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Idea

Common allocation problems:

Public housing Medical Appointments

School choice Restaurant lines

O�en:

Same Ordinal Pref Di�erent Intensity No transfers

Our�estion

What is optimal way for a social planner to allocate?

Best incentive compatible mechanism?
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Main Insights

With observable preferences intensities:

• Generally: give best items to those who want them most

• But: sometimes involves a lo�ery

Chance of very desirable and not desirable

With Unobservable preference intensities:

• Optimal incentive-compatible mechanism: full separation

• Always involves lo�eries

• May coincide with First-Best (with lo�eries)

• May involve artificial disposal of services
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Plan for today

• Lit (brief)

• Framework

• First-best: observable intensities

• Second-best: unobservable intensities

• N types

• Market alternative

• Variants
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framework



A Simple Model of Service Allocation

• Continuum of goods: [0,T ]
• Public housing provided at di�erent times
• Schools varying in quality
• Doctor appointments varying in physician’s expertise or dates

• � denotes the outside option

• Supply f (t)

• Continuous density f (t), CDF F
• Support [0,T ]



Agents

• 2 types: P and I, masses µP , µI > 0

• Each consumes single indivisible good

• Same ordinal preferences: uk(·) decreasing on [0,T ]

• Di�erence Cardinal ones:
u′′P (t)
u′P(t)

>
u′′I (t)
u′I(t)

for all t ∈ [0,T ]

Ranked in terms of curvature:
• I care more about ge�ing high quality
• P more risk-averse than I

• u can have any shape, as long as monotone and ranked

• uk(0) = 1, uk(T ) > uk(�) = 0



Examples

1. Heterogenous goods ranked identically

• Colleges and U.S. News and World Report ranking

• CRRA or CARA utilities with di�erent parameters ranked

2. Identical goods with di�erent delivery date

• Many examples
Public housing, Medical Appointments, Restaurants

• Normalize good “value” at 1

• Patient (P) discount rate rP : uP(t) = e−rP t

Impatient (I) discount rate rI : uI(t) = e−rI t

0 < rP < rI

• Lead example for today



Lotteries, Allocations, Welfare

• Allocation q = (qP , qI), where qk is density on [0,T ] ∪ {�}

• Feasibility: µPqP(t) + µIqI(t) 6 f (t)

• Assume Su�icient supply (today): µP + µI 6 F (T )

• Expected payo�: Vk(qk) =
T∫
0
uk(t)qk(t)dt k ∈ {P , I}

• Welfare: W (q) = µPVP(qP) + µIVI(qI)

• Here: equal weights on all types

• In paper: arbitrary weight allowing under-weighting P-agents



A Note on Storage

• Some applications (e.g., public housing) allow storage

• If Q is CDF of lo�ery :

Feasibility with storage: µPQP(t) + µIQI(t) 6 F (t)

• Results is the same: storage never used



first-best



The First-Best Solution

• First, suppose utilities/types are observable

• Relevant for some applications

• Urgency of appointment seekers

• BMI of individuals waiting for food

• If timing allocation:

Do you give goods to impatient first?



Computing the First Best

• Benefit of allocating to P relative to I at time t :

g(t) = e−rP t − e−rI t

• Want to
• Give to I when g(t) is low
• Give to P when g(t) is high

• g(0) = 0⇒ give to I initially

• But g(t) is single-peaked
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Computing the First Best

• Let T̄ be minimal time to service everyone:

T̄ = inf{t | F (t) > µP + µI}

• Let t̄ be minimal time to service only I:

t̄ = inf{t | F (t) > µI}



When to Service all I-agents First?

• When costs are low up to t̄ : g(̄t) 6 g(T̄ )
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When to Service all I-type Agents First?
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When to Serve I-agents with a “Lottery”?



Lotteries in the First-best Allocation

Proposition

First best exists and is unique. Moreover,

• when g(̄t) 6 g(T̄ ), First-Best gives

• [0, t̄) to I;
• (̄t, T̄ ] to P;

• when g(̄t) > g(T̄ ), First-Best gives

• [0, t1) ∪ (t2, T̄ ] to I
• [t1, t2] to P

where t1 and t2 are unique and identified by

g(t1) = g(t2) and F (t2) − F (t1) = µP .

I P I P I

t̅ T$  T$  0 0 t1 t2 

I P I P I

t̅ T$  T$  0 0 t1 t2 



Intuition: Risk Attitudes

• Expected Discounted Ut. ⇒ risk seeking over time lo�eries

• Compare t = 2 for sure vs. t = 1 or t = 3 with equal chances

β2u(x) <
1
2
β1u(x) +

1
2
β3u(x)

β2 <
1
2
β1 +

1
2
β3

• βt is convex→ risk seeking

[Dejarne�e Dillenberger Go�lieb Ortoleva 2020]

• More discounting⇒ more risk seeking

• I strictly more risk seeking than P

• I benefit from lo�ery that places high probability on early



The First-best Allocation

µI = µP = 1/2, uniform supply



incentive-compatible mechanism



Incentive-Compatible Mechanism

• What if intensity is unobserved?

• Relevant for many se�ings:
• Family circumstances of public-housing customers
• Urgency in need of a�ention in scheduling se�ings
• Restaurants..

• One obvious mechanism: give randomly

• Can I do be�er?



Mechanism Designer Problem (Formal Statement)

max
q(t)>0

[∑
k=P,I

µk

∫∞
0

uk(t)qk(t)dt

]
such that

ICkj :

∫∞
0

uk(t)qk(t)dt >
∫∞
0

uk(t)qj(t)dt ∀k, j = P , I

Feasibility :
∑
k=P,I

µkqk(t) 6 f (t) ∀x ∈ [0,∞)



Can it be First Best?

• When I are serviced before P :
• P want to imitate I

• Cannot be incentive compatible

=⇒ SB 6= FB

• When I-agents receive a lo�ery?
• Not obvious any more

• Could it be that FB is incentive compatible?

• Could it be that SB = FB?
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Second-best = First-best

Proposition

For a positive measure of discount factors, the first-best allocation is
incentive compatible.



Intuition

• Suppose FB has lo�ery: type IPI
• otherwise no hope

I P I P I

t̅ T$  T$  0 0 t1 t2 

• I served in [0, t1) ∪ (t2, T̄ ], P served in [t1, t2]

• I really care about early service

⇒ more willing to take risk, prefer lo�ery

• P doesn’t mind waiting

⇒ less willing to take risks, prefer [t1, t2]



Second-best Allocation more Generally

• If all type-k served before all type-m

⇒ type-m want to imitate type-k

• Therefore, we cannot have ‘dominance’

• Need lo�eries

• What can we say?

• Let’s proceed in steps

• [Note: sloppy formal statements in slides]



Step 1: No “Inverted Spreads”

Definition: Inverted Spread if “some I served between some P ,” or
some P not served at all

Lemma

No Solution of the MD problem exhibits Inverted spread.
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Intuition of No Inverted Spreads

• P indi�erent between δt and λδt′ + (1− λ)δt′′

⇒ I strictly prefers lo�ery
• Trade increases welfare, preserves incentive constraints
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Corollaries

Corollary

Full separation: in each t, either all to P or all to I.

Strong form of separation

Corollary

All Ps receive a good, that is, qP(�) = 0.

Corollary

In the solution of the MD problem, ICIP and ICPI cannot be both
binding.

• If both bind, both types indi�erent between both allocations
• Then, also indi�erent with any convex combination
• Thus: convex comb incentive compatible and same welfare
• Must also be solution—but not fully separating!
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Step 2: P agents served in one block

Lemma

In all solutions of the MD problem, there is an interval [x1, x2] such
that all supply given to P agents, who are only served there.

That is, we don’t have



Step 2: P agents served in one block

Lemma

In all solutions of the MD problem, there is an interval [x1, x2] such
that all supply given to P agents, who are only served there.

That is, we don’t have



Intuition

• We know we can have both IC binding

• If ICPI does not bind: shi� small mass of I forward

• If ICIP does not bind: shi� small mass of P forward



Step 3: Only disposal is denial of goods to I

Definition: An allocation exhibits disposal if some types do not
receive goods while some are available, or unused higher quality

Lemma

“Only disposal” is qI(�) > 0.

That is, don’t have:



Intuition

• Take mass in later usage
• Spread in a way that keeps P indi�erent: maintains IC
• ⇒ I strictly be�er o�



Implications for the Second-best Allocation

• Results above together =⇒
• P : single time block [x1, x2]
• I: two blocks [0, x1], [x2, x3] + �

• Feasibility: F (x2) − F (x1) = µP ⇒ x2 = x2(x1)

• Two degrees of freedom remain:
• x1: controls distribution of early service between agent types
• x3: controls probability of service for I

• Transform complex problem into simple 2 dimensional problem



Solution of the MD-problem

Proposition

The second-best allocation is (gen.) unique and fully separating.
Moreover, there exist x1, x2, x3 it such that:

• qP has support [x1, x2];

• qI has support [0, x1] ∪ [x2, x3] and in some cases �;

• Full separation: each type of good to di�erent type of agent

• All solutions of the form IPI

• Always a lo�ery for I

• P served in one block

• Block for P ‘in between’ I

• Lo�ery for I may involve not receiving a good



All Allocations

Uniform distribution, equal masses



Comparison with First-best Allocation

Uniform distribution, equal masses, T = 5



Why disposal?

• We have seen sometimes disposal of service
• Why? Take a case in which ICPI binds
• How to solve it? Cheap way: worsen qI



Welfare of second-best: Who Gains?

Benchmark: uniform allocation (pooling)

First-best = second-best =⇒ P ↑, I ↑

ICIP binds =⇒ P ↑, I =

ICPI binds, no disposal =⇒ P =, I ↑

ICPI binds, disposal =⇒ P ↓, I ↑

If your IC constraint binds, welfare not higher than pooling



n types



N Types

Proposition

The first-best exhibits 1) no inverted spread and 2) no disposal.

In a sense, “complete” characterization.

Proposition

With N types, a solution of the MD problem exists and:

• is unique;

• exhibits “full separation;”

• the graph of binding IC constraints has no directed cycles.

In Second-Best can get Inverted spread!
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N Types – Example 1



N Types – Example 2



N Types – Partial improvement

• With N , we can think about ‘third-best’

• IC mechanism that is not second-best but still improves

• E.g.: divide you types in 2 groups, and ‘pool in groups’

• Still be�er than general pooling

• You can show: pooling is worst IC allocation



Welfare as a Function of Number of Types

• N agents, discount rates distributed U[0, 1]

• Simulate resulting welfare from first-best, second-best, and
uniform (pooling) allocation



Welfare: Sufficient Supply

Uniform supply, equal masses



a market solution



A Market for Lotteries

• Instead of mechanism, market

• Endow all agents with equal shares of supply and allow trade

• Find competitive equilibrium: price, demand functions

• Reminiscent of Hylland and Zeckhauser 79

• Equilibrium is unique

• Can solve also for N

• No disposal and no inverted spread! For any N !

• First Welfare Theorem ⇒ outcome Pareto-e�icient

• But: need not coincide with SB—generically it won’t



Efficiency of Market Outcomes relative to SB

Uniform su�icient supply, µP = µI = 1/2, consider WCE−WU

W SB−WU



variants



Extension 1 – Storage

• Suppose goods can be stored

• Or: damage quality

• Relevant for some applications: housing, etc.

• Result: storage never used



Extension 2 – Bounds to Disposal

• Suppose all agents must get a good if available

• Or even: no disposal allowed

• Solution is similar:
• Again IPI
• Use disposal/damaging as much as possible



conclusion



Conclusions

• Allocation problem with:
• Same ordinal ranking

• But: di�erent cardinal preference/intensities

• Focus on case when well ordered

• First-Best may involve lo�eries

• Incentive Compatible Mechanism
• Easy to characterize

• May coincide with First-Best

• May involve disposal

• Also solve for market solution: di�erent



additional slides



Related Literature

• Dynamic allocation problems: Baccara Lee Yariv 19, Bloch 17,
etc.

• Link between discounting and risk a�itudes: Dejarne�e
Dillenberger Go�lieb Ortoleva 19

• Using timing as a screening device: Dimakopoulos Heller 18,
Ely Szydlowski 17, Leshno 19

• Screening of time-inconsistent agents: Della Vigna Malmendier
06, Eliaz Spiegler 06

• Adding costs can help with selection: Alatas et al. 06



EndExpansion



Why and When to Dispose

• A marginal tradeo�:

g(t2) − g(t1)︸ ︷︷ ︸
welfare increase

= λ

(
1
µP

+
1
µI

)(
e−rP t1 − e−rP t2

)
︸ ︷︷ ︸

cost of incentive constraint

• h(t) – net benefit of servicing I-agents at t relative to delay

• The delay tradeo�:

h(t) = e−rI t︸︷︷︸
welfare increase

− λ
1
µI
e−rP t︸ ︷︷ ︸

cost of incentive constraint
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Second-best Allocation with Distorted Lotteries

• Suppose ICIP is violated in the FB

• =⇒ Need to compensate further I-agents

• =⇒ No point in delaying service for I-agents

• =⇒(Proposition 3a) Generate lo�ery in which I-agents are
serviced for a longer period initially relative to FB
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Second-best Allocation with Delay

• Suppose ICPI is violated in the FB

• Recall: cannot have both ICs binding

• =⇒ Need to compensate further P-agents

• =⇒ Can generate lo�ery in which P-agents are serviced sooner
relative to FB

• (Proposition 3b) Could also generate delay for I-agents,
possibly not serving some at all
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Efficiency of SB relative to Market Outcomes

Uniform su�icient supply, µP = µI = 1/2, consider W SB−WCE

W FB−WCE


