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Abstract

Timing decisions are common: when to file your taxes, finish a referee report, or

complete a task at work. We ask whether time preferences can be inferred when only

task completion is observed. To answer this question, we analyze the following model:

each period a decision maker faces the choice whether to complete the task today or to

postpone it to later. Cost and benefits of task completion cannot be directly observed

by the analyst, but the analyst knows that net benefits are drawn independently be-

tween periods from a time-invariant distribution and that the agent has time-separable

utility. Furthermore, we suppose the analyst can observe the agent’s exact stopping

probability. We establish that for any agent with quasi-hyperbolic β, δ-preferences and

given level of partial naivete β̂, the probability of completing the task conditional on

not having done it earlier increases towards the deadline. And conversely, for any given

preference parameters β, δ and (weakly increasing) profile of task completion probabil-

ity, there exists a stationary payoff distribution that rationalizes her behavior as long

as the agent is either sophisticated or fully naive. An immediate corollary being that,

without parametric assumptions, it is impossible to rule out time-consistency even

when imposing an a priori assumption on the permissible long-run discount factor. We

also provide an exact partial identification result when the analyst can, in addition to

the stopping probability, observe the agent’s continuation value.
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Schmidt-Dengler, Ori Heffetz, Botond Kőszegi, Muriel Niederle, Charles Sprenger, Dmitry Taubinsky, and
Florian Zimmermann for insightful and encouraging comments. Part of the work on this paper was carried
out while the authors visited briq, whose hospitality is gratefully acknowledged.
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1 Introduction

Intuition and evidence suggests that many individuals are time-inconsistent; at any particu-

lar point in time the (near) present gets an additional weight in intertemporal tradeoffs (e.g.

Strotz, 1956; Frederick et al., 2002; Augenblick et al., 2015; Augenblick and Rabin, 2016).

Especially when individuals fail to fully anticipate their predictable preference changes, such

present-focused individuals tend to procrastinate (Akerlof, 1991; O’Donoghue and Rabin,

1999, 2001): they will often excessively delay the completion of tedious tasks such as filing

taxes or paying parking-tickets. And when facing a gratifying task—such as taking a day

off—, present-focused individuals often precrastinate. To model the resulting interpersonal-

conflict of preference changes in a simple and tractable way, Laibson (1997) adopted intergen-

erational discounting models (Phelps and Pollak, 1968) to individual decision-making. His

quasi-hyperbolic discounting model captures the present-focus of individuals by introducing

an additional present-bias parameter that discounts all future utility into Samuelson (1937)’s

time-separable exponential-discounting model. O’Donoghue and Rabin (1999, 2001) extend

this framework by introducing (partial) naivete, and illustrating such individuals’ tendency

to delay unpleasent tasks. Since excessive procrastination is a robust prediction of (naive)

hyperbolic discounting models, it seems natural to use task-completion data to identify time-

inconsistent preferences from the pattern of completion times. In line with this idea, previous

research classifies individuals as time-inconsistent if they complete tasks at or close to the

deadline (Brown and Previtero, 2018; Frakes and Wasserman, 2016) or estimates the degree

of time-inconsistency from completion times under parametric assumptions (Martinez et al.,

2017).1

In this paper, we ask whether time preferences can be inferred by an outside observer—

referred to as the analyst—when only task completion is observed absent parametric as-

sumptions on the (unobservable) cost and benefit of task completion. A key difficulty in

doing so is to separate naivete or time-preference-based explanations of delay from those

due to the option value of waiting (Wald, 1945; Weisbrod, 1964; Dixit and Pindyck, 1994):

whenever the cost of doing a certain task is stochastic, a time-consistent individual may wait

1Brown and Previtero (2018) classify individuals that select their health care plan close to the deadline as
procrastinators and look for correlated behavior in other financial domains. Frakes and Wasserman (2016)
investigate the behavior of patent officers that have to complete a given quota of applications supposing that
the cost of working on a patent are deterministic and identical across days. In their model, for conventional
discount rates the empirically observed bunching close to the deadline is inconsistent with exponential dis-
counting. While earlier papers do not address the concern of unobservable and random opportunity cost,
Martinez et al. (2017) allow for random opportunity costs and use a parametric approach to identify time
preferences.

1

 Electronic copy available at: https://ssrn.com/abstract=3386017 



in the hope of getting a lower cost draw tomorrow.2

Section 2 introduces our task-completion model. We consider an analyst who, from ob-

serving task completion times of a partially-naive quasi-hyperbolic discounter, tries to learn

about some or all of the following parameters: the long-run discount factor δ, the present-

bias parameter β, or the degree of sophistication β̂. To facilitate learning by the analyst,

we assume that the agent’s task-completion payoffs are drawn each period from the same

underlying payoff distribution. Absent any such a priori restriction, it is straightforward

to rationalize any observed stopping behavior independently of the agent’s taste for imme-

diate gratification and degree of sophistication, leaving no hope for identification thereof.3

Furthermore, to make identification easier, we suppose that the analyst can observe the indi-

vidual’s exact stopping probability in each period. Intuitively, one may think of the analyst

as having access to an ideal data set with (infinitely) many observations of either the same

individual in identical situations or a homogenous group of individuals. Again, this assump-

tion strongly favors the analyst’s ability to learn about underlying parameters. Finally, we

impose that individuals can be described as (partially) naive quasi-hyperbolic discounters.

We are agnostic as to the nature of the task, so our analysis applies when task-completion

leads to immediate benefits, immediate costs, or both.

In Section 3, we introduce two motivating examples. The first highlights that, even when

the parametric form of the underlying unobservable payoff distribution are known, bunching

at the deadline is insufficient to distinguish a time-consistent from a time-inconsistent agent.

In the example, the cost of completing the task are drawn from a log-normal distribution

and in every period the stopping behavior of time-consistent agent looks almost identical

to that of an agent with a present-bias parameter β = 0.7, whose cost are drawn from a

different log-normal distribution. The second example illustrates how the estimated present-

2Throughout, we abstract from another reason that tasks may not be completed: forgetting. Conceptually,
one can think of the agent in our analysis as getting a non-intrusive reminder at the beginning of every period.
This is not to say that limited memory and the strategic response to it are unimportant in determining task
completion behavior in the field. See, for example, Heffetz et al. (2016) for how reminders determine when
parking fines are payed, Altmann et al. (2019) for how deadlines and reminders determine the probability of
making a check-up appointment at the dentist, and Ericson (2017) for how time-inconsistency and limited
memory interact.

3For example, suppose in every period the cost of doing the task is either one or zero, allowing for
time-varying probability that the cost are zero. Simply setting the probability that the cost are zero in
each period equal to that period’s observed task completion probability rationalizes the data for any time-
separable utility function. More generally, adopting well-known arguments from the dynamic discrete choice
literature (e.g., Section 3.5 in Rust, 1994; Magnac and Thesmar, 2002) implies that it possible to rationalize

any stopping data with any combination of parameter values (δ, β, β̂) through additive shifts of any given
invertible distribution of unobservable payoffs.
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bias can depend crucially on common parametric assumptions about the unobservable payoff

distribution—even when the analyst knows (or guesses correctly) the long-run discount fac-

tor, as well as the mean and variance of the underlying stationary payoff distribution. While

we suppose that in reality payoffs are drawn from a uniform distribution and the agent

is time-consistent β = β̂ = 1, when the analyst supposes costs are drawn either from a

normal, log-normal, extreme value, or logistic distribution, her squared-distance-minimizing

or likelihood-maximizing estimate of β varies between 0.561 − 0.819, with the exact value

depending on the parametric family (and the degree of sophistication) the analyst imposes.

Furthermore, the squared error associated with some of these incorrect estimates is below

0.232%—suggesting that with finite noisy data it is difficult for the analyst to realize when

she picks an incorrect functional form. Motivated by the importance of the parametric as-

sumptions in the example, we turn to the main focus of the paper: what lessons about

time-inconsistent preferences and naivete thereof can be learned non-parametrically?

As a useful preliminary step, Section 4 establishes that the agent’s perceived continuation

value is characterized by a simple recursive equation. Section 5 establishes that for any quasi-

hyperbolic discounter—independently of whether she is sophisticated or (partially) naive and

of her degree of impatience—the subjective continuation value decreases the closer the agent

gets to the deadline. To see the intuition behind the theorem, consider first the case in

which the task always generates a net benefit. Then from the perspective of Self 1, all

future selves are too impatient, and hence tend to perform the task to early. By extending

the deadline, the formerly last period’s self now can decide and perform the task later. As

from any earlier self’s perspective she is too eager to complete the task, the direct effect of

additional delay on any earlier self is positive. Now consider the former penultimate self; her

perceived continuation value of waiting increases because she strictly prefers future selves

to wait whenever they choose to do so. This, in turn, induces her to act more patiently,

benefiting all earlier selfs, and so forth. Hence, in the case of net benefits, a quasi-hyperbolic

discounter does not want to impose an earlier deadline.

Consider next the case in which completing the task is always costly. When comparing

a (T − 1)-period to T -period deadline, Self 1 realizes that if she does not engage in the

task in the T period problem, Self 2 will face a T − 1-period problem. That subgame is

identical to the one she faces in the T − 1 period problem, and future selves who are s

periods away from the deadline will therefore behave identically in the two problems. Hence

for s ∈ 1, · · ·T − 1, the task completion probability s-periods before the deadline is identical,

and due to discounting of future costs, Self 1 is strictly better off when selecting the T -period
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problem and not doing the task. The formal proof extends these intuitions to the case in

which the support of the net benefit distribution can contain positive and negative payoffs.

Because the agent in our model completes the task when the current benefit is greater

than her subjective continuation value, Theorem 1 implies that a quasi-hyperbolic discounter

becomes more and more likely to complete the task the closer she is to the deadline. This,

therefore, provides another simple testable prediction, which also implies that the agent

never wants to impose a shorter deadline.4 Through a simple counterexample, however,

we also highlight that this result relies on payoffs each period being drawn from the same

underlying distribution.5

Section 6 establishes our main result: if the agent is either sophisticated (β̂ = β) or

fully naive (β̂ = 1), for any given long-run discount factor δ and present-bias parameter

β, any given penalty of not completing the task, and any weakly increasing profile of task

completion, there exists a stationary payoff distribution that rationalizes the agent’s behavior

(Theorems 2 and 3, respectively). This implies that for any data set the analyst may observe,

absent parametric assumptions it is impossible for her to learn anything about the agent’s

degree of time-inconsistency or level of sophistication. Importantly, this absence of even

partial identification continues to hold even if the analyst imposes a priori restrictions on

permissible long-run discount factors. A very rough intuition for this fact is as follows:

whether a self prefers to do a task today or tomorrow depends on her time preferences and

on the perceived option value of waiting. The option value of waiting, in turn, depends

on the payoff distribution. Through changing the unobservable payoff distribution, we can

hence undo a change in the present bias or long-run discount factor of the agent.

Technically, however, a local change in the payoff distribution changes continuation val-

ues in every period in a highly non-linear way, so to establish that we can construct an

appropriate payoff distribution, we need a non-local argument. This is where we use the

assumption that the agent is either sophisticated or fully naive. The fact that a sophisti-

cated agent makes no forecast error enables us rewrite the recursive equations determining

the perceived continuation values in a simple manner. Based on this rewrite, we transfer

4Despite her tendency to procrastinate, hence, when the payoffs are independently drawn from a sta-
tionary distribution, a quasi-hyperbolic discounter’s willingness to pay for an earlier deadline is always
non-positive. This is noteworthy as self-imposed deadlines by students has been used to identify sophisti-
cated procrastinators (e.g. Ariely and Wertenbroch, 2002; Bisin and Hyndman, 2018); our result suggests
that these students either do not have quasi-hyperbolic preferences or that they must foresee a non-stationary
environment, which induces them to impose an earlier deadline. A self-imposed-deadline-based classification,
hence, is conservative in identifying agents who are aware of their time-inconsistent preferences.

5Furthermore, in Section 8 we note that the prediction need not hold for a heterogenous population of
time-consistent individuals that each faces a stationary payoff distribution.
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the search for an appropriate distribution to that of solving for a fixed point of a system of

linear equations. This proof method, however, cannot be used if the agent is partially naive

as the corresponding system becomes non-linear.

For a fully naive agent the problem becomes tractable for a different reason. Because a

fully naive agent believes to be time-consistent, we can establish that a first-order stochastic

increase in the stationary payoff distribution, increases the agent’s subjective continuation

value in every period (Lemma 2). In addition, we establish that we can map subjective

continuation values into a payoff distribution that gives rise to the desired completion times

in such a way that greater subjective continuation values lead to a first-oder stochastic

increase in the stationary payoff distribution. The combination of these two steps leads

to a monotone operator on subjective continuation values to which we can apply Tarski’s

Theorem, and thereby establish the existence of a payoff distribution that gives rise to

the data’s stopping probabilities. We also, however, provide a simple example in which

a first-order stochastic dominance increase in the stationary payoff distribution makes a

sophisticated quasi-hyperbolic discounter worse off. In the example, the agent prefers to pay

a fixed utility-tax immediately upon completing the task. This tax reduces his temptation

to stop even after a low payoff realization, and the induced more virtuous behavior of future

selves overcompensates the direct payoff loss due to the tax. The example highlights why

our proof technique does not cover the more general case of a partially naive agent.

In our proofs of Theorems 2 and 3, we freely construct a stationary net-benefit distribu-

tion. One may hope to identify present-bias through economically meaningful restrictions

on this distribution. Arguably, the most natural assumptions are those regarding the mo-

ments of the net-benefit distribution; for example, an analyst may have an idea regarding

the possible expected net benefit of doing the task—that is regarding the mean of F—or

may be willing to impose that net benefits do not vary to much between periods (restricting

the variance of F ). Our example in Section 3, however, already highlights that even fixing

these moments, common parametric assumptions can lead to widely varying estimates of the

agent’s time preferences. To expand on this point, in Section 6.4 we establish that as long as

the penalty is unobservable or the task is mandatory, we can find a net benefit distribution

with any given mean and non-zero variance that rationalizes the observed stopping behavior

for a time-consistent agent with δ = 1. Any identification of present-bias parameter β in

this case, therefore, must follow from parametric restrictions on higher-order moments of the

distribution, for which we see no convincing economic motivation in most contexts.

Section 7 asks whether non-parametric identification is feasible with richer data in which
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the analyst does not only observe the stopping probabilities but, in addition, observes the

agent’s willingness to pay for continuing with the stopping problem in each period. In the

case of tax-filing, for example, this amount to eliciting the willingness to pay for having

someone else file one’s taxes immediately with zero hassle.6 For the case of a sophisticated

agent who’s contemporaneous utility function is quasi-linear in money, Theorem 4 provides an

analytical answer in closed form. Indeed, to check whether or not the data is consistent with

a given pair of parameters β, δ, the analyst only needs to verify a simple set of inequalities.

The key analytical insight is contained in Lemma 3, which establishes that it suffices to

consider distributions that have T + 1 mass points. Intuitively, the option value of waiting is

determined by the probability with which the agent stops at given future point in time and

the expected payoff conditional on doing so. Hence, moving the probability mass between any

two continuation values to the expected payoff conditional on falling between these two values

leaves the agent’s continuation values and stopping probabilities unaltered. Therefore, the

analyst can restrict attention to such relatively simple distributions. Economically, observing

the continuation values allows the analyst to distinguish between a taste for immediate

gratification and option-value-of-waiting-based delays because a high option value requires

the unobservable payoffs to differ significantly. As a consequence, as the deadline approaches

and the agent foresees less future draws, the option value must decrease quickly. In contrast,

a present-biased agent’s continuation value decreases at a slower rate. We also argue that

at the cost of relying on numerical techniques commonly used in applied work, our set-

identification result can be extended straightforwardly to cover partial naivete and non-linear

utility in money.

Applying our Theorem 4 to the example introduced in Section 3, however, illustrates that

the analyst may need to observe a large number of continuation values to be able to tightly

identify the present-bias parameter. In the example, there is no meaningful identification

with 5 periods of data, but 20 periods are enough to tightly identify β when δ = 1 is known

to the analyst. Given that we made a number of assumptions facilitating identification—

such as that the exact stopping probabilities and continuation values are observable to the

analyst—, we think that the overall message of our analysis suggests a substantial amount

of additional data is needed to empirically identify a taste for immediate gratification or the

degree of sophistication without relying on parametric assumptions. We point out that if the

analyst observes a heterogenous population, much richer stopping patterns can be explained

6As we explain carefully in Section 7, our procedure does not explicitly or implicitly rely on the agent
comparing monetary rewards at different points in time, so it is robust to standard critiques of eliciting
time-preference via monetary rewards (Augenblick et al., 2015; Ericson and Laibson, 2019; Ramsey, 1928).
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in Section 8, where we conclude by discussing some broader implications of our analysis.

2 Setup

Let time t = 1, 2, · · · , T + 1 be discrete. We consider an agent with quasi-hyperbolic prefer-

ences who can choose when and whether to complete a single given task before some deadline

T . More precisely, we suppose that the agents’ utility is time-separable, and denote a level

of instantaneous utility the agent receives in period t by ut; let

U t = ut + β

T+1∑
s=t+1

δs−t us, (1)

denote the utility over sequence of (ut, · · ·uT+1) of self t. Following O’Donoghue and Rabin

(1999), we allow the agent to have incorrect beliefs regarding future selves’ behavior. The

agent believes that all future selfs r > t maximize

Û r = ur + β̂
T+1∑
s=r+1

δs−r us. (2)

We allow for any vector of preference and belief parameters (δ, β, β̂) ∈ (0, 1]3. In case

β̂ = β = 1, the agent has time-consistent preferences with an exponential discount factor δ.

In case β < 1, she has a taste for immediate gratification. We say she is sophisticated—i.e.

perfectly predicts her future behavior—when β̂ = β, she is fully naive—i.e. believes that her

future selves behave according to her current preference—if β̂ = 1, and otherwise say that

she is partially naive. Our setup covers the case in which the agent overestimates her own

future taste for immediate gratification β̂ < β as well as the case in which she underestimate

it β̂ > β.7

The agent can complete the task once during the periods t = 1, · · · , T , so that T is the

deadline before which the task needs to be completed. If the agent does not undertake the

task in a given period t = 1, · · · , T , we assume her instantaneous utility ut equals zero.8

If she completes the task she gets an instantaneous utility of zero in period T + 1, while if

7The special case of the model where the agent is fully sophisticated β̂ = β and the time-horizon is infinite
was studied in Section 4 of Fudenberg and Levine (2006).

8We thus focus on task-completion problems—such as paying a parking ticket or writing a referee report—
in which current payoffs in periods prior to the deadline do not depend on whether the task has already
been undertaken. This rules out problems in which completing the task subsequently generates a positive
flow payoff, which we discuss in Section 8.
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she did not complete the task by the end of period T , the agents gets a (utility) penalty of

y/(βδ) ∈ R− ∪ {−∞} in period T + 1.9 Setting y = −∞, this encompasses the case where

the task is mandatory so that the agent is forced to complete the task by the end of period

T ; and setting y = 0, this encompasses the case in which the task is optional so the agent

only completes the task if her active self decides to do so. Finally, we suppose that in every

period t the instantaneous utility of completing the task is drawn independently from a given

payoff distribution F , which is known to the agent.

We look for perception-perfect equilibria (O’Donoghue and Rabin, 1999, 2001) in which

each self t chooses an optimal strategy given its prediction of future selves’ behavior, and

a self t’s prediction of future selves’ behavior are consistent with how a future self with

preference parameter β̂ would optimally behave. More formally, let Y t = (y1, · · · , yt) be

the history of payoff realizations up to time t. A pure strategy for Self t is a mapping

σt(Y
t−1, yt) → {0, 1}, with the interpretation that 1 means Self t completes the task. A

perception-perfect equilibrium is a pair of strategies (σ1, · · · , σT ) and (σ̂2, · · · , σ̂T ) such that

for all t ∈ {1, · · · , T}, σt maximizes U t under the assumption that selves r > t use strategy

σ̂r, and for all t ∈ {2, · · · , T}, the strategy σ̂t maximizes Û t under the assumption that selves

r > t use strategy σ̂r. In addition, we restrict attention to perception-perfect equilibria in

which all selves that are indifferent between completing the task and waiting choose to wait.

3 Examples on the Influence of Parametric Assumptions

Example 1. To illustrate the difficulty of identifying time-inconsistency from an agent’s

stopping behavior, consider the following stylized example. A sophisticated agent receives

a parking fine, which has to be paid within ten days of receiving it. In case she does not

pay the fine, she incurs a known cost of $5 in addition to the fine. Furthermore, the agent’s

long-run (daily) discount rate is (well approximated by) δ = 1.

Figure 1 compares the stopping behavior of a time consistent agent who draws the cost

of completing the task from a log-normal distribution whose underlying normal distribution

has mean µ = 1 and variance η = 1 (red bar plot) to that of a sophisticated time-inconsistent

one with a present-bias parameter β = 0.7 who draws the cost from a log-normal distribution

with parameters µ = 0, η = 2.3 (blue bar plot).

An obvious first lesson from the example is that bunching at the deadline is no reliable

9In other words, y is self T ’s continuation value when not completing the task. Expressing the penalty
in this way simplifies the exposition below.
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Figure 1: Observed Task Completion Times. The above graphs illustrates the observed
stopping times. In both cases δ = 1, and the penalty for not doing the task is −5. The red
bar plot shows the distribution of task completion times of a time-consistent agent whose cost
of completing the task are drawn from a log-normal distribution, whose underlying normal
distribution has mean µ = 1 and variance η = 1. The blue bar plot that of a sophisticated
time-inconsistent agent with β = 0.7 whose cost are drawn from a log-normal distribution
with parameters µ = 0, η = 2.3.

guide to identifying time-inconsistency: both agents probability of completing the task in

the final period is just above 50%. Indeed, both agents stopping behavior is remarkably

similar throughout and the observed stopping probabilities differ by less than 1% in any

period, suggesting that even an analyst who wants to test only between these two possible

types faces a difficult problem in practice.10

In the above illustrative example, the analyst knows or correctly guesses the parametric

class of distributions (log-normal) from which the payoffs are drawn. The example suggests

that without knowing its exact parameters, nevertheless, it is hard to correctly identify the

time-preference parameters. In reality, however, payoffs are drawn from an unobservable

payoff distribution and for typical field data—such as parking tickets—an analyst does not

10Independently of our work, Heffetz, O’Donoghue and Schneider observe that substantially different values
of β can predict essentially equivalent day-to-day behavior in how people pay their parking tickets. In a
simple model motivated by observed parking-ticket response behavior in New York City, which they analyze
in Heffetz et al. (2016), they illustrate this supposing that the cost for paying the parking ticket is drawn
from the small parametric family of distributions that has a mass point at zero and admit a constant density
on an interval above zero. Their real-world application nicely demonstrates the practical importance of the
identification challenge we illustrate in Example 1. We are very grateful to these authors for sharing their
example with us during private communication.
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know the parametric form of the payoff distribution. The following example highlights how

crucial common functional form assumptions routinely imposed in applied papers can be in

determining the analyst’s findings. For this example, we suppose that the analyst has precise

prior knowledge about the mean and the variance of the unobservable payoff distributions

but is unsure as to the exact parametric family from which these payoffs are drawn. Indeed,

it strikes us as extremely unreasonable that an analyst has prior knowledge beyond some

(typically vague) ideas about the first two moments of this distribution.

Example 2. We suppose that the agent has 5 periods to complete the task and the agent’s

value of completing the task are drawn from a uniform distribution over [−1, 1]; in reality

the agent is time-consistent with β = δ = 1.11 The corresponding stopping probabilities

are 0.25827, 0.304687, 0.375, 1/2, 1, which we suppose the analyst can observe exactly. In

addition, we assume the analyst knows the true mean (0) and standard deviation (0.577) of

the stationary payoff distribution F but not its exact functional form. Furthermore, suppose

the analyst correctly imposes that δ = 1 when analyzing the data. Let the analyst consider

four standard parametric families of distributions: normal, log-normal, extreme value, and

logistic. For each of these families, the analyst selects the parameter β that best fits—in

the sense of squared distance or log-likelihood—the observed stopping probabilities allowing

the agent to be either naive or sophisticated. Table 2 reports the parameter estimates for

β and the squared distance/log-likelihood for the different parameterizations of the error

distribution.12

The analyst’s estimates of β range between 0.561−0.819 even in this idealized situation in

which she has infinite data, actually knows the mean and standard deviation of F , and knows

the long-run discount factor δ. And if the analyst engaged in model testing selecting the

model on the basis of minimizing squared distance or maximizing log-likelihood, she would

conclude that the agent is naive time-inconsistent with β = 0.817/0.816 while in truth the

agent is time-consistent and β = 1. Furthermore, for the normal distribution the squared

difference in stopping probabilities in the sophisticated and naive case are remarkably small

(less than 0.232%), so (in a finite data set analogue) nothing would indicate to the analyst

that these are bad distributional choices to model the unobservable shocks.13

11Think of a parent that promised their kid to see a theatre play that shows for five more days. The
parent is self-employed and needs to complete tasks at work as they come in. When not being very busy,
the parent enjoys the joint activity. When very busy, however, he is distracted during the play and needs
to stay up late afterwards completing his work tasks. Not going to the play after having promised to do so,
however, is not a possibility.

12The estimates are computed using grid search with a distance of 0.0005 between grid points.
13If the analyst does not know the mean and standard deviation of the shock distribution and thus needs
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Parametric Family
Sq. Distance Minimzation Likelihood Maximization

β Distance β Log-Likelihood

Normal Sophisticate 0.819 0.0026777 0.818 1.59188

Normal Naive 0.817 0.00231803 0.816 1.59187

Extreme Value Sophisticate 0.57 0.0402888 0.5705 1.59638

Extreme Value Naive 0.561 0.0396802 0.562 1.59627

Logistic Sophisticate 0.7605 0.00331235 0.7595 1.59189

Logistic Naive 0.7565 0.00267175 0.7555 1.59188

Table 1: Parameter estimates of β and squared distance and log-likelihood.

Our general results below, which establish that non-parametrically the degree of time-

inconsistency is never identified from task completion data, prove that the above examples

are not artefacts of the numbers we have chosen. For every set of model parameters δ, β, β̂

and any given dataset, there exists some unobserved stationary payoff distribution that

perfectly fits the data. Thus, the analyst can rule out parameter values for δ, β, β̂ only

through ad-hoc assuming a specific parametric family of distributions. As a consequence,

the analyst’s conclusions are—in line with Example 2—solely determined by her parametric

choice for the unobservable payoff distribution.

4 Preliminary Analysis: Recursive Structure

We begin by establishing that the agent’s problem has a simple recursive structure. A

strategy σt(·, ·; z) is a cutoff strategy with cutoffs z = (z1, . . . , zT ) if

σt(Y
t−1, yt; z) =

0 if yt ≤ zt

1 if yr > zt
.

Self T completes the task if and only if her realized payoff is strictly greater than y. Fur-

thermore, selves t < T believe that Self T will complete the task if and only if her realized

payoff is strictly greater than (β̂/β)y. Hence both the perceived and actual strategy in the

final period are cutoff strategies. Similarly, if all future selves are perceived to use cutoff

to estimate these parameters as well, she is able to fit the data even better, making it even harder to detect
her misspecification.
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strategies, Self t can calculate the perceived continuation value of waiting, and will complete

the task if and only if her current payoff is greater than this perceived continuation value.

Hence, by induction, all selves use a cutoff strategy and perceive their future selves to use a

cutoff strategy.

For a partially-naive quasi-hyperbolic discounter, the time t and time t′ selves have the

same beliefs about the strategy future selves—i.e. selves active after time max{t, t′}—use.

Self t thus believes that if she does not complete the task at time t, the task will be completed

at the (random) time

τ̂t = min{s > t : ys > cs} ,

where cs is the perceived cutoff that selves t < s believe Self s will use. Trivially, for all s > t

the stopping time τ̂s equals τ̂t conditional on not stopping before time s+ 1,

P[τ̂s = τ̂t | τ̂t > s] = 1 .

Hence, Self t believes that her perceived continuation utility vt if she does not complete the

task at time t is given by

vt = β E
[
δτ̂t−tyτ̂t

]
.

Since Self t stops whenever the value of completing the task immediately is greater than her

subjective continuation value, the time τt at which the task is completed conditional on not

having been completed before time t is given by

τt = min{s > t : ys > vs} .

We first show that the perceived continuation values satisfy a recursive equation.14

Lemma 1 (Recursive Characterization). A pair of strategies (σ, σ̂) constitute a perception-

perfect equilibrium if and only if both are cut-off strategies with cutoffs (v, c) ∈ RT ×RT that

satisfy the equations

vt =

β δ
∫∞
β̂/β vt+1

z dF (z) + F (β̂/β vt+1) δ vt+1 for t < T

y for t = T
(3)

and ct =
(
β̂/β
)
vt.

Proof. We first show that the conditions are necessary for a perception-perfect equilibrium.

14Throughout this paper,
∫
· dF denotes the Riemann–Stieltjes integral.
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We already argued that any equilibrium must be in cutoff strategies and that the cutoffs used

by each self must equal their perceived continuation value v. We can rewrite the perceived

continuation utility by considering the event that the task is completed in period t + 1 as

well as the complementary event that it is completed later

vt = β E
[
δτ̂t−tyτ̂t

]
= β E

[
1τ̂t=t+1δ

τ̂t−tyτ̂t + 1τ̂t>t+1δ
τ̂t−tyτ̂t

]
.

Because Self t believes the task is completed in period t + 1 if and only if the benefit is

greater than the subjective cutoff yt+1 > ct+1, this equals

vt = β E
[
1yt+1>ct+1δyτ̂t + 1yt+1≤ct+1δ

τ̂t−tyτ̂t
]
.

Since yt+1 is distributed according to F and τ̂t = τ̂t+1 conditional on not stopping in period

t+ 1, we can use the definition of a Riemann–Stieltjes integral to rewrite the above as

vt = βδ

∫ ∞
ct+1

z dF (z) + F (ct+1) βδ E
[
δτ̂t+1−(t+1)yτ̂t+1

]
.

Using the definition of vt+1 to rewrite the last summand above, we therefore have that

vt = βδ

∫ ∞
ct+1

z dF (z) + F (ct+1) δ vt+1 . (4)

Here, vt is the cutoff that Self t actually uses. Prior selves, however, believe that Self t

discounts with hyperbolic weight β̂, so the perceived cutoff ct they think Self t uses solves

ct = β̂ E
[
δτ̂t−tyτ̂t

]
=
(
β̂/β
)
β E

[
δτ̂t−tyτ̂t

]
=
(
β̂/β
)
vt .

Using this equation to replace ct+1 in (4) establishes that the continuation values v1, . . . , vT−1

satisfy the recursive equation

vt = β δ

∫ ∞
(β̂/β) vt+1

z dF (z) + F (
(
β̂/β
)
vt+1) δ vt+1 .

That any such pair of cutoff strategies constitutes a perception-perfect equilibrium follows

from checking the (perceived) optimality conditions inductively starting from the last period.

To see the intuition behind Equation 3, suppose first that the agent is sophisticated
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(β̂ = β) in which case (β̂/β = 1). Then the first term is the discounted benefit of stopping

tomorrow, which the agent does whenever the benefit of stopping falls above the continuation

value of tomorrow’s self. This payoff is discounted according to Self t’s short-term discount

factor βδ. The second term captures the fact that with probability F (vt) tomorrow’s self

continues because it prefers its perceived continuation value vt+1. As today’s self discounts

payoffs that realize after period t + 1 by a factor of δ more than tomorrow’s self, this term

is discounted with δ. When predicting future behavior, a partially naive agent uses the

perceived cutoffs ct = (β̂/β) vt determined by the continuation value a former time s < t self

believes Self t has. If β̂ > β, current selves overestimate future selves’ patience and, hence,

the cutoff they use. If β̂ < β, current selves underestimate future selves’ patience and, hence,

their cutoffs.

For a given distribution F , Lemma 1 allows for a straightforward calculation of stopping

probabilities, which we used to to calculate the stopping probabilities for the examples in Sec-

tion 3. Indeed, when imposing a given parametric form, Lemma 1 allows to analytically solve

for the log-likelihood of different parameters given observed stopping probabilities, which is

at the core of the program we wrote to calculate the log-likelihood (and similarly minimum-

distance) estimators in Section 3.15 This is noteworthy as prior empirical approaches based

on dynamic discrete choice models—which simulate a naive agent’s beliefs—are computa-

tionally costly and restricted to a specific parametric family of the unobservable opportunity

cost (extreme value type 1).16 Furthermore, for a given vector of parameters, Lemma 1 can

be used to numerically check parametric identification, which to the best of our knowledge

is an open theoretical question in this context.

5 Rate of Task Completion Increases Over Time

Building on this recursive formulation, this section establishes that a partially-naive quasi-

hyperbolic agent is (weakly) more likely to stop and complete the task, the closer she is to

the deadline T . In other words, the longer away the deadline, the higher the perceived con-

tinuation value of the current self. Because the payoff distribution is stationary, comparing

the perceived continuation value of period t to that of period t+1 is equivalent to comparing

15The program, which is written in Mathematica, is available at http://philippstrack.com/

procrastination-code.nb
16Indeed, upon circulation of a first version of this paper, Martinez et al. (2017) developed an estimation

technique based on our procedure for their tax-filing data in order to provide robustness tests under different
parametric assumptions that complement their core development, which hews closely to the type-1 extreme
value tradition.
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the perceived continuation in the first period of task-completion with a deadline of T − t

to that with a deadline of T − (t + 1). Interestingly, since the perceived continuation value

increases in the distance to the deadline, therefore, a quasi-hyperbolic agent would never

want to impose an earlier deadline to keep herself from procrastinating excessively. While

obvious for an exponential discounter—adding an extra period simply increases her choice

set and hence makes her better off—the question of whether to limit future selves delay pos-

sibility is much more subtle when the agent is a quasi-hyperbolic discounter. Indeed, when

the distribution of net benefits is not stationary, it is easy to construct counterexamples in

which Self 1 would want to impose an early deadline on future selves.

Example 3 (Self 1 wants to impose a deadline with a time-dependent payoff distribution).

Consider a sophisticated agent with δ = 1, β = 1/2 who has two periods to complete a

mandatory task, and who has a deterministic cost of 0.9 in the first and 1 in the second

period. Due to her present bias, the agent will complete the task in period 2 giving Self

1 a utility of -1/2. Now add the chance to complete the task in a third period at a cost

of 1.5. Then Self 2 strictly prefers to procrastinate, and if Self 1 waits, her utility is -3/4.

Thus, adding another period in which the task can be completed makes Self 1 worse off. As

a result, Self 1 would be willing to impose a two-period deadline.

Intuitively, because preferences between today’s self and future selves are not aligned, if

payoffs depend on time restricting future selves’ choices through imposing a deadline can be

beneficial to today’s self. Bisin and Hyndman (2018) provide further examples in which a

sophisticated quasi-hyperbolic agent benefits from imposing a deadline when costs of doing

a mandatory task follow a Markov process in which higher costs today are associated with

higher costs tomorrow.17 What is perhaps surprising is that if costs—or net benefit in our

setup—are uncorrelated over time, a sophisticated quasi-hyperbolic agent never wants to

impose a deadline.

Indeed, when the payoff distribution is the same across periods, we have:

Theorem 1 (Monotonicity of the Continuation Value). Let δ ≤ 1.

i) The subjective continuation values are non-increasing over time

v1 ≥ v2 ≥ . . . ≥ vT .

17While in our simple example the state changes deterministically, continuity of payoffs implies that
the example also hold if with a small probability the costs are redrawn from a uniform distribution over
{0.9, 1, 1.5} and otherwise move up deterministically towards the state 1.5 as in our example.
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ii) Every self t prefers a later deadline.

Parts i) and ii) are equivalent since when the payoff distribution is identical across

periods, the subjective continuation value in a given period t equals the value in the problem

with a deadline of T − t periods. To understand intuitively why a quasi-hyperbolic agent’s

Self 1 does not want to impose a deadline with a stationary payoff distribution, consider first

the case in which doing the task is always costly—i.e., where the support of F is a subset of

R−. When comparing a (T − 1)-period to T -period deadline, Self 1 realizes that if she does

not engage in the task in the T period problem, self 2 will face a T −1-period problem. That

subgame is identical to the one she faces in the T − 1 period problem, and future selves who

are s periods away from the deadline will behave identically in the two problems. Hence for

s ∈ 1, · · ·T − 1, the task completion probability s-periods before the deadline is identical,

and due to discounting of future costs, Self 1 is strictly better off selecting the T -period

problem and not doing the task in the first period.

Suppose now instead, that the agent is sophisticated with quasi-hyperbolic parameter

β < 1 and that the payoff of completing the task is always positive—i.e., the support of F is

a subset of R+. From the perspective of a Self t, future selves are to impatient, and therefore

to willing to cash in the positive benefit in every future period. Suppose now that Self 1 can

extend the deadline from T −1 to T periods. In this case, Self T −1 will wait for sufficiently

low net benefits. Because the time T − 1 self is more impatient than Self 1 would want it

to be, whenever the impatient Self T − 1 chooses to wait, Self 1’s expected payoff increases

from waiting. Thus, conditional on reaching period T − 1, the longer deadline benefits Self

1. Now consider Self T − 2. With the longer deadline, Self T − 2’s benefit from waiting

increases because it always prefers its future self to not complete the task when the future

self chooses to do so. Hence, Self T−2 will also act less impatiently, which again benefits Self

1 conditional on reaching period T − 2. By induction, hence, in expectation Self 1 benefits

in every future period from the deadline extension.

Because a partially naive Self 1 thinks that she is sophisticated, and in either case a

sophisticated agent’s Self 1 does not want to impose a deadline, a partially naive agent will

not want to do so either. Hence, the perceived continuation value of a partially naive agents

also increase in the distance to the deadline.

Our proof studies properties of solutions to the recursive equation (3) to extend the above

intuitions to cases in which the support of the payoff distribution may contain positive and

negative elements, and hence some future selves can be a priori to eager and others not eager

enough to complete the task.
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We now turn to an immediate implication of Theorem 1. Note that the probability

pt = P[τt−1 = t] that the agent stops in period t conditional on not having stopped before is

the probability that the value of completing the task yt is above the subjective continuation

value vt; i.e.

pt = P[yt ≥ vt] = 1− F (vt) .

As the subjective continuation value vt is non-increasing, we have that the objective proba-

bility pt that the agent stops in period t is non-decreasing.

Corollary 1. Let δ ≤ 1. For any given benefit distribution F and in every perception-perfect

equilibrium, the objective probability with which the agent completes the task conditional on

not having completed it before is non-decreasing towards the deadline, i.e.

p1 ≤ p2 ≤ . . . ≤ pT .

Independently of the naivete and preference-parameters of a hyperbolic discounter, Corol-

lary 1 provides a simple testable prediction about her task-completion behavior when payoffs

are independently and identically distributed over time: the likelihood of completing the task

is increasing over time. Section 8, however, emphasizes that researchers need individual not

group data to test this prediction.18

Remark 1. Corollary 1 establishes that the probabilities of stopping conditional on not having

stopped previously increase over time. The unconditional stopping probability, however,

may either increase or decrease. This difference is of practical relevance: for example, the

conditional stopping probabilities increase over time in the tax-filing data of Martinez et al.

(2017) while the unconditional stopping probabilities decrease.19

6 Time-Preferences are Unidentifiable from Task Completion

In this section, we identify a strong sense in which time-preferences are unidentifiable from

task completion choices. Recall that we established that for any arbitrary preference profile

β, δ and any belief β̂, the profile of stopping probabilities is non-decreasing. In this section

we establish the converse: absent (parametric) restrictions on the payoff distribution F , we

show that any non-decreasing profile of stopping probabilities is consistent with any arbi-

trary preference profile β, δ in case either the agent is either sophisticated (β̂ = β) or fully

18Interestingly, this result holds independently of whether the agent over- or underestimates estimates β,
i.e. whether β̂ < β or β̂ ≥ β.

19See Figure 1 and 2 in Martinez et al. (2017).
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naive (β̂ = 1). Hence, it is impossible, for example, to distinguish a naive time-inconsistent

agent from a time-consistent one based on their task-completion behavior. Importantly, this

impossibility continues to hold even if a researcher is willing to exogenously impose that

the “long-run discount factor” δ equals 1, as is plausible in many applications in which one

observes task completion on a frequent (e.g. daily) basis. Similarly, even if the researcher is

willing to impose a priori restrictions on plausible levels of β—including the strong require-

ment that the agent is time-consistent—, absent exogenous restrictions on F , no information

on δ or β can be inferred from the task-completion data.

Intuitively, whether a self prefers to do a task today or tomorrow depends on her time

preferences (as well as beliefs about future selves’ time preferences) and on the perceived

option value of waiting. The option value of waiting, in turn, depends on the payoff distribu-

tion. Through changing the unobservable payoff distribution, we can hence undo a change

in the present-bias or long-run-discount factor of the agent. Technically, however, a local

change in the payoff distribution affects continuation values in every period in a highly non-

linear way, so to establish that we can construct an appropriate payoff distribution, we need

a non-local argument. When the agent is either sophisticated or fully naive—for different

technical reasons that we explain below—the analysis simplifies and allows us to establish

that we can indeed rationalize the stopping behavior for any arbitrarily chosen β, δ.

For the case in which the penalty is unobservable, we furthermore illustrate that the

data is rationalizable as the optimal behavior of a fully patient time-consistent agent (β̂ =

β = δ = 1) facing an unobservable payoff distribution F with any given expected value and

(non-zero) variance of the distribution; any parametric identification of present bias in such

a task-completion setting, therefore, must be based on a prior knowledge of higher-order

moments of the benefit distribution.

6.1 Time-Preferences are Unidentifiable: Sophisticated Case

In this subsection, we establish that absent (parametric) restrictions on the payoff distribu-

tion F , any non-decreasing profile of stopping probabilities is consistent with any arbitrary

preference profile β, δ of a sophistcated quasi-hyperbolic discounter. In particular, we have:

Theorem 2 (Non-identifiability). Suppose the agent is sophisticated β̂ = β. For every

non-decreasing sequence of stopping probabilities 0 < p1 ≤ p2 ≤ . . . ≤ pT < 1, every

(δ, β) ∈ (0, 1]×(0, 1], and every penalty y/βδ ∈ R, there exists a distribution F that rationalizes

the agent’s stopping probabilities as the (unique) outcome of a perception perfect equilibrium.
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Technically, to prove the theorem, we construct a distribution with t + 2 mass points,

where each of the non-extreme values equals the agent’s (correctly perceived) continuation

value in a given period t ∈ {1, . . . , T}; i.e. the second lowest mass point is set at the value

vT = y, and so on. The probability on each mass point is chosen so that the agent—who waits

if and only if yt ≥ vt—selects the exogenously given stopping probability. The constructions

is feasible since when β̂ = β, the recursive representation (Lemma 3) takes a particular

simple form, and together with the chosen construction of the distribution gives rise to a

system of linear equations, which can be solved forward.

6.2 Time-Preferences are Unidentifiable: Naive Case

We now turn to the case in which the agent believes to be time-consistent and establish

that for every chosen non-decreasing sequence of stopping probabilities and every chosen

preference profile β, δ, there exists a payoff distribution F that admits a piecewise constant

density and induces the agent to choose the stopping behavior given by the data.

Theorem 3 (Non-identifiability). Suppose the agent believes to be time-consistent β̂ = 1.

For every non-decreasing sequence of stopping probabilities 0 < p1 ≤ p2 ≤ . . . ≤ pT <

1, every (δ, β) ∈ (0, 1) × (0, 1], and every penalty y/βδ < 0, there exists a distribution F

that rationalizes the agent’s stopping probabilities as the (unique) outcome of any perception

perfect equilibrium.

Our formal proof in the appendix proceeds roughly as follows. Step (i). Fix the agent’s

time preference as well as period T ’s continuation value (which equals y). Step (ii). Take an

arbitrary (T − 1)-element vector of non-increasing continuation values v1 ≥ v2 ≥ . . . ≥ vT−1.

Step (iii). Here, we generate a payoff distribution for these continuation values that gives

the desired stopping probabilities. In particular, we put a probability mass that is equal

to the difference in the exogenously given stopping probability between period t and t + 1

between the corresponding period’s perceived continuation values, for simplicity using a

uniform density. This step, hence, amounts to mapping continuation values into distributions

that lead to the correct stopping probabilities. Step (iv). Calculate the actual continuation

values that the new payoff distribution from the third step gives rise to. This maps the set of

distributions back into the vector of continuation values. By Theorem 1, these continuation

values are again non-decreasing, and thus the combined function maps a non-increasing

sequence of continuation values into a non-increasing sequence of continuation values. Step

(v). We show that this function is bounded and maps sequences from an appropriately chosen
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interval into itself. Furthermore, the function is monotone as higher continuation values

lead to a better distribution (in the sense of first-order stochastic dominance) and a better

distribution increases the subjective continuation values for an agent who believes to be time-

consistent (established in Lemma 2 ii) below). Thus, the mapping from continuation values

into continuation values is a monotone mapping from a complete lattice into a complete

lattice, and by Tarski’s Theorem admits at least one fixed point. Any fixed point gives the

desired distribution, since by Step (iii) the stopping probabilities are correct and by Step

(iv) the continuation values are those consistent with the limit distribution. Furthermore,

because by Lemma 2 i) below, the continuation values are strictly decreasing when F (y) > 0

and y < 0, the limit distribution that we construct is continuous, so that the agent’s stopping

behavior is unique.

6.3 Monotonicity of Preferences in Payoffs

For a time-consistent agent it is obvious that she prefers a first-oder-increase in her stationary

payoff distribution, and our proof of Theorem 3 makes use of the following lemma, which

establishes an analogous result for a naive time-inconsistent agent.

Lemma 2. Suppose δ < 1 and the agent believes to be time-consistent β̂ = 1.

i) For every distribution F with F (y) > 0 and y < 0, the continuation values are strictly

decreasing v1 > v2 > . . . > vT .

ii) A first-order stochastic dominance increase in the payoff distribution F increases the

vector of subjective continuation values point-wise.

Part i) shows that whenever there is a positive probability that the utility from completing

the task in the final period before the deadline y is less than that from not completing the

task, an agent who believes to be time-consistent (i.e. who has beliefs β̂ = 1) has a strictly

positive willingness to pay for extending the deadline. Here, the assumption that F (y) > 0

and y < 0 rules out that it is optimal for the agent to always complete the task immediately.20

Thereby, it allows us to strengthen the finding of Theorem 1 for the case of β̂ = 1.

The second part of the Lemma shows that any improvement in the payoff distribution

weakly increases the subjective continuation values in all periods. Obviously, for a time-

consistent agent an improvement in the payoff distribution raises the second to last period’s

20As a trivial counterexample to the finding when the assumption is dropped, suppose the task yields a
(net) positive deterministic payoff above y. Then the agent would always complete the task immediately,
and hence is unwilling to pay for extending the deadline.
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continuation payoff. Furthermore, from the third to last period’s perspective, the increase

in the payoff distribution and the penultimate period’s continuation value, makes it more

desirable to reach the second to last period, that is increases its continuation value; etc... .

And because an agent with beliefs β̂ = 1 thinks she is time-consistent from tomorrow on, it

similarly increases her continuation values.

While economically we do not believe that the restriction to fully naive or actually time-

consistent agents (with β̂ = 1) is important for Theorem 3 to hold, our mathematical proof

uses this assumption when arguing that subjective continuation values increase in a first-

order-stochastic dominance shift in the payoff distribution, which in turn allows us to use

Tarski’s Theorem. In general, due to a time-inconsistent agent’s the conflict of interest

between her different selves, a first-oder-dominance improvement of her payoffs need not

raise subjective continuation values as the following example highlights.

Example 4 (A sophisticated β, δ-agent can prefer a fixed uniformly payoff-reducing tax).

Let β = 1/8 and the agent be sophisticated (β̂ = β). To simplify the calculation, we set

δ = 1 but the argument obviously extends to δ sufficiently close to 1. We compare the

agent’s expected welfare and (subjective) continuation values in a three-period voluntary-

task-completion problem across two scenarios.21 One without a tax, and one in which the

agent has to pay a fixed utility tax of 1/8 in the period in which she completes the task.

Let the distribution F of payoffs absent a tax be such that with probability 3/4 the agent

receives a payoff of 3/2, and with the remaining probability of 1/4 the agent receives a

payoff of 1/4. Straightforward calculations (see the Supplementary Appendix) establish that

the agent strictly prefers the tax to the no tax situations and that the tax increases the

first-period continuation value.

Note that the tax introduced in Example 4 is the same independent of when the agent

completes the task and in that sense is not tailored to punish an agent for giving in to early

temptations. Intuitively, nevertheless, the tax in the above example lowers the temptation

to quit immediately in period 2 as it reduces the benefits from doing so. As a result, the

agent obtains a commitment device to only stop when payoffs are high in the second or first

period. The benefits thereof overcompensate the direct payoff reduction through the tax,

and thereby raise earlier periods’ continuation values.

Lemma 2 and Example 4 jointly imply that one can (sometimes) identify agents that

believe to have self control problems (β̂ < 1): such an agent can have a strictly positive

21Because even the lowest payoff from completing the task is positive, the agent always completes the task
voluntarily. Our results, thus, remain unchanged if task completion becomes mandatory.
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willingness to pay to make his payoff distribution strictly worse. In contrast, an agent who

believes to be time-consistent (β̂ = 1) and hence does not foresee future self-control problems

will never want to do so.

6.4 Known Expected Value and Variance

For our very general results, we have not restricted the class of permissible distribution

functions. One may hope to rule out time-consistency and find evidence through restricting

features of the distribution. We first note that Theorems 2 and 3 extend to the case in which

we only consider well-behaved (smooth) distributions:

Remark 2. The distributions we construct to establish Theorems 2 and 3 have bounded

support and thus admit all moments. Furthermore, it follows from the construction in

the respective proofs that the non-identifiability result extends if we restrict attention to

distributions that admit a density and have a connected support.

In light of this remark, the perhaps most natural way of even further narrowing down the

class of possible distribution is to add restrictions regarding the moments of F ; for example,

an analyst may have an idea regarding the possible expected net benefit of doing the task—

that is regarding the mean of F—or may be willing to impose that net benefits do not vary

to much between periods (restricting the variance of F ).

We now briefly observe that if the penalty is unobservable, even with a priori knowledge

of the mean and variance of F it is impossible to rule-out time-consistent behavior. To

see this, consider an agent for whom β = δ = 1. Theorem 2 implies that there exists a

net benefit distribution F that rationalizes any increasing profile of stopping probabilities.

Furthermore, in this case the recursive formulation of the problem in Lemma 3 simplifies to

vt = E [max{yt+1, vt+1}] for all t < T.

Hence, if the distribution F together with the penalty y rationalize the data, so does the

distribution F + κ together with the penalty y + κ for any κ ∈ R. In other words, we can

always select a net benefit distribution with a given expected value. Furthermore for any

κ2 > 0, the stopping behavior remains optimal if we scale the net-benefits and y by κ2. This

implies that we can not only select a distribution with a given mean but that we can at the

same time select any desired variance and explain the observed stopping behavior.22

22Indeed, since the construction of F in the proof of Theorem 2 uses bounded support, we can rationalize
the observed stopping behavior as resulting from a patient agent (β = δ = 1) whose net benefits vary
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Corollary 2. Suppose the agent is time-consistent and fully patient β̂ = β = δ = 1. For

every non-decreasing sequence of stopping probabilities 0 < p1 ≤ p2 ≤ . . . ≤ pT < 1, and

every µ ∈ R and σ2 > 0, there exists a distribution F with mean µ and variance σ2 and

a penalty y that rationalizes the agent’s stopping probabilities as the (unique) outcome of a

perception perfect equilibrium.

7 Non-Parametric Identification with Richer Data

Above, we established that stopping data by itself is insufficient to test for time preferences.

A natural question is whether richer data allows the analyst to learn about the agent’s time-

preferences. To do so, the analyst needs to disentangle whether the stopping behavior is

driven by a desire to delay incurring costs or by the option value of drawing a better payoff

in the future. Observe that in the latter case, a considerable option value requires payoff to

differ significantly. Hence, as the deadline approaches and a waiting agent faces fewer future

draws, the continuation value should drop considerably. In contrast, even with a (relatively)

constant option value, an agent who is present biased is willing to delay a costly activity to

the last minute. Thus, observing, in addition to task-completion times, continuation values

directly should facilitate the non-parametric identification of δ, β, β̂. We, thus, analyze how

much the analyst can learn when also observing the continuation values.

More formally, consider the case in which the analyst observes the agent’s stopping

behavior (infinitely often) as well as his exact willingness to pay for continuing with the

task. Conceptually, the analyst could elicit this information by selecting some stopping

problems in which she offers the agent a mechanism at the end of period t that truthfully

elicits her willingness to pay for continuing with the task from t+ 1 onwards.23 Denote the

amount she is willing to pay at the end of period t by mt. If the agent’s utility is quasi-linear

in money, which is a good approximation in the standard hyperbolic discounting model

whenever the involved stakes are relatively small—as in the case of parking tickets—, then

observing mt is equivalent to observing the continuation value vt; otherwise, vt = u(mt) for

some monotonically increasing utility function mt. We provide an exact analytical result

regarding partial identification for the case of linear utility in money and a sophisticated

agent. But, we also highlight that—at the cost of having to use numerical methods common

arbitrarily little.
23If the analyst sees infinitely many identical agents, she can randomly select T agents. Label these agents

k = 1, . . . , T . At the end of period k, the analyst then elicits agent k’s willingness to pay for facing the
task-completion problem from period k+1 to T . She can do so using a standard Becker-De Groot-Marschak
mechanism (Becker et al., 1964).
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in empirical work to solve for the admissible parameter range—our results can be readily

extended in multiple directions, including partial naivete and non-linear utility in money.

Importantly, below we also point out that our procedure identifies the time-preferences over

effort even if the agent discounts money—due to time-preferences or the ability to borrow or

save—differently than effort, which implies that our time-preference identification is robust

to standard criticisms of eliciting time preferences using monetary choices (Augenblick et

al., 2015; Ericson and Laibson, 2019; Ramsey, 1928).

As a preliminary observation, recall that Theorem 1 and Corollary 1 imply that the

elicited continuation values must be non-increasing and the observed stopping probabilities

non-decreasing. We refer to data v, p that has these properties as plausible.24 Any data

that is not plausible cannot be justified by our quasi-hyperbolic setup. Imposing that the

agent is sophisticated, we now show how to non-parametrically identify the set of β, δ that are

consistent with the observed data. Using Lemma 1 and the fact that an agent stops whenever

his payoff is strictly above the continuation value, for a sophisticate the continuation values

v and conditional stopping probabilities p must satisfy

vt = u(mt) for all t ∈ {1, . . . , T} ,∫ ∞
vt+1

z dF (z) =
δ−1 vt − (1− pt+1) vt+1

β
for all t ∈ {1, . . . , T − 1} ,

1− F (vt) = pt for all t ∈ {1, . . . , T} .

(5)

Conversely, if a pair u, F satisfies (5) for a given plausible data set, then Lemma 1 implies

that it gives rise to a perception perfect equilibrium for a sophisticated agent.

Note that the right-hand-side of (5) is given by the data and hypothesized values of β and

δ. Thus, the data is consistent with a given pair β, δ if and only if there exists a distribution

F that solves (5). As a preliminary step, we show that whenever (5) admits a solution, it

also admits a solution that is a distribution consisting of T + 1 mass points.

Lemma 3. Whenever (5) admits a solution for a plausible data set, there exists a solution

F that consists of exactly T + 1 mass points located at (π0, . . . , πT ) that satisfy

π0 ≤ vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT ,

24If ȳ is observable then in addition we require that vT = ȳ.
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with associated probabilities fk = P[y = πk] given by

fk =


1− pT if k = 0

pT−k+1 − pT−k if k ∈ {1, . . . , T − 1}

p1 if k = T

.

Intuitively, two distributions give rise to the same stopping probability when the proba-

bility mass above the continuation values is the same. And the only things that matters for

the option value of waiting is the probability with which the agent stops at given future point

in time and the expected payoff conditional on doing so. By moving the probability mass

between any two continuation values to the expected payoff conditional on falling between

these two values, thus, the incentives to wait are unaltered. Furthermore, because the ob-

served stopping probabilities determine the continuation mass between any two continuation

values, the question of whether the analyst can non-parametrically match the observed data

for a given β, δ boils down to the question of whether she can do so by choosing a distribution

consisting of T + 1 mass points in the appropriate intervals.

Conceptually, Lemma 3 hence allows the analyst to search over a finite dimensional rather

than an infinite-dimensional space of possible distribution. Indeed, under the distributional

restriction given by the lemma, (5) becomes a non-linear system with finitely many real-

valued unknowns. Theorem 4, which we prove in the Appendix, shows that this system can

be transformed into a simple set of transparent inequalities that identify the values of δ and

β that are consistent with the observed stopping behavior and elicited continuation values.

Theorem 4 (Non-Parametric Identification). Suppose u(mt) = mt for all t and that p1 >

0.25 Plausible data (v, p) is consistent with β, δ and sophistication β̂ = β if and only if (i)

β <
δ−1 v1 − (1− p2) v2
v2(p2 − p1) + v1p1

and (ii) vt+1β < vt+1a(δ, t) ≤ vtβ for all t ∈ {2, . . . , T − 1}, where

a(δ, t) = 1− δ−1(vt−1 − vt)− (1− pt)(vt − vt+1)

vt+1(pt+1 − pt)
.

The theorem provides an exact characterization of what time-preference parameters are

consistent with the observed rich data. To illustrate its implications, consider the example

25We require p1 > 0 only to simplify the statement.
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from Section 3 in which T = 5, the agent’s payoff of completing the task are uniformly

distribiuted over [−1, 1], and the agent is time-consistent with β = δ = 1 (this is the setup of

Example 2). We illustrate the set of parameters the analyst can identify non-parametrically

for T = 5 and T = 20 in Figure 2. It is immediate that—in contrast to the case of

unobservable continuation values—not all parameter combinations β, δ are consistent with

the data.

Figure 2, however, also illustrates that even if the analyst correctly imposes that δ = 1,

she cannot make precise inference in the case where T = 5. Indeed, in the example any β

between 0.82 and 1.28 is consistent with the data. This changes drastically for T = 20 in

which case β is tightly identified once δ = 1 is imposed. Without imposing δ = 1, however,

the inference about β remains imprecise even in the case of T = 20, as it is impossible

to reject β = 0.84. Overall, the example suggests that rich data—including a significant

number of continuation values—are needed for tight parameter estimates.

What allows the analyst to separate the option-value-from-waiting based reason for de-

laying the task from time-preference-based ones with a rich enough data set? If the agent

is patient, he will only delay completing the task with high probability in case he expects a

better draw with high probability. This implies that there needs to be considerable variation

in the underlying payoff distribution. But then as the deadline moves closer, the agent fore-

sees getting less and less draws, which means the option values quickly drops. In contrast,

if time preferences are the underlying reason for delaying, the continuation value will drop

much more slowly as the deadline approaches. The additional data on continuation values,

hence, allows for set identification of the preference parameters. Since it is the change in

option value that allows identification, one can also use other related data. For example,

the willingness to pay for extending the deadline reflects the drop in continuation value, and

therefore would also give rise to a rich data set that would allow non-parametric set iden-

tification. Again, however, our example suggests that many such observations are needed,

suggesting that a tight estimation of agents’ time inconsistency requires “extremely rich”

task-completion data.

Generalizations of this Methodolgy We think of the Theorem 4 as a proof of concept,

and analysts can adopt it to the data at hand and the assumption they are willing to make.

For example, it is in principle straightforward to adopt the above analysis to allow for partial

naivete. In that case, however, one needs to be careful to account not only for the probability

mass and expectation of falling between two actual continuation values but also differentiate
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Figure 2: The above figures illustrates the set of parameters β, δ that the analyst can non-
parametrically identify if she correctly imposes that the agent’s instantaneous utility is linear
in money. The agent’s true values of completing the task are uniformly drawn from [−1, 1]
and she is time-consistent with β = δ = 1. In yellow is the case of T = 5 periods of data
and in blue T = 20 periods of data.

whether a given probability mass falls above or below the anticipated continuation values

ct. An analog to Lemma 3 implies that this can be done with 2T + 1 mass points. In this

case, however, for intervals that are bounded by anticipated and not actual continuation

values, the probability that yt falls into this interval is unknown. As a result, the analyst

needs to choose both the mass point and the weight on it (with the appropriate constraints

from the observed stopping behavior), giving rise to quadratic constraints. While this can

be solved numerically using standard techniques, a simple transparent closed-form solution

as in the case of Theorem 4 is unavailable. Similarly, because we only need to consider a

finite number of mass points, one can allow for non-linear utility in money, which—imposing

that utility is increasing in money—requires the analyst to choose increasing utility values

u(mt) in addition to the mass points.26

26If the analyst wants to impose risk-aversion in money, this adds simple (linear) constraints that ensure
that the slope of u is non-increasing in mt. Again, this can be solved using standard numerical techniques.
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Time-Preferences over Money One important aspect of our procedure is that it does

not (explicitly or implicitly) impose constraints on how the agent handles monetary payments

at different points in time. It is sufficient for contemporaneous utility to be separable in

money, and the marginal utility of receiving money to be the same across periods. This

assumption is consistent with an intertemporal set-up in which the agent can borrow and

lend at given interest rates—in which case the interest rate determines how she trades off

monetary payments at different points in time (Ericson and Laibson, 2019; Ramsey, 1928).

But it is also consistent with an agent narrow bracketing and consuming small monetary

payments immediately—or reasoning as if she does so—so long as she trades of money and

effort consistently over time. The procedure outlined in this section thus works for either

specification of the agent’s time preferences over monetary payments.

8 Discussion

Our results establish a strong form of non-identifiability in that—absent data on continuation

values—even with ideal stopping data in which the analyst observes the exact stopping

probability for each individual separately, without parametric assumptions nothing can be

learned regarding the agent’s discount factor, taste for immediate gratification, or degree

of sophistication. In reality, an analyst is likely to observe a large group of agents and

infer their average stopping probability; if the group is homogenous our analysis applies.

If individuals, however, in addition differ in their unobservable payoff distribution or time

preferences, the analyst’s problem becomes even more difficult. In that case, for example, it is

easy to generate non-monotone stopping probabilities for the overall population. As a simple

example, suppose there are two types of agents in the population that face a three-period

mandatory task-completion problem. The first type stops in each period with probability 1,

while the second type only stops in the final period. If α > 0 is the fraction of the first type,

then the aggregate stopping probability is α in the first period, 0 in the second, and 1 − α
in the final period, which is clearly non-monotone.27

Importantly, we establish our formal result for the specific task-completion setting ana-

lyzed, and they should not be misconstrued as implying complete non-identifiability of the

quasi-hyperbolic discounting model in other settings. In richer and different datasets, it

is possible to identify β, β̂ more directly. For example, lotteries (or contracts) that payoff

differently depending on the agent’s own future behavior can be used to reveal whether the

27See Heffetz et al. (2016) for a more detailed discussion of heterogeneity as well as empirical evidence on
its importance in determining when individuals pay their parking fines.
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agent missperceives her own future behavior and, hence, whether she is (partially) naive

in the quasi-hyperbolic discounting model (see, for example, DellaVigna and Malmendier,

2006; Spiegler, 2011). Similarly, if the agent is willing to pay for reducing her choice

set or for imposing a fine for certain future actions, she values commitment and—within

the quasi-hyperbolic discounting framework—must be time-inconsistent (see, for example,

Strotz, 1956). Such identification strategies, however, rely on data that is fundamentally

different from the task-completion data for which we establish the impossibility of non-

parametric identification.

Indeed, even in the closely related, but different, problem of task-timing (Carroll et al.,

2009; Laibson, 2015) in which the benefit from doing the task start accumulating as soon as

the agent finishes it, it is possible to construct examples in which an agent wants to commit

to an earlier deadline, implying that at least partial identification of perceived present-bias

(β̂ 6= 1) is theoretically feasible. While agents may theoretically benefit from imposing a

deadline in such task-timing problems, however, the calibration of the example in Laibson

(1997) suggests that their willingness to do so is small, suggesting that identifying time-

inconsistency may nevertheless be challenging in real-world data.

The broader economic lesson from our analysis is that conclusions about time-preferences

can quickly be driven by seemingly innocuous parametric assumptions. Our results on set-

identification with richer data illustrate, however, that it is possible—and in our setting

surprisingly easy—to avoid functional form assumptions. We, thus, think of these results as

a proof of concept for the feasibility of non-parametric analysis within the quasi-hyperbolic

discounting framework.

Finally, let us emphasize the obvious fact: even though present-bias is non-identifiable

in our task-completion settings absent data on continuation values, present-bias may still be

a major driver for the wide-spread observation that agents complete tasks last minute. Our

results simply caution that the observed task-completion behavior in these settings on its

own is not enough to conclude that present-bias is widespread.
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Appendix

Define the function g : R→ R as

g(w) = β̂ δ

∫ ∞
w

z dF (z) + F (w) δ w . (6)

As the following lemma formally establishes, g has a number of convenient properties.

Lemma 4. The function g has the following properties:

i) For all t ∈ {1, . . . , T−1}, the perceived continuation values satisfy
(
β̂/β
)
vt = g

((
β̂/β
)
vt+1

)
.

ii) g(w) is non-decreasing for w ≥ 0, is right-continuous, and has only upward jumps.

Let δ < 1. Then g has the following additional properties:

iii) g(w) > w for all w < 0 and there exists w̄ > 0 such that g(w) < w for all w > w̄.

iv) Let w? = inf{w ∈ R : g(w) ≤ w}. Then w? satisfies g(w?) = w? and w? ≥ 0.

v) If w′ ≥ 0 > w, then g(w′) ≥ g(w).

Proof of Lemma 4: i) follows immediately from Lemma 1. To see that ii) holds, observe

that we can rewrite g as

g(w) = β̂ δ

∫ ∞
w

z dF (z) + β̂F (w) δ w + (1− β̂)F (w) δ w

= β̂ δ

∫ ∞
−∞

max{z, w} dF (z) + (1− β̂)F (w) δ w . (7)

Note that both the first and the second summand are non-decreasing for w ≥ 0, and that the

first summand is continuous in w while the second is right-continuous and has only upward

jumps as F is a CDF.

To see that iii) holds, observe that the integral in the first summand of (7) is bounded

from below by w and, thus, for w < 0

g(w) ≥ β̂ δ w + (1− β̂)F (w) δ w = δw − (1− β̂)(1− F (w)) δ w ≥ δw > w .

For establishing the second part, note that

lim
w↗∞

g(w)

w
= lim

w↗∞

{
β̂ δ

∫ ∞
−∞

max
{ z
w
, 1
}
dF (z) + (1− β̂)F (w) δ

}
= β̂ δ + (1− β̂) δ = δ < 1.

We next argue that this implies that there exist a w̄ such that for all w > w̄, g(w) < w. Sup-

pose otherwise, then there exists a sequence wk ↗ ∞ such that g(wk) > wk. Furthermore,
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for this sequence limwk↗∞
g(wk)
wk

> 1, a contradiction.

We now show iv). Observe that since g has only upward jumps, w 7→ g(w) − w has

only upward jumps. Because by iii) the set {w ∈ R : g(w) ≤ w} is non-empty, the fact that

w 7→ g(w) − w has only upward jumps implies that w? = inf{w ∈ R : g(w) ≤ w} satisfies

g(w?) = w?. Furthermore, it follows immediately from iii) that the set {w ∈ R : g(w) ≤ w}
contains only w ≥ 0, and hence that w? ≥ 0.

To show v), note that for 0 ≥ w Equation 7 together with w′ ≥ 0 implies that

g(w′)− g(w) =β̂ δ

[∫ w

−∞
(w′ − w)dF (z) +

∫ w′

w

(w′ − z)dF (z)

]
+ (1− β̂)δ [F (w′)w′ − F (w)w] ≥ 0,

where the inequality follows from the facts that w′ ≥ 0 and w ≤ 0.

Proof of Theorem 1: That statements i) and ii) of the theorem are equivalent is argued

in the main text. Here, we prove statement i).

We begin by establishing the result for δ < 1. Trivially, Self T ’s perceived continuation

value is vT = y ≤ 0. Define w? = min{w ∈ R : g(w) ≤ w} ≥ 0, which is well defined by

Lemma 4, iii) and iv). By Lemma 4, i) and iv), we have that

w? −
(
β̂/β
)
vt = g(w?)− g

((
β̂/β
)
vt+1

)
. (8)

As vT = y ≤ 0 and w? ≥ 0 (by Lemma 4, iv)), we have that
(
β̂/β
)
vT ≤ w?. We now

proceed by induction to show that this implies that vt ≤ w?. We distinguish two cases:

First,
(
β̂/β
)
vt+1 ≥ 0. In this case the monotonicity of g , established in Lemma 4, ii), together

with Equation 8 implies that sgn(w?− vt
(
β̂/β
)
) = sgn(w?−

(
β̂/β
)
vt+1) and, thus, by induction(

β̂/β
)
vt ≤ w?. Second if

(
β̂/β
)
vt+1 < 0, then by Lemma 4, v), g(w?) ≥ g(

(
β̂/β
)
vt+1) and

hence it follows from Equation 8 that
(
β̂/β
)
vt < w?. We conclude that

(
β̂/β
)
vt < w? for all

t ∈ {1, . . . , T}.
Hence, since

(
β̂/β
)
vt+1 ≤ w?, we have

(
β̂/β
)
vt+1 ≤ g(

(
β̂/β
)
vt+1) =

(
β̂/β
)
vt ⇒ vt+1 ≤ vt .

Finally, we establish the result for δ = 1. First, note that the right-hand-side of (6)

is continuous in δ and as
(
β̂/β
)
vt = g

((
β̂/β
)
vt+1

)
by Lemma 4 i), it follows that the

continuation values v1, . . . , vT are continuous in δ. Let vδt be the continuation value in
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period t as a function of δ. We already established that vδt − vδt+1 ≥ 0 for all δ < 1. By

continuity, we have that v1t − v1t+1 = limδ↗1 v
δ
t − vδt+1 ≥ 0.

Proof of Theorem 2: Fix a non-decreasing sequence of stopping probabilities 0 < p1 ≤
p2 ≤ . . . ≤ pT < 1, (δ, β) ∈ (0, 1] × (0, 1], and a penalty y/βδ ∈ R. We will construct a

distribution F that implies the stopping probabilities p for a sophisticate.

Pick any perceived first-period cutoff c1 > 0 such that

c1 > max

{
0,−(1− β) δy

1− (δ 1−pT
2

)T−1

(1− (δ 1−pT
2

))(δ 1−pT
2

)T−1

}
.

Using β̂ = β in Lemma 1, the perceived continuation values satisfy

vt =

β δ
∫∞
vt+1

z dF (z) + F (vt+1) δ vt+1 for t ∈ {1, . . . , T − 1}

y for t = T
. (9)

Let F be the sum of T + 2 Dirac measures

F (x; v) =
T+1∑
k=0

fk 1πk(v)≤x, (10)

at the mass points π0, . . . , πT satisfying

πk(v) =


y − c1 if k = 0

y if k = 1

vT−k+1 if k ∈ {2, . . . , T}

.

Let the probability of each mass point be given by

fk =


(1− pT )/2 if k = 0, 1

pT−k+2 − pT−k+1 if k ∈ {2, . . . , T}

p1 if k = T + 1

.

Note that f0 > 0 as pT < 1. Since the mass points of F are exactly at the continuation

values, we get that for t ∈ {1, . . . , T − 1} the recursive equation for the continuation values
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v simplifies to a recursive equation for the mass points π; i.e.

πT+1−t = β δ

∫ ∞
vt+1

z dF (z) + F (vt+1) δ vt+1 = β δ
T+1∑

j=T−t+1

fjπj + δ

(
T−t∑
j=0

fj

)
πT−t (11)

⇒ πk = β δ

T+1∑
j=k

fjπj + δ

(
k−1∑
j=0

fj

)
πk−1 for k ∈ {2, . . . , T} . (12)

We furthermore restrict attention to distributions for which Equation (11) is also satisfied

for t = T , i.e. for which π1 satisfies Equation (12) evaluated at k = 1. In that case, (12)

implies that for k ∈ {2, . . . , T},

(πk − πk−1) = (1− β) δfk−1πk−1 + δ
k−2∑
j=0

fj (πk−1 − πk−2) . (13)

As (13) can be solved forward and π0, π1 are known, we can use it to determine π2, . . . , πT .

Given the values π0, . . . , πT , we can determine πT+1 by solving (12) for k = T

πT = βδ(fTπT + fT+1πT+1) + δπT−1

(
T−1∑
j=0

fj

)
.

Denote this solution by π?. If π? is strictly increasing then the distribution defined in (10) has

mass points exactly at the continuation values v and leads to the given stopping probabilities

p.

We are thus left left to show that the resulting solution π?0, π
?
1, . . . , π

?
T+1 is increasing. We

will show that π?k − π?k−1 > 0 by induction for k ∈ {1, . . . , T}. π?0 < π?1 by construction as

c1 > 0. We next do the induction step and assume that π?0 < π?1 < . . . < π?k−1. Since for

k ≥ 2 one has π?k−1 > π?1 = y, (13) implies that

(πk − πk−1) ≥ (1− β) δy + δ f0 (πk−1 − πk−2)

= α + γ (πk−1 − πk−2) , (14)

where α = (1 − β) δy and γ = δ f0 ∈ (0, 1). Since for y ≥ 0, we have α ≥ 0, it follows that

π is non-decreasing in this case. We are left to show the result for y < 0 and α < 0. This
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implies that

(
π?k − π?k−1

)
≥ α

k−2∑
j=0

γj + γk−1 (π?1 − π?0)

= α
1− γk−1

1− γ
+ γk−1c1

≥ α
1− γT−1

1− γ
+ γT−1c1

= γT−1
(
c1 − |α|

1− γT−1

(1− γ)γT−1

)
> 0 . (15)

The last inequality here follows from our choice of c1. We thus have shown that π?0 < π?1 <

. . . < π?T . It is left to show that π?T < π?T+1. By chosing c1 large enough, we can without loss

of generality assume that π?T > 0. If π?T > 0 and π?T+1 ≤ π?T , we have that

π?T = βδ(fTπ
?
T + fT+1π

?
T+1) + δπ?T−1

(
T−1∑
j=0

fj

)

≤ π?TβδfT + π?TβδfT+1 + π?T−1δ

(
T−1∑
j=0

fj

)

⇔ 1 ≤ βδfT + βδfT+1 +
π?T−1
π?T

δ

(
T−1∑
j=0

fj

)
.

As fT +fT+1 +
(∑T−1

j=0 fj

)
= 1, f0 > 0, and π?T−1 < π?T , this is a contradiction and completes

the proof.

Proof of Lemma 2: i): By Theorem 1, the subjective continuation vales are weakly

decreasing. For the sake of a contradiction, suppose the subjective continuation value is

constant across two periods. Denote by m = min
(
suppF

)
the left end-point of the support

of F . By assumption m ≤ y < 0. By Lemma 4 i), we have that vt/β = g(vt+1/β) for all

t ∈ {1, . . . , T − 1}, where, by Equation 7, g(x) = δ
∫∞
−∞max

{
z, x
}
dF (z). Note that g is

non-decreasing, strictly increasing for all x ≥ m, and that g(x) = δ
∫∞
−∞ z dF (z) ≥ δm > m

for x < m. Suppose that vt−1 = vt for some t ∈ {2, . . . , T}. This implies that vt/β =

g(vt+1/β) = g(vt/β). Hence, vt/β > m and as g is strictly increasing for x ≥ m, there can not

exist a ṽ 6= vt such that vt/β = g(ṽ/β). Hence, vs = vt for all s, t ∈ {1, . . . , T}. As vT = y, this

implies that vt = y for all t. By Lemma 4 iii), however, any fixed point of g is non-negative,
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so that ȳ ≥ 0, contradicting the assumption that ȳ < 0.

We now show ii): Let v be the continuation values associated with F and ṽ the continuation

values associated with F̃ ≺FOSD F . We want to show that vt ≥ ṽt for every t ∈ {1, . . . , T}.
We show the result by backward induction over T . The start of the induction is that

vT = ṽT = y. In the induction step, we show that vt+1 ≥ ṽt+1 implies vt ≥ ṽt

vt/β = δ

∫ ∞
−∞

max
{
z, vt+1/β

}
dF (z) ≥ δ

∫ ∞
−∞

max
{
z, ṽt+1/β

}
dF (z)

≥ δ

∫ ∞
−∞

max
{
z, ṽt+1/β

}
dF̃ (z) = ṽt/β .

We are now ready to prove Theorem 3.

Proof of Theorem 3: Let Ga,b(x) = max{min
{
x−a
b−a , 1

}
, 0} be the uniform CDF on [a, b]

for a < b and a Dirac measure Ga,a(x) = 1a≤x for a = b. Fix some c1, c2 > 0. Consider

a non-decreasing sequence of stopping probabilities 0 < p1 ≤ . . . ≤ pT < 1 and for every

non-increasing sequence of continuation values v1 ≥ . . . ≥ vT−1 with vT−1 ≥ y, define the

function F

F (x; v) =
T∑
k=0

fkGπk(v),πk+1(v)(x),

where

πk(v) =



y − c1 if k = 0

y if k = 1

vT−k+1 if k ∈ {2, . . . , T}

v1 + c2 if k = T + 1

,

and

fk =


1− pT if k = 0

pT−k+1 − pT−k if k ∈ {1, . . . , T − 1}

p1 if k = T

.

F is a distribution: We begin by showing that F is a cumulative distribution function. Note
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that fk ≥ 0 and that for k < T ,
k∑
j=0

fj = 1− pT−k (16)

and
∑T

j=0 fj = 1. For every v, the function F (·; v) is non-decreasing and non-negative as the

CDF G is non-decreasing and non-negative. It thus follows that F is a well defined CDF

with support [π0, πT+1] = [y − c1, v1 + c2].

Continuation values induced by F : Consider now the continuation values w induced by

F (·; v). By Lemma 1, they solve the equation

wt
β

= δ

∫ ∞
−∞

max
{
z,
wt+1

β

}
dF (z; v) for t ∈ {1, . . . , T − 1} , (17)

with wT = y. Denote by L : RT−1 → RT−1 the function mapping v to w using (17). By

Theorem 1, w = L(v) is non-increasing. As w is non-increasing and wT = y, it follows that

(Lv)t ≥ y for all t ∈ {2, . . . , T − 1}. Furthermore, as suppF (·; v) ⊆ [y − c1, v1 + c2]

w1 = βδ

∫ ∞
−∞

max
{
z,
wt+1

β

}
dF (z; v) ≤ βδ

∫ ∞
−∞

max
{
v1 + c2,

w1

β

}
dF (z; v)

= δβmax
{

(v1 + c2),
w1

β

}
≤ δβ(v1 + c2) ≤ δ(v1 + c2) .

Thus, if v1 ≤ δ
1−δc2, we have that

wt ≤ w1 ≤ δ(v1 + c2) ≤
δ

1− δ
c2 .

Consequently, L maps M into itself, where M is the set of non-increasing sequences contained

in [y, δ
1−δc2]

T−1, i.e.

M =

{
m ∈

[
y,

δ

1− δ
c2

]T−1
: m1 ≥ m2 ≥ . . . ≥ mT−1

}
.

Any fixed-point of L induces a solution: We next argue that if w? ∈ RT−1 is a fixed point

of L then the distribution F (·;w?) induces the stopping probabilities p and thus solves our

problem. By Lemma 2 i), any fixed-point must be strictly decreasing w?1 > w?2 > . . . > w?T−1.

As w? is a fixed point of L, the agent stops in period t if and only if yt ≥ w?t , which happens
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with probability

P[y > w?t ] = 1− F (w?t ;w
?) = 1−

T∑
k=0

fkGπk(w?),πk+1(w?)(w
?
t ) = 1−

T∑
k=0

fk 1πk+1(w?)≤w?t

= 1−
T−1∑
k=1

fk 1w?T−k≤w?t − f01y−c1≤w?t − fT1w?1+c2≤w?t

= 1−
T−t∑
k=0

fk = 1− (1− pt) = pt .

Where we used (16) in the second to last equality. Thus, any distribution associated with a

fixed point of L induces the correct stopping probabilities.

L has a fixed-point: It remains for us to argue that L has a fixed point. We note that M is a

complete bounded lattice, as the point-wise maximum (minimum) over increasing sequences

is increasing.28 We next note that F respects first order stochastic dominance (FOSD), ie.

if v = w then F (·; v) is greater than F (·;w) in FOSD.29 By Lemma 2 ii), increasing the

distribution of payoffs in FOSD will (weakly) increase the subjective continuation values.

As a consequence L is a monotone operator, i.e. L(v) = L(w) if v = w. By Tarski’s fixed

point theorem, L thus has a fixed point on the lattice M .

Uniqueness: Finally, we note that as the subjective continuation values w? is strictly

decreasing F (·;w?) has no mass points. Consequently, the probability that the agent is

ever indifferent between stopping and continuing equals zero. Thus, any perception perfect

equilibrium leads to the same distribution p.

28To see this note, that (y, . . . , y) is a minimal element and ( δ
1−δ c2, . . . ,

δ
1−δ c2) is a maximal element.

Furthermore, the point-wise infimum and supremum over any subset of M lie in M .
29We use the notation = for point-wise comparisons.
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Proof of Theorem 4: Lemma 3 implies for a plausible data set that (5) admits a solution

if and only if there exists π ∈ RT+1, f ∈ ∆T+1 and a monotone function u such that

vt = u(mt) ∀t ∈ {1, . . . , T} , (18)

π0 ≤vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT , (19)

T∑
k=T−t

πkfk =
δ−1 vt − (1− pt+1) vt+1

β
∀t ∈ {1, . . . , T − 1} , (20)

T∑
k=T−t+1

fk = pt , ∀t ∈ {1, . . . , T} . (21)

Equation 21 is equivalent to fT = p1, f0 = 1− pT and for all t ∈ {2, . . . , T}

pt − pt−1 =
T∑

k=T−t+1

fk −
T∑

k=T−t+2

fk = fT−t+1 ,

and thus completely determines f . From now on we thus consider f as given.

Equation 20 for t = 1 is equivalent to

πT−1fT−1 + πTfT =
δ−1 v1 − (1− p2) v2

β
.

We note that there exists π satisfying the above equation and (19) if and only if

v2fT−1 + v1fT <
δ−1 v1 − (1− p2) v2

β
. (22)

That this is necessary follows as (19) provides a lower bound on πT−1 and πT . Since, fT =

p1 > 0, this is also sufficient as you can always chose πT arbitrarily large. Rearranging for β

and plugging in f yields

β <
δ−1 v1 − (1− p2) v2
v2(p2 − p1) + v1p1

. (23)

Next, we consider (20) for t ∈ {2, . . . , T − 1}. Subtracting (20) evaluated at t− 1 from (20)

evaluated at t yields

πT−tfT−t =
T∑

k=T−t

πkfk −
T∑

k=T−t+1

πkfk =
δ−1 vt − (1− pt+1) vt+1

β
− δ−1 vt−1 − (1− pt) vt

β
,
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which is equivalent to

πT−t =
vt+1(pt+1 − pt)− δ−1(vt−1 − vt) + (1− pt)(vt − vt+1)

β(pt+1 − pt)
.

The above equation admits a solution satisfying (19) if and only if for all t ∈ {2, . . . , T − 1},
vt+1 < πT−t ≤ vt. Rewriting using the definition of a(δ, t) from the statement of the theorem,

20 admits a solution satisfying (19) if for all t ∈ {2, . . . , T − 1} both vt+1β < vt+1a(δ, t) and

vtβ ≥ vt+1a(δ, t), and in addition

β <
δ−1 v1 − (1− p2) v2
v2(p2 − p1) + v1p1

. (24)

This completes the proof.

Proof of Lemma 3: Let the pair u,G solve 5. From now one, fix u. Let EG denote

the expectation taken with respect to the cumulative distribution function G, and PG the

probability mass with respect to G.

We now specify a distribution F that has the properties specified in the Lemma. The

T + 1 mass points (π0, . . . , πT ) are located at

πk =


EG[y|y ≤ vT ] if k = 0

EG[y|vT−k+1 < y ≤ vT−k] if k ∈ {1, . . . , T − 1}

EG[y|v1 < y] if k = T

.

and their probability mass is given by fk as specified in the Lemma. Observe that by

construction, we have

π0 ≤ vT < π1 ≤ vT−1 < . . . ≤ πT−1 ≤ v1 < πT .

Since G solves 5 and 1− F (vt) = pt for all t ∈ {1, . . . , T} by construction, one has

1− F (vt) = 1−G(vt) ∀t ∈ {1, . . . , T}.
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Furthermore,

∫ ∞
vt+1

z dG(z) =
T−1∑
k=T−t

EG[y|vT−k+1 < y ≤ vT−k]PG[y|vT−k+1 < y ≤ vT−k] + EG[y|v1 < y]PG[y|v1 < y]

=
T∑

k=T−t

fkπk

=

∫ ∞
vt+1

z dF (z) .

Thus, since u,G solve 5 so do u, F .

Example 4. This section establishes the claims made in Example 4. As the immediate

payoffs of task-completion in the support of F are always positive, an active agent will

complete the task in the final period. Furthermore, observe that the agent will complete the

task in the penultimate period even for the low benefit draw since

1

4
> β

{
19

16

}
;

that is, the payoff of stopping immediately is greater than the discounted expected payoff of

stopping in the final period. Hence, the subjective continuation value in period t = 1 is the

discounted expected value of always stopping in period 2, i.e.

v1 = β

{
19

16

}
.

Given the continuation value v1, the agent will complete the task in the first period for both

a high and a low payoff realization. Hence,—for simplicity30 following the usual convention

and presuming the long-run Self 0 does not use β to discount future payoff—Self 0’s expected

benefit from facing the stopping problem is 19/16.

Suppose now that the agent faces a tax of (1/8) that she must pay when completing the

task. Hence, she faces a new (after tax) payoff distribution G that with probability 3/4 pays

11/8 and with probability 1/4 pays 1/8. Again, an active agent will complete the task in

the final period as payoffs of doing so are always positive. Furthermore, when drawing the

high payoff, an agent will always complete the task immediately.

30Our payoff comparison between the case with and without a tax is unaffected by whether or not Self 0
applies β to discount future payoffs.
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In the penultimate period, the agent will not complete the task when drawing a low

payoff of 1/8 since
1

8
< β

{
3

4
× 11

8
+

1

4
× 1

8

}
=

1

8

{
17

16

}
;

that is the payoff of stopping immediately is lower than the discounted expected payoff of

completing the task in the final period.

Taking the behavior in the penultimate period into account, the agent’s first-period

continuation value is

vG1 = β

{
3

4
× 11

8
+

1

4
× 17

16

}
= β

{
83

64

}
> β

{
19

16

}
= v1.

This already establishes that the first period continuation value is higher with a tax than

without it. Furthermore, when facing the tax, the agent will not complete the task in the

first period when facing a low payoff since

1

8
< β

{
83

64

}
=

1

8

{
83

64

}
.

Using this fact, Self 0’s expected payoff of facing the problem with a tax is{
3

4
× 11

8
+

1

4
× 83

64

}
=

347

256
>

{
17

16

}
.

We conclude that the sophisticated agent strictly prefers the tax.
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