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Abstract

We show that inefficiencies from having separate markets to correct an environ-

mental externality are significantly mitigated when firms participate in an integrated

product market. Firms take into account the distribution of externality prices and re-

allocate output from markets with high prices to markets with low prices. Investment

in cleaner and more efficient capacity serves as an additional mechanism to reallocate

output, which increases the marginal benefit of investment, and consequently improves

longer-term outcomes. Using data from an integrated wholesale electricity market, we

estimate a dynamic structural model of production and investment to bound the loss

from separate markets for carbon dioxide emissions, and quantify the extent to which

optimal investment can compensate for the loss. Despite the lack of the “invisible

hand” of a single emissions market, profit-maximizing firms can play a crucial role in

coordinating otherwise uncoordinated environmental regulations.
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1 Introduction

Economists have long advocated for market-based solutions to correct environmental ex-

ternality problems such as harmful emissions from combustion of fossil fuels. Although a

single market for the externality is ideal to maximize gains from trade among heterogeneous

polluting sources, only separate externality markets, at best, may be feasible due to the

difficulty of coordinating regulations across jurisdictions. The political difficulties of orga-

nizing a single externality market raises the question to what extent having uncoordinated

regulations in the form of separate markets is an adequate substitute for a single market.

The main objective of this paper is to empirically address this question by examining the

relative economic efficiency of single versus separate externality markets, and understanding

the mechanisms that drive their relative efficiencies.

Our work is motivated by two recent examples of failures in coordinating environmental

policies across jurisdictions. The first is the current legal and political challenge to the U.S.

Clean Power Plan (CPP), a federal regulation put forward by the Obama administration

setting carbon dioxide (CO2) emissions limits from electric power plants for 2022–2030.

Although the intention of the Obama administration was the introduction of a comprehensive

policy to combat climate change at the federal level, the exact design and implementation of

CO2 regulation will ultimately be at the state level.1 A second example of a potential failure

to coordinate policies across jurisdiction is the withdrawal of the UK from the European

Union (EU). What has now become known as Brexit may lead to the UK’s departure from

the European Union Emissions Trading System (EU-ETS) as well, and force the country to

create its own market for CO2 emissions.3

The paper’s main contribution is to show both theoretically and empirically that the orga-

nization of the product market can effectively coordinate uncoordinated regulation of the

externality.4 Facing an integrated product market, multi-plant firms make output decisions

1There are two reasons why CO2 regulations are likely to be at the state level. First, the Clean Air Act
only authorizes the U.S. Environmental Protection Agency (EPA) to set targets at the state level and solicit
state implementation plans to achieve these targets. Second, on October 10, 2017, the Trump administration
submitted a proposal to repeal the CPP that may delay or even terminate efforts to regulate CO2 emissions
at the federal level.2 If the second and less optimistic scenario materializes, any regulation of CO2 emissions
will most likely be a state-level effort.

3Not surprisingly, discussions regarding the type of policies that the UK may implement following its
departure have already started. This is particularly important in light of the fact that, while the UK
pledged a 57% reduction in CO2 emissions in the Paris Agreement, the EU as a whole was less ambitious,
proposing only a 40% reduction (Hepburn and Teytelboym (2017)).

4Existing work on externality markets has mainly focused on quantifying the gains from emissions permit
trading—for example, Bui (1998) and Carlson et al. (2000)—and has ignored the role that the product
market can play in coordinating regulations across different jurisdictions.
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taking into account the distribution of externality (shadow) prices across markets. All else

equal, profit-maximizing firms move production from markets with higher externality prices

to markets with lower externality prices. In a frictionless environment, output reallocation

and externality price readjustment will lead to convergence of externality prices, as if there

were a single externality market.5 In practice, frictions such as capacity constraints exist,

and prevent perfect reallocation of output and readjustment of externality prices, hence cre-

ating an efficiency wedge between single and separate externality markets. The size of this

wedge is an empirical question.

The backbone of our empirical analysis is a dynamic structural model of production and

investment, which we use to simulate firm behavior with single and separate externality

markets. We use data from the Pennsylvania-New Jersey-Maryland (PJM) wholesale elec-

tricity market and consider CO2 emissions regulation implemented through the Clean Air

Act. PJM operates the world’s largest wholesale electricity market covering all or parts of

13 states (Figure 1). With state-by-state implementation (separate CO2 markets), emissions

in each state cannot exceed their respective state-level targets. In contrast, with regional

implementation (single CO2 market), states in PJM can pool their targets and comply as a

region. Thus, with state-by-state implementation, firms operating power plants across the

PJM region face different CO2 (shadow) prices depending on which state their plants are

located in, while with regional implementation, firms face a single CO2 price regardless of

their plants’ location.

In our model, firms own several plants with different capacities located in different states.

Plant-level differences in capacity, age, technology, and location affect the overall cost of

electricity generation. In each period, firms produce electricity using their existing plants,

which they sell to the PJM wholesale electricity market. Although the wholesale electricity

The coordinating benefits from an integrated electricity market is also relevant for the international trade
literature, and, particularly, for recent work regarding the gains from cross-border trade in electricity. For
example, Antweiler (2016) discusses the potential gains from electricity trade between Canadian provinces
and U.S. states. Because electricity demand is stochastic and correlated across jurisdictions, electric utilities
can reduce their cost during peak periods by importing cheaper off-peak electricity from neighboring juris-
dictions. We point to an additional benefit of electricity market integration due to the implicit coordination
of environmental policies across jurisdictions.

Finally, the implicit coordination of environmental regulations via the product market can be seen as a
form of private regulation in response to the difficulty of coordinating these regulations across jurisdictions
(Abito et al., 2017). Unlike markets for externalities—which, by nature, have to be created and organized
by multiple public institutions—product markets are easier to organize given that markets for these goods
are already established. Moreover, product markets often extend multiple jurisdictions since private entities
are not tied to a specific jurisdiction unlike public agencies.

5This idea is reminiscent of Samuelson (1948)’s factor price equalization theorem in that integration of
product markets will equalize prices of factors of production despite restrictions on the movement of these
factors across countries.
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market is modeled as competitive as in Bushnell et al. (2008), we allow investment decisions

to be strategic and forward-looking (Dixon, 1985). That is, firms may take into account their

rivals’ reactions to their investment decisions, as well as the effect of investment on future

market outcomes. Investment in new coal- and gas-fired capacity allows firms to produce at

lower cost and, potentially, increase profits from electricity sales in subsequent periods.

To effectively capture firms’ supply decisions and incentives to invest in response to the

regulatory environment they face, we need a model that preserves the heterogeneity of costs

across plants and tracks their evolution as firms invest in new capacity. Plant costs depend

on a number of factors: efficiency (heat rate), emission rates for various pollutants and

associated compliance costs, fuel prices, and other operations-and-maintenance (O&M) costs.

As a result, a high-dimensional state vector is required to track the evolution of all these

factors for the existing plants and the new capacity in which firms invest in.6

Incorporating a rich stage game within a dynamic model is computationally challenging.

Our approach in addressing this challenge is novel and is based on the observation that new

capacity will be infra-marginal in the wholesale electricity market, at least in the medium

run. As we explain later, because of the infra-marginal nature of new capacity, it suffices

to keep track of the average heat and emission rates of cumulative investment over time.

As a result, we substantially reduce the dimension of the state vector, which significantly

alleviates the computational burden for our structural model while still incorporating the

rich information on plants’ costs.

We estimate our model by first directly computing the cost of producing electricity using

data on fuel prices and compliance costs, along with plant-level data on heat rates, emission

rates, and O&M costs as in Mansur (2007) and Bushnell et al. (2008), as well as estimating

the demand for electricity. We then estimate investment costs using the two-step approach

in Bajari et al. (2007) similar to Ryan (2012) and Fowlie et al. (2016). The two-step method

allows us to estimate investment costs without explicitly solving the equilibrium of the

model. The production costs, along with demand and investment cost estimates allow us to

predict supply and investment decisions. Using our estimates, we solve a series of dynamic

investment problems to simulate outcomes with a single and with separate CO2 markets.

6The literature has so far employed low-dimensional approximations of cost functions and a small number
of technologies to ease the computational burden. For example, Bushnell et al. (2008) use piece-wise linear
approximations to the firms’ cost functions to study static competition and market power in different U.S.
wholesale electricity markets. Bushnell and Ishii (2007) add investment to the model of Bushnell et al.
(2008) but restrict the state space by assuming 5 different choices of plant types (capacity and technology).
PJM (2016) compares regional and state-by-state implementation of the environmental regulation and as-
sumes existing and new electric generating units are also limited to a small number of technologies. More
importantly, the PJM report treats investment as exogenous.
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We use the model and the estimated primitives to simulate the effects of environmen-

tal regulation that caps CO2 emissions. In all the scenarios considered, we assume that

CO2 regulation is implemented through a market mechanism which gives rise to CO2 prices.

An equilibrium in our model is a sequence of CO2 prices and wholesale electricity prices that

clear both markets simultaneously. Our main interest lies in the comparison of outcomes

with a single CO2 market to outcomes with separate CO2 markets. In the former case, there

is PJM-wide CO2 price. In the latter case, the CO2 prices are state specific.

We start our welfare analysis by computing an upper bound on the static cost inefficiency

from separate CO2 markets. In computing cost, we treat capacity as fixed and exogenous,

but allow firms to reallocate output given the existing portfolio of plants. This analysis is

static because we compare cost with a single and separate CO2 markets for each value of the

state variable, that is, new capacity arising from investment. We find that for low levels of

new capacity, it is not feasible to meet both PJM-wide and state-level targets, and so costs

end up being identical. On the other hand, for high levels of new capacity, the state-level

targets no longer bind, which implies a zero CO2 price for both single and separate markets.

In this case, costs are also identical. Only for intermediate levels of new capacity do costs

with single and separate markets diverge. For these levels, we find that the difference in cost

is at most $1.8 billion, or about 35% of the cost of compliance with the CO2 regulation.

Next, we examine the role of investment as an additional mechanism to reallocate output.

In this case, we examine how different assumptions regarding firm behavior, from full coor-

dination of investment across firms to non-strategic investment, affects the optimal level of

investment under the two regulatory regimes. We find that across all assumptions regarding

investment behavior, investment incentives are stronger with separate markets compared

to a single market. Intuitively, with separate markets, firms do not have the option to

“buy emissions” from plants facing lower CO2 prices. As a result, higher CO2 compliance

costs inflate plants’ cost of generating electricity which increases the reward to investing in

cleaner and more efficient capacity. Although in the short-run electricity prices go up due

to the inability to trade across CO2 markets, more investment allows the electricity market

to transition to a steady state that has a larger share of cleaner and more efficient capacity.

Hence, static inefficiencies resulting from separate markets are significantly—and in some

cases, completely—mitigated.

Our paper is related to several literatures. First, our work is related to the literature that

investigates the interaction between environmental regulation and other forms of regulation

and market structure. Recent papers in this literature include Fowlie (2010) on the inter-

action of the NOx Budget Program with rate-of-return (RoR) regulation, Abito (2017) on
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the interaction between the Acid Rain Program and RoR-related agency problems, Davis

and Muehlegger (2010) on U.S. natural gas distribution, Hausman and Muehlenbachs (2016)

on methane leaks, Ryan (2012) on industry concentration and the Clean Air Act Ammend-

ments, and finally Fowlie et al. (2016) on the interaction of market power, industry dynamics

and market-based mechanisms to limit CO2 emissions. Of these papers, the closest are Ryan

(2012) and Fowlie et al. (2016) (henceforth, FRR) in terms of methodology. We follow their

Markov Perfect equilibrium framework and two-step estimation method, although we depart

from their approach in that we do not need to estimate costs but instead compute costs

directly from the data.

Second, our paper is related to the literature on incomplete regulation, lack of policy co-

ordination and strategic policy choice. Recent work on incomplete regulation, such as by

Fowlie (2009) and FRR, where only a subset of polluting sources are subject to regulation,

has emphasized the problem of emissions leakage whereby firms divert production towards

unregulated sources. A similar form of leakage occurs when firms face overlapping state and

federal regulations in only a subset of states and state regulations are stricter than federal

ones (Goulder et al. (2012)). More recently, Bushnell et al. (2017b) (henceforth, BHHK)

study differences in regulatory environment across states resulting from lack of coordination

and strategic policy choice. In terms of the institutional setting (Clean Power Plan), the

paper by BHHK is closest to ours. However, our research question and focus are completely

different.7

Finally, the paper is related to the empirical literature on electricity markets. Most of

the literature has focused on firms exercising market power through strategic bidding and

withholding of capacity—see Green and Newbery (1992) and Wolfram (1998) for early con-

tributions, and more recently, Borenstein et al. (2002), Hortacsu and Puller (2008), Mansur

(2007), and Bushnell et al. (2008). In contrast to these papers, we model strategic invest-

ment, which has only received limited attention (e.g. Bushnell and Ishii (2007)).

The remainder of the paper is organized as follows. In Section 2, we provide background

on the PJM wholesale electricity market and CO2 regulation under the Clean Air Act. We

then present a simple model of CO2 regulation highlighting the role of optimal reallocation of

production and investment as mechanisms that allow coordination in the presence of multiple

7BHHK study a state-level policy choice in the context of the CPP: whether to implement a mass- or
a rate-based target. They show that states can strategically choose between these two policies in a way
that leads to lower welfare and increased emissions (due to leakage), hence highlighting the importance of
coordinating regulations. In contrast, we take a step back from the specific design of the policy, and focus
on the question of single (coordinated) versus separate (uncoordinated) markets, how an integrated product
market allows implicit coordination of uncoordinated policies and quantifying the role that of investment.
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markets for an externality in Section 3. We present our empirical model in Section 4, followed

by a discussion of estimation and empirical results in Section 5. Section 6 is devoted to the

simulations of alternative investment scenarios for our welfare analysis. Additional details

regarding the data, our empirical analysis, the heterogeneity of investment costs in our model,

and the emissions’ market clearing algorithm are provided in a separate Online Appendix.

2 Background

2.1 The PJM Electricity Market

The Pennsylvania-New Jersey-Maryland (PJM) Interconnection operates the world’s largest

wholesale electricity market as the regional transmission organization (RTO) for the area

that encompasses all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan,

New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and

the District of Columbia across 20 zones (Figure 1). Its wholesale electricity markets began

operation in 1997. PJM coordinates the buying, selling and delivery of wholesale electricity

through its Energy Market. As the market operator, PJM balances the needs of buyers,

sellers and other market participants and monitors market activities to ensure “open, fair

and equitable access.”8 To give the reader about the size of the transactions in PJM, between

2003 and 2012, the value of its real-time energy market grew from approximately $13 billion

in 2003 to $26 billion in 2012 (Table A5). Total billings in 2012 were close to $29 billion.

Table 1 shows installed capacity by source using data from the PJM State-of-the-Market

(SOM) reports for 2005-2012.9 The total capacity increased from 163,500 MW in 2005 to

182,000 in 2012, with a compound annual growth rate (CAGR) of 1.8%. During the same

time, coal-fired capacity increased from 67,000 MW to 76,000 MW, while gas-fired capacity

increased from 44,000 to 52,000 with implied CAGRs of 1.93% and 2.47%. The two fuels

combined account, on average, for 70% of the total capacity, with coal accounting for 40%

and gas accounting for the remaining 30%. Nuclear’s share of total capacity is 18.5%, while

that for oil is 6.5%. The remaining sources—hydro, wind, and solid waste— account for the

remaining 5% of the total capacity.

Figure 2 shows that the monthly average electricity prices track closely the gas price paid

8See http://www.pjm.com/~/media/about-pjm/newsroom/fact-sheets/pjms-markets-fact-sheet.

ashx. As of December 31, 2012, PJM had installed generating capacity of about 182,000 megawatts (MW)
and a peak load close to 154,000 MW. (see Table 1-1 in Volume 1 of the State-of-the-Market report for 2013.

9See http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2016.shtml.
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by the power plants in PJM for 2003–2012, which is expected because gas-fired generators

usually set the price at which the market clears. During this 10-year window, the gas share

of (coal plus gas) generation increased from 6% to 40% in April of 2012 before falling to

29% in December of the same year. Setting aside the seasonality in the share of gas, there

is a clear upward trend that is more pronounced beginning in late 2008, which is consistent

with the lower natural gas prices the electric power industry experienced nationwide due to

the exogenous shift in the supply of gas following the shale boom. PJM sits on the top of

prolific shale gas formations (e.g., the Marcellus shale in Pennsylvania) and a very dense

network of natural gas pipelines enjoying access to abundant cheap natural gas. Coal prices

paid by power plants in PJM, on the other hand, exhibited an upward trend, which is largely

consistent with the one we see in coal prices for the entire country.

2.2 The Clean Power Plan

On August 3, 2015, the U.S. Environmental Protection Agency (EPA) finalized two sets of

rules aiming to address CO2 emissions from fossil-fired power plants (EPA (2015)). Fossil

fuel-fired plants, which are mostly coal- and gas-fired, are the largest source of CO2 emissions,

accounting for about a third of U.S. total greenhouse gas emissions. The first set of rules

addresses emissions from existing sources, while the second set of rules pertains to new,

modified, or reconstructed sources.

The EPA has the authority to regulate existing and new sources under the federal-level

Clean Air Act. In this paper, we will collectively call the two sets of rules as the Clean

Power Plan (CPP), though technically the CPP refers to the set of emission targets applied

to existing plants (Section 111(d) of the Clean Air Act) while the rules that are applicable to

new sources are part of the “Carbon Pollution Standard for New Plants” (Section 111(b)).

Section 111(b) gives the EPA authority to set standards or emissions limitations on new,

modified, or reconstructed plants.10 Thus, unlike the applicable rule for existing sources

which is a statewide limit, the rule for new sources is source- or unit-specific. Although the

EPA cannot prescribe a particular technology, the emission limits set by the EPA essentially

preclude technologies that cannot meet the limit. For example, the final rule specifies a limit

of 1,000 lbs of CO2 per MWh for gas-fired plants, which can only be achieved by the latest

combined-cycle technology. For coal-fired plants, the limit is 1,400 lbs of CO2 per MWh

10Units that are built, modified or reconstructed after the prevailing Section 111(d) targets were set will
be classified as “new” as long as the same targets are in place. For example, in our setting the targets were
expected to remain at least until 2030. Only when targets are revised will these sources be reclassified as
existing, i.e. presumably after 2030.
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which is currently only achievable with carbon capture and storage technology, a technology

that is costly and not widely available.

The CPP calls for a 32% reduction in CO2 emissions from the power sector by 2030 relative

to its 2005 levels. It aims not only to reduce emissions that cause harmful soot and smog,

but also to promote clean energy innovation, development and deployment, and lay the

foundation for a long-term strategy to tackle climate change with estimated net benefits of

$26–$45 billion. The Plan establishes interim and final rate-based (lbs./MWh) and mass-

based (short tons) state goals regarding CO2 emissions. The interim goals are for the period

2022–2029, while the final goals are for 2030. The Plan also establishes mass-based state

goals with a new source complement representing EPA’s estimated new source emissions

associated with growth in the demand for electricity relative to its 2012 levels. The EPA

gives the states the flexibility to develop and implement plans that ensure that power plants

in their state—either individually, together, or in combination with other measures—achieve

the interim and final goals.

To set these targets, the EPA determined the best system of emission reductions (BSER)

that has been demonstrated for a particular pollutant and particular group of sources by

examining technologies and measures previously used. The BSER consists of three building

blocks: (i) reducing the carbon intensity of electricity generation by improving the heat rate

of existing coal-fired power plants, (ii) substituting existing gas-fired generation for coal-

fired generation, and (iii) substituting generation from new renewable sources for existing

coal-fired generation.11

Table 2 shows the CPP mass-based targets for the 11 PJM states used in our empirical anal-

ysis noting that the targets have been adjusted to account for the fact that only a part of the

plants located in Illinois, Indiana, Kentucky, and North Carolina fall in the PJM footprint.

The first observation regarding the information in this table is the gradual reduction in total

emissions (short tons) for all states between the first and final years of CPP. The second

observation is the notable heterogeneity in targets across states, which has implications for

the policy experiments we consider later in the paper, where we compare market outcomes

for the regional and state-by-state implementation of the CPP. For example, in the first year

of CPP, the target for Maryland is 18.2 million short tons, while its counterparts for Ohio

11EPA applied the building blocks to all coal and natural gas units in the three major electricity intercon-
nections in the country (Eastern, Western, and ERCOT (Texas)) to produce regional emission rates. From
the resulting regional rates for coal and natural gas units, EPA chose the most readily achievable rate for
each category to arrive at the CO2 emission performance rates for the country that represent the BSER.
The same CO2 emission performance rates were then applied to all affected sources in each state to arrive
at individual statewide rate-based and mass-based goals. Each state has a different goal based upon its own
particular mix of different sources.
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and Pennsylvania are 92.1 and 110.2. This difference in CO2 emissions reflects the difference

in generation from coal, gas, and oil, for the three states in 2012. This “baseline” generation

is a key component in the calculation of the targets (Table 3).

3 Simple Model of CO2 Markets

A regional (PJM-wide) CPP implementation can take advantage of state heterogeneity lead-

ing to potentially large gains from trade. However, participating states have to be willing to

coordinate in the design and implementation stages. In this section, we illustrate the ineffi-

ciencies that arise with a state-by-state implementation and how a single product market—

the wholesale electricity market—can mitigate these inefficiencies. We also examine the role

of investment as the main mechanism for coordinating compliance across states.

For the purpose of illustration, we make a series of assumptions to build a stylized model.

First, there are only two states in PJM, say s and s′. Additionally, there is a single electricity-

generating firm. The firm produces quantities qs and qs′ of electricity in plants located in

state s and s′, respectively, which correspond to MWh of electricity.12 The firm can reduce

its CO2 emissions in state s (s′) by an amount as (as′). The firm’s total cost function is given

by C(qs, qs′ , as, as′). Furthermore, there is a single wholesale electricity market covering both

states and the firm acts as a price taker. Let p be the wholesale electricity price and consider

a mass-based target for CO2 emissions while assuming that one unit of electricity generation

implies one unit of emissions. The implied mass-based targets are Qs and Qs′ . Regional

compliance requires:

(qs − as) + (qs′ − as′) ≤ Qs +Qs′ . (1)

State-by-state compliance requires:

qs − as ≤ Qs (2)

qs′ − as′ ≤ Qs′ . (3)

The firm chooses electricity generation and emissions reduction for each state in order to

maximize its profit given by:

π = p× (qs + qs′)− C(qs, qs′ , as, as′), (4)

12We assume that each power plant has a single electric generating unit. In reality, power plants may have
more that one unit.
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subject to either the regional or state-by-state compliance.

Single market for the externality: With regional compliance, emissions in either state

face the same shadow price, λ. Thus, at the optimum, the marginal cost of reducing emissions

across the two states will be equal to λ:

∂C

∂as
=

∂C

∂as′
= λ. (5)

Combining the first-order conditions with respect to emissions reductions with the first-order

conditions with respect to output, we have:

p =
∂C

∂qs
+
∂C

∂as
=
∂C

∂qs′
+
∂C

∂as′
, (6)

which implies:

∂C

∂qs
=
∂C

∂qs′
. (7)

Separate markets for the externality: With state-by-state compliance, the marginal

cost of reducing emissions need not be equal, unless the shadow prices across the two states

are equal. Nevertheless, the sum of the marginal cost of reducing emissions and producing

electricity for each state are both equal to the electricity price according to (6). Therefore,

production and emissions reductions are reallocated across the two states. This reallocation,

however, is not necessarily as efficiently as in the single market case.

Consider the special case where electricity generation can be perfectly reallocated across

states. With perfect reallocation, total cost takes the following form:

C(qs, qs′ , as, as′) = C(qs + qs′ , as, as′). (8)

In this case, we have ∂C/∂qs = ∂C/∂qs′ . Since (6) still holds, we have ∂C/∂as = ∂C/∂as′ .

Hence, state-by-state compliance leads to the same outcome as regional compliance.

The previous example shows that the extent to which the inefficiencies from separate markets

for the externality are mitigated depends on the ability to reallocate output across states. In

practice, however, there are frictions that limit this ability. First, the extent of reallocation

depends on the capacity of existing plants in these states. Although it may be cheaper to

produce output in state s as opposed to state s′ due to a higher CO2 permit price in the

latter, the firm is limited by the available capacity in s′. Thus, investment in new capacity

is an important mechanism that facilitates output reallocation. Second, there are multiple
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competing firms, which may not be able to coordinate investment in the same way as a

single-agent or a planner. Thus it will be important to capture the investment incentives of

competing firms.

Investment facilitates reallocation because new capacity replaces old capacity, and part of

the investment decision is the location of the plant. While the location decision is important

in general, it is not relevant for our paper as long as new sources are to be treated differently

under the CPP. In essence, new capacity is located in a state with a zero CO2 permit price,

conditional on the new capacity meeting the source-specific emissions standard (Section

111(b) of the Clean Air Act). The fact that new capacity faces a zero CO2 permit price

and adopts the best available technology is important in mitigating the negative effects of

having separate markets for emissions as opposed to a single market. Notably, the role of

investment as an implicit production reallocation mechanism shows the importance of the

dynamic component of our empirical model, which would be ignored in a static approach.

Investment incentives: Figure 3 provides an example where wholesale electricity prices

are actually higher with regional than state-by-state CPP implementations, and consumer

surplus and profits are higher with the state-by-state implementation. This example shows

the stronger incentives to invest with state-by-state implementation.

As it was the case earlier in this section, we make a series of assumptions for the purpose of

illustration. Electricity demand is fixed at 3 MWh. There are three existing plants owned by

a single price-taking firm.13 The first plant is located in state s′ and can produce 1 MWh of

electricity at a marginal cost of $20/MWh. The other two plants are located in state s. Each

of the two plants can produce 1 MWh of electricity. However, the two plants have different

marginal costs, which are $30/MWh and $20/MWh, respectively. Suppose also that the firm

can add capacity that produces 1 MWh of electricity at a marginal cost of $10/MWh. This

new capacity is not subject to emissions regulation—faces a permit price of 0—regardless of

its location and represents the best available technology. Finally, let Γ > 0 be the fixed cost

of investment.

The three panels of Figure 3 show the wholesale electricity market equilibrium for three pos-

sible scenarios: no CPP implementation (panel (a)), regional CPP implementation (panel

(b)), and state-by-state CPP implementation (panel (c)). The left part of each panel shows

the equilibrium without investment while the right part shows the equilibrium with invest-

ment.

In the absence of CPP, investment lowers wholesale prices from $30/MWh to $20/MWh

13We maintain the assumption that each plant has a single electric generating unit.
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because the least efficient plant, which was marginal prior to the investment, no longer

supplies output. This reduces variable profits from $20/MWh to $10/MWh, and, therefore,

the firm does not have an incentive to invest.

Next, with regional implementation, existing plants in both s and s′ face a single CO2 permit

price such that the marginal cost for these plants increases by $10. Without investment,

wholesale price increases to $40/MWh and profits are equal to $20. With investment, whole-

sale price goes up to $30/MWh and profits are equal to $20−Γ. Although the variable profit

with investment is higher with state-by-state implementation than in the absence of CPP,

it is still not enough to attract investment for any Γ > 0.

Finally, with state-by-state implementation, existing electric plants in state s′ face an increase

of $5 in their marginal cost, while the existing plants in state s face an increase of $15 in

their marginal cost due to the higher CO2 permit price in s. Wholesale price increases to

$45/MWh without investment, but goes down to $35/MWh with investment. With state-by-

state implementation, the firm will invest as long as Γ < 5. In this case, wholesale prices with

regional and state-by-state implementations are $40 and $35 respectively, while consumer

surplus and profits are higher in the latter.

Although the model is admittedly stylized, it highlights the possibility of mitigating in-

efficiencies with separate markets via investment. It also highlights the fact that market

outcomes depend on a series of factors, such as the portfolio of plants, the marginal plant

setting the market clearing price, and investment costs. Therefore, one needs to capture

effectively these factors in order to properly assess the relative merits of alternative policies

considered.

4 Empirical Model

We model supply and investment decisions of firms participating in the PJM wholesale

electricity market. The number of strategic firms, N , is smaller than the total number of

firms participating in the market due to the presence of the competitive fringe. Supply

decisions—selling electricity to the wholesale market—are monthly. Investment decisions

are annual. At the beginning of the year, the strategic firms decide on investment in either

coal- or gas-fired capacity, which becomes available the following year. At beginning of each

month, all firms decide on how much electricity to sell in the wholesale market subject to

their capacity constraints.

In what follows, we discuss the details of our model. We first discuss supply and demand in
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PJM wholesale market, followed by our investment model. We complete our discussion by

formally defining the Markov Perfect Equilibrium of the dynamic game. Figure 4 provides

an overview of the timing of the model.

4.1 Wholesale Electricity Market

To model firm behavior in the wholesale electricity market, we build on the results in Wolak

(2000) and Bushnell et al. (2008)—henceforth BMS. Wolak and BMS show that electricity

markets in the presence of forward contracts, as is the case for PJM, generate outcomes that

are much closer to those from a competitive setting than to those from a Cournot game.14

Therefore, we implement our model as if firms were price-takers producing electricity subject

to capacity constraints.15 The equilibrium wholesale electricity price is then determined by

the intersection of supply and demand, where supply is just a “merit” order of all sources

in terms of their marginal costs. Table 4 provides a list of the strategic firms we consider

noting that we aggregate subsidiaries to holding companies.

Investment decisions are strategic; firms decide on investment considering its impact on other

firms, and vice-versa. The assumption of a perfectly competitive wholesale market combined

with strategic investment, under the existence of forward commitments, is consistent with

theory. For example, Adilov (2012) models firms’ investment in capacity in order to study

the effects of forward markets on competition and efficiency extending the standard Allaz

and Villa (1993) framework. The forward market takes place after the investment decisions

are committed but before the spot market. Importantly, endogenous capacity choices affect

strategic behavior in the forward and spot markets.

Given our implementation of the stage game as a competitive market, supply is fully deter-

mined by the marginal cost of electricity. Following BMS and Mansur (2007), the marginal

14We confirmed the results from BMS in our own setting by modeling the wholesale electricity market
assuming perfect competition and Cournot. We found that perfect competition generates equilibrium prices
that are reasonable and consistent with predictions from futures markets, while Cournot produces equilibrium
prices that are much higher. In our case, forward contracts are not as straightforward to deal with as in
BMS because of the dynamic nature of the model. We also implicitly assume that the effect of the forward
contracts on the competitive nature of the market remains the same in the future. Overall, modeling forward
commitments is beyond the scope of the paper.

15Our assumption for a competitive setting in the PJM energy market is also consistent with the conclusions
in the State-of-the-Market (SOM) reports prepared by the PJM Market Monitoring Unit for 2003–2012. The
SOM reports analyze competition within, and efficiency of the PJM markets using various metrics, such as
market concentration, the residual supply index, and price-cost markups.
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cost of generating electricity ($/MWh) for plant i at time t is given by:

cit = V OMit +HRit ×
(
P f
t + P s

t r
s
it + P n

t r
n
it

)
, (9)

where V OM is the variable non-fuel operations-and-maintenance cost ($/MWh) and HR

is the heat rate (MMBtu/MWh) that captures efficiency in turning heat input from fuel

to electricity. Additionally, rs and rn are the fuel-specific SO2 and NOx emission rates

(lbs./MMBtu), when applicable. Finally, P f is the fuel price ($/MMBtu) while P s and

P n are the SO2 and seasonal NOx permit prices ($/lb.). Note also that we have simplified

the notation in (9) to highlight the cross-sectional and time variation of the various cost

components. In our empirical analysis, the VOM costs, the heat rates, and the emission

rates, exhibit variation by plant and year. The fuel prices exhibit variation by firm, year,

and month. The permit prices exhibit variation by year and month.

Market supply is determined by ordering all available capacity in terms of its marginal

costs as shown in Figure 5. This merit order along the supply curve dictates the sequence

in which the various sources are dispatched as the demand for electricity increases. The

equilibrium wholesale price is the marginal cost of the most expensive source called to serve

demand. Given fuel and emissions permit prices, the market supply function is a step

function described by the pair (K, c), where K is the capacity with marginal cost less than

or equal to c. Because we observe all of the components in (9), we can construct this step

function directly from the data.

To model demand, we adapt the approach in BMS using monthly data and a more parsimo-

nious specification. The need for parsimony stems from the fact that we use 120 monthly

observations for 2003–2012, whereas BMS uses roughly 3,000 hourly observations. We use

fringe supply to refer to the supply subtracted from the vertical inelastic market demand to

obtain the residual demand for strategic firms. This fringe supply consists of the following:

(i) net imports, (ii) supply of fringe firms, (iii) supply of strategic firms from sources other

than coal and gas. We then estimate the following fringe supply function:

qfringeτ =
12∑
m=1

αmdmτ +
10∑
y=2

αydyτ + βln(pwτ ) + µ1CDDτ + µ2CDD
2
τ

+ µ3HDDτ + µ4HDD
2
τ + ετ , (10)

where dmτ and dyτ are the fixed effects for month m and year y, respectively. Additionally, pwτ

is the average monthly real-time system-wide locational marginal price in the PJM wholesale

electricity market. We proxy for electricity prices in the states surrounding PJM using
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average cooling (CDDτ ) and heating (HDDτ ) degree days and their squares accounting for

the fact that the PJM footprint expanded during the period in our sample. Finally, ετ is the

idiosyncratic shock. We introduce some compact notation writing (10) as follows:

q̂fringeτ = λ̂τ + β̂ln(pwτ ) (11)

λ̂τ ≡
12∑
m=1

α̂mdmτ +
10∑
y=2

α̂ydyτ + µ̂1CDDτ + µ̂2CDD
2
τ + µ̂3HDDτ + µ̂4HDD

2
τ . (12)

The residual demand QS
τ for the strategic players is then given by:

QS
τ = Qτ − q̂fringeτ = Qτ − λ̂τ − β̂ln(pwτ ) (13)

Finally, we write:

QS
τ = âτ − βln(pwτ ), âτ ≡ Qτ − λ̂τ . (14)

4.2 Investment

Firms’ investment decisions are fuel-specific, costly, and affect capacity with implications

for the shape of the marginal cost function. Investment in coal- and gas-fired capacity is

endogenous. We assume firms invest in the best available technology (BAT), which is the

technology with the lowest heat rate (hr) at the time of investment. This assumption, which

is motivated by the Carbon Pollution Standard (CPS) under Section 111(b) of the Clean

Air Act, allows us to make our model tractable by reducing the number of state variables

that we need to track over time to calculate profits in the electricity market. Although we

assume investment in BAT technology, investment in technology that leads to inframarginal

capacity is sufficient for the validity of our approach.

Figure 6 illustrates how the BAT assumption helps us to address the dimensionality problem.

The two lower steps of the supply curve in panels (a) and (b) represent investment in new

capacity, while the remaining portion of the supply curve corresponds to existing capacity.

Panel (a) shows the wholesale electricity market equilibrium when we keep track of all the

information about new capacity that the firm invests in. Panel (b) shows that rearranging

infra-marginal units actually does not alter equilibrium quantities, prices, and profits, as

long as these units remain infra-marginal. Finally, panel (c) shows that we only need to

keep track of an average of all the new capacity that the firm invests in since averaging of
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these individual units does not affect equilibrium quantities, prices, and profits. Thus, as

long as new capacity is infra-marginal, tracking the firm-level cumulative BAT capacity and

the associated average heat rate is sufficient for our empirical analysis.

Using f ∈ F = {coal, gas} to denote the fuel, let ifjt be the investment by firm j in coal- or

gas-fired capacity at time t. In addition, let Kjt be the cumulative BAT capacity given by:

Kjt+1 = Kjt + icoaljt + igasjt . (15)

Because the heat and emission rates for coal- and gas-fired capacity are different, we keep

track of the share of gas-fired BAT capacity:

Sjt+1 =
SjtKjt + igasjt

Kjt+1

. (16)

For heat rates, as well as the remaining components of the fuel-specific marginal costs, we

track a weighted average at time t. For example, in the case of the heat rate for gas-fired

BAT capacity, we track the following weighted average:

HRgas
jt+1 =

SjtKjt

SjtKjt + igasjt

HRgas
jt +

igasjt

SjtKjt + igasjt

hrgasjt , (17)

where hrgasjt is the heat rate associated with new investment in gas-fired capacity. The BAT

capacity for firm j at time t is Kjt with an associated marginal cost given by:

cjt = (1− Sjt)ccoaljt + Sjtc
ng
jt (18)

where cjt is computed using (9) noting that there are fuel-specific components entering the

equation.

By construction, BAT capacity is infra-marginal, at least in the medium term. More-

over, holding the vector of prices constant, the new supply curve, which is a collection

of (Kjt+1, cjt+1) points, is obtained through a shift of the supply curve at time t. For exam-

ple, suppose there is only one firm investing in gas, which gives rise to Kjt with associated

cost cjt, which we assume for illustrative purposes to be less than the marginal cost of all

existing capacity.16 Then the first step of the new supply curve becomes (Kjt, cjt). The rest

of the supply curve is characterized by (K−jt + igasjt , c−jt), that is a horizontal shift equal to

the amount of investment. This example is illustrated in panel (b) of Figure 5.

16Since infra-marginal units can be rearranged, what suffices for the horizontal shifting to maintain the
same equilibrium is that new capacity is infra-marginal.
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The actions chosen by each firm j are represented by ajt = {qjt, icoaljt , igasjt }. The variable qjt

denotes the output (electricity generation) by firm j while ifjt is the investment in capacity

fired by fuel f . Although we use a single time subscript to maintain notational simplicity,

the output decisions in the electricity market are monthly, while the investment decisions are

annual. Furthermore, C(qjt, st) is the total cost for producing qjt when the state vector is

st. Using pwt to denote the equilibrium wholesale electricity price and νjt to denote a private

shock that is IID across firms and time drawn from a common distribution Gν = (0, σ2
ν), the

per-period profit is given by:

πjt(at, st, νjt) = πjt(at, st)− Γjt(at, νjt) (19)

with the profit function excluding investment cost being:

πjt(at, st) = prjt × qrjt + pwt × (qjt − qrjt)− C(qjt, st). (20)

The investment cost is given by:

Γjt(at, νjt) =
∑
f∈F

(γf + νfjt)i
f
jt (21)

The specification for the static profit function in (20) allows for retail sales qrjt at a price prjt

that are assumed to be sunk at the time production decisions are made for the wholesale

markets.

Although ifjt in (21) represents only positive adjustments to capacity, our model allows for

capacity reductions (divestments) as well. However, unlike Ryan (2012) or Fowlie et al.

(2016), we do not need to introduce a scrap value associated with reductions in capacity.17

This is due to specificities in our model. In fact, to be consistent with our BAT assumption—

all new investment is in units that face the lowest costs and are located in the leftmost

segment of the supply curve—all divested units need to be located in the rightmost segment of

the supply curve. In other words, divestment only affects the least efficient coal units, which

in our model have a cost above the equilibrium price and are extramarginal (idle) anyway.

Scrapping older units or keeping them idle does not have an impact on the equilibrium price.

Hence, we can separate divestment decisions from the ones associated with generation and

BAT investment.18

17A version of (21) with scrap value would be Γjt =
∑

f 1[ifjt>0](γ
f
1 + νf1jt)i

f
jt + 1[ifjt<0](γ

f
2 + νf2jt)i

f
jt as in

Ryan (2012).
18Firms could, potentially, take into account future scrap values of BAT investment when they decide to

build new capacity. However, as the lifecycle of a power plant is typically several decades, the present value
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4.2.1 Capacity Markets

The idea behind the capacity market is that there are adequate resources on the grid to

ensure that the demand for electricity can be met at all times in the near future. In PJM’s

case, a utility or other electricity supplier is required to have the resources to meet its

customers’ demand plus a reserve. These load serving entities (LSEs) can meet the resource

requirement with generating capacity they own, with capacity they purchase from others

under contract, through demand response—in which end-use customers reduce their usage

in exchange for payment—or with capacity obtained through auctions in the PJM capacity

market.

Although PJM does operate a capacity market and we do not explicitly model capacity

payments, our setup can accommodate their presence. In the presence of capacity payments,

Γjt becomes the investment cost net of the expected future value of capacity payments. Of

course, this interpretation of capacity payments is valid only when all new investment receives

capacity payments. Furthermore, our setup can accommodate heterogeneity in capacity

payments because of zonal pricing through the private shock νjt. It is also important to

note that during 2003–2012, capacity payments have accounted for 6% of the total wholesale

price per MWh when energy payments accounted for 82%.19

of scrappage at the time of construction would be very small. Therefore, and to keep the model simple, we
assume that new units operate forever.

19See Table 9 of the 2012 PJM State of the Market Report Volume I. Modeling firm behavior in the
capacity market is beyond the scope of the paper. As a background, effective June 2007, the PJM Capacity
Credit Market (CCM), which had been the market design since 1999, was replaced with the Reliability
Pricing Model (RPM) capacity Market. Under the CCM, LSEs could acquire capacity resources by relying
on the PJM capacity market, by constructing generation, or by entering into bilateral agreements. Under
RPM, there is a must-offer requirement for existing generation that qualifies as a capacity resource and a
mandatory participation for LSEs with some exceptions. LSEs must pay the locational capacity price for
their zone and zonal prices may differ depending on transmission constraints. LSEs can own capacity or
purchase capacity bilaterally and can offer capacity into the RPM auctions when no longer needed to serve
load. Capacity obligations are annual and Base Residual Auctions (BRAs) are held for delivery years that
are three years in the future. There are also incremental auctions that may be held for each delivery year if
there is a need to procure additional capacity resulting from a delay in a planned large transmission upgrade
that was modeled in the BRA for the relevant delivery year. Bushnell et al. (2017a) provide an in-depth
discussion of the capacity markets.
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4.3 Markov Perfect Equilibrium

We now define the notion of equilibrium in our model given a vector of actions at = {ajt}Nj=1.

In particular, the state vector is:

st =
(
αt,p

F
t ,
{
Kjt, Sjt, HR

coal
jt , HRng

jt

}N
j=1

)
. (22)

The endogenous part of the state vector that relates to BAT capacity investment and its

evolution is discussed in the previous section. In terms of the exogenous state variables, αt

is the intercept of the inverse residual monthly demand for electricity and pft is a vector of

monthly coal and gas prices.20 The future path of the exogenous state vector is allowed to

exhibit some uncertainty, which can affect the investment decisions.

Each firm’s behavior is Markovian and depends only on the current state and private shock

as in Ericson and Pakes (1995). Hence, a Markov strategy for firm j, σj, will map the state

and private shock into actions. The profile σσσ is a Markov Perfect Equilibrium (MPE) if each

firm j’s strategy σj generates the highest value among all alternative Markov strategies σlj

given the rivals’ profile σσσ−j:

Vj(s;σσσ) ≥ Vj(s;σlj,σσσ−j), (23)

where Vj(s;σσσ) is the ex ante—before observing the realization of the private shocks—value

function for firm j given by:

Vj(s;σσσ) =
∞∑
t=0

E [πjt(at, st, νjt)|s0] . (24)

5 Estimation

We estimate our model using the two-stage methodology in Bajari et al. (2007). In the

first stage, we estimate policy functions from the data using observable state variables. The

policy functions are reduced-form because they provide estimated parameters that are not

primitives of the underlying economic model of investment. In the second stage, we search

for the structural parameters that best rationalize firms’ observed behavior and transitions

20The vector of monthly SO2 and seasonal NOx permit prices is set at zero, consistent with the current
situation in the electric power industry. Therefore, they are not included in the state vector. Likewise, the
remaining components of the BAT cost level such as VOM are held constant at the current values and,
hence, need not be considered in the state vector.
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of the state variables. The advantage of this approach is that the primitives can be estimated

without the need to solve for an equilibrium even once. As it is the case with all two-stage

methods, the first-stage estimates do not fully exploit the structure of the dynamic game.

5.1 First Stage

For the first-stage investment policy functions, we use the (S,s) model, which was originally

introduced in the study of inventories and has received attention in the durable-consumption

(e.g., Attanasio (2000), Eberly (1994)) and investment literature (e.g., Caballero and Engel

(1999) and Ryan (2012)). Fixed costs and empirical evidence suggest lumpy investment

behavior in electricity markets; periods of inactivity are followed by notable changes in

capacity.

The (S,s) model can accommodate such firm behavior via a target equation, T (·), and a band

equation, B(·). The former dictates the level of capacity the firm adjusts to conditional on

making a change. The latter dictates when the firm will make a change to its current level

of capacity. Using Kjt to denote the capacity level for firm j at time t, the policy function

for the incumbents is given by:

Kjt+1 =

Kjt, T (Kjt)−B(Kjt) < Kjt < T (Kjt) +B(Kjt)

T (Kjt), otherwise.
(25)

Entrants are assumed to adjust to T (Kjt). The specifications of the target and band equa-

tions resemble those in Fowlie et al. (2016)

T (Kjt) = λT1 1[entrant],jt + λT2Kjt + λT3 K−jt + λT4 Pt + εTjt (26)

B(Kjt) = λB1 + λB2 Kjt + εBjt. (27)

In terms of notation, K−jt is the rivals’ capacity and 1[entrant],jt is a dummy variable that

equals one if firm j enters the market at time t, and zero otherwise. The vector Pt includes

fuel costs and emissions permit prices.21 Finally, the idiosyncratic errors are εTjt and εBjt.

21Permit prices for SO2 and NOx were non-zero during the period 2003–2012 used for estimation.
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5.2 Second Stage

Firms have perfect foresight over the future path of the exogenous state variables. This

can be seen as a particular form of a Markov process if the state vector does not have

the same values at two different points in the future. With the estimates of the policy

equations in hand and evolution paths for the exogenous state variables, we estimate the set

of structural cost parameters θ for which the observed policy for firm i is the best response to

its rivals’ observed policies. We begin by estimating Wj(s;σlj,σσσ−j) using forward simulation

and considering the following two cases. In the first case, all firms follow the observed policy,

from which the “true” value function will emerge. In the second case, all firms except for firm

j follow the observed policies and firm j follows a slightly modified version of its observed

policy.

With L alternative policies {σlj}Ll=1 and using σ0
j to denote the observed policy, we want to

estimate Wj(s;σlj,σσσ
0
−j) for l = 1, ...L. For the lth alternative policy, we simulate each firm’s

decisions over NT periods using the policy and transition functions from Stage I, such that

the resulting estimator is:

Ŵj(s;σlj,σσσ
0
−j) =

NT∑
t=1

βt
(
πljt(at, st)− Γljt((at, νjt))

)
. (28)

We rewrite the MPE condition (23) for the lth alternative policy as follows:

gj,l(θ) =
[
Ŵj(s;σlj,σσσ

0
−j)− Ŵj(s;σ0

j ,σσσ
0
−j)
]
· θ (29)

We draw L = 20 alternative policies by adding noise to the optimal policy function. For each

of the 10 strategic firms, we perturb the policy function by adding or subtracting 5 MW of

generating capacity to the amount resulting from the real policy. In Section A.4, we show

that the additive nature of the perturbation is consistent with the heterogeneity assumed

for the investment cost function. We also assume β = 0.90 and NT = 50 years. We then

search for the parameter vector such that profitable deviations from the optimal policies are

minimized:

min
θ

Q(θ) =
1

NL

N∑
j=1

L∑
l=1

1 {gj,l(θ) > 0} gj,l(θ)2. (30)

We calculate standard errors using 1,000 bootstrap replications by resampling from the

moment inequalities and ignoring the 1st stage estimation error as in Bajari et al. (2013).
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5.3 Results

Static Estimates: Table 5 contains the estimates for the fringe supply equation.22 Since

price is endogenous, we use two-stage least squares and instrument using the monthly quan-

tity demanded given that the demand for wholesale electricity is completely inelastic. The

dependent variable, as discussed in Section 4.1, is in levels in all 4 specifications consid-

ered. The price coefficient, which is of main interest for the subsequent analysis, is generally

highly significant. According to our preferred specification, in which the price enters in logs,

the implied elasticity at the sample averages of fringe supply and price of 6,043 MWh and

$50/MWh is 0.74.

Exogenous State Variables: Figure 7 shows the paths for various of the exogenous state

variables in the model for 2013–2062. We start by showing the path for the annual average of

the residual demand intercept ât (panel (a)). We take the value of the intercept from 2012,

estimated in the residual demand curve, and have that increase at a rate of 1% per year

from that point onwards. Within each year, we allow the monthly demand curve to exhibit

seasonality patterns consistent with the data. We do this by regressing demand (load) on

month dummies and saving the corresponding estimated coefficients, which are then used to

adjust the corresponding monthly demand intercept around the annual average. The slope

of the residual demand is held constant at the mean value estimated as detailed above.

The coal heat rates associated with new investment are assumed to be fixed at their 2012

levels (10 MMBtu/MW), while their gas counterparts are assumed to be falling over time

from 7.6 MMBtu/MWh to 7.2 MMBtu/MWh; see panel (b). The trend for the gas heat

rates associated with new investment is obtained by projecting the linear trend of the log gas

BAT heat rates for 2003–2012 to 2013–2062. The remaining cost components, VOM costs

and CO2 rates, are held constant from 2013 onwards.23

In the case of coal prices, we extrapolate the EIA annual projections for 2013–2035 from

the 2012 Annual Energy Outlook reference case to 2062 using the implied CAGR (panel

(c)). For gas prices, we use monthly NYMEX Henry Hub futures prices for 2013–2028. We

expand the series until 2062 using flat extrapolation of the 2008 levels. Given the collapse

in SO2 and seasonal NOx permit prices in recent years, we assume that they will remain at

zero for 2013–2062.24

22We refer the reader to Section A.2 for some additional descriptive statistics.
23The CO2 emission rates are relevant in the policy evaluations section of the paper. The SO2 and

NOx emission rates do not impact our calculation since the price of the corresponding permits price is set
to zero in the forward simulations.

24Our use of Henry Hub futures prices for gas and the assumption regarding zero permit prices are both
consistent with the approach taken in PJM (2016) regarding projections of gas and permit prices.
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Policy Equations: Table 6 provides the estimates of the target policy equations. In order to

increase the sample and have enough variation in the data, we estimate the target equations

for both coal and gas using annual operator-level data for 2003–2012 including all operators

and not just those associated with the 10 strategic holding companies in Table 4. Based on

the R-squared values reported at the bottom of the table, the fit is better for gas (0.67) than

for coal (0.46).

Moving to the regression estimates, the coefficient for the entry dummy is positive and

significant at the 1% level in both equations. The target capacity is strongly affected by the

current capacity—the associated coefficient is significant at 1% for both fuels. Although the

capacity of the rivals has the expected negative sign, it is not significant for both coal and

gas. The price of coal has a negative effect on the coal target capacity that is significant at

the 5% level, while the price of gas has a positive effect that is significant at the 10% level.

The prices of the two fuels have no significant effect on the gas target capacity. The SO2 and

seasonal NOx permit prices have negative effects on coal target capacity that are significant

at the 5% and 10% levels, respectively. The SO2 permit price has a negative effect on the

gas target capacity that is significant at the 10% level. The seasonal NOx permit price has

no effect on the gas target capacity. In the case of the band equations, we set λB1 = 0 and

λB2 = 0.10 for both coal and gas in the current set of results. The implication is that there

is no adjustment to capacity in the next period if the target level is within that range.

Structural Estimates: The estimate reported in Table 7 is $/MW of gas-fired capacity.

Note that given the lack of investment in coal-fired capacity implied by our model, it is not

possible to estimate the costs for coal-fired capacity. Our estimate of around $1.1 million per

MW is comparable to the estimates in Spees et al. (2011), which are up to $1 million per MW.

Furthermore, as we have already discussed, the reported standard error of approximately

$32,000 per MWh does not take into account the 1st-stage estimation error.

Endogenous Variables: We also provide the paths for a variety of endogenous variables,

such as market-wide outcomes, and firm-level generation, profits, capacity, and heat rates,

from our forward simulations for 2013–2062.25 The BAT capacity in Figure 9, which is

exclusively gas-fired, exhibits an upward trend increasing from 1,400 MW in 2014, the first

year of investment, to 10,900 MW in 2062 (panel (a)). As a result, the share of output

(electricity generation) that BAT capacity accounts for increases over time with roughly half

of the increase taking place the first 15 years (panel (b)). Electricity generation (panel (c))

and price (panel (d)) increase over time, too. Following a period with a downward trend

between 2013 and 2030, the share of gas in electricity generation increases from 18% to 30%

25All dollars are nominal.
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(panel (e)). After 20 years of growth of the share of coal in electricity generation that peaks

at 40%, we see slight a decline to 37% in the later years. The share of sources other than

coal and gas in electricity generation decreases from 52% in 2013 to 33% in 2062 (panel (f)).

Recall that we assume no investment in these fringe sources.

Table 8 shows the investments in gas-fired capacity by firm for 2013–2062. During the

same period, there is no investment in coal-fired capacity. Overall, we see 51 instances of

investment associated with 11,000 MW of gas-fired capacity. Three firms account for roughly

3/4 of the total investment. Exelon accounts for 2,800 MW, followed by NRG with around

2,550 MW and AES with 2,400 MW. Exelon invests 15 times. AES and NRG invest 12

times. It is important to keep in mind that this table tracks investment flow and not net

investment. Investment may imply replacement of old units that become more costly to

operate with new units. A detailed timeline of investment by firm is available in Figure 8.

Model Predictions: Finally, In Figure 10 we compare the electricity price implied by

our model with the on-peak electricity price for PJM from NYMEX futures for the period

2016/04–2019/12 noting that our model is not flexible enough to allow for on- and off-

peak prices.26 As we can see, our model tracks well the NYMEX futures prices outside the

September-February window.27

6 Welfare with Single versus Separate Markets

6.1 Overview

To compare market outcomes with single and separate CO2 markets, we assume PJM states

are subject to the mass-based targets of the Clean Power Plan (CPP) given in Table 2. These

targets limit the quantity of CO2 emissions (in short tons) that states can emit annually.

There are interim targets for 2022—2029 followed by a permanent target from 2030 onwards.

With separate CO2 markets, each state’s emissions have to be less than or equal to the annual

targets shown in the table. With a single CO2 market, there is an aggregate (PJM-wide)

target for emissions, which is the sum of the targets across the PJM states shown in Figure 11.

26Off-peak is a period of time when consumers typically use less electricity: normally, weekends, holidays
or times of the day when many businesses are not operating. PJM typically considers New Year’s Day,
Memorial Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day, as well as weekend
hours and weekdays from 11 p.m. to 7 a.m. as off-peak. See http://www.pjm.com/en/Glossary.

27In Figure A3, we compare the behavior of heat rates, fuel prices, generation and capacity before and
after 2012, the last year in our sample. In general, we see a transition that is smooth and a trend towards
more gas in both generation and capacity. We do not allow for explicit divestitures but some of the coal
capacity will start to become extra-marginal.
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Although we do not explicitly model a market for emissions permits, one can think of the

shadow price of the CO2 emissions constraint as the price in dollars per short ton that clears

the permit market. In the case of a single CO2 market, there is one permit price. In the

case of separate CO2 markets, the permit prices are state-specific and corresponds to each

state’s constraint.

The CO2 price increases the cost of generating electricity for power plants, which in turn

affects the industry supply curve or merit order of the wholesale electricity market. This

additional cost is different for sources with different emission rates (lbs./MMBtu). Hence,

we compute the marginal cost for source i in state s at time t as follows:

cCist = cist + PC
st × rCist × ζ, (31)

where cist is the generation cost excluding the cost of emissions ($/MWh), PC
st is the CO2 price

($/ton), rCist is the emissions rate (lbs./MMBtu), and ζ is an appropriate scaling factor to

take into account units of measurement. In the case of a single market, PC
st = PC

t , ∀s ∈ S,

where S is the set of the 11 PJM states listed in Table 2.

All else equal, the CO2 price changes the merit order of the various generation sources and

increases the cost of producing 1 MWh of electricity. Equilibrium demand and supply in

the wholesale electricity market determine the sources that are called to serve demand and

the level of emissions. The level of emissions and the emissions target in turn determine

the equilibrium CO2 price. Therefore, obtaining the equilibrium wholesale electricity and

CO2 prices requires the simultaneous clearing of the wholesale electricity and emissions

markets. We discuss the market-clearing algorithm in Section A.5.

We explore market outcomes in a series of alternative investment scenarios subject to regu-

lations consistent with the Clean Air Act. In exploring these market outcomes, we make a

series of assumptions, four of which are discussed here. First, only emissions from existing

capacity built by 2012 are subject to CO2 prices; emissions from capacity built after 2012

are exempt from the CO2 price. However, capacity post-2012 must have the best available

technology (BAT) in the sense of having the lowest heat and emissions rate during the in-

vestment year. Second, we assume that heat rate improvements are exogenous.28 Third,

generation from renewable sources increases exogenously according to the annual growth

rates in the CPP.29 Finally, we assume an upper bound of $50 for the CO2 price and set the

28See discussion on exogenous state variables in Section 5.3.
29See the June 2014 CPP proposed rule technical support documentation (TSD) at https://www.

epa.gov/cleanpowerplan/clean-power-plan-proposed-rule-technical-documents. The relevant TSD
spreadsheet provides state-specific growth rates for renewable energy for 2020–2029. We assume that the
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post-2030 CPP targets at their 2030 levels.30

The discussion that follows sheds light to the implications of production reallocation and

investment for a series of economic and environmental outcomes of interest. We start by

exploring market outcomes treating investment as exogenous. This analysis provides us

with a bound on the static welfare losses associated with separate markets. We then explore

outcomes for scenarios with optimal investment. An overview of our findings is available in

Table 9.

6.2 Static Analysis

Our first objective is to showcase the role of output reallocation in mitigating the inefficiencies

with separate markets in the presence of an integrated product market. We compare the

cost of producing electricity with single and separate CO2 markets treating investment in

BAT capacity as given. Specifically, we solve for the equilibrium of the electricity and

CO2 market(s) for BAT capacity levels between 0 and 60,000 MW for 2030, noting that the

qualitative nature of our findings is similar for all years between 2022 and 2030.

In Figure 12, we plot electricity production cost with single and separate CO2 markets as

a function of BAT capacity. As can be readily seen from the graph, there is practically no

difference in cost between single and separate CO2 markets for high and low levels of BAT

capacity. The wedge in cost only exists in intermediate levels of BAT capacity.

In the case of high BAT capacity levels—largely, in excess of 43,000 MW—the equality in

cost across single and separate CO2 markets is explained by the fact that the state-specific

CO2 targets no longer bind due to abundant capacity exempt from the targets. The slackness

of the constraints associated with the CO2 targets implies zero CO2 prices even in the case

of separate markets. With low BAT capacity levels—generally, below 10,000 MW—there is

little electricity generation associated with capacity exempt from the targets. As a result,

CO2 prices that hit the ceiling of $50 even with a single market are needed to meet the

targets.

Costs between single and separate markets only diverge for intermediate BAT capacity levels.

average growth rate for 2020–2029 holds for the entire period of our simulations. Moreover, we assume that
nuclear capacity does not change.

30Borenstein et al. (2016) argue that extreme price outcomes are likely in most cap-and-trade markets
for greenhouse gas (GHG) emissions for two main reasons. The first is GHG emissions volatility. The
second is the low price elasticity of GHG abatement over the price range generally deemed to be acceptable.
Recognizing the problems created by uncertainty in emissions permit prices, hybrid mechanisms that combine
caps on emissions and price collars (both lower and upper bounds) have been proposed. See their Section I
and the references therein.
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The largest difference is about $1.79 billion at BAT capacity of 29,000 MW. This difference is

about 35% of CPP compliance cost which is computed by taking the difference in electricity

generation and investment cost with and without the CPP, assuming a regional market.

There are two takeaways from the static analysis. First, the level of BAT capacity is an

important determinant of the relative efficiency between single and separate CO2 markets.

Given the importance of BAT capacity, we explore optimal investment in the next section.

Second, our static analysis provides an upper bound of the cost inefficiency of separate

CO2 markets, which illustrates to what extent an integrated product market can be an

effective alternative to coordinating CO2 emissions regulations.

6.3 Optimal Investment

Our next objective is to examine the implications of investment for market outcomes when

investment is a result of optimizing behavior. We first consider the case of firms using invest-

ment strategically. We then consider two extreme cases of optimal investment behavior–one

where investment is chosen to maximize industry profits, and one where investment is chosen

to maximize total surplus. Before we delve into the details of the alternative scenarios, we

discuss how we address some of the computational challenges associated with the solution

of the dynamic model in order to obtain the optimal investment levels.

The state vector, which consists of both exogenous and endogenous variables, is an important

component of our dynamic model. We discuss the evolution of the exogenous state variables

in Section 5.3 so our focus here is on the endogenous state variables. The first endogenous

state variable is the current BAT capacity, which is also the cumulative investment. The

second state variable is the average heat rate for each strategic firm. In order to solve our

model, we assume that in each time period the sum of BAT capacity across all strategic

firms cannot be more than 60,000 MW and we discretize the capacity dimension of the state

space using an equally-spaced fine grid with increments of 50 MW. For the BAT heat rate

dimension of the state space, we use three nodes corresponding to the minimum, average,

and maximum heat rates for 2013–2030. We create a dense grid for the state along the BAT

heat rate dimension using a cubic spline.31

Guided by our estimates, we assume that the strategic firms invest only in gas-fired capacity.

Moreover, we only allow positive amounts of investment (no divestment) and assume that

capacity does not depreciate. Therefore, BAT capacity either increases or stays at its current

31Interpolating the BAT capacity dimension over a small number of nodes does not capture well enough
investment behavior because the interpolation is too smooth relative to the step cost function.
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level. This assumption allows us to solve the model iteratively because once aggregate BAT

capacity reaches 60,000 MW no firm has the incentive to invest and BAT capacity remains

at this level. The value function when aggregate BAT capacity equals 60,000 MW is just

π/(1 − β), where π is the firm’s payoff at this state and β is the discount factor. We can

then solve backwards for the value function along the BAT capacity dimension.

The investment problem is non-stationary because prices, demand, new investment heat

rates, and CO2 targets, change each year. We want to capture the non-stationarity since

we are interested in economic outcomes in the medium run. To solve the model, we fix

all exogenous variables at their 2030 levels post 2030, and solve the associated stationary

infinite-horizon problem. Once we have the value functions for 2030, we proceed backwards,

starting in 2029 and ending in 2013, noting that the exogenous variables change every year.

Given that the state space grows exponentially with the number of firm, we only consider a

two-firm investment game when we explore the strategic use of investment to alleviate some

of the computational burden that the solution of the model entails. In addition, although

our empirical model allows for privately-observed investment cost shocks, we do not identify

the distribution of these shocks. Hence, we solve a game of complete information. In this

case, since the existence of a pure strategy equilibrium is not guaranteed (Doraszelski and

Satterthwaite (2010)), we assume a sequential game of investment for each period. This

assumption not only addresses the existence but also the uniqueness of the equilibria.32 We

refer to the player that moves first as the leader and the player that moves second as the

follower.

Regarding the optimal investment scenarios outside a strategic interaction framework, we

compare market outcomes with a single and separate CO2 markets assuming a single firm

chooses investment to maximize industry profit. This is an environment of extreme concen-

tration in investment. We also compare outcomes across the two implementations of the

CO2 markets assuming a single agent chooses investment to maximize the sum of consumer

surplus and profit approximating a competitive investment environment as in Bushnell et al.

(2017b).

32The assumption of sequential move in order to be able to select a unique equilibrium has been used
extensively in entry games, where multiple equilibria complicate model predictions. See Bresnahan and
Reiss (1990) Berry (1992) for early examples in a static setting, and, more recently, Abbring and Campbell
(2010) in an infinite-horizon setting.
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6.3.1 Leader-Follower Investment Game

We setup a two-firm investment game by allocating all the plants owned by the strategic

firms equally among two firms. Each firm decides strategically on investment taking into

account profits earned from the plants it owns and how investment changes endogenous state

variables, which include the BAT capacity of both firms. We maintain the assumption of

competitive behavior in both the electricity and CO2 markets, and solve the stage game by

finding the market clearing prices. Under the assumption of competitive wholesale markets,

equilibrium quantity and price are not affected by our assumption on the number of investing

firms, conditional on the set of plants in the market.

Our first scenario is one without CO2 targets (2F-NOCO2) in which case investment is driven

primarily by growth in demand. Given that we allow for an exogenous increase in renewables,

the increase in gas-fired BAT capacity we report is in addition to the capacity of renewable

sources. As Table 9 shows, aggregate BAT capacity grows to 1,500 MW by 2030 and total

welfare is $1,086 billion. Damages from emissions are close to $129 billion.

Our second scenario is without investment in BAT capacity and a single CO2 market (2F-

NOINV). Compared to the scenario without CO2 targets, total welfare decreases by $10

billion to $1,076 billion. Consumer surplus and damages from emissions also decrease by

10% and 23%, to $922 and and $99 billion, respectively. The decrease in consumer surplus is

due to a substantial increase in electricity prices. The increase in electricity prices is driven

by the increase in costs because of the CO2 permit prices and the reshuffling of the industry

supply curve. The significant increase in electricity prices is expected because demand is

very inelastic.33 Interestingly, firms benefit from the introduction of CO2 targets with their

profits increasing from $191 to $254 billion.

For our third scenario, we assume a single CO2 market and optimal investment (2F-SIN).

We now see a notable increase in BAT capacity by 2030 to 19,000 MW accounting for

approximately 20% of the electricity generation. Relative to the scenario without investment

and a single CO2 market, damages from emissions increase by 11% to $110 billion echoing the

concern that exempting new capacity from the CO2 targets may lead to leakage because of

a shift in production from regulated sources to unregulated ones. Nevertheless, total welfare

increases by about 5% to $1,130 billion.

The final scenario pertains to optimal investment with separate CO2 markets (2F-SEP),

which leads to an increase in BAT capacity by about 5% to 20,400 MW relative to the

33Note that we underestimate the decrease in consumer surplus and the increase in profits because we use
impose an upper bound of $50 on the permit prices.
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scenario with optimal investment and a single CO2 market. The increase is sufficient to

imply total welfare that exceed its counterpart for the scenario with a single CO2 market by

$1 billion. Damages from emissions decrease by $2 billion and, hence, any leakage-related

concerns are not warranted.

6.3.2 Industry Profit versus Total Surplus Maximizing Investment

Two scenarios in this section pertain to a single-firm profit-maximizing investment aiming

to capture the case of the highest concentration in investment. In the first scenario, we

have a single CO2 market (1F-SIN). In the second scenario, we have separate CO2 markets

(1F-SEP). In the third scenario, a single agent chooses investment to maximize total surplus,

that is the sum of consumer surplus and firm profit. This is what we term the competitive

investment scenario (COMP) and the resulting equilibrium is equivalent to the solution of

the social planner’s problem in Bushnell et al. (2017b).

For the scenario with separate CO2 markets (1F-SEP), BAT capacity in 2030 is essentially at

the levels of BAT capacity for the two-firm scenario (2F-SEP). In contrast, BAT capacity in

2030 is only 16,000 MW for the scenario with a single CO2 market (1F-SIN). Moreover, the

evolution of BAT capacity for the single-firm scenarios is much different than the evolution

of its counterpart for the two-firm scenarios. Unlike the two-firm scenarios, where we see

an immediate increase in BAT capacity at its 2030 level as early as 2013, the growth of

the BAT capacity is more gradual and essentially starts in 2022, when the CO2 targets are

introduced, in the single-firm scenario.

Panel (a) of Figure 13 shows the share of BAT capacity in electricity generation for our main

optimal-investment scenarios during 2012–2030. In the case of competitive investment, the

share of generation from BAT capacity is much higher and begins earlier. By 2015, the BAT

share rises to more than 40% reaching 55% by 2030. For the scenario with two firms and

separate CO2 markets (2F-SEP), generation from BAT capacity accounts for about 25% of

total generation in 2013 and declines steadily to around 20% by 2030.

Panel (b) of Figure 13 shows the BAT capacity of the leader and the follower for the two

alternative scenarios regarding the CO2 markets. Because of the sequential nature of the

investment game between the two firms, the leader immediately invests on the steady state

level of BAT capacity to deter investment from the follower. The follower invests zero in

BAT capacity in both scenarios. This strategy allows the leader to take the lion’s share of

industry profits, as can be seen from Panel (c) of Figure 13. If firms can instead coordinate

investment, then it will be optimal to delay investment until 2022, and gradually invest
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afterwards.

Panel (d) of Figure 13 graphs the time series of the wholesale electricity prices. As ex-

pected, electricity prices tend to be higher with separate markets than with a single market,

although the gap is not that large due to higher investment in the former. Surprisingly,

electricity prices are actually lower with separate markets in the scenario with a single

profit-maximizing firm. In the presence of separate CO2 markets, the targets for emissions

become more stringent making investment more attractive. The stronger incentive to invest

under a more stringent regulatory environment compensates for the inherent inefficiency

with separate markets.

When maximizing industry profit, total welfare is $1,116 billion with separate CO2 markets

(1F-SEP) and exceeds its counterpart with a single CO2 market (1F-SIN) by $10 billion.

In fact, both consumer surplus ($952 billion) and profits ($266 billion) are also higher in

the 1F-SEP scenario compared to the 1F-SIN scenario by $8 and $3 billion, respectively.

Actually, the 1F-SIN scenario is superior to the 1F-SEP scenario only in terms of damages

from emissions and by a small margin—$101 billion as opposed to $102 billion.

It may seem surprising that settings with an “inherent” inefficiency–absence of a single

market for correcting the externality–yield higher total welfare. The scenarios with separate

CO2 markets yield higher welfare because they are more effective in correcting a second

distortion. This second distortion is associated with the incentive to invest. In particular,

profit-maximizing strategic firms take into account the effect of investment on price. Given

that an increase in investment leads to a decrease in price, firms have a strong incentive

to withhold investment. The incentive to withhold investment is particularly strong for the

single-firm scenarios.

To assess the incentives to withhold investment, we focus on BAT capacity in the competitive-

investment scenario (COMP). BAT capacity in 2030 is 56,000 MW and accounts for more

than half of all electricity generation. This amount of BAT capacity is more than double all

the scenarios with strategic investment, providing evidence of a strong motive to withhold

investment. With 56,000 MW of BAT capacity, the CO2 targets are non-binding even when

they are state-specific. Hence, the market outcomes with single and separate CO2 markets

are identical.34

Although welfare is highest in the competitive-investment scenario, damages from emissions

are also the highest at $143 billion exceeding their 2F-NOINV counterpart by 50%. They are

34Investment in a zero-profit scenario that we also analyzed is even higher compared to our competitive-
investment scenario. As a result, outcomes for single and separate markets are again identical since targets
are non-binding.
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also higher than the 2F-NOCO2 damages by $14 billion. The large damages from emissions

can be traced back to the large expansion of BAT capacity. Since generation associated

with BAT capacity is exempt from the CO2 targets, concerns about emissions leakage have

been raised in the discussion of regulating new capacity. The next subsection discusses

a particular policy proposed to address emissions leakage and argues that it can lead to

unintended consequences.

6.3.3 Emissions Leakage and the Regulation of New Capacity

In the context of the Clean Power Plan, states can voluntarily include emissions from new

capacity in their CO2 targets to address leakage. To accommodate new capacity in the

CO2 targets, the EPA provides an additional emissions budget, the New Source Complements

(NSCs) to Mass Goals under Section 111(d) of the Clean Air Act, which implies an upward

adjustment to the targets.35

To understand the implications of policies to address leakage, we simulate a single-firm

optimal investment scenario by taking the equilibrium CO2 prices from the scenario with

industry-profit maximizing and a single CO2 market (1F-SIN), but not exempting emissions

from BAT capacity from CO2 prices. Given that this approach is equivalent to adjusting

the CO2 targets, we use the term NSC to refer to this scenario. Table 9 shows that NSC

investment is practically zero, which lowers welfare by a significant amount relative the

1F-SIN scenario.

Our results point to an alarming unintended consequence of policies like the NSCs that are

based on projected demand growth—that is, on anticipated investment—and not on actual

investment. As Adair and Hoppock (2015) point out, if firms do not invest in new capacity ex

post, the NSCs effectively reduce the stringency of the regulation by increasing the emissions

budget. An important issue arises due to a one-sided commitment problem: the regulators

commit to targets that accommodate new capacity without firms’ commitment to build this

new capacity. Once the new targets are set and fixed, incentives to invest decrease and it is

in the firms’ interest not to invest in the first place.

35The EPA has developed a methodology for quantifying these NSCs that may be summarized as follows.
The EPA first calculates the incremental generation needed for each interconnection (Eastern, Western,
Texas) to satisfy projected growth in demand from 2012 levels. Following a series of adjustments, the
EPA apportions the remaining incremental generation to states on the basis of each state’s 2012 share
of the interconnection’s total generation. Finally, the EPA converts state-level generation to state-level
emissions using a predetermined rate (lbs/Mwh). For a more detailed discussion of the NSCs, we refer
the interested reader to the Technical Support Documentation https://www.epa.gov/sites/production/

files/2015-11/documents/tsd-cpp-new-source-complements.pdf.
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More generally, the one-sided commitment problem provides a rationale for the differential

regulatory treatment of new capacity relative to existing capacity, as embedded in the design

of the Clean Air Act (Sections 111(b) and (d)). To solve the commitment problem, the

regulator has to condition the additional emissions budget allocation on investment actually

materializing and this new capacity being used. But this means that there will be a separate

accounting of emissions from new sources versus from existing ones, which would necessitate

different CO2 prices for new and existing sources.

7 Conclusion

In this paper, we show that separate markets for an environmental externality, which may

emerge due to lack of policy coordination across jurisdictions, yield almost the same outcomes

as a single market that emerges if coordination is possible. The main driving force behind our

findings is investment when firms participate in a single integrated product market, which

mitigates some of the inefficiencies associated with separate markets for the externality.

We set up and estimate a dynamic structural model of production and investment for the

largest wholesale electricity market in the world, the Pennsylvania-New Jersey-Maryland

(PJM) Interconnection. There are targets for carbon dioxide (CO2) emissions associated

with electricity generation achieved via a market for emission permits with two different

implementation regimes. With regional implementation, there is a single CO2 market. With

state-by-state implementation, there are separate CO2 markets, one for each of the states

participating in PJM.

Our model preserves the rich plant-level cost heterogeneity in the data while being tractable

enough to evaluate market outcomes across the two implementation regimes. We achieve

tractability by assuming that market participants invest in the best available technology

(BAT) at the time of the investment, which is consistent with the current interpretation of

the Clean Air Act. In our setup, CO2 emissions from BAT capacity are exempt from the

targets. As a result, the location of firms’ investment is irrelevant—only the total amount of

investment matters. In a different paper, we relax this assumption and explore the geographic

dimension of the firm’s investment choices.

Given the recent developments in U.S. environmental policy, at the time we write the paper,

the future of federal regulations aiming to curb CO2 emissions is unclear. Therefore, an

interesting question which can be answered using our framework is whether states have

unilateral incentives to adopt emission restrictions in the absence of any federal mandate.
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The potential benefit of doing so would be to incentivize investment in more efficient capacity,

which would bring production into states that adopt those restrictions. It is also important

to emphasize the potential benefits for consumers in states that do not adopt any emissions

regulations since more efficienct capacity may decrease electricity prices for the whole region.
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8 Tables

Table 1: Capacity by source

year coal gas nuclear oil hydro solid waste wind total

2005 67.8 45.0 31.2 11.8 7.0 0.5 163.5

2006 66.5 47.0 30.0 10.7 7.1 0.6 162.1

2007 66.2 47.6 30.9 10.6 7.4 0.7 0.2 163.5

2008 66.9 48.1 30.4 10.7 7.4 0.7 0.3 164.3

2009 68.1 48.9 30.8 10.7 7.9 0.7 0.7 167.3

2010 67.9 48.5 30.5 10.2 8.0 0.7 0.7 166.5

2011 75.1 50.6 32.6 11.3 8.0 0.7 0.7 178.8

2012 76.1 52.0 32.9 11.5 7.8 0.7 0.7 182.0

(a) MW (thousands)

year coal gas nuclear oil hydro solid waste wind total

2005 41.5 27.5 19.1 7.2 4.3 0.3 100

2006 41.0 29.0 18.5 6.6 4.4 0.4 100

2007 40.5 29.1 18.9 6.5 4.5 0.4 0.1 100

2008 40.7 29.3 18.5 6.5 4.5 0.4 0.2 100

2009 40.7 29.2 18.4 6.4 4.7 0.4 0.4 100

2010 40.8 29.1 18.3 6.1 4.8 0.4 0.4 100

2011 42.0 28.3 18.2 6.3 4.5 0.4 0.4 100

2012 41.8 28.6 18.1 6.3 4.3 0.4 0.4 100

(b) MW (%)

Note: based on PJM state of the market reports available at http://www.monitoringanalytics.
com/reports/PJM_State_of_the_Market/2018.shtml. For additional details, see Section 2.1.
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Table 2: Clean Power Plan mass-based targets (million short tons)

state 2022 2023 2024 2025 2026 2027 2028 2029 2030

DE 5.524 5.355 5.166 5.072 4.971 4.846 4.806 4.762 4.712

IL 32.087 30.907 29.371 28.737 28.050 27.224 26.686 26.102 25.458

IN 30.510 29.389 27.931 27.328 26.676 25.892 25.382 24.829 24.218

KY 14.327 13.793 13.091 12.805 12.494 12.122 11.871 11.598 11.297

MD 18.197 17.518 16.626 16.263 15.869 15.396 15.076 14.730 14.348

NC 1.333 1.286 1.227 1.201 1.174 1.140 1.121 1.101 1.078

NJ 16.678 16.222 15.778 15.519 15.241 14.892 14.858 14.819 14.766

OH 92.147 88.825 84.565 82.775 80.838 78.501 77.061 75.499 73.770

PA 110.196 106.388 101.664 99.598 97.364 94.653 93.188 91.596 89.822

VA 32.341 31.334 30.195 29.638 29.038 28.297 28.040 27.757 27.433

WV 65.266 62.818 59.587 58.277 56.857 55.154 53.986 52.720 51.325

Note: The mass-based targets reported in this table are based on the supporting data file for
CPP compliance from PJM (2016) and are based on electric generating units in the PJM footprint
for each state noting that PJM covers only parts of IL, IN, KY, and NC. The rate-based targets
reported in panel (b) are from the Appendix 5-State Goals sheet in CPP State Goal Visualizer
spreadsheet. A detailed spreadsheet with the calculation of the mass-based targets was provided
to the authors by PJM.
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Table 3: Clean Power Plan baseline generation for 2012

MWh (thousands) MWh (percent)

state coal gas oil total coal gas oil total

DE 1,413 6,672 1,079 9,164 15.41 72.81 11.77 100

IL 84,488 10,001 0 94,489 89.42 10.58 0.00 100

IN 96,335 12,839 3 109,178 88.24 11.76 0.00 100

KY 84,364 3,092 0 87,456 96.46 3.54 0.00 100

MD 16,298 677 2,892 19,867 82.04 3.41 14.56 100

NC 54,920 25,520 0 80,440 68.27 31.73 0.00 100

NJ 2,603 33,665 173 36,440 7.14 92.38 0.47 100

OH 86,345 23,687 384 110,416 78.20 21.45 0.35 100

PA 87,055 57,420 1,662 146,137 59.57 39.29 1.14 100

VA 15,671 36,292 344 52,307 29.96 69.38 0.66 100

WV 70,078 0 0 70,078 100.00 0.00 0.00 100

Note: The numbers in this table are based on existing and under-construction electric generating
units in the PJM footprint for each state in 2012 noting that PJM covers only parts of IL, IN, KY,
and NC. For units under construction, the baseline generation is calculated as capacity factor ×
8, 760 × summer capacity with a capacity factor of 0.60 for coal- and 0.55 for gas-fired units. A
detailed spreadsheet with the unit-level baseline generation was provided to the authors by PJM.

Table 4: List of strategic firms

Abbreviation Full Name

AEP American Electric Power

AES Applied Energy Services

DOM Dominion

DUKE Duke

EXE Exelon

FE First Energy

GEN Genon

NRG NRG

PPL Pennsylvania Power and Light

PSEG Public Service Enterprise Group
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Table 5: Fringe supply

(1) (2) (3) (4)

Variable Log Level Sq. Root Cb. Root

Price 4,485.9443*** 99.5049*** 1,432.4503*** 4,035.5585***

(1,274.8795) (34.6896) (419.2847) (1,127.8839)

CDD -97.4268 -124.8973 -124.4694 -118.9736

(137.1025) (162.0668) (150.4534) (145.9993)

CDD Sq. 11.1935 9.9947 10.3957 10.6223

(6.8215) (7.7162) (7.2300) (7.0770)

HDD 14.7302 52.9018 45.2620 37.9005

(61.2242) (87.4259) (74.2798) (69.3752)

HDD Sq. -0.9712 -2.0324 -1.8877 -1.6781

(1.6612) (2.5088) (2.0611) (1.8983)

Constant -2,465.7182 2,689.1103*** 534.2531 -1,398.0739

(1,762.4441) (682.6402) (1,054.6609) (1,489.6102)

Observations 119 119 119 119

R-squared 0.7979 0.7487 0.7694 0.7783

Year FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Note: The table presents two-stage least squares coefficients estimates for various functional form
specifications of price using monthly data for 2003–2012. In all 4 specifications, the dependent
variable, fringe supply, is in levels, and we include year and month (seasonal) fixed effects. We
use CDD (HDD) to refer to cooling (heating) degree days. The results reported in the paper are
based on the log specification reported in column (1). Standard errors in parentheses are corrected
for heteroskedasticity. The asterisks denote statistical significance as follows: 1% (***), 5%(**),
10%(*).
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Table 6: Target policy equation

(1) (2)

Variable coal gas

Entry 1,070.1457*** 442.6195***

(335.6758) (101.1281)

Capacity own 0.9547*** 1.0184***

(0.1292) (0.0832)

Capacity rival -0.0057 -0.0090

(0.0104) (0.0100)

Price coal -361.3379** 161.7350

(157.0343) (183.6855)

Price gas 225.2231* 8.1209

(118.0989) (18.8208)

Permit price SO2 -444.6747** -118.9773*

(222.5244) (71.4921)

Permit price NOx -1,940.8544* 370.9387

(1,158.7378) (558.2496)

Observations 169 280

R-squared 0.4571 0.6714

Note: The estimates are based on annual operator-level data for 2003–2012. Standard
errors in parentheses are corrected for heteroskedasticity. The asterisks denote statistical
significance as follows: 1% (***), 5%(**), 10%(*).
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Table 7: Cost per MW of gas-fired capacity ($/MW)

Fuel est. s.e.

gas 1,063,551 32,345

Note: The reported standard error is calculated resampling moment inequalities and ignores
any 1st-stage estimation error.

Table 8: Investment in gas-fired capacity

Company Size (MW) Counts

AEP 0.000 0

AES 2.398 12

DOM 0.000 0

DUK 0.000 0

EXE 2.843 15

FE 1.704 7

GEN 0.573 2

NRG 2.552 12

PPL 0.852 3

PSEG 0.000 0

TOTAL 10.921 51

Note: The numbers reported are for 2013–2062. A company is assumed to invest once a
year. For example, AES invested 12 times during 2013–2062.
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Table 9: Summary of outcomes for alternative investment scenarios

Scenario

2030 BAT Consumer Firm Emissions Total

Capacity Surplus Profit Damages Welfare

MW $ billion $ billion $ billion $ billion

2F-NOCO2 1,500 1,023.4 191.4 128.8 1,086.0

2F-NOINV 0 921.7 253.5 99.0 1,076.3

2F-SIN 19,150 1,016.1 224.2 110.0 1,130.4

2F-SEP 20,400 994.4 244.0 107.5 1,130.9

1F-SIN 16,450 944.1 263.3 101.0 1,106.4

1F-SEP 20,350 951.6 266.0 101.5 1,116.1

COMP 56,315 1,183.9 99.2 142.7 1,140.4

NSC 100 925.3 251.3 99.1 1,077.5

Note: BAT refers to best available technology. Total welfare equals consumer surplus plus
firm profit minus environmental damages calculated using social cost of carbon ($37/metric
ton) plus revenues from the CO2 market(s). The present discounted values in the 4 rightmost
columns are calculated using a discount factor of 0.90 and assuming that the 2030 values
correspond to the steady state values. A brief description of the scenario abbreviations is
available in Table 10.

Table 10: Description of alternative investment scenarios

Abbreviation Description

2F-NOCO2 Two-firm investment game, without CO2 markets

2F-NOINV Two-firm investment game, single CO2 market and no investment

2F-SIN Two-firm investment game, single CO2 market

2F-SEP Two-firm investment game, separate CO2 markets

1F-SIN Single-firm investment, a single CO2 market

1F-SEP Single-firm investment, a separate CO2 markets

COMP Competitive investment, single CO2 market

NSC Single-firm investment, single CO2 market & New Source Complements

Note: the table provides a brief description of the alternative investment scenarios discussed
in detail in Section 6.
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9 Figures

Figure 1: Area covered by the Pennsylvania-Jersey-Maryland (PJM) Interconnection

 

 

 

Source: http://ieefa.org/pjms-reform/ 

Source: http://ieefa.org/pjms-reform/
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Figure 2: Electricity and fuel prices (2003–2012)
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Note: The electricity prices are monthly load-weighted system-wide real-time prices from PJM.
The coal and gas prices are from EIA. In panel (b), we plot the gas share of coal plus gas net
generation for power plants in PJM using data from EIA.
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Figure 3: Investment incentives under alternative policy implementation scenarios

𝑀𝑊

$/𝑀𝑊ℎ

20

10

30

21

𝐷𝑒𝑚𝑎𝑛𝑑

𝑆𝑢𝑝𝑝𝑙𝑦

𝐷𝑒𝑚𝑎𝑛𝑑

𝑆𝑢𝑝𝑝𝑙𝑦

3

$/𝑀𝑊ℎ

40

4 𝑀𝑊

25

15

35

45

20

10

30

40

25

15

35

45

21 3 4

(a) No implementation: without investment (left) and with investment (right)

𝑀𝑊21 3 4 𝑀𝑊21 3 4

$/𝑀𝑊ℎ

20

10

30

40

25

15

35

45

$/𝑀𝑊ℎ

20

10

30

40

25

15

35

45

𝐷𝑒𝑚𝑎𝑛𝑑 𝐷𝑒𝑚𝑎𝑛𝑑

𝑆𝑢𝑝𝑝𝑙𝑦 𝑆𝑢𝑝𝑝𝑙𝑦

(b) Regional: without investment (left) and with investment (right)

𝑀𝑊21 3 4 𝑀𝑊21 3 4

$/𝑀𝑊ℎ

20

10

30

40

25

15

35

45

$/𝑀𝑊ℎ

20

10

30

40

25

15

35

45

𝐷𝑒𝑚𝑎𝑛𝑑 𝐷𝑒𝑚𝑎𝑛𝑑

𝑆𝑢𝑝𝑝𝑙𝑦 𝑆𝑢𝑝𝑝𝑙𝑦

(c) State-by-state: without investment (left) and with investment (right)
48



Figure 4: Overview of the model timing
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Figure 5: Merit order and best available technology
Figure 2: Merit Order
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Figure 3: Best available technology
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Note: The step function Ct (black solid line) indicates the marginal cost curve prior to
investment at time t. The step function Ct+1 (gray dashed line) indicates the marginal cost
curve following a hypothetical investment of 400 MW in best available technology with a
cost of $10/MWh. The vertical distance between the two curves at their origin shows the
improvement in marginal costs between the available technology at time t and time t + 1.

3

(b) best available technology

Note: In panel (a), the step function emerges by ordering available sources to serve demand
in terms of their marginal costs. The sources with the lowest (highest) costs are ordered
first (last). In panel (b), The step function Ct (black solid line) indicates the marginal cost
curve prior to investment at time t. The step function Ct+1 (gray dashed line) indicates
the marginal cost curve following a hypothetical investment of 400 MW in best available
technology with a cost of $10/MWh. The vertical distance between the two curves at their
origin shows the improvement in marginal costs between the available technology at time t
and time t+ 1.
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Figure 6: Merit order invariance with inframarginal unitsFigure 4: Merit order invariance with inframarginal units
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Figure 7: Paths of exogenous variables, 2013–2062
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Figure 8: BAT Investment in gas-fired capacity, 2013–2062
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Note: BAT refers to best available technology. The figure shows only years for which there is
investment. We divide firms in two groups and report their investment levels in two panels so that
the figure is more legible. In the 1st group, and consistent with the entries of Table 8, only Applied
Energy Services (AES) and Exelon (EXE) invest.
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Figure 9: Paths of endogenous variables, 2013–2062
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Figure 10: Electricity prices implied by the model compared to NYMEX futures

30

35

40

45

50

55

$/
M

W
h

2016-04 2017-01 2018-01 2019-01 2019-12

Model NYMEX Futures

Figure 11: Regional CPP mass-based targets
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Note: The mass-based target in this figure is based on the supporting data file for CPP compliance
from PJM (2016) and are based on electric generating units in the PJM footprint for each state
noting that PJM covers only parts of IL, IN, KY, and NC. We plot the sum of state mass-based
targets from panel (a) of Table 2.
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Figure 12: Electricity generation cost for the exogenous investment scenario
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Figure 13: Market outcomes for optimal investment scenarios I
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Note: Table 10 provides a brief description of the alternative investment scenarios discussed in
detail in Section 6. BAT refers to best available technology.
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A.1 Data

Our empirical analyses require us to track the expansion of the PJM footprint over time due

to zone additions. We identified the additions using publicly available data on estimated

hourly load by region in the PJM Markets & Operation website, as well as reviewing the

PJM State-of-The-Market (SOM) Reports from Monitoring Analytics; the reports are also

publicly available.36

We identified firms using the operator and owner fields in the EIA-860 data, which we

complemented with information from the Edison Electric Institute (EEI), the companies’

websites and annual reports, and the SNL merger database.37 We identified plants in the

PJM footprint using the approach in Knittel et al. (2015).

Monthly plant-level fuel prices are available from EIA-423, FERC-423, and EIA-923. We also

obtained access to confidential data for non-utility plants. Generation and fuel consumption

data are from EIA-906/920 and EIA-923 beginning in 2008.38 The annual data on plant

operating expenses are from SNL.39

Annual plant-level capacities are from EIA-860. The capacities in EIA-860 are recorded at

the electric generating unit level and a power plant may have several units. When needed,

we sum the capacities of all units that belong to the same plant. We use the primary energy

source for each unit to calculate coal- and gas-fired capacities.40 We account for intermittency

of renewables by using the capacity factors from Table 6.7.B from the EIA Electric Power

Monthly for December 2014, averaged for the period 2008 through 2013. These factors are

highly comparable to the ones we identified in PJM reports regarding resource adequacy

planning.

36See http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx and http:

//www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2015.shtml. Major zone addi-
tions took place in 2004 and 2005 when Comed, Dayton, American Electric Power, Duquense, and Dominion
joined PJM. The next major additions were in 2011 and 2012, when American Transmission Systems (First
Energy) and Duke Energy Ohio & Kentucky joined PJM. The latest addition was East Kentucky Power
Cooperative in 2013.

37See http://www.eei.org/about/members/uselectriccompanies/Pages/usmembercolinks.aspx for
the U.S. Member Company links of EEI. Note that we have also taken into account mergers that took
place during the period that is relevant for our analysis (e.g., the Mirant/RRI merger to form GenOn
Energy in Dec-2010, and the NRG Energy/GenOn Energy merger in Dec-2012.

38See http://www.eia.gov/electricity/data/eia423/ and http://www.eia.gov/electricity/

data/eia923/.
39It is the field Unit Non-Fuel O&M reported under the Whole Plant Operating Annual-Operating Ex-

penses in the Power Plants database.
40 See http://www.eia.gov/electricity/data/eia860/. The total generating capacity for PJM calcu-

lated using these data is within 5% of the generating capacity reported in PJM State-of-the-Market Reports
for 2003–2012.
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System-wide real-time metered load data as consumed by the service territories and loca-

tional marginal prices are available from the PJM website. The data are available at an

hourly frequency. In the case of load, we use total load during a month. In the case of

prices, we calculate a monthly load-weighted average. We calculate net imports using data

on real-time scheduled interchange from PJM for the late part of the analysis.41

The SO2 and seasonal NOx permit prices are from Evolution Markets, a permit brokerage

firm we identified from the EPA website.42 The Weather used in the estimation of the fringe

supply equations are from the National Oceanic and Atmospheric Administration (NOAA).43

A.2 Descriptive Statistics

Tables A1 and A2 provide information regarding the number of plants, generation, and

capacity that the strategic firms account for between 2003 and 2012. The number of plants

for the strategic firms increased from 47 in 2003 to 109 in 2012. We also see an increase in

the number for both coal- and gas-fired units. In the former case, we see an increase from

55 to 135 units. In the latter case, we see an increase from 107 to 262 units. The strategic

firms’ share of coal-fired (gas-fired) capacity increased (decreased) from 71% (58%) in 2003

to 82.5% (50%) in 2012. We see a similar pattern in the strategic firms’ share of coal- and

gas-fired generation: an increase from 74% to 88% and a decrease from 61% to 55%.

Summary statistics related to the cost functions for each of the strategic firms in our model

for 2012 are available in Table A3. We report summary statistics for 2012 given that this is

the year that is relevant for the estimation of our structural model using monthly unit-level

observations noting that a power plant may have more than one electric generating unit.44

A casual look at the table shows substantial variation both across and within firms, which

we preserve when we estimate our dynamic model.

In Table A4, we show the coal- and gas-fired capacity for each of the 10 strategic firms

for 2003–2012. Several patterns emerge that offer support for our modeling assumptions.

41See http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-data.aspx

and http://www.pjm.com/markets-and-operations/energy/real-time/lmp.aspx, for the load and
price data, respectively. See http://www.pjm.com/markets-and-operations/ops-analysis/nts.aspx

for net tie schedule (NTS) data. Erin Mansur generously provided us all NTS data for 1999–2010 with the
exception of 2007–2009, which we are missing. We impute values for each month in this 3-year period using
the average of 2006 and 2010. For example, we use the average of Jul-2006 and Jul-2010 to construct the
monthly value for Jul-2007.

42See http://www.evomarkets.com/environment/emissions_markets.
43See http://www.ncdc.noaa.gov/cdo-web/search/#t=secondTabLink
44The all-inclusive cost of 1 MWh of electricity (cost) exhibit variation by unit and month. The fuel prices

exhibit variation by plant and month. The VOM costs and heat rates exhibit variation by plant only.
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Investment is lumpy and, in general, we see more action in gas-fired capacity than in coal-

fired capacity. Capacity changes take place only in a subset of years for each of the strategic

firms, and they account for a notable fraction of existing capacity. For example, AEP

increased its coal-fired capacity from around 15,300 MW in 2006 to 21,000 MW in 2007, an

increase of approximately 37%. AEP also increased its gas-fired capacity from 1,700 MW in

2006 to 3,237 MW in 2012. As another example, the gas-fired capacity of Genon increased

from 1,919 MW in 2008 to 2,839 in 2009. Moreover, the generation portfolio differs across

firms. AEP dominates coal followed by First Energy and Genon. The three companies

account, on average, for 29%, 23%, and 14% of the coal-fired capacity in each year between

2003 and 2012. PSEG, Dominion, and AES, dominate gas accounting for 26%, 23%, and

12% of the capacity, on average, during the same 10-year window.

A.3 Endogenous State Variables

In Figure A1, we first show time-series plots of coal and gas capacity in panels (a) and (b).

Given the absence in investment, coal capacity exhibits no variation with AEP accounting for

about 1/3 of the approximately 52,000 MW of coal-fired capacity, followed by First Energy

and Genon, each accounting for around 15%. Dominion accounts for 10%, while the share

of the remaining firms is below 10%. In the case of gas, Dominion, PSEG, AEP, and Duke

control most of the capacity despite the lack of investment. Genon invests for the first time

in 2013 and then again in 2056. PPL also invests in 2013 for the first time and then again

in 2050. AES, Exelon, First Energy, and NRG invest at various points in time during the

50-year period and their combined share of gas capacity increases from 24% in 2013 to 35%

in 2062.

Due to lack of investment, there is no improvement in the heat rate of coal-fired capacity,

with NRG and PSEG being clear outliers with heat rates exceeding 11.5 MMBtu/MWh

(panel (c)). Both heat rates are almost 15% higher than the lowest heat rate of 10.1 that

we see for First Energy and PPL. In the case of gas, as expected, we see no improvement in

heat rates for AEP, Dominion, Duke, and PSEG due to lack of investment (panel (d)). The

firms that invest, however, enjoy a significant improvement in their heat rates.

In Figure A2, we first provide the time-series plots of coal and gas generation in panels

(a) and (b), respectively. Dominion, one of the two firms with the largest amounts of gas-

fired generation, after experiencing a decrease of 25 million MWh between 2013 and 2032,

recovered reaching 49 million MWh by 2062. For PSEG, which is the next largest player

in gas-fired generation, the recovery after the significant decrease of 14 million MWh early
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in the sample, the recovery is not as strong as that for Dominion. The remaining firms

all generally experience an increase in gas-fired generation. Duke barely had any gas-fired

generation up until 2030, but it reaches 25 million MWh by 2062.

AEP is leading coal-fired generation with more than 100 million MWh of coal-fired capacity

in every year between 2014 and 2062 reaching 140 million MWh by the end of the 50-year

window. Genon, the second largest player in coal-fired generation, experiences a significant

increase in coal-fired generation from 16 million MWh in 2013 to 60 million MWh in 2062.

We also see an increase in coal-fired generation for Dominion, Duke, and PPL.

Duke enjoys the highest profits among all strategic firms during the entire 50-year period in

panel (c). Duke also enjoys the lowest costs followed by Dominion with the remaining firms

experiencing higher costs during the entire period. In the case of Duke, low costs explain

the large profits. AEP’s large profits are driven by its large volume of coal-fired generation,

while those for Dominion by its large volume of gas-fired generation.

A.4 Investment Cost Heterogeneity

We now present in more detail the estimation routine for the investment cost parameters

and, in particular, we explain how the procedure allows for heterogeneity that follows a

distribution for which we estimate the first moment and remain agnostic about the second

moment. Noting that we assume linear investment costs and we focus on investment in

gas-fired capacity only, the marginal cost of investment exhibits variation across firms and

time:

Γjt = γjt × ingjt , (A1)

where γjt = γ + νjt with νjt being a privately known shock that is IID across firms and time

and follows the common distribution Gν(0, σ
2
ν). Given that firm i does not know the draw

of its marginal cost of investment in the beginning of period t when investment decisions are

made, the per-period payoff function is given by:

Eνjt [πjt] = πjt − Eνjt
(
γjti

ng
jt

)
= πjt − Eνjt (γjt)Eνjt

(
ingjt
)
− Cov

(
γjt, i

ng
jt

)
= πjt − γEνjt

(
ingjt
)
− Cov

(
γjt, i

ng
jt

)
(A2)

For estimation, we consider additive positive and negative perturbations of the form ĩngjt =

ingjt +χ, where χ is a constant that is positive for the former and negative for the latter, such

61



that the implied perturbed value function for firm j is given by:

Eνjt [π̃jt] = πjt − γEνjt
(̃
ingjt

)
− Cov

(
γjt, ĩ

ng
jt

)
= πjt − γ

(
Eνjt

(
ingjt
)

+ χ
)
− Cov

(
γjt, i

ng
jt

)
. (A3)

The last equality follows from the fact that Cov
(
γjt, i

ng
jt + χ

)
= Cov

(
γjt, i

ng
jt

)
. Importantly,

the moment condition, which will use the average difference between the value function based

on (A2) and the value function based on (A3) across perturbations, is not a function of the

covariance term as it cancels out once we calculate the difference. Therefore, the additive

perturbations allow us to infer the first moment of the heterogeneity in investment costs but

not the second.

A.5 Emissions Market Clearing Algorithm

With regional CPP implementation, two markets have to clear simultaneously: (i) the whole-

sale market for electricity and (ii) the region-wide CO2 market. The need to look for a joint

solution to both markets arises due to the complementary nature of electricity output and

CO2 emissions. A change in the CO2 price affects the relative cost of the different fuels. This

in turn changes the relative position of each plant in the merit order of the aggregate elec-

tricity supply and, therefore, impacts the equilibrium in that market. With state-by-state

CPP implementation, there are 11 CO2 markets and 11 different CO2 prices. We now have

to clear these 11 markets together with the PJM wholesale market simultaneously.

Let qist denote the electricity output of source i located in state s at time t. In addition,

HRist is the associated heat rate and rist is the CO2 emission rate. The mass-based target

of CO2 emissions for state s is Est. Finally, let S denote the set of the 11 PJM states.

With regional implementation, the equilibrium carbon price is the solution to the following

problem:

PC
t = min{P :

∑
s∈S

∑
i∈s

(qist(P )×HRist × rist) ≤
∑
s

Est}. (A4)

With state-by-state implementation, the solution is given by the following vector of CO2 prices:

PC
t = min{P :

∑
i∈s

(qist(P)×HRist × rist) ≤ Est} ∀s ∈ S. (A5)

With state-by state implementation, the algorithm to solve the minimization problem is the
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following:

• Step 1: start with zero CO2 prices for all states and compute the PJM wholesale

market equilibrium.

• Step 2: If at least one state has excess emissions, proceed to Step 3; otherwise, end.

• Step 3: Increase the CO2 price of the state that has the most excess emissions by $1

per short ton.

• Step 4: Compute PJM wholesale equilibrium and check for excess emissions.

With regional implementation, we treat the entire PJM area as a single state and the algo-

rithm works in the same way.
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Table A1: Number of plants and units by firm type

year
plants coal units gas units

non-strategic strategic non-strategic strategic non-strategic strategic

2003 73 47 53 55 109 107

2004 108 95 96 142 186 170

2005 149 107 138 160 265 186

2006 133 118 109 182 236 215

2007 118 107 71 149 229 229

2008 119 113 71 150 229 255

2009 119 114 70 153 231 262

2010 130 107 86 133 252 265

2011 139 114 81 153 300 251

2012 156 109 85 135 334 262
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Table A2: Capacity and generation by firm type

all firms strategic firms

year
capacity generation capacity generation

coal gas coal gas coal % gas % coal % gas %

2003 17.56 9.26 260.23 34.27 70.82 58.30 73.91 60.86

2004 39.70 17.00 665.24 86.06 73.58 53.93 75.81 66.97

2005 44.68 18.70 770.62 98.06 71.35 49.89 74.32 48.64

2006 44.52 19.22 759.45 105.72 83.32 57.16 87.17 54.88

2007 36.24 19.21 598.49 131.15 86.62 55.72 89.90 64.22

2008 36.20 19.83 561.91 131.69 87.95 57.17 90.70 64.45

2009 37.26 20.71 495.95 163.65 88.27 57.09 91.33 63.43

2010 32.00 22.08 437.03 215.74 83.04 55.74 87.47 60.51

2011 38.07 24.08 459.13 265.00 85.00 49.41 90.75 55.57

2012 40.40 25.87 422.97 344.02 82.50 49.56 87.79 55.17

Note: capacity in thousand MW and generation in million MWh. The 4 rightmost columns of the
table show the percentage of capacity and generation by fuel type that strategic firms account for.
For example, strategic firms account for 70% of coal capacity and 61% of gas generation in 2003.

65



Table A3: Summary statistics for strategic firms

firm obs units
cost fuel price VOM heat rate

mean s.d. mean s.d. mean s.d. mean s.d.

AEP 468 39 42.63 15.51 2.88 0.08 14.61 14.15 10.17 0.55

AES 168 14 36.12 3.26 3.34 0.08 10.27 1.67 10.16 0.89

DOM 276 23 68.10 22.67 3.58 0.17 35.33 18.29 10.22 0.39

DUK 108 9 51.16 1.06 2.52 0.11 26.30 0.00 10.36 0.23

FE 168 14 55.72 32.30 2.96 0.08 32.61 31.29 10.08 0.20

GEN 216 18 56.15 19.92 2.90 0.10 26.78 20.93 10.04 0.51

NRG 108 9 68.69 6.20 3.59 0.64 34.10 4.97 11.20 0.36

PPL 72 6 43.30 1.45 3.60 0.30 12.25 0.50 10.08 0.07

PSE 36 3 62.96 6.52 4.05 0.30 17.22 0.39 11.69 0.03

ALL 1620 135 50.03 22.28 3.04 0.34 22.68 21.33 10.16 0.49

(a) coal

firm obs units
cost fuel price VOM heat rate

mean s.d. mean s.d. mean s.d. mean s.d.

AEP 300 25 33.04 12.30 3.30 0.49 10.06 10.75 7.50 0.87

AES 180 15 78.83 37.66 5.18 1.51 11.82 0.00 13.00 0.47

DOM 576 48 49.09 25.48 4.07 0.75 19.83 21.77 8.14 1.45

DUK 264 22 49.93 7.28 2.91 0.52 30.88 0.00 7.36 0.53

EXE 96 8 69.07 7.15 4.11 0.49 9.65 0.00 14.45 0.00

FE 300 25 32.41 10.69 3.84 0.42 9.68 0.99 7.60 1.39

GEN 240 20 33.13 7.98 3.84 0.65 9.64 0.09 7.41 1.17

NRG 264 22 65.44 20.73 3.56 0.61 8.79 0.19 13.40 1.54

PPL 168 14 40.86 10.07 3.15 0.49 12.62 3.49 9.08 2.21

PSE 756 63 33.70 8.08 3.82 0.78 5.15 1.66 7.86 1.09

ALL 3144 262 40.19 15.73 3.55 0.78 14.77 14.03 7.81 1.28

(a) gas

Note: Cost refers to all-inclusive costs of producing 1 MWh of electricity ($/MWh). The fuel prices
are in $/MMBtu. The variable operations-and-maintenance (VOM) costs are in $/MWh. The heat
rate is in MMBtu/MWh. The mean and standard deviations reported are weighted by generation.
The statistics reported are based on data for the 10 strategic firms listed in the leftmost column.
An observation is an electric generating unit by month-of-sample combination in 2012.
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Table A4: Capacity of strategic firms (MW, thousands)

firm 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

AEP 0.000 15.583 15.299 15.299 20.096 20.096 20.096 11.669 20.096 19.439

AES 0.378 3.899 3.899 3.899 3.664 3.664 3.664 3.893 3.893 3.893

DOM 0.000 5.504 5.504 5.504 5.575 5.575 5.575 5.495 5.495 6.163

DUK 0.000 0.000 0.000 4.025 0.000 0.000 0.000 0.000 0.000 3.810

EXE 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.354 0.000

FE 7.462 12.635 17.781 17.781 9.901 9.901 9.901 9.901 9.901 9.340

GEN 3.198 3.712 3.719 9.353 8.321 8.906 9.672 8.558 9.938 8.648

NRG 5.022 5.022 5.040 1.296 1.278 1.278 1.278 1.278 1.278 1.278

PPL 3.513 3.513 3.496 3.496 3.183 3.183 3.200 3.200 3.200 3.200

PSE 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313 1.313

ALL 21.780 52.075 56.945 62.860 54.226 54.811 55.594 46.202 55.467 57.084

(a) coal

firm 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

AEP 0.000 0.000 1.700 1.700 3.237 3.237 3.237 3.237 3.237 3.915

AES 1.744 3.354 3.354 3.336 2.539 2.572 2.572 2.572 1.606 0.828

DOM 0.000 5.179 4.873 4.873 5.749 6.106 6.285 6.285 6.844 6.844

DUK 0.000 0.000 0.000 3.889 2.737 0.000 2.737 3.462 3.462 3.578

EXE 0.230 0.000 0.000 0.000 0.407 0.407 0.407 0.407 0.407 0.407

FE 1.355 1.756 2.225 2.552 1.825 1.852 1.834 1.834 1.834 1.719

GEN 0.876 0.326 0.326 1.564 1.919 1.919 2.839 2.839 2.839 2.839

NRG 0.087 0.060 0.144 0.100 0.000 0.841 0.951 0.951 0.951 0.951

PPL 0.000 0.000 0.000 0.000 0.550 0.644 0.644 0.639 0.099 2.577

PSE 4.786 5.445 4.524 5.710 5.710 5.710 5.710 5.710 5.255 5.574

ALL 9.077 16.121 17.146 23.724 24.672 23.286 27.214 27.934 26.532 29.232

(b) gas
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Table A5: PJM Real-Time Energy Market

year price load value

2003 $41.23 37,395 $13,506,131,646

2004 $44.34 49,963 $19,406,548,519

2005 $63.46 78,150 $43,444,335,240

2006 $53.35 79,471 $37,140,453,966

2007 $61.66 81,681 $44,119,306,030

2008 $71.13 79,515 $49,545,701,082

2009 $39.05 76,034 $26,009,558,652

2010 $48.35 79,611 $33,718,920,606

2011 $45.94 82,546 $33,219,349,982

2012 $35.23 87,011 $26,852,882,363

Note: The PJM real-time average hourly load (MWh) is from Table 2-30 of the PJM State of the
Market Report 2012 available at http://www.monitoringanalytics.com/reports/PJM_State_

of_the_Market/2018.shtml. The PJM real-time load-weighted average locational marginal price
(LMP) is from Table 2-38 of the same report. The entries in the rightmost column are based on
the authors’ calculation using value=8760×price×load.
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Figure A1: Paths of endogenous variables II, 2013–2062
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(c) coal heat rate
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(d) gas heat rate

Note: The heat rates are weighted averages using capacity as weight.
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Figure A2: Paths of endogenous variables III, 2013–2062
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Note: The profit from electricity sales exclude investment costs.
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Figure A3: Data and model predictions, 2003–2030
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(c) coal generation
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(d) gas generation
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(e) coal capacity
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(f) gas capacity

Note: the vertical line indicates the first year of model predictions (2013). BAT refers to best
available technology.
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