ1|bd| ≤ σ2|ad| + σ3|ac|,

− a(c2+d2)
bd if σ1|bd| > σ2|ad| + σ3|ac|.
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This implies that the efficient linear combination is

x∗ = G(G′G)−1λ + G⊥z∗ =




1
a

0

0

 if σ1|bd| ≤ σ2|ad| + σ3|ac|,


0
1
b

− c
bd

 if σ1|bd| > σ2|ad| + σ3|ac|,

and the worst-case efficient estimator of r(θ0) = λ′θ0 is

r(θ̂) = (x∗)′µ̂ =


1
a
µ̂1 if σ1|bd| ≤ σ2|ad| + σ3|ac|,

1
b
µ̂2 − c

bd
µ̂3 if σ1|bd| > σ2|ad| + σ3|ac|.

This confirms the heuristic derivations in Section 4.2.

A.3 Details of the price setting application and simulation study

Here we provide details of the data used for the empirical application in Section 7.1, and we
conduct a simulation study calibrated to this application.

Data. We use the “movement” data set for beer products (file name wber.csv) on the
Chicago Booth website.29 We follow Alvarez et al. (2016) when cleaning the data. First, we
keep only data for store #122. Second, we drop any observations with prices below 20 cents
or above 25 dollars (the data was collected between the years 1989 and 1994). Third, we set
any absolute price changes below one cent equal to zero. Fourth, we drop the largest 1% of
absolute log price changes.

Table 3 shows the p = 4 estimated reduced-form moments, their standard errors, and
their estimated correlation matrix. The sample kurtosis (fourth moment divided by squared
second moment) of log price changes equals 1.80. The zero correlation between the sample
frequency of nonzero price changes (a binary outcome) and the sample moments of the price
change magnitudes is mechanical. Our limited-information analysis here does not exploit
this fact because we want to emulate what an applied researcher might do without thinking

29https://www.chicagobooth.edu/research/kilts/datasets/dominicks
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Price setting application: Reduced-form moment estimates

Pairwise correlation
Moment Estimate Std. error E[(∆p)2] E[(∆p)4] E[|∆p|]
Frequency 0.293 0.002 0.000 0.000 0.000
E[(∆p)2] 0.027 0.000 0.939 0.966
E[(∆p)4] 0.001 0.000 0.831
E[|∆p|] 0.145 0.001

Table 3: Reduced-form moment estimates and their standard errors: average weekly rate of
nonzero price changes (Frequency), and moments E[|∆p|j ], j = 1, 2, 4 of absolute log price changes
conditional on a nonzero change. “Pairwise correlation” columns: estimated pairwise correlations
across the sample moments.

hard about the problem. However, the independence could be taken into account using the
extensions described in Section 6.

Simulation study. We apply the inference methods to data simulated from the Alvarez &
Lippi (2014) model. The simulations treat the just-identified empirical parameter estimates
(columns 1–3 in Table 1) as the truth, and we use a sample size of n = 37,916 as in the
real data. The binary price change indicators are drawn i.i.d. from a binomial distribution
with the model-implied success probability (Alvarez & Lippi, 2014, Proposition 4). The
magnitudes of the price changes are drawn from the model-implied density function (Alvarez
& Lippi, 2014, Proposition 6).30 We use 10,000 Monte Carlo repetitions. The estimation
and inference procedures are the same as the ones applied to the actual data (in particular,
efficient estimates are computed using the one-step approach).

Table 4 shows that the just-identified and efficient limited-information confidence inter-
vals have coverage probabilities very nearly equal to or exceeding the nominal level of 95%
for all three parameters. Though coverage is conservative, the table shows that the aver-
age length of the confidence intervals is not more than six times that of the corresponding
full-information confidence intervals. This is consistent with the empirical standard errors
reported in Section 7.1.

Table 4 also illustrates that the worst-case perspective is key to avoiding over-rejection in
the face of limited information: Both the “efficient” t-test for the price volatility parameter

30We simulate from this density by numerically computing the associated quantile function on a fine grid,
and then passing random uniform draws through a cubic interpolation of this function.
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Monte Carlo simulation study

Just-identified specification Efficient specification
# prod. Vol. Menu cost # prod. Vol. Menu cost

Confidence interval coverage rate

Full-info 94.5% 95.0% 94.7% 95.0% 95.2% 95.3%
Independence 100.0% 95.0% 100.0% 100.0% 89.1% 100.0%
Worst case 100.0% 99.4% 100.0% 100.0% 99.4% 100.0%

Confidence interval average length

Full-info 0.179 0.002 0.010 0.162 0.002 0.009
Independence 0.627 0.002 0.039 0.390 0.002 0.025
Worst case 0.878 0.003 0.059 0.571 0.003 0.041

RMSE relative to true parameter values

Full-info 1.53% 0.59% 0.86% 1.37% 0.58% 0.76%
Independence 1.53% 0.59% 0.86% 1.72% 0.59% 0.99%
Worst case 1.53% 0.59% 0.86% 1.79% 0.59% 1.03%

Rejection rate of over-identification test

Full-info 5.01%
Independence 0.00%
Worst case 0.00%

Rejection rate of joint test of true parameter values

Full-info 4.79%
Independence 7.54%
Worst case 2.47%

Table 4: Simulation results based on the empirically calibrated Alvarez & Lippi (2014) model. The
just-identified specification uses only three moments for estimation, while the efficient specification
exploits all four moments. The rows correspond to full-information inference (exploits knowledge
of V̂ ), inference under independence (erroneously assumes that V̂ is diagonal), and worst-case
inference (exploits only diagonal of V̂ without assuming off-diagonal elements are zero). Estimated
parameters: number of products (# prod.), volatility of desired log price (Vol.), scaled menu cost
(Menu cost). The over-identification test tests the validity of the fourth non-targeted moment. The
joint test of the true parameters is a Wald test (Full-info or Independence) or the test proposed in
Section 5.1 (Worst case). The nominal significance level is 5%.
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and the joint Wald test of the true parameter values over-reject if we erroneously assume that
all the empirical moments are independent of each other. In contrast, the limited-information
and full-information t-tests and joint tests are correctly sized.31 The limited-information tests
are conservative (as predicted by theory), though the joint test of parameter restrictions is
only mildly conservative in this particular model.

Finally, Table 4 shows that the limited-information efficient point estimates have slightly
higher root mean squared error (RMSE) than the efficient full-information estimates. It
may seem surprising at first blush that the limited-information efficient estimates can have
(marginally) higher RMSE than the just-identified estimates. This is because the limited-
information efficient estimates are designed to have low variance under the worst-case cor-
relation structure (i.e., perfect correlation of the moments), not under the true correlation
structure that is unknown to the econometrician.

A.4 Details of the heterogeneous agent application

We here provide further details on the application in Section 7.2. Table 5 shows which
impulse response moments are used to efficiently estimate the seven structural parameters,
according to the moment selection procedure described in Section 3.2. The p = 23 moments
are shown along the rows, while the k = 7 parameters are shown along the columns. A cell
with an “x” indicates a non-zero efficient loading (x̂∗

j in the notation of Section 3.2), while
empty cells indicate zero loadings.32

31We only report the joint test for the just-identified specification. This is because the joint test proposed
in Section 5.2 requires a single choice of weight matrix, whereas the worst-case efficient point estimates of
the three parameters correspond to three different choices of moments (selected as in Section 3.2).

32We define a loading to be zero if |x̂∗
j | < 10−4.
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Heterogeneous agent application: Efficient moment selection

Impulse response TFP Monetary
Var. Shock Horiz. TR PC AR1 AR2 Std AR1 AR2
TFP TFP 0 x x x

1 x x
2
8 x

Output TFP 0
1
2
8

Frac TFP 0
1
2
8

Output MP 0 x x x x
1
2
8

Price MP 0 x x x x
1
2
8

Bond MP 1 x x x x
2
8 x x x x

Table 5: Cells with an “x” indicate that the efficient estimate of the given parameter (along
columns) attaches a non-zero weight to the given empirical moment (along rows). First three
columns show the impulse response variable (“Var.”), shock, and quarterly horizon (“Horiz.”). Vari-
able “Frac”: fraction of people earning less than 2/3 of GDP. Shock “MP”: monetary shock. See
parameter abbreviations in Table 2.
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