Who Cares More? Allocation with Diverse Preference Intensities

Pietro Ortoleva

Evgenii Safonov

Leeat Yariv

Common allocation problems:

Public housing Medical Appointments

School choice

Restaurant lines

Often:

Same Ordinal Pref

Different Intensity

No transfers

Common allocation problems:		
Public housing	Medical Appointments	
School choice	Restaurant lines	
Often:		
Same Ordinal Pref	Different Intensity	No transfers
Our Question		
What is optimal way for a social planner to allocate?		

Best incentive compatible mechanism?

With **observable** preferences intensities:

- · Generally: give best items to those who want them most
- But: sometimes involves a lottery
 Chance of very desirable and not desirable

With **observable** preferences intensities:

- · Generally: give best items to those who want them most
- But: sometimes **involves a lottery** Chance of very desirable and not desirable

With **Unobservable** preference intensities:

- Optimal incentive-compatible mechanism: full separation
- Always involves lotteries
- May coincide with First-Best (with lotteries)
- May involve artificial disposal of services

- Lit (brief)
- Framework
- First-best: observable intensities
- Second-best: unobservable intensities
- N types
- Market alternative
- Variants

LITERATURE

- Matching with incomplete information
 - Decentralized (Static and Dynamic) Liu *et al* 14, Agranov *et al.* 20, Ferdowsian Niederle Yariv 20
 - Centralized (Static and Dynamic) Fernandez Rudov Yariv 20, Leshno 19
- Different preference intensities

Abdulkadiroglu Che Yasuda 11, 15

• Timing as a screening device

Dimakopoulos Heller 18, Ely Szydlowski 17, Leshno 17

Screening time-inconsistent agents

Della Vigna Malmendier 06, Eliaz Spiegler 06

• Screening risk-averse agents (with prices)

Rothschild Stiglitz 76, Maskin Riley 84, ...

Disposal can help selection:

Alatas et al 06, Austen-Smith Banks 00

framework

- Continuum of goods: [0, *T*]
 - · Public housing provided at different times
 - Schools varying in quality
 - · Doctor appointments varying in physician's expertise or dates
- \diamond denotes the outside option
- Supply f(t)
 - Continuous density f(t), CDF F
 - Support [0, *T*]

Agents

- 2 types: *P* and *I*, masses μ_P , $\mu_I > 0$
- · Each consumes single indivisible good
- Same ordinal preferences: $u_k(\cdot)$ decreasing on [0, T]
- Difference Cardinal ones:

$$\frac{u_{p}''(t)}{u_{p}'(t)} > \frac{u_{l}''(t)}{u_{l}'(t)} \text{ for all } t \in [0, T]$$

Ranked in terms of curvature:

- I care more about getting high quality
- *P* more risk-averse than *I*
- *u* can have any shape, as long as monotone and ranked

•
$$u_k(0) = 1, u_k(T) \ge u_k(\diamond) = 0$$

EXAMPLES

- 1. Heterogenous goods ranked identically
 - Colleges and U.S. News and World Report ranking
 - · CRRA or CARA utilities with different parameters ranked
- 2. Identical goods with different delivery date
 - Many examples

Public housing, Medical Appointments, Restaurants

- Normalize good "value" at 1
- **Patient** (P) discount rate $r_P : u_P(t) = e^{-r_P t}$ **Impatient** (I) discount rate $r_l : u_l(t) = e^{-r_l t}$
 - $0 < r_P < r_I$
- Lead example for today

LOTTERIES, ALLOCATIONS, WELFARE

- Allocation $q = (q_P, q_I)$, where q_k is density on $[0, T] \cup \{\diamond\}$
- Feasibility: $\mu_P q_P(t) + \mu_I q_I(t) \leq f(t)$
- Assume Sufficient supply (today): $\mu_P + \mu_I \leqslant F(T)$

• Expected payoff:
$$V_k(q_k) = \int_0^T u_k(t)q_k(t)dt$$
 $k \in \{P, I\}$

- Welfare: $W(q) = \mu_P V_P(q_P) + \mu_I V_I(q_I)$
 - Here: equal weights on all types
 - In paper: arbitrary weight allowing under-weighting P-agents

- Some applications (e.g., public housing) allow storage
- If *Q* is CDF of lottery :

Feasibility with storage: $\mu_P Q_P(t) + \mu_I Q_I(t) \leq F(t)$

· Results is the same: storage never used

first-best

- First, suppose utilities/types are observable
- Relevant for some applications
 - Urgency of appointment seekers
 - · BMI of individuals waiting for food
- If timing allocation:

Do you give goods to impatient first?

COMPUTING THE FIRST BEST

• Benefit of allocating to *P* relative to *I* at time *t* :

$$g(t) = e^{-r_P t} - e^{-r_I t}$$

COMPUTING THE FIRST BEST

• Benefit of allocating to *P* relative to *I* at time *t* :

$$g(t) = e^{-r_P t} - e^{-r_l t}$$

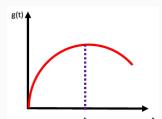
- Want to
 - Give to I when g(t) is **low**
 - Give to P when g(t) is **high**
- $g(0) = 0 \Rightarrow$ give to *I* initially

COMPUTING THE FIRST BEST

• Benefit of allocating to *P* relative to *I* at time *t* :

$$g(t) = e^{-r_P t} - e^{-r_l t}$$

- Want to
 - Give to I when g(t) is **low**
 - Give to P when g(t) is **high**
- $g(0) = 0 \Rightarrow$ give to *I* initially
- But g(t) is single-peaked



• Let \overline{T} be minimal time to service everyone:

 $\overline{T} = \inf\{t \mid F(t) \ge \mu_P + \mu_I\}$

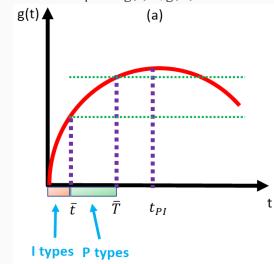
• Let \overline{t} be minimal time to service only *I*:

 $\overline{t} = \inf\{t \mid F(t) \ge \mu_I\}$

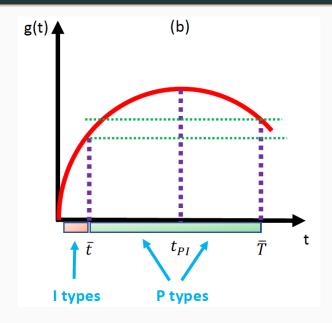
When to Service all I-agents First?

When to Service all I-agents First?

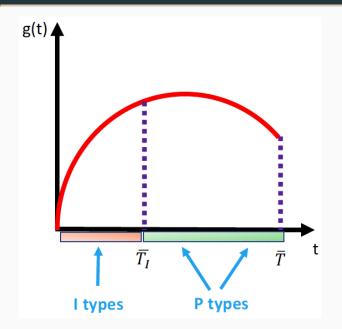
• When costs are low up to \overline{t} : $g(\overline{t}) \leq g(\overline{T})$



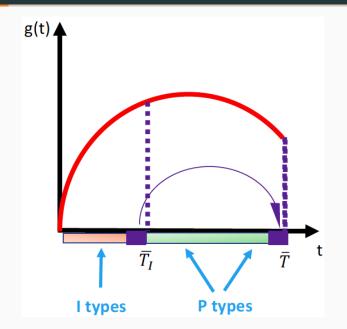
When to Service all I-type Agents First?



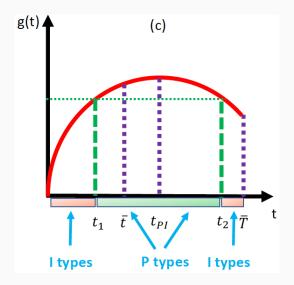
When to Service all I-type Agents First?



When to Service all I-type Agents First?



When to Serve I-agents with a "Lottery"?



LOTTERIES IN THE FIRST-BEST ALLOCATION

Proposition

First best exists and is unique. Moreover,

- when $g(\overline{t}) \leqslant g(\overline{T})$, First-Best gives
 - $[0,\overline{t})$ to I;
 - $(\overline{t}, \overline{T}]$ to P;
- when $g(\overline{t}) > g(\overline{T})$, First-Best gives
 - $[0, t_1) \cup (t_2, \overline{T}]$ to I
 - [*t*₁, *t*₂] to *P*

where t_1 and t_2 are unique and identified by

 $g(t_1)=g(t_2) \quad \text{and} \quad F(t_2)-F(t_1)=\mu_P.$

INTUITION: RISK ATTITUDES

- Expected Discounted Ut. ⇒ risk seeking over time lotteries
- Compare t = 2 for sure vs. t = 1 or t = 3 with equal chances

$$\begin{array}{rcl} \beta^{2}u(x) & < & \frac{1}{2}\beta^{1}u(x) + \frac{1}{2}\beta^{3}u(x) \\ \\ \beta^{2} & < & \frac{1}{2}\beta^{1} + \frac{1}{2}\beta^{3} \end{array}$$

• β^t is convex \rightarrow risk seeking

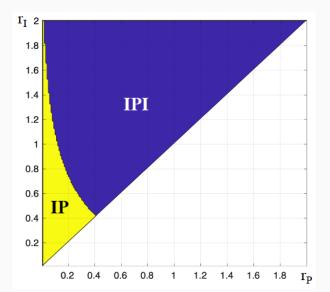
[Dejarnette Dillenberger Gottlieb Ortoleva 2020]

• More discounting \Rightarrow more risk seeking

- *I* strictly more risk seeking than *P*
- *I* benefit from lottery that places high probability on early

THE FIRST-BEST ALLOCATION

 $\mu_I = \mu_P = 1/2$, uniform supply



incentive-compatible mechanism

INCENTIVE-COMPATIBLE MECHANISM

- What if intensity is unobserved?
- Relevant for many settings:
 - Family circumstances of public-housing customers
 - · Urgency in need of attention in scheduling settings
 - Restaurants..

- One obvious mechanism: give randomly
- Can I do better?

$$\max_{q(t)\geq 0} \left[\sum_{k=P,I} \mu_k \int_0^\infty u_k(t) q_k(t) dt\right]$$

such that

$$IC_{kj} : \int_{0}^{\infty} u_{k}(t)q_{k}(t)dt \ge \int_{0}^{\infty} u_{k}(t)q_{j}(t)dt \quad \forall k, j = P, I$$

Feasibility :
$$\sum_{k=P,I} \mu_{k}q_{k}(t) \le f(t) \quad \forall x \in [0,\infty)$$

CAN IT BE FIRST BEST?

- When *I* are serviced before *P*:
 - P want to imitate I
 - Cannot be incentive compatible

 $\Longrightarrow SB \neq FB$

CAN IT BE FIRST BEST?

- When *I* are serviced before *P*:
 - P want to imitate I
 - · Cannot be incentive compatible

 $\Longrightarrow SB \neq FB$

- When I-agents receive a lottery?
 - · Not obvious any more
 - Could it be that FB is incentive compatible?
 - Could it be that SB = FB?

Proposition

For a positive measure of discount factors, the first-best allocation is incentive compatible.

INTUITION

• Suppose FB has lottery: type IPI

· otherwise no hope

- *I* served in $[0, t_1) \cup (t_2, \overline{T}]$, *P* served in $[t_1, t_2]$
- *I* really care about early service

 \Rightarrow more willing to take risk, prefer lottery

• *P* doesn't mind waiting

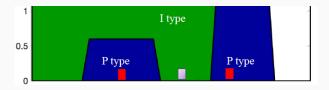
 \Rightarrow less willing to take risks, prefer [t_1, t_2]

SECOND-BEST ALLOCATION MORE GENERALLY

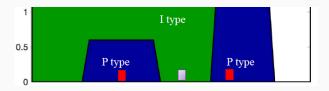
- If all type-*k* served before all type-*m*
 - \Rightarrow type-*m* want to imitate type-*k*
- · Therefore, we cannot have 'dominance'
- Need lotteries

- What can we say?
- · Let's proceed in steps
- [Note: sloppy formal statements in slides]

Definition: **Inverted Spread** if "some *I* served between some *P*," or some *P* not served at all



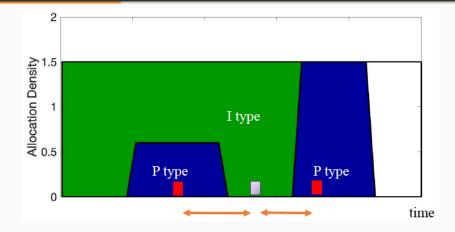
Definition: **Inverted Spread** if "some *I* served between some *P*," or some *P* not served at all



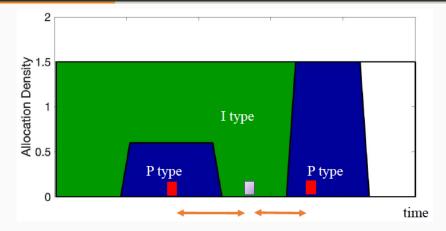
Lemma

No Solution of the MD problem exhibits Inverted spread.

INTUITION OF NO INVERTED SPREADS



INTUITION OF NO INVERTED SPREADS



- *P* indifferent between δ_t and $\lambda \delta_{t'} + (1 \lambda) \delta_{t''}$
 - \Rightarrow *I* strictly prefers lottery
- · Trade increases welfare, preserves incentive constraints

COROLLARIES

Corollary

Full separation: in each t, either all to P or all to I.

Strong form of separation

COROLLARIES

Corollary

Full separation: in each t, either all to P or all to I.

Strong form of separation

Corollary

All Ps receive a good, that is, $q_P(\diamond) = 0$.

COROLLARIES

Corollary

Full separation: in each t, either all to P or all to I.

Strong form of separation

Corollary All *Ps* receive a good, that is, $q_P(\diamond) = 0$.

Corollary

In the solution of the MD problem, IC_{IP} and IC_{PI} cannot be both binding.

- · If both bind, both types indifferent between both allocations
- Then, also indifferent with any convex combination
- Thus: convex comb incentive compatible and same welfare
- Must also be solution-but not fully separating!

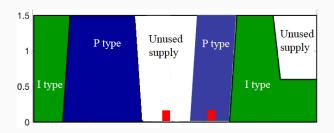
Lemma

In all solutions of the MD problem, there is an interval $[x_1, x_2]$ such that all supply given to P agents, who are only served there.

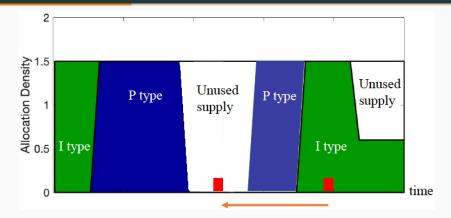
Lemma

In all solutions of the MD problem, there is an interval $[x_1, x_2]$ such that all supply given to P agents, who are only served there.

That is, we don't have



INTUITION



- · We know we can have both IC binding
- If IC_{PI} does not bind: shift small mass of I forward
- If *IC*_{*IP*} does not bind: shift small mass of *P* forward

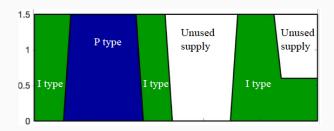
STEP 3: ONLY DISPOSAL IS DENIAL OF GOODS TO /

Definition: An allocation exhibits **disposal** if some types do not receive goods while some are available, or unused higher quality

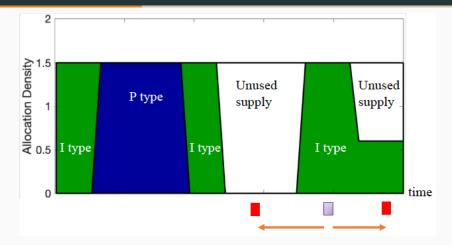
Lemma

"Only disposal" is $q_I(\diamond) > 0$.

That is, don't have:



INTUITION



- Take mass in later usage
- Spread in a way that keeps *P* indifferent: maintains IC
- \Rightarrow *I* strictly better off

IMPLICATIONS FOR THE SECOND-BEST ALLOCATION

- Results above together \Longrightarrow
 - *P*: single time block $[x_1, x_2]$
 - *I*: two blocks $[0, x_1], [x_2, x_3] + \diamond$
- Feasibility: $F(x_2) F(x_1) = \mu_P \Rightarrow x_2 = x_2(x_1)$
- Two degrees of freedom remain:
 - *x*₁: controls distribution of early service between agent types
 - x₃: controls probability of service for *I*
- Transform complex problem into simple 2 dimensional problem

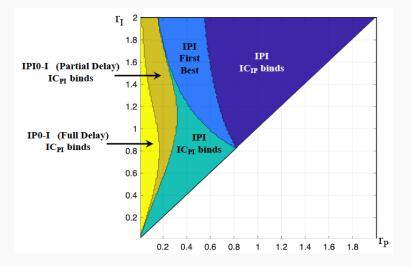
Solution of the MD-problem

Proposition

The second-best allocation is (gen.) unique and fully separating. Moreover, there exist x_1, x_2, x_3 it such that:

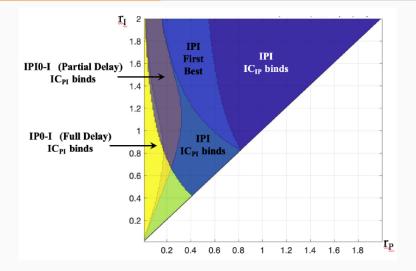
- q_P has support $[x_1, x_2]$;
- q_1 has support $[0, x_1] \cup [x_2, x_3]$ and in some cases \diamond ;
- Full separation: each type of good to different type of agent
- All solutions of the form IPI
- Always a lottery for *I*
- *P* served in one block
- Block for *P* 'in between' *I*
- Lottery for I may involve not receiving a good

ALL ALLOCATIONS



Uniform distribution, equal masses

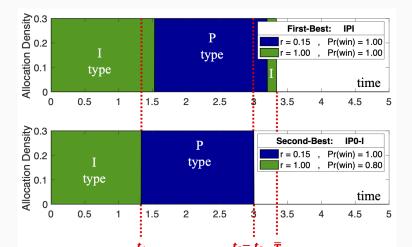
COMPARISON WITH FIRST-BEST ALLOCATION



Uniform distribution, equal masses, T = 5

WHY DISPOSAL?

- · We have seen sometimes disposal of service
- Why? Take a case in which *IC*_{Pl} binds
- How to solve it? Cheap way: worsen q₁



Benchmark: uniform allocation (pooling)

First-best = second-best
$$\implies$$
 $P \uparrow, I \uparrow$ IC_{IP} binds \implies $P \uparrow, I =$ IC_{PI} binds, no disposal \implies $P =, I \uparrow$ IC_{PI} binds, disposal \implies $P \downarrow, I \uparrow$

If your IC constraint binds, welfare not higher than pooling

n types

N TYPES

Proposition

The first-best exhibits 1) no inverted spread and 2) no disposal.

In a sense, "complete" characterization.

N TYPES

Proposition

The first-best exhibits 1) no inverted spread and 2) no disposal.

In a sense, "complete" characterization.

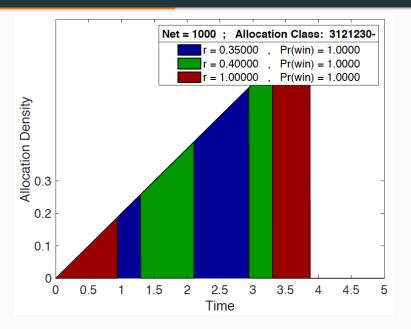
Proposition

With N types, a solution of the MD problem exists and:

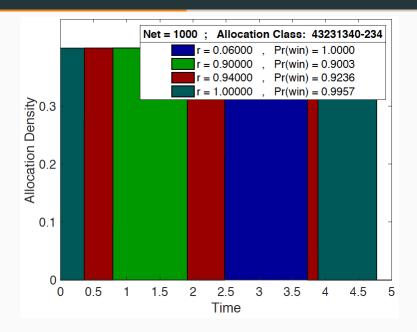
- is unique;
- exhibits "full separation;"
- the graph of binding IC constraints has no directed cycles.

In Second-Best can get Inverted spread!

N Types – Example 1



N Types – Example 2



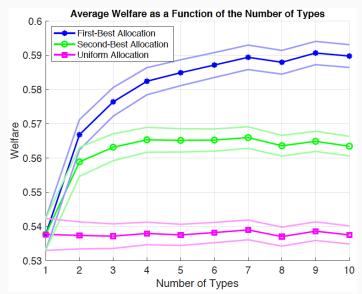
- With *N*, we can think about 'third-best'
- · IC mechanism that is not second-best but still improves
- E.g.: divide you types in 2 groups, and 'pool in groups'

- Still better than general pooling
- You can show: pooling is worst IC allocation

- *N* agents, discount rates distributed U[0, 1]
- Simulate resulting welfare from first-best, second-best, and uniform (pooling) allocation

Welfare: Sufficient Supply

Uniform supply, equal masses



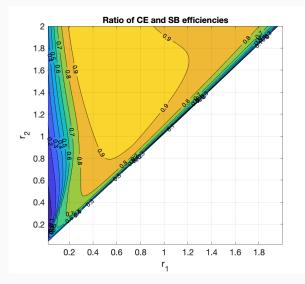
a market solution

A MARKET FOR LOTTERIES

- · Instead of mechanism, market
- Endow all agents with equal shares of supply and allow trade
- · Find competitive equilibrium: price, demand functions
- Reminiscent of Hylland and Zeckhauser 79
- Equilibrium is **unique**
- Can solve also for N
- No disposal and no inverted spread! For any N!
- First Welfare Theorem \Rightarrow outcome Pareto-efficient
- But: need not coincide with SB-generically it won't

EFFICIENCY OF MARKET OUTCOMES RELATIVE TO SB

Uniform sufficient supply,
$$\mu_P = \mu_I = 1/2$$
, consider $\frac{W^{CE} - W^U}{W^{SB} - W^U}$



variants

- Suppose goods can be stored
- Or: damage quality
- Relevant for some applications: housing, etc.
- Result: storage never used

- · Suppose all agents must get a good if available
- Or even: no disposal allowed
- Solution is similar:
 - Again IPI
 - Use disposal/damaging as much as possible

conclusion

Conclusions

- Allocation problem with:
 - Same ordinal ranking
 - But: different cardinal preference/intensities
 - · Focus on case when well ordered

- First-Best may involve lotteries
- Incentive Compatible Mechanism
 - · Easy to characterize
 - May coincide with First-Best
 - May involve disposal
- · Also solve for market solution: different

additional slides

Related Literature

- Dynamic allocation problems: Baccara Lee Yariv 19, Bloch 17, etc.
- Link between discounting and risk attitudes: Dejarnette Dillenberger Gottlieb Ortoleva 19
- Using timing as a screening device: Dimakopoulos Heller 18, Ely Szydlowski 17, Leshno 19
- Screening of time-inconsistent agents: Della Vigna Malmendier 06, Eliaz Spiegler 06
- Adding costs can help with selection: Alatas et al. 06

EndExpansion

• A marginal tradeoff:

$$\underbrace{g(t_2) - g(t_1)}_{\text{welfare increase}} = \underbrace{\lambda\left(\frac{1}{\mu_P} + \frac{1}{\mu_I}\right)\left(e^{-r_P t_1} - e^{-r_P t_2}\right)}_{\text{cost of incentive constraint}}$$

• A marginal tradeoff:

$$\underbrace{g(t_2) - g(t_1)}_{\text{welfare increase}} = \underbrace{\lambda\left(\frac{1}{\mu_P} + \frac{1}{\mu_I}\right)\left(e^{-r_P t_1} - e^{-r_P t_2}\right)}_{\text{cost of incentive constraint}}$$

- h(t) net benefit of servicing *I*-agents at *t* relative to delay
- The delay tradeoff:

$$h(t) = \underbrace{e^{-r_{l}t}}_{\text{welfare increase}} - \underbrace{\lambda \frac{1}{\mu_{l}} e^{-r_{P}t}}_{\text{cost of incentive constraint}}$$

• Suppose *IC*_{*IP*} is violated in the FB

- Suppose *IC*_{*IP*} is violated in the FB
- \implies Need to compensate further *I*-agents
- \implies No point in delaying service for *I*-agents
- ⇒(Proposition 3a) Generate lottery in which *l*-agents are serviced for a longer period initially relative to FB

- Suppose *IC_{PI}* is violated in the FB
- Recall: cannot have both ICs binding

- Suppose *IC_{PI}* is violated in the FB
- Recall: cannot have both ICs binding
- \implies Need to compensate further *P*-agents
- ⇒ Can generate lottery in which *P*-agents are serviced sooner relative to FB
- (Proposition 3b) Could also generate delay for *l*-agents, possibly not serving some at all

EFFICIENCY OF SB RELATIVE TO MARKET OUTCOMES

Uniform sufficient supply, $\mu_P = \mu_I = 1/2$, consider $\frac{W^{SB} - W^{CE}}{W^{FB} - W^{CE}}$

