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We propose a series-based nonparametric specification test for a
regression function when data are dependent across a network. Net-
work dependence can be parametric, parametric with increasing di-
mension, semiparametric or any combination thereof, thus covering a
vast variety of settings. These include spatial error models of varying
types and levels of complexity. Models in which network dependence
arises directly in outcome variables are also treated. Under a new
smooth network dependence condition, our test statistic is asymp-
totically standard normal. To prove the latter property, we establish
a central limit theorem for quadratic forms in linear processes in an
increasing dimension setting. Finite sample performance is investi-
gated in a simulation study and empirical examples illustrate the
test with real-world data.

1. Introduction. Models for network dependence have recently be-
come the subject of vigorous research in the statistical and econometric
literature, see e.g. Kolaczyk (2017), the volume edited by Bramoullé, Ga-
leotti, and Rogers (2016) and the review article by de Paula (2017). This
burgeoning interest has roots both in the requirement of theoretical models
to understand network formation mechanisms as well as the needs of prac-
titioners who frequently have access to data sets featuring inter-connected
cross-sectional units. Motivated by these practical concerns, we propose a
specification test for a regression function in a general setup that covers a
vast variety of commonly employed network dependence models and per-
mits the complexity of network dependence to increase with sample size.
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Our test is consistent, in the sense that a parametric specification is tested
with asymptotically unit power against a nonparametric alternative.

Specification testing is an important problem, and this is reflected in a
huge literature studying consistent tests. Much of this is based on indepen-
dent, and often also identically distributed, data. However data frequently
exhibit dependence and consequently a branch of the literature has also
examined specification tests under time series dependence. Our interest cen-
tres on dependence across a network, which differs quite fundamentally from
dependence in a time series context. Time series are naturally ordered and
locations of the observations can be observed, or at least the process gen-
erating these locations may be modelled. It can be imagined that concepts
from time series dependence be extended to settings where the data are ob-
served on a geographic space and dependence can be treated as decreasing
function of distance between observations. Indeed much work has been done
to extend notions of time series dependence in this type of setting, see e.g.
Jenish and Prucha (2009, 2012).

However, agents may form networks in many ways that do not conform
to such a setting. For example, farmers influence the demand of farmers
in the same village but not in different villages, as in Case (1991). A sim-
ilar setting is used by Dray and Jombart (2011) to study a famous 19th
century data set on ‘moral statistics’, such as crime, suicides and literacy
in French départements. Likewise, price competition among firms exhibits
spatial features (Pinkse, Slade, and Brett (2002)), input-output relations
lead to complementarities between sectors (Conley and Dupor (2003)), co-
author networks form among scientists (Oettl (2012), Mohnen (2017)), on-
line bloggers form networks by political allegiance (Zhao, Levina, and Zhu
(2012)), R&D spillovers occur via technology and product market networks
(Bloom, Schankerman, and van Reenen (2013)), children influence the be-
haviour of their peers (Helmers and Patnam (2014)), networks form due
to allegiances in conflicts (König, Rohner, Thoenig, and Zilibotti (2017)),
human brain regions may influence each other (Durante, Dunson, and Vo-
gelstein (2017)), overlapping bank portfolios lead to correlated lending de-
cisions (Gupta, Kokas, and Michaelides (2018)). Such examples cannot be
studied by simply extending results developed for time series and illustrate
the growing need for methods that are valid when agents affect each other
through a network.

A very popular model for general network dependence is the spatial au-
toregressive (SAR) class, due to Cliff and Ord (1973). The key feature of
SAR models, and various generalizations such as SARMA (SAR moving av-
erage) and matrix exponential spatial specifications (MESS, due to LeSage
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and Pace (2007) and studied further by Debarsy, Jin, and Lee (2015)), is
the presence of one or more spatial weight matrices whose elements charac-
terize the network links between agents. These links may form for a variety
of reasons, so the ‘spatial’ terminology represents a very general notion of
space, such as social or economic space. As an example, consider the Add
Health dataset. This comprises a sample of schoolchildren from 112 middle
and high-schools in the US. Students are asked to name up to five friends
of each sex from a list of all other students in the school; see e.g. Moody
(2001) for more details on the dataset and Olhede and Wolfe (2014) for an
exclusively network oriented analysis. Thus an example of a spatial weight
matrix would be a link matrix based on these self-reported friendships. How-
ever, the dataset also includes information on the ethnicity of the students,
used e.g. by Currarini, Jackson, and Pin (2009) in a study of homophily, as
well as the school year (grade) of each student. Each of these two channels
generates a new spatial weight matrix, suggesting the use of more than one
spatial weight matrix in what are sometimes termed ‘higher-order’ models.
Important papers on the estimation of SAR models and their variants in-
clude Kelejian and Prucha (1998) and Lee (2004), but research on various
aspects of these is active and ongoing both in econometrics and statistics,
see e.g. Kuersteiner and Prucha (2013), Sun, Yan, Zhang, and Lu (2014),
Hillier and Martellosio (2018).

Unlike work focusing on independent or time series data, a general draw-
back of network or spatially oriented research has been the lack of general
unified theory. Typically, individual papers have studied specific special cases
of various spatial specifications. A strand of the literature has introduced the
notion of a cross-sectional, or network, linear-process to help address this
problem, and we follow this approach. This representation can accommo-
date SAR models in the error term (so called spatial error models (SEM))
as a special case, as well as variants like SARMA and MESS, whence its
generality is apparent. The linear-process structure shares some similarities
with that familiar from the time series literature (see e.g. Hannan (1970)).
Indeed, time series versions may be regarded as very special cases but, as
stressed before, the features of network dependence must be taken into ac-
count in the general formulation. Such a representation was introduced by
Robinson (2011) and further examined in other situations by Robinson and
Thawornkaiwong (2012) (partially linear regression), Delgado and Robin-
son (2015) (non-nested correlation testing), Lee and Robinson (2016) (series
estimation of nonparametric regression), Peng (2016) and Bandyopadhyay
and Maity (2018) (varying coefficient models) and Hidalgo and Schafgans
(2017) (cross-sectionally dependent panels).
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Examples of nonparametric specification tests with independent data in-
clude conditional moments tests (Bierens (1990)), sample splitting tests (Eu-
bank and Spiegelman (1990), Wooldridge (1992), Yatchew (1992)), tests for
non-nested models (Delgado and Stengos (1994)), series-based tests (Hong
and White (1995), Li, Hsiao, and Zinn (2003)), kernel-based tests (Fan and
Li (1996), Zheng (1996)), tests based on general linear smoothers (Ellison
and Ellison (2000)), rate-optimal tests (Guerre and Lavergne (2005)), in-
strumental variables based tests (Horowitz (2006)), tests based on Cramér-
von Mises distance (Rothe and Wied (2013)) and tests based on nearest-
neighbour estimation (Li, Li, and Liu (2016)). More generally, Tripathi and
Kitamura (2003) propose a test of conditional moment restrictions that nests
(conditional mean) regression as a special case. With time series depen-
dence, examples include empirical likelihood based testing under α-mixing
(Chen and Wolfgang (2003)), testing with possible long memory (Delgado,
Hidalgo, and Velasco (2005)), continuous-time models with finance applica-
tions (Hong and Li (2005)), supremum based testing (Hidalgo (2008)), test-
ing under nonlinearity and nonstationarity (Gao, King, Lu, and Tjøstheim
(2009) and Wang and Phillips (2012)), tests for multivariate time series (Ya-
jima and Matsuda (2009)), optimal tests (Hong and Lee (2013)) and tests
using marked empirical processes (Escanciano (2018)).

In this paper, we propose a test statistic similar to that of Hong and
White (1995), based on estimating the nonparametric specification via se-
ries approximations. Assuming an independent and identically distributed
sample, their statistic is based on the sample covariance between the resid-
ual from the parametric model and the discrepancy between the parametric
and nonparametric fitted values. Allowing additionally for network depen-
dence through the form of a linear process as discussed above, our statistic
is shown to be asymptotically standard normal, consistent and possessing
nontrivial power against local alternatives of a certain type. To prove asymp-
totic normality, we present a new central limit theorem (CLT) for quadratic
forms in linear processes in an increasing dimension setting that may be of
independent interest.

Our linear process framework permits network dependence to be para-
metric, parametric with increasing dimension, semiparametric or any com-
bination thereof, thus covering a vast variety of settings. Our theory covers
as special cases SAR, SMA, SARMA, MESS models for the error term.
These specifications may be of any fixed order, but our theory also covers
the case where they are of increasing order. Thus we permit a more complex
model of network dependence as more data become available, which encour-
ages a more flexible approach to modelling such dependence as stressed by
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Gupta and Robinson (2015, 2018) in a higher-order SAR context, Huber
(1973), Portnoy (1984, 1985) and Anatolyev (2012) in a regression context
and Koenker and Machado (1999) for the generalized method of moments
setting, amongst others. Our framework is also extended to the situation
where network dependence occurs through nonparametric functions of raw
distances (these may economic or social distances, say), as in Pinkse et al.
(2002), and where once again an increasing number of nonparametric func-
tions may be involved. We also cover the case of higher-order SAR models
in the outcome variables, but with network dependence structure in the
errors. The specification test of Su and Qu (2017) is a special case. The
case of geographical networks, or spatial data, is also covered, for example
the important classes of Matern and Wendland (see e.g. Gneiting (2002),
Bevilacqua, Faouzi, Furrer, and Porcu (2018)) covariance functions. Finally,
we introduce a new notion of smooth network dependence that provides
more primitive, and checkable, conditions for certain properties than extant
ones in the literature.

To illustrate the performance of the test in finite samples, we present a
number of Monte Carlo simulations that exhibit satisfactory small sample
properties. The usefulness of the test in practice is demonstrated in three
empirical examples, including two based on very recently published work:
Bloom et al. (2013) (R&D networks in innovation), König et al. (2017)
(conflict networks during the Congolese civil war). Another example studies
cross-country spillovers in economic growth. Our test may or may not reject
the null hypothesis of a linear regression in these examples, illustrating its
ability to distinguish well between the null and alternative models.

The next section introduces our setup, while Section 3 discusses estima-
tion and defines the test statistic. In Section 4, we introduce assumptions
and the key asymptotic results of the paper. Section 5 examines higher-order
SAR models with further network dependence in the error term, while Sec-
tion 6 deals with nonparametric networks. Sections 7 and 8 contain a study
of finite sample performance and the empirical examples respectively. Proofs
are contained in supplementary appendices.

2. Setup. We consider the nonparametric regression

(2.1) yi = θ0 (xi) + ui, i = 1, . . . , n,

where θ0(·) is an unknown function and xi is a vector of strictly exogenous
explanatory variables with support X ⊂ Rk. The xi can exhibit dependence
in arbitrary ways and this does not affect our asymptotic theory, which
is established conditional on exogenous covariates. Network dependence is
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explicitly modeled via the error term ui, which we assume is generated by:

(2.2) ui =
∞∑

s=1

bisεs,

where εs are independent random variables, with zero mean and identical
variance σ2

0 . Further conditions on the εs will be assumed later. The lin-
ear process coefficients bis can depend on n, as may the covariates xi. This
is generally the case with network/spatial models and implies that asymp-
totic theory ought to be developed for triangular arrays. There are a num-
ber of reasons to permit dependence on sample size. The bis can depend
on spatial weight matrices, which are usually normalized for both stability
and identification purposes. Such normalizations, e.g. row-standardization
or division by spectral norm, may be n-dependent. Furthermore, xi often
includes underlying covariates of ‘neighbours’ defined by spatial weight ma-
trices. For instance, for some n × 1 covariate vector z and spatial weight
matrix W ≡ Wn, a component of xi can be e′iWz, where ei has unity in
the i-th position and zeroes elsewhere, which depends on n. Thus, subse-
quently, any spatial weight matrices will also be allowed to depend on n.
Finally, treating triangular arrays permits re-labelling of quantities that is
often required when dealing with network data, due to the lack of natural
ordering, see e.g. Robinson (2011). We suppress explicit reference to this n-
dependence of various quantities for brevity, although mention will be made
of this at times to remind the reader of this feature.

Introduce three notational conventions for any parameter ν for the rest
of the paper: ν ∈ Rdν , ν0 denotes the true value of ν and for any scalar,
vector or matrix valued function f(ν), we denote f ≡ f(ν0). Now, assume
the existence of a dγ × 1 vector γ0 such that bis = bis(γ0), with dγ →∞ as
n→∞, for all i = 1, . . . , n and s ≥ 1. Let u be the n×1 vector with typical
element ui, ε be the infinite dimensional vector with typical element εs, and
B be an infinite dimensional matrix with typical element bis. In matrix form,

(2.3) u = Bε and E
(
uu′
)

= σ2
0BB

′ = σ2
0Σ ≡ σ2

0Σ (γ0) .

We assume that γ0 ∈ Γ, where Γ is a compact subset of Rdγ . With dγ
diverging, ensuring Γ has bounded volume requires some care, see Gupta
and Robinson (2018). Our aim is to test

(2.4) H0 : P [f(xi, α0) = θ0 (xi)] = 1, for some α0 ∈ A,

where A ⊂ Rdα against the global alternative H1 : P [f(xi, α) 6= θ0 (xi)] >
0, for all α ∈ A.
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We now show how commonly used models for network dependence may
be nested in (2.3). Introduce a set of n×n network adjacency/spatial weight
matrices Wj , j = 1, . . . ,m1 +m2. Each Wj can be thought of as represent-
ing dependence through a particular network. Recall for example the Add
Health dataset discussed in the introduction, where each link may be thought
of as a channel of network dependence and a Wj constructed accordingly.
Now, denote H(γ) = In +

∑m1+m2
j=m1+1 γjWj and K(γ) = In −

∑m1
j=1 γjWj ,

and consider models with the form Σ(γ) = A−1(γ)A′−1(γ). For exam-
ple, with ξ denoting a vector of i.i.d. disturbances with variance σ2

0 , the
model with SARMA(m1,m2) errors is u =

∑m1
j=1 γjWju+

∑m1+m2
j=m1+1 γjWjξ+

ξ, A(γ) = H−1(γ)K(γ), The SEM model is obtained by setting m2 =
0 while the the model with SMA errors has m1 = 0. The model with
MESS(m) errors (LeSage and Pace (2007), Debarsy et al. (2015)) is u =

exp
(∑m

j=1 γjWj

)
ξ, A(γ) = exp

(
−
∑m

j=1 γjWj

)
.

In some cases the network under consideration is geographic i.e. the data
may be observed at irregular points in Euclidean space. Making the iden-
tification ui ≡ U (ti), ti ∈ Rd for some d > 1, and assuming covariance
stationarity, U(t) is said to follow an isotropic model if, for some function
δ on R, the covariance at lag s is r(s) = E [U(t)U(t+ s)] = δ(‖s‖). An
important class of parametric isotropic models is that of Matern (1986),
which can be parameterized in several ways, see e.g. Stein (1999). De-
noting by Γf the Gamma function and by Kγ1 the modified Bessel func-
tion of the second kind (Gradshteyn and Ryzhik (1994)), take δ(‖s‖ , γ) =
(
2γ1−1Γf (γ1)

)−1 (
γ−1

2

√
2γ1 ‖s‖

)γ1 Kγ1

(
γ−1

2

√
2γ1 ‖s‖

)
, with γ1, γ2 > 0 and

dγ = 2. With dγ = 3, another model takes δ(‖s‖ , γ) = γ1 exp (−‖s/γ2‖
γ3),

see e.g. De Oliveira, Kedem, and Short (1997), Stein (1999). Fuentes (2007)
considers this model with γ3 = 1, as well as a specific parameterization of
the Matern covariance function. Other parameterizations also covered by
our setup are available in a number of papers focussed on irregular spatial
data, see e.g. Vecchia (1988), Jones and Vecchia (1993), Handcock and Wal-
lis (1994), Gneiting (2002), Stein, Chi, and Welty (2004), Lindgren, Rue,
and Lindström (2011), Bevilacqua et al. (2018).

3. Test statistic. We estimate θ0(·) via a series approximation. Certain
technical conditions are needed to allow for X to have unbounded support.
To this end, for a function g(x) on X , define a weighted sup-norm (see e.g.
Chen, Hong, and Tamer (2005), Chen (2007), Lee and Robinson (2016)) by

‖g‖w = supx∈X |g(x)|
(

1 + ‖x‖2
)−w/2

, for some w > 0. Assume that there

exists a sequence of functions ψi := ψ (xi) : Rk 7→ Rp, where p → ∞ as



8 A. GUPTA AND X. QU

n→∞, and a p× 1 vector of coefficients β0 such that

(3.1) θ0 (xi) = ψ′iβ0 + e (xi) ,

where e(·) satisfies:

Assumption R.1. There exists µ > 0 such that ‖e‖wx = O (p−µ) , as
p→∞, where wx ≥ 0 be the largest value such that supx∈X E ‖x‖

wx <∞.

By Lemma A.4 of Lee and Robinson (2016), this assumption implies that

(3.2) sup
x∈X

E
(
e2 (x)

)
= O

(
p−2µ

)
.

Due to the large number of assumptions in the paper, sometimes with
changes reflecting only the various setups we consider, we prefix assump-
tions with R in this section and the next, to signify ‘regression’. In Section
5 the prefix is SAR, for ‘spatial autoregression’, while in Section 6 we use
NPN, for ‘nonparametric network’.

Let y = (y1, . . . , yn)′, θ0 = (θ0 (x1) , . . . , θ0 (xn))′,Ψ = (ψ′1, . . . , ψ
′
n)′. We

will estimate γ0 using a quasi maximum likelihood estimator (QMLE) based
on a Gaussian likelihood, although Gaussianity is nowhere assumed. For any
admissible values β, σ2 and γ, the (multiplied by 2/n) negative quasi log
likelihood function based on using the approximation (3.1) is

(3.3) L(β, σ2, γ) = ln
(
2πσ2

)
+

1
n

ln |Σ (γ)|+
1
nσ2

(y−Ψβ)′Σ (γ)−1 (y−Ψβ),

which is minimised with respect to β and σ2 by

β̄ (γ) =
(

Ψ′Σ (γ)−1 Ψ
)−1

Ψ′Σ (γ)−1 y,(3.4)

σ̄2 (γ) = n−1y′C(γ)′M(γ)C(γ)y,(3.5)

where M(γ) = In − C(γ)Ψ
(
Ψ′Σ(γ)−1Ψ

)−1 Ψ′C(γ)′ and C(γ) is the n × n
matrix such that C(γ)C(γ)′ = Σ(γ)−1. Thus the concentrated likelihood
function is

(3.6) L(γ) = ln(2π) + ln σ̄2(γ) +
1
n

ln |Σ (γ)| .

We define the QMLE of γ0 as γ̂ = arg minγ∈ΓL(γ) and the QMLEs of β0

and σ2
0 as β̂ = β̄ (γ̂) and σ̂2 = σ̄2 (γ̂). For a given (suppressed) x, the series

estimate of θ0 (x) is defined as

(3.7) θ̂ = ψ(x)′β̂.

Let α̂n ≡ α̂ denote an estimator consistent for α0 under H0. Note that α̂ is
consistent only under H0, so we introduce a general probability limit of α̂.
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Assumption R.2. There exists a deterministic sequence α∗n ≡ α∗ such
that α̂− α∗ = Op (1/

√
n).

Following Hong and White (1995), define the regression error ui ≡ yi −
f(xi, α∗) and the specification error vi ≡ θ0(xi)− f(xi, α∗). Our test statis-
tic is based on an appropriately scaled and centred version of nm̂n =

σ̂−2v̂′Σ (γ̂)−1 û = σ̂−2
(
θ̂ − f (x, α̂)

)′
Σ (γ̂)−1 (y − f (x, α̂)), where f(x, α) =

(f (x1, α) , . . . , f (xn, α))′. Precisely, it is defined as

(3.8) Tn =
nm̂n − p√

2p
.

The motivation for such a centering and scaling stems from the fact that
for fixed p, nm̂n has an asymptotic χ2

p distribution. Such a distribution has

mean p and variance 2p, and it is a well-known fact that
(
χ2
p − p

)
/
√

2p
d
−→

N(0, 1), as p → ∞, a type of Wilks phenomenon, see e.g. Fan, Zhang, and
Zhang (2001). This motivates our use of (3.8) and explains why we aspire
to establish a standard normal distribution under the null hypothesis.

4. Asymptotic theory.

4.1. Consistency of γ̂. We first provide conditions under which our es-
timator γ̂ of γ0 is consistent. Such a property is necessary for the results
that follow. Let ϕ(A) (respectively ϕ(A)) denote the largest (respectively
smallest) eigenvalue of a generic square nonnegative definite matrix A. The
following assumption is a rather standard type of asymptotic boundedness
and full-rank condition on Σ(γ).

Assumption R.3.

lim
n→∞

sup
γ∈Γ

ϕ̄ (Σ(γ)) <∞ and lim
n→∞

inf
γ∈Γ

ϕ (Σ(γ)) > 0.

Assumption R.4. The ui, i = 1, . . . , n, satisfy the representation (2.2).
The εs, s ≥ 1, have zero mean, finite third and fourth moments µ3 and µ4

respectively and, denoting by σij(γ) the (i, j)-th element of Σ(γ) and defining

b∗is = bis/σ
1
2
ii , i = 1, . . . , n, n ≥ 1, s ≥ 1, we have

(4.1) lim
n→∞

sup
i=1,...,n

∞∑

s=1

|b∗is|+ sup
s≥1

lim
n→∞

n∑

i=1

|b∗is| <∞.
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By Assumption R.3, σii is bounded and bounded away from zero, so the
normalization of the bis in Assumption R.4 is well defined. The summability
conditions in (4.1) are typical conditions on linear process coefficients that
are needed to control dependence; for instance in the case of stationary
time series b∗is = b∗i−s. The infinite linear process assumed in (2.2) is further
discussed by Robinson (2011), who introduced it, and also by Delgado and
Robinson (2015).

Because we often need to consider the difference between values of the
matrix-valued function Σ(·) at distinct points, it is useful to introduce an
appropriate concept of ‘smoothness’. This concept occurs in functional anal-
ysis and is defined below.

Definition 1. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces, L (X,Y )
be the Banach space of linear continuous maps from X to Y with norm
‖T‖L (X,Y ) = sup‖x‖≤1 ‖T (x)‖Y and U be an open subset of X. A map F :
U → Y is said to Fréchet-differentiable at u ∈ U if there exists L ∈ L (X,Y )
such that

(4.2) lim
‖h‖X→0

F (u+ h)− F (u)− L(h)
‖h‖X

= 0.

L is called the Fréchet-derivative of F at u. The map F is said to be Fréchet-
differentiable on U if it is Fréchet-differentiable for all u ∈ U .

The above definition extends the notion of a derivative that is familiar
from real analysis to the functional spaces and allows us to check high-level
assumptions that past literature has imposed. To the best of our knowledge,
this is the first use of such a concept in the literature on spatial/network
models. Denote by Mn×n the set of real, symmetric and positive semi-
definite n× n matrices. For a generic matrix A, denote ‖A‖ = [ϕ(A′A)]1/2,
i.e. the spectral norm of A. Let Γo be an open subset of Γ and consider the

Banach spaces
(

Γ, ‖·‖g

)
and (Mn×n, ‖·‖), where ‖·‖g is a generic `p norm,

p ≥ 1. Denote by c (C) generic positive constants, independent of p, dγ and
n and arbitrarily small (big). The following assumption ensures that Σ( ·) is
a ‘smooth’ function, in the sense of Fréchet-smoothness.

Assumption R.5. The map Σ : Γo → Mn×n is Fréchet-differentiable
on Γo with Fréchet-derivative denoted DΣ ∈ L (Γo,Mn×n). Furthermore,
the map DΣ satisfies

(4.3) sup
γ∈Γo
‖DΣ(γ)‖L (Γo,Mn×n) ≤ C.
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Assumption R.5 is a functional smoothness condition on network depen-
dence. It has the advantage of being checkable for a variety of commonly
employed network models. For example, a first-order SEM has Σ(γ) =
K−1(γ)K ′−1(γ) with K = In−γW . Corollary CS.1 in the supplementary ap-
pendix shows (DΣ(γ))

(
γ†
)

= γ†K−1(γ) (G′(γ) +G(γ))K ′−1(γ), at a given
point γ ∈ Γo, where G(γ) = WK−1(γ). Then, taking

(4.4) ‖W‖+ sup
γ∈Γ

∥
∥K−1(γ)

∥
∥ < C

yields Assumption R.5. Condition (4.4) limits the extent of network depen-
dence and is very standard in the spatial literature; see e.g. Lee (2004) and
numerous subsequent papers employing similar conditions. Fréchet deriva-
tives for higher-order SAR, SMA, SARMA and MESS error structures are
computed in supplementary appendix B, in Lemmas LS.5-LS.6 and Corol-
laries CS.1-CS.2. The following proposition is very useful in ‘linearizing’
perturbations in the Σ(·).

Proposition 4.1. If Assumption R.5 holds, then for any γ1, γ2 ∈ Γo,

(4.5) ‖Σ (γ1)− Σ (γ2)‖ ≤ C ‖γ1 − γ2‖ .

To illustrate how the concept of Fréchet-differentiability allows us to check
high-level assumptions extant in the literature, a consequence of Proposition
4.1 is the following corollary, a version of which appears as as an assumption
in Delgado and Robinson (2015).

Corollary 4.1. For any γ∗ ∈ Γo and any η > 0,

(4.6) lim
n→∞

sup
γ∈{γ:‖γ−γ∗‖<η}∩Γo

‖Σ(γ)− Σ (γ∗)‖ < Cη.

We now introduce regularity conditions needed to establish the consis-
tency of γ̂. For a generic matrix, let ‖A‖F = [tr(AA′)]1/2. Define σ2 (γ) =

n−1σ2tr
(
Σ(γ)−1Σ

)
= n−1σ2

∥
∥C(γ)C−1

∥
∥2

F
, which is nonnegative by defini-

tion and bounded by Assumption R.3.

Assumption R.6. c ≤ σ2 (γ) ≤ C for all γ ∈ Γ.

Assumption R.7. γ0 ∈ Γ and, for any η > 0,

(4.7) lim
n→∞

inf
γ∈N

γ
(η)

n−1tr
(
Σ(γ)−1Σ

)

|Σ(γ)−1Σ|1/n
> 1,

where N
γ
(η) = Γ \ N γ(η) and N γ(η) = {γ : ‖γ − γ0‖ < η} ∩ Γ.
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Assumption R.8.
{
ϕ
(
n−1Ψ′Ψ

)}−1 + ϕ
(
n−1Ψ′Ψ

)
= Op(1).

Assumption R.6 is a boundedness condition originally considered in Gupta
and Robinson (2018), while Assumptions R.7 and R.8 are identification con-
ditions. Indeed, Assumption R.7 requires that Σ(γ) be identifiable in a small
neighbourhood around γ0. This is apparent on noticing that the ratio in (4.7)
is at least one by the inequality between arithmetic and geometric means,
and equals one when Σ(γ) = Σ. Similar assumptions arise frequently in re-
lated literature, see e.g. Lee (2004), Delgado and Robinson (2015). Assump-
tion R.8 is a typical asymptotic boundedness and non-multicollinearity con-
dition, see e.g. Newey (1997) and much other literature on series estimation.
By Assumption R.3, it implies supγ∈Γ

{
ϕ
(
n−1Ψ′Σ(γ)−1Ψ

)}−1 = Op(1).

Theorem 4.1. Under Assumptions R.1-R.8 and p−1+d−1
γ +(dγ + p) /n→

0 as n→∞, ‖γ̂ − γ0‖
p
−→ 0.

4.2. Asymptotic properties of the test statistic. Write Σj(γ) = ∂Σ(γ)/∂γj ,
j = 1, . . . , dγ , the matrix differentiated element-wise.

Assumption R.9. limn→∞ supj=1,...,dγ ‖Σj‖ <∞.

We will later consider the sequence of local alternatives

(4.8) H`n ≡ H` : f(xi, α
∗
n) = θ0(xi) + (p1/4/n1/2)h(xi),

where h is square integrable on the support X of the xi. Under the null H0,
we have h(xi) = 0.

Assumption R.10. For each n ∈ N, the function f : X × A → R
is such that f(·, α) is measurable for each α ∈ A, f(x, ·) is a.s. contin-
uous on A, with f2(x, ·) ≤ Dn(x), where supn∈NDn(x) is integrable and
supα∈A (∂f(x, α)/∂α)2, supα∈A ∂

2f(x, α)/∂α∂α′ both exist and are bounded
in spectral norm by Dn(x).

Define the infinite-dimensional matrix V = B′Σ−1Ψ
(
Ψ′Σ−1Ψ

)−1 Ψ′Σ−1B,
which is symmetric, idempotent and has rank p. We now show that our test
statistic is approximated by a quadratic form in ε, weighted by V .

Theorem 4.2. Under Assumptions R.1-R.10, p−1+d−1
γ +p

(
p+ d2

γ

)
/n+

√
n/pµ+1/4 → 0, as n→∞, and H0, T −

(
σ−2

0 ε′V ε− p
)
/
√

2p = op(1).

Denote by ‖A‖R the maximum absolute row sum of a generic matrix A.



SPECIFICATION UNDER NETWORK DEPENDENCE 13

Assumption R.11. lim
n→∞

∥
∥Σ−1

∥
∥
R
<∞.

Because
∥
∥Σ−1

∥
∥ ≤

∥
∥Σ−1

∥
∥
R

, this restriction on network dependence is
somewhat stronger than a restriction on spectral norm but is typically im-
posed for central limit theorems in this type of setting, cf. Lee (2004), Del-
gado and Robinson (2015), Gupta and Robinson (2018). The next assump-
tion is needed in our proofs to check a Lyapunov condition.

Assumption R.12. The εs, s ≥ 1, have finite eighth moment.

Assumption R.13. E |ψ (xjl)| < C.

The next theorem establishes the asymptotic normality of the approxi-
mating quadratic form introduced above.

Theorem 4.3. Under Assumptions R.3, R.4, R.8, R.11-R.13 and p−1 +

p3/n→ 0, as n→∞,
(
σ−2

0 ε′V ε− p
)
/
√

2p
d
−→ N(0, 1).

This is a new type of CLT, integrating both a linear process framework as
well as an increasing dimension element. A linear-quadratic form in iid dis-
turbances is treated by Kelejian and Prucha (2001), while a quadratic form
in a linear process framework is treated by Delgado and Robinson (2015).
However both these results are established in a parametric framework, en-
tailing no increasing dimension aspect of the type we face with p→∞.

Next, we summarize the properties of our test statistic in a theorem that
records its asymptotic normality under the null, consistency and ability to
detect local alternatives at p1/4/n1/2 rate. This rate has been found also
by De Jong and Bierens (1994) and Gupta (2018). Introduce the quantity

κ =
(√

2σ2
0

)−1
plimn→∞ n

−1h′Σ−1h.

Theorem 4.4. Under the conditions of Theorems 4.2 and 4.3, (1) T
d
→

N(0, 1) under H0, (2) T is a consistent test statistic (i.e. it has asymptoti-

cally unit power under H1), (3) T
d
→ N (κ, 1) under local alternatives H`.

5. Models with SAR structure in responses. In this section, we
consider the model

(5.1) yi =
dλ∑

j=1

λ0jw
′
i,jy + θ0 (xi) + ui, i = 1, . . . , n,
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where Wj , j = 1, . . . , dλ, are known spatial weight matrices with i-th rows
denoted w′i,j , as discussed earlier, and λ0j are unknown parameters measur-
ing the strength of network dependence. The error structure remains the
same as in (2.2). Here network dependence arises not only in errors but also
responses. For example, this corresponds to a situation where agents in a
network influence each other both in their observed and unobserved actions.

While the model in (5.1) is new in the literature, some related ones are
discussed here. Models such as (5.1) but without dependence in the error
structure are considered by Su and Jin (2010) and Gupta and Robinson
(2015, 2018), but the former consider only dλ = 1 and the latter only para-
metric θ0(·). Linear θ0(·) and dλ > 1 are permitted by Lee and Liu (2010),
but the dependence structure in errors differs from what we allow in (5.1).
Using the same setup as Su and Jin (2010) and independent disturbances, a
specification test for the linearity of θ0(·) is proposed by Su and Qu (2017).
In comparison, our model is much more general and our test can handle
more general parametric null hypotheses.

Denoting S(λ) = In−
∑dλ

j=1 λjWj , the quasi likelihood function based on
Gaussianity and conditional on covariates is

L(β, σ2, φ) = log (2πσ2)−
2
n

log |S (λ)|+
1
n

log |Σ (γ)|

+
1
σ2n

(S (λ) y −Ψβ)′Σ(γ)−1 (S (λ) y −Ψβ) ,(5.2)

at any admissible point
(
β′, φ′, σ2

)′ with φ = (λ′, γ′)′, for nonsingular S(λ)
and Σ(γ). For given φ = (λ′, γ′)′, (3.3) is minimised with respect to β and
σ2 by

β̄ (φ) =
(
Ψ′Σ(γ)−1Ψ

)−1
Ψ′Σ(γ)−1S (λ) y,(5.3)

σ̄2 (φ) = n−1y′S′ (λ)C(γ)′M(γ)C(γ)S (λ) y.(5.4)

The QMLE of φ0 is φ̂ = arg minφ∈Φ L (φ), where

(5.5) L (φ) = log σ̄2 (φ) + n−1 log
∣
∣S′−1 (λ) Σ(γ)S−1 (λ)

∣
∣ ,

and Φ = Λ × Γ is taken to be a compact subset of Rdλ+dγ . The QMLEs

of β0 and σ2
0 are defined as β̄

(
φ̂
)
≡ β̂ and σ̄2

(
φ̂
)
≡ σ̂2 respectively. The

following assumption controls network dependence and is discussed below
equation (4.4).

Assumption SAR.1. maxj=1,...,dλ ‖Wj‖+
∥
∥S−1

∥
∥ < C.



SPECIFICATION UNDER NETWORK DEPENDENCE 15

Writing T (λ) = S(λ)S−1 and φ = (λ′, γ′)′, define the quantity σ2 (φ) =

n−1σ2
0tr
(
T ′(λ)Σ(γ)−1T (λ)Σ

)
= n−1σ2

0

∥
∥
∥Σ(γ)−

1
2T (λ)Σ

1
2

∥
∥
∥

2

F
, which is non-

negative by definition and bounded by Assumptions R.3 and SAR.1. The
assumptions below directly extend Assumptions R.6 and R.7 to the present
setup.

Assumption SAR.2. c ≤ σ2 (φ) ≤ C, for all φ ∈ Φ.

Assumption SAR.3. φ0 ∈ Φ and, for any η > 0,

(5.6) lim
n→∞

inf
φ∈N

φ
(η)

n−1tr
(
T ′(λ)Σ(γ)−1T (λ)Σ

)

|T ′(λ)Σ(γ)−1T (λ)Σ|1/n
> 1,

where N
φ
(η) = Φ \ N φ(η) and N φ(η) = {φ : ‖φ− φ0‖ < η} ∩ Φ.

We now introduce an identification condition that is required in the setup
of this section.

Assumption SAR.4. β0 6= 0, λ0 6= 0 and, for any η > 0,

(5.7) P

(
limn→∞ inf

(λ′,γ′)′∈Λ×Nγ (η)
n−1β′0Ψ′T ′(λ)C(γ)′M(γ)C(γ)T (λ)Ψβ0/‖β0‖

2>0

)
=1.

Upon performing minimization with respect to β, the event inside the
probability in (5.7) is equivalent to the event

limn→∞minβ∈Rp inf
(λ′,γ′)′∈Λ×Nγ (η)

n−1(Ψβ−T (λ)Ψβ0)′Σ(γ)−1(Ψβ−T (λ)Ψβ0)/‖β0‖
2>0,

making the identifying nature of the assumption transparent. A similar iden-
tifying assumption is used by Gupta and Robinson (2018), and indeed in the
context of nonlinear regression by Robinson (1972).

Theorem 5.1. Under Assumptions R.1-R.5, R.8, SAR.1-SAR.4 and

p−1 + d−1
γ + (dγ + p) /n → 0 as n → ∞,

(
φ̂′, σ̂2

)′
−
(
φ′0, σ0

2
)′ p
−→ 0 as

n→∞.

Theorem 5.2. Under Assumptions R.1-R.5, R.8-R.10, SAR.1-SAR.4,
p−1 + d−1

γ + p
(
p+ d2

γ

)
/n +

√
n/pµ+1/4 + d2

γ/p → 0, as n → ∞, and H0,
T −

(
σ−2

0 ε′V ε− p
)
/
√

2p = op(1).

Theorem 5.3. Under the conditions of Theorems 4.3, 5.1 and 5.2, (1)

T
d
→ N(0, 1) under H0, (2) T is a consistent test statistic (i.e. it has

asymptotically unit power under H1), (3) T
d
→ N (κ, 1) under local alter-

natives H`.
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6. Testing in the presence of nonparametric networks. In this
section we are motivated by settings where network dependence occurs
through nonparametric functions of raw distances (this may be geographic,
social, economic, or any other type of distance), as is the case in Pinkse et al.
(2002), for example. In their kind of setup, dij is a raw economic distance
between units i and j and the corresponding element of the spatial weight
matrix is given by wij = ζ (dij), where ζ(·) is an unknown nonparametric
function. Pinkse et al. (2002) use such a setup in a SAR model like (5.1),
but with a linear regression function. In contrast, in keeping with the focus
of this paper we instead model dependence in the errors in this manner.
Our formulation is rather general, covering, for example, a specification like
wij = f (γ, ζ (dij)), with f(·) a known function, γ an unknown parameter of
possibly increasing dimension, and ζ(·) an unknown nonparametric function.

Let Ξ be a compact space of functions, on which we will specify more
conditions later. The linear process coefficients are now bjs(γ, ζ0(z)), with
ζ0(·) =

(
ζ01(·), . . . , ζ0dζ (·)

)′ a fixed-dimensional vector of real-valued non-
parametric functions with ζ0i ∈ Ξ for each i = 1, . . . , dζ , and z a fixed-
dimensional vector of data, independent of the εs, s ≥ 1, with support Z.
We base our estimation on approximating each ζ0i(z), i = 1, . . . , dζ , with
the series representation δ′0iϕi(z), where ϕi (z) ≡ ϕi is an ri × 1 (ri → ∞
as n→∞) vector of basis functions with typical function ϕil, l = 1, . . . , ri.
The set of linear combinations δ′iϕi(z) forms the sequence of sieve spaces
Φri ⊂ Ξ as ri →∞, for any i = 1, . . . , dζ , and

(6.1) ζ0i (z) = δ′0iϕi + νi,

with the following restriction on the function space Ξ:

Assumption NPN.1. For some scalars κi > 0, ‖νi‖wz = O
(
r−κii

)
,

as ri → ∞, i = 1, . . . , dζ , where wz ≥ 0 is the largest value such that
supz∈Z E ‖z‖

wz <∞

Just as Assumption R.1 implied (3.2), by Lemma 1 of Lee and Robinson
(2016), we obtain

(6.2) sup
z∈Z

E
(
ν2
i

)
= O

(
r−2κi
i

)
, i = 1, . . . , dζ .

Thus we now have an infinite-dimensional nuisance parameter ζ0(·) and

increasing-dimensional nuisance parameter γ. Writing
∑dζ

i=1 ri = r and τ =
(γ′, δ′1, . . . , δ

′
dζ

)′, which has increasing dimension dτ = dγ + r, define ς(r) =
supz∈Z;i=1,...,dζ

‖ϕi‖ .
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For any admissible values β, σ2 and τ , the redefined (multiplied by 2/n)
negative quasi log likelihood function based on using the approximations
(3.1) and (6.1) is

(6.3) L(β, σ2, τ ) = ln
(
2πσ2

)
+

1
n

ln |Σ (τ)|+
1
nσ2

(y−Ψβ)′Σ (τ)−1 (y−Ψβ),

which is minimised with respect to β and σ2 by

β̄ (τ) =
(

Ψ′Σ (τ)−1 Ψ
)−1

Ψ′Σ (τ)−1 y,(6.4)

σ̄2 (τ) = n−1y′C(τ)′M(τ)C(τ)y,(6.5)

where M(τ) = In − C(τ)Ψ
(
Ψ′Σ(τ)−1Ψ

)−1 Ψ′C(τ)′ and C(τ) is the n × n
matrix such that C(τ)C(τ)′ = Σ(τ)−1. Thus the concentrated likelihood
function is

(6.6) L(τ) = ln(2π) + ln σ̄2(τ) +
1
n

ln |Σ (τ)| .

Again, for compact Γ and sieve coefficient space ∆, the QMLE of τ0 is
τ̂ = arg minτ∈Γ×∆L(τ) and the QMLEs of β and σ2 are β̂ = β̄ (τ̂) and
σ̂2 = σ̄2 (τ̂). For a given x, the series estimate of θ0 (x) is defined as θ̂ (x) =
ψ(x)′β̂. Define also the product Banach space T = Γ × Ξdζ with norm
∥
∥(γ′, ζ ′)′

∥
∥
Tw

= ‖γ‖ +
∑dζ

i=1 ‖ζi‖w, and consider the map Σ : T o → Mn×n,
where T o is an open subset of T .

Assumption NPN.2. The map Σ : T o →Mn×n is Fréchet-differentiable
on T o with Fréchet-derivative denoted DΣ ∈ L (T o,Mn×n). Furthermore,
conditional on z, the map DΣ satisfies

(6.7) sup
t∈T o
‖DΣ(t)‖L (T o,Mn×n) ≤ C,

on its domain T o.

Proposition 6.1. If Assumption NPN.2 holds, then for any t1, t2 ∈ T o,
conditional on z,

(6.8) ‖Σ (t1)− Σ (t2)‖ ≤ Cς(r) ‖t1 − t2‖ .

Corollary 6.1. For any t∗ ∈ T o and any η > 0, conditional on z,

(6.9) lim
n→∞

sup
t∈{t:‖t−t∗‖<η}∩T o

‖Σ(t)− Σ (t∗)‖ < Cς(r)η.
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Assumption NPN.3. c ≤ σ2 (τ) ≤ C for τ ∈ Γ×∆, conditional on z.

Denote Σ (τ0) = Σ0. Note that this is not the true covariance matrix,
which is Σ ≡ Σ (γ0, ζ0).

Assumption NPN.4. τ0 ∈ Γ×∆ and, for any η > 0, conditional on z,

(6.10) lim
n→∞

inf
τ∈N

τ
(η)

n−1tr
(
Σ(τ)−1Σ0

)

|Σ(τ)−1Σ0|
1/n

> 1,

where N
τ
(η) = (Γ×∆) \N τ (η) and N τ (η) = {τ : ‖τ − τ0‖ < η} ∩ (Γ×∆).

Remark 1. Expressing the identification condition in Assumption NPN.4
in terms of τ implies that identification is guaranteed via the sieve spaces
Φri , i = 1, . . . , dζ . This approach is common in the sieve estimation litera-
ture, see e.g. Chen (2007), p. 5589, Condition 3.1.

Theorem 6.1. Under Assumptions R.1-R.4 (with R.3 and R.4 hold-
ing for t ∈ T rather than γ ∈ Γ), R.8, NPN.1-NPN.4 and p−1 + d−1

γ +
(
mini=1,...,dζ ri

)−1+
(
dγ + p+ maxi=1,...,dζ ri

)
/n→ 0 as n→∞, ‖τ̂ − τ0‖

p
−→

0.

Theorem 6.2. Under the conditions of Theorems 4.2 and 6.1, but with
τ and T replacing γ and Γ in assumptions prefixed with R, p → ∞ and
dγ →∞,

(

min
i=1,...,dζ

ri

)−1

+
p2

n
+
√
n

pµ+1/4
+p1/2ς(r)






dγ + max
i=1,...,dζ

ri
√
n

+

√√
√
√

dζ∑

i=1

r−2κi
i




→ 0,

as n→∞, and H0, T −
(
σ−2

0 ε′V ε− p
)
/
√

2p = op(1).

Theorem 6.3. Let the conditions of Theorems 4.3 and 6.2 hold, but
with τ and T replacing γ and Γ in assumptions prefixed with R. Then (1)

T
d
→ N(0, 1) under H0, (2) T is a consistent test statistic (i.e. it has

asymptotically unit power under H1), (3) T
d
→ N (κ, 1) under local alter-

natives H`.
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7. Finite sample performance. We now examine the finite sample
performance of our test using Monte Carlo experiments. To study the size
behaviour of our test, we generate the null model by DGP1: θ(xi) = 1+x1i+
x2i = x′iα0, where x1i = (zi+z1i)/2, x2i = (zi+z2i)/2, zi, z1i, and z2i are i.i.d.
U [0, 2π]. A linear model f(xi, α) = x′iα is correctly specified for θ(xi) under
DGP1 and misspecified under DGP2: θ(xi) = x′iα0 + 0.1(z1i − π)(z2i − π)
and DGP3: θ(xi) = x′iα0 + sin(x′iα0).

7.1. Parametric error network structure. To illustrate different network
structure in the error term, for every specification of θ(xi), we generate y
as:

Error SARMA(m1,m2): y = θ(x) + u, u =
m1∑

k=1

γ1kW1ku+ ξ +
m2∑

l=1

γ2lW2lξ,

Error MESS(m): y = θ(x) + u, u = exp

(
m∑

k=1

γkWk

)

ξ,

SARSE(m1,m2): y =
m1∑

k=1

λkW1ky + θ(x) + u, u =
m2∑

l=1

γlW2lu+ ξ,

where ξ ∼ N(0, In). The Error SARMA and Error MESS models add dif-
ferent network structures in the error term, and the SARSE model further
considers the spatial autoregressive term in the dependent variable. We use
a power series for our test and rates: p = 9, 14 (corresponding to power series
of degrees 3 and 4 respectively) for n = 100, 300, 500.

Table 1 reports the rejection rates using 500 Monte Carlo simulation at
the 5% asymptotic level 1.645. Here, the i.i.d. case is a direct replication of
the test in Hong and White (1995), so we use it as a benchmark. The spatial
weight matrices are generated using LeSage’s code make neighborsw from
http://www.spatial-econometrics.com, where the row-normalized sparse ma-
trix are generated by choosing a specific number of the closest locations from
randomly generated coordinates and we set the number of neighbors to be
n/20.

The Error SARMA(1,0) corresponds to the commonly used SEM in the
literature and this is generated with γ = 0.4; for the Error SARMA(1,1)
and Error MESS(2) models, we choose λ1 = 0.4 and γ1 = 0.5; for the
SARSE(1,1) model, we choose γ11 = 0.3 and γ21 = 0.4; for the SARSE(2,1),
we choose λ1 = 0.3, λ2 = 0.2, and γ1 = 0.4. We consider test statistics based
on both nm̂n = σ̂−2v̂′Σ (γ̂)−1 û and nm̃n = σ̂−2(û′Σ (γ̂)−1 û − η̂′Σ (γ̂)−1 η̂),
where η̂ = y − θ̂, i.e., the residual from nonparametric estimation. Anal-
ogous to the definition of Tn, define the statistic T a

n = (nm̃n − p)/
√

2p.
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p = 14 iid SARMA(1,0) SARMA(1,1) MESS(2) SARSE(1,1) SARSE(2,1)
n = 100 Tn T a

n Tn T a
n

DGP1 0.026 0.024 0.020 0.082 0.024 0.026 0.050 0.090
DGP2 0.234 0.240 0.606 0.656 0.308 0.280 0.378 0.392
DGP3 0.994 0.998 0.862 0.926 0.994 0.994 0.966 0.974
n = 300
DGP1 0.030 0.012 0.026 0.032 0.034 0.034 0.030 0.034
DGP2 0.826 0.976 0.954 0.970 0.830 0.840 0.890 0.876
DGP3 1 1 1 1 1 1 1 1
n = 500
DGP1 0.016 0.020 0.020 0.012 0.020 0.048 0.340 0.054
DGP2 1 0.988 0.998 0.998 1 1 1 1
DGP3 1 1 1 1 1 1 1 1

p = 9 iid SARMA(1,0) SARMA(1,1) MESS(2) SARSE(1,1) SARSE(2,1)
n = 100 Tn T a

n Tn T a
n

DGP1 0.016 0.020 0.038 0.078 0.012 0.014 0.028 0.074
DGP2 0.206 0.288 0.350 0.546 0.340 0.318 0.394 0.414
DGP3 0.930 0.966 0.936 1 0.938 0.948 0.696 0.682
n = 300
DGP1 0.016 0.016 0.020 0.028 0.014 0.012 0.020 0.032
DGP2 0.946 0.948 0.912 0.880 0.894 0.896 0.940 0.914
DGP3 1 1 1 1 1 1 1 1
n = 500
DGP1 0.004 0.004 0.008 0.014 0.010 0.024 0.020 0.032
DGP2 1 1 1 1 1 1 1 1
DGP3 1 1 1 1 1 1 1 1

Table 1
Rejection probabilities at 5% asymptotic level, parametric network structures
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In the case of no spatial autoregressive term, and under the power series,
T a
n and Tn are numerically identical, as was observed by Hong and White

(1995). However, in the SARSE setting a difference arises due to the spatial
structure in the response y. We show that T a

n − Tn = op(1) in Theorem
TS.1 in the supplementary appendix, regardless of whether we are in the
usual nonparametric regression framework or the SAR setting of Section 5.

From Table 1, we can see the finite performance of our test is compara-
ble to Hong and White (1995), indicated in the column labelled ‘iid’. For
both values of p, power improves as sample size increases for all network
structures, although it is lowest under DGP2. This was also noted by Hong
and White (1995) in their iid setting. However with the largest sample size
(n = 500), power is virtually unity in all cases. Taking p = 14 yields more
accurate sizes in many cases, but p = 9 can give greater power in some
cases. An interesting pattern that we observe is that when the SAR term
is involved, T a

n exhibits better size than Tn. Although the two statistics
are asymptotically equivalent, T a

n might be preferred with the SAR-type
models of Section 5.

7.2. Nonparametric error network structure. Now we examine finite sam-
ple performance in the setting of Section 5. The three DGPs of θ(x) are the
same as the parametric setting and we generate the n × n matrix W ∗ as
w∗ij = Φ(−dij)I(cij < 0.05) if i 6= j, and w∗ii = 0, where Φ(·) is the standard
normal cdf, dij ∼i.i.d. U [−3, 3], and cij ∼i.i.d. U [0, 1]. From this construc-
tion, we ensure that W ∗ is sparse with no more than 5% elements being
nonzero. Then, y is generated from y = θ(x) + u, u = Wu + ξ, where
W = W ∗/1.2ϕ (W ∗), ensuring the existence of (I −W )−1. In estimation,
we know the distance dij and the indicator I(cij < 0.05), but we do not
know the functional form of dij in wij , so we approximate elements in W
by ŵij =

∑r
l=0 ald

l
ijI(cij < 0.05) if i 6= j; ŵii = 0. Estimation is carried out

using the MLE described in Section 6.
Table 2 reports the rejection rates using 500 Monte Carlo simulation at the

5% asymptotic level 1.645 in this nonparametric error network setting using
r = 2, 3, 4 and p = 9, 14. Our smallest sample size is n = 150 rather than
n = 100 as earlier because two nonparametric functions must be estimated
in the nonparametric network setting. We observe a clear pattern of rejection
rates approaching the theoretical level as sample size increases. Generally,
the power is excellent for all DGPs for n ≥ 300 and sizes are acceptable
for n = 500, particularly when p = 14. The power against DGP3 is always
higher than that against DGP2, as observed in the parametric setup of the
previous subsection.
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r = 2 r = 3 r = 4
n = 150 p = 9 p = 14 p = 9 p = 14 p = 9 p = 14
DGP1 0.086 0.202 0.118 0.206 0.142 0.224
DGP2 0.474 0.558 0.496 0.566 0.504 0.578
DGP3 0.954 0.998 0.964 0.998 0.960 0.998
n = 300
DGP1 0.082 0.096 0.088 0.108 0.106 0.110
DGP2 0.802 0.778 0.806 0.786 0.814 0.800
DGP3 0.996 1 0.996 1 0.996 1
n = 500
DGP1 0.028 0.042 0.026 0.040 0.036 0.048
DGP2 0.980 0.970 0.980 0.968 0.980 0.964
DGP3 1 1 1 1 1 1

Table 2
Rejection probabilities at 5% asymptotic level, nonparametric network structure

8. Empirical applications. In this section, we illustrate the specifica-
tion test presented in previous sections using several empirical examples.

8.1. Conflict networks. This example is based on a study of how a net-
work of military alliances and enmities affects the intensity of a conflict,
conducted by König et al. (2017). They stress that understanding the role
of informal networks of military alliances and enmities is important not only
for predicting outcomes, but also for designing and implementing policies to
contain or put an end to violence. König et al. (2017) obtain a closed-form
characterization of the Nash equilibrium and perform an empirical analysis
using data on the Second Congo War, a conflict that involves many groups
in a complex network of informal alliances and rivalries.

To study the fighting effort of each group the authors use a panel data
model with individual fixed effects, where key regressors include total fight-
ing effort of allies and enemies. They further correct the potential spatial
correlation in the error term by using a spatial HAC standard error. We
use their data and the main structure of the specification and build a cross-
sectional SAR(2) model with two weight matrices, WA (WA

ij = 1 if group i

and j are allies, and WA
ij = 0 otherwise) and WE (WE

ij = 1 if group i and j
are enemies, and WE

ij = 0 otherwise):

y = λ1W
Ay + λ2W

Ey + 1nβ0 +Xβ + u,

where y is a vector of fighting efforts of each group and X includes the current
rainfall, rainfall from the last year, and their squares. To consider the spatial
correlation in the error term, we consider both the Error SARMA(1,0) and
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Error SARMA(0,1) structures. For these, we employ a spatial weight matrix
W d, based on the inverse distance between group locations and set to be 0
after 150 km, following König et al. (2017). The idea is that geographical
spatial correlation dies out as groups become further apart. We also report
results using a nonparametric estimator of the spatial weights, as described
in Section 6 and studied in simulations in Section 7. For the nonparametric
estimator we take r = 2.

In the original dataset, there are 80 groups, but groups 62 and 63 have the
same variables and the same locations, so we drop one group and end up with
a sample of 79 groups. We use data from 1998 as an example and further use
the pooled data from all years as a robustness check. The column IV of Table
3 is from Table 1 of König et al. (2017) based on their panel IV estimation,
which we report for the sake of comparison. H0 stands for restricted model
where the linear functional form of the regression is imposed, while H1 stands
for the unrestricted model where we use basis functions comprising of power
series with p = 9. In all our specifications, the test statistics are negative, so
we cannot reject the null hypothesis that the model is correctly specified. As
Table 3 indicates, this failure to reject the null persists when we use pooled
data from 13 years, yielding 1027 observations. Thus we conclude that a
linear specification is not inappropriate for this setting. Another interesting
finding is that allowing for explicit spatial dependence in the disturbances
reduces the magnitude of the estimated λ1, i.e. the coefficient on WAy,
drastically, a feature that is not replicated for the estimate of λ2.

8.2. Innovation networks. This example is based on the study of the im-
pact of R&D on growth from Bloom et al. (2013). They develop a general
framework incorporating two types of spillovers: a positive effect from tech-
nology (knowledge) spillovers and a negative ‘business stealing’ effect from
product market rivals. They implement this model using panel data on U.S.
firms.

We consider the Productivity Equation in Bloom et al. (2013):

(8.1) ln y = ϕ1 ln(R&D) + ϕ2 ln(Sptec) + ϕ3 ln(Spsic) + ϕ4X + error,

where y is a vector of sales, R&D is a vector of R&D stocks, and regressors
in X include the log of capital (Capital), log of labour (Labour), R&D, a
dummy for missing values in R&D, a price index, and two spillover terms
constructed as the log of WSICR&D (Spsic) and the log of WTECR&D
(Sptec), where WSIC measures the the product market proximity and WTEC

measures the technological proximity. Specifically, they define WSIC,ij =
SiS

′
j/(SiS

′
i)

1/2(SjS′j)
1/2 and WTEC,ij = TiT

′
j/(TiT

′
i )

1/2(TjT ′j)
1/2, where Si =
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(Si1, Si2, . . . , Si597)′, with Sik being the share of patents of firm i in the four
digit industry k and Ti = (Ti1, Ti2, . . . , Ti426)′, with Tiτ being the share of
patents of firm i in technology class τ . Focussing on a cross-sectional analysis,
we use observations from the year 2000 and obtain a sample size of 577.

The column FE of Table 4 is from Table 5 of Bloom et al. (2013) based
on their panel estimation and we use it as a baseline for comparison. “SE”
is the spatial error model corresponding to the Error SARMA(1,0) in our
Monte Carlo setting. We use either WSIC or WTEC in the SE setting and
both of these two matrices in the Error SARMA(2,0), Error SARMA(0,2),
and Error MESS(2) models. In all of these specifications, the test statistics
are larger than 1.645, so we reject the null hypothesis of the linear speci-
fication. However, we can say even more as our estimation also sheds light
on network effects in the disturbances in (8.1). As before H0 imposes linear
functional form of the regressors, while H1 uses the nonparametric series
estimate employing power series with p = 9. Regardless of the specification
of the regression function, the disturbances suggest a strong network effect
as the coefficients on WTEC and WSIC are large in magnitude.

8.3. Economic growth. The final example is based on the study of eco-
nomic growth rate in Ertur and Koch (2007). Knowledge accumulated in
one area might depend on knowledge accumulated in other areas, especially
in its neighborhoods, implying the possible existence of the spatial spillover
effects suggesting a natural use of spatial econometrics models to model
such technological interdependence. These questions are of interest to both
economists as well as regional scientists. For example, Autant-Bernard and
LeSage (2011) examine spatial spillovers associated with research expen-
ditures for French regions, while Ho, Wang, and Yu (2013) examine the
international spillover of economic growth through bilateral trade amongst
OECD countries, Cuaresma and Feldkircher (2013) study spatially corre-
lated growth spillovers in the income convergence process of Europe, and
Evans and Kim (2014) study the spatial dynamics of growth and conver-
gence in Korean regional incomes.
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Variable w∗ij = d−2
ij for i 6= j w∗ij = e−2dij for i 6= j

estimate p-value estimate p-value
Constant 1.0711 0.608 0.5989 0.798
ln(s) 0.8256 < 0.001 0.7938 < 0.001
ln(np + 0.05) −1.4984 0.008 −1.4512 0.009
W ln(s) −0.3159 0.075 −0.3595 0.020
W ln(np + 0.05) 0.5633 0.498 0.1283 0.856
Wy 0.7360 < 0.001 0.6510 < 0.001
Test statistic Tn −1.88 −2.08
Test statistic T a

n −1.90 −2.05
Restricted regression
Constant 2.1411 < 0.001 2.9890 < 0.001
ln(s)− ln(n+ 0.05) 0.8426 < 0.001 0.8195 < 0.001
W [ln(s)− ln(np + 0.05)] −0.2675 0.122 −0.2589 0.098
W ln(y) 0.7320 < 0.001 0.6380 < 0.001
Tn 0.30 4.04
T a
n 0.10 4.50

Table 5
The estimates and test statistics of the linear SAR model for the growth data

In this section, we want to test the linear SAR model specification in Ertur
and Koch (2007). Their dataset covers a sample of 91 countries over the pe-
riod 1960-1995 originally from Heston, Summers, and Aten (2002) obtained
from Penn World Tables (PWT version 6.1). The variables in use include per
worker income in 1960 (y60) and 1995 (y95), average rate of growth between
1960 and 1995 (gy), average investment rate of this period (s), and average
rate of growth of working-age population (np). The dataset can be down-
loaded from JAE Data Archive at http://qed.econ.queensu.ca/jae/2007-
v22.6/.

Ertur and Koch (2007) consider the model

(8.2) y = λWy + 1nβ0 +Xβ +WXθ + ε,

where the dependent variable is log real income per worker ln(y95), elements
of the explanatory variable X = (x′1, x

′
2) include log investment rate ln(s) =

x1 and log physical capital effective rate of depreciation ln(np + 0.05) = x2,
with corresponding subscripted coefficients β1, β2, θ1, θ2. A restricted regres-
sion based on the joint constraints β1 = −β2 and θ1 = −θ2 (these constraints
are implied by economic theory) is also considered in Ertur and Koch (2007).
The model (8.2) can be considered as a special case of the SAR model with
a general regressor X∗ = (X,WX) and i.i.d. errors, so the test derived in
Section 5 can be directly applied here. Denoting by dij the great-circle
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distance between the capital cities of countries i and j, one construction of
W takes wij = d−2

ij while the other takes wij = e−2dij , following Ertur and
Koch (2007). Table 5 presents the estimation and testing results based on
the unrestricted model and restricted model under two constructions of W
using power series basis functions with p = 10. Using our specification test,
we cannot reject linearity of the regression function under the unrestricted
model. On the other hand, linearity is rejected under the restricted model,
which is the preferred specification of Ertur and Koch (2007). Thus, not only
can we conclude that the specification of the model is under suspicion we
can also infer that such doubts are created by imposing constraints arising
from economic theory.
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A Proofs of theorems and propositions

Proof of Proposition 4.1: Because the map Σ : Γo → Mn×n is Fréchet-differentiable on Γo, it is

also Gâteaux-differentiable and the two derivative maps coincide. Thus by Theorem 1.8 of Am-

brosetti and Prodi (1995), ‖Σ (γ1)− Σ (γ2)‖ ≤ supγ∈`[γ1,γ2] ‖DΣ(γ)‖ ‖γ1 − γ2‖ , where ` [γ1, γ2] =

{tγ1 + (1− t)γ2 : t ∈ [0, 1]}. The claim now follows by (4.3) in Assumption 8.

Proof of Theorem 4.1. This a particular case of the proof of Theorem 5.1 with λ = 0, and so

S(λ) = In.

Proof of Theorem 4.2. From Corollary 4.1 and Lemma LS.2, ‖Σ (γ̂)− Σ‖ = Op (‖γ̂ − γ0‖) =
√
dγ/n,

so we have, from Assumption R.3,∥∥∥Σ (γ̂)−1 − Σ−1
∥∥∥ ≤ ∥∥∥Σ (γ̂)−1

∥∥∥ ‖Σ (γ̂)− Σ‖
∥∥Σ−1

∥∥ = Op (‖γ̂ − γ0‖) =
√
dγ/n. (S.1)

Similarly, ∥∥∥∥∥
(

1

n
Ψ′Σ (γ̂)−1 Ψ

)−1

−
(

1

n
Ψ′Σ−1Ψ

)−1
∥∥∥∥∥

≤

∥∥∥∥∥
(

1

n
Ψ′Σ (γ̂)−1 Ψ

)−1
∥∥∥∥∥
∥∥∥∥ 1

n
Ψ′
(

Σ (γ̂)−1 − Σ−1
)

Ψ

∥∥∥∥
∥∥∥∥∥
(

1

n
Ψ′Σ−1Ψ

)−1
∥∥∥∥∥

≤ sup
γ∈Γ

∥∥∥∥∥
(

1

n
Ψ′Σ (γ)−1 Ψ

)−1
∥∥∥∥∥∥∥∥Σ (γ̂)−1 − Σ−1

∥∥∥∥∥∥∥ 1√
n

Ψ

∥∥∥∥2

= Op (‖γ̂ − γ0‖) =
√
dγ/n.

By Assumption R.2, we have α̂ − α∗ = Op(1/
√
n). Denote by θ∗(x) = ψ(x)′β∗, where β∗ =

arg minβ E[yi−ψ(xi)
′β)]2, and set θni = θ(xi), θ0i = θ0(xi), θ̂i = ψ′iβ̂, f̂i = f(xi, α̂), f∗i = f(xi, α

∗).

Then ûi = yi − f(xi, α̂) = ui + θ0i − f̂i. Let θ0 = (θ0 (x1) , . . . , θ0 (xn))′ as before, with similar

component-wise notation for the n-dimensional vectors θ̂, θ∗, f̂ , and u. As the approximation error

is e = θ0 − θ∗ = θ0 −Ψβ∗,

θ̂ − θ∗ = Ψ(β̂ − β∗) = Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 (u+ θ0 −Ψβ∗)

= Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 (u+ e),

1



so that

nm̂n = σ̂−2v̂′Σ (γ̂)−1 û = σ̂−2
(
θ̂ − f̂

)′
Σ (γ̂)−1

(
y − f̂

)
= σ̂−2

(
θ̂ − θ∗ + θ∗ − θ0 + θ0 − f̂

)′
Σ (γ̂)−1

(
u+ θ0 − f̂

)
= σ̂−2

[
Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 (u+ e)− e+ θ0 − f̂
]′

Σ (γ̂)−1
(
u+ θ0 − f̂

)
= σ̂−2u′Σ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 u+ σ̂−2u′Σ (γ̂)−1

(
θ0 − f̂

)
− σ̂−2

(
u+ θ0 − f̂

)′
Σ (γ̂)−1

(
I −Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1

)
e

+ σ̂−2
(
θ0 − f̂

)′
Σ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 u

+ σ̂−2(θ0 − f̂)′Σ (γ̂)−1 (θ0 − f̂)

= σ̂−2u′Σ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 u+ σ̂−2 (A1 +A2 +A3 +A4) ,

say. First, for any vector g comprising of conditioned random variables,

E
[(
u′Σ(γ)−1g

)2]
= g′Σ(γ)−1ΣΣ(γ)−1g ≤ sup

γ∈Γ

∥∥Σ(γ)−1
∥∥2 ‖Σ‖ ‖g‖2 = Op

(
‖g‖2

)
,

uniformly in γ ∈ Γ. Similarly,

E

[(
u′Σ(γ)−1Ψ

(
Ψ′Σ(γ)−1Ψ

)−1
Ψ′Σ(γ)−1g

)2
]

= g′Σ(γ)−1Ψ
(
Ψ′Σ(γ)−1Ψ

)−1
Ψ′Σ(γ)−1ΣΣ(γ)−1Ψ

(
Ψ′Σ(γ)−1Ψ

)−1
Ψ′Σ(γ)−1g

≤ sup
γ∈Γ

∥∥Σ(γ)−1
∥∥4 ‖Σ‖

∥∥∥∥∥ 1

n
Ψ

(
1

n
Ψ′Σ(γ)−1Ψ

)−1

Ψ′

∥∥∥∥∥
2

‖g‖2 = Op

(
‖g‖2

)
,

uniformly and, for any j = 1, . . . , dγ ,

E

[(
u′Σ(γ)−1Σj (γ) Σ (γ)−1 g

)2
]

= g′Σ(γ)−1Σj (γ) Σ (γ)−1 ΣΣ(γ)−1Σj (γ) Σ (γ)−1 g

≤ sup
γ∈Γ

∥∥Σ(γ)−1
∥∥4 ‖Σj (γ)‖2 ‖Σ‖ ‖g‖2 = Op

(
‖g‖2

)
.

Let Ψk be the k-th column of Ψ, k = 1, . . . , p. Then, we have ‖Ψk/
√
n‖ = Op(1) and for any γ ∈ Γ,

E

∥∥∥∥ 1√
n
u′Σ (γ)−1 Ψ

∥∥∥∥2

≤
p∑

k=1

E

(
u′Σ (γ)−1 1√

n
Ψk

)2

= Op (p) ,

E

∥∥∥∥ 1√
n
u′Σ (γ)−1 Σj (γ) Σ (γ)−1 Ψ

∥∥∥∥2

≤
p∑

k=1

E

(
u′Σ (γ)−1 Σj (γ) Σ (γ)−1 1√

n
Ψk

)2

= O(p).
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Therefore, by Chebyshev’s inequality,

sup
γ∈Γ

∥∥∥∥ 1√
n
u′Σ (γ)−1 Ψ

∥∥∥∥ = Op(
√
p) and sup

γ∈Γ

∥∥∥∥ 1√
n
u′Σ (γ)−1 Σj (γ) Σ (γ)−1 Ψ

∥∥∥∥ = Op(
√
p).

By the decomposition

u′
(

Σ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 − Σ−1Ψ[Ψ′Σ−1Ψ]−1Ψ′Σ−1
)
u

= u′
(

Σ (γ̂)−1 + Σ−1
)

Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′

(
n∑
i=1

eine
′
in

)(
Σ (γ̂)−1 − Σ−1

)
u

+u′Σ−1Ψ
(

[Ψ′Σ (γ̂)−1 Ψ]−1 − [Ψ′Σ−1Ψ]−1
)

Ψ′Σ−1u

= u′
(

Σ (γ̂)−1 + Σ−1
)

Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′

(
n∑
i=1

eine
′
in

) dγ∑
j=1

(
Σ (γ̃)−1 Σj (γ̃) Σ (γ̃)−1

)
× u(γ̃j − γj0) + u′Σ−1Ψ

(
[Ψ′Σ (γ̂)−1 Ψ]−1 − [Ψ′Σ−1Ψ]−1

)
Ψ′Σ−1u,

where ein is an n× 1 vector with i-th entry one and zeros elsewhere, so
∑n

i=1 eine
′
in = In, and

e′in

(
Σ (γ̂)−1 − Σ−1

)
u =

dγ∑
j=1

e′in

(
Σ (γ̃)−1 Σj (γ̃) Σ (γ̃)−1

)
u(γ̃j − γj0)

= e′in

dγ∑
j=1

(
Σ (γ̃)−1 Σj (γ̃) Σ (γ̃)−1

)
u(γ̃j − γj0)

where γ̃ is a value between γ̂ and γ0 due to the mean value theorem. We have∣∣∣u′ (Σ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 − Σ−1Ψ[Ψ′Σ−1Ψ]−1Ψ′Σ−1
)
u
∣∣∣

≤ 2 sup
γ∈Γ

∥∥∥∥ 1√
n
u′Σ (γ)−1 Ψ

∥∥∥∥
∥∥∥∥∥
(

1

n
Ψ′Σ (γ)−1 Ψ

)−1
∥∥∥∥∥

dγ∑
j=1

∥∥∥∥ 1√
n

Ψ′
(

Σ (γ)−1 Σj (γ) Σ (γ)−1
)
u

∥∥∥∥
× |γ̃j − γj0|+

∥∥∥∥ 1√
n
u′Σ−1Ψ

∥∥∥∥2
∥∥∥∥∥
(

1

n
Ψ′Σ (γ̂)−1 Ψ

)−1

−
(

1

n
Ψ′Σ−1Ψ

)−1
∥∥∥∥∥

= Op(
√
p)Op(dγ

√
p/
√
n) +Op(p)Op(

√
dγ/
√
n) = Op(dγp/

√
n) = op(

√
p),

where the last equality holds under the conditions of the theorem.

It remains to show that

Ai = op

(
p1/2

)
, i = 1, . . . , 4. (S.2)

It is convenient to perform the calculations under H`, which covers H0 as a particular case. Using

3



the mean value theorem and either H0 or H`, we can express

θ0i − f̂i = f∗i − f̂i − (p1/4/n1/2)hi =

dα∑
j=1

∂f(xi, α̃)

∂αj
(α∗j − α̃j)−

p1/4

n1/2
hi, (S.3)

where α̃j is a value between α∗j and α̂j . Then, for any j = 1, . . . , dα,
∣∣∣α∗j − α̃j∣∣∣=Op(1/√n). Based

on

sup
γ∈Γ

∣∣∣u′Σ(γ)−1Ψ
(
Ψ′Σ(γ)−1Ψ

)−1
Ψ′Σ(γ)−1g

∣∣∣=Op (‖g‖) and sup
γ∈Γ

∣∣u′Σ(γ)−1g
∣∣ = Op (‖g‖)

for any γ ∈ Γ and any conditioned vector g, if we take g = ∂f(x, α)/∂αj or g = h, then both satisfy

Op (‖g‖) = Op (
√
n) and it follows that

|A1| =
∣∣∣u′Σ (γ̂)−1

(
θ0 − f̂

)∣∣∣ ≤ sup
γ,α

dα∑
j=1

∥∥∥∥u′Σ(γ)−1∂f(x, α)

∂αj

∥∥∥∥ ∣∣α∗j − α̃j∣∣+
p1/4

n1/2
sup
γ

∥∥u′Σ(γ)−1h
∥∥

= Op(
√
n)Op

(
1√
n

)
+O

(
p1/4

n1/2

)
Op(
√
n) = Op(p

1/4) = op(p
1/2).

Similarly,

|A3| =

∣∣∣∣u′Σ (γ̂)−1 Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 (θ0 − f̂)

∣∣∣∣
≤ sup

γ,α

dα∑
j=1

∥∥∥∥u′Σ (γ̂)−1 Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 ∂f(x, α)

∂αj

∥∥∥∥ ∣∣α∗j − α̃j∣∣
+
p1/4

n1/2
sup
γ

∥∥∥∥u′Σ (γ̂)−1 Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 h

∥∥∥∥
= Op(1) +Op(p

1/4) = Op(p
1/4) = op(p

1/2).

Also, by Assumptions R.2 and R.10, we have

∥∥∥θ0 − f̂
∥∥∥ ≤ sup

α

dα∑
j=1

∥∥∥∥∂f(x, α)

∂αj

∥∥∥∥ ∣∣α∗j − α̃j∣∣+ ‖h‖ p
1/4

n1/2
= Op(p

1/4). (S.4)

By (3.2), we have ‖e‖ = O(p−µn1/2) and

|A2| =
∣∣∣(u+θ0 − f̂)′

(
Σ (γ̂)−1 − Σ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1

)
e
∣∣∣

≤ sup
γ
|u′Σ (γ)−1 e|+ sup

γ

∣∣∣u′Σ (γ)−1 Ψ[Ψ′Σ (γ)−1 Ψ]−1Ψ′Σ (γ)−1 e
∣∣∣

4



+
∥∥∥θ0 − f̂

∥∥∥ sup
γ

(∥∥∥Σ (γ)−1
∥∥∥+

∥∥∥Σ (γ)−1 Ψ[Ψ′Σ (γ)−1 Ψ]−1Ψ′Σ (γ)−1
∥∥∥) ‖e‖

= Op(p
−µn1/2) +Op(p

−µ+1/4n1/2) = Op(p
−µ+1/4n1/2) = op(

√
p).

where the last equality holds under the conditions of the theorem. Finally, under H`,

A4 =
(
θ0 − f̂

)′
Σ (γ̂)−1

(
θ0 − f̂

)
=

(
θ0 − f̂

)′
Σ−1

(
θ0 − f̂

)
+
(
θ0 − f̂

)′ (
Σ (γ̂)−1 − Σ−1

)(
θ0 − f̂

)
=

p1/2

n
h′Σ−1h+ op(1) +Op

(
p1/2d1/2

γ /n1/2
)

=
p1/2

n
h′Σ−1h+ op(

√
p).

Combining these together, we have

nm̂n = σ̂−2v̂′Σ (γ̂)−1 û =
1

σ2
0

ε′V ε+
p1/2

n
h′Σ−1h+ op(

√
p),

under H` and the same expression holds with h = 0 under H0.

Proof of Theorem 4.3. We would like to establish the asymptotic unit normality of

σ−2
0 ε′V ε− p√

2p
. (S.5)

Writing q =
√

2p, the ratio in (S.5) has zero mean and variance equal to one, and may be written

as
∑∞

s=1ws, where ws = σ−2
0 q−1vss

(
ε2
s − σ2

0

)
+ 2σ−2

0 q−11(s ≥ 2)εs
∑

t<s vstεt, with vst the typical

element of V , with s, t = 1, 2, . . . ,. We first show that

w∗
p−→ 0, (S.6)

where w∗ = w −wS , wS =
∑S

s=1ws and S = Sn is a positive integer sequence that is increasing in

n. All expectations in the sequel are taken conditional on X. By Chebyshev’s inequality proving

Ew2
∗

p→ 0 (S.7)

is sufficient to establish (S.6). Notice that Ew2
s ≤ Cq−2v2

ss+Cq
−21(s ≥ 2)

∑
t<s v

2
st ≤ Cq−2

∑
t≤s v

2
st,

so that, writing M = Σ−1Ψ[Ψ′Σ−1Ψ]−1Ψ′Σ−1,

∞∑
s=S+1

Ew2
s ≤ Cq−2

∞∑
s=S+1

∑
t≤s

v2
st ≤ Cq−2

∞∑
s=S+1

b′sM
∑
t≤s

btb
′
tM bs

5



≤ Cq−2 ‖Σ‖
∞∑

s=S+1

b′sM
2bs ≤ Cq−2

∞∑
s=S+1

n∑
i,j,k=1

bisbktmijmkj

≤ Cq−2
∞∑

s=S+1

n∑
i,k=1

|b∗is| |b∗ks|
n∑
j=1

(
m2
kj +m2

ij

)
, (S.8)

where mij is the (i, j)-th element of M and we have used the inequality |ab| ≤
(
a2 + b2

)
/2 in

the last step. Now, denote by h′i the i-th row of the n × p matrix Σ−1Ψ. Denoting the elements

of Σ−1 by Σ−1
ij and ψjl = ψ (xjl), hi has entries hil =

∑n
j=1 Σ−1

ij ψjl, l = 1, . . . , p. We have

|hil| = Op

(∑n
j=1

∣∣∣Σ−1
ij

∣∣∣) = Op
(∥∥Σ−1

∥∥
R

)
= Op(1), uniformly, by Assumptions R.11 and R.13.

Thus, we have ‖hi‖ = Op
(√
p
)
, uniformly in i. As a result,

|mij | = n−1
∣∣∣h′i (n−1Ψ′Σ−1Ψ

)−1
hj

∣∣∣ = Op
(
n−1 ‖hi‖ ‖hj‖

)
= Op

(
pn−1

)
, (S.9)

uniformly in i, j, by Assumption R.11. Similarly, note that

n∑
j=1

m2
ij = n−1h′i

(
n−1Ψ′Σ−1Ψ

)−1 (
n−1Ψ′Σ−2Ψ

) (
n−1Ψ′Σ−1Ψ

)−1
hi

≤ n−1 ‖hi‖2
∥∥∥(n−1Ψ′Σ−1Ψ

)−1
∥∥∥2 ∥∥n−1Ψ′Σ−2Ψ

∥∥
= Op

(
pn−2 ‖Ψ‖2

∥∥Σ−1
∥∥2
)

= Op
(
pn−1

)
, (S.10)

uniformly in i. Thus (S.8) is

Op

(
q−2pn−1

n∑
i=1

∞∑
s=S+1

|b∗is|
n∑
t=1

|b∗ks|

)
= Op

(
q−2p sup

i=1,...,n

∞∑
s=S+1

|b∗is|

)
, (S.11)

by Assumption R.4. By the same assumption, there exists Sin such that
∑∞

s=Sin+1 |b∗is| ≤ εn for

any decreasing sequence εn → 0 as n → ∞. Choosing S = maxi=1,...,n Sin in wS , we deduce that

(S.11) is Op
(
q−2pεn

)
= Op (εn) = op(1), proving (S.7). Thus we need only focus on wS , and seek

to establish that

wS −→d N(0, 1), as n→∞. (S.12)

From Scott (1973), (S.12) follows if

S∑
s=1

Ew4
s

p−→ 0, as n→∞, (S.13)

and
S∑
s=1

[
E
(
w2
s | εt, t < s

)
− E

(
w2
s

)] p−→ 0, as n→∞. (S.14)
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We show (S.13) first. Evaluating the expectation and using (S.10) yields

Ew4
s ≤ Cq−4v4

ss + Cq−4
∑
t<s

v4
st ≤ Cq−4

∑
t≤s

v2
st

2

≤ Cq−4

b′sM ∑
t≤s

btb
′
tM bs

2

≤ Cq−4
(
b′sM

2bs
)2

= Cq−4
n∑

i,j,k=1

bisbksmijmkj ≤ Cq−4
n∑

i,k=1

|b∗is| |b∗ks|
n∑
j=1

(
m2
ij +m2

kj

)

= Op

q−4pn−1

(
n∑
i=1

|b∗is|

)2
 ,

whence

S∑
s=1

Ew4
s = Op

q−4pn−1
S∑
s=1

(
n∑
i=1

|b∗is|

)2
 = Op

(
q−4pn−1

S∑
s=1

(
n∑
i=1

b∗is

))
= Op

(
q−4p

)
,

by Assumption R.4. Thus (S.13) is established. Notice that E
(
w2
s

∣∣ εt, t < s
)

equals

4q−2σ−4
0

{(
µ4 − σ4

0

)
v2
ss + 2µ31(s ≥ 2)

∑
t<s

vstvssεt

}
+ 4q−2σ−2

0 1(s ≥ 2)

(∑
t<s

vstεt

)2

,

and Ew2
s = 4q−2σ−4

0

(
µ4 − σ4

0

)
v2
ss + 4q−21(s ≥ 2)

∑
t<s v

2
st, so that (S.14) is bounded by a constant

times

q−2
S∑
s=2

∑
t<s

vstvssεt +


S∑
s=2

(∑
t<s

vstεt

)2

− σ2
0

∑
t<s

v2
st

 . (S.15)

By transforming the range of summation, the square of the first term in (S.15) has expectation

bounded by

Cq−4E

(
S−1∑
t=1

S∑
s=t+1

vstvssεt

)2

≤ Cq−4
S−1∑
t=1

(
S∑

s=t+1

vstvss

)2

, (S.16)

where the factor in parentheses on the RHS of (S.16) is

S∑
s,r=t+1

b′sM bsb
′
sM btb

′
rM brb

′
rM bt ≤

S∑
s,r=t+1

∣∣b′sM bsb
′
rM br

∣∣ ∣∣b′sM bt
∣∣ ∣∣b′rM bt

∣∣
≤ C

S∑
s,r=t+1

n∑
i,j,k,l=1

|bis| |mij | |bjr| |bks| |mlk| |bkr|
∣∣b′sM bt

∣∣ ∣∣b′rM bt
∣∣

≤ C

(
sup
i,j
|mij |

)2(
sup
s≥1

n∑
i=1

|b∗is|

)4 S∑
s,r=t+1

∣∣b′sM bt
∣∣ ∣∣b′rM bt

∣∣
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= Op

p2n−2

(
S∑

s=t+1

∣∣b′tM bs
∣∣)2
 = Op

p2n−2

 S∑
s=t+1

n∑
i,j=1

|b∗it| |mij |
∣∣b∗js∣∣

2 ,

where we used Assumptions R.4 and (S.9). Now Assumptions R.4, R.11 and (S.9) imply that

S∑
s=t+1

n∑
i,j=1

|b∗it| |mij |
∣∣b∗js∣∣ = Op

sup
i,j
|mij | sup

t

n∑
i=1

|b∗it|
n∑
j=1

S∑
s=t+1

∣∣b∗js∣∣
 = Op

(
p sup

t

n∑
i=1

|b∗it|

)
,

so (S.16) is Op

(
q−4p4n−2 supt (

∑n
i=1 |b∗it|)

(∑n
i=1

(∑S−1
t=1 |b∗it|

)))
. By Assumption R.4 the latter is

Op
(
q−4p4n−1

)
and therefore the first term in (S.15) is Op

(
p2n−1

)
, which is negligible.

Once again transforming the summation range and using the inequality |a+ b|2 ≤ C
(
a2 + b2

)
,

we can bound the square of the second term in (S.15) by a constant times

(
S−1∑
t=1

S∑
s=t+1

v2
st

(
ε2t − σ2

0

))2

+

(
2
S−1∑
t=1

t−1∑
r=1

S∑
s=t+1

vstvsrεtεr

)2

. (S.17)

Using Assumption R.4, the expectations of the two terms in (S.17) are bounded by a con-

stant times α1 and a constant times α2, respectively, where α1 =
∑S−1

t=1

(∑S
s=t+1 v

2
st

)2
, α2 =∑S−1

t=1

∑t−1
r=1

(∑S
s=t+1 vstvsr

)2
. Thus (S.17) is Op (α1 + α2). Now by (S.9), Assumptions R.4, R.11

and elementary inequalities α2 is bounded by

S−1∑
t=1

t−1∑
r=1

S∑
s=t+1

S∑
u=t+1

b′sM btb
′
sM brb

′
uM btb

′
uM br

= Op

q−4
S∑

s,r,t,u=1

n∑
i,j=1

|b∗ir| |mij |
∣∣b∗js∣∣ n∑

i,j=1

|b∗ir| |mij |
∣∣b∗ju∣∣ n∑

i,j=1

|b∗it| |mij |
∣∣b∗js∣∣ n∑

i,j=1

|b∗it| |mij |
∣∣b∗ju∣∣


= Op

q−4pn−1
S∑

s,r,t=1

 n∑
i,j=1

|b∗ir| |mij |
∣∣b∗js∣∣

 n∑
i,j=1

|b∗ir| |mij |
S∑
u=1

∣∣b∗ju∣∣


×
n∑

i,j=1

|b∗it| |mij |
∣∣b∗js∣∣ n∑

i=1

|b∗it|
n∑
j=1

∣∣b∗ju∣∣


= Op

q−4p2n−2
S∑

s,r=1

 n∑
i,j=1

|b∗ir| |mij |
∣∣b∗js∣∣

 n∑
i=1

|b∗ir|
n∑
j=1

(
S∑
u=1

∣∣b∗ju∣∣
) n∑

i,j=1

S∑
t=1

|b∗it| |mij |
∣∣b∗js∣∣


= Op

q−4p2n−1
n∑

i,j=1

(
S∑
r=1

|b∗ir|

)
|mij |

(
S∑
s=1

∣∣b∗js∣∣
)(

sup
j

n∑
i=1

|mij |

)
n∑
j=1

∣∣b∗js∣∣

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= Op

q−4p2n−1 sup
k

n∑
i,j=1

|mij |
n∑
i=1

|mik|

 = Op

q−4p2n−1 sup
k

n∑
i,j,`=1

|mij | |m`k|


= Op

q−4p2n−1 sup
k

n∑
i,j,`=1

(
m2
ij +m2

`k

) = Op

q−4p2n−1
n∑

i,j,`=1

(
m2
ij +m2

`j

)
= Op

q−4p2n−1
n∑

i,j=1

m2
ij

 = Op

(
q−4p2 sup

j

n∑
i=1

m2
ij

)
= Op

(
pn−1

)
,

where we used (S.10) in the last step. A similar use of the conditions of the theorem and (S.9)

implies that α1 is

Op

q−4
S−1∑
t=1


S∑

s=t+1

 n∑
i,j=1

|mij |
∣∣b∗jt∣∣ |b∗is|

2
2


= Op

q−4

(
sup
i,j
|mij |

)4 S−1∑
t=1


S∑

s=t+1

 n∑
i=1

|b∗is|
n∑
j=1

∣∣b∗jt∣∣
2

2


= Op

q−4p4n−4
S−1∑
t=1


S∑

s=t+1

(
n∑
i=1

|b∗is|

)2
 n∑
j=1

∣∣b∗jt∣∣
2

2


= Op

q−4p4n−4
S−1∑
t=1

 S∑
s=t+1

(
n∑
i=1

|b∗is|

)2
2 n∑

j=1

∣∣b∗jt∣∣
4

= Op

q−4p4n−4

S−1∑
t=1

n∑
j=1

∣∣b∗jt∣∣
( S∑

s=t+1

n∑
i=1

|b∗is|

)2

sup
s

(
n∑
i=1

|b∗is|

)2

sup
t

 n∑
j=1

∣∣b∗jt∣∣
3

= Op
(
q−4p4n−1

)
= Op

(
p2n−1

)
proving (S.14), as p2/n→ 0 by the conditions of the theorem.

Proof of Theorem 4.4. (1) Follows from Theorems 4.2 and 4.3. (2) Following reasoning analogous

to the proofs of Theorems 4.2 and 4.3, it can be shown that under H1, m̂n = n−1σ∗−2(θ0 −
f∗)′Σ (γ∗)−1 (θ0 − f∗) + op(1). Then,

Tn = (nm̂n − p) /
√

2p = (n/
√
p) (θ0 − f∗)′Σ (γ∗)−1 (θ0 − f∗)/

(√
2nσ∗2

)
+ op (n/

√
p)

and for any nonstochastic sequence {Cn}, Cn = o(n/p1/2), P (Tn > Cn) → 1, so that consistency

follows. (3) Follows from Theorems 4.2 and 4.3.
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Proof of Theorem 5.1. We show φ̂
p→ φ0, whence β̂

p→ β0 and σ̂2 p→ σ2
0 follow from (5.3) and (5.4)

respectively. First note that

L (φ)−L = log σ2 (φ) /σ2−n−1 log
∣∣T ′(λ)Σ(γ)−1T (λ)Σ

∣∣ = log σ2 (φ) /σ2 (φ)− log σ2/σ2
0 + log r(φ),

(S.18)

where recall that σ2 (φ) = n−1σ2
0tr
(
T ′(λ)Σ(γ)−1T (λ)Σ

)
, σ2 = σ2 (φ0) = n−1u′Σ′−

1
2MΣ−

1
2u, us-

ing (5.4) and also r(φ) = n−1tr
(
T ′(λ)Σ(γ)−1T (λ)Σ

)
/
∣∣T ′(λ)Σ(γ)−1T (λ)Σ

∣∣1/n. We have σ2 (φ) =

n−1
{
S−1′ (Ψβ0 + u)

}′
S′(λ)Σ(γ)′−

1
2M (γ) Σ(γ)−

1
2S(λ)S−1 (Ψβ0 + u) = c1 (φ)+c2 (φ)+c3 (φ), where

c1 (φ) = n−1β′0Ψ′T ′(λ)Σ(γ)′−
1
2M (γ) Σ(γ)−

1
2T (λ)Ψβ0,

c2 (φ) = n−1σ2
0tr
(
T ′(λ)Σ(γ)′−

1
2M (γ) Σ(γ)−

1
2T (λ)Σ

)
,

c3 (φ) = n−1tr
(
T ′(λ)Σ(γ)′−

1
2M (γ) Σ(γ)−

1
2T (λ)

(
uu′ − σ2

0Σ
))

+ 2n−1β′0Ψ′T ′(λ)Σ(γ)′−
1
2M (γ) Σ(γ)−

1
2T (λ)u.

Note that in the particular cases of Theorems 4.1 and 6.1, where T (λ) = In, the c1 term vanishes

because M (γ) Σ(γ)−
1
2 Ψ = 0 and M (τ) Σ(τ)−

1
2 Ψ = 0. Proceeding with the current, more general

proof

log
σ2 (φ)

σ2 (φ)
= log

σ2 (φ)

(c1 (φ) + c2 (φ))
+ log

c1 (φ) + c2 (φ)

σ2 (φ)

= log

(
1 +

c3 (φ)

c1 (φ) + c2 (φ)

)
+ log

(
1 +

c1 (φ)− f (φ)

σ2 (φ)

)
,

where f (φ) = n−1σ2
0tr
(

Σ′
1
2T ′(λ)Σ(γ)′−

1
2 (In −M (γ)) Σ(γ)−

1
2T (λ)Σ

1
2

)
. Then (S.18) implies

P
(∥∥∥φ̂− φ0

∥∥∥ ∈ N φ
(η)
)

= P

(
inf

φ∈ N φ
(η)

L (φ)− L ≤ 0

)

≤ P

log

1 + sup
φ∈ N φ

(η)

∣∣∣∣ c3 (φ)

c1 (φ) + c2 (φ)

∣∣∣∣
+

∣∣log
(
σ2/σ2

0

)∣∣
≥ inf

φ∈ N φ
(η)

(
log

(
1 +

c1 (φ)− f (φ)

σ2 (φ)

)
+ log r(φ)

))
,

where recall that N φ
(η) = Φ\N φ (η) , N φ (η) = {φ : ‖φ− φ0‖ < η} ∩ Φ. Because σ2/σ2

0
p→ 1, the

property log (1 + x) = x+ o (x) as x→ 0 implies that it is sufficient to show that

sup
φ∈ N φ

(η)

∣∣∣∣ c3 (φ)

c1 (φ) + c2 (φ)

∣∣∣∣ p−→ 0, (S.19)
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sup
φ∈ N φ

(η)

∣∣∣∣ f (φ)

σ2 (φ)

∣∣∣∣ p−→ 0, (S.20)

P

(
inf

φ∈ N φ
(η)

{
c1 (φ)

σ2 (φ)
+ log r(φ)

}
> 0

)
−→ 1. (S.21)

Because N φ
(η) ⊆

{
Λ×N γ

(η/2)
}
∪
{
N λ

(η/2)× Γ
}

, we have

P

(
inf

φ∈ N φ
(η)

{
c1 (φ)

σ2 (φ)
+ log r(φ)

}
> 0

)
≥ P

(
min

{
inf

Λ×N γ
(η/2)

c1 (φ)

σ2 (φ)
, inf
N λ

(η/2)

log r(φ)

}
> 0

)

≥ P

(
min

{
inf

Λ×N γ
(η/2)

c1 (φ)

C
, inf
Nλ(η/2)

log r(φ)

}
> 0

)
,

from Assumption SAR.2, whence Assumptions SAR.3 and SAR.4 imply (S.21). Again using As-

sumption SAR.2, uniformly in φ,
∣∣f (φ) /σ2 (φ)

∣∣ = Op (|f (φ)|) and

|f (φ)| = Op

(
tr
(

Σ′
1
2T ′(λ)Σ(γ)−1Ψ

(
Ψ′Σ(γ)−1Ψ

)−1
Ψ′Σ(γ)−1T (λ)Σ

1
2

)
/n
)

= Op

(
tr
(

Σ′
1
2T ′(λ)Σ(γ)−1ΨΨ′Σ(γ)−1T (λ)Σ

1
2

)
/n2
)

= Op

(∥∥∥Ψ′Σ(γ)−1T (λ)Σ
1
2 /n

∥∥∥2

F

)
= Op

(
‖Ψ/n‖2F ϕ

2
(
Σ(γ)−1

)
‖T (λ)‖2

∥∥∥Σ
1
2

∥∥∥2
)

= Op

(
‖Ψ/n‖2F ‖T (λ)‖2 ϕ (Σ) /ϕ2 (Σ(γ))

)
= Op

(
‖T (λ)‖2 /n

)
, (S.22)

where we have twice made use of the inequality

‖AB‖F ≤ ‖A‖F ‖B‖ (S.23)

for generic multiplication compatible matrices A and B. (S.20) now follows by Assumption SAR.1

and compactness of Λ because T (λ) = In +
∑dλ

j=1 (λ0j − λj)Gj . Finally consider (S.19). We first

prove pointwise convergence. For any fixed φ ∈ N φ
(η) and large enough n, Assumptions SAR.2

and SAR.4 imply

{c1 (φ)}−1 = Op

(
‖β0‖−2

)
= Op(1) (S.24)

{c2 (φ)}−1 = Op(1), (S.25)

because
{
n−1σ2

0tr
(

Σ′
1
2T ′(λ)Σ(γ)−1T (λ)Σ

1
2

)}−1
= Op(1) and, proceeding like in the bound for

|f(φ)|, tr
(

Σ′
1
2T ′(λ)Σ(γ)′−

1
2 (I −M (γ)) Σ(γ)−

1
2T (λ)Σ

1
2

)
= Op

(
‖T (λ)‖2 /n

)
= Op (1/n). In fact

it is worth noting for the equicontinuity argument presented later that Assumptions SAR.2 and

SAR.4 actually imply that (S.24) and (S.25) hold uniformly over N φ
(η), a property not needed
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for the present pointwise arguments. Thus c3 (φ) / (c1 (φ) + c2 (φ)) = Op (|c3 (φ)|) where, writing

B(φ) = T ′(λ)Σ(γ)′−
1
2M (γ) Σ(γ)−

1
2T (λ) with typical element brs(φ), r, s = 1, . . . , n, c3 (φ) has

mean 0 and variance

Op

‖B(φ)Σ‖2F
n2

+

∑n
r,s,t,v=1 brs(φ)btv(φ)κrstv

n2
+

∥∥∥β′0Ψ′B(φ)Σ
1
2

∥∥∥2

n2

 , (S.26)

with κrstv denoting the fourth cumulant of ur, us, ut, uv, r, s, t, v = 1, . . . , n. Under the linear

process assumed in Assumption R.4 it is known that

n∑
r,s,t,v=1

κ2
rstv = O(n). (S.27)

Using (S.23) and Assumptions SAR.1 and R.3, the first term in parentheses in (S.26) is

Op

(
‖B(φ)‖2F ϕ

2 (Σ) /n2
)

= Op

(
‖T (λ)‖2F

∥∥∥Σ(γ)−
1
2

∥∥∥4
‖M(γ)‖2 ‖T (λ)‖2 /n2

)
= Op

(
‖T (λ)‖4 /nϕ2 (Σ(γ))

)
= Op

(
‖T (λ)‖4 /n

)
, (S.28)

while the second is similarly

Op


(
‖B(φ)‖2F /n

) n∑
r,s,t,v=1

κ2
rstv/n

2

 1
2

 = op

(
‖T (λ)‖4

)
, (S.29)

using (S.27). Finally, the third term in parentheses in (S.26) is

Op

(
‖B(φ)‖2 /n

)
= Op

(
‖T (λ)‖4 /n

)
. (S.30)

By compactness of Λ and Assumption SAR.1, (S.28), (S.29) and (S.30) are negligible, thus pointwise

convergence is established.

Uniform convergence will follow from an equicontinuity argument. First, for arbitrary ε > 0 we

can find points φ∗ = (λ′∗, γ
′
∗)
′, possibly infinitely many, such that the neighbourhoods ‖φ− φ∗‖ < ε

form an open cover of N φ
(η). Since Φ is compact any open cover has a finite subcover and thus

we may in fact choose finitely many φ∗ = (λ′∗, γ
′
∗)
′, whence it suffices to prove

sup
‖φ−φ∗‖<ε

∣∣∣∣ c3 (φ)

c1 (φ) + c2 (φ)
− c3 (φ∗)

c1 (φ∗) + c2 (φ∗)

∣∣∣∣ p−→ 0.

Proceeding as in Gupta and Robinson (2018), we denote the two components of c3 (φ) by c31 (φ) ,
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c32 (φ) , and are left with establishing the negligibility of

|c31 (φ)− c31 (φ∗)|
c2 (φ)

+
|c32 (φ)− c32 (φ∗)|

c1 (φ)
+

|c3 (φ∗)|
c1 (φ) c1 (φ∗)

|c1 (φ∗)− c1 (φ)|

+
|c3 (φ∗)|

c2 (φ) c2 (φ∗)
|c2 (φ∗)− c2 (φ)| , (S.31)

uniformly on ‖φ− φ∗‖ < ε. By the fact that (S.24) and (S.25) hold uniformly over Φ, we first

consider only the numerators in the first two terms in (S.31). As in the proof of Theorem 1 of

Delgado and Robinson (2015), (S.23) implies that E
(

sup‖φ−φ∗‖<ε |c31 (φ)− c31 (φ∗)|
)

is bounded

by

n−1
(
E ‖u‖2 + σ2

0trΣ
)

sup
‖φ−φ∗‖<ε

‖B(φ)−B(φ∗)‖ = Op

(
sup

‖φ−φ∗‖<ε
‖B(φ)−B(φ∗)‖

)
,

because E ‖u‖2 = O(n) and trΣ = O(n). B(φ)−B(φ∗) can be written as

(T (λ)− T (λ∗))
′Σ(γ)′−

1
2M(γ)Σ(γ)−

1
2T (λ) + T (λ∗)

′Σ′(γ∗)M(γ∗)Σ(γ∗)
− 1

2 (T (λ)− T (λ∗))

+ T ′(λ∗)
(

Σ(γ)′−
1
2M(γ)Σ(γ)−

1
2 − Σ(γ∗)

′− 1
2M(γ∗)Σ(γ∗)

− 1
2

)
T (λ), (S.32)

which, by the triangle inequality, has spectral norm bounded by

‖T (λ)− T (λ∗)‖
(∥∥∥Σ(γ)−

1
2

∥∥∥2
‖T (λ)‖+

∥∥∥Σ(γ∗)
− 1

2

∥∥∥2
‖T (λ∗)‖

)
+ ‖T (λ∗)‖

∥∥∥Σ(γ)′−
1
2M(γ)Σ(γ)−

1
2 − Σ(γ∗)

′− 1
2M(γ∗)Σ(γ∗)

− 1
2

∥∥∥ ‖T (λ)‖

= Op

(
‖T (λ)− T (λ∗)‖+

∥∥∥Σ(γ)′−
1
2M(γ)Σ(γ)−

1
2 − Σ(γ∗)

′− 1
2M(γ∗)Σ(γ∗)

− 1
2

∥∥∥) .
(S.33)

By Assumption SAR.1 the first term in parentheses on the right side of (S.33) is bounded uniformly

on ‖φ− φ∗‖ < ε by

dλ∑
j=1

|λj − λ∗j | ‖Gj‖ ≤ max
j=1,...,dλ

‖Gj‖ ‖λ− λ∗‖ = Op(ε), (S.34)

while because Σ(γ)′−
1
2M(γ)Σ(γ)−

1
2 = n−1Σ(γ)−1Ψ

(
n−1Ψ′Σ(γ)−1Ψ

)−1
Ψ′Σ(γ)−1 for any γ ∈ Γ,

the second one can be decomposed into terms with bounds typified by

n−1
∥∥Σ(γ)−1 − Σ(γ∗)

−1
∥∥ ‖Ψ‖2 ∥∥∥(n−1Ψ′Σ(γ)−1Ψ

)−1
∥∥∥∥∥Σ(γ)−1

∥∥2

≤ n−1 ‖Σ(γ)− Σ(γ∗)‖ ‖Ψ‖2
∥∥∥(n−1Ψ′Σ(γ)−1Ψ

)−1
∥∥∥∥∥Σ(γ)−1

∥∥3 ∥∥Σ(γ∗)
−1
∥∥

= Op (‖Σ(γ)− Σ(γ∗)‖) = Op(ε),
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uniformly on ‖φ− φ∗‖ < ε, by Assumptions R.3 and R.8, Proposition 4.1 and the inequality

‖A‖ ≤ ‖A‖F for a generic matrix A, so that

sup
‖φ−φ∗‖<ε

‖B(φ)−B(φ∗)‖ = Op(ε). (S.35)

Thus equicontinuity of the first term in (S.31) follows because ε is arbitrary. The equicontinuity

of the second term in (S.31) follows in much the same way. Indeed sup‖φ−φ∗‖<ε c32 (φ)− c32 (φ∗) =

2n−1β′0Ψ′ sup‖φ−φ∗‖<ε (B(φ)−B(φ∗))u = Op

(
sup‖φ−φ∗‖<ε ‖B(φ)−B(φ∗)‖

)
= Op(ε), using ear-

lier arguments and (S.35). Because c1(φ) is bounded and bounded away from zero in probability

(see S.24) for sufficiently large n and all φ ∈ N φ
(η), the third term in (S.31) may be bounded by

|c3(φ∗)|/c1(φ∗) (1 + c1(φ∗)/c1(φ))
p−→ 0, convergence being uniform on ‖φ− φ∗‖ < ε by pointwise

convergence of c3(φ)/ (c1(φ) + c2(φ)), cf. Gupta and Robinson (2018). The uniform convergence to

zero of the fourth term in (S.31) follows in identical fashion, because c2(φ) is bounded and bounded

away from zero (see (S.25)) in probability for sufficiently large n and all φ ∈ N φ
(η). This concludes

the proof.

Proof of Theorem 5.2. Denote θ∗ as the solution of minθ E
(
yi −

∑dλ
j=1 λjw

′
i,jy − θ(xi)

)2
. Put θ∗i =

θ∗(xi), θ0i = θ0(xi), θ̂i = ψ′iβ̂ , f̂i = f(xi, α̂), f∗i = f(xi, α
∗). Then ûi = yi −

∑dλ
j=1 λ̂jw

′
i,jy −

f(xi, α̂) = ui + θ0i +
∑dλ

j=1(λj0 − λ̂j)w′i,jy − f̂i. Proceeding as in the proof of Theorem 4.2, we

obtain nm̂n = σ̂−2u′Σ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 u + σ̂−2
∑7

j=1Aj . Thus, compared to the

test statistic with no spatial lag, cf. the proof of Theorem 4.2, we have the additional terms

A5 =

dλ∑
j=1

(λj0 − λ̂j)y′W ′jΣ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1
dλ∑
j=1

(λj0 − λ̂j)Wjy,

A6 =

dλ∑
j=1

(λj0 − λ̂j)y′W ′jΣ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 (u+ θ0 − f̂),

A7 =

(
Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 (u+e)− e+ θ0 − f̂
)′

Σ (γ̂)−1
dλ∑
j=1

(λj0 − λ̂j)Wjy.

We now show that A` = op(
√
p), ` > 4, so the leading term in nm̂n is the same as before. First

‖y‖ = Op(
√
n) from y = (In −

∑dλ
j=1 λj0Wj)

−1 (θ0 + u). Then, with
∥∥∥λ0 − λ̂

∥∥∥ = Op
(√

dγ/n
)

by

Lemma LS.2, we have

|A5| ≤
∥∥∥λ0 − λ̂

∥∥∥2
dλ∑
j=1

‖Wj‖2 sup
γ,j

∥∥∥∥∥Σ (γ)−1 1

n
Ψ

(
1

n
Ψ′Σ (γ)−1 Ψ

)−1

Ψ′Σ (γ)−1

∥∥∥∥∥ ‖y‖2
= Op (dγ/n)Op(1)Op(n) = Op (dγ) = op(

√
p).
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Uniformly in γ and j,

E
(
u′S−1′W ′jΣ (γ)−1 Ψ[Ψ′Σ (γ)−1 Ψ]−1Ψ′Σ (γ)−1 u

)
= Etr

((
1

n
Ψ′Σ (γ)−1 Ψ

)−1 1

n
Ψ′Σ (γ)−1 ΣS−1′W ′jΣ (γ)−1 Ψ

)
= Op(p)

and

E
(
θ′0S

−1′W ′jΣ (γ)−1 Ψ[Ψ′Σ (γ)−1 Ψ]−1Ψ′Σ (γ)−1 u
)2

= Op

∥∥S−1
∥∥2

sup
γ

∥∥∥Σ (γ)−1
∥∥∥4
∥∥∥∥∥ 1

n
Ψ

(
1

n
Ψ′Σ (γ)−1 Ψ

)−1

Ψ′

∥∥∥∥∥
2

sup
j
‖Wj‖2 ‖Σ‖ ‖θ0‖2

 = Op(n).

Similarly, θ′0S
−1′W ′jΣ (γ)−1 Ψ[Ψ′Σ (γ)−1 Ψ]−1Ψ′Σ (γ)−1Wjθ0 = Op(n), uniformly. Therefore,∣∣∣∣∣∣

dλ∑
j=1

(λj0 − λ̂j)y′W ′jΣ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 u

∣∣∣∣∣∣
=

∣∣∣∣∣∣
dλ∑
j=1

(λj0 − λ̂j) (θ0 + u)′ S−1′W ′jΣ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 u

∣∣∣∣∣∣
≤ dλ

∥∥∥λ0 − λ̂
∥∥∥ sup
γ,j

∣∣∣θ′0S−1′W ′jΣ (γ)−1 Ψ[Ψ′Σ (γ)−1 Ψ]−1Ψ′Σ (γ)−1 u
∣∣∣

+dλ

∥∥∥λ0 − λ̂
∥∥∥ sup
γ,j

∣∣∣u′S−1′W ′jΣ (γ)−1 Ψ[Ψ′Σ (γ)−1 Ψ]−1Ψ′Σ (γ)−1 u
∣∣∣

= Op

(√
dγ/n

)
Op(
√
n) +Op

(√
dγ/n

)
Op(p) = Op

(√
dγ

)
= op (

√
p) ,

and ∣∣∣∣∣∣
dλ∑
j=1

(λj0 − λ̂j)y′W ′jΣ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 (θ0 − f̂)

∣∣∣∣∣∣
≤ dλ

∥∥∥λ0 − λ̂
∥∥∥ ‖y‖ sup

j
‖Wj‖ sup

γ

∥∥∥∥∥ 1

n
Ψ

(
1

n
Ψ′Σ (γ)−1 Ψ

)−1

Ψ

∥∥∥∥∥ sup
γ

∥∥∥Σ (γ)−1
∥∥∥2 ∥∥∥θ0 − f̂

∥∥∥
= Op

(√
dγ/n

)
Op
(√
n
)
Op

(
p1/4

)
= Op

(√
dγp

1/4
)

= op(
√
p),

so that A6 = op(
√
p). Finally,∣∣∣∣∣∣

dλ∑
j=1

(λj0 − λ̂j)y′W ′jΣ (γ̂)−1 Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1 e

∣∣∣∣∣∣
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≤ dλ

∥∥∥λ0 − λ̂
∥∥∥ ‖y‖ sup

j
‖Wj‖ sup

γ

∥∥∥∥∥ 1

n
Ψ

(
1

n
Ψ′Σ (γ)−1 Ψ

)−1

Ψ

∥∥∥∥∥ sup
γ

∥∥∥Σ (γ)−1
∥∥∥2
‖e‖

= Op

(√
dγ/n

)
Op
(√
n
)
Op
(
p−µ
√
n
)

= Op

(√
dγp
−µ√n

)
= op(

√
p),

and ∣∣∣∣∣∣(e+ θ0 − f̂)′Σ (γ̂)−1
dλ∑
j=1

(λj0 − λ̂j)Wjy

∣∣∣∣∣∣
≤ dλ

∥∥∥λ0 − λ̂
∥∥∥(‖e‖+

∥∥∥θ0 − f̂
∥∥∥) sup

γ

∥∥∥Σ (γ)−1
∥∥∥ sup

j
‖Wj‖ ‖y‖

= Op

(√
dγ/n

)
Op

(
p−µ
√
n+ p1/4

)
Op
(√
n
)

= Op

(√
dγp
−µ√n+

√
dγp

1/4
)

= op(
√
p),

implying that A7 = op(
√
p).

Proof of Theorem 5.3. Omitted as it is similar to the proof of Theorem 4.4.

Proof of Proposition 6.1: Because the map Σ : T o → Mn×n is Fréchet-differentiable on T o, it

is also Gâteaux-differentiable and the two derivative maps coincide. Thus by Theorem 1.8 of

Ambrosetti and Prodi (1995),

‖Σ(t1)− Σ(t1)‖ ≤ sup
t∈T o
‖DΣ(t)‖L (T o,Mn×n)

‖γ1 − γ2‖+

dζ∑
i=1

∥∥(δi1 − δi2)′ ϕi
∥∥
w

 , (S.36)

where

dζ∑
i=1

∥∥(δi1 − δi2)′ ϕi
∥∥
w

=

dζ∑
i=1

sup
z∈Z

∣∣(δi1 − δi2)′ ϕi
∣∣ (1 + ‖z‖2

)−w/2
≤

dζ∑
i=1

‖δi1 − δi2‖ sup
z∈Z
‖ϕi‖

(
1 + ‖z‖2

)−w/2
≤ Cς(r)

dζ∑
i=1

‖δi1 − δi2‖ ≤ Cς(r) ‖t1 − t2‖ .

The claim now follows by (6.7) in Assumption NPN.2, because ‖γ1 − γ2‖ ≤ Cς(r) ‖t1 − t2‖ for

some suitably chosen C.

Proof of Theorem 6.1. The proof is omitted as it is entirely analogous to that of Theorem 5.1, with

the exception of one difference when proving equicontinuity. In the setting of Section 6, we obtain
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via Proposition 6.1 ‖Σ(τ)− Σ (τ∗)‖ = Op (ς(r)ε). Because ε > 0 is arbitrarily small we may choose

it smaller than ε′/ς(r), for some arbitrary ε′ > 0.

Proof of Theorem 6.2. Writing, δ(z) =
(
δ̂′1ϕ1(z), . . . , δ̂′dζϕdζ (z)

)′
and taking t1 =

(
γ̂′, δ̂(z)′

)′
and

t2 = (γ′0, ζ0(z)′)′ in Proposition 6.1 implies (we suppress the argument z)

‖Σ (τ̂)− Σ‖ = Op

(
ς(r)

(
‖γ̂ − γ0‖+

∥∥∥δ̂ − ζ0

∥∥∥)) = Op (ς(r) (‖τ̂ − τ0‖+ ‖ν‖))

= Op

ς(r) max

√dτ/n,
√√√√ dζ∑

i=1

r−2κi
i


 ,

uniformly on Z. Thus we have

∥∥∥Σ (τ̂)−1 − Σ−1
∥∥∥ ≤ ∥∥∥Σ (τ̂)−1

∥∥∥ ‖Σ (τ̂)− Σ‖
∥∥Σ−1

∥∥ = Op

ς(r) max

√dτ/n,
√√√√ dζ∑

i=1

r−2κi
i


 .

And similarly, ∥∥∥∥∥
(

1

n
Ψ′Σ (τ̂)−1 Ψ

)−1

−
(

1

n
Ψ′Σ−1Ψ

)−1
∥∥∥∥∥

≤

∥∥∥∥∥
(

1

n
Ψ′Σ (τ̂)−1 Ψ

)−1
∥∥∥∥∥
∥∥∥∥ 1

n
Ψ′
(

Σ (τ̂)−1 − Σ−1
)

Ψ

∥∥∥∥
∥∥∥∥∥
(

1

n
Ψ′Σ−1Ψ

)−1
∥∥∥∥∥

= Op

(∥∥∥Σ (τ̂)−1 − Σ−1
∥∥∥) = Op

ς(r) max

√dτ/n,
√√√√ dζ∑

i=1

r−2κi
i


 .

As in the proof of Theorem 4.2, nm̂n = σ̂−2u′Σ (τ̂)−1 Ψ[Ψ′Σ (τ̂)−1 Ψ]−1Ψ′Σ (τ̂)−1 u+ σ̂−2
∑4

`=1A`,

where γ in the parametric setting is changed to τ in this nonparametric setting. Then, by the

MVT, ∣∣∣u′ (Σ (τ̂)−1 Ψ[Ψ′Σ (τ̂)−1 Ψ]−1Ψ′Σ (τ̂)−1 − Σ−1Ψ[Ψ′Σ−1Ψ]−1Ψ′Σ−1
)
u
∣∣∣

≤ 2

(
sup
t

∥∥∥∥ 1√
n
u′Σ (t)−1 Ψ

∥∥∥∥
∥∥∥∥∥
(

1

n
Ψ′Σ (t)−1 Ψ

)−1
∥∥∥∥∥
)

dτ∑
j=1

∥∥∥∥ 1√
n

Ψ′
(

Σ (τ̃)−1 Σj (τ̃) Σ (τ̃)−1
)
u

∥∥∥∥
× |τ̃j − τj0|+ 2 sup

t

∥∥∥∥ 1√
n
u′Σ (t)−1 Ψ

∥∥∥∥
∥∥∥∥∥
(

1

n
Ψ′Σ (t)−1 Ψ

)−1
∥∥∥∥∥
∥∥∥∥ 1√

n
Ψ′ (Σ0 − Σ)u

∥∥∥∥
+

∥∥∥∥ 1√
n
u′Σ−1Ψ

∥∥∥∥2
∥∥∥∥∥
(

1

n
Ψ′Σ (τ̂)−1 Ψ

)−1

−
(

1

n
Ψ′Σ−1Ψ

)−1
∥∥∥∥∥

17



= Op(
√
p)Op(dτ

√
pς(r)/

√
n) +Op(

√
p)Op

√pς(r)
√√√√ dζ∑

i=1

r−2κi
i


+ Op(p)Op

ς(r) max

√dτ/n,
√√√√ dζ∑

i=1

r−2κi
i




= Op

pς(r) max

dτ/√n,
√√√√ dζ∑

i=1

r−2κi
i


 = op(

√
p),

where the last equality holds under the conditions of the theorem. Next, it remains to show

A` = op(p
1/2), ` = 1, . . . , 4. The order of A`, ` ≤ 3, is the same as the parametric case:

|A1| =
∣∣∣u′Σ (τ̂)−1

(
θ0 − f̂

)∣∣∣ ≤ sup
α,t

∥∥∥∥u′Σ (t)−1 ∂f(x, α)

∂αj

∥∥∥∥ ∣∣α∗j − α̃j∣∣+
p1/4

n1/2
sup
t

∥∥∥u′Σ (t)−1 h
∥∥∥

= Op(
√
n)Op(

1√
n

) +O(
p1/4

n1/2
)Op(
√
n) = Op(p

1/4) = op(p
1/2),

|A2| =
∣∣∣(u+θ0 − f̂)′

(
Σ (τ̂)−1 − Σ (τ̂)−1 Ψ[Ψ′Σ (τ̂)−1 Ψ]−1Ψ′Σ (τ̂)−1

)
e
∣∣∣

≤ sup
t
|u′Σ (t)−1 e|+ sup

t

∣∣∣u′Σ (t)−1 Ψ[Ψ′Σ (t)−1 Ψ]−1Ψ′Σ (t)−1 e
∣∣∣

+
∥∥∥θ0 − f̂

∥∥∥ sup
t

(∥∥∥Σ (t)−1
∥∥∥+

∥∥∥Σ (t)−1 Ψ[Ψ′Σ (t)−1 Ψ]−1Ψ′Σ (t)−1
∥∥∥) ‖e‖

= Op(p
−µn1/2) +Op(p

−µ+1/4n1/2) = Op(p
−µ+1/4n1/2) = op(

√
p),

|A3| =

∣∣∣∣u′Σ (τ̂)−1 Ψ
(

Ψ′Σ (τ̂)−1 Ψ
)−1

Ψ′Σ (τ̂)−1 (θ0 − f̂)

∣∣∣∣
≤ sup

α,t

dα∑
j=1

∥∥∥∥u′Σ (t)−1 Ψ
(

Ψ′Σ (t)−1 Ψ
)−1

Ψ′Σ (t)−1 ∂f(x, α)

∂αj

∥∥∥∥ ∣∣α∗j − α̃j∣∣
+
p1/4

n1/2
sup
t

∥∥∥∥u′Σ (t)−1 Ψ
(

Ψ′Σ (t)−1 Ψ
)−1

Ψ′Σ (t)−1 h

∥∥∥∥
= Op(1) +Op(p

1/4) = Op(p
1/4) = op(p

1/2).

However, A4 has a different order. Under H`,

A4 =
(
θ0 − f̂

)′
Σ (γ̂)−1

(
θ0 − f̂

)
=

(
θ0 − f̂

)′
Σ−1

0

(
θ0 − f̂

)
+
(
θ0 − f̂

)′ (
Σ (τ̂)−1 − Σ−1

)(
θ0 − f̂

)
=

p1/2

n
h′Σ−1

0 h+ op(1) +Op

(
p1/2

)
Op

ς(r) max

√dτ/n,
√√√√ dζ∑

i=1

r−2κi
i



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=
p1/2

n
h′Σ−1

0 h+ op(
√
p),

where the last equality holds under the conditions of the theorem. Combining these together,

we have nm̂n = σ̂−2v̂′Σ (τ̂)−1 û = σ−2
0 ε′V ε +

(
p1/2/n

)
h′Σ−1

0 h + op(
√
p), under H` and the same

expression holds with h = 0 under H0.

Proof of Theorem 6.3. Omitted as it is similar to the proof of Theorem 4.4.

B Lemmas

Lemma LS.1. Under the conditions of Theorem 4.1, c1(γ) = n−1β′Ψ′C ′(γ)M(γ)C(γ)Ψβ + op(1).

Proof. First,

c1(γ) = n−1β′Ψ′C ′(γ)M(γ)C(γ)Ψβ + c12(γ) + c13(γ).

with c12(γ) = 2n−1e′C ′(γ)M(γ)C(γ)Ψβ and c13(γ) = n−1e′C ′(γ)M(γ)C(γ)e. It is readily seen

that c12(γ) and c13(γ) are negligible.

Lemma LS.2. Under the conditions of Theorem 4.2 or Theorem 5.2, ‖γ̂ − γ0‖ = Op
(√

dγ/n
)
.

Proof. We show the details for the setting of Theorem 4.2 and omit the details for the setting of

Theorem 5.2. Write l = ∂L(β0, γ0)/∂γ. By Robinson (1988), we have ‖γ̂ − γ0‖ = Op (‖l‖). Now

l =
(
l1, . . . , ldγ

)′
, with lj = n−1tr

(
Σ−1Σj

)
− n−1σ−2

0 u′Σ−1ΣjΣ
−1u. Next, E ‖l‖2 =

∑dγ
j=1E

(
l2j

)
and

E
(
l2j
)

=
1

n2σ4
0

var
(
u′Σ−1ΣjΣ

−1u
)

=
1

n2σ4
0

var
(
ε′B′Σ−1ΣjΣ

−1Bε
)

=
1

n2σ4
0

var
(
ε′Djε

)
, (S.1)

say. But, writing dj,st for a typical element of the infinite dimensional matrix Dj , we have

var
(
ε′Djε

)
=
(
µ4 − 3σ4

0

) ∞∑
s=1

d2
j,ss + 2σ4

0tr
(
D2
j

)
=
(
µ4 − 3σ4

0

) ∞∑
s=1

d2
j,ss + 2σ4

0

∞∑
s,t=1

d2
j,st. (S.2)

Next, by Assumptions R.4, R.3 and R.9

∞∑
s=1

d2
j,ss =

∞∑
s=1

(
b′sΣ

−1ΣjΣ
−1bs

)2 ≤ ( ∞∑
s=1

‖bs‖2
)∥∥Σ−1

∥∥2 ‖Σj‖ = O

 n∑
j=1

∞∑
s=1

b∗2js

 = O(n). (S.3)

Similarly,

∞∑
s,t=1

d2
j,st =

∞∑
s=1

b′sΣ
−1ΣjΣ

−1

( ∞∑
t=1

btb
′
t

)
Σ−1ΣjΣ

−1bs =
∞∑
s=1

b′sΣ
−1ΣjΣ

−1ΣjΣ
−1bs = O(n). (S.4)
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Using (S.3) and (S.4) in (S.2) implies that E
(
l2j

)
= O

(
n−1

)
, by (S.1). Thus we have E ‖l‖2 =

O (dγ/n), and thus ‖l‖ = Op
(√

dγ/n
)
, by Markov’s inequality, proving the lemma.

Lemma LS.3. Under the conditions of Theorem 4.3, E
(
σ−2

0 ε′V ε
)

= p and V ar
(
σ−2

0 ε′V ε
)
/2p→

1.

Proof. As E
(
σ−2

0 ε′V ε
)

= tr
(
E[B′Σ−1Ψ(Ψ′Σ−1Ψ)−1Ψ′Σ−1B]

)
= p, and

V ar

(
1

σ2
0

ε′V ε

)
=

(
µ4

σ4
0

− 3

) ∞∑
s=1

E(v2
ss) + E[tr(V V ′) + tr(V 2)] =

(
µ4

σ4
0

− 3

) ∞∑
s=1

v2
ss + 2p, (S.5)

it suffices to show that

(2p)−1
∞∑
s=1

v2
ss

p→ 0. (S.6)

Because vss = b′sM bs, we have v2
ss =

(∑n
i,j=1 bisbjsmij

)2
. Thus, using Assumption R.4 and (S.9),

we have

∞∑
s=1

v2
ss ≤

(
sup
i,j
|mij |

)2 ∞∑
s=1

 n∑
i,j=1

|b∗is|
∣∣b∗js∣∣

2

= Op

p2n−2

(
sup
s

n∑
i=1

|b∗is|

)3 n∑
i=1

∞∑
s=1

|b∗is|


= Op

(
p2n−1

)
, (S.7)

establishing (S.6) because p2/n→ 0.

Lemma LS.4. Under the conditions of Theorem 6.2, ‖τ̂ − τ0‖ = Op

(√
dτ/n

)
.

Proof. The proof is similar to that of Lemma LS.2 and is omitted.

Let Gj(γ) = WjK
−1(γ), j = 1, . . . ,m1, Tj = H−1(γ)Wj , j = m1 + 1, . . . ,m1 + m2 and, for a

generic matrix A, denote A = A+A′. Our final conditions may differ according to whether the Wj

are of general form or have ‘single nonzero diagonal block structure’, see e.g Gupta and Robinson

(2015). To define these, denote by V an n × n block diagonal matrix with i-th block Vi, a si × si
matrix, where

∑m1+m2
i=1 si = n, and for i = 1, ...,m1 +m2 obtain Wj from V by replacing each Vj ,

j 6= i, by a matrix of zeros. Thus V =
∑m1+m2

i=1 Wj .

Lemma LS.5. For the spatial error model with SARMA(p, q) errors, if

sup
γ∈Γo

(∥∥K−1(γ)
∥∥+

∥∥K ′−1(γ)
∥∥+

∥∥H−1(γ)
∥∥+

∥∥H ′−1(γ)
∥∥)+ max

j=1,...,m1+m2

‖Wj‖ < C, (S.8)

then

(DΣ(γ))
(
γ†
)

= A−1(γ)

m1∑
j=1

γ†jH
−1(γ)Gj(γ) +

m1+m2∑
j=m1+1

γ†jTj(γ)

A′−1(γ).
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Proof. We first show that DΣ ∈ L (Γo,Mn×n). Clearly, DΣ is a linear map and (S.8)∥∥∥(DΣ(γ))
(
γ†
)∥∥∥ ≤ C ∥∥∥γ†∥∥∥

1
,

in the general case and ∥∥∥(DΣ(γ))
(
γ†
)∥∥∥ ≤ C max

j=1,...,m1+m2

∣∣∣γ†j ∣∣∣ ,
in the ‘single nonzero diagonal block’ case. Thus DΣ is a bounded linear operator between two

normed linear spaces, i.e. it is a continuous linear operator.

With A(γ) = H−1(γ)K(γ), we now show that

A−1
(
γ + γ†

)
A′−1

(
γ + γ†

)
−A−1 (γ)A′−1 (γ)− (DΣ(γ))

(
γ†
)

‖γ†‖g
→ 0, as

∥∥∥γ†∥∥∥
g
→ 0, (S.9)

where ‖·‖g is either the 1-norm or the max norm on Γ. First, note that

A−1
(
γ + γ†

)
A′−1

(
γ + γ†

)
−A−1(γ)A′−1(γ)

= A−1
(
γ + γ†

)(
A−1

(
γ + γ†

)
−A−1(γ)

)′
+
(
A−1

(
γ + γ†

)
−A−1(γ)

)
A−1(γ)

= −A−1
(
γ + γ†

)
A′−1

(
γ + γ†

)(
A
(
γ + γ†

)
−A(γ)

)′
A′−1(γ)

− A−1
(
γ + γ†

)(
A
(
γ + γ†

)
−A(γ)

)
A−1(γ)A′−1(γ). (S.10)

Next,

A
(
γ + γ†

)
−A(γ) = H−1

(
γ + γ†

)
K
(
γ + γ†

)
−H−1 (γ)K (γ)

= H−1
(
γ + γ†

)(
K
(
γ + γ†

)
−K(γ)

)
+ H−1

(
γ + γ†

)(
H (γ)−H

(
γ + γ†

))
H−1 (γ)K (γ)

= −H−1
(
γ + γ†

)m1∑
j=1

γ†jWj +

m1+m2∑
j=m1+1

γ†jWjH
−1(γ)K(γ)

 .

(S.11)

Substituting (S.11) in (S.10) implies that

A−1
(
γ + γ†

)
A′−1

(
γ + γ†

)
−A−1(γ)A′−1(γ) = ∆1

(
γ, γ†

)
+ ∆2

(
γ, γ†

)
= ∆

(
γ, γ†

)
, (S.12)
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say, where

∆1

(
γ, γ†

)
= A−1

(
γ + γ†

)
A′−1

(
γ + γ†

)m1∑
j=1

γ†jW
′
j +K ′(γ)H ′−1(γ)

m1+m2∑
j=m1+1

γ†jW
′
j


× H ′−1

(
γ + γ†

)
A′−1(γ),

∆2

(
γ, γ†

)
= A−1

(
γ + γ†

)
H−1

(
γ + γ†

)m1∑
j=1

γ†jWj +

m1+m2∑
j=m1+1

γ†jWjH
−1(γ)K(γ)


× A−1(γ)A′−1(γ).

From the definitions above and recalling that A(γ) = H−1(γ)K(γ), we can write

∆
(
γ, γ†

)
= A−1

(
γ + γ†

)
Υ
(
γ, γ†

)
A′−1 (γ) , (S.13)

with

Υ
(
γ, γ†

)
=

m1∑
j=1

γ†jG
′
j

(
γ + γ†

)
H ′−1

(
γ + γ†

)
+A′−1

(
γ + γ†

)
A′(γ)

m1+m2∑
j=m1+1

γ†jT
′
j

(
γ + γ†

)

+

m1∑
j=1

γ†jH
−1
(
γ + γ†

)
Gj (γ) +

m1+m2∑
j=m1+1

γ†jTj

(
γ + γ†

)
.

Then (S.12) implies that

A−1
(
γ + γ†

)
A′−1

(
γ + γ†

)
−A−1(γ)A′−1(γ)− (DΣ(γ))

(
γ†
)

= A−1
(
γ + γ†

)
A′−1

(
γ + γ†

)
−A−1(γ)A′−1(γ)−∆

(
γ, γ†

)
− (DΣ(γ))

(
γ†
)

+ ∆
(
γ, γ†

)
= ∆

(
γ, γ†

)
− (DΣ(γ))

(
γ†
)
, (S.14)

so to prove (S.9) it is sufficient to show that

∆
(
γ, γ†

)
− (DΣ(γ))

(
γ†
)

‖γ†‖g
→ 0 as

∥∥∥γ†∥∥∥
g
→ 0. (S.15)

The numerator in (S.15) can be written as
∑7

i=1 Πi

(
γ, γ†

)
A′−1(γ) by adding, subtracting and

grouping terms, where (omitting the argument
(
γ, γ†

)
)

Π1 = A−1
(
γ + γ†

) m1∑
j=1

γ†jG
′
j

(
γ + γ†

)
H ′−1(γ)

(
H(γ)−H

(
γ + γ†

))′
H ′−1

(
γ + γ†

)
,
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Π2 = A−1
(
γ + γ†

) m1∑
j=1

γ†jH
−1
(
γ + γ†

)(
H(γ)−H

(
γ + γ†

))
H−1(γ)Gj (γ) ,

Π3 = A−1
(
γ + γ†

) m1+m2∑
j=m1+1

γ†j

(
A−1

(
γ + γ†

)
−A−1 (γ)

)
T ′j

(
γ + γ†

)
,

Π4 =
(
A−1

(
γ + γ†

)
−A−1 (γ)

) m1+m2∑
j=m1+1

γ†jTj (γ + γ†),

Π5 = A−1(γ)

m1+m2∑
j=m1+1

γ†jH
−1 (γ + γ†) (H(γ)−H (γ + γ†))H−1(γ)Wj ,

Π6 = ∆
(
γ, γ†

) m1∑
j=1

γ†jW
′
jH
′−1(γ),

Π7 =
(
A−1

(
γ + γ†

)
−A−1 (γ)

) m1∑
j=1

γ†jH
−1(γ)Gj(γ).

By (S.8), (S.13) and replication of earlier techniques, we have

max
i=1,...,7

sup
γ∈Γo

∥∥∥Πi

(
γ, γ†

)
A−1(γ)

∥∥∥ ≤ C ∥∥∥γ†∥∥∥2

g
, (S.16)

where the norm used on the RHS of (S.16) depends on whether we are considering the general case

or the ‘single nonzero diagonal block’ case. Thus∥∥∆
(
γ, γ†

)
− (DΣ(γ))

(
γ†
)∥∥

‖γ†‖g
≤ C

∥∥∥γ†∥∥∥
g
→ 0 as

∥∥∥γ†∥∥∥
g
→ 0,

proving (S.15) and thus (S.9).

Corollary CS.1. For the spatial error model with SAR(p) errors,

(DΣ(γ))
(
γ†
)

= K−1(γ)

m1∑
j=1

γ†jGj(γ)K ′−1(γ).

Proof. Taking m2 = 0 in Lemma LS.5, the elements involving sums from m1 + 1 to m1 + m2 do

not arise and H(γ) = In, proving the claim.

Corollary CS.2. For the spatial error model with SMA(m2) errors,

(DΣ(γ))
(
γ†
)

= H(γ)

m2∑
j=1

γ†jTj(γ)H ′(γ).

Proof. Taking m1 = 0 in Lemma LS.5, the elements involving sums from 1 to m1 do not arise and

23



K(γ) = In, proving the claim.

Lemma LS.6. For the spatial error model with MESS(p) errors, if

max
j=1,...,m1

(
‖Wj‖+

∥∥W ′j∥∥) < 1, (S.17)

then

(DΣ(γ))
(
γ†
)

= exp

m1∑
j=1

γj
(
Wj +W ′j

) m1∑
j=1

γ†j
(
Wj +W ′j

)
.

Proof. Clearly DΣ ∈ L (Γo,Mn×n). Next,∥∥∥A−1
(
γ + γ†

)
A′−1

(
γ + γ†

)
−A−1(γ)A′−1(γ)− (DΣ(γ))

(
γ†
)∥∥∥

=

∥∥∥∥∥∥exp

m1∑
j=1

(
γj + γ†j

) (
Wj +W ′j

)− exp

m1∑
j=1

γj
(
Wj +W ′j

)− (DΣ(γ))
(
γ†
)∥∥∥∥∥∥

=

∥∥∥∥∥∥exp

m1∑
j=1

γj
(
Wj +W ′j

)exp

m1∑
j=1

γ†j
(
Wj +W ′j

)− In − m1∑
j=1

γ†j
(
Wj +W ′j

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥exp

m1∑
j=1

γj
(
Wj +W ′j

)∥∥∥∥∥∥
∥∥∥∥∥∥exp

m1∑
j=1

γ†j
(
Wj +W ′j

)− In − m1∑
j=1

γ†j
(
Wj +W ′j

)∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥∥In +

p∑
j=1

γ†j
(
Wj +W ′j

)
+

∞∑
k=2


m1∑
j=1

γ†j
(
Wj +W ′j

)
k

− In −
m1∑
j=1

γ†j
(
Wj +W ′j

)∥∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥∥
∞∑
k=2


m1∑
j=1

γ†j
(
Wj +W ′j

)
k
∥∥∥∥∥∥∥ ≤ C

∞∑
k=2

m1∑
j=1

∣∣∣γ†j ∣∣∣ ∥∥(Wj +W ′j
)∥∥k

≤ C
∞∑
k=2

∥∥∥γ†∥∥∥k
g
, (S.18)

by (S.17), without loss of generality, and again the norm used in (S.18) depending on whether we

are in the general or the ‘single nonzero diagonal block’ case. Thus∥∥A−1
(
γ + γ†

)
A′−1

(
γ + γ†

)
−A−1(γ)A′−1(γ)− (DΣ(γ))

(
γ†
)∥∥

‖γ†‖g
≤ C

∞∑
k=2

∥∥∥γ†∥∥∥k−1

g
→ 0,

as
∥∥γ†∥∥

g
→ 0, proving the claim.

Theorem TS.1. Under the conditions of Theorem 4.4 or 5.3, Tn −T a
n = op(1) as n→∞.
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Proof. It suffices to show that nm̃n = nm̂n + op(
√
p). As η̂ = y − θ̂, û = y − f̂ , and v̂ = θ̂ − f̂ , we

have û = η̂ + v̂ and

nm̃n = σ̂−2
(
û′Σ (γ̂)−1 û− η̂′Σ (γ̂)−1 η̂

)
= σ̂−2

(
2û′Σ (γ̂)−1 v̂ − v̂′Σ (γ̂)−1 v̂

)
= 2nm̂n − σ̂−2

[
Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 (u+ e)− e+ θ0 − f̂
]′

Σ (γ̂)−1

[
Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 (u+ e)− e+ θ0 − f̂
]

= 2nm̂n − σ̂−2u′Σ (γ̂)−1 Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 u−σ̂−2
(
θ0 − f̂

)′
Σ (γ̂)−1

(
θ0 − f̂

)
+σ̂−2

(
2(θ0 − f̂)− e

)′
Σ (γ̂)−1

(
I −Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1

)
e

−2σ̂−2
(
θ0 − f̂

)′
Σ (γ̂)−1 Ψ

(
Ψ′Σ (γ̂)−1 Ψ

)−1
Ψ′Σ (γ̂)−1 u

= 2nm̂n −
(
nm̂n − σ̂−2 (A1 +A2 +A3 +A4)

)
− σ̂−2A4

+σ̂−2
(

2(θ0 − f̂)− e
)′

Σ (γ̂)−1
(
I −Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1

)
e− 2σ̂−2A3

= nm̂n + σ̂−2 (A1 +A2 −A3)

+σ̂−2
(

2(θ0 − f̂)− e
)′

Σ (γ̂)−1

(
I −Ψ

(
Ψ′Σ (γ̂)−1 Ψ

)−1
Ψ′Σ (γ̂)−1

)
e. (S.19)

In the proof of Theorem 4.2, we have shown that∣∣∣∣(θ0 − f̂
)′

Σ (γ̂)−1
(
I −Ψ[Ψ′Σ (γ̂)−1 Ψ]−1Ψ′Σ (γ̂)−1

)
e

∣∣∣∣ = op(
√
p)

in the process of proving |A2| = op(
√
p). Along with∣∣∣∣e′Σ (γ̂)−1

(
I −Ψ

(
Ψ′Σ (γ̂)−1 Ψ

)−1
Ψ′Σ (γ̂)−1

)
e

∣∣∣∣
≤

∣∣∣e′Σ (γ̂)−1 e
∣∣∣+

∣∣∣∣e′Σ (γ̂)−1 Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1 e

∣∣∣∣
≤ ‖e‖2 sup

γ∈Γ

∥∥∥Σ (γ)−1
∥∥∥+ ‖e‖2 sup

γ∈Γ

∥∥∥Σ (γ)−1
∥∥∥2
∥∥∥∥∥ 1

n
Ψ

(
1

n
Ψ′Σ (γ)−1 Ψ

)−1

Ψ′

∥∥∥∥∥
= Op

(
‖e‖2

)
= Op

(
p−2µn

)
= op(

√
p),

we complete the proof that nm̃n = nm̂n + op(
√
p). In the SAR setting of Section 5,

nm̃n = σ̂−2
(
û′Σ (γ̂)−1 û− η̂′Σ (γ̂)−1 η̂

)
= σ̂−2

(
2û′Σ (γ̂)−1 v̂ − v̂′Σ (γ̂)−1 v̂

)
= 2nm̂n − σ̂−2

Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1

u+ e+

dλ∑
j=1

(λj0 − λ̂j)Wjy

− e+ θ0 − f̂

′
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Σ (γ̂)−1

Ψ
(

Ψ′Σ (γ̂)−1 Ψ
)−1

Ψ′Σ (γ̂)−1

u+ e+

dλ∑
j=1

(λj0 − λ̂j)Wjy

− e+ θ0 − f̂

 .
Compared to the expression in (S.19), we have the additional terms

−σ̂−2
dλ∑
j=1

(λj0 − λ̂j)Wjy
′Σ (γ̂)−1 Ψ

(
Ψ′Σ (γ̂)−1 Ψ

)−1
Ψ′Σ (γ̂)−1

dλ∑
j=1

(λj0 − λ̂j)Wjy

and

−2σ̂−2
dλ∑
j=1

(λj0 − λ̂j)Wjy
′Σ (γ̂)−1 Ψ

(
Ψ′Σ (γ̂)−1 Ψ

)−1
Ψ′Σ (γ̂)−1

(
u+ θ0 − f̂

)
.

Both terms are op(
√
p) from the orders of A5 and A6 in the proof of Theorem 5.2. Hence, in the

SAR setting, nm̃n = nm̂n + op(
√
p) also holds.
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