
Heterogeneous Endogenous Effects in Networks ∗

Sida Peng†

November 18, 2016

Abstract

Spatial econometrics has been widely used to study endogenous effects in network structures. Existing

spatial autoregression models (SARs) implicitly assume that each individual in the network has the

same endogenous effects on others. However, some individuals are more influential than others. For

example, Banerjee et al. (2013) documents that individuals directly connected with some village leaders

are more likely to join the micro-finance program than those connected to someone else. I develop

a SAR model that allows for individual-specific endogenous effects and propose a two-stage LASSO

(2SLSS) procedure to identify influential individuals in a network. Under an assumption of sparsity:

only a subset of individuals (which can increase with sample size n) is influential, I show that my 2SLSS

estimator for individual-specific endogenous effects is consistent and achieves asymptotic normality. I

also develop robust inference including uniformly valid confidence intervals. These results also carry

through to scenarios where the influential individuals are not sparse. I extend the analysis to allow for

multiple types of connections (multiple networks), and I show how to use the square-root sparse group

LASSO to detect which of the multiple connection types is more influential. Simulation evidence shows

that my estimator has good finite sample performance. I further applied my method to the data in

Banerjee et al. (2013) and my proposed procedure is able to identify leaders and effective networks.
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1 Introduction

How an individual’s behavior is affected by the behavior of her neighbors in an exogenously given

network is an important research question in applied economics. With the increasing availability of

detailed data documenting connections among individuals, spatial autoregression models (SARs)

have been widely applied in empirical networks literature to estimate endogenous effects.

In SARs, an individual’s behavior depends on the weighted average of other individuals’ behaviors

(see Anselin, 1988; Kelejian and Prucha, 1998). Standard SARs assume that the endogenous

effects are the same across individuals in a network. Each individual influences her neighbors at

the same rate regardless of who she is. However, in many contexts, some individuals are clearly

more influential than others. For example, Mas and Moretti (2009) finds that the magnitude of

spillovers varies dramatically among workers with different skill levels. Clark and Loheac (2007)

also note that popular teenagers in a school have much stronger influence on their classmates’

smoking decisions than their less popular peers.

I propose a novel SAR model which allows for heterogeneous endogenous effects. Each individual in

a network simultaneously generates an outcome that takes into account all her neighbors’ behaviors.

Unlike standard SARs, each individual has an individual-specific effect on her neighbors. As a result,

there are as many coefficients for individual-specific endogenous effects as there are individuals in

the network. To achieve identification, I assume that “truly-influential” individuals only constitute

a small fraction of the total population. In other words, individual-specific coefficients are assumed

to be sparse. This assumption allows me to estimate the model via the least absolute shrinkage

and selection operator (LASSO). The LASSO procedure penalizes the l1 norm for the coefficients

of heterogeneous endogenous effects. The geometry of the l1 norm enforces the sparsity in the

LASSO estimators. If a coefficient is selected by LASSO (i.e. the estimated coefficient is non-

zero), the individual associated with this coefficient can influence all her neighbors at her specific

rate. Otherwise the LASSO estimator will indicate that the individual has no influence on her

neighbors. With some restrictions on the network structures, I show that the LASSO estimates for

heterogeneous endogenous effects have near oracle performance (see Bühlmann and van de Geer,

2011). In other words, the selection of influential individuals is consistent and the convergence rate

of non-zero LASSO estimates is the same as the convergence rate that would have been achieved if

the truly influential individuals were known.

One challenge in my estimation process is the presence of endogeneity in the spatial lag and error

term. As with standard SARs, the dependent variable in my model is used to construct spatial

lags as an independent variable. As a result, the regressors are correlated with the error term and
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estimates would be biased if we were to apply LASSO directly.

First I propose a set of novel instruments to address the endogeneity. Following Kelejian and Prucha

(1998), I express the dependent variable as an infinite sum of functions consisting of independent

variables and an adjacency matrix. These functions are used as instruments. Then I design a

two-stage estimation process for heterogeneous endogenous effects using LASSO at each stage. In

the first stage, I use LASSO to estimate the coefficients for the instruments. These estimated

coefficients and instruments are then used to create a synthetic dependent variable. In the second

stage, I replace the dependent variable in the spatial lags with the synthetic variable to perform

the LASSO estimation. Unlike in the standard two stage least square estimation process, the

synthetic dependent variable in the first stage suffers from a shrinkage bias due to the LASSO

fitting. However, I show that with certain restrictions on the network structure, the shrinkage bias

is negligible (i.e. o(1/
√
n)).

The next challenge is to construct robust confidence intervals for my LASSO type two-stage esti-

mator. As pointed out in Leeb and Potscher (2008), it is impossible to construct uniformly valid

confidence intervals for estimates based on model selection. Consistent model selection by LASSO

is only guaranteed when all non-zero coefficients are large enough to be distinguished from zero in

a finite sample (i.e. usually called the “beta-min” condition). LASSO may fail to select regressors

with very small coefficients, resulting in omitted variable bias in the post LASSO inference.

I propose a bias correction for my two-stage estimator following the recent LASSO inference liter-

ature (see Belloni et al., 2015; van de Geer et al., 2014). The idea is to correct the first order bias

and make the estimators independent from the model selection. Heuristically, shrinkage bias due

to the l1 penalty in LASSO can be expressed as a function of the LASSO estimators. Normality

can still be achieved after adding back this bias. I show that this strategy also works in a two-

stage estimation process. I derive the asymptotic normality for my “de-sparse” two-stage LASSO

estimator and conduct robust inference including confidence intervals.

My model can be extended to allow for more flexible network structures. One real world scenario

is a network which consists of multiple cliques. Each clique has its local leaders, who only influence

individuals within their own cliques but have no influence on individuals outside their cliques. One

identification difficulty in this setting is that the number of leaders increases with the number of

cliques. Hence, the sparsity assumption can potentially be violated.

To solve the problem in this scenario, I modify my model by bringing back the classical SAR model.

I assume that there are both local leaders and global leaders in the network. In contrast to local

leaders, global leaders can influence individuals across different cliques. I assume global leaders are
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sparse and show that identification can be achieved for this modified model. The endogenous effects

of local leaders will be captured by the classical SAR model, which becomes an average endogenous

effects in the network. The endogenous effects of global leaders, whose influence remains individual-

specific, can be identified in the same way as it was in the previous model. If there is no global

leader in the network, the model is effectively just the standard SAR model.

Another real world scenario is the existence of multiple types of connections among individuals.

For example, connections among individuals can be classified as social (e.g. friendship, kinship)

or economic (e.g. lending, employment). It is also important to identify which networks are more

efficient at transmitting the endogenous effects.

I model different types of connections as multiple networks. I propose the use of square-root sparse

group LASSO to estimate a heterogeneous endogenous effects model with multiple networks. The

standard sparse group LASSO penalizes both the l1 norm and the l2 norm for each coefficient in

each type of connection. I modify the sparse group LASSO by taking the square-root of the mean

square error and thus make the estimation process pivotal. I derive the convergence rate and prove

the consistency of selection. To the best of my knowledge, my paper is the first to show statistical

properties for square-root sparse group LASSO.

I provide simulation evidence for networks of different sizes and different generating algorithms.

The empirical coverage of my proposed estimators is close to the nominal level in all scenarios.

Similar results are also found in models with multiple networks and with cliques.

I apply my method to study villagers’ decisions to participate in micro-finance programs in rural

areas of India as in Banerjee et al. (2013). Among different social and economic networks, my

method shows that some networks such as “visit go-come” and “borrow money”, are much more

effective at influencing villagers’ decisions than other networks such as “temple company” and

“medical help”. I further show that individuals in certain careers such as agricultural workers,

Anganwadi teachers and small business owners are more likely to influence villagers.

My proposed methodology can be applied to detect influential individuals in empirical work when

there are both leaders and followers. It is important to identify such individuals because we can

then study why certain people are more influential than others. On the one hand, we can examine

individuals exogenous characteristics and see if any of them contribute to an individual’s influence.

On the other hand, we can study how the position of an individual within a network may impact

her influence by further introducing network formation into the model.

Being able to identify influential individuals could also lead to more effective policy outcomes. If
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individuals with certain characteristics are found to be more influential than others, policy makers

could potentially implement policies solely targeting influential individuals rather than the entire

population. Since more resources are directed to the small group of highly influential individuals,

one would expect much more effective policies. For example, online opinion leaders have influence on

what people tweet and share on the Internet. In an election, instead of advertising on television and

trying to influence every voter, a candidate could invest in these online opinion leaders and let them

influence the public in a more efficient way. This technique could also work in employment contexts.

Union leaders are often those workers who have the strongest influence on their fellow workers’

opinions. Instead of reading through complaints from every worker, employers could identify those

union leaders and make sure their complaints were addressed to prevent any ongoing strike. When

studying peer effects in smoking behavior, my method can identity a group of teenagers who have

a strong influence on their peers. A policy can target this group of students and encourage them

to quit smoking.

1.1 Literature Review

This paper brings together literature on spatial autoregression model, LASSO and networks.

SARs:

SARs have been used widely applied in empirical studies. For instance, they have been used to study

peer effects in labor productivity (see Mas and Moretti, 2009; Guryan et al., 2009; Bandiera et al.,

2009), smoking behavior among teenagers (see Krauth, 2005; Clark and Loheac, 2007; Nakajima,

2007), educational achievements among different student groups (see Sacerdote, 2001; Neidell and

Waldfogel, 2010), systemic risk in finance (see Bonaldi et al., 2015; Denbee et al., 2015), and the

adoption of new agricultural technologies (see Coelli et al., 2002; Conley and Udry, 2010). My

paper proposes a novel extension of standard SAR models that could be used to identify influential

individuals in any given network. My methodology for estimating such a model could easily be

adopted in existing empirical SAR analyses to identify influential individuals who influence their

peers productivity, smoking decisions, or financial holdings.

More specifically, my model extends existing SARs literature by introducing heterogeneous endoge-

nous effects. Until very recently, SARs always assume a constant rate of dependence for endogenous

effects across different individuals (see Cliff and Ord (1973), the first monograph on the topic, and

the later studies, Upton and Fingleton (1985); Anselin (1988); Cressie (1993); Lee and Liu (2010);

Lee and Yu (2010); Jin and Lee (2016)). Recent developments in social interaction literature in-

corporate individual characteristics into SARs, essentially modeling the heterogeneity through a
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linear combination of exogenous effects (see Manski, 1993; Bramoullé et al., 2009). In contrast, my

model considers the heterogeneity in the endogenous effects. Heterogeneous endogenous effects can

be identified from individuals’ outcomes instead of being pre-specified through individuals’ char-

acteristics. To my knowledge, my proposed model is the first to capture the direct impact of an

individuals neighbors’ decisions on her own decision.

To estimate the heterogeneous endogenous effects in my model, I propose a methodology that is

different from standard SARs literature. In classic SAR models, there is only one endogenous

variable and hence it is sufficient to identify the model through only one instrument. In my model,

the number of potentially endogenous variables increases as the number of observations increases.

As a result, I propose a set of instruments that contain the same number of instruments as the total

number of individuals. Moreover, each instrument is different from the standard SARs instrument

as in Kelejian and Prucha (1998), Lee (2002), Lee (2003) and Lee (2004).

This paper also contributes to literature that models multiple networks through SARs. In standard

SARs, multiple networks are modeled as higher order spatial lags (see Lee and Liu, 2010). Even

though different networks are assumed to have different constant rates for endogenous effects in

these models each individual in a given network faces the same constant rate. In contrast, my model

allows for the a more realistic scenario where each individual has her own specific endogenous effects

in each network. Moreover, my methodology allows some networks to be classified as completely

irrelevant to decision-making ex ante and these networks can be consistently identified.

LASSO:

My paper extends LASSO literature by deriving statistical bounds and consistency of selection for

the square-root sparse group LASSO estimator. This estimator builds on the group LASSO, square-

root LASSO, square-root group LASSO, and sparse group LASSO. Belloni et al. (2011) introduced

the square-root LASSO, which does not require a pre-estimation of an unknown standard deviation

σ. Yuan and Lin (2006) proposes the group LASSO, in which explanatory variables are represented

by different groups. The group LASSO assumes that sparsity exists only among groups, i.e. some

groups of variables are relevant while other groups are not. Simon et al. (2013) proposes the sparse

group LASSO, which further allows sparsity within each group, i.e. some regressors within the

relevant groups can also be irrelevant. citeBunea2013 derives statistical properties for the square-

root group LASSO, which combines group LASSO and square-root LASSO. When estimating a

heterogeneous endogenous effects model with multiple networks, I provide proof for both statistical

bounds and consistency of selection for the square-root sparse group LASSO estimator. To the best

of my knowledge, this paper is the first to show asymptotic statistical properties for the square-root

sparse group LASSO estimator.
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This paper also contributes to the growing literature on endogenous regressors in LASSO esti-

mators. For instance, Belloni et al. (2014a) proposes the double selection mechanism to study

confounded treatment effects. Fan and Liao (2014) proposes a GMM type estimator to deal with

many endogenous regressors. Gautier and TsyBakov (2014) proposes a Self Tuning Instrumental

Variables (STIV) estimator. The paper that is closest to mine is Zhu (2016), which studies the sta-

tistical properties of two-stage least square procedure with high-dimensional endogenous regressors.

She studied a case when there exists p endogenous regressors. For each regressor j, she assumed

that one can find dj instruments. Both p and dj may grow as n increases. I consider a case that is

tailored to my SAR model. There are n endogenous regressors and each regressor shares the same

n instruments. I show that a modified “de-sparse” LASSO estimator can be constructed for my

estimator in a manner similar to Zhang and Zhang (2011), Bühlmann (2013), van de Geer et al.

(2014) and Zhu (2016). I derive its asymptotic distributions and show how to perform inference.

Network:

My paper shares similar microfoundations with SARs as discussed in Blume et al. (2015), where

the individual utility function can be written as a linear summation of the private and social

components. The private component is a quadratic loss function on individual’s efforts. The social

components depend on the network structure as well as the efforts of one’s neighbors. While the

marginal rate of substitution between the private and social components of utility is assumed fixed

in SARs, I assume this rate is individual-specific and depends on one’s neighbors. My paper applies

and extends LASSO approaches to deal with a high-dimensional problem in networks. The total

number of possible edges in a network is n2, however, the social interaction networks we often

observe are far more sparse. This is an ideal setting where LASSO could be applied. Manresa

(2013) studies the heterogeneous exogenous effects in a network using LASSO. de Paula et al.

(2015) explore the use of LASSO to recover network structures. Both these two papers consider

panel data and rely on repeated observations of the same network to identify their models. My

model considers cross-sectional data. To identify an individual’s endogenous effects, I rely on the

variations in her neighbors’ outcome.

My paper also relates to the literature on identifying the key players in the network following

Ballester et al. (2006), Calvó-Armengol et al. (2009), and Horracea et al. (2016). Under the

framework of SARs, every individual is assumed to have the same endogenous effects. As a result,

individuals who are well-connected in the network (with high centrality measure) become the key

players in the network. However, this is not necessarily the case in my model, as well connected

individuals can have zero endogenous effects on her neighbors. Indeed, as shown in the empirical

application, well connected villagers such as tailors, hotel workers, veterans, and barbers are not

influential in other villagers’ decisions to join the micro-finance program.
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The rest of this paper is organized as follows: in Section 2, I introduce the model; in Section 3,

I discuss identification assumptions; in Section 4, I design estimation procedures; in Section 5, I

derive consistency and asymptotic properties; in Section 6, I show finite sample performance using

Monte Carlo simulations; in Section 7, I apply my proposed model to study influential individuals

and effective networks in promoting micro-finance programs in rural India; and in Section 8, I

conclude.

2 Models

In this section, I first lay out the benchmark endogenous effects model and introduce the central

model of this paper the heterogeneous endogenous effects model. Then I discuss two extensions

of the heterogeneous endogenous effects model: a model for networks consisting of multiple cliques

and a model for multiple networks. Finally, I provide two examples and illustrate how my model

fits into these settings.

2.1 Benchmark Endogenous Effects Model

In this paper, I first introduce the standard spatial autoregression model (SAR) as the benchmark

endogenous effects model. Let n denote the total number of observed individuals in a network.

The outcome of individual i is denoted as di and is the variable of interest. Here di can represent

any outcome associated with individual i, such as whether to smoke, whether to join a program,

or whether to tweet a message from a friend. It is assumed that the outcome of each neighbor of

individual i impacts her outcome homogeneously through a constant rate λ0:

di = λ0

∑
j∈Ni

dj + xiβ0 + εi, (1)

where the set Ni is defined as individual i’s neighbors. The matrix form of this model is expressed

as follows:

Dn = λ0MnDn +Xnβ0 + εn, (2)

where Dn = (d1, d2, · · · , dn)′ is the n-dimensional vector of observable outcomes. The n by k matrix

Xn represents the observable exogenous characteristics of individuals. When εn is specified as an

n-dimensional vector of independent and identically distributed disturbances with zero mean and

a constant variance σ2, equation (2) is also called a mixed regression model.

The spatial weight matrix Mn is of size n by n, where the (i, j)th entry represents the connection
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between individual i and individual j. In empirical studies, the spatial weight matrix is often

replaced by the adjacency matrix (see Ammermuller and Pischke, 2009; Acemoglu et al., 2012;

Banerjee et al., 2013): the (i, j)-th entry of the matrix Mn takes value 1 if individual i and individual

j are connected and takes value 0 otherwise.

In this model, endogenous effects (see Manski, 1993) or network effects (see Bramoullé et al., 2009)

are captured by the scalar λ0. An implicit assumption in equation (2) is that λ0, the rate of

endogenous effects, is identical across all individuals in the network. Every individual affects her

neighbors at this same rate λ0 no matter who she is, how many neighbors she has and where is she

in the network. This limitation has been noted in various studies (see Ammermuller and Pischke,

2009; de Paula et al., 2015). I relax this assumption by proposing a more flexible model that allows

individual-specific endogenous effects as discussed below.

2.2 Heterogeneous Endogenous Effects Model

I propose the following model to allow for heterogeneous endogenous effects:

di =
∑
j∈Ni

djηj + xiβ + εi (3)

where Ni represents the set of individual i’s neighbors and ηj represents the endogenous effects of

individual j on the outcome of all her neighbors i ∈ Nj . the model can be rewritten in matrix form

as:

Dn =
(
Mn ◦Dn

)
η0 +Xnβ0 + εn, (4)

where η0 = (η1, η2, · · · , ηn)′ is a vector of parameter of size n by 1. The ith entry in η0 represents the

endogenous effects of individual i on her neighbors. This model allows for individual heterogeneity

to interact with endogenous effects so that every individual is allowed to have her own coefficient

ηi. My model allows some ηj = 0. In other word, there are individuals that have no endogenous

effects on their neighbors. I define those individuals with ηj 6= 0 as influential.

The operator ◦ is defined between a n by n matrix Mn and a n by 1 vector Dn as

Mn ◦Dn = Mn · diag(Dn) = C,

where diag(·) is the diagonalization operator and Ci,j = Mi,jdj .

Note that in contrast to fixed rate λ0 specified in equation (2), even though each neighbor of
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individual j is assumed to receive the same influence djηj from her1, each individual is allowed to

influence her neighbors at her own rate ηj .

Similar to equation (2), equation (4) can be derived from a bayesian Nash Equilibrium. Let (xi, εi)

denotes an individual’s type, where xi is publicly observed characteristics and εi is private charac-

teristics only observable by i. Individual i’s utility depends on her own action and characteristics

as well as her neighbors’ actions. Individual i chooses action di to maximize the following utility:

Ui(di, d−i) = (xiβ + εi)di −
1

2
d2
i +

∑
j∈Ni

djdiηj

The first order condition yields equation (4)

2.3 Examples

To help readers conceptualize the heterogeneous endogenous effects model, here I apply the model

to two specific contexts one invloving labor productivity and the other online opinion leaders.

• Peer Effects in Labor Productivity

Understanding the mechanism and magnitude of the dependence of labor productivity on

coworkers is an important question for economists and policy makers. As found in Mas and

Moretti (2009), workers respond more to the presence of coworkers with whom they frequently

interact. In this case, the influence level of each individual to hers coworkers is not necessarily

the same. Equation (4) can be used to incorporate such differences.

yi =
∑
j∈Ni

yjηj + xiβ + εi,

where yi is individual i’s productivity, xi represents individual i’s characteristics (education

levels, ages, etc) and Ni is the set of coworkers that works directly with i. ηj represents the

size of influence of coworker j – all else being equal, the additional effect on individual i’s

productivity if individual j becomes her coworker

Note that if we restrict the parameters ηj to be the same across different workers, then we

are back to the classical SAR setting as laid out in equation (2). Thus, λ = 1
n

∑n
j=1 ηj can

be interpreted as the averaged spillover effects in the canonical sense.

1Further relaxation of the model considering different individual j’s influence on each of her neighbors requires

panel data.

9



Define

λ∗ =
1∑
1ηj 6=0

n∑
j=1

ηj1ηj 6=0

as the averaged endogenous effects for influential workers. λ∗ does not include non-influential

individuals in the calculation. It is a more precise measure of endogenous effects compared

with λ from equation (2).

• Online Opinion Leaders

A decision can represent whether to “tweet” a news story seen online. When individuals

make such decisions, they are often influenced by several online opinion leaders – whether

those people “tweet” the news or not. There are also many types of online opinion leaders,

including political figures and some are celebrities. For certain types of news, some opinion

leaders may be very influential while the rest may have no influence on the public. Opinion

leaders may also influence each other when deciding whether to “tweet” the news or not.

Assume a binary decision (0, 1) is made from a bayesian Nash Equilibrium, such that

d∗i =
∑
j∈Ni

d∗jηj + xiβ + εi,

where d∗i is the probability of individual i playing action 1, and
∑

j∈Nj
d∗jηj is the expected

endogenous effects from i’s neighbors Ni . Xi is the individual i’s characteristics such as

political views, age, career, etc.

Similarly, we can define λ = 1
n

∑n
j=1 ηj as the averaged endogenous effects. Since the number

of opinion leaders is very small compared with total online users, λ can be very close to 0. A

more precise measure would be

λ∗ =
1∑
1ηj 6=0

n∑
j=1

ηj1ηj 6=0

λ∗ will be the average endogenous effects for online opinion leaders. On the other hand, it is

also important to identify the set:

S = {j : ηj 6= 0}

as truly influential opinion leaders. If a similar type of news story needs to be spread the

next time, contacting those leaders and obtaining their endorsement would be a good starting

strategy.

2.4 Heterogeneous Endogenous Effects Model with Cliques

I propose an extension to my heterogeneous endogenous effects model which could address such

challenges. Consider a network composed of many cliques (small groups of connected individuals).
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S2S3

S4

Figure 1: Local Leader

Each clique has its local leader who only influences individuals within her own clique. Figure 1

provides an example of such a network structure. Note that in Figure 1, node S2, S3 and S4 represent

local leaders who only influence individuals within their own cliques. On the contrary, node S1

represents a global leader who can influence individuals across different cliques. For example, one

can think about the local leaders S2, S3 and S4 as local news channels while S1 is the national news

channel. I assume that all local news will influence the public at a small but similar rate while

different national channels can have different effects on their audience.

In the above network structure, if the number of local leaders is increasing with the number of cliques

but the number of individuals in each clique stays fixed, it is impossible to identify the individual-

specific influence of all those local leaders. To address this problem, I assume a homogeneous effect

γ0 among all individuals. This rate will capture all influence from local leaders. However, I allow

global leaders to heterogeneously influence their neighbors at rates that differ from γ0 and show

that γ0 and the heterogeneous effects can be consistently estimated.

More specifically, I consider the following model:

di =
∑
j∈Ni

djηj + γ0

∑
j∈Ni

dj + xiβ0 + εi, (5)

which be represented in matrix form as:

Dn =
(
Mn ◦Dn

)
η0 +MnDnγ0 +Xnβ0 + εn, (6)

where η′0 = (η1, η2, · · · , ηn)′. The new term γ0
∑

j∈Ni
dj captures influence from the local level.

Note that this is the same term as the spatial lag in the benchmark SAR model. The vector η0

captures the heterogeneous endogenous effects of global leaders.

If no global leader exists, i.e. ηj = 0, ∀j, the model collapses back to the classical SAR model as
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in equation (2). If there is no local level influence, i.e. γ0 = 0, then the model coincides with the

heterogeneous endogenous effects model in section 2.2.

2.5 Heterogeneous Endogenous Effects Model with Multiple Networks

In reality, individuals are often connected with each other through more than one type of network.

For example, ones colleague (connection in an employment network) could also be her friend (con-

nection in a friendship network), and ones uncle (connection in a relative network) could also be

the person she lends money to (connection in a borrowing/lending network). In such scenarios, an

individuals outcome could potentially be influenced by the outcomes of her neighbors from more

than one type of network.

To capture different types of connections among the same set of individuals, we can incorporate

multiple networks in my heterogeneous endogenous model. More specifically, a separate adjacency

matrix can be constructed for each type of network. For instance, the (i, j)-th entry of the adjacency

matrix representing friendship takes value 1 if individual i and individual j are friends and takes

value 0 otherwise; that representing the borrowing/lending network takes value 1 if individual i

and individual j lend money to each other and takes value 0 otherwise.

Let q be the total number of different types of network. Define M l
n as the adjacency matrix for the

lth network. The heterogeneous endogenous effects model with multiple networks is defined as

di =

q∑
l=1

∑
k∈Ni

dlkη
l
k + xiβ0 + εi (7)

Note that in this model, different network could potentially bear different endogenous effects for

the same individual. In equation (7), coefficient ηlk represents the rate of endogenous effect of

individual k through network l. As a result, we have nq + k coefficients for endogenous effects. In

addition, I assume endogenous effects from different types of networks are linearly additive. The

model can also be rewritten in matrix form as:

Dn =

q∑
l=1

(
M l
n ◦Dn

)
ηl0 +Xnβ0 + εn, (8)

where M l
n is the adjacency matrix for network l. ηl = (ηl1, η

l
2, · · · , ηln)′ is an n by 1 vector for

l = 1, 2, · · · , q. Define a network l as efficient network if ηli 6= 0 for at least one individual i =

1, 2, · · · , n.
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3 Identification

In this section, I discuss the conditions under which the heterogeneous endogenous effects model

is identified and the extensions of this model. My assumptions combine both standard SARs type

assumptions and LASSO type assumptions. SARs type assumptions ensure the existence of valid

instruments to identify the model. LASSO type assumptions guarantee consistent model selection

and estimation using a LASSO estimator. In what follows, I will first present the assumptions

needed for a standard heterogeneous endogenous effects model to be identified. Then I will discuss

identification assumptions for two model extensions laid out in the previous section – one hetero-

geneous endogenous effects model for networks consisting of multiple cliques and one with multiple

types of networks.

Before discussing identification assumptions for the heterogeneous endogenous effects model, lets

first recall the benchmark SAR model:

Dn = λ0MnDn +Xnβ0 + εn, (9)

Note that by rearranging the above equation, we can express endogenous variable MnDn solely as

a function of Xn and Mn, since:

Dn = J−1
n Xnβ0 + J−1

n εn

where In is the n by n identity matrix and Jn = In − λ0Mn. It is straightforward that J−1
n Xn can

serve as valid instruments for MnDn. As a result, the identification and estimation of equation (9)

can be achieved through either 2SLS or GMM as proposed in papers such as Kelejian and Prucha

(1995), Kelejian and Prucha (1998) Lee (2002), Lee (2003), and Lee (2004).

As will be explained in detail in subsequent sections, to estimate the individual specific effects

in the heterogeneous endogenous effects model, I derive a set of instruments in a similar way by

solving Dn as a function of exogenous variables and an adjacency matrix. The assumptions listed

below essentially guarantee the existence and consistency of the 2SLS estimates.

3.1 Identification Assumptions for the Heterogeneous Endogenous Effects Model

Recall that the heterogeneous endogenous effects model is specified as:

Dn =
(
Mn ◦Dn

)
η0 +Xnβ0 + εn,

First note that without additional restrictions, this model could not be point identified through

canonical method as the number of parameters n + k is greater than the number of observations
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n. To achieve identification, the key assumption that I maintain is that only a small number of

individuals in the network are influential (i.e. ηj 6= 0).

Assumption 1. Let Sn ⊂ {1, 2, · · · , n} denote the set of influential individuals (i.e. ηj 6= 0). Let

sn = |Sn| be the number of elements in Sn.

sn = o

( √
n

log n

)
, as n→∞

Assumption 1 is usually referred to as “sparsity” assumption. The assumption that most individuals

in a network are not influential is plausible under many circumstances. For example, opinion leaders

on social media only constitute a very small fraction of internet users; there are only a couple of

“cool” kids at school that might influence their friends’ smoking decisions; passionate workers that

can boost the productivity of their coworkers are also relatively rare. When many local leaders exist

within a network, the sparsity assumption could be violated. I will address this issue in section 3.2

and show that identification can still be achieved with additional assumptions.

Assumption 2.

• There exists an ηmax < 1 such that ‖η0‖∞ ≤ ηmax

• The εj are i.i.d with 0 mean and variance σ2

• The regressors xi in Xn are non-stochastic and uniformly bounded for all n. limn→∞X
′
nXn/n

exists and is nonsingular

Assumption 2 guarantees the invertibility of
(
In −Mn ◦ η0

)
. The restriction on η0 excludes the

unit root process and ensures the uniqueness of equilibrium. The assumptions on the error term

and the assumption that Xn is a fixed design matrix are the same as those imposed in the mixed

regression model2 (see Lee, 2002). I focus on the case where Xn is an n by 1 vector and study

identification as in Bramoullé et al. (2009). It is straightforward to generalize the algebra when Xn

is n by k. More instruments can be constructed in this scenario.

To proceed, recall the definition of the operator “◦” as Mn ◦Dn = Mn · diag(Dn), where diag(·) is

the diagonalization operator. Note the following property of the “◦”:(
Mn ◦Dn

)
η0 =

(
Mn ◦ η0

)
Dn

2The assumption on error terms exclude exogenous effects and correlated effects from my model. An identification

problem similar to the “reflection problem” arises when including exogenous effects. More instruments need to be

constructed, which requires better data. These are interesting directions for future research.
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(1)
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S2S3

. . . . . .

(2)

Figure 2: Examples of networks which violate assumption 3

If the invertibility of
(
In −Mn ◦ η0

)
is guaranteed, then

Dn =
(
Mn ◦Dn

)
η0 +Xnβ0 + εn ⇔ Dn =

∞∑
i=0

(
Mn ◦ η0

)i
(Xnβ0 + εn) (10)

This is formally shown in Appendix B.

Since
(
Mn◦Dn

)
η0 is correlated with εn and η0 is sparse (i.e. having at most sn non-zero elements),

we need at least sn instruments to deal with the endogeneity in the model. Using equation (10),

we can express the expectation of Dn as follows:

E(Dn) = Xnβ0 +
(
Mn ◦Xn

)
(βη0) +

∞∑
i=2

(
Mn ◦ η0

)i
β0Xn, (11)

Let (·)S denote the operator such that (Mn)S is a sub matrix of Mn with its columns restricted to

columns corresponding to the elements of S. The first and second terms of equation (11) suggest

that Xn and (Mn ◦Xn)S can serve as valid instruments to point identify β0 and η0.

Assumption 3.
[
Xn, (Mn ◦Xn)S

]
is full rank.

Assumption 3 is the key assumption that leads to identification. The linear independence among

(Mn◦Xn)S requires the assumption that any two influential individuals may not necessarily connect

with identical neighbors. Moreover, assumption 3 also requires that neighbors of an influential

individual cannot be a linear combination of neighbors of several other influential individuals,

which rules out network structures as depicted in Figure 2:
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S2
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Figure 3: Fixed Effects

In other words, as long as each influential individual has a neighbor that is not connected with

any other influential individuals, assumption 3 is satisfied. One can think of the identification here

as estimating fixed effects from influential individuals. Collinearity arises when the fixed effects of

two influential individuals are imposed on exactly the same observations. As shown in Figure 3,

the influence of S1 can be identified by comparing red and yellow groups, while the influence of S2

can be identified by comparing blue and black groups. Or the influence of S1 can be identified by

comparing green and blue groups, while the influence of S2 can be identified by comparing red and

green groups.

Further, as shown in Appendix B, one can rewrite equation (11) as:

E(Dn) = Xnβ0 +
(
Mn ◦Xn

)
η̃, (12)

where η̃j = ηjf(β0, Xn,Mn) for some function f depends on β0, Xn, and Mn. Note that η̃j = 0 as

long as ηj = 0. As a result, the sparsity assumption is also satisfied in equation (12), and I can

thus estimate equation (12) as the first stage in using a LASSO type estimator.

At this point, if the truly influential individuals set Sn were available to us, we would be able to

estimate the model using 2SLS method or GMM. However, in most cases, Sn is not known before-

hand. I propose to use a LASSO type estimator to both recover the set of influential individuals

and estimate the model. For LASSO to achieve correct recovery, I need the following assumptions:

Assumption 4.

(Irrepresentable Condition) There exists N ∈ N: ∀n ≥ N , there is a ϑ ∈ (0, 1) such that

P
(∥∥∥diag((D̂n)Sc)Σndiag((D̂n)S)−1sign(η0)

∥∥∥
∞
≤ ϑ

)
= 1;

where

Σn = (Mn)′Sc(Mn)S
(
(Mn)′S(Mn)S

)−1
,
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(Beta Min Condition) There exists N ∈ N: ∀n ≥ N , there is a m > 0 such that

min(|η0|)S ≥ m/
√
n,

Here (Mn)S represents the sub-matrix of Mn given by the columns corresponding to influential

individuals. Similarly, (Mn)Sc represents the sub-matrix of Mn given by the columns corresponding

to non-influential individuals.

Assumption 4 is required for the LASSO estimator to achieve a consistent selection for the set Sn in

the second stage. The Irrepresentable Condition imposes restrictions on non-influential individuals

such that the neighbors of a non-influential individual will not be exactly the same as those of

any influential individual. This is because when two individuals connect with exactly the same

neighbors, we cannot distinguish which individual is the true source of influence. This assumption

rules out identification in complete networks (i.e. all individuals are connected). The Beta Min

Condition requires the magnitude of the endogenous effects to be sufficiently strong in order to be

detected by LASSO. As shown in Zhao and Yu (2006), the Irrepresentable Condition together with

the Beta Min Condition are necessary and sufficient conditions for LASSO to achieve consistent

model selection. If consistent selection is not required, these two conditions can also be relaxed to

weaker conditions (such as the compatibility condition as in Bühlmann and van de Geer (2011)).

As shown in van de Geer et al. (2014), with the compatibility condition, inference on the de-sparse

coefficients as discussed in the next section is still valid.

Assumption 5.

(Maximum Neighbors Condition) There exists N ∈ N: ∀n ≥ N ,

‖M ′n1n‖∞ ≤ O(log n),

holds with probability equal to 1

(Variance Condition)

1

n
M ′nWn(I −Mn ◦ η0)−1(I −Mn ◦ η0)−1′WnMn → Ω,

where Wn =
(
I −Xn(X ′nXn)−X ′n

)

The Maximum Neighbors Condition requires the network structure (edges) to be sparse. More

specifically, it requires that the number of direct neighbors not increase faster than O(log n) when

the number of influential individuals increases at speed o
( √

n
logn

)
. This rate can be improved when

the number of influential individuals is fixed. The Maximum Neighbors Condition is an asymptotic
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bound on the number of neighbors for each individual as the network increases. This condition

is required to prevent shrinkage bias carried from the first stage LASSO estimation from growing

faster than o(1/
√
n) in the second stage.

The Variance Condition requires the variance-covariance matrix to converge to a limit. In classical

SARs, the spatial weight matrix is assumed to be uniformly row sum bounded. This assumption

implies the Variance Condition but imposes restrictions on the network structure. Each individual

may only connect with a finite number of neighbors. In my case, the identification of an influential

individual comes from the difference in responses between neighbors that solely connect with her

and individuals who connect with no influential individuals. For example, consider two groups of

individuals that have the same characteristic X where one group all connects with individual j

and the other does not. If the mean response of the two groups is significantly different, we can

conclude that j is influential. To identify the influence of individual j as a fixed effect, the number

of individuals affected by individual j must grow as the sample size increases. As a result, the row

sum for influential individuals cannot be bounded by a fixed number.

The heterogeneous endogenous effects model is identified under assumptions 1-5 as a linear system

with a unique solution. I discuss the identification of my model with cliques and with multiple

networks in the following two sections.

3.2 Identification Assumptions with Cliques

Recall the heterogeneous endogenous effects model with cliques, represented as follows:

Dn =
(
Mn ◦Dn

)
η0 +MnDnγ0 +Xnβ0 + εn

Define global leaders as those influential individuals who influence multiple cliques and whose

neighborhoods increase as n increases. Define local leaders as influential individuals who are not

global leaders.

Assumption 1’. Among n individuals in the network, let Sn ⊂ {1, 2, · · · , n} be the set of global

leaders. Let sn = |Sn| be the number of elements in Sn. Assume:

sn = o

( √
n

log n

)
, as n→∞

Assumption 1’ only requires the number of global leaders to be sparse. My model does not impose

any restriction on the number of local leaders. As a result, it does not rule out situations where
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everyone is (locally) influential. Local leaders’ influence will be captured by the γ0, coefficient of

classical spatial lag.

To ensure invertibility of the matrix
(
In −Mn ◦ η0 −Mnγ0

)
, I modify the first part of assumption

2 as:

Assumption 2’. There exists an ηmax < 1 such that ‖η0 + γ0‖∞ ≤ ηmax

Similar to assumption 2, this assumption excludes unit root processes. Since there exists a local

level influence γ0 in the network, global level influence η0 needs to be further bounded above by 1.

As a result, equation (6) can be transformed into the following:

E(Dn) = Xnβ0 +
(
Mn ◦Xn

)
(β0η0) +MnXn(β0γ) +

∞∑
i=2

(
Mn ◦ η0 + γMn

)i
β0Xn

Equation (6) introduces one more coefficient γ0 compared with equation (4). As a result, assumption

3 is modified to include an extra instrument MnXn, which is also the classic instrument used in

equation (2):

Assumption 3’.
[
Xn, (Mn ◦Xn)S ,MnXn

]
is full rank.

Assumption 3’ is similar to assumption 3 and requires the additional instrument MnXn to be

linearly independent with
[
Xn, (Mn ◦Xn)S

]
. The remaining assumptions 4 and 5 are unchanged.

3.3 Identification Assumptions with Multiple Networks

Recall the heterogeneous endogenous effects model with multiple networks, represented as follows:

Dn =

q∑
j=1

(
M j
n ◦Dn

)
ηj0 +Xnβ0 + εn

First notice that the number of coefficients in this model becomes nq+ k. The number of observed

networks q is also allowed to increase as the number of observations increases. As a result, the

sparsity assumption will be imposed on both the influential individuals and the effective networks.

I assume that some of the networks are completely irrelevant (i.e. ηj0 = 0) and that relevant

networks are not necessarily passing influence for everyone (i.e. ηj0 6= 0 but ηj0,i = 0 for some i).

Second, to ensure invertibility, for any matrix norm ‖.‖:∥∥∥∥∥∥
q∑
j=1

(
M j
n ◦ η

j
0

)∥∥∥∥∥∥ ≤
q∑
j=1

∥∥∥(M j
n ◦ η

j
0

)∥∥∥ ≤ q∑
j=1

‖ηj0‖∞
∥∥∥ (M j

n

) ∥∥∥
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Because M j
n is the adjacency matrix such that each entry is 0 or 1,

∑q
j=1 ‖η

j
0‖∞ < 1 guarantees

the invertibility of I −
∑q

j=1

(
M j
n ◦ ηj0

)
.

Third, I require
[
Xn,

(
M1
n ◦Xn

)
S
,
(
M2
n ◦Xn

)
S
, · · · ,

(
M q
n ◦Xn

)
S

]
to be full rank. Compared with

the standard model, this assumption requires the independence condition to hold across different

networks. Again, we cannot identify the source of influence if two influential individuals connect to

the same neighbors. Fourth, I assume conditions that guarantee a consistent selection of square-

root sparse group LASSO. And, finally, the Maximum Neighbor Condition needs to be satisfied

in all q adjacency matrices. Since the five conditions for multiple networks are very similar to

assumption 1-5, I list them formally in the appendix as assumption 1*-5*.

4 Estimation

I propose an estimator similar to the two-stage least square method but use LASSO in both stages.

The estimator proposed here is differs from the “double selection” estimator proposed in Belloni

et al. (2014a) as I plugin the fitting from the first stage directly to the second stage. It is in the

same framework as that proposed in Zhu (2016). I call this estimator a two-stage LASSO (2SLSS)

estimator. In this section, I define this 2SLSS procedure and propose a bias corrected version of

the estimator. I show how this procedure can be extended to estimate my model for networks

consisting of multiple cliques and my model for multiple networks.

4.1 Two-Stage LASSO Estimator

I propose to estimate equation (4) using the following estimator:

Two-Stage LASSO Estimator:

• First Stage:

(β̃, η̃) = arg min
β,η
‖Dn −Xnβ −

(
Mn ◦Xn

)
η‖2 + λ|η|1

Obtain a LASSO fitting D̂n

D̂n = Xnβ̃ +
(
Mn ◦Xn

)
η̃
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• Second Stage:

(β̂, η̂) = arg min
β,η
‖Dn −

(
Mn ◦ D̂n

)
η −Xnβ‖2 + λ|η|1

As shown in section 3,
(
Mn ◦ Dn

)
is correlated with εn. Thus equation (4), equation (6) and

equation (8) cannot be estimated directly using LASSO or sparse group LASSO. The instruments

proposed in section 3 are [Xn, (Mn◦Xn)S ]. We do not observe the set S but note that [Xn, (Mn◦Xn)]

is a set of regressors that contains the valid instruments.

The two-stage least square method can be used to address endogeneity in SARs as in Lee (2003).

In the first stage, MnXn are used as instruments to estimate Dn. In the second stage, MnD̂n is

used to replace MnDn to avoid endogeneity.

Following the same idea, I estimate a first stage using [Xn, (Mn ◦ Xn)]. Since there are n + k

regressors, I use the square-root LASSO to select those instruments in set S. I choose the square-

root LASSO over standard LASSO to avoid a pre-estimation of the unknown variance of the error

term σ2. I construct a synthetic D̂n variable using square-root LASSO estimates. In the second

stage, I replace Dn with D̂n in the regressors and estimate the coefficients η̂ using the square-root

LASSO again.

The statistical properties of two-stage estimators using LASSO have been studied in Zhu (2016),

where she derives bounds for the estimator and proves consistency of model selection in a general

setting. Zhu (2016) studied the over identified case where the number of endogenous regressors goes

to infinity while the number of instruments for each regressor also goes to infinity. I studied the

just identified case using the instruments proposed in section 3, where the number of endogenous

regressors is the same as the number of instruments and both go to infinity.

4.2 De-sparse 2SLSS Estimator

The estimator β̂ and η̂ suffers from LASSO shrinkage bias. Moreover, post model selection inference

conditioning on the selected model Ŝn = {i|η̂ 6= 0} suffers from the omitted variable bias and thus is

not uniformly valid. (see Leeb and Potscher, 2005, 2008, 2009). I construct a “de-sparse” estimator

under my setting and derive the asymptotic distribution for it. I propose the following de-sparse

LASSO estimator:
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De-sparse 2SLSS Estimator:

• Define

ê = η̂ + Θ̂(Mn ◦ D̂n)′(Dn −Xnβ̂ − (Mn ◦ D̂n)η̂)/n

• Define

b̂ = β̂ − (X ′nXn)−X ′n(Mn ◦ D̂n)′(Dn −Xnβ̂ − (Mn ◦ D̂n)η̂)/n

β̂ and η̂ are estimators from the 2SLSS. Θ̂ is defined by the nodewise regression as in Meinshausen

and Bühlmann (2006). Nodewise regression explores the correlation between the columns of the

design matrix Wn(Mn◦D̂n) by regressing each column on all the rest of the columns while penalizing

the coefficients. An approximation of the inverse of the matrix 1
n(Mn ◦ D̂n)′Wn(Mn ◦ D̂n) can be

constructed based on nodewise regression. Further, define Ŝn = {i|η̂ 6= 0}, which represents the

LASSO selected active set. The estimators (ê, b̂) are adjusted for the LASSO shrinkage bias and

are a consistent estimator for β and η. They are similar to the estimators proposed in van de Geer

et al. (2014), but are constructed through a two-stage process as well as using square-root LASSO.

The de-sparse LASSO estimator does not depend on the selected active set. Thus, it does not

suffer from the non-uniformity problem. Notice that the double selection method proposed in

Belloni et al. (2014a) could also be applied to conduct inference on β̂. Belloni et al. (2014b) shows

the first order equivalence of the double selection method and the de-sparse method. On the other

hand, the main interest of this paper is the coefficients η̂. The double selection method does not

provide a way to conduct inference for all the coefficients in the model, while the de-sparse LASSO

estimator does.

My de-sparse LASSO estimator differs from the one proposed in Zhu (2016). Since the instruments

are known in my case, I can derive the asymptotics for my estimator explicitly. By considering

a sparse network structure (e.g. Maximum Neighbors Condition), I can show that the shrinkage

bias from the first stage is negligible (o(1/
√
n)). The estimator proposed in Zhu (2016) adjusts

shrinkage bias from both the first and second stages. In order to show consistency, she assumes

the convergence of the product between the residual of nodewise regression and the endogenous

regressors.

I will defer the proof of consistency for the LASSO selected set Ŝn and consistency and asymptotic

distribution for my estimator (ê, b̂) to section 5. In the remainder of this subsection, I will define
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the estimators for the two extended models.

4.3 2SLSS with Cliques

To estimate equation (6), I propose the following 2SLSS:

Two-Stage LASSO Estimator with Homogenous Effects:

• First Stage:

(β̃, γ̃, η̃) = arg min
β,γ,η
‖Dn −Xnβ −MnXnγ −

(
Mn ◦Xn

)
η‖2 + λ(|η|1 + |γ|)

Obtain a LASSO fitting D̂n

D̂n = Xnβ̃ +MnXnγ̃ +
(
Mn ◦Xn

)
η̃

• Second Stage:

(β̂, γ̂, η̂) = arg min
β,γ,η
‖Dn −MnD̂nγ −

(
Mn ◦ D̂n

)
η −Xnβ‖2 + λ(|η|1 + |γ|)

The estimator is similar to that for the previous model except that the classical spatial lag MnXn

is now included in the estimation. In the above estimator, I penalize ηs and γ at the same rate

because I have no prior knowledge of these two effects. One can penalize them at a different rate or

not penalize γ if one believes that influence from local leaders is more likely than that from global

leaders or vice versa. Since γ and ηs are both penalized coefficients, a similar de-sparse LASSO

estimator can be constructed for γ:

De-sparse 2SLSS Estimator with Cliques:

• Define

r̂ = γ̂ + Θ̂(MnD̂n)′(Dn −Xnβ̂ −MnD̂nγ̃ − (Mn ◦ D̂n)η̂)/n
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Note that Θ̂ should be an approximation for the inverse of the matrix 1
n [MnD̂n, (Mn◦D̂n)]′Wn[MnD̂n, (Mn◦

D̂n)] in this case.

4.4 Multiple Networks

When multiple networks exist, each individual will have network-specific endogenous effects. The

number of unknown coefficients increases from n + k to nq + k compared with the standard case.

These coefficients can also be classified into q different groups based on networks. By applying

the sparsity assumption to the relevant networks, we can estimate the model using the square-root

sparse group LASSO instead of the square-root LASSO and propose the following estimator. The

square-root sparse group LASSO penalizes both the l1 and l2 norm in each group. It can identify all

the relevant groups under weaker assumptions compared with the square-root LASSO estimator.

Two-Stage LASSO Estimator with Multiple Networks:

• First Stage:

(β̃, η̃) = arg min
β,η


∥∥∥∥∥∥Dn −Xnβ −

q∑
j=1

(M j
n ◦Xn)ηj

∥∥∥∥∥∥
2

+

 q∑
j=1

(
λ1‖ηj‖2 + λ2‖ηj‖1

)
Obtain a LASSO fitting D̂n

D̂n = Xnβ̃ +

q∑
j=1

(M j
n ◦Xn)η̃j

• Second Stage:

(β̂, η̂) = arg min
β,η


∥∥∥∥∥∥Dn −Xnβ −

q∑
j=1

(M j
n ◦ D̂n)ηj

∥∥∥∥∥∥
2

+

 q∑
j=1

(
λ1‖ηj‖2 + λ2‖ηj‖1

)

The square-root sparse group LASSO introduces two tuning parameters, λ1 and λ2, to penalize

both the l1 and the l2 norm in each network. Similar to the LASSO estimator, the geometric shape

of the penalties allows the square-root sparse group LASSO to identify sparsity not only within

each network (group) but also among networks (groups). In other words, some networks could be

completely irrelevant (i.e. ηj = 0) and within relevant networks, some individuals can have no

influence on their neighbors (i.e. ηj 6= 0 but ηji = 0 for some i). The sparse group Lasso was first
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proposed by Simon et al. (2013). They provide an algorithm to solve this problem without deriving

any statistical properties. I modify the estimator by taking the square-root of the mean square

error term in the minimization problem. Similar to the square-root LASSO proposed in Belloni

et al. (2011), the method becomes pivotal since it does not require a pre-estimation of the standard

deviation σ. I will prove the statistical properties of square-root sparse group LASSO in section 5.

The de-sparse LASSO estimator for square-root sparse group LASSO is proposed as follows:

De-sparse 2SLSS Estimator for Square-root Sparse Group LASSO:

• Define

êm = η̂ + Θ̂ZẐ
′
n(Dn − Ẑnη̂ −Xnβ̂)/n

b̂m = β̂ − (X ′nXn)−1X ′nẐnΘ̂ZX
′
n(Dn − Ẑnη̂ −Xnβ̂)/n

where Ẑn =
[
(M1

n ◦ D̂n), (M2
n ◦ D̂n), · · · (M q

n ◦ D̂n)
]

and Θ̂Z is the approximation of the inverse of

the matrix 1
n Ẑ
′
nWnẐn.

5 Statistical Properties

In this section, I consider the statistical properties for the de-sparse 2SLSS estimators (ê, b̂, Ŝn)

proposed in section 4. I show consistency and derive asymptotic normality for my de-sparse esti-

mators. In order to show consistency and asymptotic normality for the de-sparse 2SLSS estimator

with multiple networks, I derive the statistical properties for square-root sparse group LASSO,

which have not been previously defined in statistics literature.

5.1 Consistency

The proof of consistency has two parts. 1) I show that the selected active set converges to the true

non-zero parameter set. 2) I show that the de-sparse estimators converge to the true parameters.

Theorem 1. In heterogeneous endogenous effects model and with assumption 1-5, if λ ∝
√

logn
n

• limn→∞ P(Ŝn = S) = 1
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• ê→ η0

• b̂→ β0

The consistency of the LASSO active set Ŝn follows from assumption 4 as is shown in Zhao and Yu

(2006). The consistency of ê and b̂ can be shown by taking the Karush-Kuhn-Tucker conditions of

the LASSO minimization problem in the second stage. The shrinkage bias carried from the first

stage: 1
n(Mn ◦ D̂n)′

(
Mn ◦ (D̂n −Dn)

)
η0 can be shown of order o(1/

√
n). The details of this proof

are provided in the appendix.

In the presence of cliques, if γ is penalized, it can be treated as one of the components in η. On the

other hand, if it is not penalized, it can be treated as one of the components in β. The consistency

follows directly from Theorem 1:

Corollary 1. In the heterogeneous endogenous effects model with cliques and under assumptions

1’-3’, assumptions 4-5, if λ ∝
√

logn
n

• limn→∞ P(Ŝn = S) = 1

• ê→ η0

• r̂ → γ0

• b̂→ β0

In the presence of multiple networks, theorem 2 summarizes the consistency results.

Theorem 2. In the heterogeneous endogenous effects model with multiple networks and under

assumptions 1*-5*, if λ1 ∝
√

logn
n and λ2 ∝

√
logn
n

• limn→∞ P(Ŝn = S) = 1

• êjm → ηj0 for j = 1, · · · , q

• b̂m → β0

The derivation of theorem 2 is similar to that of theorem 1 expect that the square-root LASSO is

replaced with the square-root sparse group LASSO. Theorem 1, corollary 1 and theorem 2 establish

the consistency for my de-sparse 2SLSS estimators.
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5.2 Asymptotics

Post inference or inference after model selection are not uniformly valid. Define the set:

B(s) = {η ∈ Rn|{j, ηj 6= 0} ≤ s}

As shown in Leeb and Potscher (2005), Leeb and Potscher (2008), and Kasy (2015)

sup
η0∈B(s)

∣∣∣∣∣P
(√

n(η̂j − η0)

V̂j
< t

)
− Φ(t)

∣∣∣∣∣9 0 (13)

where η̂j can be any estimator based on a selected model, V̂j is the associated standard deviation

and Φ(t) is the normal CDF function. When ηj is of order O(1/
√
n), the probability that LASSO

fails to select this regressor into the active set can be non-zero. The resulting post model selection

estimator will carry the omitted variable bias because of the exclusion of regressor j from the model.

Thus, post inference conditioning on the selected model cannot converge to the true parameters

uniformly over the models defined by sparsity.

On the other hand, the de-sparse LASSO estimator is uniformly valid since the inference is not

conditioned on the selected model (see van de Geer et al., 2014). I follow the same idea and show

that my de-sparse 2SLSS estimators achieve asymptotic normality with square-root LASSO and

square-root sparse group LASSO.

Theorem 3. In the heterogeneous endogenous effects model and under assumption 1-5, if λ ∝√
log n/n

√
n(ê− η0) = E1 + ∆1,
√
n(b̂− β0) = E2 + ∆2,

where

E1 ∼ N(0, σ2Θ1diag(Γ)Ωdiag(Γ)Θ′1),

E2 ∼ N(0, σ2Θ2diag(Γ)Ωdiag(Γ)Θ′2),

and

‖∆1‖∞ = op(1), ‖∆2‖∞ = op(1),

Γ = lim
n→∞

(I −Mn ◦ η0)−Xnβ0,

Θ1 = lim
n→∞

Θ̂, Zn = (Mn ◦ D̂n), Z̃n = Xn(X ′nXn)−1X ′nZ,

Θ2 = lim
n→∞

1

n

(
I − ZnΘ̂Z̃ ′n/n

)′
Xn(X ′nXn)−1X ′n

(
I − ZnΘ̂Z̃ ′n/n

)

Theorem 3 shows that the 2SLSS estimator achieves normality at the standard rate
√
n. The shifts
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∆1 and ∆2 represent the bias from using nodewise regression and they are shown to be op(1) with

the proper choice of tuning parameters.

Corollary 2. In the heterogeneous endogenous effects model with cliques and under assumption

1’-3’, and assumptions 4-5, if λ ∝
√

log n/n

√
n

(
(ê− η0)

(r̂ − γ0)

)
= E1 + ∆1,

√
n(b̂− β0) = E2 + ∆2,

where

E1 ∼ N(0, σ2Θ1diag(Γ)Ωdiag(Γ)Θ′1),

E2 ∼ N(0, σ2Θ2diag(Γ)Ωdiag(Γ)Θ′2),

and

‖∆1‖∞ = op(1), ‖∆2‖∞ = op(1),

Γ = lim
n→∞

(I −Mn ◦ η0)−Xnβ0,

Θ1 = lim
n→∞

Θ̂, Zn = [(Mn ◦ D̂n),MnD̂n], Z̃n = Xn(X ′nXn)−1X ′nZ,

Θ2 = lim
n→∞

1

n

(
I − ZnΘ̂Z̃ ′n/n

)′
Xn(X ′nXn)−1X ′n

(
I − ZnΘ̂Z̃ ′n/n

)
For my setting with multiple networks, I derive the following results:

Theorem 4. In the heterogeneous endogenous effects model with multiple networks and under

assumptions 1*-5*, if λ1 ∝
√

logn
n and λ2 ∝

√
logn
n

√
n(êm − η0) = Em1 + ∆m1,
√
n(b̂m − β0) = Em2 + ∆m2,

where

Em1 ∼ N(0, σ2ΘZ1diag(Γ)Ωmdiag(Γ)Θ′Z2),

Em2 ∼ N(0, σ2ΘZ2diag(Γ)Ωmdiag(Γ)Θ′Z2),

and

‖∆m1‖∞ = op(1), ‖∆m2‖∞ = op(1),

ΘZ1 = lim
n→∞

Θ̂Z , Zn = (Mn ◦ D̂n), Z̃n = Xn(X ′nXn)−1X ′nZ,

ΘZ2 = lim
n→∞

1

n

(
I − ZnΘ̂Z̃ ′n/n

)′
Xn(X ′nXn)−1X ′n

(
I − ZnΘ̂Z̃ ′n/n

)
The proof of Theorem 2 and Theorem 4 requires the following results from the square-root sparse

group LASSO: 1) Bounds on the prediction, i.e.
∥∥∥∑q

j=1(M j ◦Xn)(η̂j − ηj0) +Xn(β̂ − β0)
∥∥∥

2
. λ.

and 2) Consistency of selection i.e. Ŝn = S. I prove these two statistical properties in the appendix.
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6 Simulations

In this section, I report Monte Carlo simulation results for my heterogeneous endogenous effects

model and its extension with cliques and with multiple networks. My results are robust when

applied to networks generated by different algorithms and to networks of different sizes.

6.1 Heterogeneous Endogenous Effects Model

To assess the finite sample performance of my estimator for the heterogeneous endogenous effects

model, I use the Erdos-Renyi algorithm to simulate a network of size n. Individuals are added into

the graph one at a time. When one individual is added to the network, she has probability p of

generating a link with all existing individuals independently. I choose p = 0.1 and p = 0.2 in the

simulation. I avoid a large p because collinearity among regressors may arise when links become

very dense, violating assumption 5.

I set the first 5 individuals to be influential by letting their coefficients ηj be non-zero. To guarantee

the existence of endogenous effects, I arbitrarily specify the connections among these five individ-

uals. The adjacency matrix Mn for the five influential individuals is given in the appendix. If the

connections among these five individuals are not fixed, there is a possibility that no connections are

formed among these five and thus there is no endogeneity in the network. In this case, the results

will be too good in such a case.

The true parameters are fixed as β0 = 3, η0,1 = η0,2 = η0,3 = η0,4 = η0,5 = 0.5, and η0,j = 0 for

j > 5. Individual characteristics Xn are generated from a standard normal distribution.

Individual outcomes Yn are then generated as Yn = (I −Mn ◦ η0)−1(Xnβ0 + εn) where εn is drawn

independently from a standard normal distribution.

I use (Mn, Xn, Yn) as observations and apply my two-stage LASSO estimator. I construct the de-

sparse 2SLSS estimator and repeat the above process 200 times in a manner similar to van de Geer

et al. (2014).

I report the average coverage probability (Avgcov) and average length (Avglength) of confidence

intervals for the coefficients for influential individuals, {η1, · · · , η5}, the coefficient for individual

29



characteristics, β0, and the coefficients for non-influential individuals, the ηjs (j > 5). For example:

Avgcov S0 = s−1
0

∑
j∈S0

P[η0,j ∈ CIj ] (14)

Avglength S0 = s−1
0

∑
j∈S0

length(CIj) (15)

I separately report the average coverage and average length for each of the five influential indi-

viduals. As shown in table 8, the coverage is around the nominal 95% level and the length of the

confidence intervals decreases as the sample size grows.

Since we can construct confidence intervals for all n coefficients, joint inference can be performed

under the control of False Discover Rate (FDR). As shown in equation (16), the power reported in

table 8 represents the average percentage in the active set (i.e. {1, 2, 3, 4, 5}) that is significant after

controlling for the False Discover Rate (FDR) at 5% using the Benjamini-Hochberg method. The

FDR reported in table 8 represents the average percentage of the non-active set (i.e. {6, 7, · · · , n})
that is significant after controlling the FDR at 5% using the Benjamini-Hochberg method. The

exact definition is as in equation (17).

Power = s−1
0

∑
j∈S0

P[H0,j is rejected] (16)

FDR =
∑
j∈Sc

0

P[H0,j is rejected]/

n∑
j=1

P[H0,j is rejected] (17)

The power varies because the networks change when the sample size increases. It is strictly in-

creasing when the network is sparse (i.e. p = 0.1). The power decreases in the p = 0.2 case as

the problem of endogeneity increases when the network is dense. The empirical FDR is controlled

well, which all under the 5% rate. Notice that the confidence interval’s length is large when the

sample size equals 50. This is because when the number of individuals is small, some individuals

might only connect to 1 or 2 other individuals. This means that the regressors that represent this

individual are all 0s except for a small numbers of non-zero terms, which leads to a large standard

error.

The two-stage LASSO estimator requires the choice of two tuning parameters (i.e. the two λs from

both stages as in section 4.1). Moreover, when calculating Θ̂ in the De-sparse 2SLSS estimator (sec-

tion 4.2) and using the nodewise regression, one also need to choose a tuning parameter. Following

the suggestion in Belloni et al. (2011), I use a benchmark choice of λ for the first stage and nodewise
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regression (i.e. λ ∝ Φ−1(1− α/(2n))/
√
n), where Φ−1(.) is the inverse of normal cdf function. For

the second stage, I use cross-validation to pick λ to enhance finite sample performance.

I further increase the number of influential individuals to 10 and report the results in table 9.

Again, to guarantee the existence of endogeneity, the adjacency matrix for these ten individuals is

set as shown in the appendix. All average coverages and average confidence interval lengths are

separately reported for these ten individuals.

The choice of the tuning parameters is similar to those used to generate table 8 for networks with

50 and 200 individuals. For networks with 500 individuals, I use benchmark λ to replace cross

validation in the second stage. The idea is to show the converge of the process, such that valid

coverage can still be generated under theory guide tuning parameters (see Belloni et al., 2011).

As shown in table 9, all coverages are very close to the nominal levels. The average lengths

of confidence intervals is slightly larger compared with table 8. This is due to the increase in

influential individuals; it is more difficult to differentiate them from those irrelevant individuals.

Table 10 presents the result when a network is generated using the Watts-Strogatz mechanism or

the “small world” network. Define the pN (even number) as the mean degree for each node and a

special parameter ω = 0.4. The WattsStrogatz mechanism works as follows:

• construct a graph with N nodes each connected to pN neighbors, which pN
2 on each side.

• For each node ni, take every edge (ni, nj) with i < j and rewrite it with probability ω.

Rewrite means replace (ni, nj) with (ni, nk) where k is choosing uniformly among all nodes

that are not currently connected with ni

The influential individuals are chosen as the 1st, 5th, 15th, 40th and 50th individuals in the network.

As shown in table 10, my estimator is robust under a “small world” algorithm. Nominal level is

reached as the size of the network grows and the length of confidence intervals is slightly smaller

than in the standard case.

6.2 Heterogeneous Endogenous Effects Model with Cliques

Table 12 presents results for the heterogeneous endogenous effects model with cliques. The outcome

variable Yn is now generated as Yn = (I −Mn ◦ η0 −Mnγ0)−1(Xnβ0 + εn). The coefficient of the

homogeneity effects γ0 is set at 0.05.
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The choice of the tuning parameters is similar to that used to generate table 8 for networks with

50 and 200 individuals. For networks with 500 individuals, I use benchmark λ (i.e. λ ∝ Φ−1(1 −
α/(2n))/

√
n) to replace cross validation in the second stage.

The coverage is above the 95% nominal level in all cases. I also report the mean coverage and

average length of the confidence interval for the coefficient of the homogeneous effects. My model

gives above 95% coverage in all cases. I also report the empirical probability of rejecting a null

hypothesis of zeros effects at 95% nominal level. The probability of rejecting the test converges to

1 when the sample size grows to 500.

6.3 Heterogeneous Endogenous Effects Model with Multiple Networks

In this Monte Carlo exercise, I include two different networks generated by the Erdos-Renyi algo-

rithm, where one is influential and the other is not. I use the two-stage LASSO estimator with

multiple networks to estimate the parameters. The square-root sparse group LASSO requires two

tuning parameters, one for the l2 norm and the other for the l1 norm. I set the two parameters to

be equal to each other as the correlations among the columns of the adjacency matrices are very

small. The choice of tuning parameters is similar to that used to generate table 1 for networks

with 50 and 200 individuals. For networks with 500 individuals, I use a rule of thumb to choose

λ instead of cross-validation in the second stage. Table 11 summarizes the results. As in previous

results, all coverages exceed the nominal 95% level.

I report the empirical probabilities such that at least one individual is detected in a given network

controlling for the FDR at 5% using the Benjamini-Hochberg method. I also report the average

number of detections conditioning on at least one individual who is detected in a given network.

Tables 11 shows that network 1, which is the relevant network, is more likely to be detected in

all cases than network 2, the irrelevant network. The average number of identified individuals for

network 1 is also more than that of network 2.

7 Empirical Application

I use the proposed estimator to study the importance of different networks in spreading the par-

ticipation in a micro finance program within rural Indian villages. I show that different kinds of

networks have different effects on individuals decisions. I identify the influential individuals in

each village. My analysis shows that leaders among agricultural laborers, Anganavadi teachers,
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construction workers, small business owners and mechanics are very likely to be influential in the

villages.

7.1 Background

A non-profit organization named Bharatha Swamukti Samsthe (BSS) has been running micro fi-

nance programs in rural southern Karnataka, India since 2007. It provides small loan products

to poor women and, through them, to their families. The villages covered by the program are

geographically isolated and heterogeneous in terms of caste.

When BSS initially introduces a micro finance program to a village, the credit officers of BSS first

approached a number of “predefined leaders”, such as teachers, shopkeepers and village elders.

BSS held a private meeting with these leaders and explained the program. Then these predefined

leaders passed the information onto other villagers. Those who were interested in the program

and contacted BSS were trained and assigned to groups to receive credit. Each group consisted

of 5 borrowers and group members were jointly liable for loans. Loans were around 10,000 rupees

(approximately $200) at an annualized rate of approximately 28%. Note that 74.5 percent of the

households in rural area said the monthly income of their highest earning member is less than 5,000

rupees (source: Socio-Economic Caste Census-2011). This loan had to be repaid within 50 weeks.

In 2006, 75 villages in Karnataka were surveyed 6 months before the initiation of the BSS micro

finance program. This survey consisted of a village questionnaire and a detailed follow-up survey

conducted among a subsample of villagers. The village questionnaire gathered demographic infor-

mation on all households in a village including GPS coordinates, age, gender, number of rooms,

whether the house had electricity, and whether the house had a latrine. The data set also con-

tains information on the “pre-defined leaders” set who helped spread the information to the entire

village. The follow-up survey collected data from a villager sample stratified according to age, ed-

ucation level, caste, occupancy, etc. It also asked questions about social network structures along

12 dimensions, including:

• Friends: Name the 4 non-relatives whom you speak to the most.

• Visit-go: In your free time, whose house do you visit?

• Visit-come: Who visits your house in his or her free time?

• Borrow-kerorice: If you needed to borrow kerosene or rice, to whom would you go?
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• Lend-kerorice: Who would come to you if he/she needed to borrow kerosene or rice?

• Borrow-money: If you suddenly needed to borrow Rs. 50 for a day, whom would you ask?

• Lend-money: Who do you trust enough that if he/she needed to borrow Rs. 50 for a day you

would lend it to him/her?

• Advice-come: Who comes to you for advice?

• Advice-go: If you had to make a difficult personal decision, whom would you ask for advice?

• Medical-help: If you had a medical emergency and were alone at home whom would you ask

for help in getting to a hospital?

• Relatives: Name any close relatives, aside from those in this household, who also live in this

village.

• Temple-company: Do you visit a temple/mosque/church? Do you go with anyone else? What

are the names of these people?

For the 43 villages where micro finance was introduced by the time of 2011, BSS also collects infor-

mation on which villagers have joined the program. These survey questions reveal the underlying

structures for connections among any two individuals in the network. Figure 4 presents all those

connections at the household-level in a graph. Each node in the graph represents a household.

A green node indicates that the household joined the micro finance program, while a blue node

indicates that it did not. Bigger nodes represent those households in which at least one family

member has been chosen as being among the “pre-defined leaders”. An edge between two nodes

signifies that the two nodes are connected in at least one of the 12 networks. The darker the color

of the edge, the more connections it represents.

This dataset provides an ideal framework for application of the heterogeneous endogenous effects

model. First, it allows me to model endogenous effects. An individual may decide to join the

micro finance program if her neighbors or friends plan to join. Second, the endogenous effects are

individual specific. Given the diversity of the villagers, it is possible that some villagers are more

influential than others. Third, it allows me to implement the heterogeneous endogenous effects

model with multiple networks. The questions asked regarding multiple dimensions of the network

structure allow me to explore which network is most influential.
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Figure 4: Network in Village 1
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7.2 Data

In this empirical study, I focus on the 38 villages that have been introduced to the micro finance

programs by BSS and have data publicly available 3. For each village, I can observe both its social

network structure and the villagers’ decisions about joining the program. I drop the data for one

village (Village 46) that contains incorrect entries on the index of households. Table 13 summarizes

the descriptive statistics for each village.

Among the 12 questions about the social network structure, 4 pairs essentially capture the same

connections among the villagers 4. Therefore, I consolidate each pair of questions into one dimen-

sion:

• Visit-go-come

– In your free time, whose house do you visit?

– Who visits your house in his or her free time?

• Borrow-Lend-kerorice

– If you needed to borrow kerosene or rice, to whom would you go?

– Who would come to you if he/she needed to borrow kerosene or rice?

• Borrow-Lend-money

– If you suddenly needed to borrow Rs. 50 for a day, whom would you ask?

– Who do you trust enough that if he/she needed to borrow Rs. 50 for a day you would

lend it to him/her?

• Help decision

– Who comes to you for advice?

– If you had to make a difficult personal decision, whom would you ask for advice?

I restructure all the data at the household level as only women are allowed to apply for the micro

finance program because the goal of BSS is to support families through the women in them. As a

3The dataset can be downloaded from http://web.stanford.edu/ jacksonm/Data.html
4Assuming every villager truthfully answers a pair of questions, the adjacency matrices associated with each

question are the same. It is also plausible to treat villagers’ answers to each question as a separate directed graph.

However, these questions do not allow for clear determination of the directions. For example, if villager A visits

villager B’s house, it is not clear whether villager A influences villager B or vice versa
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result, a womans decision to join or not join the micro finance program becomes her familys decision.

A connection between two villagers becomes a connection between two families. A “predefined

leader” is a villager selected by BSS to help spread information about the micro finance program

to the other villagers. At the household level, I use the term “predefined leader” for a household

that contains at least one such villager.

7.3 Sparsity and Equilibrium

To demonstrate how my method identifies influential households, I model families’ decisions regard-

ing joining the micro finance program as a network game with Bayesian Nash Equilibrium. For

household i, let d∗i be the expected probability that i chooses to join the micro finance program.

The decision of household i depends on its neighbors’ decisions as well as the types of connections

between them. The decision also depends on its characteristics Xi and on unobserved information

εi. Formally, it can be written as:

d∗i =
∑
l∈Ni

d∗l (

q∑
j=1

ηjl ) + xiβ + εi

Rewritten in matrix form:

D∗n =

q∑
j=1

(
M j
n ◦D∗n

)
ηj +Xnβ + εn

By Assumption 1-3, there is a unique equilibrium that determines Dn.

I assume that only a small number of households are influential over their neighbors. Leaders and

followers are usually observed in those rural villages. Big decisions are often made by the village

elders or by the more educated among the villagers. BSS recognized the importance of leaders

and gathered a group of predefined leaders, asking them to inform the rest of the villagers about

their program. I do not consider the local level influence in these villages given the size and how

complicated the network structures are. Households are closely connected by these 8 networks as

shown in Figure 4 and there is no form of clique visible.

Because the villages are considered geographically isolated, I apply my estimator separately to each

of the 38 villages. I use the number of rooms per person in a houshold as the independent variable

Xn. Number of rooms per person is a proxy for the wealth in the family. As shown in table 1,

it is negatively correlated with the decision to join the micro finance program. The richer the

family, the less likely the family is to participate in the micro-finance program. I further check the

robustness of my independent variable by including additional controls. The adjacency matrix M j
n
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is constructed from the questions in the survey. Households i and k are connected in network j if

either i or k reported the other in question j. Finally, d∗i is replaced with the household’s choice.

Table 1: Independent Variable

(1) (2) (3)

Decision Decision Decision

Ave # room -.1798∗∗∗ -.1602∗∗∗ -.0922∗∗∗

(.0180) (.0201) (.0215)

number of person .0084∗ .0085∗

(.0038) (.0040)

Electricity .0022

(.0303)

latrine -.0908∗∗∗

(.0183)

Ave #workers .0242

(.0347)

Ave age -.0052∗∗∗

(.0007)

Constant -.5949∗∗∗ -.6457∗∗∗ -.5018∗∗∗

(.0132) (.0266) (.0443)

N 8,375 8,375 8,375

R2 0.0118 0.0124 0.0212

Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Dependent variable is households’ decision on whether to join the micro finance program or

not. All design control village fixed effects.

The instruments are constructed as
(
M j
n ◦Xn

)
for j = 1, 2, · · · , 8. I use the heterogeneous en-

dogenous effects model with multiple networks to: 1) Identify the effective networks affecting a

household’s decision and 2) Identify that households that are leaders in the village and study the

association between observable characteristics and leader status. If a new program is going to try to

recruit these households, the organizers can target those influential households and try to persuade

them to join first.
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7.4 Results

7.4.1 Identifying Effective Networks

First, I study how LASSO selects networks. I define a coefficient for a household’s endogenous effect

in a network as significant according to two different criteria. The first criterion, “Cross-Validation”,

determines a coefficient to be significant if LASSO predicts the coefficient to be non-zero after

cross-validation. The second criterion, “De-sparse”, first constructs a bias-adjusted coefficient and

calculates its standard error. It then determines a coefficient to be significant if the Benjamini-

Hochberg method rejects the null hypothesis of zero effect at the 5% false discovery rate. A network

is defined as significant if at least one coefficient for heterogeneous endogenous effects in this network

is significant.

Table 2 presents the empirical probability of the 8 networks being significant among the 37 villages.

Note that certain types of networks (such as visit go-come) are more likely to pass influence then

others (such as temple company). For example, by cross-validation criterion, the visit go-come

network is detected as significant in 19 out of the 37 villages (i.e. 51%) whereas temple company is

detected as significant in only 5 out of the 37 villages (i.e. 14%). I also present the average number of

households associated with significant endogenous effects in each significant network. For example,

according to the cross-validation criterion, 342 households in 19 villages have significant coefficients

associated with the visit go-come network, which averages to 18 households per detection. On

the other hand, 32 households in 5 villages have significant coefficients associated with the temple

company network, which averages to 6 households per detection.

In terms of variable selection, if Assumption 4 holds, the cross-validation criterion may consistently

select the truly influential households with high probability even in a finite sample. On the other

hand, the de-sparse criterion is likely to be conservative because of its use of the false discovery

control process. In terms of coefficients estimated, de-sparse estimators are asymptotically consis-

tent. On the other hand, estimates based on the LASSO estimator suffer from shrinkage bias and

are not consistent.

Table 3 reports the average absolute heterogeneous endogenous effects within significant networks

using the de-sparse estimators. For example, if all else is equal, an additional influential neighbor

in the visit go-come network will, on average, increase the probability of joining the micro-finance

program by 16%; moreover, an additional influential neighbor in both the visit go-come network

and the friendship network will increase the probability of joining the micro-finance program by

16% on average. The magnitude of those coefficients should not be over interpreted as exogenous
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effects and correlated effects are not considered in the model. Similar to Table 2, certain types of

networks (such as visit go-come) pass stronger influence than others (such as temple company).

Note that, in most of the cases, networks that are more likely to pass influence also pass stronger

influence. The relative network is an exception. Even though the relative network is less likely

to pass influence compared to the friendship network, the borrow-lend-money network and the

help decision network, it passes stronger influence once it is significant. Table 3 also presents the

percentage of positive effects detected among different networks. For networks such as visit-go-come

and friendship, more than 70% of influential villagers are “true leaders” – if they decide to join the

micro-finance program, their neighbors will follow them and join the program. On the contrary,

for the temple company network, it is almost equally likely for neighbors of influential households

to either follow the same decision or choose the opposite.

[insert table 2]

Table 2: Second Stage: network usage

visit borrow-lend borrow-lend friendship medical help relatives temple

go-come keroric money help decision company

Cross 1 probability 3 51% 43% 41% 41% 30% 32% 30% 14%

Validation identified 4 18 12 13 14 9 14 9 6

De-sparse 2
probability 3 51% 46% 51% 43% 32% 41% 43% 19%

identified 4 3 3 3 2 3 3 3 2

0. Reported are the probability of detection among the 38 villages.

1. Cross Validation represents those networks identified from lasso using cross validation.

2. De-sparse represents those networks identified from De-sparse criterion using FDR control.

3. Probability reports the empirical probability that at least one regressor in the group is significant after controlling False

discover rate at 5% using Benjamini-Hochberg method.

4. Identified reports the averaged number of significant regressors in the group conditioning on the network being significant.

False discover rate is controlled at 5% using Benjamini-Hochberg method.

[insert table 3]

The results in Table 2 and Table 3 suggest villagers are more likely to discuss the micro-finance

program when they visit each other, chat with friends, and meet with people to whom they are

economically connected. Villagers are not likely to talk about the micro finance program when they

go to the temple.
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Table 3: Second Stage: average endogenous effect

visit borrow-lend borrow-lend friendship medical help relatives temple

go-come keroric money help decision company

absolute magnitudes 1 0.1543 0.1443 0.1245 0.1194 0.1214 0.1217 0.1404 0.0555

percentage of positive effect

77% 67% 69% 70% 68% 77% 67% 55%

1. The magnitudes are reported based on the de-sparse estimator.

Reported numbers are conditioning being significant using De-sparse method.

To verify my findings above, I provide exogenous evidence using centrality measures. Intuitively, the

more a villager is exposed to a network, the more likely she is to be connected to influential villagers,

and hence she is more likely to join the program. Following Banerjee et al. (2013), I measure

the centrality of each villager in each network through “degree”, “closeness”, “betweenness” and

“eigenvector”. (See Appendix for definitions) Then I regress households’ decisions on whether to

join the micro finance program on each centrality measure separately while controlling for village

fixed effects:

dj = Cqj β + γj + εj (18)

where dj is household j’s decision; Cqj is household j’s centrality in the network q; γj is the village

fixed effect; and εj is the error term.

Table 7 presents the regression results for equation (18). Visit go-come and borrow-lend kerorice

are positively correlated with degree, closeness and eigenvector centrality. Friendship, borrow-

lend money and medical help are positively correlated with degree and closeness centrality. This

is consistent with my findings that these four networks are more effective in passing influence.

Meanwhile, neither help decision, relative nor temple company are found to be correlated with

any of the centrality measures defined above. This is also consistent with the lower probability of

passing influence as found in table 2. Note that none of the networks are found to correlate with

betweenness centrality. This is because betweenness centrality is based on the shortest paths in a

network, which is not a direct measure of the exposure of an individual to a network.

[insert table 6]
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Table 4: Centrality Measure

visit borrow-lend borrow-lend friendship medical help relatives temple

go-come kerorice money help decision company

degree 0.0025∗∗ 0.0032∗∗ 0.0020∗∗ 0.0022∗∗ 0.0032∗∗ 0.0013 0.0035 0.0061

(0.0009) (0.0011) (0.0010) (0.0010) (0.0014) (0.0011) (0.0019) (0.0032)

closeness 32.9116∗∗∗ 40.2695∗∗∗ 29.7981∗∗ 31.0882∗∗∗ 32.5602∗∗ 18.1944 7.9509 231.0770

(9.5639) (10.7603) (9.3901) (9.0446) (11.1383) (9.8242) (16.5557) (134.3147)

betweenness 1.3565 0.1751 0.2940 1.6713 1.1662 -0.5728 0.3055 -0.2093

(1.0101) (0.8240) (0.9504) (1.0207) (0.8634) (0.8283) (0.7736) (0.2178)

eigenvector 3.6201∗∗∗ 1.5239∗∗ 0.1161 1.3927 -0.7338 -0.2387 0.7753 3.3015

(0.8888) (0.6250) (0.8245) (0.8271) (0.7709) (0.7603) (0.5672) (3.5585)

Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Definition for centrality measures are in appendix.

7.4.2 Identifying Influential Households

Second, I focus on how LASSO selects households. I compare the LASSO selected influential

households with the BSS selected “predefined leaders”. It is important to point out that these

“predefined leaders” are not necessarily influential villagers in a network. Recall that predefined

leaders are a set of villagers that BSS select to help spread the information about the micro finance

program. The fact that a villager is selected as a “predefined leader” to pass information about

the micro finance program does not a priori guarantee her or her family’s influence – her decision

to join the micro finance program may not lead to her neighbors’ decisions to join. In the analyses

below, I will examine how influential villagers are associated with “predefined leaders” and explore

their potential differences.

1. Influential Predefined Households

In table 7, I report results indicating that influential households selected by LASSO partly overlap

with “predefined leaders”. This is intuitive because some “predefined leaders” such as school

headmasters and village elders are highly respected figures in a village. Therefore, their decisions

are likely to be followed by others in the village. On average, BSS selected 27 villagers as “predefined

leaders” in each village. In comparison, Cross-Validation criterion selects around 22 villagers and

De-sparse criterion selects around 6. Furthermore, on average, 4 out of 22 influential villagers (i.e.

19%) selected by Cross-Validation criterion are also BSS “predefined leaders”; 1 out of 6 influential

villagers (i.e. 13%) selected by De-sparse criterion are also BSS “predefined leaders”. In Table
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14 below, I show that small business owners are more likely to be both influential and selected as

“predefined leaders”.

[insert table 7]

Table 5: Second Stage: coverage of predefined leaders

coverage 2 total number of discovery 3

Cross Validation 4 19% 22

De-sparse 5 13% 6

1. predefined leaders are a set of villagers defined by BSS, who helped spread the information about the micro-finance program.

2. Coverage reports the percentage of individuals detected by LASSO and also selected as “predefined leaders” in total detection.

3. Total number of discovery reports the total number of individuals discovered by lasso using each method.

4. Cross Validation represents those individuals identified from lasso using cross validation .

5. De-sparse represents those individuals identified from De-sparse criterion controlling FDR.

6. The average number of predefined leaders in one village is 27

2. Influential Non-Predefined Households

In this and the following section, I focus on understanding the differences between the influential

households selected by LASSO and the “predefined households” selected by BSS. I investigate the

likelihood that a household being selected by LASSO or by BSS, as associated with the careers

of its family members. More specifically, I regress whether a household is selected as “predefined

leader” (Design (1)), whether a household is selected by LASSO as influential (Design (2)), and

whether a household joins the micro finance program (Design (3)), separately on dummy variables

based on the full set of careers as reported in the survey data controlling for other household

characteristics and village fixed effects. The full results of these regressions are reported in Table

14 in the Appendix.

Table 6 summarizes all careers that have a significant impact on the likelihood of a household being

selected by LASSO as influential. Note that except for small business owners, all the other careers

in this table are not significantly associated with the likelihood of a household being selected by

BSS as being among the “predefined leaders”. Over 67% of the villagers are agricultural laborers

and 75% of the LASSO selected influential households have agricultural laborers in the family.

Anganwadi Teacher is a set of groups that provides pre-school education to the children. They are

part of the government’s health care system in the rural areas. There are 31 Anganwadi Teachers

in all villages, and LASSO detects 7 of their families to be influential. BSS also selects 7 of them as

“predefined leaders” but only 2 of the 7 are selected by LASSO as influential. Other careers that are
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correlated with LASSO selection include police officer, mechanic, and skilled laborers. These are

more educated individuals and it seems compelling that they are selected as influential individuals.

Table 7 summarizes all careers that have a significant impact on the likelihood of a household

being selected by BSS as being among the “predefined leaders”. Poojari are Indian priests in those

villages and they are very likely to be included as “predefined leaders”. However, they are not

likely to influence people to join the micro finance program. Other careers as tailor, hotel workers,

veteran, and barber are included as “predefined leaders” because individuals doing these jobs can

spread information quickly in the village. However, LASSO does not find these individuals to be

influence.

[insert table 9]

8 Conclusions

In this paper, I propose a novel SAR model which allows for heterogeneous endogenous effects.

Specifically, each individual has an individual-specific endogenous effect on her neighbors. My ap-

proach is useful for modeling a network with leaders and followers. For example, it can model how

online opinion leaders influence the public or how experienced workers boost coworkers’ productiv-

ity.

I propose a set of instruments as well as a two stage LASSO (2SLSS) method to estimate my model.

The instruments are constructed as a function of the independent variables and an adjacency matrix.

I use a LASSO type estimator to select the valid instruments in the first stage and the influential

individuals in the second stage. I propose a bias correction for my two-stage estimator following

van de Geer et al. (2014). I derive the asymptotic normality for my “de-sparse” two-stage LASSO

estimator and conduct robust inference including confidence intervals.

My model can be extended to allow for more flexible structures. To apply LASSO, I assume that the

number of influential individuals is sparse. I propose heterogeneous endogenous effects model with

cliques to incorporate locally influential individuals, where the sparsity assumption is only applied

to globally influential individuals. My model can also be extended to situations where there are

multiple networks. I propose the use of the square-root sparse group LASSO in my 2SLSS process.

I derive the convergence rate and prove the consistency of selection for the square-root sparse group

LASSO estimator.
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Table 6: Second Stage: who are they

(1) (2) (3)

Agriculture labour -0.0141 0.0476∗ 0.0672∗∗∗

(0.0136) (0.0286) (0.0134)

Anganwadi Teacher 0.0386 0.0664 0.1248∗∗

(0.0602) (0.1269) (0.0593)

Blacksmith -0.0752 -0.2279 0.1606∗

(0.0927) (0.1954) (0.0913)

Construction/mud work 0.0050 0.2199∗∗∗ 0.0562∗∗

(0.0258) (0.0544) (0.0254)

Small business 0.2006∗∗∗ 0.1287∗∗∗ 0.0606∗∗∗

(0.0227) (0.0479) (0.0224)

Police officer -0.1459 -0.0374 0.3282∗

(0.1917) (0.4044) (0.1890)

Mechanic 0.0106 -0.1237 0.1274∗∗

(0.0634) (0.1337) (0.0625)

Skilled labour/work for company 0.0469 0.0252 0.0809∗

(0.0491) (0.1036) (0.0484)

Control other careers Y Y Y

Control village fix effect Y Y Y

Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

design (1) uses whether one is predefined leaders as response variable

design (2) uses whether one joins the micro-finance program as response variable

design (3) uses whether one is selected by lasso as response variable
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Table 7: Second Stage: who are they

(1) (2) (3)

Small business 0.2006∗∗∗ 0.1287∗∗∗ 0.0606∗∗∗

(0.0227) (0.0479) (0.0224)

Tailor Garment worker 0.0903∗∗∗ 0.1169∗ 0.0309

(0.0304) (0.0642) (0.0300)

Hotel worker 0.3299∗∗∗ 0.4257∗∗∗ 0.0759

(0.0750) (0.1581) (0.0739)

Poojari 0.3697∗∗∗ -0.1542 0.1501

(0.1369) (0.2887) (0.1349)

Veterinary clinic 0.8649∗∗∗ 1.9114∗∗∗ 0.0377

(0.3314) (0.6990) (0.3266)

Barber/saloon 0.4883∗∗∗ -0.0036 0.0443

(0.1005) (0.2119) (0.0990)

Doctor/Health assistant 0.2691∗∗ 0.2703 0.0874

(0.1053) (0.2222) (0.1038)

Control other careers Y Y Y

Control village fix effect Y Y Y

Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

design (1) uses whether one is predefined leaders as response variable

design (2) uses whether one joins the micro-finance program as response variable

design (3) uses whether one is selected by lasso as response variable
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I apply my method to study villagers’ decisions to participate in micro-finance programs in rural

areas of Indian. I show that leaders in those villages have significant influence over their neighbors’

decision to join the micro-finance program, and I provide rankings for the different social and

economic networks among villagers. Based on how effectively each network spreads the impact of

influential individuals’ decisions, my method shows that some networks such as “visit go-come” and

“borrow money” are much more effective in influencing villagers’ decisions than other networks such

as “temple company” and “medical help”. I further show that individuals from certain careers such

as agricultural workers, Anganwadi teachers and small business owners are more likely to influence

other villagers.

There are two interesting directions for future research. First, it is possible to include heteroge-

neous exogenous effects in the model. These effects aim to capture how an individual’s outcome

varies with the exogenous characteristics of her neighbors. However, when both exogenous and en-

dogenous effects are included in standard SARs, an identification problem known as the “reflection

problem” may arise (see Manski, 1993). A similar problem arises also in my model if heterogeneous

exogenous effects are included. Bramoullé et al. (2009) show that under additional assumptions

on the adjacency matrix, this problem can be solved in SARs. With similar restrictions on the

adjacency matrix, it is possible to construct a new set of instruments to include heterogeneous

exogenous effects in my model.

Second, it might be possible to use penalized GMM type estimator to estimate my model. 2SLS

and GMM are the two most commonly used estimators to deal with endogeneity in SARs. My

2SLSS can be rewritten as a penalized GMM problem. The current progress on penalized GMM

estimators include Fan and Liao (2014) and Luo and Chernozhukov (2016). But no uniformly valid

inference method currently exists for penalized GMM.
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A Proofs

Lemma 1. Write Dn = (I −Mn ◦ η)−Xnβ + (I −Mn ◦ η)−ε = f(Mn ◦Xn) + ε1. In the first stage

problem (19), under assumption 5 and square root lasso regularization parameter λ ≥ cΛ/n,

‖D̂n − f‖2√
n

≤ Cs1/2λ

where,

Λ = n

∥∥∥∥∇√Q̂(β0)

∥∥∥∥
∞

= max
1≤i≤p

{√
n((Xi)′ε)

‖ε‖2

}
Lemma one is the same as Theorem 1 in Belloni et al. (2011)

A.1 Theorem 1

Proof. In the second stage, D̂n is used to replace Dn

(β̂, η̂) = arg min
β,η

(‖Dn −Xnβ − (Mn ◦ D̂n)η‖2/
√
n+ 2λ‖η‖1/

√
n)

take the derivative for the second equation:

−(Mn ◦ D̂n)′(Dn −Xnβ̂ − (Mn ◦ D̂n)η̂)/n+ Q̂λκ̂ = 0 (A)

−X ′n(Dn −Xnβ̂ − (Mn ◦ D̂n)η̂)/n = 0 (B)

where Q̂ = ‖Dn −Xnβ̂ − (Mn ◦ D̂n)η̂‖2

Substitute Dn = Xnβ0 + (Mn ◦Dn)η0 + εn. Equation (A) can be transformed as:

1

n
(Mn ◦ D̂n)′Xn(β̂ − β0) +

1

n
(Mn ◦ D̂n)′

(
(Mn ◦ D̂n)η̂ − (Mn ◦Dn)η0

)
+ Q̂λκ̂ =

(Mn ◦ D̂n)′ε

n

and further that:

1

n
(Mn ◦ D̂n)′Xn(β̂ − β0) +

1

n
(Mn ◦ D̂n)′(Mn ◦ D̂n)(η̂ − η0)

+
1

n
(Mn ◦ D̂n)′

(
Mn ◦ (D̂n −Dn)

)
η0︸ ︷︷ ︸

(C)

+Qλκ̂ =
(Mn ◦ D̂n)′ε

n
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Equation (C) can be written as:

1

n
(Mn ◦ D̂n)′

(
Mn ◦ (D̂n −Dn)

)
η0 =

1

n
(Mn ◦ D̂n)′

(
Mn ◦ (D̂n − f)

)
η0

+
1

n
(Mn ◦ D̂n)′

(
Mn ◦ (f −Dn)

)
η0

And

1

n
(Mn ◦ D̂n)′

(
Mn ◦ (f −Dn)

)
η0 = − 1

n
(Mn ◦ D̂n)′

(
Mn ◦ ε1

)
η0

= − 1

n
(Mn ◦ D̂n)′

(
Mn ◦ η0

)
(I −Mn ◦ η0)−1ε

= − 1

n
(Mn ◦ D̂n)′

(
(I −Mn ◦ η0)−1 − I

)
ε

Thus (A) is equivlent to:

1

n
(Mn ◦ D̂n)′Xn(β̂ − β0) +

1

n
(Mn ◦ D̂n)′(Mn ◦ D̂n)(η̂ − η0)

+
1

n
(Mn ◦ D̂n)′

(
Mn ◦ (D̂n − f)

)
η0 + Q̂λκ̂ =

1

n
(Mn ◦ D̂n)′(I −Mn ◦ η0)−1ε

Notice that:∥∥∥∥ 1

n
(Mn ◦ D̂n)′

(
Mn ◦ (D̂n − f)

)
η0

∥∥∥∥
∞
≤
∥∥∥∥ 1

n
M ′n(Mn ◦ η0)(D̂n − f)

∥∥∥∥
∞
‖D̂n‖∞

≤ 1

n

∥∥M ′n(Mn ◦ η0)
∥∥
op2

∥∥∥(D̂n − f)
∥∥∥

2
‖D̂n‖∞

where ‖.‖op2 is the operation norm of the matrix in l2 → l∞ space, which is the maximum l2 norm

of the row.

From lemma 1,

‖(D̂n − f)‖2 = O
(√

s log n
)

= o(n1/4)

Since each entry of Mn is either 1 or 0, and η0 has o(
√
n

logn) non-zero entries. ‖Mn◦η0‖op2 ≤ o( n1/4
√

logn
).

By assumption 5, ‖Mn‖op2 = O(
√

log n)

∥∥M ′n(Mn ◦ η0)
∥∥
op2
≤ ‖Mn‖op2 ‖Mn ◦ η0‖op2 = o(n1/4)

And ‖η0‖∞ < 1: ∥∥∥∥ 1

n
(Mn ◦ D̂n)′

(
Mn ◦ (D̂n − f)

)
η0

∥∥∥∥
∞

= o(1/
√
n)

49



Similarly (B) can be transformed in the same way, so (A) and (B) are:

1

n
(Mn ◦ D̂n)′Xn(β̂ − β0) +

1

n
(Mn ◦ D̂n)′(Mn ◦ D̂n)(η̂ − η0)

+ Q̂λκ̂+ o(1/
√
n) =

(Mn ◦ D̂n)′ε1
n

(A′)

1

n
X ′nXn(β̂ − β0) +

1

n
X ′n(Mn ◦ D̂n)(η̂ − η0) + o(1/

√
n)

=
X ′nε1
n

(B′)

From (B’)

(β̂ − β0) = (X ′nXn)−X ′nε1 − (X ′nXn)−X ′n(Mn ◦ D̂n)(η̂ − η0)

And substitute this into (A’)

1

n
(Mn ◦ D̂n)′

(
I −Xn(X ′nXn)−X ′n

)
(Mn ◦ D̂n)(η̂ − η0) + Q̂λκ̂

=
1

n
(Mn ◦ D̂n)′

(
I −Xn(X ′nXn)−X ′n

)
ε1

Define Wn =
(
I −Xn(X ′nXn)−X ′n

)
,

1

n
X̃ ′1X̃1(η̂ − η0) + Q̂λκ̂ =

1

n
X̃ ′1ε1

where X̃1 = Wn(Mn ◦ D̂n).

Define Θ̂ generated from the nodewise regression on X̃1 as in Meinshausen and Bühlmann (2006).

Θ̂ is a reason able approximation to the inverse of X̃ ′1X̃1/n. Thus,

η̂ − η0 + Θ̂Q̂λκ̂ =
1

n
Θ̂X̃ ′1ε1 −∆/

√
n

where

∆ :=
√
n(Θ̂X̃ ′1X̃1/n− I)(η̂ − η0)

van de Geer et al. (2014) show that ‖∆‖∞ = op(1) when λ for the nodewise regression is chosen at

rate
√

log n/n

Notice that from (A)

Q̂λκ̂ = (Mn ◦ D̂n)′(Dn −Xnβ̂ − (Mn ◦ D̂n)η̂)/n
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Thus

ê = η̂ + Θ̂(Mn ◦ D̂n)′(Dn −Xnβ̂ − (Mn ◦ D̂n)η̂)/n

= η0 +
1

n
Θ̂X̃ ′1ε1 −∆/

√
n

→ η0 as n→∞

Similarly

(β̂ − β0) = (X ′nXn)−X ′nε1 − (X ′nXn)−X ′n(Mn ◦ D̂n)(η̂ − η0)

= (X ′nXn)−X ′n

(
I − (Mn ◦ D̂n)Θ̂X̃ ′1/n

)
ε1 + (X ′nXn)−X ′n(Mn ◦ D̂n)∆/

√
n

+ (X ′nXn)−X ′n(Mn ◦ D̂n)Θ̂λκ̂

So

b̂ = β̂ − (X ′nXn)−X ′n(Mn ◦ D̂n)′(Dn − (Mn ◦ D̂n)η̂ −Xnβ̂)/n

= β0 + (X ′nXn)−X ′n

(
I − (Mn ◦ D̂n)Θ̂X̃ ′1/n

)
ε1 + (X ′nXn)−X ′n(Mn ◦ D̂n)∆/

√
n

→ β0 as n→∞

Notice that the estimator b̂ is a special case in Chernozhukov et al. (2015)

Now consider the design matrix in the second stage, Mn◦D̂n. Let (.)S be the operator that restricts

a matrix to its columns indexed in S.

Define Σx
1,1,n = 1

n

(
Mn ◦ D̂n

)′
S

(
Mn ◦ D̂n

)
S

.

Define Σx
2,1,n = 1

n

(
Mn ◦ D̂n

)′
Sc

(
Mn ◦ D̂n

)
S

.

Σx
1,1,n =

1

n
diag

(
(D̂n)S

)(
Mn

)′
S

(
Mn

)
S
diag

(
(D̂n)S

)
=

1

n
diag

(
(D̂n)S

)
Σ1,1,ndiag

(
(D̂n)S

)
So (

Σx
1,1,n

)−1
= n · diag

(
(D̂n)S

)−1
Σ−1

1,1,ndiag
(

(D̂n)S

)−1

And,

Σx
2,1,n =

1

n
diag

(
(D̂n)Sc

)(
Mn

)′
Sc

(
Mn

)
S
diag

(
(D̂n)S

)
=

1

n
diag

(
(D̂n)Sc

)
Σ2,1,ndiag

(
(D̂n)S

)
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Thus

∥∥∥Σx
2,1,n

(
Σx

1,1,n

)−1
sign(η0)

∥∥∥
∞

=

∥∥∥∥diag ((D̂n)Sc

)
Σ2,1,nΣ−1

1,1,ndiag
(

(D̂n)S

)−1
sign(η0)

∥∥∥∥
∞

Assume D̂n → Γ, Σ2,1,nΣ−1
1,1,n → Σ, then I require

‖diag(ΓS)Σdiag(ΓSc)sign(η0)‖∞ < 1

The consistency of the active set limn→∞ P(Ŝn = S) = 1 follows from Zhao and Yu (2006) under

Assumption 5. �
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A.2 Theorem 2

Proof. In the presence of multiple networks, we use sparse square root lasso:

min
η

 1√
n

∥∥∥∥∥∥Dn −
q∑
j=1

(M j
n ◦ D̂n)ηj −Xnβ

∥∥∥∥∥∥
2

+

 q∑
j=1

√
Tj

(
λ1‖ηj‖2 + λ2‖ηj‖1

)
The KKT condition with respect to the jth group can be written as:

−(M j
n ◦ D̂n)′(Dn −

∑q
j=1(M j

n ◦ D̂n)η̂j −Xnβ̂)
√
n‖Dn −

∑q
j=1(M j

n ◦ D̂)η̂j −Xnβ̂‖2
+ λ1τ

j + λ2ν
j = 0 (A1)

For any β̂ji 6= 0 in group j,

τ ji =

√
Tj η̂

j
i

‖η̂j‖2
, and νji =

√
Tjsign(η̂ji )

Let τ = (τ1, τ2, · · · , τp)′, ν = (ν1, ν2, · · · , νp)′. Let Ẑn =
[
(M1

n ◦ D̂n), (M2
n ◦ D̂n), · · · (M q

n ◦ D̂n)
]
,

Zn =
[
(M1

n ◦Dn), (M2
n ◦Dn), · · · (M q

n ◦Dn)
]
. Q̂ := ‖Dn −

∑q
j=1(M j

n ◦ D̂n)η̂j − Xnβ̂‖2. Let η =

(η1′ , η2′ , · · · , ηq′)′. Plug in Dn = Znη0 +Xnβ0 + εn. (A1) can be transformed as:

− Ẑ ′nε

n
+
Ẑ ′nẐn
n

(η̂ − η0) +
Ẑ ′nXn

n
(β̂ − β0) +

1

n
Ẑ ′n

(
Ẑn − Zn

)
η0︸ ︷︷ ︸

(C∗)

+
√
nQ̂λ1τ +

√
nQ̂λ2ν = 0 (A2)

The derivative with respect to β is

−X ′n(Dn −Xnβ̂ − Ẑnη̂)/n = 0

⇔ 1

n
X ′nXn(β̂ − β0) +

1

n
X ′nẐ(η̂ − η0) +

1

n
X ′n

(
Ẑn − Zn

)
η0 =

X ′nε

n

(A3)

Notice that Dn = (I −
∑q

j=1M
j
n ◦ ηj)−Xnβ + (I −

∑q
j=1M

j
n ◦ ηj)−ε = f(

∑q
j=1M

j
n ◦Xn) + ε1.

Equation (C*) can be written as:

1

n
Ẑ ′
(

[M1
n ◦ (D̂n −Dn),M2

n ◦ (D̂n −Dn), · · · ,M q
n ◦ (D̂n −Dn)]

)
η0

=
1

n
Ẑ ′
(

[M1
n ◦ (D̂n − f),M2

n ◦ (D̂n − f), · · · ,M q
n ◦ (D̂n − f)]

)
η0

+
1

n
Ẑ ′
(

[M1
n ◦ (f −Dn),M2

n ◦ (f −Dn), · · · ,M q
n ◦ (f −Dn)]

)
η0
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By Theorem 3, ‖D̂n − f‖2/
√
n < Mλ

√
sn. When λ �

√
logn
n , ‖D̂n − f‖2 = o(n1/4)

By assumption 1* and 5*∥∥∥∥∥∥ 1

n
Ẑ ′

q∑
j=1

(
M j
n ◦ (D̂n − f)

)
ηj0

∥∥∥∥∥∥
∞

≤
q∑
j=1

∥∥∥∥ 1

n
Ẑ ′
(
M j
n ◦ (D̂n − f)

)
ηj0

∥∥∥∥
∞

≤
q∑
j=1

max
i=1,··· ,q

∥∥∥∥ 1

n
M i
n(M j

n ◦ η0)(D̂n − f)

∥∥∥∥
∞
‖D̂n‖∞

≤ 1

n

q∑
j=1

max
i=1,··· ,q

‖M i
n(M j

n ◦ η0)‖op2
∥∥∥(D̂n − f)

∥∥∥
2
‖D̂n‖∞ = o(1/

√
n)

Since

max
i=1,··· ,q

‖M i
n(M j

n ◦ η0)‖op2 ≤ max
i=1,··· ,q

‖M i
n‖op2‖(M j

n ◦ η0)‖op2 = o(n1/4)

where ‖.‖op2 is the operator norm from l2 → l∞

And

1

n
Ẑ ′
(

[M1
n ◦ (f −Dn),M2

n ◦ (f −Dn), · · · ,M q
n ◦ (f −Dn)]

)
η0

= − 1

n
Ẑ ′
(

[M1
n ◦ ε1,M2

n ◦ ε1, · · · ,M q
n ◦ ε1]

)
η0

= − 1

n
Ẑ ′

q∑
j=1

(
M j
n ◦ η

j
0

)
(I −

q∑
j=1

M j
n ◦ η

j
0)−ε

= − 1

n
Ẑ ′

(I − q∑
j=1

M j
n ◦ η

j
0

)−
− I

 ε

Thus (A2) and (A3) can be written as:

1

n
Ẑ ′nXn(β̂ − β0) +

1

n
Ẑ ′nẐn(η̂ − η0) +

√
nQ̂λ1τ +

√
nQ̂λ2ν + o(1/

√
n) =

Ẑ ′nε1
n

1

n
X ′nXn(β̂ − β0) +

1

n
X ′nẐn(η̂ − η0) + o(1/

√
n) =

X ′nε1
n

Define Z̃m = WnẐn. Find Θ̂Z as an approximation for the inverse of Z̃ ′mZ̃m/n

(η̂ − η0) +
√
nΘ̂ZQ(λ1τ + λ2ν) = Θ̂ZZ̃

′
mε1/n−∆m/

√
n

(β̂ − β0)−
√
n(X ′nXn)−1X ′nẐnΘ̂ZQ(λ1τ + λ2ν) = (X ′nXn)−1X ′n

(
I − ẐnΘ̂ZZ̃

′
m/n

)
ε1

+ (X ′nXn)−1X ′nẐn∆m/
√
n
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where ∆m =
√
n(Θ̂ZZ̃

′
mZ̃m/n− I)(η̂ − η0)

This suggest the following estimator:

êm = η̂ + Θ̂ZẐ
′
n(Dn − Ẑnη̂ −Xnβ̂)/n→ η0

b̂m = β̂ − (X ′nXn)−1X ′nẐnΘ̂ZX
′
n(Dn − Ẑnη̂ −Xnβ̂)/n→ β0

Now consider the design matrix in the second stage,
[(
M1
n ◦ D̂n

)
, · · · ,

(
M q
n ◦ D̂n

)]
. Let (.)S be

the operator that restricts a matrix to its columns indexed in S.

Define Σx
1,1,n = 1

n

[(
M1
n ◦ D̂n

)
S1

, · · · ,
(
M q
n ◦ D̂n

)
Sq

]′ [(
M1
n ◦ D̂n

)
S1

, · · · ,
(
M q
n ◦ D̂n

)
Sq

]
.

Define Σ̃x
2,1,n = 1

n

[(
M̃1
Sc

1
◦ D̂n

)
, · · · ,

(
M̃ q
Sc
q
◦ D̂n

)]′ [(
M̃1
S1
D̂n

)
, · · · ,

(
M̃ q
Sq
◦ D̂n

)]
.

where M̃ j
Sc is defined as M j

n with all non-influential individuals columns being replaced with 0s

Notice that

Σx
1,1,n =

1

n
diag

([
(D̂n)S1 , · · · , (D̂n)Sq

]) [(
M1
n

)
S1

, · · · ,
(
M q
n

)
Sq

]′ [(
M1
n

)
S1

, · · · ,
(
M q
n

)
Sq

]
· diag

([
(D̂n)S1 , · · · , (D̂n)Sq

])
=

1

n
diag

([
(D̂n)S1 , · · · , (D̂n)Sq

])
Σ1,1,ndiag

([
(D̂n)S1 , · · · , (D̂n)Sq

])
So

(
Σx

1,1,n

)−1
= n · diag

([
(D̂n)S1 , · · · , (D̂n)Sq

])−1
Σ−1

1,1,ndiag
([

(D̂n)S1 , · · · , (D̂n)Sq

])−1

And,

Σx
2,1,n =

1

n
diag

([
D̂n, · · · , D̂n

]) [(
M̃1
n

)
Sc

1

, · · · ,
(
M̃ q
n

)
Sc
q

]′ [(
M1
n

)
S1

, · · · ,
(
M q
n

)
Sq

]
· diag

([
(D̂n)S1 , · · · , (D̂n)Sq

])
=

1

n
diag

([
D̂n, · · · , D̂n

])
Σ̃2,1,ndiag

([
(D̂n)S1 , · · · , (D̂n)Sq

])

Thus

Σx
2,1,n

(
Σx

1,1,n

)−1
= diag

([
D̂n, · · · , D̂n

])
Σ̃2,1,nΣ−1

1,1,ndiag
([

(D̂n)S1 , · · · , (D̂n)Sq

])−1

Notice that the jth group in the vector(
Σ̃x

2,1,n

(
Σx

1,1,n

)−1
u
)j

= diag(D̂n)

(
Σ̃2,1,nΣ−1

1,1,ndiag
([

(D̂n)S1 , · · · , (D̂n)Sq

])−1
u

)j
55



max
u:‖u‖2≤

√
n

max
1≤j≤q

‖
(

Σ̃x
2,1,n

(
Σx

1,1,n

)−1
u
)j
‖2

√
n

= max
u:‖u‖2≤1

max
1≤j≤q

∥∥∥∥∥diag(D̂n)

(
Σ̃2,1,nΣ−1

1,1,ndiag
([

(D̂n)S1 , · · · , (D̂n)Sq

])−1
u

)j∥∥∥∥∥
2

The consistency of the active set limn→∞ P(Ŝn = S) = 1 follows Theorem 4. �
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A.3 Theorem 3

Consider the error term in Theorem 1:

(Mn ◦ D̂n)′Wn(I −Mn ◦ η0)−1ε

n
= diag(D̂n)

M ′nWn(I −Mn ◦ η0)−1ε

n

And by assumption,

1

n
M ′nWn(I −Mn ◦ η0)−1(I −Mn ◦ η0)−1′WnMn → Ω

Thus,
M ′nWn(I −Mn ◦ η0)−ε√

n
→ N(0,Ω)

Notice that the limit exist as∥∥∥∥M ′nWn(I −Mn ◦ η0)−ε√
n

∥∥∥∥
∞
≤
∥∥∥∥M ′n(I −Mn ◦ η0)−ε√

n

∥∥∥∥
∞
‖Wn‖∞

≤ 1√
n
‖M ′n‖op1‖(I −Mn ◦ η0)−‖op1‖ε‖1‖Wn‖∞

where ‖.‖op1 norm is the operation norm from l1 → l∞, which is the maximum entry in the matrix.

Notice that

‖(I −Mn ◦ η0)−‖op1 = ‖
∞∑
k=0

(Mn ◦ η0)k‖op1

≤
∞∑
k=0

‖(Mn ◦ η0)‖kop1

≤ 1

1− ηmax

Also, ‖M ′n‖op1 = 1 and ‖ε‖1/
√
n = O(1)

As a result ∥∥∥∥M ′nWn(I −Mn ◦ η0)−ε√
n

∥∥∥∥
∞
≤ O(1)

And the limit exists.

Let Γ = limn→∞ D̂n, Θ1 = limn→∞ Θ̂, Ẑn = (Mn ◦ D̂n), Z̃n = Xn(X ′nXn)−1X ′nẐn

and Θ2 = limn→∞
1
n

(
I − ẐnΘ̂Z̃ ′n/n

)′
Xn(X ′nXn)−1X ′n

(
I − ẐnΘ̂Z̃ ′n/n

)
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We have:

√
n(ê− η0) = E1 + ∆1,
√
n(b̂− β0) = E2 + ∆2,

E1 ∼ N(0, σ2Θ1diag(Γ)Ωdiag(Γ)Θ′1),

E2 ∼ N(0, σ2Θ2diag(Γ)Ωdiag(Γ)Θ′2),

(19)

where ‖∆1‖∞ =
√
n(Θ̂X̃ ′nX̃n/n− I)(η̂ − η0) = op(1),

and ‖∆2‖∞ = (X ′nXn)−1X ′n(Mn ◦ D̂n)
√
n(Θ̂X̃ ′nX̃n/n− I)(η̂ − η0) = op(1)
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A.4 Theorem 4

The error term in Theorem 2:

Z̃ ′nε1/n =
[
(M1

n ◦ D̂n), (M2
n ◦ D̂n), · · · (M q

n ◦ D̂n)
]′
Wn(I −Mn ◦ η0)−1ε/n

= diag(D̂n)
[
M1
n,M

2
n, · · ·M q

n

]′
Wn(I −Mn ◦ η0)−1ε/n

and by assumption,

[
M1
n,M

2
n, · · ·M q

n

]′
Wn(I −Mn ◦ η0)−1ε/

√
n→ N(0,Ωm)

Let Γ = limn→∞ D̂n, ΘZ1 = limn→∞ Θ̂Z , Ẑn =
[
(M1

n ◦ D̂n), (M2
n ◦ D̂n), · · · (M q

n ◦ D̂n)
]
,

Z̃n = Xn(X ′nXn)−1X ′nẐn and ΘZ2 = limn→∞
1
n

(
I−ẐnΘ̂ZZ̃

′
n/n

)′
Xn(X ′nXn)−1X ′n

(
I−ẐnΘ̂ZZ̃

′
n/n

)
We have:

√
n(êm − η0) = Em1 + ∆m1,
√
n(b̂m − β0) = Em2 + ∆m2,

Em1 ∼ N(0, σ2ΘZ1diag(Γ)Ω2diag(Γ)Θ′Z1),

Em2 ∼ N(0, σ2ΘZ2diag(Γ)Ω2diag(Γ)Θ′Z2),

(20)

where ‖∆m1‖∞ =
√
n(Θ̂ZZ̃

′
nZ̃n/n− I)(η̂ − η0) = op(1),

and ‖∆m2‖∞ = (X ′nXn)−X ′nẐn
√
n(Θ̂ZZ̃

′
nZ̃n/n− I)(η̂ − η0) = op(1)
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A.5 Square-root Sparse Group LASSO

To prove Theorem 2 and Theorem 4, we need the following results from square-root sparse group

LASSO: 1) Bounds on the prediction, i.e.
∥∥∥∑q

j=1(M j ◦Xn)(η̂j − ηj0) +Xn(β̂ − β0)
∥∥∥

2
. λ. And 2)

Consistency of selection i.e. Ŝn = S.

First, define the effective networks as:

SG := {1 ≤ j ≤ q : |ηj0|1 6= 0}

Define the influential individuals in network j as:

Sj := {1 ≤ i ≤ n : ηj0i 6= 0}

Define the number of influential individuals in network j as |Sj | = sjn. Define the number of the all

influential individuals as |S| =
∑q

j=1 s
j
n = sn. Define the number of non-zero groups as |SG| = sg.

Let ηS ∈ Rsn be the coefficients for the influential individuals and ηSc ∈ Rnq−sn be the coefficients

for the non-influential individuals.

Theorem 5. Assume κ > 0, γ > 1 and α ∈ (0, 1). Assume maxj s
j
n ≤ n

logn and sg ≤ n
log q . Let

λ = λ1 + λ2. Under assumptions 1*-5*, the following holds with probability greater than 1− α:∥∥∥∥∥∥
q∑
j=1

(M j ◦Xn)(η̂j − ηj0) +Xn(β̂ − β0)

∥∥∥∥∥∥
2

.
σλ
√
nsn
κ

, (21)

and
q∑
j=1

√
Tj‖(η̂ − η0)j‖2 .

σλsn
κ

(22)

Theorem 5 establishes bounds on the LASSO prediction. Notice that Theorem 5 is still valid under

a weaker assumption (compatibility assumption) than assumption 4*. The details are shown in the

proofs.

The advantage of using sparse group LASSO compare to standard LASSO is that consistent model

selection can be achieved under a weaker condition. Standard LASSO requires the l2 norm of the

correlations between all irrelevant regressors and relevant regressors to be small. On the other hand,

sparse group LASSO only requires that the l2 norm of correlations between irrelevant regressors in

each group and relevant regressors to be small.

Theorem 6. Define c = λ1/λ. For constant ϑ < 1, α ∈ (0, 1) and D > 0, if c < 1−ϑ
2 and under

assumptions 1*-5*, with probability greater than 1− α:
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1. η̂Sc = 0,

2. for all 1 ≤ j ≤ q,
‖(η̂ − η0)j‖∞ ≤ D(c

√
n+ 1− c)σλ,

3. if min{ηj0} ≥ D
√
Tjσλ, then

S = Ŝ

Theorem 6 shows that consistent selection can be achieved if the design matrix satisfies the Irrepre-

sentable condition together with a Beta-min condition. The ratio between λ2 and λ1 is 1
c−1 > 1+ϑ

1−ϑ .

Thus when the correlation among the irrelevant regressors in each group and relevant regressors is

low, we can penalize more on the l2 norm and vice versa.

A.6 Theorem 5

In the proof of theorem 3 and 4, I consider the following standard lasso problem:

min
β

‖Y −Xβ‖2√
n

+

 q∑
j=1

√
Tj

(
λ1‖ηj‖2 + λ2‖η‖1

) (A4)

where the true data generating process is Y = Xβ + σε, where ε s a mean 0 process with variance

1.

I use β0, σ to represent the true parameter values. Let p be the total number of regressors. Let

{G1, · · · , Gq} be a partition of {1, · · · , p} and Ti = |Gi|, i = 1, · · · q be the number of regressors in

each group. Denote βj ∈ RTj as the coefficients for regressors in group j. Both p, q and Tis can go

to ∞ as n→∞. Define the active group as:

SG := {1 ≤ j ≤ q : |β0j |1 6= 0}

Define the active set among all regressors as:

S := {1 ≤ i ≤ p : β0
i 6= 0}

Define the size of true support of β0 as |S| = s; define the number of non-zeros groups as |SG| = sg.

Let βS ∈ Rs1 be the set of coefficients on the true support and βSc ∈ Rp−s1 be the coefficients for

those irrelevant regressors.
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Define Q̂(β) :=
‖Y−Xβ‖22

n . Define δ̂ := β̂ − β0.

The advantage of using square root type lasso is the tuning parameter λ1 and λ2 can be chosen

independently from σ. In sparse group lasso, the noise component can be viewed in two different

ways:

1. I want λ1 to be sufficiently large to overrule the noise component in grouped lasso, defined

as:

V = max
1≤j≤q

{√
n‖(X ′ε)j‖2√
Tj‖ε‖2

}

2. I want λ2 to be sufficiently large to overrule the noise component in standard lasso within

each group, defined as:

Λ = n

∥∥∥∥∇√Q̂(β0)

∥∥∥∥
∞

= max
1≤j≤q

{√
n‖(X ′ε)j‖∞
‖ε‖2

}
Lemma 2. Assume the noise terms εi are i.i.d standard normal random variables. Let α ∈ (0, 1)

be given such that p/α > 8 and n > log(1/α). If

λ ≥
√

2 log(4p/α)/n

Then

P(Λ ≥ nλ) ≤ α/2

Lemma 3 is a direct result as case (ii) of Lemma 1 in Belloni et al. (2011)

Notice that a direct inequality:

P(V ≥ nλ) ≤ P(Λ ≥ nλ)

as ‖(X ′ε)j‖2/
√
Tj ≤ ‖(X ′ε)j‖∞.

Define the event A1 := {V ≤ nλ/γ̄}, the set A2 := {Λ ≤ nλ/γ̄}. We can choose

min{λ1, λ2} ≥
√

2 log(4p/α)/n

So that:

P(A := A1 ∩ A2) ≥ P(A1) + P(A2)− 1 ≥ 1− α

Here, γ̄ = γ+1
γ−1 , where γ is defined as below.
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Define

∆1
γ := {δ ∈ Rp :

∑
j∈SGc

√
Tj‖δj‖2 ≤ γ

∑
j∈SG

√
Tj‖δj‖2}

∆2
γ := {δ ∈ Rp :

∑
j∈SGc

√
Tj‖δjSc‖1 ≤ γ

∑
j∈SG

√
Tj‖δjS‖1}

Compatibility Condition (CC). We say that the Compatibility Condition is met for κ > 0 and

γ > 1 if : ∑
j∈SG

√
Tj‖δ̂jS‖1 ≤

√
sn‖Xδ̂‖2√

nκ

for all δ ∈ ∆1
γ ∩∆2

γ

Proof. • First, by definition of (A4)

√
Q̂(β̂)−

√
Q̂(β0) ≤ λ1

q∑
j=1

√
Tj(‖β0j‖2 − ‖β̂j‖2)︸ ︷︷ ︸

(1)

+

(2)︷ ︸︸ ︷
λ2

q∑
j=1

√
Tj(‖β0j‖1 − ‖β̂j‖1) (A5)

(1) = λ1

∑
j∈SG

√
Tj(‖β0j‖2 − ‖β̂j‖2)− λ1

∑
j∈SGc

√
Tj(‖β̂j‖2)

≤ λ1

∑
j∈SG

√
Tj(|‖β0j‖2 − ‖β̂j‖2|)− λ1

∑
j∈SGc

√
Tj(‖β̂j‖2)

≤ λ1

∑
j∈SG

√
Tj(|‖δ̂j‖2)− λ1

∑
j∈SGc

√
Tj(‖δ̂j‖2)

(2) = λ2

q∑
j=1

√
Tj(‖β0j

S ‖1 − ‖β̂
j
S‖1 − ‖β̂

j
Sc‖1)

≤ λ2

q∑
j=1

√
Tj(‖δ̂jS‖1 − ‖δ̂

j
Sc‖1)

• Second, by convexity, √
Q̂(β̂)−

√
Q̂(β0) ≥ ∇

√
Q̂(β0)(δ̂) ≥ − |ε

′Xδ̂|√
n‖ε‖2
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|ε′Xδ̂| =
∣∣ q∑
j=1

ε′Xj δ̂j
∣∣ ≤ q∑

j=1

‖(ε′Xj)′‖2‖δ̂j‖2

≤ max
1≤j≤q

{√
n‖(ε′Xj)′‖2√
Tj‖ε‖2

}
‖ε‖2√
n

q∑
j=1

√
Tj‖δ̂j‖2

= V
‖ε‖2√
n

q∑
j=1

√
Tj‖δ̂j‖2

Also

|ε′Xδ̂| =
∣∣ q∑
j=1

ε′Xj δ̂j
∣∣ ≤ q∑

j=1

‖(ε′Xj)′‖∞‖δ̂j‖1

≤

∥∥∥∥∥
√
n‖(ε′Xj)′‖∞√

Tj‖ε‖2

∥∥∥∥∥
∞

‖ε‖2√
n

q∑
j=1

√
Tj‖δ̂j‖1

=
Λ√
Tj

‖ε‖2√
n

q∑
j=1

√
Tj‖δ̂j‖1

On set A, we have λ/γ̄ ≥ V , Thus√
Q̂(β̂)−

√
Q̂(β0) ≥ −λ

γ̄

q∑
j=1

√
Tj‖δ̂j‖2 (A6)

Again, on set A, we also have λ/γ̄ ≥ Λ/
√
Tmin, Thus√

Q̂(β̂)−
√
Q̂(β0) ≥ −λ

γ̄

q∑
j=1

√
Tj(‖δ̂jS‖1 + ‖δ̂jSc‖1) (A7)

• Third, Combine (A6) and (A7), for any c ∈ [0, 1]√
Q̂(β̂)−

√
Q̂(β0) ≥ −cλ

γ̄

q∑
j=1

√
Tj‖δ̂j‖2 −

(1− c)λ
γ̄

q∑
j=1

√
Tj(‖δ̂jS‖1 + ‖δ̂jSc‖1) (A8)

Set λ1 = cλ and λ2 = (1− c)λ, we can combine (A8) and (A5) to get

cλ
∑
j∈SG

√
Tj(|‖δ̂j‖2)− cλ

∑
j∈SGc

√
Tj(‖δ̂j‖2) + (1− c)λ

q∑
j=1

√
Tj(‖δ̂jS‖1 − ‖δ̂

j
Sc‖1)

≥ −cλ
γ̄

q∑
j=1

√
Tj‖δ̂j‖2 −

(1− c)λ
γ̄

q∑
j=1

√
Tj(‖δ̂jS‖1 + ‖δ̂jSc‖1)
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Thus,

(
1 +

1

γ̄

)
cλ
∑
j∈SG

√
Tj‖δ̂j‖2 +

(
1 +

1

γ̄

)
(1− c)λ

q∑
j=1

√
Tj‖δ̂jS‖1

≥
(

1− 1

γ̄

)
cλ

∑
j∈SGc

√
Tj‖δ̂j‖2 +

(
1− 1

γ̄

)
(1− c)λ

q∑
j=1

√
Tj‖δ̂jSc‖1

which implies:

cγ
∑
j∈SG

√
Tj‖δ̂j‖2 + (1− c)γ

∑
j∈SGc

√
Tj‖δ̂jS‖1

≥ c
∑
j∈SGc

√
Tj‖δ̂j‖2 + (1− c)

∑
j∈SGc

√
Tj‖δ̂jSc‖1

(A9)

(A9)⇒ δ̂ ∈ ∆1
γ ∩∆2

γ . Thus,

∑
j∈SG

√
Tj‖δ̂j‖2 ≤

∑
j∈SG

√
Tj‖δ̂jS‖1 ≤

√
sn‖Xδ̂‖2√

nκ
(A10)

• Forth, from (A10),√
Q̂(β̂)−

√
Q̂(β0) ≤ λ1

∑
j∈SG

√
Tj(‖δ̂j‖2)− λ1

∑
j∈SGc

√
Tj(‖δ̂j‖2)

+ λ2

q∑
j=1

√
Tj(‖δ̂jS‖1 − ‖δ̂

j
Sc‖1)

≤ cλ
∑
j∈SG

√
Tj(‖δ̂j‖2) + (1− c)λ

q∑
j=1

√
Tj‖δ̂jS‖1

≤ λ
√
sn‖Xδ‖2√

nκ

(A11)
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• Fifth,

Q̂(β̂)− Q̂(β0) =
1

n

(
(Y −Xβ̂)′(Y −Xβ̂)− (Y −Xβ0)′(Y −Xβ0)

)
=

1

n
{(Y −Xβ̂)′(Y −Xβ̂)

− (Y −Xβ̂ +Xβ̂ −Xβ0)′(Y −Xβ0)}

=
1

n
{(Y −Xβ̂)′(Y −Xβ̂)

− (Y −Xβ̂)′(Y −Xβ0)−X(β̂ − β0)′(Y −Xβ0)}

=
1

n
{−(Y −Xβ̂)′X(β̂ − β0)−X(β̂ − β0)′(Y −Xβ0)}

=
1

n
{(β̂ − β0)′X ′X(β̂ − β0)− 2X(β̂ − β0)′(Y −Xβ0)}

=
‖Xδ̂‖22
n

− 2σε′Xδ̂

n

• Sixth, from (A11),

‖Xδ̂‖22
n

= Q̂(β̂)− Q̂(β0) +
2σε′Xδ̂

n

=
(√

Q̂(β̂)−
√
Q̂(β0)

)(√
Q̂(β̂) +

√
Q̂(β0)

)
+

2σε′Xδ̂

n

≤ λ
√
sn‖Xδ‖2√

nκ

(
2

√
Q̂(β0) + λ

√
sn‖Xδ‖2√

nκ

)
+ 2V

‖σε‖2
n3/2

q∑
j=1

√
Tj‖δ̂j‖2

From (A10):

≤ snλ

κ2n

‖Xδ‖22
n

+ 2λ
‖σε‖2√

n

√
sn‖Xδ‖2√

nκ
+ 2V

‖σε‖2
n3/2

√
sn‖Xδ̂‖2√

nκ

nλ/γ̄ ≥ V :

≤ snλ

κ2n

‖Xδ‖22
n

+ 2

(
1 +

1

γ̄

)
‖σε‖2√

n
λ

√
sn‖Xδ̂‖2√

nκ

As a result: (
1−

(
λ
√
s1

κ

)2
)
‖Xδ̂‖22
n

≤ 2

(
1 +

1

γ̄

)
‖σε‖2√

n
λ

√
s1‖Xδ̂‖2√
nκ

(A12)

(A12) concludes the first statement in Theorem 3.

66



For the second claim, use the fact that δ ∈ ∆1
γ and the Compatibility Condition:

q∑
j=1

√
Tj‖δj‖2 ≤ (γ + 1)

∑
j∈SGc

√
Tj‖δj‖2 ≤

(γ + 1)
√
sn‖Xδ‖2√
nκ

.
(γ + 1)

√
sn√

nκ

√
nσλ
√
sn

κ
.
σλsn
κ

67



Lemma 3. Assumption* (4) implies Irrepresentable Condition: for 0 < ϑ < 1 if Σ1,1 is invertible

and

max
u:‖u‖∞≤

√
Tk

max
1≤j≤q

‖
(

Σ̃2,1Σ−1
1,1u

)j
‖∞√

Tj
≤ ϑ

for all k.

Proof.

‖v‖2 ≤
√
Tk ⇒ ‖v‖∞ ≤

√
Tk

Thus, Assumption* (4) ⇒

max
u:‖u‖∞≤

√
Tk

max
1≤j≤q

‖
(

Σ̃2,1Σ−1
1,1u

)j
‖2√

Tj
≤ ϑ

Since

‖
(

Σ̃2,1Σ−1
1,1u

)j
‖2 ≥ ‖

(
Σ̃2,1Σ−1

1,1u
)j
‖∞

Thus

max
u:‖u‖∞≤

√
Tk

max
1≤j≤q

‖
(

Σ̃2,1Σ−1
1,1u

)j
‖∞√

Tj
≤ ϑ

A.7 Theorem 6

From Lemma 2 and Lemma 3, Define B1 = {V ≤ nλ/(γ̄ ∨ 2ϑ̄)} and B2 = {Λ ≤
√
Tminλ/(γ̄ ∨ 2ϑ̄)}.

I can choose

min{λ1, λ2} ≥ max

{
(γ̄ ∨ 2ϑ)

√
2 log(4p/α)/n,

√
n(γ̄ ∨ 2ϑ)√
Tmin

√
2 log(4p/α)/n

}
So that:

P(B := B1 ∩ B2) ≥ P(B1) + P(B2)− 1 ≥ 1− α (A13)

Here, ϑ̄ = 1+ϑ
1−ϑ , where ϑ is defined assumption 4*.

Proof. Choose λ big enough so that (A13) holds.

• First take the derivative of (A4) with respect to each column i:

−(Xj
i )′(Y −Xβ̂)

‖Y −Xβ̂‖2
=
√
nλ1τ

j
i +
√
nλ2ν

j
i (A14)
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Let τ = (τ1, τ2, · · · , τp)′, ν = (ν1, ν2, · · · , νp)′ Q̂ := ‖Y −Xβ̂‖2

For any β̂ji 6= 0 in group j,

τ ji =

√
Tj β̂

j
i

‖β̂j‖2
, and νji =

√
Tjsign(β̂ji )

By KKT condition, ‖τ j‖2 ≤
√
Tj and |νji | ≤

√
Tj .

Y = Xβ + ε. Let ˆdelta = β̂ − β0. We can rewrite (A14) in matrix form:

σX ′ε−X ′Xδ̂ =
√
nQ̂λ1τ +

√
nQ̂λ2ν (A15)

or (
σ(X ′ε)S

σ(X ′ε)Sc

)
− n

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)(
δ̂S

δ̂Sc

)
=

(
(
√
nQ̂λ1τ +

√
nQ̂λ2ν)S

(
√
nQ̂λ1τ +

√
nQ̂λ2ν)Sc

)

• Second, the upper part of (A15) can be transform to

−nΣ1,1δ̂S − nΣ1,2δ̂Sc =
√
nQ̂(λ1τS + λ2νS)− σ(X ′ε)S

or, equivalently,

−nδ̂′ScΣ2,1δ̂S − nδ̂′ScΣ2,1Σ−1
1,1Σ1,2δ̂Sc

=
√
n

ˆ̂
Qδ̂′ScΣ2,1Σ−1

1,1(λ1τS + λ2νS)− σδ̂′ScΣ2,1Σ−1
1,1(X ′ε)S

(A16)

Notice that for all δ̂ji 6= 0 but i ∈ Sc, either j ∈ SGc or j ∈ SG.

Define

SG1 ⊂ SG := {1 ≤ j ≤ q : ∃β0j
i = 0}

Define

Sjc := {1 ≤ i ≤ Tj : β0j
i = 0}

Let lj = |Sjc| denotes the size of the sparsity in group j.
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The right hand side of (A16) can be broken into two parts. The first part consider all sparse

term in nonzero groups while the second term consider all zero groups:

(A16) =
√
nQ̂λ

∑
j∈SG1

∑
i∈Sjc

δ̂ji

[
Σ̃2,1Σ−1

1,1

(
cτS + (1− c)νS −

σ
√
nλQ̂

(X ′ε)S

)]j
i︸ ︷︷ ︸

(1)

+
√
nQ̂λ

∑
j∈SGc

∑
i∈Sjc

δ̂ji

[
Σ̃2,1Σ−1

1,1

(
cτS + (1− c)νS −

σ
√
nλQ̂

(X ′ε)S

)]j
i︸ ︷︷ ︸

(2)

(1) =
√
nQ̂λc

∑
j∈SG1

∑
i∈Sjc

δ̂ji

[
Σ̃2,1Σ−1

1,1

(
τS −

σ
√
nλQ̂

(X ′ε)S

)]j
i︸ ︷︷ ︸

(3)

+
√
nQ̂λ(1− c)

∑
j∈SG1

∑
i∈Sjc

δ̂ji

[
Σ̃2,1Σ−1

1,1

(
νS −

σ
√
nλQ̂

(X ′ε)S

)]j
i︸ ︷︷ ︸

(4)

(2) =
√
nQ̂λc

∑
j∈SGc

∑
i∈Sjc

δ̂ji

[
Σ̃2,1Σ−1

1,1

(
τS −

σ
√
nλQ̂

(X ′ε)S

)]j
i︸ ︷︷ ︸

(5)

+
√
nQ̂λ(1− c)

∑
j∈SGc

∑
i∈Sjc

δ̂ji

[
Σ̃2,1Σ−1

1,1

(
νS −

σ
√
nλQ̂

(X ′ε)S

)]j
i︸ ︷︷ ︸

(6)

By Holder:

(3) ≤
√
nQ̂λc

∑
j∈SG1

∑
i∈Sjc

|δ̂ji |

∥∥∥∥∥
[
Σ̃2,1Σ−1

1,1

(
τS −

σ
√
nλQ̂

(X ′ε)S

)]j
i

∥∥∥∥∥
∞


Observe again that if nλ/2ϑ̄ ≥ Λ̂/

√
Tmin ⇒ σ√

nλQ̂
((Xj

i )′ε) ≤
√
Tj

2ϑ̄
for any i and

‖τ j‖∞ =

∥∥∥∥∥
√
Tj β̂

j
i

‖β̂j‖2

∥∥∥∥∥
∞

≤
√
Tj
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By Lemma 4

(3) ≤
√
nQ̂λc max

u:‖u‖∞≤
(√

Tj+

√
Tj

2ϑ̄

) ∑
j∈SG1


∑
i∈Sjc

|δ̂ji |

∥∥∥∥[Σ̃2,1Σ−1
1,1u

]j∥∥∥∥
∞


≤
(

1 +
1

2ϑ̄

)√
nQ̂λc max

u:‖u‖∞≤
√
Tj

∑
j∈SG1

√
Tj


∑
i∈Sjc

|δ̂ji |


∥∥∥∥[Σ̃2,1Σ−1

1,1u
]j∥∥∥∥
∞√

Tj


≤ ϑ

(
1 +

1

2ϑ̄

)√
nQ̂λc

∑
j∈SG1

√
Tj

∑
i∈Sjc

|δ̂ji |


By Holder:

(4) ≤
√
nQ̂λ(1− c)

∑
j∈SG1


∑
i∈Sjc

|δ̂ji |

∥∥∥∥∥
[
Σ̃2,1Σ−1

1,1

(
νS −

√
nσ

λQ̂
(X ′ε)S

)]j∥∥∥∥∥
∞


Observe that if λ/2ϑ̄ ≥ Λ̂/

√
Tmin ⇒

√
nσ

λQ̂
((Xi)′ε) ≤

√
Tj

2ϑ̄
for any i and ‖νji ‖∞ ≤

√
Tj .

(4) ≤
√
nQ̂λ(1− c) max

u:‖u‖∞≤
(

1+ 1
2ϑ̄

)
√
Tk

∑
j∈SG1


∑
i∈Sjc

|δ̂ji |

∥∥∥∥[Σ̃2,1Σ−1
1,1u

]j∥∥∥∥
∞


≤
(

1 +
1

2ϑ̄

)√
nQ̂λ(1− c) max

u:‖u‖∞≤
√
Tk

∑
j∈SG1

√
Tj


∑
i∈Sjc

|δ̂ji |


∥∥∥∥[Σ̃2,1Σ−1

1,1u
]j∥∥∥∥
∞√

Tj


≤ ϑ

(
1 +

1

2ϑ̄

)√
nQ̂λ(1− c)

∑
j∈SG1

√
Tj


∑
i∈Sjc

|δ̂ji |


Since ‖τ j‖2 ≤

√
Tj and nλ/ϑ̄ ≥ λ/2ϑ̄ ≥ V̂ ⇒ σ√

nλQ̂
‖(X ′ε)j‖2 ≤

√
Tj

ϑ̄

(5) ≤
√
nQ̂λc

∑
j∈SGc

√
Tj

∑
i∈Sjc

(δ̂ji )
2

1/2

∥∥∥∥[Σ̃2,1Σ−1
1,1

(
τS − σ√

nλQ̂
(X ′ε)S

)]j∥∥∥∥
2√

Tj

≤
√
nQ̂λc max

v:‖vk‖2≤(1+ 1
ϑ̄

)
√
Tk

∑
j∈SGc

√
Tj‖δ̂j‖2

∥∥∥∥[Σ̃2,1Σ−1
1,1v
]j∥∥∥∥

2√
Tj

≤ ϑ
(

1 +
1

ϑ̄

)
c
√
nQ̂λ

∑
j∈SGc

√
Tj‖δ̂j‖2

=

(
1− 1

ϑ̄

)
c
√
nQ̂λ

∑
j∈SGc

√
Tj‖δ̂j‖2
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For any i ∈ S, νji =
√
Tjsign(βji ). Thus |νji | ≤

√
Tj . nλ/ϑ̄ ≥ nλ/2ϑ̄ ≥ Λ̂/

√
Tmin ⇒

σ√
nλQ̂
‖(X ′ε)j‖∞ ≤

√
Tj

ϑ̄

(6) ≤
√
nQ̂λ(1− c)

∑
j∈SGc

‖δ̂j‖1

∥∥∥∥∥
[
Σ̃2,1Σ−1

1,1

(
νS −

σ
√
nλQ̂

(X ′ε)S

)]j∥∥∥∥∥
∞

≤
√
nQ̂λc max

v:‖vk‖2≤(1+ 1
ϑ̄

)
√
Tk

∑
j∈SGc

√
Tj‖δ̂j‖1

∥∥∥∥[Σ̃2,1Σ−1
1,1v
]j∥∥∥∥
∞√

Tj

≤ ϑ
(

1 +
1

ϑ̄

)
(1− c)

√
nQ̂λ

∑
j∈SGc

√
Tj‖δ̂j‖1

=

(
1− 1

ϑ̄

)
(1− c)

√
nQ̂λ

∑
j∈SGc

√
Tj‖δ̂j‖1

• Third, the bottom part of (A15) can be transform to:

−nΣ2,1δ̂S − nΣ2,2δ̂Sc =
√
nQ̂(λ1τSc + λ2νSc)− σ(X ′ε)Sc

or, equivalently,

−nδ̂′ScΣ2,1δ̂S − nδ̂′ScΣ2,2δ̂Sc

=
√
nQ̂δ̂′Sc(λ1τSc + λ2νSc)− σδ̂′Sc(X ′ε)Sc

(A17)

Forj ∈ SG1 and i ∈ Sjc,

β̂ji 6= 0⇒ δ̂ji (cτ
j
i + (1− c)νji ) = c

√
Tj(δ̂

j
i )

2

‖β̂j‖2
+ (1− c)

√
Tj |δji |

β̂ji = 0⇒ δ̂ji (cτ
j
i + (1− c)νji ) = 0 = c

√
Tj(δ̂

j
i )

2

‖β̂j‖2
+ (1− c)

√
Tj |δji |

Forj ∈ SGc and all i,

β̂ji 6= 0⇒ δ̂ji (cτ
j
i + (1− c)νji ) = c

√
Tj(δ̂

j
i )

2

‖δ̂j‖2
+ (1− c)

√
Tj |δji |

β̂ji = 0⇒ δ̂ji (cτ
j
i + (1− c)νji ) = 0 = c

√
Tj(δ̂

j
i )

2

‖δ̂j‖2
+ (1− c)

√
Tj |δji |
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As in the previous section, the right hand side of (A17) can be broken into two parts:

(A18) =
√
nQ̂λ

∑
j∈SG1

∑
i∈Sjc

(
c

√
Tj(δ̂

j
i )

2

‖β̂j‖2
+ (1− c)

√
Tj |δji | −

σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
︸ ︷︷ ︸

(7)

+
√
nQ̂λ

∑
j∈SGc

∑
i∈Sjc

(
c

√
Tj(δ̂

j
i )

2

‖δ̂j‖2
+ (1− c)

√
Tj |δji | −

σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
︸ ︷︷ ︸

(8)

(7) =
√
nQ̂λc

∑
j∈SG1

∑
i∈Sjc

(√Tj(δ̂ji )2

‖β̂j‖2
− σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
︸ ︷︷ ︸

(9)

+
√
nQ̂λ(1− c)

∑
j∈SG1

∑
i∈Sjc

(√
Tj |δji | −

σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
︸ ︷︷ ︸

(10)

(8) =
√
nQ̂λc

∑
j∈SGc

∑
i∈Sjc

(√Tj(δ̂ji )2

‖δ̂j‖2
− σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
︸ ︷︷ ︸

(11)

+
√
nQ̂λ(1− c)

∑
j∈SGc

∑
i∈Sjc

(√
Tj |δji | −

σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
︸ ︷︷ ︸

(12)

By Holder, we have

(9) =
√
nQ̂λc

∑
j∈SG1

( ∑
i∈Sjc

√
Tj(δ̂

j
i )

2

‖β̂j‖2
−
∑
i∈Sjc

σ
√
nλQ̂

δ̂ji (X
′ε)ji

)

≥
√
nQ̂λc

∑
j∈SG1


∑

i∈Sjc

√
Tj(δ̂

j
i )

2

‖β̂j‖2
−
( ∑
i∈Sjc

|δ̂ji |
)∥∥∥∥ σ
√
nλQ̂

(X ′ε)ji

∥∥∥∥
∞


Observe again that if nλ/2ϑ̄ ≥ Λ̂/

√
Tmin ⇒ σ√

nλQ̂
((Xi)′ε) ≤

√
Tj

2ϑ̄
for any i

(9) ≥
√
nQ̂λc

∑
j∈SG1


√
Tj
∑

i∈Sjc(δ̂
j
i )

2

‖β̂j‖2
−
√
Tj

2ϑ̄

( ∑
i∈Sjc

|δ̂ji |
)

≥ − 1

2ϑ̄

√
nQ̂λc

∑
j∈SG1

√
Tj

( ∑
i∈Sjc

|δ̂ji |
)
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(10) =
√
nQ̂λ(1− c)

√Tj ∑
j∈SG1

( ∑
i∈Sjc

|δji |
)
−
( ∑
i∈Sjc

σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
≥
√
nQ̂λ(1− c)

∑
j∈SG1

√Tj( ∑
i∈Sjc

|δji |
)
−
( ∑
i∈Sjc

|δ̂ji |
)∥∥∥∥ σ
√
nλQ̂

(X ′ε)ji

∥∥∥∥
∞


≥
(

1− 1

2ϑ̄

)√
nQ̂λ(1− c)

∑
j∈SG1

√
Tj

( ∑
i∈Sjc

|δ̂ji |
)

Since nλ/ϑ̄ ≥ λ/2ϑ̄ ≥ V̂ ⇒ σ√
nλQ̂
‖(X ′ε)j‖2 ≤

√
Tj

ϑ̄
for any j:

(11) =
√
nQ̂λc

∑
j∈SGc

(√
Tj‖δ̂j‖2 −

∑
i∈Sjc

σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
≥
√
nQ̂λc

∑
j∈SGc

(√
Tj‖δ̂j‖2 −

√
Tj‖δ̂j‖2

σ
√
nλQ̂

‖(X ′ε)j‖2√
Tj

)
≥
(

1− 1

ϑ̄

)
c
√
nQ̂λ

∑
j∈SGc

√
Tj‖δ̂j‖2

Since nλ/ϑ̄ ≥ Λ̂/
√
Tmin ⇒ σ√

nλQ̂
‖(X ′ε)j‖∞ ≤

√
Tj

ϑ̄
for any j:

(12) =
√
nQ̂λ(1− c)

∑
j∈SGc

(√
Tj‖δ̂j‖1 −

∑
i∈Sjc

σ
√
nλQ̂

δ̂ji (X
′ε)ji

)
≥
√
nQ̂λ(1− c)

∑
j∈SGc

(√
Tj‖δ̂j‖1 − ‖δ̂j‖1

σ
√
nλQ̂

‖(X ′ε)j‖∞
)

≥
(

1− 1

ϑ̄

)
(1− c)

√
nQ̂λ

∑
j∈SGc

√
Tj‖δ̂j‖1

Subtract (A17) from (A16) and notice (11) and (12) canceled with (5) and (6), we have:

n2δ̂′Sc(Σ2,2 − Σ2,1Σ−1
1,1Σ1,2)δ̂Sc

≤
{
−
(

1− 1

2ϑ̄

)
(1− c) +

1

2ϑ̄
c+ ϑ

(
1 +

1

2ϑ̄

)
c+ ϑ

(
1 +

1

2ϑ̄

)
(1− c)

}
·
√
nQ̂λ

∑
j∈SG1

( ∑
i∈Sjc

|δ̂ji |
)

=

{
−1 +

1

2ϑ̄
+ ϑ

(
1 +

1

2ϑ̄

)
+ c+ ϑ

(
1 +

1

2ϑ̄

)
c− ϑ

(
1 +

1

2ϑ̄

)
c

}
·
√
nQ̂λ

∑
j∈SG1

( ∑
i∈Sjc

|δ̂ji |
)

=

{
−1

2
(1− ϑ) + c

}√
nQ̂λ

∑
j∈SG1

( ∑
i∈Sjc

|δ̂ji |
)

≤ 0
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The last inequality is due to Substitution Condition.

However, since Σ2,2 − Σ2,1Σ−1
1,1Σ1,2 ≥ 0, this implies δ̂Sc = 0, which establish the first claim.

For the second claim, substitute δ̂Sc = 0 into (A16) we have:

−nδ̂S =
√
nQ̂λΣ−1

1,1

(
cτS + (1− c)νS −

σ(X ′ε)S√
nQ̂λ

)

Recall again nλ/ϑ̄ ≥ Λ̂/
√
Tmin

‖δ̂j‖∞ ≤
Q̂λc

n1/2

∥∥∥∥∥
[
Σ̃−1

1,1

(
τS −

σ(X ′ε)S√
nQ̂λ

)]j∥∥∥∥∥
∞

+
Q̂λ(1− c)
n1/2

∥∥∥∥∥
[
Σ̃−1

1,1

(
νS −

σ(X ′ε)S√
nQ̂λ

)]j∥∥∥∥∥
∞

≤ Q̂λc

n1/2
max

v:‖vk‖2≤(1+ 1
ϑ̄

)
√
Tj

∥∥∥∥[Σ̃−1
1,1v
]j∥∥∥∥
∞

+
Q̂λ(1− c)
n1/2

max
u:‖u‖∞≤(1+ 1

ϑ̄
)
√
Tj

∥∥∥∥[Σ̃−1
1,1u

]j∥∥∥∥
∞

≤ (1 +
1

ϑ̄
)
Q̂λ

n1/2

√
Tj max

u:‖u‖∞≤
√
Tj

∥∥∥∥[Σ̃−1
1,1u

]j∥∥∥∥
∞√

Tj

≤ D
√
Tjσλ

The third claim follows with Beta Min Condition.
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B Useful Algebra Transformation

B.1 (4)

Since
(
M ◦D

)
η =

(
M ◦ η

)
D,

Dn =
(
Mn ◦Dn

)
η0 +Xnβ0 + εn

⇔Dn =
(
Mn ◦ η0

)
Dn +Xnβ0 + εn

⇔
(
In −

(
Mn ◦ η0

))
Dn = Xnβ0 + εn

⇔Dn =
(
In −

(
Mn ◦ η0

))−
(Xnβ0 + εn)

⇔Dn =

∞∑
i=0

(
Mn ◦ η0

)i
(Xnβ0 + εn)

B.2 (5)

E(Dn) =

∞∑
i=0

(
Mn ◦ η0

)i
β0Xn

= β0Xn + β0

(
Mn ◦ η0

)
Xn +

∞∑
i=2

(
Mn ◦ η0

)i
β0Xn

= Xnβ0 +
(
Mn ◦Xn

)
(β0η0) +

∞∑
i=2

(
Mn ◦ η0

)i
β0Xn

B.3 (6)

Let Mn = (m1,m2, · · · ,mn), where mj is the jth column of Mn. η0 = (η1, η2, · · · , ηn)′ Then(
Mn ◦ η0

)2
=
(
Mn ◦ η0

)(
m1η1,m2η2, · · · ,mnηn

)
=
[(
Mn ◦ η0

)
m1η1,

(
Mn ◦ η0

)
m2η2, · · · ,

(
Mn ◦ η0

)
mnηn

]
=
[(
Mn ◦m1

)
η0η1,

(
Mn ◦m2

)
η0η2, · · · ,

(
Mn ◦mn

)
η0ηn

]
Thus(
Mn ◦ η0

)2
β0Xn =

(
Mn ◦m1

)
η0η1xn1β0 +

(
Mn ◦m2

)
η0η2xn2β0 + · · ·+

(
Mn ◦mn

)
η0ηnxnnβ0

=
(
Mn ◦m1

)
η0δ

1
1 +

(
Mn ◦m2

)
η0δ

1
2 + · · ·+

(
Mn ◦mn

)
η0δ

1
n
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(
Mn ◦ η0

)3
β0Xn =

n∑
i=1

(
Mn ◦ η0

)(
Mn ◦mi

)
η0δ

1
i

=
n∑
i=1

(
Mn ◦ η0

)(
m1mi1η1δ

1
i +m2mi2η2δ

1
i + · · ·+mnminηnδ

1
i

)
=

n∑
i=1

mi1

(
Mn ◦m1

)
η0δ

1
i +mi2

(
Mn ◦m2

)
η0δ

1
i + · · ·+min

(
Mn ◦mn

)
η0δ

1
i

=
n∑
i=1

n∑
j=1

(
Mn ◦mj

)
η0mijδ

1
i

=
n∑
i=1

(
Mn ◦mi

)
η0δ

2
i

With induction, one can show that(
Mn ◦ η0

)k
β0Xn =

n∑
i=1

(
Mn ◦mi

)
η0δ

k−1
i

Thus,

E(Dn|X) = Xnβ0 +
(
Mn ◦Xn

)
(β0η0) +

n∑
i=1

(
Mn ◦mi

)
η0δ
∞
i

where δ∞i =
∑∞

j=1 δ
j
i .

When Mn is the adjacency matrix, the jth column of
(
Mn ◦mi

)
is 0 if mij = 0 or i is not connect

with j; and is equal to mj if mij = 1

Thus

E(Dn) = Xnβ0 +
(
m1x1η1β0 +m2x2η2β0 + · · ·+mnxnηnβ0

)
+

n∑
i=1

(
m1mi1η1δ

∞
i +m2mi2η2δ

∞
i + · · ·+mnminηnδ

∞
i

)
= Xnβ0 +

(
m1x1η1

(
β0 +

n∑
i=1

mi1δ
∞
i

x1

)
+m2x2η2

(
β0 +

n∑
i=1

mi2δ
∞
i

x2

)
+ · · ·

+mnxnηn

(
β0 +

n∑
i=1

minδ
∞
i

xn

))
= Xnβ0 +

(
Mn ◦Xn

)
η̃

where η̃j = ηj

(
β0 +

∑n
i=1

mijδ
∞
i

xj

)
.

As a result, using
(
Mn ◦Xn

)
and Xn are sufficient to determine the influential individuals.
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B.4 (8)

Dn =
(
Mn ◦Dn

)
η0 + γMnDn +Xnβ0 + εn

⇔Dn =
(
Mn ◦ η0

)
Dn + γMnDn +Xnβ0 + εn

⇔
(
In −

(
Mn ◦ η0

)
− γMn

)
Dn = Xnβ0 + εn

⇔Dn =
(
In −

(
Mn ◦ η0

)
− γMn

)−
(Xnβ0 + εn)

⇔Dn =

∞∑
i=0

(
Mn ◦ η0 + γMn

)i
(Xnβ0 + εn)
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C Multiple Networks Assumptions

Assumption* 1. Among n individuals in qn networks, let Sjn be the set of influential individuals

in network j. Let sjn = |Sjn| be the number of elements in Sjn.

sjn = o

( √
n

log n

)
, as n→∞

sg =

qn∑
j=1

1(sjn 6= 0) = o

(
n

log qn

)
, as n→∞

Notice same individual from different networks are counted as different elements in Sn

Assumption* 2.

• There exists an ηmax < 1 such that
∑q

j=1 ‖η
j
0‖∞ ≤ ηmax

• The εj are i.i.d with 0 mean and variance σ2

• The regressors xi in Xn are uniformly bounded constants for all n. limn→∞X
′
nXn/n exists

and is nonsingular

Apply the same algebra:

Dn =

q∑
j=1

(
M j
n ◦Dn

)
ηj0 +Xnβ0 + εn

⇔Dn =

q∑
j=1

(
M j
n ◦ η

j
0

)
Dn +Xnβ0 + εn

⇔

I − q∑
j=1

(
M j
n ◦ η

j
0

)Dn = Xnβ0 + εn

⇔Dn =

I − q∑
j=1

(
M j
n ◦ η

j
0

)− (Xnβ0 + εn)

⇔Dn =
∞∑
i=0

( q∑
j=1

M j
n ◦ η

j
0

)i
(Xnβ0 + εn)
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Consider Xn as a one dimensional vector:

E(Dn) =
∞∑
i=0

( q∑
j=1

M j
n ◦ η

j
0

)i
β0Xn

= β0Xn + β0

( q∑
j=1

M j
n ◦ η

j
0

)
Xn +

∞∑
i=2

( q∑
j=1

M j
n ◦ η

j
0

)i
β0Xn

= Xnβ0 +

q∑
j=1

(
M j
n ◦Xn

)
(β0η

j
0) +

∞∑
i=2

( q∑
j=1

M j
n ◦ η

j
0

)i
β0Xn

Xn,
(
M1
n ◦Xn

)
,
(
M2
n ◦Xn

)
, · · · ,

(
M q
n ◦Xn

)
are valid instruments.

Apply the same algebra

E(Dn) = Xnβ0 +

q∑
j=1

(
M j
n ◦Xn

)
η̃j

Assumption* 3.
[
Xn,

(
M1
n ◦Xn

)
S
,
(
M2
n ◦Xn

)
S
, · · · ,

(
M q
n ◦Xn

)
S

]
is full rank with probability

equals to 1.

We can use Group Lasso to identify those influential individuals and the networks that deliver the

influence. For Group Lasso to achieve consistent selection, we need the following assumption:

Assumption* 4.

(Group Irrepresentable Condition) There exists N ∈ N: ∀n ≥ N , there is a ϑ ∈ (0, 1) such that

P

(
max

u:‖u‖2≤1
max

1≤j≤q

∥∥∥∥∥diag(D̂n)

(
Σ̃2,1,nΣ−1

1,1,ndiag
([

(D̂n)S1 , · · · , (D̂n)Sq

])−1
u

)j∥∥∥∥∥
2

≤ ϑ

)
= 1

(Beta Min Condition) There exists N ∈ N: ∀n ≥ N , there is a m > 0 such that

min |(η0)S | ≥ m/
√
n

Assumption* 5.

(Maximum Neighbors Condition)

‖M j′
n 1n‖∞ ≤ O(log n) for all j

(Variance Condition)

1

n
M0′
n Wn(I −

q∑
j=1

M j
n ◦ η

j
0)−1(I −

q∑
j=1

M j
n ◦ η

j
0)−1′WnM

0
n → Ω2

where M0
n =

[
M1
n,M

2
n, · · ·M

q
n

]
, and Wn =

(
I −Xn(X ′nXn)−1X ′n

)
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Define Σ1,1,n = 1
n

[(
M1
n

)
S
, · · · ,

(
M q
n

)
S

]′ [(
M1
n

)
S
, · · · ,

(
M q
n

)
S

]
Define Σ2,1,n = 1

n

[(
M1
n

)
Sc
, · · · ,

(
M q
n

)
Sc

]′ [(
M1
n

)
S
, · · · ,

(
M q
n

)
S

]
.

Define Σ̃2,1,n = 1
n

[(
M̃1
Sc

)
, · · · ,

(
M̃ q
Sc

)]′ [(
M̃1
S

)
, · · · ,

(
M̃ q
S

)]
.

where M̃ j
Sc is defined as M j

n with all non-influential individuals columns being replaced with 0s
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D Adjacency Matrix for Influential Individuals

We use the following adjacency matrix for influential individuals when there are five of them:

0 0 0 1 0

0 0 0 1 1

0 0 0 1 0

1 1 1 0 0

0 1 0 0 0



We use the following adjacency matrix for influential individuals when there are ten of them:

0 0 0 1 0 0 0 0 0 1

0 0 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 1 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0
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E Centraility

Denote a graph as G = (V,E), where V represents the set for vertex and E represents the set for

edges. Define a measure d : (x, y)→ R as the length of the shortest path between the node x and

y. And define M as the adjacency matrix for graph G. I consider the following centrality measures:

• Degree centrality

The degree centrality CD(x) of a vertex V is defined as the number of edges connected to

node v.

• Closeness centrality

The Closeness centrality is the average length of the shortest path between the node and all

other nodes in the graph.

CC(v) =
1∑

y∈V d(v, y)

• Betweenness centrality

Betweenness centrality measures the number of times a node acts as a bridge along the

shortest path between two other nodes.

CB(v) =
∑

x 6=v 6=y∈V

σx,y(v)

σx,y

where σx,y is total number of shortest paths from node x to node y. σx,y(v) is the number of

those paths that pass through v.

• Eigenvector centrality

Eigenvector centrality is defined as the left-hand eigenvector of the adjacency matrix M

associated with the largest eigenvalue λ:

λx = xM

And the vth entry of x is the eigenvector centrality of v.
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F Tables
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Table 8: Simulation

0.1 0.2

Network Size 50 200 500 50 200 500

Avgcov S0 0.9780 0.9560 0.9380 0.9770 0.9480 0.9580

Avglength S0 2.9420 3.6734 2.6136 1.0179 3.3098 2.0386

Avgcov Sc0 0.9222 0.9861 0.9846 0.9920 0.9861 0.9884

Avglength Sc0 18.9664 8.1006 2.5444 21.4923 3.1052 1.9782

Avgcov β 0.8700 0.9700 0.9650 0.9500 0.9650 0.9800

Avglength β 4.0056 0.4890 0.2959 0.9773 0.7905 0.5209

Power 1 0.2140 0.1800 0.4650 0.5870 0.2520 0.1770

FDR 2 0.0147 0.0001 0.0000 0.0017 0.0000 0.0030

Avgcov 1 0.9900 0.9000 0.9900 0.9500 0.9000 0.9850

Avglength 1 3.0138 5.6446 0.8600 0.7202 4.8020 1.9351

Avgcov 2 0.9700 0.9700 0.8600 0.9850 0.9650 0.9550

Avglength 2 5.0537 2.6632 1.5617 1.5222 2.7718 2.5142

Avgcov 3 0.9800 0.9400 0.9150 0.9900 0.9250 0.9900

Avglength 3 2.4503 4.8645 4.3329 0.7604 4.2660 1.5686

Avgcov 4 0.9600 0.9800 0.9650 0.9950 0.9500 0.9950

Avglength 4 1.8805 3.6298 4.1772 0.8212 3.6354 1.6983

Avgcov 5 0.9900 0.9900 0.9600 0.9650 1.0000 0.8650

Avglength 5 2.3115 1.5647 2.0417 1.2652 1.0741 2.4768

This table summarizes the results simulated on Erdos-Renyi type random graphs. When

a node is added into the graph, it has probability p = 0.1 or p = 0.2 to form a link with

all existing nodes.

The reported coverage is from 200 simulations from 50, 200 and 500 nodes graphs. The

active set S0 contains 5 nodes and coverage for each is reported as Avgcov 1-5. Nonactive

set Sc
0 contains all remaining nodes.

1. Power represents the averaged percentage in the active set being significant after

controlling False discover rate at 5% using Benjamini-Hochberg method.

2. FDR reports the averaged percentage in the non-active set being significant after

controlling False discover rate at 5% using Benjamini-Hochberg method.
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Table 9: Simulation

0.1 0.2

Network Size 50 200 500 3 50 200 500 3

Avgcov S0 0.9730 0.9870 0.8805 0.6905 0.9870 0.8330

Avglength S0 11.8263 1.5870 4.5802 0.8400 3.6207 2.1104

Avgcov Sc0 0.9942 0.9905 0.9638 0.9827 0.9972 0.9733

Avglength Sc0 23.2425 2.5128 4.0562 9.3871 2.9423 5.5000

Avgcov β 0.9800 0.9700 0.9300 0.9500 0.9950 0.9950

Avglength β 2.6520 0.5203 0.9008 1.2524 0.5261 0.7915

Power 1 0.0475 0.1680 0.5725 0.8175 0.1620 0.4710

FDR 2 0.0000 0.0001 0.0000 0.0102 0.0000 0.0004

Avgcov 1 0.9250 1.0000 0.9200 0.8150 0.9950 0.8800

Avglength 1 6.8760 0.9064 1.6038 0.5357 0.8415 2.0727

Avgcov 2 0.9600 1.0000 0.9350 0.8350 1.0000 0.8550

Avglength 2 5.4525 1.0753 17.1486 0.3364 0.8152 1.2254

Avgcov 3 0.9950 0.9900 0.9300 0.9750 0.9650 0.6600

Avglength 3 12.2042 2.8843 2.5877 2.0093 1.8027 1.4287

Avgcov 4 0.9600 0.9600 0.9450 0.4150 0.9750 0.8300

Avglength 4 17.9822 1.8353 1.5234 0.3987 2.1970 1.7792

Avgcov 5 0.9900 1.0000 0.8600 1.0000 1.0000 0.8150

Avglength 5 3.0831 1.0112 1.1228 0.4478 1.0124 0.7712

Avgcov 6 0.9750 0.9900 0.8850 0.5250 1.0000 0.9100

Avglength 6 39.1903 2.1300 14.2821 0.3061 20.5070 3.9918

Avgcov 7 0.9750 0.9600 0.8500 0.2800 0.9600 0.8250

Avglength 7 19.0146 2.5613 3.2858 0.8466 5.3259 5.0870

Avgcov 8 0.9650 1.0000 0.9100 0.7800 0.9850 0.7950

Avglength 8 3.2928 1.2513 1.2913 0.3709 1.4046 1.3949

Avgcov 9 0.9900 0.9700 0.9250 0.9250 0.9950 0.9500

Avglength 9 3.8329 1.1019 1.4152 2.9014 1.4500 1.2169

Avgcov 10 0.9950 1.0000 0.6450 0.3550 0.9950 0.8100

Avglength 10 7.3340 1.1136 1.5418 0.2474 0.8831 2.1366

This table summarizes the results simulated on Erdos-Renyi type random graphs. When a

node is added into the graph, it has probability p = 0.1 or p = 0.2 to form a link with all

existing nodes.

The reported coverage is from 200 simulations from 50, 200 and 500 nodes graphs. The active

set S0 contains 10 nodes and coverage for each is reported as Avgcov 1-10. Nonactive set Sc
0

contains all remaining nodes.

1. Power represents the averaged percentage in the active set being significant after controlling

False discover rate at 5% using Benjamini-Hochberg method.

2. FDR reports the averaged percentage in the non-active set being significant after controlling

False discover rate at 5% using Benjamini-Hochberg method.

3. For 500 cases, lasso tuning parameter is chosen using rule of thumb instead of cross-

validation
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Table 10: Simulation: small world

0.04 0.08

Network Size 50 200 500 50 200 500

Avgcov S0 0.9180 0.8490 0.9920 0.9410 0.8310 0.9860

Avglength S0 5.7298 1.6333 1.6646 5.2069 3.8309 0.9132

Avgcov Sc0 0.9543 0.9646 0.9809 0.9577 0.9581 0.9949

Avglength Sc0 7.8860 5.2748 4.3686 3.4985 2.9435 3.4044

Avgcov β 0.9900 0.9350 0.9933 0.9350 0.9650 0.9950

Avglength β 0.8524 0.4044 0.9067 0.7532 0.5382 1.4130

Power 1 0.0340 0.4350 0.1013 0.1640 0.1020 0.5470

FDR 2 0.0026 0.0000 0.0056 0.0039 0.0000 0.0000

Avgcov 1 0.8450 0.7650 1.0000 0.9700 0.7950 1.0000

Avglength 1 22.9085 1.1822 2.7360 12.8441 1.1567 0.5102

Avgcov 2 0.9550 0.7200 0.9933 0.9400 0.8400 1.0000

Avglength 2 1.6373 5.2736 2.2481 10.5694 8.0125 0.5399

Avgcov 3 0.9150 0.8900 0.9933 0.8850 0.8100 1.0000

Avglength 3 1.3111 0.6948 2.0804 0.7724 0.8774 0.5530

Avgcov 4 0.9500 0.8900 0.9933 0.9550 0.8600 1.0000

Avglength 4 1.1413 0.3973 0.6932 1.0133 1.9001 0.5196

Avgcov 5 0.9250 0.9800 0.9800 0.9550 0.8500 0.9300

Avglength 5 1.6509 0.6189 0.5653 0.8354 7.2078 2.4434

This table summarizes the results simulated on small-world type random graphs. Given the

number of node N = 50, 200, 500, the mean degree for each node is 0.04N and 0.08N . The

rewriting probability is fixed at 0.4.

The reported coverage is for 200 simulations from 50, 200 and 500 nodes graphs. The active

set S0 contains 5 nodes and coverage for each is reported as Avgcov 1-5. Nonactive set Sc
0

contains all remaining nodes.

1. Power represents the averaged percentage in the active set being significant after controlling

False discover rate at 5% using Benjamini-Hochberg method.

2. FDR reports the averaged percentage in the non-active set being significant after controlling

False discover rate at 5% using Benjamini-Hochberg method.
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Table 11: Simulation

0.1 0.2

Network Size 50 200 5005 50 200 5005

Avgcov S0 0.9860 0.9940 0.9990 0.8950 0.9910 1.0000

Avglength S0 10.2325 0.6168 1.4046 6.1020 0.7531 1.1056

Avgcov Sc0 0.9923 0.9884 0.9868 0.9893 0.9909 0.9945

Avglength Sc0 9.2108 2.2820 4.0344 5.9378 1.7050 1.9574

Avgcov β 0.9900 0.9650 1.0000 0.9750 0.9650 0.9900

Avglength β 8.2338 0.5556 1.1923 6.4205 0.6026 1.0265

Power 1 0.3480 0.6810 0.2300 0.5480 0.5620 0.1340

FDR 2 0.0037 0.0003 0.0001 0.0076 0.0026 0.0019

Network 1:

probability3 0.8050 0.8950 0.3700 0.7400 0.8500 0.2300

# identifed 4 2.3540 3.8547 3.2973 4.0743 3.3314 2.9778

Network 2

probability 3 0.0450 0.0550 0.0300 0.1300 0.0350 0.0100

# identifed 4 4.3333 1.0000 2.1667 3.4615 1.0000 1.0000

Avgcov 1 0.9750 0.9950 1.0000 0.8850 0.9950 1.0000

Avglength 1 17.4022 0.7528 0.9309 17.1760 0.9289 1.1231

Avgcov 2 0.9950 1.0000 1.0000 0.9450 0.9950 1.0000

Avglength 2 6.7053 0.4484 1.6877 1.7011 0.5777 1.3113

Avgcov 3 0.9900 0.9800 1.0000 0.9750 0.9850 1.0000

Avglength 3 15.5009 0.7919 1.3359 7.9879 1.0755 0.9475

Avgcov 4 0.9800 0.9950 1.0000 0.8250 0.9850 1.0000

Avglength 4 9.6077 0.5766 1.3279 2.7826 0.7049 0.9092

Avgcov 5 0.9900 1.0000 0.9950 0.8450 0.9950 1.0000

Avglength 5 1.9465 0.4742 1.7408 0.8622 0.4783 1.2387

This table summarizes the results simulated on two Erdos-Renyi type random graphs. One

of the network (Network 1) passes the endogenous effects while the other one (Network 2) is

irrelevant to the decision.

The reported coverage is for 200 simulations from 50, 200 and 500 nodes graphs. The active

set S0 contains 5 nodes and coverage for each is reported as Avgcov 1-5. Nonactive set Sc
0

contains all remaining nodes.

1. Power represents the averaged percentage in the active set being significant after controlling

False discover rate at 5% using Benjamini-Hochberg method.

2. FDR reports the averaged percentage in the non-active set being significant after controlling

False discover rate at 5% using Benjamini-Hochberg method.

3. Probability reports the empirical probability that at least one regressor in the group is

significant after controlling False discover rate at 5% using Benjamini-Hochberg method.

4. # identified reports the averaged number of significant regressors in the group conditioning

on at least one regressor in the group is significant. False discover rate is controlled at 5%

using Benjamini-Hochberg method.

5. For 500 cases, lasso tuning parameter is chosen using rule of thumb instead of cross-

validation
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Table 12: Simulation

0.1 0.2

Network Size 50 200 5005 50 200 5005

Avgcov S0 0.9670 0.9580 0.9850 0.9610 0.9954 0.9980

Avglength S0 20.3014 1.3383 1.9988 8.6764 2.0044 4.5572

Avgcov Sc0 0.9665 0.9883 0.9975 0.9680 0.9926 0.9980

Avglength Sc0 14.0695 3.4002 4.7511 40.5927 1.6113 4.7505

Avgcov β 0.9800 0.9950 0.9900 0.9750 0.9943 0.9950

Avglength β 2.9138 0.8404 0.5866 1.5054 0.6253 0.6881

Avgcov γ 0.9600 0.9950 0.9950 0.9950 1.0000 1.0000

Avglength γ 0.5683 0.1568 0.0257 0.4235 0.0544 0.0294

test-γ 6= 0 0.4300 0.3750 1.0000 0.4950 1.0000 1.0000

Power 1 0.0110 0.1890 0.4680 0.0140 0.7726 0.2550

FDR 2 0.0000 0.0035 0.0000 0.0000 0.0009 0.0000

Avgcov 1 0.9650 0.8100 0.9950 0.9700 1.0000 1.0000

Avglength 1 53.2561 3.1993 1.5312 9.2207 0.2910 5.4525

Avgcov 2 0.9350 0.9950 0.9900 0.9150 0.9886 0.9950

Avglength 2 34.8486 0.6602 0.8785 19.9796 8.4948 0.4050

Avgcov 3 1.0000 0.9950 1.0000 0.9500 1.0000 0.9950

Avglength 3 5.2305 0.9718 4.2919 3.9235 0.3581 3.8538

Avgcov 4 0.9800 0.9950 0.9950 0.9800 0.9943 1.0000

Avglength 4 4.0808 1.0082 2.8069 2.9452 0.5204 2.2894

Avgcov 5 0.9550 0.9950 0.9450 0.9900 0.9943 1.0000

Avglength 5 4.0909 0.8519 0.4855 7.3132 0.3577 10.7855

This table summarizes the results for Heterogeneous Endogenous Effects Model with Cliques.

The reported coverage is for 200 simulations from 50, 200 and 500 nodes graphs. The active

set S0 contains 5 nodes and coverage for each is reported as Avgcov 1-5. Nonactive set Sc
0

contains all remaining nodes.

1. Power represents the averaged percentage in the active set being significant after controlling

False discover rate at 5% using Benjamini-Hochberg method.

2. FDR reports the averaged percentage in the non-active set being significant after controlling

False discover rate at 5% using Benjamini-Hochberg method.

5. For 500 cases, lasso tuning parameter is chosen using rule of thumb instead of cross-

validation
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Table 13: Descriptive Statistics

village number of number of average average household household average rooms

households villagers age family size having electric having latrine per person

Village1 182 843 32.7 4.6 90.7% 21.4% 0.6

Village2 195 877 31.4 4.5 94.4% 41.5% 0.5

Village3 294 1384 30.8 4.7 96.9% 47.3% 0.6

Village4 239 1026 31.3 4.3 98.3% 39.7% 0.5

Village12 175 802 30.7 4.6 90.9% 37.7% 0.6

Village19 204 1134 30.9 5.6 87.3% 14.7% 0.3

Village20 156 716 32.8 4.6 80.8% 25.0% 0.4

Village21 202 1046 28.6 5.2 83.7% 16.8% 0.4

Village23 254 1252 31.7 4.9 87.8% 28.3% 0.4

Village24 163 835 31.9 5.1 93.9% 13.5% 0.5

Village25 252 1313 30.9 5.2 96.4% 30.6% 0.6

Village28 315 1612 31.6 5.1 97.5% 34.0% 0.6

Village29 290 1337 32.2 4.6 84.1% 28.6% 0.6

Village31 153 851 26.1 5.6 97.4% 34.6% 0.5

Village32 241 1181 30.8 4.9 96.7% 20.7% 0.5

Village33 204 843 33.4 4.1 95.1% 6.4% 0.7

Village36 289 1214 33.4 4.2 84.8% 4.8% 0.7

Village39 289 1343 31.8 4.6 93.8% 42.2% 0.7

Village42 192 853 37.7 4.4 89.1% 28.6% 0.7

Village43 198 875 34.1 4.4 97.0% 26.8% 0.7

Village45 222 1076 29.8 4.8 94.6% 34.2% 0.5

Village47 139 687 33.7 4.9 94.2% 38.1% 0.6

Village50 244 999 34.8 4.1 92.2% 26.2% 0.7

Village51 251 1062 33.9 4.2 89.6% 13.1% 0.7

Village52 327 1525 33.8 4.7 91.7% 21.1% 0.7

Village55 257 1180 35.6 4.6 94.9% 4.7% 0.6

Village57 212 956 28.8 4.5 93.9% 3.8% 0.5

Village59 329 1599 31.4 4.9 96.0% 17.9% 0.6

Village62 190 994 32.1 5.2 92.1% 32.6% 0.5

Village65 299 1335 32.8 4.5 93.3% 29.4% 0.7

Village67 193 893 31.8 4.6 96.4% 25.4% 0.6

Village68 153 663 33.0 4.3 88.9% 22.2% 0.7

Village70 205 899 33.1 4.4 95.1% 24.9% 0.7

Village71 298 1388 28.8 4.7 95.0% 42.6% 0.6

Village72 223 999 32.0 4.5 96.9% 30.5% 0.7

Village73 174 870 30.1 5.0 96.6% 20.1% 0.6

Village75 172 831 32.7 4.8 91.3% 27.9% 0.7
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Table 14: Second Stage: who are they

(1) (2) (3)

Agriculture labour -0.0141 0.0476∗ 0.0672∗∗∗

(0.0136) (0.0286) (0.0134)

Anganavadi Teacher 0.0386 0.0664 0.1248∗∗

(0.0602) (0.1269) (0.0593)

Bone Specialist -0.2170 -0.3465 -0.0213

(0.3314) (0.6989) (0.3265)

Blacksmith -0.0752 -0.2279 0.1606∗

(0.0927) (0.1954) (0.0913)

Construction/mud work 0.0050 0.2199∗∗∗ 0.0562∗∗

(0.0258) (0.0544) (0.0254)

Government Official -0.0608 -0.0217 0.0350

(0.0506) (0.1067) (0.0498)

Cook 0.0346 0.2015∗ -0.0168

(0.0507) (0.1068) (0.0499)

Cow/livestock breeding 0.0059 -0.0235 0.0438

(0.0282) (0.0595) (0.0278)

Truck/Tractor Driver -0.0401 0.0746 0.0415

(0.0305) (0.0642) (0.0300)

Factory worker (bricks/stones/mill) 0.0175 0.1756∗∗∗ 0.0174

(0.0246) (0.0518) (0.0242)

Milk dairy 0.0595 -0.1104 0.0622

(0.0931) (0.1965) (0.0918)

Poultry farm -0.1927 0.3577 0.0151

(0.1258) (0.2654) (0.1240)

Small business 0.2006∗∗∗ 0.1287∗∗∗ 0.0606∗∗∗

(0.0227) (0.0479) (0.0224)

Silk/Cotton work 0.0031 0.0542 0.0266

(0.0296) (0.0624) (0.0292)

Tailor Garment worker 0.0903∗∗∗ 0.1169∗ 0.0309

(0.0304) (0.0642) (0.0300)

Teacher 0.0268 -0.0452 0.0690

(0.0426) (0.0898) (0.0420)
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Table 14 Continued: Second Stage: who are they

(1) (2) (3)

Daily labourer -0.0172 0.1239∗∗ 0.0390

(0.0283) (0.0597) (0.0279)

Auto driver 0.0113 0.2724∗∗ 0.0223

(0.0548) (0.1155) (0.0540)

Police officer -0.1459 -0.0374 0.3282∗

(0.1917) (0.4044) (0.1890)

Waterman -0.0722 0.0115 0.0715

(0.0677) (0.1428) (0.0667)

Social Worker -0.1541 -0.2959 -0.0475

(0.1662) (0.3505) (0.1638)

Carpenter -0.0863 -0.0816 0.0468

(0.0748) (0.1578) (0.0737)

Electronics 0.0711 -0.1140 -0.0337

(0.0727) (0.1532) (0.0716)

Goldsmith -0.1351 0.2782 -0.0027

(0.1664) (0.3510) (0.1640)

Hotel worker 0.3299∗∗∗ 0.4257∗∗∗ 0.0759

(0.0750) (0.1581) (0.0739)

Poojari 0.3697∗∗∗ -0.1542 0.1501

(0.1369) (0.2887) (0.1349)

Post man -0.1708 -0.3427 0.1632

(0.1253) (0.2643) (0.1235)

Veterinary clinic 0.8649∗∗∗ 1.9114∗∗∗ 0.0377

(0.3314) (0.6990) (0.3266)

Mechanic 0.0106 -0.1237 0.1274∗∗

(0.0634) (0.1337) (0.0625)

Painter -0.0832 0.1570 0.0034

(0.0746) (0.1574) (0.0735)

Real Estate business 0.0158 0.6553∗∗∗ 0.1088

(0.1108) (0.2337) (0.1092)

Skilled labour/work for company 0.0469 0.0252 0.0809∗

(0.0491) (0.1036) (0.0484)

Barber/saloon 0.4883∗∗∗ -0.0036 0.0443
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Table 14 Continued: Second Stage: who are they

(1) (2) (3)

(0.1005) (0.2119) (0.0990)

Lawyer -0.1235 0.0104 -0.1291

(0.1915) (0.4039) (0.1887)

Security guard -0.0993 0.0081 0.0016

(0.1352) (0.2852) (0.1332)

Librarian -0.0451 1.7625∗∗ -0.0848

(0.3301) (0.6962) (0.3253)

Student -0.2236 0.6929 0.1796

(0.2341) (0.4938) (0.2307)

Doctor/Health assistant 0.2691∗∗ 0.2703 0.0874

(0.1053) (0.2222) (0.1038)

Fireman 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000)

Photographer -0.0995 -0.2046 0.2804

(0.2336) (0.4926) (0.2302)

Folk artist 0.3541 -0.4611 0.0144

(0.2379) (0.5017) (0.2344)

Begger 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000)

Wood cutter -0.0223 0.1942 -0.0000

(0.0600) (0.1265) (0.0591)

Musician/Artist 0.3268 0.0640 -0.0436

(0.2338) (0.4931) (0.2304)

Animal skin business -0.1053 -0.0327 -0.0294

(0.2350) (0.4956) (0.2316)

Average Age 0.0003 -0.0052∗∗∗ -0.0003

(0.0006) (0.0013) (0.0006)

Electric 0.0234 -0.0204 0.0309

(0.0229) (0.0482) (0.0225)

Latrine 0.0533∗∗∗ -0.0882∗∗∗ 0.0148

(0.0134) (0.0283) (0.0132)

# Rooms 0.0315∗∗∗ -0.0087 0.0132∗∗∗

(0.0044) (0.0094) (0.0044)
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Table 14 Continued: Second Stage: who are they

(1) (2) (3)

Control village fix effect Y Y Y

Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

design (1) uses whether one is predefined leaders as response variable

design (2) uses whether one joins the micro-finance program as response variable

design (3) uses whether one is selected by lasso as response variable

94



References
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