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Abstract

We introduce a framework to examine, both theoretically and empirically, electoral maldis-

tricting. Maldistricting is defined as districting in pursuit of a partisan objective at the expense

of voter welfare. Analysis is performed on the set of implementable (via some district map) leg-

islatures, which we characterize both geometrically (via majorization) and in information the-

oretic terms. Drawing on data from the 2008 presidential election and the 2010 census–based

districts, we compute our index for 42 U.S. states and find that observed districting predomi-

nantly favors Republicans over Democrats. In three case studies, our index aligns with courts’

purported motivations for requesting redistricting.
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1 Introduction

Many legislative chambers around the world are elected based on geographic districts whose

boundaries are regularly redrawn in order to account for population changes over time. In the case

of the United States, such redrawing is required after each decennial census, both for the House of
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Representatives and for the state legislatures, and must deliver equipopulous districts.1 Over the

years, this regular redistricting has sparked numerous controversies due to alleged malpractice by

the political actors involved in it. Indeed, because voter ideology varies across space, the choice

of district boundaries affects the ideological composition of the elected legislature. Naturally, the

problem has been a subject of many studies in law, political science, and economics.2

In this paper, we propose an index for the intent to maldistrict. The index takes a map of

electoral districts and associates with it a relative likelihood that this map has been drawn with

the intent to advance partisan interests (maldistricting) rather than to maximize voter welfare

(well-districting). In economics, the recovery of intent (e.g., preferences from consumer choices)

is a classical problem. In criminal law, intent is a prerequisite to guilt according to the mens rea

(“guilty mind”) liability doctrine. In the context of electoral districting, intent as a prerequisite for

illegal partisan districting was suggested in the plurality opinion in Davis v. Bandemer, 478 U.S. 109

(1986). While partisan gerrymandering remains a nonjusticiable political question at the federal

level (Rucho v. Common Cause, U.S., 2019), it is has been declared unconstitutional at the state level

in Pennsylvania (League of Women Voters of Pennsylvania v. Commonwealth of Pennsylvania, 2018)

and in North Carolina (Common Cause v. Lewis, 2019), and, perhaps, would be deemed justiciable

in more states if a principled way to determine intent existed.

Our examination of intent is conducted in a model in which a districter partitions a set of

locations, each comprised of known numbers of Republican and Democrat voters, into electoral

districts, each of which elects a representative, who goes on to sit in a legislature. The legislature

votes on a policy. Maldistricting is an act of optimization: maximization or minimization (depend-

ing on the districter’s partisanship) of the policy.3 The novelty of our approach is in understand-

ing this act in relation to another act of optimization: the maximization of voter welfare. Welfare

1In the U.S., the requirement to equalize district populations dates back to the Supreme Court’s decisions in Baker v.

Carr, 369 U.S. 186 (1962), according to which redistricting is justiciable, and to the consequent decisions in Wesberry v.

Sanders, 376 U.S. 1 (1964), and Reynolds v. Sims, 377 U.S. 533 (1964), which require equipopulous districts for the U.S.
Congress and for the state legislatures, respectively.

2For a survey of the political science literature on the consequences of the "reapportionment revolution" started
by Baker v. Carr see Cox and Katz (2002). Much research has been devoted to the topic of biased district drawing
(commonly referred to as gerrymandering); an important early paper is Owen and Grofman (1988). Much recent work
has concentrated on formulating criteria for identifying gerrymandering (Grofman and King, 2007; Chen and Rodden,
2013; Stephanopoulos and McGhee, 2015; Cervas and BernardGrofman, 2020, among others). We survey the closely
related literature in Section 6.

3We also discuss how to model alternative expressions of partisanship, such as seat maximization and the protection
of incumbents.
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maximization strikes a balance between each voter’s concerns for the policy and for representa-

tion, with the latter captured by the ideology of the district representative whom the voter elects.

While the payoff-relevance of the policy is standard in political economics, the payoff-relevance

of representation has a long pedigree in political science (Chamberlin and Courant, 1983; Monroe,

1995) and is implicit in many a legal opinion on electoral districting and in legislation (e.g., the

1965 Voting Rights Act).

The index of maldistricting is defined as (a monotone increasing function of) the distance of

an observed district map from the closest welfare-maximizing district map relative to the closest

maldistricted district map. Welfare-maximizing maps are generated by the social welfare func-

tions with varying weights assigned to the policy and representation concerns. Maldistricted

maps include those favored by the Republican and by the Democrat districters. The appropri-

ate notion of distance between an observed district map and an intended one (either welfare-

maximizing or maldistricted) is the measure of voters who would have to move for the observed

map to induce the same composition of the legislature that the intended map would have induced.

This distance is easy to compute as a Manhattan distance (the L1 distance) between two vectors

that represent the corresponding legislatures and is motivated by voter migration.

We refrain from advocating a specific threshold for the index to condemn a legislature as mald-

istricted. Instead, we envisage (and perform) comparisons across legislatures and over time.

We emphasize that our index quantifies districter’s intent, not the damage done to voter wel-

fare. The associated welfare loss can be readily assessed using the tools that we develop but is not

our focus.

District shapes play no role in our analysis.4 While in most U.S. states the law mandates

that electoral districts be connected sets, this is a weak restriction because disconnected sets can

be approximated by connected ones. In particular, Sherstyuk (1998, Proposition 4) identifies the

conditions under which “[t]here exists, generically, a connected map with the value of the objective

function close to the one of an optimal map.” A fortiori, we also neglect “compactness,” which

stands for a “degree of convexity” (operationalized by Chambers and Miller, 2010, and Fryer and

Holden, 2011, among others) and for the absence of elongation. Compactness is not particularly

4Therefore, we eschew the term “gerrymandering,” which is loaded with geometric connotations (its etymology
references “salamander”), in favor of “maldistricting.”
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restrictive in commonly studied districting settings. For instance, the districter who represents

the majority party can partition the map into convex districts so that his party is in the majority

in each of these districts (Soberon, 2017, Theorem 2). Vickrey (1961) is a classical illustration of

the impotence of shape restrictions, while Alexeev and Mixon (2018) is a recent exemplar. In our

setting, we show that even mechanically drawn compact district maps exhibit a partisan bias. In

neglecting district shapes, we conform to the literature that we build on.

We position our paper in the economics literature here and discuss additional related papers

in Section 6. Conceptually, our paper inverts Friedman and Holden (2008) and Coate and Knight

(2007). Friedman and Holden ask: How to district in order to meet a certain partisan objective?

Coate and Knight ask: How to district to maximize a certain social welfare function? We ask:

Given the observed district map, what is the likely maximand?

Our model is chosen to be tractable and to depend only on the parameters that have direct

counterparts in the data, comprised, precinct by precinct, of the number of voters who reveal

themselves as Republicans by voting for a Republican president and the number of voters who

reveal themselves as Democrats by voting for a Democratic president. Our setting is closest to Gul

and Pesendorfer’s (2010) (whose is a special case of Friedman and Holden’s 2008). If one labels Gul

and Pesendorfer’s voters as locations, then the unit of attention becomes the same in their model

and ours. The difference between the two models is that each of Gul and Pesendorfer’s district

representatives has an exogenous ideology, Republican or Democrat, and is elected with some

probability, whereas in our model, this probability is replaced with the ideology of the elected

representative. The models are similar enough for the sets of all feasible districting outcomes to

be described by analogous majorization conditions.5

In our model, feasible district outcomes can be summarized by the set of implementable legis-

latures, which we must first characterize in order to then maximize voter welfare or the partisan

objective function, as appropriate. This set is formally related to the set of posterior beliefs that can

be induced in a model of Bayesian persuasion (Kamenica and Gentzkow, 2011; Kamenica, 2019).

In particular, the mean voter theorem (Hinich, 1977) puts the ideology of a district representative

in correspondence to the mean of a posterior belief in a model of Bayesian persuasion—which is

5Other modeling differences include Gul and Pesendorfer’s two competing districters and uncountably many dis-
tricts versus our one districter and finitely many districts.
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the case analyzed by Gentzkow and Kamenica (2016). Majorization theory plays a role both in our

characterization and, as pointed out by Kleiner, Moldovanu and Strack (2020), in Bayesian persua-

sion. The contemporaneous work of Kolotilin and Wolitzky (2020) exploits the parallels between

Bayesian persuasion and electoral districting in order to generalize the models of Friedman and

Holden (2008) and Gul and Pesendorfer (2010).

The paper is organized as follows. Section 2 describes how a legislature is formed and how

a policy is chosen. Section 3 offers multiple characterizations of the set of implementable legisla-

tures, each of which can be induced by some district map, and reports a comparative statics result.

One of the characterizations is information-theoretic: a legislature is implementable if and only if

it is less informative about voter ideology than a certain extreme legislature. The comparative

statics result then says that more informative geography enlarges the set of implementable leg-

islatures. Section 4 characterizes the sets of maldistricted and well-districted legislatures, which

are inputs into the index of maldistricting that we propose. Section 5 empirically validates our

index by showing that the value of the index fell in North Carolina, Texas, and Virginia after the

courts of law suspected foul play and called for redistricting. This section also shows that both

the observed legislatures and the “natural” ones (induced by district maps with regularly shaped

districts, which we also construct) tend to favor Republicans over Democrats, and explains why.

Section 6 concludes by clarifying the relationship between our model and the existing literature;

we also discuss literature as we develop our theory. Proofs of facts and propositions that are

missing from the main text are in Appendix A.

2 A Model of An Electoral System Based on Geographic Districts

The model is concerned with the decision problem of a districter who, by choosing a district map,

affects the composition of a legislature and the policy that the legislature adopts. The mapping

from a district map to the legislature is motivated by the unmodeled behavior of voters, candi-

dates, and the elected representatives.
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Figure 1: An affiliation function.

2.1 District Maps and Legislatures

A unit measure of voters are distributed uniformly on the unit square L⇥ [0, 1], where L ⌘ [0, 1]

is the set of geographic locations, with a typical location denoted by l. Each voter is of an ideology

x 2 X ⌘ {0, 1}. The proportion of voters with the ideology x = 1 at a location l is r (l), where

the (ideological) affiliation function r is nondecreasing.6,7 The mean ideology in the population

is denoted by R ⌘
R
L r (l)dl. Figure 1 illustrates an affiliation function.8

The set of electoral districts is K ⌘ {1, 2, . . . , K}, with a typical element k, where K is odd. A

function g : L ! K maps locations into districts. Its inverse is g
�1 (k) ⌘ {l 2 L | g (l) = k} for all

k 2 K. The function g is a district map if, for every district k 2 K,
R

g�1(k) dl = 1
K

, ensuring that all

districts are equipopulous. Let G be the set of all district maps.

A legislature is a collection r ⌘ (r1, r2, . . . , rK), in [0, 1]K, of ideologies of district representa-

tives. We assign no significance to district labels and, therefore, without loss of generality, restrict

attention to legislatures that are ordered: r1  r2  . . .  rK. A legislature r is implemented

by a district map g if it is the collection of induced district means: for every district k 2 K,

rk = K
R

g�1(k) r (l)dl. That is, by assumption, each elected representative’s ideology, in [0, 1],

6Definitions (and later vectors) are in bold.
7Friedman and Holden (2008) assume that the districter observes a noisy signal about each voter’s ideology but not

the ideology itself. In our model, voter’s location is such as signal.
8The depicted affiliation function corresponds to Georgia. Section 5 explains its construction.
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matches the mean voter ideology in his district. A legislature is implementable if some district

map implements it.

Given a legislature, the ideology of the median legislator is called the policy: p ⌘ rM, where

M ⌘ (K + 1) /2 is the index of the median-ideology district. A policy is implementable if it is

associated with some implementable legislature.

An agency, called the districter, knows the model and chooses a district map g from the set G.

2.2 The Economic Content of the Model’s Assumptions

Geography

The model encapsulates geography in the assumption that a districter cannot cherrypick indi-

vidual voters on the basis of their ideology. Instead, voters come in chunks called “locations,”

which are indivisible geographic units to which voters are tied. One can interpret a location as the

smallest geographic unit for which electoral data are available.

Confining locations to the unit interval and ordering them in the ascending order of voter

ideology entails no loss of generality. Locations scattered in a space that is, say, two-dimensional

can be ordered and mapped onto a unit interval.9 Such a mapping destroys information about the

geographic contiguity of locations. We have no use for this information in our analysis because

we do not require each district to be a connected set.

Mixing Means and Medians

Our model implicitly assumes the mean-voter theorem at the district level and the median-voter

theorem at the legislature level. Because there is a continuum of voters in each district, the pivotal-

voter model would not discipline their behavior. Instead, we can assume that each voter tends to

vote for the candidate whose ideology is closest to his.10 In particular, each voter is concerned

about the ideology of the winning candidate and is affected by each candidate’s charisma, which

is independent of the candidate’s ideology. The candidates know voters’ ideological preferences

9The assertion is easy to visualize when locations are finitely many. With uncountably many locations, (i) there exists
a bijective map between a unit square and a unit interval, and (ii) while not every measurable function f : L ! [0, 1] can
be “sorted” to yield a nondecreasing affiliation function r, r can be interpreted as a weakly increasing rearrangement
of f (Hardy and Littlewood, 1930, Part III, §8; Marshall, Olkin and Arnold, 2011, Definition 1.D.1).

10Such voting is called expressive, is a common modeling assumption (Fiorina, 1976, 1996), and is supported empir-
ically (Pons and Tricaud, 2018).
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but treat charisma as a random variable. When candidates’ uncertainty about voter preferences

is sufficiently large, the mean-voter theorem (Hinich, 1977; Duggan, 2017, Theorems 7, 10, and

11) predicts that, in a two-candidate contest, both candidates run on the ideologies that equal the

mean ideology of voters.11 As the uncertainty about voter preferences vanishes (as we believe

it does in the legislature, whose members we treat, politically speaking, as known quantities),

the candidates’ equilibrium ideologies converge to the median instead (Banks and Duggan, 2005;

Duggan and Jackson, 2005), consistent with our median-voter theorem assumption for the legis-

lature.

Equipopulous Districts

The legal requirement that districts be equipopulous is substantive. Without it, “anything goes”

in the sense of Proposition 1.

Proposition 1. Suppose that the affiliation function is continuous and satisfies r (0) = 0 and r (1) = 1,

and that districts need not be equipopulous. Then, any policy p in (0, 1) is implementable.

Proof. For any p in (0, 1), let [a, b] with 0 < a < b < 1 be a set of locations whose mean ideology is

p:
1

b � a

Z
b

a

r (l)dl = p. (1)

Such a set exists because p is interior and r is continuous. Partition [0, a) and (b, 1] arbitrarily into

M � 1 nonempty districts each. The district [a, b] is the median district. The constructed partition

of [0, 1] is a district map that implements the policy p.

The conclusion of Proposition 1 no longer holds when districts are equipopulous, as the char-

acterization in Section 3 reveals.
11To illustrate, suppose that a district-k voter i of ideology xi 2 X (recall that X ⌘ {0, 1}) votes for candidate Alice of

ideology rAlice 2 [0, 1] over candidate Bob of ideology rBob 2 [0, 1] if and only if � (rAlice � xi)
2 + #i > � (rBob � xi)

2,
where #i is voter i’s privately observed idiosyncratic preference for Alice over Bob. If each #i is distributed uniformly
on [�1, 1], then the number of votes that Alice amasses in a district k can be verified to be

1
2
+

1
2

Z

g�1(k)

⇣
(rBob � r (l))2 � (rAlice � r (l))2

⌘
dl,

which is maximized at rAlice = K
R

g�1(k) r (l)dl, the district mean.
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3 Implementable Legislatures

3.1 Characterization

Proposition 2 characterizes the polytope of implementable legislatures twice: by its vertices and by

linear inequalities. The vertex characterization highlights some special legislatures, such as those

that maximize welfare or deliver extreme policies. The inequalities characterization suggests an

information-theoretic reinterpretation.

Both characterizations rely on the notion of an extreme legislature. A legislature re ⌘ (re

1, r
e

2, . . . , r
e

K
)

is extreme if r
e

k
= K

R k

K

k�1
K

r (l)dl for each k 2 K. The extreme legislature is induced by the district

map in which each district contains ideologically adjacent locations. Informally, the extreme leg-

islature delivers the representatives who are maximally ideologically “spread out.”

Proposition 2. The following are equivalent.

1. P is a set of implementable legislatures.

2. P is the convex polytope X comprised of the legislatures majorized by the extreme legislature:
12

X ⌘

8
>>>><

>>>>:

r 2 [0, 1]K
���

(i) (8m 2 K)Âm

k=1 r
e

k
 Âm

k=1 rk

(ii) Âk2K r
e

k
= Âk2K rk

(iii) r1  r2  . . .  rK

9
>>>>=

>>>>;

. (2)

3. P is the convex polytope each vertex (rv

1, r
v

2, . . . , r
v

K
) of which is induced by a partition of the extreme

legislature re
into intervals; each interval

�
r

e

k
, r

e

k+1, . . . , r
e

k+m

�
in the partition induces r

v

k
= r

v

k+1 =

. . . = r
v

k+m
= 1

m+1 Âk+m

i=k
r

e

i
.

Proof. The equivalence between parts 2 and 3 is a result in majorization proved by Hoffman (1969,

Theorems 1 and 2) and reported by Marshall, Olkin and Arnold (2011, Proposition 2.G.3.a, p. 58).

A direct proof is given in Appendix A. The proof of the equivalence between parts 1 and 2 is also

in Appendix A.

12An ordered vector r is majorized by an ordered vector re if conditions (i) and (ii) in (2) hold (Marshall, Olkin and
Arnold, 2011, Definition 1.A.1). With a continuum of districts, the counterpart of the majorization inequality (i) is Gul
and Pesendorfer’s (2010) segregation constraint.
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Figure 2: The projection of the convex poly-
tope of implementable legislatures when K =
3. The projection has 23�1 = 4 vertices and is
bounded by bold dashed line segments. The
suppressed coordinate is r3 = 3R � r1 � r2. Be-
cause ordered, all implementable legislatures
lie above the 45-degree line.

R r1

R

r2

Figure 3: More legislatures become imple-
mentable as geography becomes more infor-
mative about ideology. The shaded poly-
tope expands to become the polytope with the
dashed boundary.

Part 3 of Proposition 2 immediately implies that the set of implementable legislatures is nonempty.

The vertex (R, R, . . . , R) is always implementable.

Figure 2 illustrates the polytope of implementable legislatures for the affiliation function in

Figure 1 assuming K = 3 districts. Vertex 1, obtained from the finest partition {{r
e

1} , {r
e

2} , {r
e

3}}, is

the extreme legislature re. Vertex 2, obtained from the partition {{r
e

1} , {r
e

2, r
e

3}}, is
�
r

e

1, 1
2 (r

e

2 + r
e

3) , 1
2 (r

e

2 + r
e

3)
�
.

Vertex 3, obtained from the coarsest partition {{r
e

1, r
e

2, r
e

3}}, is (R, R, R). Vertex 4, obtained from

the partition {{r
e

1, r
e

2} , {r
e

3}}, is
� 1

2 (r
e

1 + r
e

2) , 1
2 (r

e

1 + r
e

2) , r
e

3
�
.

The polytope of implementable legislatures has up to 2K�1 vertices, a handful of which we

invest with economic significance later in the paper. To count the vertices, consider how they are

constructed in part 3 of Proposition 2. There are K elements in re and, so, K � 1 “gaps” between

adjacent elements. Each of these gaps can be turned On or Off, with On denoting the boundary

between two adjacent intervals in a partition. There are 2K�1 On–Off constellations in total. When
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r is strictly increasing, the induced 2K�1 partitions correspond to 2K�1 district vertices. When r is

constant, all partitions induce the same vertex (R, R, . . . , R).

3.2 An Information Theoretic Interpretation

The equivalence between parts 1 and 2 of Proposition 2 can be restated in information-theoretic

terms: A legislature is implementable if and only if it is less informative about voter ideology than

the extreme legislature is. A legislature is a signal. Imagine an alien who lands in Georgia and

meets a voter drawn uniformly at random. The voter proceeds to divulge the district where he

votes, thereby revealing to the alien (who knows the model) something about his ideology. The

informativeness of this revelation depends on how well the districts segregate voters of disparate

ideologies or, equivalently, on how ideologically dispersed the induced legislature is.

Formally, let (W,B, P) be the probability space. Here, W ⌘ X ⇥ L (the set of voter ideol-

ogy–location pairs); B ⌘ 2X ⇥ B, where B is the Borel s-algebra on the set L; and, for any interval

I ⇢ L, P (X ⇥ I) ⌘
R

I
dl and P ({1}⇥ I) ⌘

R
I

r (l)dl. Define the random variables x̃ : W ! X , a

randomly drawn voter’s ideology, and k̃ : W ! K, a signal about x̃.13 This signal is monotone if

k < k
0 =) E

⇥
x̃ | k̃ = k

⇤
 E

⇥
x̃ | k̃ = k

0⇤ for all k, k
0 2 K (3)

and uniform if all realizations are equiprobable, Pr
�

k̃ = k
 

= 1
K

for all k 2 K.14 For any two

monotone uniform signals k̃ and k̃
0, the signal k̃

0 is (weakly) more informative than the signal k̃ if

E
⇥
x̃ | k̃

0  k
⇤
 E

⇥
x̃ | k̃  k

⇤
for all k 2 K. (4)

Under the assumptions made in this paragraph, condition (4) captures informativeness in Black-

well’s (1951; 1953) sense.15

13To avoid ambiguities, a tilde distinguishes a random variable from its realization.
14Monotonicity is a normalization; uniformity is not.
15Because x̃ is binary, the convex stochastic dominance order on the distributions of posterior beliefs about x̃ (which is

equivalent to the Blackwell order on the signals that generate these distributions) is equivalent to the mean-preserving
spread order on the distributions of posterior expectations of x̃. Courtault, Crettez and Hayek (2006, Proposition 2)
characterize the mean-preserving spread order for the discrete case as a condition on c.d.f.s (textbooks typically report
the continuous case); here, this condition is equivalent to (4).
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The realization of k̃ announces the district of residence of a voter drawn at random. This

announcement induces a posterior belief about the voter ideology x̃. The support of the induced

belief is the legislature r with rk = E
⇥
x̃ | k̃ = k

⇤
for each k 2 K. When k̃ is monotone, the induced

legislature is ordered. When k̃ is uniform, Bayes plausibility requires that 1
K

Âk2K rk = R. The

converse is also true: any ordered legislature that satisfies 1
K

Âk2K rk = R is induced by some

signal k̃ (Kamenica and Gentzkow, 2011, Proposition 1), which is monotone and uniform.

To restate the equivalence of parts 1 and 2 in Proposition 2, for any ordered legislature r with

1
K

Âk2K rk = R, let k̃ be a monotone uniform signal that induces it. For the extreme legislature re,

this signal is k̃
e ⌘ ÂK

k=1 1{ k�1
K

l̃ k

K}k, where l̃ is a random voter’s location. Then, the inequality in

condition (i) of equation (2) can be equivalently rewritten as an instance of (4):

m

Â
k=1

r
e

k


m

Â
k=1

rk ()
m

Â
k=1

E
⇥
x̃ | k̃

e = k
⇤


m

Â
k=1

E
⇥
x̃ | k̃ = k

⇤

()
m

Â
k=1

E
⇥
x̃ | k̃

e = k
⇤ 1

K


m

Â
k=1

E
⇥
x̃ | k̃ = k

⇤ 1
K

() E
⇥
x̃ | k̃

e  m
⇤
 E

⇥
x̃ | k̃  m

⇤
, (5)

meaning that k̃
e is more informative than k̃ or, as we equivalently say, the legislature induced by

k̃
e is more informative than the one induced by k̃. Corollary 1 follows from (5) and Proposition 2.

Corollary 1. An ordered legislature r that satisfies
1
K

Âk2K rk = R is implementable if and only if it is less

informative than the extreme legislature.

3.3 Comparative Statics

Proposition 3 shows that, as geography becomes more informative about ideology, the set of im-

plementable legislatures expands. The geography captured by an affiliation function r0 is (weakly)

more informative than the geography captured by an affiliation function r if r0 majorizes r:

Z 1

0
r0 (l)dl =

Z 1

0
r (l)dl =) (8s 2 L)

Z
s

0
r0 (l)dl 

Z
s

0
r (l)dl. (6)
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Condition (6) parallels (4) and likewise captures Blackwell’s informativeness, here of a voter lo-

cation about his ideology.16 Geography is uninformative when the affiliation function is flat (i.e.,

r (l) = R for all l 2 L). Geography is perfectly informative when the affiliation function is an

indicator function (i.e., r (l) = 1{l>1�R}). The uninformative and the perfectly informative ge-

ographies are, respectively, minimal and maximal according to the informativeness order defined

above.

Proposition 3. More (in the inclusion sense) legislatures are implementable the more informative geogra-

phy is about ideology. When geography is uninformative, the only implementable legislature is (R, R, . . . , R).

When geography is perfectly informative, the set of implementable legislatures is maximal.

Proof. Take any two affiliation functions r and r0 that satisfy
R 1

0 r0 (l)dl =
R 1

0 r (l)dl and (6). Let

P and P 0 be the sets of implementable legislatures for r and r0, respectively. To show that P ⇢ P 0,

take an arbitrary legislature r 2 P . For any n 2 K\K,

n

Â
k=1

rk � K

Z n

K

0
r (l)dl � K

Z n

K

0
r0 (l)dl,

where the first inequality follows from r 2 P , and the second inequality follows from (6). Taken

together, the two inequalities imply r 2 P 0, thereby establishing P ⇢ P 0.

The argument for P ⇢ P 0 above implies that the minimal and the maximal sets of imple-

mentable legislatures are induced, respectively, by the minimally and the maximally informative

geographies. These set are found by the direct substitution of the corresponding affiliation func-

tions into (2).

In Figure 3, the polytope of implementable legislatures expands as the affiliation function of

Figure 1 becomes more informative.17 Because both affiliation functions share a mean, the corre-

sponding polytopes share the vertex (R, R, R).

16When r and r0 are invertible, (6) is equivalent to
R f

0 r�1 (s)ds 
R f

0 (r0)�1 (s)ds for all f 2 [0, 1], which can
be ascertained graphically. The latter collection of inequalities implicates the c.d.f.s r�1 (s) = Pr

�
r
�
l̃
�
 s
 

and
(r0)�1 (s) = Pr

�
r0
�
l̃
�
 s
 

and says that the random variable r0
�
l̃
�

is a mean preserving spread of the random vari-
able r

�
l̃
�
. Because x̃ is binary, the mean-preserving spread order on the distributions of posterior expectations of x̃ is

equivalent to the Blackwell order on the underlying signals (as in Footnote 15), thereby implying that the signal r0
�
l̃
�

is more Blackwell informative about x̃ than the signal r
�
l̃
�

is.
17This less informative affiliation function is Arizona’s. The more informative one is Georgia’s.
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4 An Index of Maldistricting

Our index of maldistricting is inspired by the relative likelihood test for a pair of hypotheses. One

hypothesis is that the districter intends a well-districted legislature. The alternative hypothesis is

that the districter intends a maldistricted legislature. The closer the observed legislature is to the

closest maldistricted legislature, relative to the closest well-districted one, the more maldistricted

the observed legislature is declared to be, and the higher the value of the index is.

4.1 The Index as a Relative Distance

The construction of our index is motivated by the fictitious sequence of events:

1. The districter draws a district map g, intending either a well-districted or a maldistricted

legislature.

2. Voters move randomly.

3. Voters vote, and a legislature is observed.

In other words, the observed legislature equals the intended legislature plus “noise” due to unan-

ticipated voter migration. More migration is assumed to be less likely.18 The distance d (r, r0)

between two legislatures r and r0 is defined as the minimal (over g in G) measure of voters who

must change districts for the district map g to induce r instead of r0.

Fact 1. The described distance between any two ordered legislatures r and r0 that share a mean is the

Manhattan distance

d
�
r, r0
�
= Â

k2K

��rk � r
0
k

�� . (7)

Let rdata be an observed legislature. Let W ⇢ [0, 1]K and M ⇢ [0, 1]K be the disjoint sets

of the legislatures that are, respectively, well-districted and maldistricted. Then, the index of

18In our model, the districter neglects voter migration, implicitly assumed to be sufficiently small to justify neglect.
This neglect is not very costly. The districter’s payoff is continuous in the measure of the voters who move because
each winning candidate’s ideology is continuous in the ideological composition of his district. The payoff continuity in
our model is in contrast to the models that restrict the candidate ideology to be binary (e.g., Republican or Democrat).
In those models, the districter who aims to win a district by, say, 0.1% of votes must plan for the possibility that the
district can flip if its ideological composition changes ever so slightly.
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maldistricting i is defined as

i ⌘ 1
1 + L

, where L ⌘
infr2M d

�
rdata, r

�

infr2W d (rdata, r)
(8)

and where d
�
rdata, r

�
is the distance in (7). The index has its values in [0, 1], with higher values

corresponding to more maldistricting. The rest of this section populates the sets M and W .

4.2 Maldistricted Legislatures

We entertain three motives for maldistricting:

1. A partisan districter seeks an extremal (i.e., maximal or minimal) policy.

2. A partisan districter seeks to maximize the number of representatives elected from his own

party.

3. A bipartisan districter seeks to cement the positions of incumbents.

A legislature is maldistricted—is in the set M in (8)—if it is inspired by one of the maldistricting

motives above and none of the well-districting motives introduced in the following subsection.

The maldistricting motive we emphasize theoretically and (in Section 5) empirically is motive 1.

Policy Extremization

Recall that M ⌘ K+1
2 is the index of the median-ideology district.

Proposition 4. The minimal and the maximal implementable policies are, respectively,

p ⌘ K

M

Z M

K

0
r (l) dl and p̄ ⌘ K

M

Z 1

1� M

K

r (l) dl.

Either extreme policy above is induced by packing the fraction M/K of the appropriately ideologically ex-

treme (i.e., minimal for p, maximal for p̄) locations into M equal-ideology districts, with the remaining

districts formed arbitrarily.
19

Moreover, p weakly decreases and p̄ weakly increases as K increases or as

locations become more informative about ideology.

19One can show that the distance from any legislature r to the closest legislature that induces p is ÂM

k=1

���rk � p

��� +

ÂK

k=M+1
�
r

e

k
� rk

�
and to the closest legislature that induces p̄ is ÂM�1

k=1
�
rk � r

e

k

�
+ ÂK

k=M
|rk � p̄|.
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Figure 4: Maldistricted and well-districted
legislatures. The maximal-policy and the
minimal-policy legislatures are attained at the
vertices 2 and 4, respectively. The set of socially
optimal legislatures is the union of the line seg-
ments that connect the vertex 1 to the point S

and then to the vertex 3.
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Figure 5: The distance between legislatures.
The observed legislature is �. The dotted ver-
tical line segment that emanates from � and
drops onto the line segment S3 is the distance
from the observed legislature to the set of so-
cially optimal legislatures. The crooked two-
piece piecewise-linear dotted path from � to
the vertex 2 is the distance from the observed
legislature to the set of maldistricted legisla-
tures (which comprises the vertices 2 and 4).
The maldistricting index is monotone in the ra-
tio of the two distances.

For the affiliation function in Figure 1 and K = 3 districts, the legislatures that deliver the

maximal and the minimal policies are the vertices 2 and 4, respectively, in Figure 4. In general, the

extreme legislatures of Proposition 4 are the vertices in part 3 of Proposition 2 that are extreme in

the dimension M, corresponding to the median district. The ability to form more districts and to

better target voters on the basis of their ideology helps the districter pursue any objective, includ-

ing policy extremization, as the “moreover” part of the proposition confirms.20 The “moreover”

part is a corollary to Proposition 3.

20In the language of Gilligan and Matsusaka (2006)—and consistent with their findings—the “moreover” part of
Proposition 4 can be read to say that the “policy bias” is increasing in the number of districts, where the policy bias can
be defined as either

���p � R

��� or | p̄ � R|, the distance between an extreme policy and some fixed “fair” policy, such as R,
the mean ideology in the population.
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Seat Maximization

Our model has no political parties. Nevertheless, as a matter of interpretation, one can label a

district-k representative a Republican if rk � a and a Democrat if rk < a, for some a 2 [0, 1].

Among the natural choices for a are a = 1
2 and a = r

� 1
2
�
. The former honors symmetry but is

otherwise arbitrary. The latter is motivated by (unmodeled) party competition, assumed to lead

to the political platforms that would induce half of the locations to vote Republican and half to

vote Democrat.

A Republican partisan districter is assumed to maximize the number of Republican represen-

tatives. This number, denoted by NR, is NR = 0 if r
e

K
< a. If r

e

K
� a, then

NR = max
⇢

N 2 K | K

N

Z 1

K�N

K

r (l)dl � a

�
,

which is the maximal number of districts that can be constructed without the mean ideology in

any of them dipping below a.21

To uniquely assign ideology to each district, one can apply a refinement that shares its moti-

vation with our distance measure. The refinement assumes that the districter strives to maximize

the ideology of the Republican representative with the lowest ideology, thereby minimizing the

(unmodeled) probability that the Republican district flips to become Democratic if voters move.

The lowest ideology of a Republican district is maximized by setting the ideology in each Repub-

lican districts to r̄ = K

NR

R 1
K�N

R

K

r (l)dl. The refinement further assumes that the districter maximizes

the probability that a Democratic district flips by maximizing the ideology of the highest ideol-

ogy Democratic district and then, lexicographically, maximizing the probability that the second-

highest ideology Democratic district flips, and so on. In the end, the partisan districter who is

21Gilligan and Matsusaka’s (1999) partisan districter differs from ours in that theirs can reach inside locations to
cherry-pick voters by ideology. Cherry-picking is a special case of our model when r (l) = 1{l�1�R}. With this r and
with a = 1

2 , the fraction of Republican districts (ignoring indivisibilities) is NR/K = min {2R, 1}, which is also the
corresponding fraction in Gilligan and Matsusaka’s model when the number of voters approaches infinity.
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Republican aims for the legislature22

(re

1, . . . , r
e

K�NR
, r̄, . . . , r̄| {z }

NR times

). (9)

The legislature favored by an analogously motivated Democratic districter is defined similarly.

Suppose that a = 1
2 . Then, for the affiliation function of Figure 1 with K = 3, the legislature

that is districted for Republican partisanship and is described by (9) corresponds to the vertex 2

in Figure 4. At that vertex, r1 ⇡ 0.27 < 0.5 and r2 = r3 ⇡ 0.60 > 0.5, and, so, two representatives

are Republicans. The legislature that is districted for Democratic partisanship corresponds to the

vertex 3. At that vertex, r1 = r2 = r3 ⇡ 0.49; all three representatives are Democrats.

Incumbency

A pro-incumbency districter is assumed to minimize the (unmodeled) probability that any district

flips parties if voters move.23 He does so by maximizing the ideological distance of each represen-

tative from a (the threshold from the discussion of partisanship above) subject to target numbers

NR and ND ⌘ K � NR of, respectively, Republican representatives and Democratic representa-

tives.24 The result of this maximization is the legislature

(r, . . . , r| {z }
ND times

, r̄, . . . , r̄| {z }
NR times

), (10)

where r, r̄, NR, and ND satisfy

r ⌘
Z N

D

K

0
r (l)dl  a and r̄ ⌘

Z 1

K�N
R

K

r (l)dl � a.

22Owen and Grofman’s (1988) districter similarly expects the ideological composition of districts to change over
time. To minimize the probability that Republican districts flip, their Republican districter seeks ideological uniformity
across the districts he intends to win, just as our districter does. In addition, Owen and Grofman predict ideological
uniformity of Democratic districts, whereas our districter lends Democratic districts distinct ideologies.

23The role of the incumbency motive in electoral districting has been asserted by Tufte (1973) and challenged by
Ferejohn (1977).

24Owen and Grofman (1988) emphasize similarities between partisan and pro-incumbency districting. By contrasting
the legislatures in (10) and (9), we highlight potential differences.
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Suppose that a = 1
2 . Then, for the affiliation function in Figure 1 and K = 3 districts, the

vertex 3 in Figure 4 is pro-incumbent if NR = 0, the vertex 4 is pro-incumbent if NR = 1, and the

vertex 2 is pro-incumbent if NR = 2.

4.3 Well-Districted Legislatures

A legislature is well-districted—is in the set W in (8)—if it is induced by a district map that maxi-

mizes voter welfare, which balances the considerations of policy and representation, both of which

are motivated by Powell (2000, pp. 7-9). Not to commit to an arbitrary resolution of the trade-off

between the two considerations, we treat a class of social welfare functions as admissible.

Socially Optimal Legislatures

A socially optimal district map g : L ! K maximizes the utilitarian social welfare function

� g
Z 1

0

h
r (l) (1 � p)2 + (1 � r (l)) p

2
i

dl

| {z }
aggregate disutility from a policy p

� (1 � g)
Z 1

0


r (l)

⇣
1 � rg(l)

⌘2
+ (1 � r (l)) r

2
g(l)

�
dl

| {z }
aggregate disutility from misrepresentation

(11)

for some g 2 [0, 1], where g is the weight that every voter at any location l attaches to his utility

from the policy p relative to his utility from the ideology-rg(l) representative in the district that

contains the location l.25 By not committing to a particular value of g, we recognize a class of

district maps as socially optimal.

Lemma 1 shows that a legislature summarizes all the welfare-relevant aspects of the district

map that induces it.

Lemma 1. The value of the social welfare function in (11) depends on a district map only through the

legislature r that this district map induces. This legislature in turn enters the social welfare function through

the quadratic term

W (r) ⌘ g
�
2RrM � r

2
M

�
+

1 � g

K
Â

k2K
r

2
k
. (12)

25The disutility from the district representative must be quadratic for the mean-voter theorem to imply, as we main-
tain, that the ideology of the elected representative is the district mean.
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Proof. The proof proceeds by straightforward rearrangement of (11) and is omitted.

Lemma 1 motivates the definition: a socially optimal legislature maximizes (12) over imple-

mentable legislatures for some relative weight g. A legislature is socially optimal if and only if it

is induced by a socially optimal district map.

For the affiliation function in Figure 1 and K = 3 districts, the set of socially optimal legisla-

tures in Figure 4 is the two-piece piecewise-linear path through the vertex 1, the point S, and the

vertex 3. As g rises from 0 to 1, the socially optimal legislature moves from the extreme legislature

at the vertex 1 to the point S, at which the induced policy is R. When g = 1, any legislature on

the line segment that connects the point S and the vertex 3 induces the policy R and, therefore, is

socially optimal. Figure 5 illustrates the construction of the maldistricting index in (8) when the

set W comprises socially optimal legislatures, and the set M comprises the two legislatures that

extremize the policy.26

With five or more districts, the polytope of implementable legislatures cannot be profitably

visualized. An individual legislature can be drawn, though. An ordered legislature is a staircase

in which the height of each step equals the ideology of the corresponding district representa-

tive. Proposition 5 shows that the extreme legislature—the “steepest” staircase that one can con-

struct—is socially optimal when g = 0. When g = 1, optimality requires setting the policy to the

population mean, which can be accomplished, in particular, by making each district to be a “rep-

resentative sample” of all locations; the associated “staircase” is flat. When g 2 (0, 1), the socially

optimal legislature flattens the steepest staircase by replacing some of its steps with a horizontal

segment. The case of g 2 (0, 1) invokes Assumption 1.

Assumption 1 (Strict monotonicity). The affiliation function r is strictly increasing.

Assumption 1 is not required for the conclusion of Proposition 5 but simplifies the number of

cases that one must consider to prove part 3.

Proposition 5. Let r⇤ denote a socially optimal legislature, which exists. Let p
⇤ ⌘ r

⇤
M

denote the corre-

sponding optimal policy.

26Because the r3 axis points directly at the reader, the component of the Manhattan distance along this axis is invisible.
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1. When g = 1 (i.e., only the disutility from policy affects welfare), any implementable legislature r⇤

with p
⇤ = R is socially optimal.

27

2. When g = 0 (i.e., only the utility from representation affects welfare) or when g 2 (0, 1) and

R = r
e

M
, the extreme legislature is uniquely socially optimal: r⇤ = re

.

3. Suppose that Assumption 1 holds. Then, when g 2 (0, 1) and R 6= r
e

M
, any socially optimal

legislature is flattened, that is, of the form

r⇤ =

8
>>>>>><

>>>>>>:

(re

1, . . . , r
e

M�1, p
⇤, . . . , p

⇤
| {z }

q times

, b, r
e

M+q+1, . . . , r
e

K
) if R > r

e

M

(re

1, . . . , r
e

M�q�1, b, p
⇤, . . . , p

⇤
| {z }

q times

, r
e

M+1, . . . , r
e

K
) if R < r

e

M
,

(13)

where q, p
⇤
, b are all chosen optimally. Moreover, as g increases, q increases weakly and p

⇤
can be

selected (from the set of optimal policies, a singleton for almost all g) to move monotonically away

from r
e

M
(which is the optimal policy when g = 0) and towards R (which is the optimal policy when

g = 1). Always, p
⇤

lies between r
e

M
and R.

Proof. Because the set X of implementable legislatures defined in (2) is compact, and the social

welfare function (12) is continuous, an optimal legislature exists; maxr2X W (r) has a solution for

every g 2 [0, 1].

When g = 1, the maximand (12), now 2RrM � r
2
M

, is maximized at p
⇤ = R.

When g = 0, the maximand (12) is strictly Schur-convex (Marshall, Olkin and Arnold, 2011,

3.C.1.a.(i)). Because any implementable legislature is majorized by re, strict Schur-convexity im-

plies that (12) is uniquely maximized by r⇤ = re (Marshall, Olkin and Arnold, 2011, Definition

3.A.1).28

27One can show that the distance from any legislature r to the closest legislature that is socially optimal for
g = 1 is 2 ÂM

k=M�q+1 max {0, rk � R} with q ⌘ min
n

i � 0 | 1
i+1 ÂM

k=M�i
rk  R

o
whenever rM > R, and is

2 ÂM+q�1
k=M

max {0, R � rk} with q ⌘ min
n

i � 0 | 1
i+1 ÂM+i

k=M
rk � R

o
whenever rM  R. Here, q is the number of dis-

tricts (in the closest optimal legislature) whose mean ideology is R.
28For an alternative, information theoretic argument, note that, when g = 0, the social welfare function (12)

is Âk2K r
2
k
/K and is the value function (sans a constant) for the decision problem mina2[0,1] E

h
� (a � x̃)2 | k̃

i
,

where—following the interpretation in Section 3.2—x̃ is a random voter’s ideology and k̃ is a legislature formulated as
a signal. Because any decision maker prefers the most informative signal, the value function is maximized at the most
informative legislature, which is re, the extreme legislature.
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When g 2 (0, 1), by the argument in the paragraph above, re continues to uniquely maximize

the component of (12) that multiplies (1 � g). In addition, when R = r
e

M
, re maximizes the com-

ponent of (12) that multiplies g. As a result, when g 2 (0, 1) and R = r
e

M
, re uniquely maximizes

(12).

The (involved) proof of part 3 is in Appendix A.

Proposition 5 suggests a sniff test for the districter’s failure to maximize welfare: if the ob-

served policy falls outside the interval bounded by r
e

M
and R, then welfare is not maximized, no

matter the g.

5 Empirical Analysis

This section interprets electoral data through the prism of the model developed above. To preview:

1. In most states, observed electoral districting favors Republicans over Democrats.

2. In most states, an impartial districting benchmark would also favor Republicans over Democrats.

3. In North Carolina, Texas, and Virginia, the index of maldistricting fell after courts of law

requested redistricting.

Point 3 above provides external validation for our index of maldistricting.

Demographic and Electoral Data and Natural Legislatures

The unit of observation is an electoral precinct in the year 2008; precincts are the counterparts of

the model’s locations. We examine precincts from 42 states: Alabama (AL), Arkansas (AR), Ari-

zona (AZ), California (CA), Colorado (CO), Connecticut (CT), Delaware (DE), Florida (FL), Geor-

gia (GA), Hawaii (HI), Iowa (IA), Idaho (ID), Illinois (IL), Indiana (IN), Kansas (KS), Louisiana

(LA), Massachusetts (MA), Michigan (MI), Minnesota (MN), Missouri (MO), Mississippi (MS),

Montana (MT), North Carolina (NC), North Dakota (ND), Nebraska (NE), New Jersey (NJ), New

Mexico (NM), Nevada (NV), New York (NY), Ohio (OH), Oklahoma (OK), Oregon (OR), Penn-

sylvania (PA), Rhode Island (RI), South Carolina (SC), Tennessee (TN), Texas (TX), Utah (UT),
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Virginia (VA), Washington (WA), Wisconsin (WI), and Wyoming (WY) .29 We use the 2010 cen-

sus–based districts that are drawn to elect members of the lower house of each state’s legislature

(usually called the House of Representatives).30 Each district elects one representative except for

Arizona, Idaho, New Jersey, North Dakota, and Washington, whose districts elect a pair. We treat

each pair as one, thus equating the number of representatives to the number of districts.31

An ideology at a precinct is the ratio of votes cast in the 2008 presidential election for the Re-

publican candidate to the total number of votes cast for either the Republican candidate (McCain)

or the Democratic candidate (Obama). The affiliation function r for each state is constructed by

setting r (l) to be the smallest ideology such that at least the fraction l of the state’s population

live in a precinct with an ideology that does not exceed r (l). This construction assumes (counter-

factually) that the same fraction of the population turn out to vote in every precinct; it is without

loss of generality to further assume that this fraction is 100%.32

Dave’s Redistricting (http://gardow.com/davebradlee/redistricting/) contains all the electoral

and population data we need except for the partition of precincts into districts. To partition, we su-

perimpose the map of districts on the map of precincts. Each precinct is allocated to the district that

contains its “center” as defined by QGIS’s plugin realcentroid (https://github.com/zsiki/realcentroid);

the center is guaranteed to lie within the boundaries of the precinct, even for nonconvex precincts.33

The relevant maps are available online from a variety of official sources (www.census.gov, cata-

log.data.gov, www.rigis.org, www.ncleg.gov, data.imap.maryland.gov, www.legis.iowa.gov, and

azredistricting.org).

Observed districts induce observed legislatures and observed policies by applying the defini-

tions of Section 2.

We define the natural legislature as the legislature induced by the natural district map, which

is constructed following the shortest splitline algorithm, proposed by RangeVoting.org and de-

scribed on their website. First, we identify each precinct with its “center” and then apply the

29For California, Montana, Oregon, and Rhode Island, we replace precincts with census block groups. California
precincts are unusually large; census block groups are smaller. For Montana, Oregon, and Rhode Island, precinct data
are incomplete.

30Nebraska’s legislature is unique in that it is unicameral.
31In a suitable stochastic voting setting, m winners in an (m + 1)-candidate race will all tend to be of the ideology

that equals the district mean. Therefore, we treat m = 2 district representatives as one.
32We drop the precincts (0.05% by population) where no one voted for McCain or Obama.
33This procedure allocates factually incorrectly the precincts that in practice are split between multiple districts; North

Carolina is a special offender.
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Georgia, United States
GA
Total number of districts: 180
Total number of precincts: 2962
Total population: 9687653

Figure 6: Natural districts for Georgia.
Precinct “centers” (dots) are partitioned into
natural districts (polygons except for state
boundaries).
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Figure 7: Policy bands. The minimal and
the maximal implementable policies, p and p̄,
straddle the mean ideology in the state, R.

shortest splitline algorithm to allocate each precinct to a district. By construction, each natural

district is a convex and “not too elongated” polygon (modulo state boundaries). Figure 6 depicts

the natural district map for Georgia.34

Maldistricting (Mostly) Favors Republicans

For each state in our data set, Figure 7 plots the mean ideology in that state straddled by the min-

imal and the maximal implementable policies, as reported in Proposition 4. The mean is always

implementable. The range of implementable policies in Figure 7 is substantially larger for Georgia

than for Arizona, even though mean ideologies are about the same. Figure 8 indicates the reason:

geography in Georgia is more informative about voter ideology than in Arizona. The conclusion

of Proposition 3 applies.

Figure 9 plots the policies implied by the district maps observed in the data. These policies

exceed state means in most states. The means are benchmark policies that correspond to popu-

lating districts by picking precincts uniformly at random. The discrepancy between the observed

34All maps are in Appendix B.
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Figure 8: Affiliation functions ranked by in-
formativeness. Geography in Georgia is more
informative about voter ideology than in Ari-
zona. For instance, at l = 0.1 or l = 0.9, there
is more uncertainty about voter ideology (i.e.,
r (l) is farther away from 1

2 ) in Arizona than in
Georgia.
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Figure 9: Policies implied by the data. The
stars, labelled pdata, denote the policies calcu-
lated from the district maps in the data. The
rest is as in Figure 7.

policies and state means need not betray maldistricting and may arise as a result of welfare maxi-

mization. To check whether observed policies are consistent with welfare maximization, Figure 10

appeals to Proposition A.7 to plot, for each state, the interval of the policies consistent with op-

timality: either [re

M
, R] or [R, r

e

M
], whichever is nonempty. The policies observed in the data are

mostly outside these intervals, suggesting alternative motives for the districters.

While Figure 10 is suggestive of maldistricting, it fails to provide a measure of its extent. The

figure also discards all the information contained in the observed legislature apart from one num-

ber: the policy. Figure 11 rectifies these shortcomings by reporting the values of the maldistricting

index (8). The index is constructed by letting the set M of maldistricted legislatures to be the

legislatures that extremize the policy, and by letting the set W of well-districted legislatures to

be the legislatures that maximize of the social welfare function (11) for some g. In the figure, the
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Figure 10: Policies consistent with welfare
maximization. Vertical dumbbells are inter-
vals [re

M
, R], which contain policies consistent

with welfare maximization; r
e

M
is the policy

at the legislature that minimizes the disutility
from misrepresentation. The rest is as in Fig-
ure 9 except the vertical axis has been magni-
fied, and the minimal and the maximal policies
have been dropped.
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Figure 12: Values of the maldistricting index
for natural legislatures. A triangle points up-
wards if the closest maldistricted legislature fa-
vors Republicans and points downwards if it
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Figure 13: Extreme legislatures for each state.
The legislatures exhibit “concave tendencies,”
thereby implying higher ideological varia-
tion across Democratic-leaning districts than
Republican-leaning ones.

least maldistricted state is Oregon, and the most maldistricted one is Tennessee.35 Most states are

maldistricted to favor Republicans.

The Republican Bias is (Mostly) Shared by Natural Legislatures

Why are most states maldistricted to favor Republicans? Possibly, because Republican maldis-

tricting may be easier to conceal. Natural district maps (defined above and illustrated in Figure 6)

are politically easy to advocate. Deviations from natural districts’ “compactness” (convexity and

the lack of elongation) are condemned by both the court of law and the court of public opinion. If

natural legislatures are biased towards Republicans, then so may be the observed ones.

Figure 12 confirms that most (39 out of 42) natural legislatures indeed favor Republicans. The

comparison of Figures 11 and 12 reveals that all states with a Republican-biased natural legislature

retain this bias in the observed legislature. By contrast, among the states with a Democratic-biased

35Unseen in Figure 11 is the fact that, in every state, the well-districted legislature that is the closest to the observed
one is a socially optimal one for g = 1. This empirical regularity owes to the multiplicity and the flexibility of socially
optimal legislatures for g = 1, contrasted to the almost uniqueness of the socially optimal legislatures for each g < 1
(Proposition 5).
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natural legislature, only those in which both chambers are controlled by Democrats manage to

retain this bias in the observed legislature. The control of legislatures matters because these are

typically state legislatures who draw district boundaries.

Why do natural legislatures favor Republicans? Leaving extensive theorizing on this subject

to future research, we convey intuition in a fictional example.

Example 1 (Ideological Dispersion and a Republican Bias). Let K = 3. Suppose that the tendency

of ideologically similar precincts to cluster together is maximally strong, equating the natural

legislature to the extreme one: rnatural = re. Proposition 4 and its attendant Footnote 19 can then

be verified to imply that re is closer to a policy-maximizing legislature than to a policy-minimizing

one if and only if r
e

2 � r
e

1 > r
e

3 � r
e

2, when the extreme legislature re is “concave.” 4

Example 1 suggests that the natural legislature favors Republicans when

1. similar-ideology precincts cluster together in space, causing the natural legislature to resem-

ble the extreme one, and

2. the extreme legislature exhibits “concave tendencies.”

Both conditions are approximated for most states in our data set. The empirical validity of con-

dition 1 owes to the distribution of voter ideologies in space. Ideologically similar voters tend to

live near each other. By construction, natural districts tend to bring together into the same district

the voters who live nearby. The empirical validity of condition 2 is corroborated by Figure 13.

The “concave tendencies” in the figure owe to the higher ideological variation across Democratic-

leaning districts than Republican-leaning ones. This comparative variation can be explained by

residential segregation by race, as Example 2 illustrates by specializing Example 1.

Example 2 (Ideological Dispersion and Racial Segregation). Let K = 3. Label the locations in
⇥
0, 1

2
⇤

as urban and in
� 1

2 , 1
⇤

as exurban. Half of the voters are Republicans, and half are Democrats:

R = 1
2 . Two thirds of Republicans prefer exurban locations. Two thirds of Democrats prefer urban

locations. Assume that all urban lovers “mix uniformly” on
⇥
0, 1

2
⇤
, where r (l) = 1

3 . Assume that

all suburban lovers mix uniformly on
� 1

2 , 1
⇤
, where r (l) = 2

3 . The extreme legislature re =
� 1

3 , 1
2 , 2

3
�

is equidistant from the policy-maximizing legislature
� 1

3 , 7
12 , 7

12
�

and from the policy minimizing

legislature
� 5

12 , 5
12 , 2

3
�
.
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Now assume that African Americans comprise one sixth of the population and are all Democrats

and urban lovers. Assuming residential segregation by race, all African Americans live in urban

locations on
⇥
0, 1

6
⇤
, where r (l) = 0. The remaining urban lovers, Democrats and Republicans,

mix uniformly on
� 1

6 , 1
2
�
, where r (l) = 1

2 . All suburban lovers mix uniformly on
⇥ 1

2 , 1
⇤
, where

r (l) = 2
3 . The extreme legislature re =

� 1
4 , 7

12 , 2
3
�

is closer to the policy-maximizing legislature
� 1

4 , 5
8 , 5

8
�

than to the policy-minimizing legislature
� 5

12 , 5
12 , 2

3
�
. 4

In Example 2, all Republicans mix with Democrats, but not all Democrats mix with Republi-

cans. As a result, there is more variety in ideology across Democratic precincts than there is across

Republican ones.

Our finding that natural districts tend to favor Republicans is consistent with the findings of

Chen and Rodden (2013), who document correlation between geographic concentration of Demo-

cratic voters and electoral bias in favor of Republicans.

The Index of Maldistricting Echoes Courts’ Interpretations of District Maps in NC, TX, and VA

In North Carolina, Texas, and Virginia, the 2010 census–based district maps, drawn by a Republican-

dominated legislature in 2011, were all struck down by federal courts for being an “impermissible

racial gerrymander.” Consistent with the courts’ motivation, the maps that eventually replaced

the 2011 ones are less maldistricted according to our index.36,37 The path towards the final 2010

census–based map is different in each of the three states and is signposted in Figure 14.

In North Carolina, the halfhearted attempt by the state legislature in 2017 to obey federal

courts’ ruling against the 2011 map was struck down by the same courts, on the same grounds

of racial gerrymander. In 2018, the US Supreme Court proposed an alternative map. It, too, was

struck down by courts for being an “impermissible partisan gerrymander”—impermissible ac-

cording to the newly interpreted state law, even though not according to the federal law. Finally,

in 2019, the state legislature proposed a new map, to comply with state courts’ requirements.

36The maps are at https://www.ncleg.gov/Redistricting for North Carolina, at
https://data.capitol.texas.gov/organization/tlc for Texas, and at https://catalog.data.gov/dataset/tiger-
line-shapefile-2017-state-virginia-current-state-legislative-district-sld-lower-chamber-s and
https://redistricting.dls.virginia.gov/CensusDownload.aspx for Virginia (all accessed on 4 June 2020).

37We thank Thomas Wiseman for suggesting this exercise.
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Figure 14: The evolution of the index of mald-
istricting in NC, TX and VA.

Texas’s story resembles North Carolina’s but has a twist. The alternative to the 2011 map was

proposed in 2012 by the federal courts. The US Supreme Court struck down this map because it

ignored state legislature’s preferences. The legislature itself then produced the 2014 map, thereby

generating an uptick in the maldistricting index in Figure 14.

The legislature-drawn map that replaced the 2011 map in Virginia was so effective at rectifying

Republicans’ impermissible gerrymander that it elected a Democratic majority in 2019.

6 Remarks on the Literature

The literature on electoral districting falls into three strands: papers that focus on bizarre shapes of

electoral districts as indirect evidence of foul play by the districters, papers that use the votes–seats

curve to assess the unfairness of electoral outcomes as indirect evidence of foul play by districters,

and papers that directly model districter’s motives.

The first strand includes Chambers and Miller (2010), who review prior art and propose a

compelling measure of district convexity. Fryer and Holden (2011) propose a related measure,

amenable to principled aggregation to assess the bizarreness of a district map as a whole. Ely

(2019) identifies harmful nonconvexities through equilibrium analysis. The problem with rely-
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ing on district geometry in order to infer districter’s intentions is that these intentions cannot

be reliably read off geometry alone. One must consider the ideological composition of districts.

Vickrey’s (1961) example makes the point. In his example, a district map that caters to voters’ local

representation concerns and a distinct map that maximizes the number of seats won by a party

share the same set of convex district shapes. Our measure of maldistricting differs from measures

of bizarreness in two ways: We neglect district geometry and instead focus on ideology. We are

also agnostic about individual districts and can only assess maldistricting of the entire district

map.

In the second strand of the literature, the votes–seats curve s : [0, 1] ! [0, 1] assigns to any

share v of votes that a party obtains in an election a share s (v) of seats that that the party wins

(Erikson, 1972; Tufte, 1973). An electoral system is deemed unbiased if s
� 1

2
�
= 1

2 , with
��s
� 1

2
�
� 1

2

��

being the measure of bias.38 Our model does not endorse this measure. When v = 1
2 is interpreted

as the mean ideology R = 1
2 , and s

� 1
2
�

is interpreted as the share of districts with rk > 1
2 (i.e.,

won by Republicans), the bias
��s
� 1

2
�
� 1

2

�� does not align with our index of maldistricting, if only

because the former is discontinuous in the legislature while the latter is continuous.39 Even if s
� 1

2
�

is replaced with the policy p, the bias
��p � 1

2

�� fails to align with our index. When voters care about

representation (i.e., when g < 1), the welfare-maximizing legislature induces zero maldistricting

while p 6= R. We share with the votes–seats literature the neglect of the shapes of electoral districts.

Ensemble sampling (reviewed by Ellenberg, 2020) extends the votes–seats curve approach by,

first, computing an empirical distribution for the values of s (v) � v generated by “randomly”

sampling from all admissible district maps and then assessing how much of an outlier the ob-

served value of s (v)� v is. This approach implicitly ascribes normative significance to both the

votes–seat curve and the “random” map, neither of which has basis in law, which does not pro-

38Gelman and King (1994) and Katz, King and Rosenblatt (2020) provide rich applications of this model. Gov.
Arnold Schwarzenegger is among the activists who endorse

���s
⇣

1
2

⌘
� 1

2

��� as a measure of electoral unfairness
(https://youtu.be/E2EnuHsRJd4, accessed 17 June 2020).

39Nor does maldistricting align with the efficiency gap (proposed by Stephanopoulos and McGhee, 2015, critiqued
by Chambers, Miller and Sobel, 2017, and recognized by the Supreme Court in Gill v Whitford, 585 US, 2018), which
coincides with the bias when R = 1

2 .
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Party Welfare Voter Welfare

Policy Gilligan and Matsusaka (2006) Coate and Knight (2007)

Representation
Owen and Grofman (1988) Chamberlin and Courant (1983)Gilligan and Matsusaka (1999)

Friedman and Holden (2008) Monroe (1995)

Table 1: Related literature.

hibit the toolkit of partisan districting, only some uses of this toolkit.40 Our approach ascribes

normative (though not legal) significance to the set W of well-districted legislatures and, instead

of generating an empirical distribution as ensemble sampling would have it, implicitly assumes a

theoretical one, whose salient features are captured by the Manhattan distance from W .

Our paper contributes to the third strand of the literature, which explicitly models the mo-

tives of the districter. This strand is further subdivided depending on whether the districter is

concerned with party welfare or voter welfare, and whether this welfare is derived from policy or

representation. Table 1 collates some of the foundational papers according to the aforementioned

taxonomy. Our model accommodates districter motives in each cell of the table.

Coate and Knight (2007) focus on a districter who maximizes voters’ utility from policy, which

corresponds to g = 1 in our model. The first-best has a linear relationship between votes and seats,

which can be interpreted to require p = R in our model. When independent voters are few, the

first-best is implementable; it always is in our model (which has no counterpart for independents).

Our principal difference from Coate and Knight (2007) is the assumption that, instead of being

constrained by party platforms, each candidate responds to the ideological composition of the

district in which he runs; a Democratic candidate in the Deep South is quite different from a

Democratic candidate in the northeast. Following Chamberlin and Courant (1983) and Monroe

(1995), we also acknowledge that voter welfare may depend on the characteristics of the legislature

40In Rucho v. Common Cause (2019), Justice Roberts writes: ‘Partisan gerrymandering claims rest on an instinct that
groups with a certain level of political support should enjoy a commensurate level of political power and influence.
Such claims invariably sound in a desire for proportional representation, but the Constitution does not require propor-
tional representation, and federal courts are neither equipped nor authorized to apportion political power as a matter
of fairness. It is not even clear what fairness looks like in this con- text. It may mean achieving a greater number of
competitive districts by undoing packing and cracking so that supporters of the dis- advantaged party have a better
shot at electing their preferred candidates. But it could mean engaging in cracking and packing to ensure each party its
“appropriate” share of “safe” seats. Or perhaps it should be measured by adherence to “traditional” districting criteria.
Deciding among those different visions of fairness poses basic questions that are political, not legal. There are no legal
standards discernible in the Constitution for making such judgments.’
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that are not summarized by the policy that the legislature adopts. For tractability, we focus on one

such characteristic: the voter’s utility from being ideologically near to his district representative.

We adopt the utilitarian approach to social welfare by assuming that well-districting maxi-

mizes the welfare of people (voters) not of institutions (political parties). Maldistricting, in turn, is

concerned with party welfare, either derived from the policy or from representation as captured

by the number of seats won. Gilligan and Matsusaka (2006) focus on policy extremization and,

when the number of voters is “large” (we have a continuum), derive comparative statics consistent

with ours. Owen and Grofman (1988) show that seat maximization involves packing (concentrat-

ing) and cracking (dispersing) supporters of the opposing party. Our districter goes through the

same stylized motions, whether he maximizes the seats or extremizes the policy. Friedman and

Holden (2008) and Gul and Pesendorfer (2010) resemble Owen and Grofman but accommodate a

much richer structure of uncertainty.

7 Concluding Remarks

The index of maldistricting we propose in this paper is modular. The user specifies a set of maldis-

tricted legislatures (M) and a set of well-districted ones (W), as well as an economically motivated

notion of a distance between legislatures (d). These modules are then combined into an index, a

function that takes the observed legislature as an input. Our contribution consists in proposing a

setting in which the described modular design is meaningful and in making particular choices for

the modules: the maldistricted and well-districted sets motivated by the maximization of party

and voter welfare, respectively, and a distance between the observed and the intended legislatures

motivated by voter migration. In future work, both theoretical and empirical, alternative choices

of the modules may prove profitable.41

The tractability of our approach owes to the focus on the environments in which the mean-

voter theorem is a good description of voting outcomes at the district level. The promise of such

environments lies in the synergies between the problems of electoral districting and information

design.

41Alternative notions of distance would call for reassessment of the assertions in Footnotes 19
and 27.
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A Omitted Proofs (for publication)

A.1 The Proof of the Equivalence between Parts 1 and 2 of Proposition 2

To show the equivalence between parts 1 and 2, we shall show that P = X, where P is the set of

implementable legislatures, and X is defined in (2). That X is a polytope is immediate.

We first show that P ⇢ X. If r 2 P , then r satisfies properties (ii) and (iii) in (2) by virtue of

being a (ordered) legislature. For property (i), we must equivalently show that, for any m 2 K,

m

Â
k=1

Z

g�1(k)
r (l)dl �

Z m

K

0
r (l)dl.

Due to the monotonicity of r, the right hand-side of the inequality above equals

min
g02G

m

Â
k=1

Z

g0�1(k)
r (l)dl.

The sought inequality follows. The inclusion P ⇢ X follows.

We now show that X ⇢ P. If r 2 X, then r is ordered by property (iii) in (2). It remains to show

that r is implementable by some g. The proof is recursive.

From property (i), r
e

1  r1. From properties (i), (ii), and (iii), r1  rK  r
e

K
. Define the interval

S (a) ⌘
⇥
a, a + 1

K

�
⇢ L and the associated mean r1 (a) = K

R
S(a) r (l)dl, which satisfies r1 (0) =

r
e

1  r1  r1
�

K�1
K

�
= r

e

K
. Because r1 (a) is continuous in a, there exists an a

⇤ such that r1 (a
⇤) = r1.

Set g (l) = 1 for all l 2 S (a
⇤).

We now reduce the initial problem by one dimension by removing the district S (a
⇤), with its

representative r1, and constructing an extreme legislature re
0 ⌘

⇣
r

e
0

2 , r
e
0

3 , . . . , r
e
0

K

⌘
for the residual

economy L0 ⌘ L\S (a
⇤). To do so, define, for each l 2 L,

j (l) =

8
>>>>>><

>>>>>>:

l if l  a
⇤

0 if a
⇤ < l  a

⇤ + 1
K

l � 1
K

if l > a
⇤ + 1

K
,

34



and define re
0 by setting, for each k 2 K0 ⌘ K\ {1},

r
e
0

k
= K

Z

l: k�2
K

<j(l)< k�1
K

r (l)dl.

To show that r
e
0

2  r2  r
e
0

K
, we use Lemma A.1.

Lemma A.1. 1.
1
K

Âk2K0 rk =
R
L0 r (l) dl

2. (8m 2 K0)Âm

k=2 rk � Âm

k=2 r
e
0

k
.

Proof. Part 1 follows from part (ii) in (2) and by the construction of S (a
⇤).

For part 2, note that, for any m such that a
⇤ � m�1

K
,
⇣

r
e
0

2 , . . . , r
e
0

m

⌘
=
�
r

e

1, . . . , r
e

m�1
�
. In this case,

part 2 follows from
m

Â
k=2

r
e
0

k
=

m�1

Â
k=1

r
e

k


m�1

Â
k=1

rk 
m

Â
k=2

rk,

where the first inequality follows from part (i) in (2), and the second inequality follows by part (iii)

in (2).

When a
⇤ < m�1

K
, part 2 follows from

m

Â
k=2

r
e
0

k
= K

Z m

K

0
r (l)dl � K

Z

S(a⇤)
r (l)dl

=
m

Â
k=1

r
e

k
� r1 

m

Â
k=2

rk,

where the inequality follows from property (i) in (2): Âm

k=1 r
e

k
 Âm

k=1 rk = r1 + Âm

k=2 rk.

By part 2 of Lemma A.1, r2 � r
e
0

2 . By parts 1 and 2 of Lemma A.1, given the definition of

K0 ⌘ K\ {1}, we have rK  r
e
0

K
. By property (iii) in (2), we have r2  rK. Therefore, r2  rK  r

e
0

K
.

We can now repeat for r2 the procedure that we have performed for r1 and thereby recover g
�1 (2).

By successively invoking Lemma A.1, the procedure is repeated until the entire district map g is

recovered.

A.2 A Direct Proof of the Equivalence of Part 3 and 2 in Proposition 2

Let V be the set of all vertices described in part 3 of the proposition and let X be the implementable

polytope defined in (2). By construction of V, V ⇢ X. The proof proceeds in two steps. Step 1
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shows that V contains only the vertices of X. Step 2 (which contains an auxiliary lemma) shows

that V does not omit any vertices of X. From steps 1 and 2, we conclude that V characterizes the

polytope X, which is equivalent to P .

Step 1: Each rv
in V is a vertex of X.

By contradiction, suppose that an rv 2 V is not a vertex. Then, there exist r0 and r00 in X such

that r0 6= r00 and

rv = qr0 + (1 � q) r00 for some q 2 (0, 1) . (A.1)

Let t 2 K be the first coordinate at which r0 and r00 differ: r
0
t
6= r

00
t

. Without loss of generality, let

r
0
t
> r

00
t

. Because of (A.1), r
0
t
> r

00
t

implies r
0
t
> r

v

t
> r

00
t

, and r
0
k
= r

00
k

for all k < t implies r
0
k
= r

v

k
= r

00
k

.

Let m be the smallest integer in {0, 1, . . . , K � t} such that Ât+m

k=1 r
v

k
= Ât+m

k=1 r
e

k
. (Such an m exists

because part (ii) of (2) demands that ÂK

k=1 r
v

k
= ÂK

k=1 r
e

k
.) Then, because rv 2 V, it must be that, for

any j 2 {0, 1, . . . , m}, we have r
v

t
= r

v

t+j
. Then, combining r

0
t+j

� r
0
t

(by part (iii) of (2)) and r
0
t
> r

v

t

with r
v

t
= r

v

t+j
we get r

0
t+j

> r
v

t+j
for every j 2 {0, 1, . . . , m}.

Now, (A.1) and r
0
t+j

> r
v

t+j
for all j 2 {0, 1, . . . , m} imply r

v

t+j
> r

00
t+j

for all j 2 {0, 1, . . . , m}.

Recall that r
v

k
= r

00
k

for all k < t. The last two sentences taken together imply Ât+m

k=1 r
v

k
> Ât+m

k=1 r
00
k

.

Because, Ât+m

k=1 r
v

k
= Ât+m

k=1 r
e

k
, we have Ât+m

k=1 r
e

k
> Ât+m

k=1 r
00
k

, which contradicts part (i) of (2) for

r00 2 X.

Step 2: No r in X\V is a vertex of X.

Fix any r 2 X\V. We shall construct legislatures r0 and r00—each in X and each a local pertur-

bation of r—such that r = 1
2 r0+ 1

2 r00, thereby demonstrating that r is not a vertex of the polytope X.

The delicate part of the proof is in determining which components of r can be perturbed so that

both perturbations remain in X and, in particular, satisfy property (i) in (2).

Given an r 2 X, let Ir ⌘ {Ir,1, Ir,2, . . .} be the interval partition of the set of districts K into

equivalence classes such that

• for any two districts k and k
0 in the same class, rk = rk0 , and

• for any k in Ir,i and any k
0 in Ir,j, if i < j then rk < rk0 .A.1

A.1The partition Ir is unrelated to the partitions used to generate the elements of V in part 3 of the proposition’s
statement.
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Because r is ordered, whenever ri 2 Ir,n and rj 2 Ir,m, the inequality n < m implies that ri < rj.

Because r /2 X\V, it cannot be that, for all Ir,h 2 Ir, the equality Âi2Ir,h
ri = Âi2Ir,h

r
e

i
holds. Without

loss of generality, assume thatA.2

Â
i2Ir,1

ri > Â
i2Ir,1

r
e

i
. (A.2)

Write Ir,1 = {1, . . . , t} and Ir,2 = {t + 1, . . . , t + m} for some t � 1 and m � 1. We know that

Ir,2 is nonempty; otherwise, rk = R, for all k 2 K, and then r 2 V, which we have ruled out. Note

that, for some r̄1 and all k 2 Ir,1, we have rk = r̄1, and, for some r̄2 and all k 2 Ir,2, we have rk = r̄2,

with r̄1 < r̄2. The following lemma is crucial.

Lemma A.2. For all k < t + m, the inequality Âk

i=1 ri > Âk

i=1 r
e

i
holds.

Proof. First, let k 2 Ir,1. Because r
e

i
is nondecreasing in i, r

e

i
� r

e

j
for all i 2 {k + 1, . . . , t} and all

j 2 {1, . . . , k}. Adding up these inequalities over j gives kr
e

i
� Âk

j=1 r
e

j
(for every i 2 {k + 1, . . . , t}),

which, in turn, can be added up over i to give

t

Â
i=k+1

kr
e

i
� (t � k)

k

Â
j=1

r
e

j
()

t

Â
i=1

kr
e

i
� t

k

Â
j=1

r
e

j
()

k

t
Â

i2Ir,1

r
e

i
�

k

Â
i=1

r
e

i
. (A.3)

Assumption (A.2) is equivalent to the inequality tr̄1 > Âi2Ir,1
r

e

i
. Multiplying its both sides by k/t,

we get the inequality kr̄1 > k

t
Âi2Ir,1

r
e

i
. Since k 2 Ir,1, this inequality is equivalent to Âk

i=1 ri >

k

t
Âi2Ir,1

r
e

i
. Therefore, by (A.3), we have Âk

i=1 ri > Âk

i=1 r
e

i
, which is the sought inequality when

k 2 Ir,1.

If m = 1 (i.e., Ir,2 is a singleton), the lemma’s conclusion follows.

Assume that m > 1. Let k = (t + j) 2 Ir,2 with j < m (recall that Ir,2 ⌘ {t + 1, . . . , t + m}).

Because r 2 X, we have Âk

i=1 ri � Âk

i=1 r
e

i
and Âk+1

i=1 ri � Âk+1
i=1 r

e

i
. By contradiction, suppose

that Âk

i=1 ri = Âk

i=1 r
e

i
. The contradiction hypothesis combined with Âk+1

i=1 ri � Âk+1
i=1 r

e

i
implies

rk+1 � r
e

k+1 or, equivalently, r̄2 � r
e

k+1. We can now rewrite the contradiction hypothesis as

A.2If Âi2Ir,1
ri = Âi2Ir,1

r
e

i
, then the argument given below for Ir,1 is adapted for the first Ir,h for which Âi2Ir,h

ri >
Âi2Ir,h

r
e

i
.
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Âi2Ir,1
ri + jr̄2 = Âi2Ir,1

r
e

i
+ Âk

i=t+1 r
e

i
, which, by r̄2 � r

e

k+1, implies Âi2Ir,1
ri + jr

e

k+1  Âi2Ir,1
r

e

i
+

Âk

i=t+1 r
e

i
. Therefore, because re is ordered, Âi2Ir,1

ri  Âi2Ir,1
r

e

i
. But this inequality contradicts

assumption (A.2). Therefore, it must be that Âk

i=1 ri > Âk

i=1 r
e

i
for k = (t + j) 2 Ir,2 with j < m. The

lemma’s conclusion follows.

We now express r as 1
2 r0 + 1

2 r00 for appropriately chosen legislatures r0 and r00 in X. For all

k > t + m, set r
0
k
= r

00
k
= rk. Take some #. For every k 2 Ir,1, set r

0
k
= rk � # and r

00
k
= rk + #. For

every k 2 Ir,2, set r
0
k
= rk +

t

m
# and r

00
k
= rk � t

m
#. The legislatures r0 and r00 satisfy property (ii) in

(2) by construction. By the inequality in Lemma A.2, there exists a sufficiently small # > 0 such

that r0 and r00 each satisfies not only property (iii) in (2) but also property (i) in (2). Hence, r0 and

r00 are in X. By r = 1
2 r0 + 1

2 r00, r is not a vertex of the polytope X.

A.3 Proof of Fact 1

When two legislatures are ordered, the total number of ideology-1 voters who must move to a dif-

ferently labelled district in order to transform one legislature into the other equals the total vari-

ation distance.A.3 The total number of voters who move is twice this number because ideology-1

voters displace an equal number of ideology-0 voters. Because the number of districts is finite,

twice the total variation distance equals the Manhattan distance (Levin, Peres and Wilmer, 2017,

Proposition 4.2).

It remains to confirm that the right way to minimize the number of voters who must move

into a differently labelled district is to order both legislatures in the ascending order. Indeed, take

two legislatures, r0 and r. Without loss of generality, relabel the districts so that r0 is ordered. By

contradiction, suppose that the total variation distance between r0 and r is minimized only if r

is unordered, that is, only if, for some districts k and k
0 with k

0 > k, rk0 < rk. But, in this case,

switching the districts k and k
0 either makes no difference to the total variation distance between

r0 and r or strictly decreases it, which is a contradiction.

A.3The total variation distance (defined in Wikipedia) is a standard distance for probability measures.
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A.4 The Proof of Proposition 4

The extreme legislatures correspond to the vertices of the implementable polytope (part 3 of

Proposition 2) that have the minimal and the maximal components in the dimension M. For

the “moreover” part of the proposition, note that ∂p/∂K  0 and ∂ p̄/∂K � 0 because r is non-

decreasing. The comparative statics with respect to r follows immediately by the definition of

second-order stochastic dominance and by inspection of the expressions for p and p̄.

A.5 The Proof of Part 3 of Proposition 5

In the proof, Ir is the interval partition of K for a legislature r as defined in Step 2 of the proof of

Proposition 2 (Section A.2, preceding the statement of Lemma A.2).

The proof proceeds in a series of lemmas. Lemmas A.3 and A.4 prove two inequalities used

in subsequent lemmas. Lemma A.5 shows that a welfare maximizing legislature belongs to a

certain class. Lemma A.6 shrinks that class to the class in the proposition’s statement. Lemma A.7

establishes the “moreover” part. By specifying the exact values of p
⇤ as g varies, Lemma A.7 does

more than required.

Lemma A.3. Take an implementable legislature r 2 X with its associated partition Ir. For every element

Ir,h = {i, . . . , i + j} of Ir with j � 1, 0  q < j implies Âi+q

k=1 rk > Âi+q

k=1 r
e

k
.

Proof. For the objects in the lemma’s statement, r 2 X implies Âi+q

k=1 rk � Âi+q

k=1 r
e

k
for all q with

0  q < j. By way of contradiction, suppose that, for some such q, Âi+q

k=1 rk = Âi+q

k=1 r
e

k
.

If i + q = 1, then the contradiction hypothesis implies r1 = r
e

1.

If i + q � 2, then r 2 X implies Âi+q�1
k=1 rk � Âi+q�1

k=1 r
e

k
, which, combined with the contradiction

hypothesis, implies r
e

i+q
� ri+q.

For any i + q, r 2 X implies Âi+q+1
k=1 rk � Âi+q+1

k=1 r
e

k
, which, combined with the contradiction

hypothesis, implies ri+q+1 � r
e

i+q+1.

Then, ri+q+1 � r
e

i+q+1 > r
e

i+q
� ri+q, where the strict inequality is implied by Assumption 1.

The conclusion ri+q+1 > ri+q, however, contradicts assumption that i + q and i + q + 1 are both

in Ir,h. As a result, the contradiction hypothesis must be wrong, and the lemma’s conclusion

follows.
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Lemma A.4. Let r and r0 be two legislatures in X. Suppose that r and r0 differ only in r
0
i
= ri � # and

r
0
j
= rj + # for some i and j in K\ {M} and some # > 0. Suppose that rM = r0

M
(i.e., the the #-perturbation

above leaves the policy unchanged). Then, i < j and g < 1 imply W (r0) > W (r), where W is defined in

(12).

Proof. Note that

W
�
r0
�
= g

�
2RrM � r

2
M

�
+

1 � g

K

0

@ Â
k2K\{i,j}

r
2
k
+ (ri � #)2 +

�
rj + #

�2

1

A

= W (r) +
2 (1 � g) #

�
rj � ri + #

�

K
> W (r) ,

where the inequality follows from ri  rj (by i < j), # > 0, and g < 1.

Lemma A.5. Let r⇤ be a socially optimal legislature for g 2 (0, 1) with the associated partition Ir⇤ =

{Ir⇤,1, Ir⇤,2, . . .}. Let Ir⇤,p be the element of the partition that contains the median district: M 2 Ir⇤,p =
�

k, k + 1, . . . , M, . . . , k̄
 

, where k 2 {1, 2, . . . , M} and k̄ 2 {M, M + 1, . . . , K}. Then, all the remaining

partition elements in Ir⇤\Ir⇤,p are singletons. Moreover, r
⇤
k
= r

e

k
for each k /2 Ir⇤,p [

�
k � 1, k̄ + 1

 
.

Proof. We first show that every element of Ir⇤\Ir⇤,p is a singleton. By way of contradiction, let Ir⇤,p0

be some nonsingleton element of Ir⇤\Ir⇤,p, with cardinality c ⌘
��Ir⇤,p0

�� > 1. Suppose that r
⇤
k
= r̄

for all k 2 Ir⇤,p0 . Now perturb r⇤ by an # to obtain

r0 ⌘ r⇤ +

0

BB@0, . . . , 0,�#, . . . ,�#, (c � 1) #| {z }
at the positions in Ir⇤ ,p0

, 0, . . . , 0

1

CCA .

By Lemma A.3, there exists an # > 0 small enough such that r0 2 X.A.4 Then, c > 1 and # > 0

imply W (r0) > W (r⇤) by Lemma A.4, thereby contradicting the optimality of r⇤. Hence, every

element of Ir⇤\Ir⇤,p must be a singleton.

If k  2 and k̄ � K � 1, then the lemma is vacuously true.

A.4If it were to be the case that p
0 < K, then by construction of Ir⇤ , we have r̄ < r

⇤
k

for every k 2 Ir⇤ ,p0+1. Hence, the
construction of such an # is feasible.
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Suppose that k � 3. We now show that, for all k 2 {1, 2, . . . , k � 2}, r
⇤
k
= r

e

k
. Pick the smallest

l 2 {1, 2, . . . , k � 2} such that r
⇤
l
> r

e

l
. If such an l does not exist, then the desired conclusion

obtains. Suppose that such an l exists. Perturb r⇤ by an # to obtain an r0 that coincides with r⇤

except for r
0
l
= r

⇤
l
� # and r

0
l+1 = r

⇤
l+1 + #. Because r

e

l
< r

⇤
l
< r

⇤
l+1 < r

⇤
l+2, there exists an # > 0

small enough such that r0 2 X. Then, # > 0 implies W (r0) > W (r⇤) by Lemma A.4, thereby

contradicting the optimality of r⇤. Hence, every element of Ir⇤\Ir⇤,p must be a singleton. Hence,

for all k 2 {1, 2, . . . , k � 2}, r
⇤
k
= r

e

k
.

An analogous argument shows that r
⇤
k
= r

e

k
for all k 2

�
k̄ + 2, k̄ + 3, . . . , K

 
.

Lemma A.6. Let r⇤ be a socially optimal legislature for g 2 (0, 1) with the associated partition Ir⇤ =

{Ir⇤,1, Ir⇤,2, . . .}. Let Ir⇤,p be the element of the partition that contains the median district: M 2 Ir⇤,p =
�

k, k + 1, . . . , M, . . . , k̄
 

, where k 2 {1, 2, . . . , M} and k̄ 2 {M, M + 1, . . . , K}. Then, R > r
e

M
implies

k = M, and R < r
e

M
implies k̄ = M.

Proof. We prove the lemma for the case of R > r
e

M
. The case of R < r

e

M
is analogous.

Assume that R > r
e

M
. By way of contradiction, suppose that k < M. There are two cases to

consider.

Case 1. M < k̄.

The assumption M < k̄ coupled with k < M implies k < k̄. Perturb r⇤ by an # to

obtain an r0 that coincides with r⇤ except for r
0
k
= r

⇤
k
� # and r

0
k̄
= r

⇤
k̄
+ #. There exists

an # > 0 small enough such that r0 2 X. Indeed, there exists an # > 0 such that r0

satisfies condition (i) in (2) by Lemma A.3. Condition (ii) in (2) holds by construction

of the perturbation, for any #. There exists an # > 0 such that r0 satisfies condition (iii)

in (2) (r0 is ordered) because r⇤ is ordered, and because k and k̄ are the endpoints of an

element of the partition Ir⇤ . Then, # > 0 implies W (r0) > W (r⇤) by Lemma A.4, thereby

contradicting the optimality of r⇤.

Case 2. k̄ = M.

We consider two special cases:A.5

A.5The case r
⇤
M+1 > r

e

M+1 (equivalently, r
⇤
k̄+1 > r

e

k̄+1) cannot occur by Lemma A.5.
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Case i. r
⇤
M+1 < r

e

M+1

Perturb r⇤ by an # to obtain an r0 that coincides with r⇤ except for r
0
k
= r

⇤
k
� #

and r
0
k̄+1 = r

⇤
k̄+1 + #. There exists an # > 0 small enough such that r0 2 X. In

particular, there exists an # > 0 such that r0 is ordered because r⇤ is ordered, k is

an endpoint of an element of the partition Ir⇤ , and r
⇤
k̄+1 < r

⇤
k̄+2 by Lemma A.5.

Then, # > 0 implies W (r0) > W (r⇤) by Lemma A.4, thereby contradicting the

optimality of r⇤.

Case ii. r
⇤
M+1 = r

e

M+1

Perturb r⇤ by an # to obtain an r0 that coincides with r⇤ except for r
0
k
= r

⇤
k
� #

and r
0
M
= p

⇤ + #.

By hypothesis, k̄ = M and r
⇤
M+1 = r

e

M+1. By Lemma A.5, r
⇤
k�1 + Âk̄

k=k
p
⇤ =

Âk̄

k=k�1 r
e

k
. Then, k < k̄ and Lemma A.3 imply r

e

M
> p

⇤. Since R > r
e

M
by

lemma’s hypothesis, it follows that R > p
⇤. Now note that

dW (r0)
d#

����
#=0

= 2g (R � p
⇤) +

2 (1 � g)
⇣

p
⇤ � r

⇤
k

⌘

K
> 0,

where the inequality follows because g > 0, R > p
⇤, and p

⇤ = r
⇤
k
.

There exists an # > 0 small enough such that r0 2 X. In particular, there exists

an # > 0 such that r0 is ordered because r⇤ is ordered, and because k and M are

the endpoints of an element of the partition Ir⇤ .

Therefore, there exists an # > 0 small enough such that both r0 2 X and

W (r0) > W (r⇤), thereby contradicting the optimality of r⇤.

Because all possible cases end up in contradiction, it must be that k = M.

Lemma A.7 calls for additional notation. Define

zi ⌘

8
>><

>>:

1
i+1 ÂM+i

k=M
r

e

k
if R � r

e

M

1
i+1 ÂM

k=M�i
r

e

k
if R<r

e

M

, i 2 {0, 1, . . . , K � M} . (A.4)
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For every i 2 {1, 2, . . . , Q � 1}, define

gi ⌘
 

1 + K
2R � (zi + zi�1)

i
�
r

e

M+i
� zi�1

�
!�1

. (A.5)

Finally, define Q by the inclusion R 2 (zQ�1, zQ],A.6 and then define

g⇤ ⌘
✓

1 +
K

Q (Q + 1)
R � zQ�1

zQ � zQ�1

◆�1
. (A.6)

Lemma A.7. Let q, b, and p
⇤

be the objects introduced in part 3 of Proposition 5. Suppose that Assump-

tion 1 holds. Then, g0 ⌘ 0 < g1 < g2 < . . . < gQ�1 < gQ ⌘ g⇤
, and

1. if g 2 (gi, gi+1] for some i 2 {0, 1, . . . , Q � 1}, then q = i, p
⇤ = zi, and b = r

e

M+q

2. if g > g⇤
, then q = Q, p

⇤ = R +
R�zQ

g
1�g

K

Q(Q+1)�1
, and b = p

⇤ + Q (zQ � p
⇤).

Thus, in particular, p
⇤

is between r
e

M
and R. Moreover, as g increases, q weakly increases, and p

⇤
moves

monotonically away from r
e

M
and towards R.

A.7

Proof. Assume that R > r
e

M
, in which case zi is strictly increasing in i. The case of R < r

e

M
can be

treated analogously.

Step 1: p
⇤  R.

By way of contradiction, suppose that p
⇤ > R. For further contradiction, suppose that p

⇤

solves maxx2(zi�1,zi ] Wi (x) for some i 2 {Q + 1, Q + 2, . . . , K � M}, where

Wi (x) ⌘ g
�
2Rx � x

2�+ 1 � g

K

0

@
M�1

Â
k=1

(re

k
)2 + ix

2 +

 
M+i

Â
k=M

r
e

k
� ix

!2

+
K

Â
k=M+i+1

(re

k
)2

1

A . (A.7)

But

W
0
i
(p

⇤) ⌘ ∂Wi (x)
∂x

����
x=p⇤

= 2


g (R � p
⇤) +

1 � g

K
i (i + 1) (p

⇤ � zi)

�
< 0

because g > 0, R < p
⇤ (by i > Q), and p

⇤  zi. The inequality W
0
i
(p

⇤) < 0 contradicts p
⇤ 2

arg maxx2(zi�1,zi ] Wi (x). Conclude that p
⇤  zQ. If R = zQ, then p

⇤  R follows.

A.6By convention, the order in which the endpoints that define an interval are specified is irrelevant. That is,
�
zQ�1, zQ

⇤

and
�
zQ, zQ�1

⇤
would refer to the same interval.

A.7In the limit when K ! •, p
⇤ is a continuous function of g if r is differentiable. In this sense, when districts are

“many,” the discontinuity of the policy p
⇤ in the parameter g is not economically significant.
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Assume that R < zQ. Then, the contradiction hypothesis p
⇤ > R combined with the conclusion

p
⇤  zQ requires p

⇤ to solve max
x2(R,zQ]

WQ (x). But then W
0
Q
(p

⇤) < 0 because g > 0, R < p
⇤, and

p
⇤  zQ. The inequality W

0
Q
(x) < 0 contradicts p

⇤ 2 arg max
x2(R,zQ] Wi (x). Conclude that the

hypothesis p
⇤ > R is false.

Step 2: p
⇤ 2 {z0, z1, . . . , zQ�2} [ [zQ�1, R].

We show that p
⇤ /2 (zi�1, zi) for i 2 {1, 2, . . . , Q � 1}, which, combined with Step 1, establishes

p
⇤ 2 {z0, z1, . . . , zQ�2} [ [zQ�1, R].

By way of contradiction, suppose that p
⇤ solves maxx2(zi�1,zi) Wi (x) for some i 2 {1, 2, . . . , Q � 1}.

Then, g > 0 and R > x imply that

W
0
i
(x) = 2


g (R � x) +

1 � g

K
i (i + 1) (x � zi)

�
> 0

when x is close enough to zi. Furthermore,

W
00
i
(x) ⌘ ∂2

Wi (x)
∂x2 = 2

✓
1 � g

K
i (i + 1)� g

◆

is a constant. The last two sentences imply that Wi cannot be maximized in (zi�1, zi). Step 1 then

implies that p
⇤ 2 {z0, z1, . . . , zQ�2} [ [zQ�1, R].

Step 3: The monotonicity of p
⇤

when in [zQ�1, R].

For this step, assume that p
⇤ 2 arg max

x2[zQ�1,R] WQ (x), where WQ is (A.7) with i = Q:

WQ (x) = g
�
2Rx � x

2�+ 1 � g

K

0

@
M�1

Â
k=1

(re

k
)2 + Qx

2 +

 
M+Q

Â
k=M

r
e

k
� Qx

!2

+
K

Â
k=M+Q+1

(re

k
)2

1

A .

By Topkis’s monotone selection theorem (Topkis, 1998), the supermodularity condition

∂2
WQ (x)

∂x∂g
⌘ 2

✓
R � x +

zQ � x

k

◆
� 0, where k ⌘ K

Q (Q + 1)
,

implies that the optimal-policy correspondence arg max
x2[zQ�1,R] WQ (x) has a selection that is

nondecreasing in g in (0, 1).
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Recall from (A.6) that g⇤ ⌘ (1 + k (R � zQ�1) / (zQ � zQ�1))
�1. Define g⇤⇤ ⌘ (1 + k)�1. Note

that g⇤ > g⇤⇤ when R < zQ, and g⇤ = g⇤⇤ when R = zQ.

Case 1. R < zQ.

Assume that g > g⇤. Then, g⇤ > g⇤⇤ implies g > g⇤⇤, which guarantees that the

maximand WQ is strictly concave:

W
00
Q (x) =

2 (g⇤⇤ � g)
1 � g⇤⇤ < 0.

Therefore, the first-order condition

W
0
Q (x) = 2


g (R � x) +

1 � g

k
(x � zQ)

�
= 0

characterizes the optimal policy:

p
⇤ = R � zQ � R

gk
1�g � 1

, (A.8)

which satisfies p
⇤ > zQ�1 (by g > g⇤) and p

⇤ < R (by g > g⇤⇤ and R < zQ).

Now assume that g  g⇤. Because the uniquely optimal policy in (A.8) converges to

zQ�1 as g # g⇤, Topkis’s monotone selection conclusion above implies that, when g

is reduced to satisfy g  g⇤, the policy p
⇤ = zQ�1 solves max

x2[zQ�1,R] WQ (x); the

problem’s value is WQ�1 (zQ�1).

Case 2. R = zQ.

Assume that g > g⇤. Then, g⇤ = g⇤⇤ (which holds by R = zQ) implies g > g⇤⇤,

which guarantees that the maximand WQ is strictly concave. Therefore, the first-order

condition (A.8) implies p
⇤ = R.

Now assume that g  g⇤. The equality g⇤ = g⇤⇤ implies that WQ is weakly convex, and,

as a result, either p
⇤ = R = zQ or p

⇤ = zQ�1 (maybe both) solves max
x2[zQ�1,R] WQ (x).

One can verify that, when R = zQ, WQ�1 (zQ�1) � WQ (R) if and only if g  g⇤⇤. As a

result, g  g⇤ = g⇤⇤ implies that the policy p
⇤ = zQ�1 solves max

x2[zQ�1,R] WQ (x); the

problem’s value is WQ�1 (zQ�1).
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Step 4: The monotonicity of p
⇤

when in {z0, z1, . . . , zQ�1}.

For any i 2 {1, 2, . . . , Q � 1},

∂ (Wi (zi)� Wi�1 (zi�1))
∂g

= (zi � zi�1)


2
✓

R � zi�1 + zi

2

◆
+

1
K

i
�
r

e

M+i
� zi�1

��
> 0,

where the inequality follows from zi�1 < zi < R and zi�1 < r
e

M+i
.

For every i 2 {1, 2, . . . , Q � 1}, the value of g at which Wi (zi) = Wi�1 (zi�1) is gi given in

(A.5). Therefore, Wi (zi) � Wi�1 (zi�1) if and only if g � gi.

We show that gi < gi+1 by showing that (i + 1)
�
r

e

M+i+1 � zi

�
> i

�
r

e

M+i
� zi�1

�
and that 2R �

(zi+1 + zi) < 2R � (zi + zi�1). The latter inequality follows from zi�1 < zi+1. The former one is

equivalent to

(i + 1) r
e

M+i+1 �
M+i

Â
k=M

r
e

k
> ir

e

M+i
�

M+i�1

Â
k=M

r
e

k
() r

e

M+i+1 > r
e

M+i
,

where r
e

M+i+1 > r
e

M+i
follows by Assumption 1.

For further reference, gQ�1 < g⇤. Indeed,

g⇤ ⌘
✓

1 +
K

Q (Q + 1)
R � zQ�1

zQ � zQ�1

◆�1

=

0

@1 +
K (R � zQ�1)

Q

⇣
r

e

M+Q
� zQ�1

⌘

1

A
�1

>

0

@1 +
K (2R � zQ�1 � zQ�2)

(Q � 1)
⇣

r
e

M+Q�1 � zQ�2

⌘

1

A
�1

⌘ gQ�1,

where the identity is definitional, the equality follows by rearranging using the definitions of zQ

and zQ�1, and the inequality follows from R� zQ�1 < (R � zQ�1)+ (R � zQ�2) and Q

⇣
r

e

M+Q
� zQ�1

⌘
>

(Q � 1)
⇣

r
e

M+Q�1 � zQ�2

⌘
.

To summarize, g0 ⌘ 0 < g1 < g2 < . . . < gQ�1 < gQ ⌘ g⇤.

Assume that p
⇤ 2 arg max

x2{z0,z1,...,zQ�1} Wi:x=zi
(zi). If g 2 (gi, gi+1) for some i 2 {0, 1, . . . , Q � 1},

then g < gi+1 < . . . < gQ�1 < gQ implies Wi (zi) > Wi+1 (zi+1) > . . . > WQ�1 (zQ�1), and
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g > gi > . . . > g1 > g0 implies Wi (zi) > Wi�1 (zi�1) > Wi�2 (zi�2) > . . . > W0 (z0). As a result,

p
⇤ = zi is uniquely optimal. If g = gi for some i 2 {1, 2, . . . , Q � 1}, then p

⇤ = zi�1 and p
⇤ = zi

are both optimal. That is, the optimal-policy correspondence arg max
x2{z0,z1,...,zQ�1} Wi:x=zi

(x) has

a selection that is nondecreasing in g on (0, g⇤).

Step 5: The global monotonicity of p
⇤

Steps 1 and 2 imply that p
⇤ 2 {z0, z1, . . . , zQ�1} [ [zQ�1, R].

If g 2 (gi, gi+1] for some i 2 {0, 1, . . . , Q � 1} (recall that g0 ⌘ 0 and gQ ⌘ g⇤), Step 3 implies

that the value of the social welfare function (SWF) when p
⇤ is restricted to [zQ�1, R] is the value of

the SWT when p
⇤ = zQ�1, which is the choice also available in the problem considered in Step 4.

Step 4 implies that the SWF achieves its highest value on {z0, z1, . . . , zQ�1} when p
⇤ = zi, which is

also the optimal policy in the unconstrained SWF maximization problem. Moreover, q = i.

If g > g⇤, Step 3 implies that the maximal value of the SWF when p
⇤ is restricted to [zQ�1, R]

exceeds the value of the SWF when p
⇤ = zQ�1. Step 4 implies that SWF achieves its highest value

on {z0, z1, . . . , zQ�1} when p
⇤ = zQ�1. As a result, g > g⇤ implies the optimality of choosing the

p
⇤ that satisfies (A.8). Moreover, q = Q.

Note that, as g increases, both q and the described selection from the optimal-policy corre-

spondence (singleton-valued for almost all g) increase weakly.
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