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Abstract

Different agents compete to predict a variable of interest related to a set of covariates via
an unknown data generating process. All agents are Bayesian, but may consider different
subsets of covariates to make their prediction. After observing a common dataset, who
has the highest confidence in her predictive ability? We characterize it and show that it
crucially depends on the size of the dataset. With small data, typically it is an agent using a
model that is ‘small-dimensional,” in the sense of considering fewer covariates than the true
data generating process. With big data, it is instead typically ‘large-dimensional,” possibly
using more variables than the true model. These features are reminiscent of model selection
techniques used in statistics and machine learning. However, here model selection does
not emerge normatively, but positively as the outcome of competition between standard
Bayesian decision makers. The theory is applied to auctions of assets where bidders observe

the same information but hold different priors.
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1 Introduction

Consider a setting where decision makers with different priors compete to predict a
variable y. To fix ideas, suppose that agents use a (possibly misspecified) statistical
model that treats y as a linear function of a number of possible covariates {xi}ie{lwk}
plus a noise term, ie., y = > fix; + €. For example, y could be a country’s GDP
growth, which agents are trying to predict using a long list of variables x. Both the

B;’s and the variance of e, are unknown.

Agents share the same quadratic loss function about their prediction, but use
different models—different subsets of covariates as relevant to the prediction. In the
GDP example, some may believe that relevant factors include education level and net
trade surplus; others may also consider monetary supply and climate change data.
Suppose all agents are Bayesian and update their prior after observing a common
dataset: n draws of y and x from the unknown data generating process. What are
the characteristics of the model of the agent that, after observing the data, has the

highest confidence in its predictive ability, i.e., has the lowest posterior expected loss?

We provide a complete characterization and show that this depends both on the
model dimension of the agent, i.e., how many variables are considered, as well as on
the size of the dataset n. In particular, we show that with small samples the most
confident agent is one using a model that is small-dimensional, possibly smaller than
one that is properly calibrated. In contrast, with big data, the most confident agent
instead uses a ‘large-dimensional’ model, with possibly more variables than the true
data generating process. These two results are reminiscent of well-known properties
of model selection techniques suggested in Statistics and widely used in Econometrics
and Machine Learning. There is however one crucial difference in the approach: in
statistics and machine learning, model selection criteria emerge normatively, as the
optimal procedure with respect to some objective function; here instead they emerge
positively, from a competition mechanism where the most confident Bayesian agent

is selected.

Our results characterize the agent with the highest confidence in her predictive
ability (lowest expected loss) according to her own (possibly misspecified) statistical
model and prior. Studying the expected loss from the point of view of each agent

is a key departure from the literature, which instead typically considers the objec-



tive expected loss, based on the true data generating process. As motivation, note
that there are many competitive situations in which more confident agents acquire
prominence: these are the agents who are willing to stake the most on their ability

to forecast.

A practical example is a second-price auction in which agents are bidding to
acquire a productive asset. The value of this asset to an agent depends on their
ability to predict a given variable using a set of covariates. The asset could be ad-
space on an online platform, the value of which depends on the sellers’ ability to
infer customers’ preferences using their observable characteristics; or it could be a
company, whose future value depends on how accurately the new owner is able to
predict market conditions. All bidders observe the same data, but may use different
variables to make this prediction, as they may have different priors, or models. The
auction is clearly won by the agent who is most confident in her predictive ability,
according to her own posterior after observing the dataset. In general, our results
are useful to characterize the winner (and their model) in competitive situations in
which a leading position is taken by those who are most confident in their predictive
ability. Other examples include political competition, or board meetings, where the

ability to credibly show one’s confidence may lead to selection.

Summary of Results and Intuition. Our first result characterizes the expected
posterior loss of an agent who has prior 7 and observes data D,,. We show that this
loss can be decomposed as the sum of two components which we term: 1) model
fit: the agent’s posterior expectation of the variance of e and 2) model estimation
uncertainty: the degree of uncertainty that the agent has about each of the coefficients
in its regression model. Crucially, we show that the latter in turn depends on the
model dimension. This implies that while a Bayesian agent uses the Bayesian prior
to compute the best action and does not care about the dimension of the model she

is using, this very dimension affects her confidence in her own predictive ability.

This characterization has two immediate implications, depending on the size of
the dataset. For clarity, consider first the case in which the dataset is large. In this
case, the ‘model estimation uncertainty’ term vanishes: agents will have no uncer-
tainty about their fitted parameters, even if they are using the wrong model. The

comparison is therefore based only on model fit. As a result, incorrectly specified



models, i.e., models which omit an observable that is relevant for prediction, never
prevail. At the same time, we show that larger models that contain additional ob-
servables that are irrelevant to the true data generating process (DGP) may continue
to win, even asymptotically. Even though these larger models will converge to the
properly calibrated ones, for any finite sample they remain strictly different, and we
show that their probability of winning remains strictly above zero. Our results show
that the prior does not vanish asymptotically: it continues to affect a large model’s

probability of winning even with infinite data.

Our second set of results pertain to the case of small datasets. Here ‘model
estimation uncertainty’ plays a critical role. We show that the agent with the lowest
loss will be one with a model that is of smaller dimension than the true DGP. This
is because while agents with misspecified models may have a lower model fit, they
will also have a lower model estimation uncertainty (as they have less parameters to

estimate).

In order to establish the aforementioned result, we make additional assumptions.
We assume that all agents’ priors take the normal-inverse gamma form. We also as-
sume that with no data all agents have the same expected prior loss. This guarantees
that all heterogeneity comes from the different ways in which agents’ confidence is
affected by data — eliminating the possibility that differences in prior confidence drive

our results.

First, we prove that when the dataset consists of a single data point, the win-
ning model always involves exactly 1 observable. Deriving more general results is
challenging, as with small samples we cannot exploit the distributional approxima-
tions adopted in the large-sample analysis. Small samples have two features: the
dependence on specific data realizations, and the fact that the prior remains rele-
vant. In our analysis, we want to preserve the second feature, but circumvent the
first — the source of the difficulty in analytical tractability. To this is end, we use a
non-standard asymptotic framework that allows the prior to ‘drift’ with the sample

size.! We present asymptotic results in which we let the dataset grow but at the

“Non-standard asymptotics’ that allow for the parameters of a statistical model to be indexed
by the sample size have been used extensively in econometrics. The typical goal of an alternative
asymptotic framework is to provide better approximations to finite-sample distributions of estima-
tors, tests, and confidence intervals, while exploiting Laws of Large Numbers and Central Limit
Theorems. For example, the local-to-unity asymptotics of Phillips (1987) studies auto-regressive
models that are close to being nonstationary; the local-to-zero asymptotics of Staiger and Stock



same time we make the priors more dogmatic. This allows us to use the Law of
Large Numbers and avoid issues pertaining to specific realizations while at the same
time maintaining the relevance of the prior. Using this approach, we show that in-
deed small-dimensional models — which are possibly misspecified as they use fewer
observables that then true DGP — prevail.

Our main results above follow from a simple intuition. Suppose Dr. A and Dr. B
are both trying to predict y using a set of covariates {z;}icq1,. 100y Dr. A believes
that only x; matters—she assigns probability zero to the event that any other variable
is related to y. Dr. B, instead, considers all 100 covariates. Suppose the true DGP
is such that the best linear predictor of the outcome variable includes all variables:
thus, Dr. B has a ‘correct’ model, while Dr. A does not. Lastly, normalize the priors
so that, if no data is revealed, Drs. A and B have the same expected loss. After n

data points are revealed, who is more confident?

Suppose first that n is small, e.g. n = 5. In this case, Dr. A will believe she has
a good grasp of the data generating process—she is trying to fit only one parameter
with 5 data points; her confidence will be high. Dr. B, instead, will make little
headway in estimating her model. Fitting 100 parameters using 5 observations; her
confidence will be low. Further, since the amount of data is “small,” both agents’
posterior estimates of o2 are close to their prior and therefore the competition is
mainly over who believes they have a good grasp of the data generating process—i.e.,
Dr. A. Therefore, even if Dr. A has a misspecified model that omits 99 out of the
100 relevant variables, and even if the agents confidence without data is normalized
to be the same, when n is small she will nevertheless have higher confidence in her

predictive ability.

What happens then as data accumulates? A tradeoff emerges. While Dr. A will
be able to estimate the parameters of her model well, she will also observe that it
has a poor fit on the data. After all, she must attribute all the explanatory power of
Ty ...T100, Which she does not consider in her model, to noise, therefore leading her to
increase her estimate of 0. Dr. B instead will take longer to estimate the parameters
of her model, but she will be able to fit the data with a lower 0. When n is small,

the first effect dominates, and Dr. A will be more confident. As n grows, however,

(1997) studies Instrumental Variables models that are close to being unidentified; and Cattaneo
et al. (2018) studies models where possibly many covariates are included for estimation and infer-
ence.



the second effect will acquire prominence, and Dr. B will become more confident.

This trade-off is the core of our results with small samples. A small number of
observations increases confidence faster for agents with small-dimensional models. It
is only as n grows larger that the confidence of agents with larger-dimensional models
may catch up. As this may happen also when the true DGP is large-dimensional,
when the dataset is relatively small agents with small-dimensional models are thus

overconfident about their predictive abilities — and may thus be the most confident
of all.

Relation to Statistics, Econometrics, and Machine Learning. A large liter-
ature studies model-selection techniques (see Claeskens and Hjort (2008) and Burn-
ham and Anderson (2003) for textbook overviews). These include, for example, the
C, criterion of Mallows (1973), the Akaike Information Criterion (AIC) of Akaike
(1974), and the Bayes Information Criterion (BIC) of Schwarz (1978). A key fea-
ture, common to all such techniques, is that they penalize large-dimensional models
in small datasets. This is motivated normatively by the need to avoid over-fitting:

large-dimensional models may be too flexible and give an illusion of fitting the data.

Our results have aspects reminiscent of these approaches. Small-dimensional mod-
els may prevail in small samples; in large samples, incorrect models are not selected,
but larger models can continue to be selected with positive probability. As mentioned
above, however, while results in the literature are justified normatively, our model
selection criterion emerges positively from a framework in which different purely-
Bayesian decision makers use different models, and the selected model is the one of
the agent who is most confident in her own predictive ability. It is the competition
between these agents—the selection of the most confident one—that generates the

model selection.

One implication of our results is that in a competitive environment such as the auc-
tion we described, if we observe the use of smaller-dimensional models, it may not be
possible to determine whether this is due to the use of model-selection techniques
prescribed in Statistics or from the competitive selection between fully-Bayesian
agents. To illustrate, it may be worth highlighting a parallel with the selection of
entrepreneurs. In a context of heterogeneous priors, it is often observed that en-

trepreneurs hold more optimistic beliefs. The causality, however, may not be that



being an entrepreneur leads agents to become optimistic, but rather that agents whose
priors are more optimistic are those that tend to become entrepreneurs. Similarly,
in our context, small dimensional-models may be used because agents adopt them
normatively; but our results also show that it could be that every agent is purely
Bayesian, but it is the agents who have a smaller-dimensional model who are over-
confident in their predictive ability, and thus acquire a prominent position — e.g., win

the auction.

The remainder of the paper is organized as follows: Section 2 outlines the formal
model and notation. Section 3 characterizes the expected posterior loss of a single
agent, the foundation of our results. Section 4 collects our main results characterizing
the winning model under competition: Section 4.1 for the case when n is large, and
Section 4.2 for the case when n is small. Section 5 considers some extentions and
implications of our results. Section 6 concludes and discusses the related literature in

further detail. All proofs appear in the Appendix.

2 Model

A group of agents is competing to provide a forecast for a real-valued variable y
as a function of k real-valued covariates € R¥. In this section, we describe the
relationship between y and x postulated by each of the agents, the data available, the

agents competing, and the competition process itself.

Data Generating Process. A true Data Generating Process (DGP), denoted P,
determines the relationship between y and x. All agents assume there is a linear

relation between the variable y and the covariates = € R”, i.e.,

y=2a'0+e, (1)
where €|z ~ N1 (0,07), B € R~

That is, agents believe that the DGP is a homoskedastic linear regression with Gaus-
sian errors. For simplicity of exposition, we assume that the agents treat the distri-
bution of the observables x as known, and denote it by P. We assume that under this
distribution Ep[z2’] is a full rank matrix. Let © := R* x R, , with § = (3, 02) defin-



ing the unknown parameters of interest. As we discuss below, agent have (possibly
different) priors 7 over ©. Fixing P, § = (3, 0?) fully defines the DGP according to
agents, denoted by Q. We assume, for simplicity, that )y has a probability density
function ¢(z,y|6), which holds whenever P has a probability density function.

Two comments are in order. First, about the linearity assumption: note that,
because the covariates in x can be correlated, the linearity assumption is only mildly

restrictive. For example, if one wished to express the non-linear DGP y = 3\;—,;5 + €,

one can simply define a new observable equal to j—% While not all non-linear DGPs
can be expressed this way, good approximations can always be achieved. Thus, our

framework allows the agents to have a wide family of non-linear relations as DGP.

Second, note that the assumptions above only concern the agent‘s perceived DGP,
which is allowed to be misspecified: it may be that )y differs from P at every 6 — for
example, errors may be heteroskedastic in the true DGP. We discuss the implications

when they arise.

Data. Before making a prediction, each agent observes a dataset, denoted D,,
composed of n i.i.d. draws according to the true DGP P. We denote the data as
D, = (Y, X) where Y € R” and X € R™*. We assume that all agents observe the
same data: this will be relevant for our application—as we shall see, in an auction

setting this will avoid Winner’s curse type concerns.

Actions and utility. Agents make a prediction of y given the covariates x, which
formally means that they construct a prediction function f that maps x into y, i.e.,
f : R¥ — R. Their utility is maximized by minimizing a standard quadratic loss
function, equal to the square of the difference between the true y and their forecast
fiie, —(y— f)2

All agents are Bayesians, and thus choose a prediction function f that minimizes
their Expected Loss given their Bayes-updated posterior beliefs. Define L(f,6) as the

agent’s loss under prediction function f assuming the true DGP is Qy, i.e.

L(f,0) == Eq,[(y, f(x))’] (2)

The loss captures the average quadratic error incurred in predicting y using f(z),



assuming (x,y) are drawn randomly according to Qy. If 7 is the agent’s prior over
0, and D, the observed data, then the optimal action for the agent is to choose a

prediction function f(*7r D) - R* — R such that

ftepn) € argjlcnin E.[L(f,0)|D,]. (3)

For convenience, we denote by L*(m, D,,) the expected posterior loss of an agent
who has prior 7, observes data D,,, and uses the optimal predictor defined above,
that is

L*(m, Dy) = EW[L(f(*n,Dn)a 0)|Dn] = mfin E-[L(f,0)|Dx]. (4)

2.1 “Models” and Competition

A key ingredient in our setting, as foreshadowed in the introduction, is that different
agents may have with different priors over the unknown parameters in . Of particular
interest will be the case in which these agents consider different subset of observables

as relevant for their prediction — they have different “models” of the world.

If {1,2...,k} label the observables, for any i of them, if the agent’s prior on f3; is
degenerate at 0 it is easy to see that the agent is bound never to consider observable
i in its prediction. Denote by J(7) the set of observables that are instead considered
by an agent with prior 7. Formally, if 7; denotes the marginal over (; of prior 7 and

dg is a Dirac measure at zero,
Jm)={iel,...;k:m(Bi) # o}

In what follows, we sometimes use simply J C {1,...,n} to denote a model —
understood as the set of observables considered to make a prediction. Lastly, for a
given vector 3, denote by 3; the subvector consisting solely of the components in
the set J C {1,...,k}. Define z; as the analogous subvector of z, and X, as the

corresponding submatrix of X.



Example: Normal-Inverse Gamma prior A convenient example is when the

prior on 3|o? is normally distributed over the coordinates of the covariates that belong
2

2 1s an inverse

to a set J, and degenerate at zero otherwise, while the prior over o
gamma distribution. This is the typical prior used for the Bayesian analysis of the

Normal linear regression model.

Definition 1. We say that the agent’s prior m has Normal-Inverse Gamma form with

hyperparameters (v, ag, by) if

o2
B1er) o2 ~ N <O, ﬂJ—(EW”]IJ(,T)> o? ~ Inv-Gamma(ag, by).

In this special case, all agents differ on the subset of covariates J(m) they consider

and on the covariance of the slope coefficients.

Note also that if covariates have the same variance, the priors above are automat-

ically normalized so that they all have the same expected loss before data, i.e., for all
', L*(m,0) = L*(«', D).

The Competition Mechanism. As we discussed, agents compete through a mech-
anism that selects the agent with the lowest posterior expected loss given her own
prior. Our analysis applies to any mechanism that leads to this selection. To give
a concrete example, the following is a simple game in which the dominant strategy

equilibrium results in this selection.

Consider a second-price auction, where, like in Atakan and Ekmekeci (2014), the
winner of the auction gets to choose an action that affects the value of the asset.
Specifically, the action has a value that depends on her ability to predict a given vari-
able, as in the examples given in the introduction. Formally, fixing the environment

defined above (DGP, agents etc), consider a game with the following timing:

1. Nature draws 0 € ©;
2. All agents see a common dataset D,, drawn according to Qy;

3. Agents submit bid in a sealed-bid second-price auction;



4. The winner observes x randomly drawn according to P and chooses an real-

values action a;

5. The winner gets a lump sum payoff of M — (y —a)?, where M is a large positive

number.

Every bidder seeks to minimize the expected value M — (y — a)?, leading to the

expected loss function discussed above.

Because agents see a common data set, an agent with prior 7 has an expected value
of M — L*(m, D,,) for winning. In the standard dominant equilibrium, the winning
agent is the one with the highest value: since M is common across agents, the winner
is thus the agent with the lowest expected loss (according to her own prior) given
the observed data. Notice that since all agents observe the same dataset, and thus
there is no asymmetric information — only heterogenous priors — no winner-curse-type

consideration apply.

3 Characterizing the Posterior Expected Loss

We begin by characterizing (i) the optimal prediction function of a single Bayesian
agent, and (4i) her expected posterior loss (henceforth, posterior loss) conditional on
choosing the optimal prediction function using her own belief. The latter plays a

crucial role in our environment.

3.1 Optimal Prediction

Characterizing the optimal prediction is a standard problem. The agent chooses f to
minimize, E.[L(f,0)|D,], that can be rewritten as:

Er[07|Dn] + E-Ep[(a'5 — f(2))*| Da]. (5)

The first term does not depend on f. The second term involves the average error

incurred in predicting /(3 using f(x).2 With standard arguments (i.e., exchanging

2The inner expectation averages over values of . The outer expectation averages over the values

of S.

10



the order of integration and taking first order conditions), we can see that the inner

expectation of the second term is minimized by the function:

fee,0n) (@) := &' Ex[B|Dn] = 2 2) B [B1(r) | D). (6)

Thus, a Bayesian decision maker with a posterior 7|D,,, model J(7), and a square
loss function, forecasts y at x as her Bayesian posterior mean of 2’3. Again, this is a

standard result.

3.2 Posterior Loss

We now turn to characterizing the agent’s posterior loss computed using her own belief
and conditional on her adopting an optimal forecast. This measures how confident
each agent is of her predictive ability, and it will be the central driver of the dynamic
of our competition between agents. Most importantly, the key driving forces of our

results will already be evident from this simple analysis.

The following Lemma shows that the agent’s posterior loss L*(w, D,,) can be de-
composed into the sum of two parts: one that we interpret as model fit, i.e., how well
is the agent’s model fitting existing data; and one that we interpret this as the agent’s

model’s estimation uncertainty according to her own prior.

Lemma 1. The agent’s posterior expected loss from her Bayes predictor is:
L*(m, Dy) = E, [02|Dy] + Tr (V[8;|D,) Eplz,a')]), (7)

where V(-) is the variance-covariance operator, Tr is the trace operator, and J denotes
the agent’s model J(r).

The Lemma above shows that the agent’s expected posterior loss L*(m, D,,) can
be characterized as made of two components. The first is standard: the posterior
expectation of the variance of the error— the agent’s estimate of the irreducible noise
in the system, in turns related to model fit, i.e., how well is the agent’s model fitting

existing data, because the agent must ascribe all unexplained variation to noise.

The second term, Tr (V. [3|D,] Ep[za’]), is the trace of the variance-covariance

matrix of the coefficients of the model (adjusted by Ep[xz]). This is a measure of

11



how uncertain is the agent how her estimation of her model— thus capturing the to
model estimation uncertainty faced by the agent according to her own prior. For an
intuition consider the simpler case in which observables are independent and have
the same variance (i.e., orthornormal). In this case, the second term reduces to
Tr (V. [B|Dy)), ie., Zle V:16i|Dy]. By comparison, directly evaluating the loss of

the Bayes estimator, i.e., substituting (6) in (5), the second term in (5) equals

EpE-[(2'8 = fiz.p,) () Dn]
=EpE[(2'8 — #'Ex[8|D,))?| Dy]

=EpE,[(2'(8 — E+[8|D))*| Dy

k

where the last equality follows from the definition of variance and the assumption
that the 2’s are orthonormal. Thus, the second part of the loss function is in this
case simply the sum of the variances of the parameters (3, indeed a measure of model
estimation uncertainty. The exact formula in (7) extends this to cover the case of

observables with a general variance-covariance matrix.

4 Competing Models

Lemma 1 helps us understand the loss a single agent expects given her posterior. We
now apply this Lemma to understand the model of the ‘winning agent,’ i.e., the agent

with the lowest expected posterior loss among a collection of agents.

As we foreshadowed, we identify the winner both in the case that the dataset is
large (i.e. the number of observations n is “large” relative to the number of observables
k), and the case that it is small. We will handle each in turn. We show that when the
dataset is big, the true (or larger) model prevail. Our results apply to general priors
(modulo some technical assumptions to ensure posteriors are well behaved enough)
and general data generating processes. Conversely, when the dataset is small, smaller
models may take a lead. Our small-sample results below are for the specific case when
all agents have priors of the Normal-Inverse Gamma form introduced earlier. For this

reason, we begin our discussion with the large-data analysis.

12



The main building block of our results is Lemma 1, which contains the key intu-
ition. When n is large, the model estimation uncertainty component of the posterior
loss vanishes: each agent, even those with a ‘wrong’ model, will reduce the uncer-
tainty about the parameters to zero. All that matters is the model fit. Then, it is
easy to see that agents that use models that exclude relevant variables are bound to
have a higher expected loss, since they must estimate a higher o2 to account for the
variation that they are disregarding. Put differently: with large data, agents whose
models are misspecified by excluding relevant variables will not win our competition.
Whether agents who consider more variables may win is a separate question, as in this
case the model fit achieved by two competing models will be the same. In what may
be less intuitive, we show that agents’ prior continue to affect the model competition

even with infinite data.

When n is small, agents with small-dimensional models have instead an advantage,
because they are going to have smaller model estimation uncertainty, the second part
of the expected loss as characterized in Lemma 1. Even though all agents start with
the same expected loss with no data, when the data revealed is (relatively) small,
the expected loss decreases faster for agents with small-dimensional model. Thus,
agents who hold models that are misspecified in that they exclude relevant variable
may end up being more confident in their predictive ability. The example discussed
in the introduction (of Dr. A and B) may provide further intuition. To recap, ceteris
paritbus, trying to estimate more parameters from the same amount data will result
in more model uncertainty, i.e., less concentrated posteriors. This uncertainty will

therefore be reflected in the agent’s expected loss.

Before we dive into the results, let us introduce them with simulation evidence.
Figure 1 shows simulation results in a setting where there are six observables in the
dataset, {x1,...,26}, of which only the first five are relevant for prediction. We
suppose we have 63 agents, one for each non-empty subset of {z,..., 26}, all with
Normal-Inverse Gamma priors with the same shared hyperparameters. We simulate
datasets of sizes n = 1 to 50, and plot the frequency of the size of the model of the
agent with the lowest subjective expected loss. Two main features emerge. First,
when n is “small” the winner tends to have a small model, indeed a model that
we know to be misspecified (since we chose the DGP to depend on observables x;

through z5). Secondly, as n grows large, the true model wins more often. However,

13
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Figure 1: Winning rates for different models with Normal Inverse-Gamma priors and
shared hyperparameters (ag, by, y) = (2,1,0.001) on 5,000 simulated datasets of size
n =1 to 50. 6 Covariates are distributed  ~ N(0,Is). True d.g.p only depends on
covariates 1-5, (B ...05) ~ N(0,15), B = 0.

also the larger model, that includes the redundant variable x4, continues to win, with
relative frequencies that appear to converge to a steady state. In what follows, we

give analytical foundations to each of these observations.

Finally, a little more notation will be useful. Note that a dataset D,, induces an

order >p, over priors according to the posterior loss they induce given D,,.

Definition 2. Fizing a dataset D,, we define the order >p, over priors as:
T-p, T <= L*(n,D,) < L*(x,Dy,). (8)

Definition 3. Given a vector Sy € R¥, Jy is the set of indices of the coordinates of

Bo that are nonzero; i.e.,
Jo = {k|Bx # 0}.
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Then define:

TS ={JeT|Jc
JE={JeJ|JcCJ}
TV ={JeT| ¢ J}.

In words, if Jo the set of indexes useful to in the prediction, J§ are the strictly
smaller set of indexes nested in Jo; J& are the strictly larger ones that nest Jy; and
TV are “wrong” ones, i.e., those that rule out at least one explanatory variable that
is non-zero in Jy. Note that J3 C JJV.

We also define the set of priors that give non-zero weight to indexes in Jy,

o == {n|J(7) = Jo}.

The sets 115 11, TV are defined analogously

4.1 The winner with n ‘large’

We characterize the winner for large n under the mildly technical regularity assump-
tions about the priors of the agents and a set of ‘standard’ high-level conditions on
the true DGP, P.

Assumption 1. Fach agent has a prior over 0 characterized by a probability density

function w(-) that is sixz times continuously differentiable and with full support over
the set (B, 02) € RV@Ix R, .3

Assumption 1 posits that agents’ priors over the [3;’s are either degenerate at
0, or full support. In the latter case, it requires a pdf to exist and to be suitably

differentiable. (This naturally holds for Normal-Inverse Gamma.)

We now turn to assumptions on the true DGP P. Before we do, recall that while
the analysis conducted by each of our Bayesian agents is based on a linear regression
model with Normal and homoskedastic errors (Eq. (1)), in the asymptotic results

below we allow for the possibility of their likelihoods being misspecified. For example,

3By definition, the prior of agent j for any ., k ¢ J, is degenerate at 0.
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true errors may be heteroskedastic or non-Normal. We now impose assumptions on
the true DGP P.

Assumption 2. Let P denote the joint distribution of (x,y). Let the data D,
((x1,11)s .- (Tn,yn)) denote an i.i.d. sample from P. Then:

1. (Population Second Moments) The smallest eigenvalue of the matriz Ep[xa'] is

strictly positive, and its largest eigenvalue is finite.

2. (Central Limit Theorem for covariates and residuals) Let By denote the param-
eter that satisfies Epx(y — 2'fy)] = 0. Then

sz vi — 2500) —>Nk(0 Ep[(y — 2'Bo)*x2’]).

3. (Asymptotic behaviour of posterior variances for misspecified models) Let g(x,y|0)
denote the probability density function of the possibly misspecified parametric
model for the distribution of (z,y) used by the agents. Let K(0) := —Ep[ln g(x, y|6)]
and let D*K(0) denote the Hessian of K(0). Then

1

V(0]Dy) = (D*K(60))
where 8y is the parameter that minimizes K ().

Let us briefly discuss the content of the assumption above. For the non-technical
reader, it may suffice to note that this assumption is satisfied when the true DGP is
well-behaved ‘enough’ that long run estimation /inference of this true DGP is possible
for our misspecified Bayesian agents — indeed conditions satisfied by most commonly
used examples. Part (1) guarantees that the matrix of population second moments
is both finite and invertible. This implies there is a unique parameter [, satisfying
Ep[z(y — 2'By)] = 0 and we interpret it as the true parameter.* Part (2) is a standard

Central Limit Theorem, often invoked to obtain the asymptotic distribution of the

4This also implies that the population second moments can be consistently estimated from the
sample second moments of the data. We will use this assumption to characterize the probability
limit of the Maximum Likelihood Estimators based on the possibly misspecified likelihoods of the
Bayesian agents. Note that in principle, we allow for the distribution of covariates assumed by the
competing agents (denoted P) to be different from the distribution of covariates under P.
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Ordinary Least Squares (OLS) estimator in a linear regression model.”> Part (3) can
be thought of as imposing a particular aspect of the large sample behavior of posterior
distributions captured by the Bernstein-Von Mises Theorem (BVMT).5

We are now ready to state our large-sample results.

Theorem 1. Let P denote the true data generating process and let the data D, :=
((x1,11)s - (Tn,yn)) denote an i.i.d. sample from P. Define 5y as the parameter
such that Eplz(y — 2'By)] = 0 and let o2 = Ep|(y — 2'50)?*] and my any element of
Ily. Let Jy denote the associated true model for By. Then, for any priors satisfying

Assumptions 1 and any P satisfying Assumption 2:

i. If m elly: Plr =p, mo| — c(m, mo, fo, o) € (0,1].

. If e 1Y UTLS: Plr =p, m] — 0.

Theorem 1 gives two main takeaways. The first item tells us that a model which
is larger than the true model, i.e., contains additional observables that are irrelevant
for prediction, continues to win against the true model with a probability that is
bounded away from zero, even with infinite data. The second item tells us that a
wrong model, i.e., a model which rules out an observable that is relevant for prediction

will eventually lose to the true model.

The second result is intuitive. By Lemma 1, we can decompose posterior loss into
two terms: expected variance of the noise and model estimation uncertainty. The
latter converges to zero for all agents (guaranteed by Assumption 2. The first term

is the posterior expectation of the noise term. The former term will instead differ:

5We will use this assumption to characterize the asymptotic distribution of the difference in
model fit for models that are larger than the true model. This assumption allows for conditional
heteroskedasticity of regression residuals.

If we assume that the agents’ DGP, g(y,x|0), is a correctly specified parametric statistical
model, the BVMT implies that the posterior distribution of a parameter 6 is approximately Normal,
centered at the maximum likelihood estimator, and covariance matrix equal to

(D2K(6,)) " /n, 9)

where 6y denotes the true parameter generating the data. A similar result is available for misspecified
models; see Bunke et al. (1998) and Kleijn et al. (2012). Instead of imposing the BVMT theorem for
misspecified models as a high-level assumption (as, for example, Condition 1 in Miiller (2013)) we
only assume that the variance of the posterior of 6 in a possibly misspecified model is approximately
given by (9). In this case, 0y refers to the parameter that minimizes the Kullback-Leibler divergence
between P and g(z, y|6).
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agents who rule out an observable that is relevant for prediction must attribute its
explanatory power to noise. So, as n grows large, their posterior expectation of the
variance of the noise term will be necessarily larger than that of an agent with the

true model. Thus, he will always have a lower confidence.

But what about agents whose model is larger than the true model? This part,
covered by part (i) of the theorem, is slightly more subtle. After all, this agent
will also eventually learn the true data generating process: that is, her beliefs about
the (s associated to redundant observables must converge to zero. But how will
the confidence compare? For any fixed n, the agent with more observables in her
model will have a less concentrated posterior on 5. On the other hand, she will also
have slightly smaller posterior expectation of the variance of the noise term: she will
mistakenly attribute some explanatory power to these superfluous observables. Which
of these two effects dominate, both of which can be shown to be O,(+), determines
the likelihood of winning. Part (i) of Theorem 1 says that the probability of the larger
model winning is bounded away from zero, even in the limit; at the same time, this
probability need not necessarily converge to being identical to that of the correctly

specified model.

In fact, we show that as the sample size grows large, the comparison between
model fit and model uncertainty behaves as the probability of some positive random
variable (coming from the difference between the estimated variances of the smaller
and larger model) exceeding some constant (coming from the difference in model
uncertainty). The following corollary gives a concrete characterization of this relation,
assuming conditional homoskedasticity assumption and that agents have the correct

specification of the distribution of covariates.

Corollary 1. Let 0y := (B, 032) where By and o3 are defined as in Theorem 1. Suppose
that the data is conditionally homoskedastic; that is E[(y — 2'f)*r2’] = o2Ep[za’].
Suppose also that the distribution P assumed by the agents is correctly specified. Then,

under the assumptions of Theorem 1:
C(ﬂ'7ﬂ-07ﬁ07 02) = P(X\QJ(ﬂ)—J(ﬂ'o)\ > 2(7)770 (90(7T0>) - 777T<90(7T)))7
where 1n;(0) denotes the elasticity of the prior © with respect to o at 6.

A possibly less intuitive implication of Corollary 1 is that a large date set does
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not completely ‘wash out’ the priors. Indeed, one may argue that aspects of priors
beside having the right states in the support typically should matter for Bayesian
agents with infinite datasets. But this is not the case here: we show that even in
large samples, the specific priors m and 7 affect the competition. Interestingly, our
result is very concrete about the feature of the prior that matters: the elasticity of the
prior density with respect to the variance parameter. This, along with the model’s
dimension, is the key aspect that affects the probability that a large model defeats

the correct one.

To give a more concrete sense of Corollary 1, consider the example of Normal-
Inverse Gamma prior. In this case, the elasticity of the prior density with respect to

the variance can be shown to equal:

|J ()] (’Yﬁfuw)ﬁm bo

777r(9): —1> —(a0+1)+§.

2 o 2

Two implications follow. First, consider the competition between two agents 7y,
and 7y, both with Normal-Inverse Gamma priors with the same parameters (ag, by)
and a diffuse prior on 5 (y = 0). In large samples the probability of 7, >=p 7

becomes
P(X|2J(7TL)|7|J(7TO)| > [J(mr)| = [ (mo)])-

This function is increasing in |J(7)| — |J(mo)| and asymptotes to 50%, meaning that
a larger model can defeat the true model at most half of the time. This is intuitive

as the models become identical.

However, consider now the competition between the same Normal-Inverse Gamma
agents, but allow them to have different parameters (a,,b,). Algebra shows that if
b, is large enough (meaning that the variance of the prior over o2 is large), then
the probability that the larger model defeats a smaller model can become arbitrarily
close to 1. That is: the larger model ‘beats’ the correct one even in the limit, with a

probability that can be made close to 1.
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4.2 The winner with n “small”

We are now ready to discuss the properties of the winner model when the number of
observations n is relatively small. We have already seen in Section 3.2 how in this
case there are advantages given to be smaller-dimensional models, and the winner
may indeed be a model smaller-dimensional than the true DGP. We will now provide
additional formal results to strengthen this understanding, aiming to characterize

when this is the case.

In this subsection, we assume that agents have Normal-Inverse Gamma priors for
tractability.” We also assume that all agents’ priors share the same hyperparameters:
as we discussed in the introduction, this ensures that all agents have the same prior
expected loss before data. Differences in posterior expected loss arise only from
the fact that the posterior evolves differently for models of different sizes given the

same model. Lastly, in some cases we will also assume that covariates are i.i.d., i.e.,

EP[I/JI] = ]Ik

The winner with 1 data point. We start with an extreme but stark result for

the case in which agents observe only one datapoint.

Proposition 1. Suppose all agents have Normal-Inverse Gamma priors with shared
hyper-parameters (ag, by, ) and that Ep[x'x] = Ii. If the dataset consists of a single
observation, i.e. n = 1, then the winner is always some agent with a single variable

model, i.e., an agent with a prior m s.t. |J(m)| = 1.

Note that this result holds independently of the true DGP: even when that is
high-dimensional, with only one point it is always a 1-dimensional model to win.
Numerical simulations suggest that a generalization of this result appears to hold:

with n observations the winner is n-dimensional or smaller. We were not able to

7As these are a conjugate priors for the Normal linear regression model, posteriors have simple
analytical forms. Algebra shows that

2o 4+ L mingegi i (W — XomB)' (v — Xy B) + (4J(m)]) 11812
2(10 2
W tl-g

VelBim|Dnl = Ex [02|Dn] (X0 Xy + (VI (@)D my) ™ (11)

Er[0?| D) ;o (10)
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formalize such an observation, as in finite samples the expressions for E,[0?|D,] and
Tr(V:[B]|D,])) are algebraically less tractable: the reason is that they depend on the

inverse of a matrix of specific data realizations, which is hard to operate with.

A novel approach for small n analysis. We now suggest a novel way of ap-
proaching the problem of small sample analysis that allows us to obtain further re-
sults despite the analytical limitations discussed above. This general approach may

be of interest independently from the specifics of our problem.

The initial observation is that small samples appear to be distinct from large ones
for two basic properties: i) that the prior remains relevant instead of being partially
‘washed away’ by the data; and 1) that specific data realizations matter, instead of
only the population average mattering. It is the latter characteristic that leads to the
analytical difficulties we encountered above. In large samples these issues do not arise
because laws of large numbers can be invoked, circumventing the analytical concerns

as they allow us to replace specific observation with population averages.

But what if we find a way to maintain the first property of small samples—that the
prior still matters—while dispensing with the second, problematic one—that specific
realizations matter? To do this, we let n grow to infinity, thus allowing us to use
the law of large number, but at the same time vary the hyperparameters of priors
to simultaneously make them become more and precise, at a pace such that they
maintain their relevance. Such ‘alternative asymptotics’ framework, has been used to

study different inference problems in econometrics.®

The next result uses this approach to show that as long as the prior remains

relevant, smaller models have an advantage.

Theorem 2. Suppose all the agents have Normal-Inverse Gamma prior with shared
hyper-parameters (a,, by, 7y), where b, € O (n**?), for some v > 0. Let P denote the
true data generating process and let the data Dy, := ((x1,41),- .-, (Tn, yn)) denote an
i.i.d. sample from P. Define By as the parameter such that Epx(y —2'fy)] = 0 and let
o2 = Ep|(y — 2'8)?]. Let Jy denote the associated true model for By. If P is correctly
specified, then for any P satisfying Assumption 2:

8See the local-to-zero asymptotics of Staiger and Stock (1997) for the analysis of instrumental
variable regression with a weak instrument, the local-to-unity framework of Phillips (1987) for the
analysis of inference in a autoregressive model with autocorrelation close to 1.
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i. If mellf, mo € Uy: Plr =p, m] — 0 asn — oo.

i. If m € 1L, mo € Uy: Pl =p, m] — 1 asn — oo.
Proof. See Section A.4 of the main Appendix. O

In words, this result shows that if the prior concentrates fast enough, the results
are the converse of the large data case (i.e., Proposition 1): models that are larger-
dimensional than the true DGP never win, and instead the winner is always smaller-

dimensional than the truth.

5 Extensions and Implications

We conclude our formal analysis with a discussion of two variants of our model, both
of which provide the same stark prediction of the “small data” world: agents with

“simple” models always win. Indeed, both of these strengthen our small data results.

2 of the noise-term € is

Known Variance. What happens when the variance o
commonly known among the agents? This is an extreme special case of our analysis

above; it may be realistic in some situations, but not in others.’

Proposition 2. Suppose agents have Normal priors with shared hyper-parameter ~y .
Fiz a prior = with |J(7)| = k. For any k' < k, and any dataset D,, for n > 0, there
exists a prior " such that J(n') C J(w) with |J(7")| = k" and such that 7" =p, .

In short, for any model J(7), and any dataset of any size, some smaller model

with a subset of the explanatory variables will have a lower posterior loss.

9Indeed, there is an aspect that makes this assumption problematic in some environments. When
variance is not uncertain, agents with incorrect models of the world will, as data accrues, observe
that their model has an empirical error higher than the (known) o2, because the model disregards
some observables relevant for prediction. For n large, this disparity in the empirical error and the
(known) o2 should lead them to question their underlying model. However, as is standard with
Bayesians with dogmatic beliefs (here they have degenerate beliefs on 02) they do not. When the
dataset is not too large, however, such issues will not arise.
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Bidding Before seeing the data. A different extension is to a setting where
agents know that they will see exactly n data points, but expected confidence before
they view the data: this is the case, for example, when agents have to submit a bid
before seeing the data, but know that they will see n data points before making their
prediction. Put differently, we study the expectation before seeing the data of the
expected loss after n datapoints.!® This situation may be not unusual in reality, as

often new data is revealed after bidding but before predictions needs to be made.

A stark result holds in this case: smaller models always win. In fact, in this case

the result is even stronger than previous ones, as we explain below.

Proposition 3. Suppose agents have Normal Inverse-Gamma priors with shared
hyper-parameters (ag, by,7y), and that v = 0. Suppose further that x ~ Nj(0,1)
independently of €. Fix a prior w. For any prior 7', such that |J(7')| < |J(7)|, we
have that

B () [L* (7', Dp)] < Epm[L*(m, Dy)],

whenever n > |J(m)| + 1. Here the outer expectation is taken over the agents’
‘marginal’ distribution of the data m(w) := [ qo(Dy)m(0)df. "

Proposition 3 shows that when confidence is computed before data is realized, not
only smaller models ‘beat’ the correctly specified one, but this holds for any smaller
model, not just some of the smaller models, as was the case in some of the previous

results; moreover, this holds for any size of the dataset n.

For an intuition, consider again the decomposition of posterior loss obtained

through Lemma 1,
L*(m, D) = E, [02|Dy] 4 Tr (V,[B|D,] Eplza’]).

Depending on the realized D,,, the first term, model fit, can be larger or smaller than
the prior expectation of it before data is realized. Indeed, this is the complicating
factor in the analyses of Propositions 1 and 2. However, in the case of Proposition 3,

we take expectation over all possible datasets, and the first term reduces to its prior

ONote that since different agents have different beliefs about the data generating process, they
take expectations with respect to different probability distributions over the space of datasets D,,.

""Hence, the expression K, [L* (7', Dy,)] is the Bayes risk of the Bayes Predictor. See Equation
1.14 in Chapter 1.6 in Ferguson (1967).
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expectation. So we can focus only on the second term, model estimation uncertainty.
But then, for reasons analogous to the previous propositions, the residual model

uncertainty is smaller in expectation for smaller models. Proposition 3 follows.

Connection with the Akaike information criterion. A different way to under-
stand our results is to relate the model section induced by competing models to the
Akaike Information Criterion, a well-studied model selection criterion in Econometrics
and Statistics. In what follows, we illustrate that the loss function of an agent with

Normal-Inverse Gamma prior is “close” to the AIC for the linear regression model.

Definition 4 (Akaike Information Criterion). Given a dataset D, = (y,X) with
n data points and k possible covariates, the Akaike information criterion for linear

regression evaluates a model based on X; as:

271

LAkaike(J7 n, Dn) - ]nf)'\g(J, n, Dn) +
n

where

52(Jin, D) = © min (y — X,8) (y — X,8).

N BeRIV|

In words, consider a model J with |.J| observables. The expression °(J,n, D,,) is
the OLS estimator of the residual variance based on a model with covariates X ; in
the dataset D, with n observations. As is well understood, selecting a model with
a lower estimated variance may not favor the model with the best out of sample
performance. This is because selecting based on average residuals favors models
that have more covariates (i.e., regressions which “overfit” the data). The Akaike

Information Criterion (AIC) compensates for this by adding a penalty term equal to
2lJ|

of data points. Algebra shows that if agents have an uninformative Normal-Inverse

i.e., twice the ratio of the number of covariates in the model and the number

Gamma prior (7 = 0), then the posterior loss is approximately equal to

In (32(J,n,Dn)> +1In (1 + %Tr ((XL;XJ)_lEp[xef,]>> :

Thus, if the sample size is large and the agents’ distribution of covariates is well-
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specified, the posterior loss of an agent with prior = will be approximately equal to

the Akaike Information criterion (with a penalty of |J|/n instead of 2|.J|/n).

The prevalence of larger models in the model competition can then associated
to the ‘conservativeness’ of the Akaike Criterion for model selection. Our Theorem
1, however, makes it clear that the relation is only qualitative: larger models will
indeed prevail in large samples, but the probability of a larger model being selected

will continue to be affected by the prior.

Finally, it is worth reiterating that the foundations of the AIC are normative: the
criterion was proposed as a way to select a model that avoids overfitting. Conversely,
our analyis provides a positive foundation for the AIC: we study the outcomes when
Bayesian agents compete in a way that selects the agent with the lowest posterior

expected loss.

6 Discussion and Conclusion

We analyze a novel model of competition between agents. A variable of interest is
related to a vector of covariates. Agents have different models of these relationship: in
particular they rule in/ rule out different 2’s as being potentially related to prediction.
All agents observe a common dataset of size n, drawn from the true data generating
process. The winner is the agent with the lowest expected loss, expectations taken
with respect to their own subjective posterior. This winner corresponds to the winner
under a stylized auction model we formally define and analyze, but may also be of
interest more generally in situations where subjective confidence in predictions lead
to selection. We study the relationship between the true data generating process and
the model of the winner, and how this relationship changes as a size of the available

dataset, n. We show two stark results.

Firstly, when n is large, the winner is qualitatively similar to the model with the
lowest value of the Akaike Information Criterion. Misspecified models (i.e., models
that rule out an observable which is relevant for prediction) never win, but overly
large models may continue to win even as data grows unboundedly large. The prior
is not completely ‘washed out’ by the large sample. The elasticity of the prior density

with respect to the variance parameter continues to affect the model competition even
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with infinite data. This result is established for a very general class of priors and true

data generating processes.

Secondly, when n is small, we show that ‘simple’ models, i.e. models that employ
few observables, take the lead, even if the true data generating process is rich. To
establish this result, we used a ‘drifting’ Normal-Inverse Wishart prior; where we
allowed the elasticity of the prior density with respect to the variance to increase

with the sample size.

There are several natural avenues to future research. An obvious one is a setting
in which agents each observe a private dataset: this complicates our analysis because
now a notion of the winner’s curse applies. Each agent must consider whether they
are beating the others because their model is truly performing well on the data,
or because their dataset is non-representative. Another one is to consider dynamic
variants: if agents got feedback or could invest to acquire more data, what kinds of

models would be selected?

6.1 Related Literature

As we mentioned in the Introduction, there is a large body of literature in statistics
and econometrics that studies model selection methods and provides normative foun-
dations. That literature is too vast to comprehensively cite here, we refer the reader
to a textbook account in Burnham and Anderson (2003). Our large data results are
closely connected to the Akaike Information Criterion (AIC) introduced in Akaike
(1974). Asymptotic properties of the AIC were studied in the seminal paper of Nishii
(1984), which our results closely track.

In terms of the connections to the literature in economic theory, since one natural
application of our model is an auction, our results are related to Atakan and Ekmekci
(2014), who consider the competitive sale of assets whose value depends on how they
are utilized.'? The successful bidder chooses an action that determines, together with
the state of the world, the payoff generated by the asset. They focus on a setting
where bidders have a common prior but observe private signals. Their main result is
the possibility of (complete) failure of information aggregation. Our results are similar

in that in our applications as well the value of the object depends on an action taken

12Bond and Eraslan (2010) study a trading environment with a similar feature.
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by the agent. However, our paper considers a complementary environment where
all bidders observe the same information but they have different priors. Information

aggregation is ruled out by assumption, and our key theme is model selection.

We assume that agents have different priors and are fully aware they have different
priors: that is to say our agents agree to disagree. This assumption has been used
in economic theory at least since Harrison and Kreps (1978). We refer the reader to
Morris (1995) for a discussion of the common and heterogeneous prior traditions in
economic theory. Heterogenous priors have been used in a number of applications in
bargaining (Yildiz, 2003), trade (Morris, 1994), financial markets (Scheinkman and
Xiong, 2003; Ottaviani and Sgrensen, 2015) and more.

We limit ourselves in the rest of this section to connections with the growing
literature in economic theory that attempts to understand outcomes in economic

settings when agents have misspecified models.

A large literature has studied models of model misspecification in individual
decision-making, with famous examples like overconfidence and correlation neglect. A
few recent theoretical contributions to this enormous literature include Heidhues et al.
(2018) and Ortoleva and Snowberg (2015), to which we refer for further references.

A novel approach to modeling misspecification in economic theory is the directed
acyclic graph approach; see Pearl (2009). This is exploited in a single person decision
framework in Spiegler (2016), which studies a single decision maker with a misspecified
causal model and large amounts of data. The paper shows that the decision maker
may evaluate actions differently than their long-run frequencies, and exhibit artifacts
such as “reverse causation” and coarse decision making. This approach is then used
in Eliaz and Spiegler (2018), which proposes a model of competing narratives. A
narrative is a causal model that maps actions into consequences, including other
random, unrelated variables. An equilibrium notion is defined, and the paper studies

the distribution of narratives that obtains in equilibrium.

In strategic settings, Esponda and Pouzo (2016) defines a learning-based solution
concept (‘Berk-Nash Equilibrium’) for games in which agents’ beliefs are misspecified.
More broadly, solution concepts have been posited for settings where agents suffer
from some sort of misspecification, including well-known examples like analogy-based
equilibrium (Jehiel, 2005) and cursed equilibrium (Eyster and Rabin, 2005).
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Recent works have studied the implications of agents with misspecified models in
various strategic settings. For instance, Bohren (2016), Bohren and Hauser (2017),
Frick et al. (2019b) and Frick et al. (2019a) study social learning when agents have
misspecified models that cause them to misinterpret other agents’ actions. Mailath
and Samuelson (2019) study a stylized prediction market where Bayesian agents have
different models of the world (defined there as different partitions of a common state

space), and discuss the possibility of information aggregation.

There are several works that consider outcomes when some agents behave in a
way that can be construed as coming from a misspecified model. For instance in
Spiegler (2006) or Spiegler (2013) society misunderstands the relationship between
outcomes and the actions of strategic agents, which affects the actions the latter take
in equilbrium and resulting outcomes (in the former, in the context of a market for
quacks, in the latter with implications to the reforms taken by a policitican). Liang
(2018) studies outcomes in games of incomplete information where agents behave like

statisticians and have limited information.'?

Finally, the understanding that agents should be cognizant that their models
may be misspecified has also led to new approaches in mechanism design, where
the designer accounts for misspecification in various ways. The literature on robust
mechanism design (beginning with the seminal Bergemann and Morris 2005) provides
foundations for using stronger solution concepts. Madarasz and Prat (2017) shows
that an optimal mechanism may perform very poorly if the planner’s model is even
slightly misspecified, and identifies a class of near optimal mechanisms that degrade
gracefully. Works such as Chassang (2013) and Carroll (2015) develop optimal ‘robust’

contracts in general settings and contrast to classical optimal contracting.
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A Main Appendix

A.1 Proof of Lemma 1

Proof. Fix a data set D,,. We need to analyze

Er [Ep[(#'8 = fir0, ()]

D,|.
Substituting f* from (6), we have that this term

=E. |Er| (8~ E.[81D))2)*] |Du]

Recalling that for a scalar a, a = Tr(a), we have
—E, [Ep [TH[((8 — E<[81D.])2)] | Da]
and then by symmetry and linearity of the trace operator, we can conclude,

~E, [Ep|TH{(8 — E4[8|D.)(8 — Ex[8|D.) 2] | D,
—E. | Tr[(8 — Ex[8I D]} (8 ~ Ex[B|Du) Eplza]]| Du]

=T [Ex |(8 — Ed[8I1D0))(8 — Ex[81Da)) | D | Eplaa]].

Finally, by the definition of variance, we have the desired form

=Tv(V,(8|D,)Ep[zz]] O

A.2 Proof of Theorem 1

Proof of (i): Consider two agents, one with prior 7, € II§ and another with prior
o € Ily. Given dataset D, the agent with prior 7, defeats the agent with prior 7

whenever
L*(m1, Dy) < L*(m, Dy).

By Lemma 1 this happens if and only if
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Er, [02|Dn] —Er, [02|Dn] (12)

is strictly larger than

Tt (Ve (Bien)|Dn) Epl@ sy Tain)]) — Tt (Vi (B1(ro) | Dn) Ep[T )T a(ng)]) - (13)

The proof has four main steps.

STEP 0 (MAXIMUM LIKELIHOOD ESTIMATORS): Since an agent with prior 7 only

uses covariates with indices in J(7), this agent’s posterior can be obtained using the
likelihood

1 1 1
. 2y . _
FY| Xy Bimy, 07) i= @) o eXp( 5o Y = X5 i) (Y — Xy B ))
(14)
Let @(w) and 67(7) denote the parameters 0(7) := (By(x),0?) that maximize such

likelihood. It is well known that under Assumption 2:

O(r) = (
9(%) = (

(WL)v 6_2(7TL)) & (/BO,J(WL)7 03)7

(0),5°(m0)) = (Bos(mo)s 90)-

= @

This happens because J(7y) nests the true model J(7mp) and the true model estimates
the coefficients of the best linear prediction of y given x. Moreover, standard algebra

of linear regression'* shows that

n(6*(m) —6°(m)) = (VaRB(mL)) [R(X)rp Xty /n) "R (VRRB(rL)),

where R is the |J(7p) — J(mo)| x |J(7r)| matrix that selects the entries of 3;(x,) that
are zero under the model specified by m and |.J| denotes the cardinality of the set J.
Under Assumption 2

n(8°(m0) — 5% (1)) /3% (m0) = ¢ = € [R(Eplsry)2y () R/ 3,

where
&~ Ntmp)—a(x) (0, REp[(y — 2" B0) (21 )Ty y) T IR,

14See Theorem 3.4 and Theorem 3.5 in Greene (2003).
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Under conditional homoskedasticity ¢ has a X|2J( ) distribution and conse-

wr)—J (7o

quently.
A2 ~2 A2 d 2
n(0%(mo) — 07 (7)) /T (T0) = X{s(mp) =17 (no)]- (15)
More generally, ( is just a quadratic form of multivariate normal random variables.

One additional piece of notation. We define the scaled log-likelihood function for

an agent with prior 7 as

ha(6(7)) = %mfmxm; o(r)).

The (i,j) component of the matrix of second derivatives of h,(6(m)) with respect to
6(m) (the Hessian of the scaled log-likelihood) will be denoted as h;;(-). We omit
the dependence on n, unless confusion arises. The components of the inverse of the
Hessian will be written as h%(-). Finally, h,.;(-) denotes the partial derivative of h,.

with respect to the j-th component of ().

STEP 1 (ASYMPTOTIC EXPANSIONS OF POSTERIOR MOMENTS): Kass et al. (1990)
provide “large n” asymptotic expansions for posterior moments around the maximizer

of the likelihood used to compute the posterior.

In the linear regression model, Theorem 4 and 5 in Kass et al. (1990) imply that for
any prior 7 satisfying Assumption 1, P satisfying Assumption 2, and for any six-times

differentiable positive real-valued function the posterior of g(6) can be expanded as

B0 = 0@+ X (G w5 0m)-

1<i,j<dim(6(r))

11 S () hey ()

7(9(7)) 2 1<r,s<dim(0())

b X ) (g 0)

1<4,5<dim(6(r))
O 1
+ n2 )"

See equation 2.6 in p. 481 of Kass et al. (1990).
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Consider the positive function

Because

dg
Oo? 00;

for any ¢ < |J(7)| + 1, the expansion above simplifies to

2 @) =1 and L(B(x)) =0,

E’D) = &*m)+L 3 RO >>{(a—9j<9<”>>)'

1<i<]J (m)|+1

LS @) ey (B(r))

7T(¢9(7T)) 2 1<r,s<dim(6(x))
1
e (HQ) .

Moreover, the Hessian matrix of h,(6(7)) equals

nor X X m) M4XJ< )V = Xom) Bim) (16)
na4 (Y XJ (m) BJ ) J(m) 2c1r4 - n06 (Y XJ( ) (Y - XJ(“'))7

and the inverse Hessian evaluated at () is

<_a< ) (Xo Xom/m) " 0 ) (17)
0 —26'\4(7T),

This further simplifies the expansion to
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— 5 Y WO b () +o(_).

n2
1<r,s<[J (m)+1]

Finally, the terms
R @D (7 (m)+1)s

are both 0 for any r, s < |J(m)| + 1. Algebra shows that

Yo RO iy @) = D R O()) Ao ()

1<r,s<|J(m)|+1 1<r,s<|J ()]
b RIEEDIIER) G

h(7m) 1) (T () +1) (1T () +1) (0(T)
= =6 *(m)|J(m)|

— 4672,

We conclude that the Kass-Tierney-Kadane expansion of E,[0?|D,] equals

52 _ 2™ {(5; (@(w))) R } - a%)W L Op (%) . (18)
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STEP 2 (COMPARISON OF MODEL FIT): The expansion in (18) implies

n (Em) (0% D,] — Ex, [02|Dn]) = n (/0'\2(77'0) — 82(7TL))

- { (i) e

- (giwo(m))) )
— a2 (| ()| = [T (m))

<o),

STEP 3 (COMPARISON OF MODEL UNCERTAINTY): Let f3y, 03 denote the true pa-
rameters of the model as defined in the statement of Theorem 1. Under Assumption

2.4, for m € {my, 7} we have

Ve (B1m)|Dn) = 00Be[2.(m) 25| "

Consequently:

nTr (Vz (Bym)| D) Eplzsm@in)]) = USTT(EP[W(w)fo(w)]71EP[$J(W)$J(w)/])-

STEP 4 (MODEL FIT vS. MODEL UNCERTAINTY): 7, defeats 7 if the gain in model
fit in equation (12) is larger than the increase in model uncertainty, as captured by

(13).
Define

2
g

e(tu(m) = (G utm) ) —

This parameter denotes the elasticity of the prior 7 with respect to the parameter

o? at the true parameter 6y(7).
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Let

Arp,mo) = Tr(Bel2 ()@, EplTsm)Li)])

— Te(Bp[ s (r0) Ty (rg)) BT (r0) T 5 (m0)])

Step 2 and Step 3 imply that the probability of the event in which 7 defeats 7

can be approximated in large samples by

n (6\2(71'0) - 32(7TL)) Jos > Almp,m)
— ([J(m) = I (7))
— 2(1h, (O0(7L)) — Ny (Bo(7L)))
+ O,(1).

We have shown that under Assumption 2
d

n (6%(mo) — 8%(m1)) /o3 5 C.

Consequently:

]P)[ﬂ'L =D, 7T0] — C(7TL,7TO,90),

where (7, g, 0p) is the function

P> Almp,m0) = ([J(mo)| = [/ (m0) ) + 2(0ro (00 (70)) = 1y, (O0(7L)))) -

Proof of (ii): We show that an agent with prior 7 € II}V U ILJ can never defeat
an agent with prior my € Ily. Given dataset D,,, the agent with prior 7 is victorious

over m whenever
L*(mo, D) < L*(m, Dy,).

Using Lemma 1 this happens if and only if
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EW[02|Dn] - Eﬂo[02|Dn] (19)

is strictly larger than
Tt (Viy (Biteo) | D) Ep (2 s(mo)Taxo)]) — T (Vi (Bym) | Dn) Eplzsmyzam']) - (20)

Assumption 2.4 implies that (20) converges in probability to zero. In addition,

using the expansion of Kass et al. (1990) we can write (19) as
~2 2 1
o°(r) —o°(m) + Op (5) :
It is well-known that the probability limit of the difference
9°(m) — 5°(mo)

is strictly positive: under our assumptions, the misspecified model has strictly larger

residual variance than the true model.

A.3 Proof of Proposition 1

Proof. Denote the single datapoint as D; = (Y, X), where Y € R and X € R™* (k
is the number of covariates), and X = z/. First, observe that for any agent j with a

single explanatory variable  in his model (denoted z,). By Lemma 2

bo + 3 (yg__iji) 1
% T+
L*(mj, Dy) = g1 (1+x2+7)
2 K
bo+ 1 vy 1
= Zmty (1 + ) :

2
CLO—§ l‘n+7

The winning agent among the single variable models will therefore clearly be the
agent with the variable x that maximizes z,. Without loss of generality, call this

variable 1.

To economize on notation, now consider the full model with all the explanatory
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variables, it will be clear from the logic that this argument will work for any model

larger than a single variable. For an agent j with all k variables, we know that

bo+ £ (1 — X(X'X + vkI;) "1 X)

L*<7Tj7D1): ao_l
2

(1 +Tr [(X’X + vk]lk)_l])

To show that this model always loses, we need to show that this model’s loss is always

larger than the “best” single variable model. To do this, it is sufficient to show that:

1— X(X'X +~kL) X)) > —
( ( + vkI) >_x%+7’
1
Tr[X’X+ kL) > .
( Y k) _.T%—i—"}/

We will handle each of these separately. Let’s start with the second. Recall that for
any matrix A, Tr(A) equals the sum of eigenvalues of A. Further, the eigenvalues
of A=! are the reciprocals of the eigenvalues of matrix A for an invertible matrix.

Finally if A is positive definite, all the eigenvalues are strictly positive.

By the Gershgorin circle theorem (see e.g. Theorem 6.1.1 of Horn and Johnson
(1990)), all the eigenvalues of a matrix A lie within Uﬁzl[a,m — Ry, a . + R.] where

R, is the sum of the absolute values of the non-diagonal terms on row s, and a,, , is

the x diagonal element.

Consider the matrix (X' X +kly). Observe that R, in this case = [2,|(3_,. ., [zx]),
while a, , = 22 + k. Therefore the largest possible eigenvalue is |z1|(>", |zx|) + &7,

which in turn is small than k(22 + 7).

Therefore for the matrix (X'X + vykI;)~!, all eigenvalues are larger than m,
1
and therefore the sum of eigenvalues is at least —— (since there are k eigenvalues)!

(22+7)

We can therefore conclude that

1
P4y’

Tr [(X’X k) >

as desired.
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We are left to prove that:

(1 - X(X'X +7kL,) "' X") > 2

— X(X'X + k) ' X' <

el

Now, observe that X (X'X + ~kI;)"'X’ is a scalar. We know that for a scalar,
a = Tr(a). Therefore we have that

X(X'X + ykI,) ' X,
=Tr[X (X' X + vkL,) ' X',
=Tr[(X'X + vkI,) ' X' X]

1 1
=Tr[(—X'X +1,) ' —X'X
(P XX L) XX

1kX’X as A. Substituting

Denote =
5

=Tr[(A+1;) " A]

Now, observe that if A is an eigenvalue of A, then 1%\ is an eigenvalue of (A+1T;) ' A.

To see this, suppose v is an eigenvector of A with eigenvalue A. Then,

Av =M

— (A+L)v=A+1)v
1
T+ X
1 A
= (A+ 1) Av =

— (A + Hk)_lv =

T+ A"

Substituting this in, we have

Te[(A + 1) ' A]
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Therefore we are left to show that

Here \;’s are the eigenvalues of #X 'X. This implies that ) .\, = Vik Sl

Note that X’X is not full rank, indeed, its null space is of dimension k& — 1.
Therefore it has & — 1 multiplicity eigenvalue of 0. The unique non-zero eigenvalue

must then be + S 22,
vk 171

Substituting in, we have

k 1 2
Ao %Zm

1
;14‘)\2' %Zil’?‘i‘l

_%Zix?+7
2

where the last inequality follows since we assumed that 22 = max;{z? : 1 < i <
k}. O

A.4 Proof of Theorem 2

Proof. 1t is well known that for a prior 7 in the Normal-Inverse Gamma family:

ValBsm|Dn]l = Er [02]Dn] (X0 Xs(m) + 1T (@) L)~

1 [ X X T\
- . et & (K, s
n

n n

Under the Assumptions on P in Theorem 2

<X}(W)XJ<w> L @) My

=E AT ] 1).
n " ) P20 m) T+ or(1)

Consequently,
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Tr (ValB(m) | Dn] B2 () 25()]) = Ex [07] D) (% + op (%)) . (21)

Algebra shows that for any priors m, 7’ in the Normal-Inverse Gamma family

L*(n',D,) > L*(w, D)

if and only if

(E. [02D,] — Ev [o2D,]) (1 IELLe (%)) (22)

is strictly larger than

E.fo2i,] (2T (23)

Proof of (i): It is well known that for a prior 7 in the Normal-Inverse Gamma

family, the posterior mean of 3;(,) is the ‘Ridge estimator’

B 1= (Xijm X + Y1 () L) Xy,

which solves the problem

min (y — Xy 08) (v — Xym6) + (7] (7)]) IEls

BERII ()]

Consider two priors 7,7 such that J(7') C J(r). In a slight abuse of notation let 3_,
denote the vector in R/(™ with all the coordinates in .J(7)\J(7') equal to zero. Also,
let J be used to abbreviate J(m)

Equation (10) implies that for any such two priors 7, 7’

n(Ew (07 D] — Ex[0¢| Dy)

is proportional to the sum of

(Y — XBo) (y — XsBa) — (y — XsB.) (y — X4B,) (24)
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and
Y (17 B | = 11 1BA1)
where the proportionality constant is ¢, := (2a¢/n + 1 —2/n)~!

Algebra shows that the expression in (24) equals

~2(y = X;B,)Xs(Br — B,) + (B, — B ) X5X5(B, — By)

and the expression in (25)

A I@V (B = B (B = Bar) = (1 I| = 1T By + 2410 (7 B (B

The first-order conditions defining the Ridge estimator imply
~ A~/
—2(y — XyB,)' Xy + 29]J|B, = 0.

Therefore, in any finite sample

n(Bw[0?|Dn] = Ex[o?|Dal) = cn((B, Bn’)/(XJXJ+7’J< L) (B

+ (] = I B,
— 29(|J| = [J(=))B w>-

Under the assumptions of Theorem (2) and letting 7" € Ilj:

0(Ex (0| Dy] — Ex[07]| Du]) = Op(1).
However, under the same assumptions

2b,,
EW[062|D7L] . + op(1).

Since b, € O (n"*2). This implies

P (n(]ETr’ [062|Dn] - EW[03|Dn]) (1 + J(S,)
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(25)

- /Bﬂ)

; 0p<1>> > Erlo?| D)) (I (x) — J(w')))



converges to zero. We conclude that m € IT¥, «’ € T, implies

P[ﬂ' > D, 7T/] — 0.

Proof of (ii): Consider the same framework as above, but let 7 now denote an
element of Iy and 7’ an element of II5. The probability that the smaller model, 7/,

is defeated by 7 is

EW[J§|Dn])

(&0, - Elo?Du) 1+ 20

+ o]p(l)) > (J(m) = J(W/))) :

where J(7) > J(n’). Under the assumptions of the theorem
(Ex[02|D,] — Eq[0?|D,]) = Op(1).

However,

E.[c%|D,]) by (1>
e = 2 4 op :
n n

Since b, € O (n"*2), for v > 0. We conclude that if ' € I15 and 7 € Ilp:

P’ »p, 7 — 1.
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B Supplementary Material

B.1 Posterior Loss for Normal-Inverse Gamma Priors

We derive the specific formula of the posterior loss in the case of Normal-Inverse

Gamma priors.

Lemma 2. Suppose the agent has a Normal-Inverse gamma prior w with hyper-
parameters (v, ag, bo). Then, if the observed dataset is D,, = (y, X) we have that her

log posterior expected loss can be written as:

2a9 _ 2

in(L°(r, D,)) =In (— + A mingeaor (0= Xom V(0 = Xoe)) + <vu<w>|>||ﬁ||2>>

+In (1 + Tr [((X}(W)Xj(ﬂ—) + 7|J!I[|J(W)|)_1 Ep[xJ(w)SUfz(ﬂ)]D (26)

Proof. We break the proof into two steps. Step 1 shows provides an expression for
2

the posterior mean of o-. Step 2 plugs-in this expression into the formula for the

posterior loss.

Step 1 First we show that the posterior mean of o2 in a regression model with a

Normal-Inverse Gamma prior with hyperparameters (v, ag, by) is given by:

24 L i (y — XB)(y — XB) + (k) 18]
2a9 +1-— 2

Eﬂ[052|Dn] = (27)

It is known that

n 1 ~/ ~
02| D,y ~ Inv—Gamma(aO + 50 bo+ 50y — Br(yk) (XX + (yk:)]Ik)BR(vk:)))
where /BR(vk) is the ridge estimator with penalty parameter vk. Since the mean of
a random variable distributed as Inv-Gamma(a, b) is —2, to show (10) it is sufficient

a—1’
to show that:

min(y — XB) (y — XB8) + (vk) ||B|]* = v'y — Br(vk) (X'X + (vk)L)Br(vk).  (28)
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To condense notation, let BR = ﬁR(A), where A = vk is fixed. Note that:

Y XBr =y’ X(X'X + A,) "' X'y
=y X(X'X + A,) " H(X'X + AL (XX + L) ' Xy
=B (XX + ML) By
=B X'X By + Ay

This implies that

(3/ - XBRY(:U - X/BR)
N ~/ N
=y'y — 2y’ X B + Br X' X By
A~/ A~ PAVAPSN
=y'y — 5RX/XBR — 2A\BRrBR-

Therefore:

Yy — Br(X'X + M) By
—y'y — Br(X'X)Br — MBrBr
—(y — XBg)'(y — XBg) + \BrBr

Comparing, (28) follows, concluding our proof of (10).
Step 2 From Lemma 1, we have that the posterior loss
L*(m, D)) = E.[0?|D,] + /00 Tr(V(B| Dy, 02)Eplaa’))7 (02| D, )do?.
0
It is known that

VW(mDnaU?) = J?(X/X + (’Yk)]lk)_la



This implies that

L*(n, D,) =E,[0?|D,] + /00O Tr(o?(X'X + (vk)I) HEp[za))7(0?|D,)do?,

=Er [052|Dn] + Er [052|Dn]Tr(<X,X + (’7k>]1k)_1Ep[mxl])-
Taking logs on both sides and using the formula for the posterior mean of o2 from

Step 1, we obtain the desired formula. O

B.2 Posterior Loss for Normal-Inverse Gamma priors in large

samples

Observation 1. Suppose the agent has a Normal-Inverse Gamma prior. Then, for

n large, we have

In (L*(7, D)) =~ 111 (E, [03|Dn})j+ln (1 + |J|) . (29)

n

-

Model Fit
Model Dimension

Proof. The posterior upon observing dataset D,, is

ﬁJ’DmU? ~ MJI(ﬁJ,Ridge7ae2<X9XJ + (7|J|>H\JI)_1)7
= V. [8,|D,] = Eq [02|D,] (X5X 5 + (4] )Ly) 7

Therefore, substituting back, we have that

Tr (V. [B85|Dn) Eplzsa’)]) = Ex [02|D,] T (X5X5 + (W[J)g) " Eplzsa)]),
1/1

=E, [02|D,] Tr (5 (5

(XX, + (7|J|)H|J|)>_ EP[ﬂfJQTfJ]) :



which for n large, by the law of large numbers

~E, [0Z|D,] Tr (% (Ep[zz)) " ]Ep[xjxf]]> ;

1
=E, [0?|D,] Tr (E]Iﬂ) ,
_g 1.2p1 Ml
=E, [02|D,] —

Thus for n large, (29) follows. O

B.3 Proof of Proposition 2

Proof. Suppose the known variance of € is 2. Then for any agent with prior m, upon

seeing data D,,, the posterior expected loss evaluates to:
L*(mj, D) = ‘752 + Tr(V[B8]Dy]),

where we have assumed that E,[z2'] = 1.

Without loss of generality, suppose the larger model J' is the entire set of ob-
servables of size k. We need to show that there exists a model J of size |J| such
that

Tr(X'X + kL)~ > Te(X5X; +[J]0,) "

In particular let J be such that 3 ; e; (X' X +ykly) ~te; < 37 e (X' X +7kl) e,
for any J” such that |J”| = |J| . Then, it must be the case that

k
Tr(X'X + kL)t > 7l D e (XX + kL) e

jeJ

Therefore it is sufficient to show that for this model J, we have

k
o D (XX 4 k) ey > Tr(X5 X, + 4Ty~
<=
Without loss we can renumber the indices so that J = {1,2,...,|J|}. Let L denote



the set of remaining indices, i.e. L = {|J| + 1,...,k}. We can thus write the left

hand size of the inequality as:
-1
|J| e X/LXJ X/LXL —I—’y/{iH|L|

Using the standard formula for block inverse of a matrix we can write this as

-1

k A A,
== €; €.
|J|;J<A3 A4> ’

where Ay = (XX 4+ vkl — X, X (X X1 + vEL) "' X[ X ;)" ! Substituting that

in we have

k
:mTr(XgX g+ kL — X)X (X X 4 kL) T XX )T

Therefore, taking ‘—(Ij.| to the other side, we are left to show that

k
(X, Xy + vkl — XX (X X +vkLg) 7 X X)) > Tr(mX"]X g+ kL)

(30)

Next, given 4 matrices A,B,C, and D where A and C are invertible, it is easy to

show that

(A+ BCD) ' =A'—A'B(C*+ DA'B)DA™!.
Suppose we define

A= X}XJ +’7k]1|]|,

B=-X\X,,
C = (X X1 +7kLz) ™,
D=X.X,.

Note that in this case, A and C are invertible by observation. In light of this, and



the linearity of the Trace operator, we can rewrite the left hand side of (30) as

Tr(A™' - A'B(C'+ DA'B)DA™)
=TrA™' — Tr(A'B(C~' + DAT'B)DA™)
=Tr(X,X; + kL)' — Te(A'B(C™' + DAT'B)DA™)

where A, B,C and D are as defined above. So (30) can be written as:

k
Tr(X) X, + kL)' = Te(A'B(C™'+ DAT'B)DA™") > Tr(mX’JXJ + kL)

To show this inequality it is therefore sufficient to show that

Tr(A'B(C~'+ DA 'B)DA™) <0, (31)
k
Tr(X, X5+ kL)~ > Tr(mxf,XJ + ykI) (32)

We now show each of these in turn. Let us start with the first. Note that B = —D’

we have:
(31) = Tr(A"'D/(C"' = DA'D')DA™Y) > 0.
In turn, since A is symmetric, so is A™!, so defining Q = A~1D’

< Tr(Q(C™' — DA™'D"Q') > 0.

Since QM Q' is a positive semidefinite matrix if M is a positive semidefinite matrix
(see e.g. Observation 7.1.8 of Horn and Johnson (1990)), it is sufficient to show that
(C~' — DA™'D') is a positive semidefinite matrix (the trace of a matrix equals the
sum of all its eigenvalues, and the eigenvalues of a positive semidefinite matrix are
all non-negative). So to show (31), it is sufficient to show that (C~' — DA™'D’) is

positive semidefinite. To see this, observe that:

(C™' -~ DA'D)
:X/L (]IN — XJ(X}XJ -+ ”yk]I‘J‘)*th’,) X+ ’}/k]lw‘



It is therefore sufficient to show that each of these two matrices are positive semidefi-

nite. The latter is positive definite by observation. To show that the former is positive

semidefinite, by another appeal to Observation 7.1.8 of Horn and Johnson (1990), it
is sufficient to show that (]Ik — X (X)X + kL)t X ’J) is positive semidefinite. But

observe that:

Iy — X (X)X + kL)' X
1 1
=l — — X, (—X)X;+ ;)X
ET Ok J(yk 1 Xs+ 1) X

Now, we know that for any square matrix P,

I+P)'=I—-1+P)'P
=P+ (I+P)'P?

=T+ (-1)P.
j=1

Substituting in P = %X}XJ, we have that

o0

1 1 .
XJ(%XSXJ +) 7 X = Xy <]IJ| - Z(_%)J(XSXJ)”> X}
j=1

o0

= X0X) = X
= (X, X)) (I — Z(—%)j (X, X5)7)

J=1

1
= (XJX!])(]IL” + %XJX(G)_I

Therefore we have that

1 1
(33) = I — %(XJX})(HUI + %XJX})’l

=T, — (X X)) (vkI g + X, X5) ™
= fyk(fyk]lm + XJXL',)’1

which is positive definite by observation.

(33)



We are left, then, to show (32), i.e. that:

k _
ngXJ + k) .

k
|J|XJXJ+’7/€Hk) )_0

(X)X + vkLy)~" > Tr(
< TI"((X}XJ + ’ykﬂm) ! (
Algebra shows

k
Tr((Xj]XJ+’Yk]I|J|) ! ( XJXJ—F’}/k’]Ik) )

¥
J k
(XX + 1K) ( | J‘| Eo XJ) (XX 42800
k
:Tr( —1J ’XJ(X}XJ+7kH|J|)_1(_X3XJ+7k]1k)_1X3)'

7] /1]

The final matrix into the trace operator is positive semidefinite by Observation 7.1.8

of Horn and Johnson (1990). O

B.4 Proof of Proposition 3

Proof. For an agent with prior 7 the agent’s ex-ante expected loss on seeing a dataset

of size n is

Bl D)= [ [ [ = B0 Q. 1au(D)ir(0)

The agents’ statistical model is y = 2/ + ¢, € ~ N (0, 0?)

= /0:(67062) /Dn /W(x/ﬁ + e — 2'B(D,))2dQy(x, €)dQo(D,,)dr(6),
_ / - / n / (@3 = RO+ )u(r. QD) (0)

/e (6.02) /D / n)))?dQo(x)dQy (D, )dr (6)
A

/ D) (8 - B(D ))dQe($)> 4Qu(D,)dr(0)

n

2]+ / o | =B 6 = B QD a0



Where the last equality follows since Ep[za’| = I by assumption. Now, since v = 0 by

assumption, for dataset D, = (Y, X), we have that B(D,) = (X}(W)XJ(W))_IX}(W)Y.

In a slight abuse of notation abbreviate J(w) as J. Writing that Y = X ;8 + e, where

e is the n x 1 vector collecting ¢;:
(B(Dy) = B) = (X)X )" XJpe.

Substituting back in we have that:

Epnio L (7, Do) Awﬂ/ ))(8 — B(D.))dQe(D,)dr(6)

~ Ex, I /Bﬁ/’&WKﬁMﬂﬁWMWM%WQ
since € X ;(X7X ;) 1 (X, X ;) ' Xe is a scalar
e /9 » / Te(e! X, (X) X)L (X)X5) 1 X)e)dQo( D) dirs (9)
Using the cyclic property of the trace operator,
2]+ / L / Tr((X)X,) ' X)ee' X (X)X 1)) dQo( Dy )dr(6)
by assumption, X; and e are independent and Eq, [e€'] = ¢2I,,. Thus,

=E,[0?] + /9 o o2 /X Tr(X)X ) ' XX 5 (XX 7)1 dQo(X 5)dm ()
=E.[0?] + /e o o’ /X Tr(X, X ;)1 dQo(X ) dm(0)

= E.[0?] (1 + %) :

The last equation follows because when x ~ N (0,1), (X)X ,) is a Wishart distribu-

tion W(I;,n). Thus, (XX ;)~! has an inverse wishart distribution and its expectation



equals I;/(n — |J| — 1), provided n > |J| + 1. Finally

J' - J
n—J -1 n—J—-1

if and only if n > 1. Since E,[0?] is common across all agents by assumption, the

result follows. O
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