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Abstract

This paper studies the design of monitoring policies in dynamic settings with moral hazard.

The firm benefits from having a reputation for quality, and the principal can learn the firm’s

quality by conducting costly inspections. Monitoring plays two roles: An incentive role, because

the outcome of inspections affects the firm’s reputation, and an informational role because the

principal values the information about the firm’s quality. We characterize the optimal monitor-

ing policy inducing full effort. It can be implemented by dividing firms into two types of lists:

recently inspected and not, with random inspections of firms in the latter.

JEL Classification: C73, D82, D83, D84.
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1 Introduction

Should we test students using random quizzes or pre-scheduled tests? Should a regulator inspect

firms for compliance at pre-scheduled dates or should it use random inspections? For example,

how often and how predictably should we test the quality of schools, health care providers, etc.?

How should an industry self-regulate a voluntary licensing program, in particular when its members

should be tested for compliance? What about the timing of internal audits to measure divisional

performance and allocate capital within organizations?

Monitoring is fundamental for the implementation of any regulation. It is essential for enforce-

ment and ultimately the optimal allocation of resources, yet it is costly. According to the OECD

(2014), “regulators in many countries are increasingly under pressure to do ‘more with less’. A
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well-formulated enforcement strategy, providing correct incentives for regulated subjects can help

reduce monitoring efforts and thus the cost for both business and the public sector, while increasing

the efficiency and achieving better regulatory goals.”

In practice, information serves multiple roles: on the one hand, it provides valuable information

that can improve the allocation of resources in the economy. On the other hand, information is

an important incentive device in many markets in which agents are concerned about reputation,

and often substitutes monetary awards.1 The role of information and reputation is particularly

important in organizations where explicit monetary rewards that are contingent on performance

are not feasible. As Dewatripont et al. (1999) point out in their study of incentives in bureaucracies,

in many organizations incentives arise not through explicit formal contracts but rather implicitly

through career concerns. This can be the case because formal performance based incentive schemes

are difficult to implement due to legal, cultural or institutional constraints. Similarly, regulators

may be limited in their power to impose financial penalties on firms and may try to use market

reputation to discipline the firms, and fines might be a secondary concern for firms. We believe that

our model captures optimal monitoring practices in these situations in which fines and transfers

are of second order compared to reputation.

Most real-life monitoring policies fall into one of two classes: random inspections or deterministic

inspections – namely inspections that take place at pre-announced dates, for example once a year.

At first, neither of these policies seem optimal. A policy of deterministic inspections may induce

“window dressing” by the firm: the firm has strong incentives to put in effort toward the inspection

date, merely to pass the test, and weak incentives right after the inspection, since the firm knows

that it will not be inspected in the near future. On the other hand, random inspection might be

wasteful from an information acquisition standpoint. Random inspections are not targeted and

may fail to identify cases in which the information acquired is more valuable.

In this paper, we study a model with investment in quality and costly inspections. The objective

is to identify trade-offs involved in the design of optimal dynamic monitoring systems. Our main

result (Theorem 1) is that when both incentive provision and learning are important, the optimal

policy does not take one of these extreme forms. Nevertheless, we show that the optimal policy is

simple. It can be implemented by dividing firms into two sets: the recently-inspected ones and the

rest. Firms in the second set are inspected randomly, in an order that is independent of their time

on the list (that is, with a constant hazard rate). Firms in the first set are not inspected at all.

They remain in the first set for a deterministic amount of time (that may depend on the results of

the last inspection). When that “holiday” period expires, the principal inspects a fraction of the

firms and transfers the remaining fraction to the second set.

The pure deterministic and pure random policies are special cases of our policy. When all firms

are inspected at the end of the “holiday” period, the policy is deterministic; when the duration

1For example, Eccles et al. (2007) assert that “in an economy where 70% to 80% of market value comes from
hard-to-assess intangible assets such as brand equity, intellectual capital, and goodwill, organizations are especially
vulnerable to anything that damages their reputations,” suggesting that our focus on the provision of incentives via
reputation captures first-order tradeoffs in such markets.
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of the “holiday” period shrinks to zero, the policy becomes purely random. We show when these

extreme policies can be optimal. When moral hazard is weak, the optimal policy tends to be

deterministic. On the other hand, when information gathering has no direct value to the principal,

the optimal policy is purely random.

In our model, an agent/firm provides a service and earns profits that are proportional to its

reputation, defined as the public belief about the firm’s underlying quality. Quality is random

but persistent. It fluctuates over time with transitions that depend on the firm’s private effort. A

principal/regulator designs a dynamic monitoring policy, specifying the timing of costly inspections

that fully reveal the firm’s current quality. The regulator’s flow payoff is convex in firm’s reputation,

capturing the possibility the regulator values information per se. We characterize the monitoring

policy that maximizes the principal’s expected payoff (that includes costs of inspections) subject

to inducing full effort by the firm.

We extend our two-type benchmark model in two directions. First, to show robustness be-

yond binary types, we analyze a model where quality follows a mean-reverting Ornstein-Uhlenbeck

process and the principal has mean-variance preferences over posterior beliefs. We show that the

optimal policy belongs to the same family as that in the binary case and provide additional compar-

ative statics. Second, we consider a model in which additional exogenous news process can reveal

information about current quality (as provided, in practice, by consumer reviews or market ana-

lysts). In this extension, we assume that conditional on quality, good and bad news are exogenous,

and following Board and Meyer-ter-Vehn (2013) allow good and bad news to arrive at different

intensities. When preferences are linear, we show that the optimal random monitoring rate is no

longer constant. The intuition is that when bad news arrives faster than good news, the moral

hazard problem is more acute when the firm’s reputation is low, and vice-versa. Since inspections

substitute the direct incentives from news, if bad news arrives faster, the optimal monitoring policy

calls for high monitoring intensity when the agent’s reputation is low.

In some markets inspections play additional roles that our model does not capture. For example,

regulators may want to test schools to identify the source of the success of the best performers

in order to transfer that knowledge to other schools. Inspections could also be used as direct

punishments or rewards – for example, a regulatory agency may punish a non-compliant firm by

inspecting it more, or a restaurant guide may reward good restaurants by reviewing it more often.

In the last section, we discuss how some of these other considerations could qualitatively affect our

results. Our general intuition is that additional considerations (such as dynamic punishments, or

direct monetary incentives) that make the moral hazard less severe or the direct value of information

higher, lead the optimal policy to favor deterministic monitoring over randomization.

The rest of the paper is organized as follows. We finish this introduction discussing related

literature. In Section 2 we introduce the general model and a few applications that could be used

to micro-fund our payoffs. In Section 3 we describe the optimal policy when the moral hazard

is mild. In Section 4 we describe necessary properties of all incentive-compatible policies (i.e.

such that the agent chooses full effort after all histories). In Section 5 we show that when the
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principal’s payoffs are linear in reputation, so that the principal has no direct value of information,

the optimal policy is random with a constant hazard rate of inspections. In Section 6 we use

optimal control methods to provide our main theorem: characterization of the optimal policy for

general preferences. In Section 7 we study a model with quality driven by Brownian shocks. In

Section 8 we introduce exogenous news to the model. In Section 9 we discuss how our intuitions

would apply to several extensions and we conclude.

1.1 Related Literature

There is a large empirical literature on the importance of quality monitoring and reporting systems.

For example, Epstein (2000) argues that public reporting on the quality of health care in the U.S.

(via quality report cards) has become the most visible national effort to manage quality of health

care. This literature documents the effect of quality report cards across various industries. Some

examples include restaurant hygiene report cards (Jin and Leslie, 2009), school report cards (Figlio

and Lucas, 2004), and a number of disclosure programs in the health care industry. Zhang et al.

(2011) note that during the past few decades, quality report cards have become increasingly popular,

especially in areas such as health care, education, and finance. The underlying rationale for these

report cards is that disclosing quality information can help consumers make better choices and

encourage sellers to improve product quality.2

Our paper is closely related to Lazear (2006) and Eeckhout et al. (2010) who study the opti-

mal allocation of monitoring resources in static settings and without reputation concerns. Lazear

concludes that monitoring should be predictable/deterministic when monitoring is very costly, oth-

erwise it should be random. Both papers are concerned with maximizing the level of compliance

given a limited amount of monitoring resources. Optimality requires that the incentive compatibility

constraint of complying agents be binding or else some monitoring resources could be redeployed to

induce compliance by some non-complying agents. Both papers consider static settings, and ignore

the reputation effect of monitoring, which is the focus of our study.

Another related literature is on the deterrence effect of policing and enforcement and the optimal

monitoring policy to deter criminal behavior in static settings. See for example Becker (1968),

Polinsky and Shavell (1984), Reinganum and Wilde (1985), Mookherjee and Png (1989), Bassetto

and Phelan (2008), Bond and Hagerty (2010). Kim (2015) compares the level of compliance with

environmental norms induced by periodic and exponentially distributed inspections when firms that

fail to comply with norms are subject to fines.

We build on the investment and reputation model of Board and Meyer-ter-Vehn (2013) where

the firm’s quality type changes stochastically. Unlike that paper, we analyze the optimal design

2Admittedly, while some existing studies provide evidence in support of the effectiveness of quality report cards,
other studies have raised concerns by showing that report cards may induce sellers to game the system in ways that
hurt consumers. For example, Hoffman et al. (2001) study the results from Texas Assessment of Academic Skills
testing and found some evidence that this program has a negative impact on students, especially low-achieving and
minority students. While our model does not have the richness to address all such issues, it is aimed at contributing
to our understanding of properties of good monitoring programs.
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of monitoring policy, while they take the information process as exogenous (in their model it is a

Poisson process of exogenous news). They study equilibrium outcomes of a game, while we solve a

design problem (design of a monitoring policy). Moreover, we allow for a principal to have convex

preferences in perceived quality, so that information has direct benefits, an assumption that does

not have a direct counterpart in their model. Finally, we allow for a richer evolution of quality:

in Board and Meyer-ter-Vehn (2013) it is assumed that if the firm puts full effort, quality never

drops from high to low, while in our model even with full effort quality remains stochastic.3 In

the end of the paper we also discuss that some of our results can be extended beyond the Board

and Meyer-ter-Vehn (2013) model of binary quality levels and we also consider design of optimal

monitoring when some information comes exogenously.

Our paper is also somewhat related to the literature that has explored design of rating mech-

anisms or reputation systems more broadly. For example, Dellarocas (2006) studies how the fre-

quency of reputation profile updates affects cooperation and efficiency in settings with noisy ratings.

Horner and Lambert (2016) study the incentive provision aspect of information systems in a career

concern setting similar to Holmström (1999). In their setting acquiring information is not costly and

does not have value per se. See also Ekmekci (2011), Kovbasyuk and Spagnolo (2016), and Bhaskar

and Thomas (2017) for studies of optimal design of rating systems in different environments.

2 Setting

Agents, Technology and Effort: There are two players: a principal and a firm. Time t ∈ [0,∞)

is continuous. The firm sells a product whose quality changes over time. We model the evolution of

quality as in Board and Meyer-ter-Vehn (2013): Initial quality is exogenous and commonly known.

At time t, the quality of the product is θt ∈ {L,H}, and we normalize L = 0 and H = 1. Quality

changes over time and is affected by the firm’s effort. At each time t, the firm makes a private effort

choice at ∈ [0, ā], ā < 1. Throughout most of the paper we assume that when the firm chooses effort

at quality switches from low to high with intensity λat and from high to low quality with intensity

λ(1− at). Later we illustrate how the analysis can be extended to the case in which quality θt can

take on a continuum of values and effort affects the drift of the evolution of quality. Note that

we bound at below one so unlike Board and Meyer-ter-Vehn (2013) quality is random even if the

firm exerts full effort. The steady-state distribution of quality when the firm puts in full effort is

Pr(θ = H) = ā.

Strategies and Information: At time t, the principal can inspect the quality of the product, in

which case θt becomes public information (we can think of the regulator as disclosing the outcome

of inspections to the public. A commitment to truthful disclosures by the regulator is optimal in

our setting, given the linearity of the firm payoffs.)

3Board and Meyer-ter Vehn (2014) allows quality to be stochastic with full effort.
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A monitoring policy specifies an increasing sequence of inspections (Tn)n≥1 times.4 Let Nt ≡
sup{n : Tn ≤ t} be the counting process associated with (Tn)n≥0, and denote the natural filtration

σ(θs, Ns : s ≤ t) by F = (Ft)t≥0. In addition, let FP = (FPt )t≥0 be the smaller filtration σ(θTn , Ns :

n ≤ Nt, s ≤ t) which represents the information available to the principal. The time elapsed

between inspections is denoted by τn ≡ Tn − Tn−1, so a monitoring policy can be represented by a

sequence of cumulative density functions, Fn : R+∪{∞} → [0, 1] measurable with respect to FPTn−1

specifying the distribution of τn conditional on the information at the inspection date Tn−1. The

principal commits at time 0 to the full monitoring policy.

We assume that current quality is always privately known by the firm so its information is given

by F, but as discussed below, our results extend to the case where the firm does not observe quality

which in some applications is more realistic. A strategy for the firm is an effort plan a = (at)t≥0

that is predictable with respect to F.

Reputation and Payoffs: We model the firm’s payoffs as driven by the firm’s reputation. In

particular, denote the market’s conjecture about the firm’s effort strategy by ã = (ãt)t≥0. Rep-

utation at time t is given by xt ≡ Eã(θt|FPt ) where the expectation is taken with respect to the

measure induced by the conjectured effort, ã. In words, reputation is the market’s belief about the

firm’s current quality. It evolves based on the market’s conjecture about the firm’s strategy and

inspection outcomes.

The firm is risk neutral and discounts future payoffs at rate r > 0. For tractability we assume

that the firm’s payoff flow is linear in reputation.5 The marginal cost of effort is k, hence the firm’s

expected payoff at time t is

Πt = Ea
[∫ ∞

t
e−r(s−t)(xs − kas)ds

∣∣∣Ft] .
In absence of asymmetric information, effort is optimal for the firm if and only if λ/(r+λ) ≥ k.

We assume throughout the analysis that this condition is satisfied.

The principal discounts future payoffs at the same rate r as the firm. The principal’s flow payoff

is given by a strictly increasing and convex function of the firm’s reputation, u(·). As mentioned

previously, the convexity of u captures the possibility that the principal values the information

about the firm’s quality.

Also, monitoring is costly to the principal: the lump-sum cost of an inspection is c. Hence, the

principal’s payoff is

Ut = Eã

∫ ∞
t

e−r(s−t)u(xs)ds−
∑
Tn≥t

e−r(Tn−t)c
∣∣∣FPt

 .
4We implicitly assume the principal discloses the quality after the inspection. This is optimal: the principal would

never benefit from withholding the quality information because that would weaken the incentive power of monitoring.
5One interpretation is that the firm sells a unit flow of supply to a competitive market where consumers’ willingness

to pay is equal to the expected quality, so that in every instance price is equal to the firm’s current reputation. We
discuss alternative interpretations in the next section.
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Note that the cost of effort is not part of the principal’s payoff. In some applications it may be

more natural to assume the principal internalizes that cost and then we would subtract −kãs from

the welfare flows. However, since we focus on policies that induce full effort (at = ā for all t) our

analysis does not depend on how the principal accounts for the firm’s cost of effort (of course, the

cost still matters indirectly since it affects agent’s effort incentives). Finally, we assume that, for

any belief xt, the principal values effort at least as much as the firm, which means that u′(0) ≥ 1

which guarantees that full effort is optimal in the first best.

Some comments are in order. First, in some applications, the agent and principal might also

care about true quality θt, in addition to reputation. For example, a school manager may care

about how many students the school attracts thanks to its reputation and about the welfare of

those students, which in turn depends on the school’s actual quality. The current specification of

the principal’s payoff already incorporates this possibility.6 When the agent’s preferences are a

quasilinear combination of θt and xt the analysis extends directly to this more general case (see

Remark 3). Second, we shall study both the case when the principal payoff u(·) is linear and that

when it is strictly convex. Again, such convexity of the principal’s flow payoff captures situations

in which information about quality affects not only prices but also allocations – for example infor-

mation may improve matching of firms and consumers by allowing relocation of consumers from

low quality to high quality firms – and the principal may internalize consumer surplus. Throughout

the paper we ignore the use of monetary transfers –beyond transfers that are proportional to the

current reputation.7 In some settings, other forms of performance-based compensation can be used

to provide incentives, but in many cases divisional contracts are simple and earnings proportional

to the size of the division may be the main driver of the manager’s incentives. Graham, Harvey, and

Puri (2015) find evidence that manager’s reputation has an important role in the internal capital

allocation. In addition, the use of career concerns as the main incentive device also captures the

allocation of resources in bureaucracies as in Dewatripont, Jewitt, and Tirole (1999). The role

of financial incentives in government agencies is much more limited than in private firms where

autonomy, control and capital allocation driven by career concerns seem more preponderant for

worker’s motivation.

Third, we assume the principal can commit to a monitoring policy. There are many possible

sources of such commitment. In some instances, commitment is achieved by regulation (for example,

in case of aircraft safety, the FAA requires that an aircraft must undergo an annual inspection every

12 calendar months to be legal to operate). In other instances, commitment can be supported by

relational contracts. That is, punishing the principal via inferior continuation equilibrium if he

deviates. For example, it would call for no more inspections and hence induce no effort. Such

commitment via relational concerns would be straightforward in case of deterministic inspections.

In case of random inspections, if the principal interacts with many agents, it would be able to

commit to inspecting a certain fraction of them in every period to approximate the optimal random

6If the principal payoff is ũ(θt, xt) then the expected payoff is u(xt) = xtũ(H,xt) + (1− xt)ũ(L, xt).
7See Motta (2003) for a capital budgeting model driven by career concerns along these lines.
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policy we describe. The non-commitment case is beyond the scope of this paper.8

Incentive Compatibility and Optimal Policies. We seek to characterize monitoring policies

that maximize the principal’s payoff among those inducing full effort.9 Since the firm’s best response

depends both on the monitoring policy and the principal’s conjecture, ã, incentive compatibility

deserves some discussion.

First, we define what it means for an effort policy to be consistent with an equilibrium for a

given monitoring policy:

Definition 1. Fix a monitoring policy (Fn)n≥1. An equilibrium is a pair of effort and conjectured

effort (ã, a) such that for every history on the equilibrium path:10

1. xt is consistent with Bayes’ rule, given (Fn)n≥1 and ã.

2. a maximizes Π.

3. ã = a.

Second, we define incentive compatibility of the monitoring policy by requiring existence of an

equilibrium with full effort for that policy, and define the optimal policy accordingly.

Definition 2. A monitoring policy (Fn)n≥1 is incentive compatible if under that policy there exists

an equilibrium with at = ā. A monitoring policy is optimal if it maximizes U over all incentive

compatible monitoring polices.

In other words, we assume the firm chooses full effort whenever there exists an equilibrium given

(Fn)n≥1 that implements full effort (even if there are multiple equilibria).

An optimal policy faces the following trade-off: First, the policy seeks to minimize the cost

of inspections subject to maintaining incentives for effort provision (one can always provide in-

centives for full effort by implementing very frequent inspections, but that would be too costly).

Second, since the principal values information per se, the policy solves the real-option-information-

acquisition problem of deciding when to incur the cost c to learn the firm’s current quality and

thus benefit from superior information.

This completes our description of the setting. To further motivate the model, we describe three

applications in the next section.

2.1 Examples

Before we begin the analysis, we discuss three applications of the model. They illustrate how the

firm and principal payoffs can be micro-founded.

8For analysis of costly disclosure without commitment that is triggered by the firm, see Marinovic et al. (2018).
9One interpretation is that we implicitly assume the parameters of the problem are such that despite agency

problems it is optimal for the principal to induce full effort after all histories. Another motivation for focusing on
full effort is that in some applications, for example in the case of schools, punishing the firms by implementing low
effort might not be practical. We discuss this assumption further in the end of the paper.

10We could define a third player in the model, the market, and then define the equilibrium as a Perfect Bayesian
equilibrium of the game induced by the policy (Fn)n≥1. We hope our simpler definition does not create confusion.
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Example 1: School Monitoring. Here we study monitoring of school quality in the presence

of horizontal differentiation. Specifically, consider a Hotelling model of school choice with two

schools located at opposite extremes of the unit line: School A, with a known constant quality and

school B with unknown and evolving quality. The evolution of the quality of school B depends

on the school’s hidden investment and is unobservable to the public unless a regulator monitors it.

Students are distributed uniformly over the unit line. Both schools charge the same tuition and

students choose them based on location and perceived quality differences. Assume the quality of

school A is known to be low. If a student is located at location ` ∈ [0, 1] she derives a utility of

attending school A equal to

vA (`) = −`2.

On the other hand, the utility of attending school B depends on its reputation and is given by

vB (xt, `) = xt − (1− `)2

Given reputation xt, students above `∗(xt) = 1−xt
2 choose school B. Hence the demand for school

B is:

1− `∗(xt) =
1 + xt

2
.

Now, assume that for each attending student, the schools receive a transfer of $1 from the govern-

ment and normalize marginal costs to zero. Hence, the profit flows of schools A and B are

πA(xt) = `∗(xt) =
1− xt

2

πB(xt) = (1− `∗(xt))− kat =
1 + xt

2
− kat.

Conditional on school B′s reputation xt, total students’ welfare is

w(xt) =

∫ `∗(xt)

0
vA(`)d`+

∫ 1

`∗(xt)
vB(xt, `)d`

=
1

4
x2
t +

1

2
xt −

1

12

Finally, suppose that the principal’s (i.e., the school regulator) payoff in each period t is a weighted

average of the students’ and schools’ welfare:

u(xt) = αw(xt) + (1− α)(πA(xt) + πB(xt)),

where α is the relative weight attached to students’ utility by the principal. Note that the principal’s

flow utility u(xt) is an increasing and convex function of reputation, even though the sum of the

schools’ profits does not depend on it (since the two schools just split the subsidy per student,

reputation only affects the distribution of profits). The convexity of u reflects here that better

information about the quality of B leads to a more efficient allocation of students and the principal
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internalizes their welfare.

Example 2: Quality Certification. Consider a version of the classic problem of moral hazard in

quality provision, as studied by the reputation literature (see e.g., Mailath and Samuelson (2001)).

There are two firms. The product of firm 2 (good 2) has a known quality x2 ∈ (0, 1), while the

product of firm 1 (good 1) – which is the firm we analyze– has random quality that is either high

or low, θ1 ∈ {0, 1} with reputation denoted by x1. Each firm produces a unit (flow) of the good

per period. There are N ≥ 3 buyers with types qj that represent a buyer’s preference for quality:

Each buyer j has type qj with q1 > q2 = q3 = ... = q, and if agent j gets the good with expected

quality x and pays p their consumer surplus is

qjx− p.

Prices and allocations are set competitively as follows. When x1 < x2 the efficient allocation is that

buyer 1 gets good 2 and any of the other buyers gets good 1. Competition between the less-efficient

buyers drives the price of good 1 to p1 = qx1 (these buyers get no surplus), while the price of good

2 is the smallest price such that agents j ≥ 2 do not want to outbid agent 1 for it:

qx1 − p1 = qx2 − p2 ⇒ p2 = qx2.

When x1 > x2, then the efficient allocation is that agent 1 gets good 1, and, by an analogous

reasoning, competition implies that prices are p2 = qx2 and p1 = qx1: Therefore, for all levels of x1

the price of the output of firm 1 is p1 = qx1. Suppose the planner wants to maximize total social

surplus. Because the less efficient buyers compete away all the surplus, the social surplus is

TS = p1 + p2 + CS1,

where CS1 is the surplus of agent 1, and so we have that

CS1 =

{
q1x2 − p2 if x1 < x2

q1x1 − p1 if x1 ≥ x2

which means that the surplus flow per period is

u (x1) =

{
qx1 + q1x2 if x1 < x2

q1x1 + qx2 if x1 ≥ x2

The surplus is a convex function because q1 > q: Intuitively, while prices are linear in expected

quality (reputation), consumer surplus is convex because reputation affects the allocation of goods

– information about the true quality of product 1 allows to allocate it more efficiently among the
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agents.11 The principal’s preferences are linear if q1 = q because information has no allocative role.

This corresponds to the setting in Mailath and Samuelson (2001) and Board and Meyer-ter-Vehn

(2013) who consider a monopolist selling a product to a competitive mass of buyers.

Example 3: Capital Budgeting and Internal Capital Markets. In the next example we

show how the model can be applied to investment problems such as capital budgeting and capital

allocation. An extensive literature in finance studies capital budgeting with division managers who

have empire building preferences.12 As in Stein (1997) and Harris and Raviv (1996), we assume

managers enjoy a private benefit from larger investments. In particular, assume the manager enjoys

a private benefit at time t of b ∗ ιt from investment ιt.
13 Projects arrive according to a Poisson

process Ñt with arrival intensity µ. The manager’s expected payoff is

Πt = Ea
[∫ ∞

t
e−r(s−t)(bιsdÑs − kasds)

∣∣∣Ft] .
Similarly, the division’s cash-flows follow a compound Poisson process (Yt)t≥0 given by

Yt =

Ñt∑
i=1

f(θti , ιti),

where f(θt, ιt) = θt − γ(ιt − θt)
2 is a quadratic production function similar to the one used in

Jovanovic and Rousseau (2001). At each time t that a project arrives, the headquarters decides

how much resources allocate to the division, and the optimal investment choice of the headquarter is

to allocate ιt = arg maxιE[f(θt, ι)|FPt− ] resources to the division, so ιt = xt.
14 Hence, the manager’s

expected flow payoff is

πt = µbxt − kat,

and the principal’s expected flow payoff is

u(xt) = µ
(
xt − γVar

[
θt|FPt

])
= µ

(
(1− γ)xt + γx2

t

)
.

In the baseline model, we assume that monitoring is the only source of information about θ available

to the headquarter. In this application it is natural to assume that the headquarter also learns

11In this example u (x) is piece-wise linear. It is an artifact of having two types of agents and two products since
there are only two possible allocations. It is possible to construct a model with a continuum of agent types and
continuum of goods where the allocation changes continuously in x and the resulting consumer surplus is strictly
convex.

12Some examples are found in Hart and Moore (1995), Harris and Raviv (1996), and Harris and Raviv (1998).
Motta (2003) studies a model of capital budgeting with empire building preferences and career concerns.

13Coefficient b can be also interpreted as incentive pay that is proportional to the size of the allocation to prevent
other agency problems, such as cash diversion, not captured explicitly by our model.

14Note that the allocation in period t is made before the realization of the cash-flow (the Poisson process), as
captured by FPt− . Technically, we could write that profits depend on ιt− , but write simply ιt since the timing of the
game should be well understood.
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about the current productivity once the cash-flows arrive. We study the possibility of exogenous

news arrivals in Section 8.

3 Optimal Monitoring with weak Moral Hazard

As an intermediate step toward characterizing the optimal policy in the general model, we study

a relaxed problem that ignores the agent’s incentive constraint. When u(·) is convex and both the

cost of monitoring c and effort k are small enough, the solution of such a relaxed problem satisfies

the agent’s incentive constraint being thus the optimal policy.15 Moreover, even if moral hazard is

severe, the trade-offs identified in the unconstrained problem influence the structure of the optimal

policy.

Consider the evolution of reputation between two inspection dates. Given that the firm exerts

full effort, a = ā, reputation evolves according to

ẋt = λ(āt − xt) (1)

between inspection dates (Tn−1, Tn). Therefore, given θTn−1 = θ, the firm’s reputation at time

Tn−1 + τ < Tn is

xθτ = θe−λτ + ā
(

1− e−λτ
)
.

In the relaxed problem (i.e., ignoring the incentive constraint) the principal solves the following

stochastic control problem

U(x0) = sup(Tn)n≥1
E
[∫∞

0 e−rtu(xt)dt−
∑
e−rTnc

∣∣∣FP0 ]
subject to:

ẋt = λ(ā− xt) ∀t ∈ [Tn−1, Tn)

xTn−1 = θTn−1 .

(2)

The optimal policy is Markovian in reputation. Denoting by A the set of reputations that lead to

immediate inspection, the value function solves the Hamilton-Jacobi-Bellman (HJB) equation

rU(x) = u(x) + λ(ā− x)U ′(x), x /∈ A (3a)

U(x) = xU(1) + (1− x)U(0)− c, x ∈ A. (3b)

We conjecture and verify that the optimal policy is given by an audit setA = [x, x], where x ≤ ā ≤ x
15The solution of this relaxed problem also characterizes the optimal policy when effort (but not quality) is ob-

servable (recall we assume u′(0) ≥ 1 so full effort is optimal in the first best).
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and the threshold x̂ ∈ {x, x} satisfies the boundary conditions:

U(x̂) = x̂U(1) + (1− x̂)U(0)− c (4a)

U ′(x̂) = U(1)− U(0). (4b)

Hence, we have the following standard result:

Result (Benchmark). Suppose that U is a function satisfying the HJB equation (3a)-(3b) together

with the boundary conditions (4a)-(4b). Then U is the value function of the optimization problem

(2) and the optimal policy is to monitor the firm whenever xt ∈ A = [x, x].

x x

U(x)

xU
(1
) +

(1
− x

)U
(0
)−
c

A = [x, x]xLt xHt

x

U(x)

Figure 1: Value Function. The optimal policy requires to monitor whenever reputation enters the
audit set, xt ∈ A.

Figure 1 illustrates the principal’s payoff as a function of beliefs. Observe that after an inspection

beliefs reset to either x = 0 or x = 1 because reviews are fully informative. Then, beliefs begin

to drift deterministically toward ā, which lies in the interior of the audit set A. When beliefs hit

the boundary of A, the principal monitors the firm for certain. Naturally, the principal acquires

information when enough uncertainty has accumulated, namely when the distance between U(x)

and the line connecting U(0) and U(1) gets large and when beliefs get close to ā, so the drift in

beliefs is small.

The size of the monitoring region A depends on the convexity of the principal’s objective func-

tion and the cost of monitoring c since these parameters capture the value and cost of information,

respectively. In the extreme case when u(·) is linear (or c is too large) the optimal policy is to never

monitor the firm but let beliefs converge to ā (but of course in this case the incentive constraint

would be violated since there are no rewards to effort in the absence of monitoring). By contrast, as

u(·) becomes more convex, the monitoring region widens leading to greater frequency of monitoring

13



eventually leading to the incentive constraint being always slack which, as mentioned above, implies

that the solution to the relaxed is the optimal monitoring policy.

Figure 1 illustrates the optimal policy as a function of beliefs. Notice that between inspection

dates beliefs evolve deterministically and monotonically over time, hence there is an equivalent

representation of the monitoring policy based upon the time since last review, t − Tn, and the

outcome observed in the last review, θTn . Specifically, define:

τH ≡ inf{t : xt = x, x0 = 1} =
1

λ
log

(
1− ā
x− ā

)
τL ≡ inf{t : xt = x, x0 = 0} =

1

λ
log

(
ā

ā− x

)
.

We can then represent the policy by the nth−monitoring time as Tn = Tn−1 + τθTn−1
.16

Remark 1. This representation of the optimal monitoring policy applies to the case in which both

τL and τH are finite. Depending on the specific parameters of the model, either τL or τH can be

infinite, or in other words there is no further monitoring after some outcomes. In terms of the

policy specified as a function of beliefs this means that either x = ā or x = ā. In this case, the value

matching and smooth pasting conditions are only valid at the threshold that is different from ā.

4 Incentive Compatible Policies

The solution of the relaxed problem may violate incentive constraints when inspections are too

costly hence infrequent. This would induce the firm to shirk some times particularly when the

moral hazard issue is most severe, namely right after an inspection. In this section, we characterize

necessary and sufficient conditions for a monitoring policy to satisfy the incentive compatibility

constraints. In the following 2 sections, we use this characterization to derive optimal policies for

u(x) linear and convex, respectively.

To tackle this problem, let us begin by considering the firm’s continuation payoff under full

effort at time Tn+1, where Tn+1 denotes the next review date:

ΠTn+1 = Eā

[∫ ∞
Tn+1

e−r(t−Tn+1)(xt − kā)dt
∣∣∣FTn+1

]

=

∫ ∞
Tn+1

e−r(t−Tn+1)
(
Eā[xt|FTn+1 ]− kā

)
dt.

This expression corresponds to the firm’s continuation value at time Tn+1 assuming the firm exerts

full effort thereafter. Simply put, it represents the expected present value of the firm future revenues

net of effort costs. A key insight in the derivation of the incentive compatibility constraint is that

16The only exception would be the case when x0 ∈ (0, 1). In this case T1 = 1
λ

log
(
x0−ā
x−ā

)
if x0 > x; T1 =

1
λ

log
(
x0−ā
x−ā

)
if x0 < x and T1 = 0 otherwise. After T1, the policy would be the one described in the text.
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the law of iterated expectations along with the Markov nature of the quality process, θt, imply that

Eā[xt|FTn+1 ] = Eā[θt|θTn+1 ], and this is equal to

Eā[θt|θTn+1 ] = θTn+1e
−λ(t−Tn+1) + ā

(
1− e−λ(t−Tn+1)

)
.

Therefore, in any incentive-compatible monitoring policy, if the quality at time Tn is public, the

firm’s continuation value at time Tn+1 given θTn+1 = θ is:

Π(θ) ≡ ā

r
+
θ − ā
r + λ

− āk

r
. (5)

The first term is the NPV of revenue flows given steady-state reputation; the second is the deviation

from the steady-state flows given that at time Tn+1 the firm re-starts with an extreme reputation,

and the last term is the NPV of effort costs. Importantly, since the firm’s payoffs are linear

in reputation and the firm incurs no direct cost of inspections, these continuation payoffs are

independent of the future monitoring policy. That dramatically simplifies the characterization

of incentive compatible policies as we show next. Moreover, because the continuation value at

time Tn+1 is independent of the previous history of effort (it depends on effort only indirectly via

θTn+1), we can invoke the one-shot deviation principle to derive the agent’s incentive compatibility

constraint. For any effort strategy at, we can write the process of quality as

θt = e−λtθ0 +

∫ t

0
e−λ(t−s)(λasds+ dZs), (6)

where Zt is a martingale, corresponding to the compensated Poisson process of changes in quality.

Consider the agent’s effort incentives. Effort may affect the firm payoff by changing its quality

and thereby the outcome of future inspections. Informally, the effect of effort on future quality is

∂θTn+1/∂at = λe−λ(Tn+1−t)dt, so the marginal benefit of exerting effort over an interval of size dt is

E[λe−(r+λ)(Tn+1−t)|Ft](Π(H)−Π(L))dt.

This is intuitive: having high quality rather than low quality at the inspection time yields the firm

a benefit Π(H)−Π(L). Also, a marginal increase in effort leads to higher quality with probability

(flow) λdt. However, to reap the benefits of high quality, the firm must wait till the next review

date, Tn+1, facing the risk of an interim (i.e., before the inspection takes place) drop in quality.

Hence, the benefit of having high quality at a given time must be discounted according to the

interest rate r and the quality depreciation rate λ. On the other hand, the marginal cost of effort

is kdt. Combining these observations we can express the incentive compatibility condition for full

effort as follows.

Proposition 1. Full effort is incentive compatible if and only if for all n ≥ 0,

1

r + λ
E
[
e−(r+λ)(Tn+1−t)∣∣Ft] ≥ k

λ
∀t ∈ [Tn, Tn+1)
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Proof. The first step is to define the martingale Zt in equation (6). Let NLH
t =

∑
s≤t 1{θs−=L,θs=H}

and NHL
t =

∑
s≤t 1{θs−=H,θs=L} be counting processes indicating the number of switches from L

to H and from H to L, respectively. The processes

ZLHt = NLH
t −

∫ t

0
(1− θs)λasds

ZHLt = NHL
t −

∫ t

0
θsλ(1− as)ds,

are martingales. Letting Zt ≡ ZLHt − ZHLt and noting that dθt = dNLH
t − dNHL

t we get that θt

satisfies the stochastic differential equation

dθt = λ(at − θt)dt+ dZt,

which leads to equation (6). Full effort is incentive compatible if and only if for any deviation ât

(with an associated process for quality θ̂t)

Eā
[∫ Tn+1

t
e−r(s−t)(xs − kā)ds+ e−r(Tn+1−t)(θTn+1Π(H) + (1− θTn+1)Π(L)

)∣∣Ft] ≥
Eâ
[∫ Tn+1

t
e−r(s−t)(xs − kâs)ds+ e−r(Tn+1−t)(θ̂Tn+1Π(H) + (1− θ̂Tn+1)Π(L)

)∣∣Ft]
Letting ∆ ≡ Π(H) − Π(L) and replacing the solution for θt in (6), we can write the incentive

compatibility condition as

Eâ
[∫ Tn+1

t
e−r(s−t)

(
λe−(r+λ)(Tn+1−s)∆− k

)
(ā− âs)ds

∣∣Ft] ≥ 0.

For any deviation we have that

Eâ
[∫ Tn+1

t
e−r(s−t)

(
λe−(r+λ)(Tn+1−s)∆− k

)
(ā− âs)ds

∣∣Ft] =

Eâ
[∫ ∞

t
1{Tn+1>s}e

−r(s−t)(λEs[e−(r+λ)(Tn+1−s)]∆− k
)
(ā− âs)ds

∣∣Ft]
So, we can write the incentive compatibility condition as

Eâ
[∫ Tn+1

t
e−r(s−t)

(
λEs[e

−(r+λ)(Tn+1−s)∣∣Ft]∆− k)(ā− âs)ds] ≥ 0

The result in the lemma then follows directly after replacing ∆ = Π(H)−Π(L) = 1/(r + λ).

In essence, this condition says that for a monitoring policy to be incentive compatible the next

inspection must be sufficiently close, in expectation. Incentive compatibility imposes a lower bound

on the expected discounted inspection date Et
[
e−(r+λ)(Tn−t)] . What matters for incentives at a
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given point in time is not necessarily the monitoring intensity at that point but the cumulative

discounted likelihood of monitoring in the near future. Future monitoring affects incentives today

because effort has a persistent effect on quality, hence shirking today can lead to a persistent drop

in quality that can be detected by the principal in the near future.

As mentioned above, future inspections are discounted both by r and the switching intensity λ

because effort today matters insofar as quality is persistent (or switching is not so frequent). Notice

that the incentive compatibility constraint is independent of the true quality of the firm at time t,

so the incentive compatibility condition is the same if the firm does not observe the quality process,

which is why the optimal monitoring policy is the same wether the firm observes quality or not.

The incentive compatibility constraint is independent of θt because effort enters linearly in the law

of motion of θt and the cost of effort is independent of θt, which means that the marginal benefit

and cost of effort are independent of θt, and so is the incentive compatibility constraint. In fact,

we have the incentive compatibility constraint in Proposition 1 apply to more general processes for

quality.

Remark 2. Notice that Proposition 1 holds for any process for quality satisfying the stochastic

differential equation

dθt = λ(at − θt)dt+ dZt, (7)

where Zt is a martingale. In particular, it holds when Zt is a Brownian motion, so quality follows

an Ornstein-Uhlenbeck process. This case is considered later in Section 7. The binary setting is

a particular case of (7) in which Zt is the compensated Poisson process defined in the proof of

Proposition 1.

Remark 3. Proposition 1 can be extended to the case in which the agent also cares about quality

and has a quasilinear flow payoff v(θt) + xt. In this case, the incentive compatibility constraint

becomes
1

r + λ
E
[
e−(r+λ)(Tn+1−t)∣∣Ft] ≥ k

λ
− v(1)− v(0)

r + λ
∀t ∈ [Tn, Tn+1)

All the results extend to this case by setting the cost of effort equal to k − λ(v(1)− v(0))/(r + λ).

5 Linear Payoffs: Information without Direct Social Value

In this section we analyze the case in which the principal’s flow payoff u(·) is linear. As discussed

above, this case captures applications where the principal is say an industry self-regulatory organi-

zation that is not directly concerned about consumer surplus but wishes to maximize the industry’s

expected profits.

Under linear payoffs, information has no direct value to the regulator. Hence, the principal’s

problem boils down to minimizing the expected monitoring costs, subject to the incentive compat-

ibility constraints. Accordingly, using Proposition 1, we can reduce the principal’s problem to the
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following cost minimization problem:
C0 = inf(Tn)n≥1

E
[∑

n≥1 e
−rTnc

∣∣∣FP0 ]
subject to:

k
λ ≤ 1

r+λE
[
e−(r+λ)(Tn+1−t)|Ft

]
∀t ∈ [Tn, Tn+1).

(8)

The principal aims to minimize expected monitoring costs subject to the agent always having

an incentive to exert effort. The optimal monitoring policy in this case is simple, consisting of

random inspections with a constant hazard rate:

Proposition 2. If u(xt) = xt, then the optimal monitoring policy is a Poisson process with arrival

rate

m∗ = (r + λ)
q

1− q ,

where

q ≡ (r + λ)
k

λ

The intuition for Proposition 2 follows from the fact that in (8) future monitoring is discounted

by r in the objective function and by r + λ in the constraints (as previously discussed, inspections

have a discounted effect on incentives because quality depreciates over time.) As a result, the

optimal monitoring policy front-loads inspections in a way that the incentive compatibility con-

straints bind in all periods. This implies that the optimal intensity of monitoring is constant at

mτ = m∗ = (r + λ)q/(1 − q), and that there are no deterministic reviews nor atom, or else the

incentive constraint would be slack some time prior to the review, in which case the principal could

save some monitoring expenses without violating the firm’s incentive to exert full effort.

Remark 4. As mentioned in Remark 2, the incentive compatibility characterization in Proposition

1 holds for general processes of the form

dθt = λ(at − θt)dt+ dZt.

Proposition 2 extends to the case in which Zt is Brownian motion (that is, Ornstein Uhlenbeck

process) or a more general general Levy process. The key assumption here is that the drift of

quality is linear in effort at.

Remark 5. It follows directly from the proof of Proposition 2 that the result extends to the case

in which the principal and the firm have different discount rates as long as the principal is patient

enough. If the principal has a discount rate ρ, then Proposition 2 still holds as long as ρ < r + λ.

If the principal is sufficiently impatient, that is if ρ > r + λ, then the optimal policy in the linear

case involves purely deterministic monitoring.
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6 Convex Payoffs: Information with Direct Social Value

In many applications information has direct value to the principal. We capture this possibility by

assuming that the principal’s utility flow u(x) is convex in beliefs. In this case, the principal designs

the monitoring policy facing a trade-off between cost minimization and information acquisition.

Because of this dual role of monitoring, we cannot use as simple an argument as in the linear case;

we need to analyze the full optimization problem.

According to Proposition 1, the incentive compatibility constraint depends only on the distri-

bution of τn+1 ≡ Tn+1− t and is independent of the distribution of monitoring times during future

monitoring cycles, {Tn+k}k≥2. Let

M(U, x) ≡ xUH + (1− x)UL − c

be the expected payoff at the inspection date given beliefs x and continuation payoffs U ≡ (UL, UH).

We can write the principal problem recursively using θTn as a state variable at time Tn as follows17


G θ(U) = supF

∫∞
0

(∫ τ
0 e
−rsu(xθs)ds+ e−rτM(U, xθτ )

)
dF (τ)

subject to

q ≤ E[e−(r+λ)(τn+1−τ) | τn+1 ≥ τ, θ0 = θ] ∀τ,

(9)

where xθτ ≡ θe−λτ + ā
(
1− e−λτ

)
.

The principal payoff is given by the fixed point G θ(U) = U, θ ∈ {L,H}. The following lemma

establishes that a fixed point exists, is unique, and that the supremum in (9) is attained.

Lemma 1 (Existence). There exists a unique fixed point G θ(U) = U, θ ∈ {L,H}. Furthermore,

for any continuation payoff U, there exists a monitoring policy F ∗ solving the maximization problem

in (9).

We reformulate the problem as an optimal control problem with state constraints. For this, we

define the state variable

qτ ≡ E
[
e−(r+λ)(τn+1−τ)

∣∣τn+1 ≥ τ, θ0

]
,

where the expectation is taken over the next monitoring time, τn+1.

That is, qτ , represents the expected discounted time till the next review, where the effective

discount rate incorporates the depreciation rate λ. The incentive compatibility constraint in Propo-

sition 1 becomes qτ ≥ q. The next step is to derive the law of motion of (qτ )τ≥0 to use it as a

state variable in the principal’s optimization problem. It is convenient to express the optimization

problem in terms of the hazard measure M : R+ ∪ {∞} → R+ ∪ {∞} defined by 1− F (τ) = e−Mτ .

Mτ is a non-decreasing function and by the Lebesgue decomposition theorem, it can be decomposed

17Notice that because θt is a Markov process and the Principal problem is Markovian, we can wlog reset the time
to zero after every inspection and denote the value of θt at time Tn by θ0.
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into its continuous and its discrete part18

Mτ = M c
τ +Md

τ .

Thus, we can write

qτ =

∫ ∞
τ

e−(r+λ)(s−τ) dF (s)

1− F (τ−)

=

∫ ∞
τ

e−(r+λ)(s−τ)−(Ms−−Mτ )dM c(s) +
∑
s>τ

e−(r+λ)(s−τ)−(Ms−−Mτ )(1− e−∆Md
s )

At any point of continuity we have that

dqτ = (r + λ)qτdτ − (1− qτ )dM c
τ , (10)

while at any point of discontinuity we have that

qτ− = e−∆Md
τ qτ + (1− e−∆Md

τ ). (11)

The next lemma summarizes the recursive formulation for the incentive compatibility constraint.

Lemma 2 (Incentive Compatibility). For any monitoring policy Mτ , let τ̄ = inf{τ ∈ R+ ∪ {∞} :

F (τ) = 1}. For any τ ∈ [0, τ̄ ], let qτ be the solution to equations (10) and (11) with terminal

condition qτ̄ = 1. Full effort is incentive compatible if and only if qτ ≥ q, for all τ ∈ [0, τ̄ ].

The significance of Lemma 2 is that it allows us to represent the optimal monitoring policy

recursively, with qτ being the state variable, and use the tools of optimal control theory to study

the optimal policy. To formulate the principal problem as an optimal control with state constraints,

it is convenient to use the principal’s continuation value, U θτ , as an additional state variable (in the

rest of the paper, we omit the dependence of M and U on that last outcome θ). The continuation

payoff for the principal given a monitoring policy Mτ and continuation payoffs U is

Uτ =

∫ ∞
τ

e−r(s−τ)−(Ms−−Mτ )u(xθs)ds+

∫ ∞
τ

e−r(s−τ)−(Ms−−Mτ )M(U, xθs)dM
c
s

+
∑
s>τ

e−r(s−τ)−(Ms−−Mτ )(1− e−∆Md
s )M(U, xθs)

18With some abuse of notation, we are allowing Mτ = ∞ to incorporate the event that there is monitoring with
probability 1 at time τ . Technically, this means that M is not a σ-finite measure so the Lebesgue decomposition
does not follow directly. The definition 1− F (τ) = e−Mτ is convenient in terms of notation, and the decomposition
of Mτ is valid for τ < τ̄ = inf{τ > 0 : F (τ) = 1}. Thus, the definition 1 − F (τ) = e−Mτ should be interpreted as a
shorthand for

1− F (τ) =

{
e−M

c
τ
∏

0<s<τ e
−∆Md

s if τ < τ̄

0 if τ ≥ τ̄
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At any point of continuity, the continuation value satisfies the differential equation

dUτ =
(
rUτ − u(xθτ )

)
dτ +

(
Uτ −M(U, xθτ )

)
dM c

τ , (12)

while at any point of discontinuity, the jump in the continuation value is given by

Uτ− = (1− e−∆Md
τ )M(U, xθτ ) + e−∆Md

τUτ . (13)

We can now state the optimal control problem associated with (9) as follows:

G θ(U) = maxMτ U0

subject to

dUτ =
(
rUτ − u(xθτ )

)
dτ +

(
Uτ −M(U, xθτ )

)
dM c

τ , Uτ̄ =M(U, xθτ̄ )

Uτ− = (1− e−∆Md
τ )M(U, xθτ ) + e−∆Md

τUτ

dqτ = (r + λ)qτdt− (1− qτ )dM c
τ , qτ̄ = 1

qτ− = e−∆Md
τ qτ + (1− e−∆Md

τ )

qτ ∈ [q, 1]

(14)

Next, we provide the general characterization of the optimal monitoring policy.

Theorem 1 (Optimal Monitoring Policy). Suppose that u(x) is strictly convex. Let F ∗θ be an

optimal policy given θTn = θ, then F ∗θ is either:

1. Deterministic with an inspection date at time

τ̂∗θ ≤ τ bind ≡
1

r + λ
log

1

q
,

where τ bind is the review time that makes the incentive constraint bind at time zero. So the

monitoring distribution is F ∗θ (τ) = 1{τ≥τ̂∗θ }.

2. Random with a monitoring distribution

F ∗θ (τ) =

0 if τ ∈ [0, τ̂∗θ )

1− p∗θe−m
∗(τ−τ̂∗θ ) if τ ∈ [τ̂∗θ ,∞]

where τ̂∗θ ≤ τ bind and

m∗ = (r + λ)
q

1− q

p∗θ =
1− e(r+λ)τ̂∗θ q

1− q .
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Theorem 1 states that the optimal policy belongs to the following simple family of monitoring

policies. For a given result of the last inspection, there is a time τ̂∗ such that the optimal policy

calls for no monitoring until that time, a strictly positive probability (an atom) at that time, and

then monitoring with a constant hazard rate. One extreme policy in that family is to inspect for

sure at τ̂∗: the timing of the next inspection is deterministic and the incentive constraints bind

at most right after an inspection (so that τ∗θ ≤ τbind). On the other extreme, the optimal policy

specifies τ̂∗ = 0 and no atom, so that we obtain monitoring with a constant hazard rate, as in the

linear u(x) case. In between, the atom at τ̂∗ is such that the incentive constraints hold exactly at

τ = 0 (and then are slack till τ̂∗ and bind forever after).

Such a simple policy can be implemented by a principal who monitors many firms by dividing

them into two sets: the recently-inspected firms and the rest. Firms in the second set are inspected

randomly, in an order that is independent of their time on the list. Firms in the first set are not

inspected at all. They remain in the first set for a deterministic amount of time that may depend

on the results of the last inspection. When the time in the first set ends, the principal inspects

a fraction of the firms (and resets their clock in the first set). The remaining fraction of firms is

moved to the second set. This policy is described by two parameters: times in the first set after

the good and bad results. Given those times, the fractions of firms inspected from each of the sets

are uniquely pinned down by incentive constraints.

The economic intuition for why the optimal policy takes this form is as follows. In choosing the

optimal timing, there are two trade-offs that echo the two benchmark cases we have analyzed above.

On one hand, as we learned in the linear case, to minimize costs subject to satisfying incentive

constraints, it is optimal to front-load incentives and hence monitor with a constant hazard rate.

On the other hand, when u(x) is convex, as reputation moves from one of the extremes towards the

steady-state, inspections generate additional value from learning. As we saw in the unconstrained

case, that value of learning is zero at the extreme reputations and grows fast (because beliefs move

the fastest then).

If u(x) is sufficiently convex, the benefit of delaying inspections to increase the value of learning

is greater than the associated increase in cost, caused by departure from the constant hazard rate

policy. However, over time, the value from learning grows slower and slower. For example, as

reputation gets closer to the steady-state, it moves very little and at that time the tradeoffs are

approximately the same as in the linear case. That explains why the optimal policy eventually

implements a constant hazard rate. Convexity of u(x) implies that there is a unique time when the

benefits of delaying inspections balance the increased cost of inspections.

Solving this problem is challenging due to the presence of state constraints along with the

associated fixed point problem. The formal proof relies on necessary conditions from Pontryagin’s

maximum principle for problem with state constraints (see Hartl et al. (1995) for a survey and

Seierstad and Sydsaeter (1986) for a textbook treatment). Using these necessary conditions, we

show that the optimal policy belongs to the family of distributions characterized in Theorem 1.

This reduces the problem of finding the optimal policy to a one-dimensional maximization problem.
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This simplifies the analysis significantly and reduces the problem of finding the optimal policy to

solving the simpler fixed point problem in (22).

Remark 6. The optimal control problem in (14) is nonstandard. Traditional optimal control theory

restricts attention to trajectories of the state variables that are absolutely continuous; however, the

set of admissible trajectories in (14) corresponds to trajectories of bounded variation. Moreover,

we must allow for policies in which M c
τ is singular to guarantee existence of a solution.19 We

analyze the Principal’s optimization problem in (14) using the theory of optimal control of differ-

ential equations driven by measures developed by Rishel (1965) and extended to problems with state

constraints by Arutyunov, Karamzin, and Pereira (2005). That being said, in our problem, the

optimality conditions from this general formulation coincides with the ones obtained using the more

traditional maximum principle in Seierstad and Sydsaeter (1986).

An alternative approach is to rewrite the optimization problem in (9) as a linear program and

use weak duality to verify that the policy in Theorem 1 is optimal. This approach works well with

hindsight, once we already know the form of the optimal policy. This is the approach that we use

in the online appendix, where we solve the model in discrete time, and we show that the optimal

policy converges to the one in Theorem 1.20 However, it is difficult to uncover the main features

of the optimal policy directly from the linear program. The variational approach in optimal control,

allows us to uncover some key aspects of the optimal policy (lemmas 3 and 4), which lead to the

characterization in Theorem 1.

The analysis of the Principal problem follows 5 steps. In the first two steps, we derive necessary

conditions that the optimal monitoring policy must satisfy. In Step 3, we show that the principal

never monitors using a positive hazard rate if the incentive compatibility constraint is slack. In Step

4, we show that the monitoring distribution has at most one atom. In Step 5 we show that Steps

3 and 4 imply that the optimal policy belongs to the family characterized in Theorem 1. Using

dynamic programming to solve the principal problem is difficult because it requires solving a non-

linear partial differential equation. It is easier to analyze the problem using Pontryagin’s maximum

principle as in this case we only need to analyze incentives along the optimal path. However, even

though the formal analysis relies on the maximum principle, next we provide a heuristic derivation

of the main optimality conditions in Steps 1 and 2 using dynamic programming.21 Let U(x, q) be

the value function of the principal, let UL = maxq≥q U(0, q) and UH = maxq≥q U(1, q) be the value

just after the inspection, and let m and p be the monitoring rate and atom, respectively. Step 1:

19A function is singular if it is continuous, differentiable almost everywhere with a derivative of zero, and non-
constant. The traditional example of a singular function is the Cantor function.

20The optimal policy in discrete time is qualitatively similar to the one in Theorem 1. The main difference occurs
when the optimal policy in continuous time requires deterministic monitoring at time τbind. In discrete time, it might
not be possible to make the IC constraint binding using deterministic monitoring, and this means that in some cases
the support of the optimal policy can be concentrated in two consecutive periods. In continuous time, these two
consecutive periods collapse to one, and all probability mass is concentrated in τbind. The analysis of the discrete
time model can be found at http://sites.duke.edu/fvaras/files/2017/11/discrete-time-appendix.pdf.

21A formal analysis using dynamic programming would require to use the theory of constrained viscosity solutions
(Fleming and Soner, 2006, Chapter II.12).

23

http://sites.duke.edu/fvaras/files/2017/11/discrete-time-appendix.pdf


In the region without atoms, the value function satisfies the following HJB equation22

rU = u(x) + λ(ā− x)Ux + (r + λ)qUq + max
m≥0

{
m(M(U, x)− U − (1− q)Uq)

}
. (15)

Considering the first order condition and the complementary slackness constraint in the optimiza-

tion problem in (15) we find that

m(M(U, x)− U − (1− q)Uq) = 0 (16a)

M(U, x)− U − (1− q)Uq ≤ 0. (16b)

The presence of the incentive compatibility constraint introduces a wedge in the optimality con-

ditions. In the absence of incentive constraints, the value function satisfies the value matching

condition in Equation (4a), U = M(U, x). Once we introduce incentive constraints, the value

matching condition might not be satisfied. We show that Uq(qτ , xτ ) ≤ 0 through the optimal path,

which means that the monitoring probability can be positive even though M(U, xτ ) < U(qτ , xτ ).

This captures the fact that monitoring is driven by incentive considerations in this case as the payoff

if the principal monitors is lower than the continuation value if the principal does not monitor.

Step 2: Whenever there is an atom in the monitoring distribution, the value of q must jump.

In particular, if q+ is the value of qτ just after the atom (conditionally on not monitoring), then it

follows directly from Equation (13) that the monitoring probability is given by

p =
q − q+

1− q+
.

The probability of monitoring is determined by q+ so we can consider the maximization with respect

to q+ instead of p. Hence, the value function at the atom satisfies

U(q, x) = max
q+∈[q,q]

(
q − q+

1− q+

)
M(U, x) +

(
1− q

1− q+

)
U(q+, x) (17)

Looking at the first order conditions in (17), we find that the value of q+ must satisfy

M(U, x)− U(q+, x)− (1− q+)Uq(q
+, x) = 0, q+ ∈ (q, q) (18a)

M(U, x)− U(q+, x)− (1− q+)Uq(q
+, x) ≤ 0, q+ = q. (18b)

Unsurprisingly, the first order condition for the atom is analogous to Equation (16) (any atom can

be approximated by an arbitrary large hazard rate). Using the envelope condition in equation (17)

we get that

Ux(q, x) =

(
q − q+

1− q+

)
(UH − UL) +

(
1− q

1− q+

)
Ux(q+, x). (19)

22This equation holds for q > q. For the purpose of this heuristic derivation, we assume that U is continuously
differentiable so the equation holds at q when we consider the right limit of Uq.
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Notice that Equation (19) is the analogous to the smooth pasting condition in the benchmark case

(Equation (4b)). Combining Equations (15) and (16) just before and just after the atom (that is,

it is satisfied at q and q+) the value function satisfies

rU(q, x) = u(x) + λ(ā− x)Ux(q, x) + (r + λ)qUq(q, x) (20a)

rU(q+, x) = u(x) + λ(ā− x)Ux(q+, x) + (r + λ)q+Uq(q
+, x). (20b)

If we assume that U satisfies the smooth pasting condition Uq(q, x) = Uq(q
+, x), then, by combining

Equations (17), (19) and (20), we arrive to the following optimality condition that must be satisfied

at any time τk with an atom:

rM(U, xτk) = u(xτk) + λ(ā− xτk)(UH − UL) + (r + λ)Uq(qτk , xτk). (21)

Equation (21) is the main optimality condition that we use to study the presence of atoms in the

monitoring distribution. Once again, it is instructive to compare Equation (21) with the analogous

condition in the benchmark without incentives constraints. In the benchmark, the HJB equation

together with value matching and smooth pasting implies that at the monitoring boundary we have

rM(U, xτk) = u(xτk) + λ(ā− xτk)(UH − UL).

The intuition is that the principal is indifferent between monitoring right now and delaying mon-

itoring by dτ . The incentive constraint introduces a wedge (just as in the case of equations (16)

and (18)). On the optimal path, this wedge is negative which means that at the time of the atom

rM(U, xτk) < u(xτk) + λ(ā− xτk)(UH − UL),

which means that the principal would prefer to delay monitoring if it were not by the effect on

incentive provision.

Step 3: If the incentive compatibility constraint is binding over a period of time, then qτ is

constant and the constant monitoring rate is determined by the condition that qτ = q. On the other

hand, if the incentive compatibility constraint is slack and mτ > 0, then the necessary condition

(16a) requires that M(U, xτ ) − U(qτ , xτ ) − (1 − qτ )Uq(qτ , xτ ) = 0. We show that this condition

cannot hold in a time interval over which and the incentive compatibility constraint is slack due to

the convexity of u(x), which means that the monitoring rate must be zero in this case. Formally,

we show that

Lemma 3. Let M∗τ be an optimal policy, M c∗
τ its continuous part, and B = {τ ∈ [0, τ̄∗] : qτ > q}

the set of dates at which the IC constraint is slack. Then,
∫
B dM c∗

τ = 0.

Step 4: Once again, using the the convexity of u(x), we show that Equation (21) satisfies a

single crossing condition that implies that (21) holds at most at one point on the optimal path of

qτ , so the optimal policy can have at most one atom. Formally, we show that
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Lemma 4. There is at most one time τ̂ such that ∆Md
τ̂ > 0.

Step 5: The final step is to verify that Lemmas 3 and 4 imply that any optimal policy must

take the form in Theorem 1. Figure 2 illustrates the form of the policies consistent with Lemmas

3 and 4. Figure 2b shows the trajectory of qτ : either the incentive compatibility is binding and

qτ is constant, or qτ increases until it either (1) reaches one or (2) there is an atom and qτ jumps

down to q, and the incentive compatibility constraint is binding thereafter. Figure 2a shows the

monitoring policy associated with the trajectory of qτ . Before time τ̃ , the incentive compatibility

constraint is binding, and this requires a monitoring rate equal to m∗ (where m∗ is the same as in

Proposition 2). After τ̃ , there is no monitoring and the incentive compatibility constraint is slack.

At time τ̂ , either there is monitoring with probability 1, so qτ̂ = 1 and τ̂ = τ̄ , or there is an interior

atom so conditional on not monitoring, the monitoring distribution is exponential thereafter. We

show in the the proof sthat τ̃ is either zero or infinity, which allow us to conclude that the optimal

policy must take the form in Theorem 1.

0 τ̃ τ̂
0

1

F (τ)

(a) Example of CDF.

0 τ̃ τ̂
0

q

1

IC constraint
binding

IC constraint
slack

IC constraint
binding

(b) Path of qτ conditional on not monitor-
ing.

Figure 2: Cumulative density function and path of qτ implied by Lemmas 3 and 4.

Theorem 1 allows to write the principal’s problem as a one dimensional problem in which we

choose the date of the atom in the monitoring distribution. Let Gθdet be the best incentive compatible

deterministic policy given continuation payoffs U:

Gθdet(U) ≡ max
τ̂∈[0,τbind]

∫ τ̂

0
e−rτu(xθτ )dτ + e−rτ̂M(U, xθτ̂ ),
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and let Gθrand be the payoff of best random policy, as given by:

Gθrand(U) ≡ max
τ̂∈[0,τbind]

∫ τ̂

0
e−rτu(xθτ )dτ + e−rτ̂

[(
e(r+λ)τ̂ − 1

1− q

)
qM(U, xθτ̂ )+(

1− e(r+λ)τ̂q

1− q

)∫ ∞
τ̂

e−(r+m)(τ−τ̂)
(
u(xθτ ) +mM(U, xθτ )

)
dτ

]

The optimal random policy Gθrand(U) is fully described by the monitoring rate m∗ and the length

of the quiet period, captured by τ̂∗θ , which, by Theorem 1, pins down the size of the atom that

initializes the random monitoring phase. The solution to the principal’s problem is thus given by

the fixed point:

Uθ = max{Gθdet(U),Gθrand(U)}, θ ∈ {L,H}. (22)

To build some intuition about the form of the optimal policy, it is instructive to look at the

first order conditions for the time of the atom in Gθrand(U). Let V (τ) be the (ex-post) payoff of

monitoring at time τ , which is given by

V (τ) =

∫ τ

0
e−rsu(xθs)ds+ e−rτM(U, xθτ )

It can be verified that the first order condition for the maximization problem in Gθrand(U) can be

written as

V ′(τ̂) =
r + λ

1− q (E[V (τ)|τ > τ̂ ]− V (τ̂)) (23)

The first order condition in equation (23) highlights the trade-off between deterministic and

random monitoring. On the one hand, the marginal benefit of delaying monitoring at time τ is

given by V ′(τ). Because preferences are convex and beliefs move faster at the beginning, V ′(τ)

is the highest just after the last inspection, implying that the incentives to delay monitoring are

the highest at this time. On the other hand, incentive compatibility requires that any delay in

monitoring is compensated by a higher probability of monitoring (bigger atom). This effect is

captured by the second term in (23): the marginal effect of τ̂ on the size of the atom is given

by (r + λ)/(1 − q) while the net benefit/cost of using random monitoring after time τ̂ is given

by E[V (τ)|τ > τ̂ ] − V (τ). Figure 3 shows that the first effect dominates at the beginning so the

optimal policy specifies no monitoring at this time.

Having characterized the structure of the optimal policy, we can discuss the conditions under

which random monitoring dominates deterministic monitoring. The next proposition considers how

parameters affect the form of the optimal policy.

Proposition 3 (Comparative Statics). Suppose that u(x) is strictly convex, then:

1. There is c† > 0 such that, if c < c† then the optimal policy is deterministic monitoring, and

if c > c† then the optimal policy is random monitoring.
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Figure 3: First order condition and ex-post payoff V (τ). In this picture, the right axis
corresponds to the function V (τ) while the left axis corresponds to the functions V ′(τ̂) and
r+λ
1−q (E[V (τ)|τ > τ̂ ]− V (τ̂)).

2. There is k† < λ/(r + λ) such that for any k > k† the optimal policy has random monitoring.

3. There is ā† < 1 such that, for any ā ∈ (ā†, 1), the optimal policy given θTn−1 = H has random

monitoring. Similarly, there is ā† > 0 such that, for any ā ∈ (0, ā†), the optimal policy given

θTn−1 = L has random monitoring.

Figure 4a shows the monitoring distribution for low and high monitoring cost: When the cost of

monitoring is low, the policy implements deterministic monitoring; in fact, if the cost of monitoring

is sufficiently low then the benchmark policy (the relaxed problem without incentive constraint)

prescribes frequent monitoring, and accordingly the incentive compatibility constraint is slack.

When the cost is at an intermediate level, the optimal policy is a mixture of deterministic and

random monitoring with a constant hazard rate, while when the cost of monitoring is high, the

optimal policy specifies constant random monitoring starting at time zero. Similarly, Figure 4b

show the comparative statics for the cost of effort, k. The monitoring policy is random if k is

high enough, deterministic if k is low, and a mixture of both when k is in between. We provide a

more detailed analysis of the comparative statics in Section 7 in the context of a model with linear

quadratic preferences and quality driven by Brownian motion.
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(a) Comparative statics for c. The cost of effort is
k = 0.2.
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(b) Comparative statics for k. The cost of monitoring
is c = 0.05.

Figure 4: Comparative statics for the optimal monitoring distribution. The figure shows the CDF
of the monitoring time Tn when u(xτ ) = xτ − 0.5 × xτ (1 − xτ ) and r = 0.1, λ = 1, ā = 0.5.
When c or k are low, the incentive compatibility constraint is slack under the optimal monitoring
policy in the relaxed problem that ignores incentive compatibility constraints. As the monitoring
or effort cost increase, deterministic monitoring is replaced by random monitoring: When the
cost of monitoring is very high the monitoring policy consist on random monitoring at all times
and at a constant rate; on the other hand, if the cost of monitoring is an intermediate range,
the optimal monitoring policy entails a first period without monitoring followed by an atom and
constant random monitoring thereafter. In this example the payoff function and the technology are
symmetric so the optimal monitoring policy is independent of θ0.
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7 Quality Driven by Brownian Motion

Our baseline model assumes that quality can take on two values. Such binary specification makes

the analysis tractable but is not strictly needed: the economics of the problem is not driven by the

details of the quality process. As mentioned in Remark 4, the policy in the linear case remains

optimal for a general class of quality process. In this section, we analyze the optimal policy when

information is valuable and quality follows the Ornstein-Uhlenbeck process

dθt = λ(at − θt)dt+ σdBt, (24)

where Bt is a Brownian motion.

Whenever the principal’s payoff is not linear in quality one needs to specify the principal’s

preferences as a function of the firm reputation. With non-linear preferences, the optimal policy

generally depends on the last inspection’s outcome (which in this case has a continuum of outcomes).

While this fact does not seem to change the core economic forces, it makes the analysis and

computations more involved so we do not have a general characterization of the optimal policy

for the convex case. However, we can get a clean characterization of the optimal policy when the

principal’s preferences are linear-quadratic. The linear-quadratic case is common in applications

of costly information acquisition for its tractability (Jovanovic and Rousseau, 2001; Sims, 2003;

Hellwig and Veldkamp, 2009; Alvarez et al., 2011; Amador and Weill, 2012).

Suppose that the principal has linear-quadratic preferences u(θt, xt) = θt − γ(θt − xt)2. Taking

conditional expectations we can write the principal’s expected flow payoffs as u(xt,Σt) = xt− γΣt,

where Σt ≡ Var(θt|FMt ). For example, this preference specification corresponds to the case in which

the evolution of quality is driven by Brownian motion in Example 3 in Section 2.1.

For the Ornstein-Uhlenbeck process in (24), the distribution of θt is Gaussian with moments

xt = θ0e
−λt + ā

(
1− e−λt

)
(25)

Σt =
σ2

2λ

(
1− e−2λt

)
. (26)

Using the law of iterated expectations, we see that the principal’s continuation payoff at the time

of an inspection is linear in quality, and given by

U(θ) =
θ − ā
r + λ

+
ā

r
− C,
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where C solves

C = minMτ

∫∞
0 e−rτ−Mτ− (γΣτdτ + (c+ C) dM c

τ ) +
∑
e−rτ−Mτ−(1− e−∆Md

τ ) (c+ C)
subject to

dqτ = (r + λ)qτdt− (1− qτ )dM c
τ , qτ̄ = 1

qτ− = e−∆Md
τ qτ + (1− e−∆Md

τ )

qτ ∈ [q, 1]

The optimal policy is now formulated recursively as a cost minimization problem where the cost

borne by the principal has two sources, monitoring and uncertainty, as captured by the residual

variance of quality Στ . As before, the principal chooses the monitoring intensity M c
τ , and the atoms

corresponding to a discrete probability of an inspection, Md
τ . The main state variable is again the

expected discount factor until the next review, qτ .

Given the symmetry in the linear-quadratic case, the optimal policy is independent of the

outcome in the previous inspection, and using the previous results from the binary case, we can

show that the optimal monitoring policy takes the same form as in the binary case. This means

that the optimal monitoring policy and the cost of monitoring is given by

C = min

{
min

τ̄∈[0,τbind]

∫ τ̄
0 e
−rτγΣτdτ + e−rτ̄ c

1− e−rτ̄ ,

min
τ̂∈[0,τbind]

∫ τ̂
0 e
−rτγΣτdτ + e−rτ̂

(
1−e(r+λ)τ̂ q

1−q

)∫∞
τ̂ e−(r+m∗)(τ−τ̂)γΣτdτ + δ(τ̂)c

1− δ(τ̂)

 , (27)

where

δ(τ̂) ≡
(
eλτ̂ − e−rτ̂

1− q

)
q +

(
e−rτ̂ − eλτ̂q

1− q

)
m∗

r +m∗

and the optimal monitoring policy is given by:

Proposition 4. Suppose that θt follows the Ornstein-Uhlenbeck process in (24), and that the prin-

cipal’s expected payoff flow is u(xt,Σt) = xt − γΣt. Then the optimal monitoring policy is given by

the distribution

F ∗(τ) =

0 if τ ∈ [0, τ̂∗)

1− p∗e−m∗(τ−τ̂∗) if τ ∈ [τ̂∗,∞]

where

m∗ = (r + λ)
q

1− q ,
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and τ̂∗ ≤ τ bind. If p∗ > 0, then it is given by

p∗ =
1− e(r+λ)τ̂∗q

1− q .

As before the distribution of monitoring is characterized by two numbers, the size of the atom

p∗ and the monitoring rate m∗. As a special cases, the policy prescribes deterministic monitoring

when p∗θ = 0, and purely random monitoring with constant rate m∗ when p∗θ = 1.

The comparative statics in the case of Brownian shocks are similar to those in Proposition

3: The optimal policy is deterministic if the cost of monitoring is low and random if the cost of

monitoring is high. There are two new parameters in the model, γ and σ: However, after inspecting

equations (26) and (27) we see that the monitoring policy only depends on the cost of monitoring

per unit or risk, c/γσ2, so increasing γ/σ is equivalent to reducing the cost of monitoring. We have

the following proposition characterizing the comparative statics in the linear quadratic case.

Proposition 5 (Comparative Statics). Suppose that θt follows the Ornstein-Uhlenbeck process in

(24), and that the principal’s expected payoff flow is u(xt,Σt) = xt − γΣt. If we let c̃ ≡ c/γσ2 then

1. There is c̃† > 0 such that the optimal policy is deterministic if c̃ ≤ c̃† and random if c̃ > c̃†.

2. τ̂∗ is increasing in c̃ for c̃ ≤ c̃† and decreasing for c̃ > c̃†. This means that the atom p∗ is

increasing in c̃ so the probability of monitoring at τ̂∗ is decreasing in c̃ .

3. If c̃ ≤ 1
2λ(r+2λ) then there is k† > 0 such that the optimal policy is deterministic if k ≤ k† and

random if k > k†. For k > k†, τ̂∗ is decreasing in k.

4. Consider the i.i.d limit when λn →∞, σn = σ
√
λn, c̃n = cλn/γσ

2
n. In this limit, the optimal

monitoring policy is random.

Consistent with the notion that the principal faces two types of costs –the cost of inspections,

captured by c, and the cost of uncertainty, captured by γσ2– the structure of the optimal policy

(i.e., deterministic vs random) depends on the cost of inspection per unit of uncertainty, or c/γσ2.

Intuitively, a low c̃ captures the case when the principal has little tolerance to uncertainty, charac-

terized by frequent inspections and the absence of moral hazard issues (the incentive constraint is

slack). By contrast, the high c̃ captures the case when inspections are too costly relative to the cost

of uncertainty, leading to rather infrequent inspections and random monitoring. Finally, the result

that the optimal policy is random in i.i.d limit, where quality shock are highly transitory, shows

how the possibility of window dressing moves the optimal policy towards random monitoring.
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(a) Comparative statics for k. Parameters values are r = 0.1, ā = 0.5 and
λ = 1.
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(b) Comparative statics for λ. Parameters values are r = 0.1, ā = 0.5
and k = 0.2.

Figure 5: Comparative statics linear quadratic model with Brownian shocks. In the top panel, the
left figure shows the date of atom τ̂∗ while the right figure shows the probability of monitoring at
τ̂∗, which is given by 1 − p∗. That is, 1 − p∗ = 1 implies a deterministic monitoring date while
1− p∗ = 0 implies random monitoring with constant rate m∗ starting at time zero. In the bottom
panel, the left figure shows the date of monitoring in the benchmark without incentive constraints,
the center figure shows τ̂∗, while the right figure shows 1− p∗.
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8 Exogenous News

Thus far we have ignored alternative sources of information, beside monitoring. In this section

we explore the effect of having exogenous news on the optimal monitoring policy. We show that

exogenous news, not only crowd-out monitoring, but by altering the severity of the moral hazard

issue across states may modify the monitoring policy in a significant way.

Exogenous news such as media articles, customer reviews, and academic research provide infor-

mation to the market that may complement or substitute the principal’s own monitoring efforts. To

provide some insights about the interaction between monitoring and news, we consider the presence

of an exogenous news process that may reveal current quality to the market. More specifically, we

consider the case in which the quality of product is revealed to the market at a Poisson arrival rate.

Assume there are two Poisson processes (NL
t )t≥0 and (NH

t )t≥0. The process NL
t is a bad news

process with mean arrival rate θt = µL1{θt=L}, and NH
t is a good news process with mean arrival

rate µH1{θt=H}. When µL 6= µH we say that news are asymmetric, in which case, the absence of

news is informative about the firm quality. On the other hand, if µL = µH the lack of news arrival

is uninformative. We say that we are in the bad news case when µL > µH and in the good news

case if µH > µL. In the absence of exogenous news and monitoring, beliefs evolve according to

ẋt = λ(at − xt)− (µH − µL)xt(1− xt).

The second term cancels if µH = µL and the dynamics of beliefs (in the absence of any moni-

toring by the principal and arrival of exogenous news) is the same as in the case without news. On

the other hand, if µL 6= µH , the exogenous news introduces a new term in the drift of reputation.

That term is positive in the bad news case and negative in the good news case. The market learns

from the absence of news since no news are informative when the news processes have asymmetric

arrival rates.

Let’s first consider the case with symmetric news arrival, i.e. µL = µH = µ. From the firms’s

point of view, it does not matter if the state is learned due to monitoring or exogenous news. The

only difference is that now, there is an extra arrival rate that reveal the state. If we denote the

date at which quality is revealed, either by monitoring or exogenous news, by T̃n, then we can still

write the incentive compatibility constraint as

E
[
e−(r+λ)(T̃n−t)∣∣Ft] ≥ q.

This means that we can still use qτ as our main state variable, and the dynamics of qτ are given by

dqτ = (r + λ)qτdτ − (1− qτ )(dM c
τ + µdt). (28)

Notice that the only difference between equations (10) and (28) is that the monitoring rate dM c
τ is

incremented by µdτ due to the exogenous news. Similarly, because the problem of the principal is

the same going forward no matter if quality was learnt due to monitoring or exogenous news, we
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can still write the problem recursively based on the time elapsed since the last time the firm type

was observed (either by monitoring or news) and the type observed at that time. The principal’s

continuation value now evolves according to

dUτ =
(
rUτ − u(xθτ )

)
dτ +

(
Uτ −M(U, xθτ )

)
dM c

τ + µ
(
Uτ − xθτUH − (1− xθτ )UL

)
dτ. (29)

Hence, the Principal’s problem has the same structure as before with the exception that now the

principal gets some monitoring with intensity µ for free. When news are symmetric, exogenous

news are a perfect substitute of monitoring. Lemmas 3 and 5 still apply, and the monitoring rate

is positive only if the incentive compatibility constraint is binding, in which case dqτ = 0 so the

monitoring rate is

m∗ + µ = (r + λ)
q

1− q .

Clearly, the monitoring rate to keep the incentive constraint binding needs to be positive only if

µ is low enough. Otherwise, exogenous news suffices for incentive purposes. In this latter case,

exogenous news are enough to discipline the firm, and the only purpose of monitoring is to learn

the sate. Depending on the magnitude of µ the optimal monitoring policy may entail some or no

random monitoring. We have the following proposition which is a direct implication of Proposition

1.

Proposition 6. Suppose that µL = µH . If (r + λ)
q

1−q ≥ µ then the optimal monitoring policy is

the one characterized in Propositions 2 and 1 with a Poisson monitoring rate.

m∗ = (r + λ)
q

1− q − µ.

On the other hand, if (r + λ)
q

1−q < µ, then the optimal monitoring policy is deterministic.

Proof. Letting M̃ c
τ = M c

τ + µτ and ũ(x) = u(x) + µc, we can write

dqτ = (r + λ)qτdτ − (1− qτ )dM̃ c
τ

dUτ =
(
rUτ − ũ(xθτ )

)
dτ +

(
Uτ −M(U, xθτ )

)
dM̃ c

τ ,

so the optimal control problem follows the same structure as before with two diferences: (1) now

dM̃ c
τ must be greater or equal than µdτ , and (2) qτ is bounded below by µ

r+λ+µ . If (r+ λ)
q

1−q ≥ µ
then (1) and (2) are not binding. On the other hand, if (r + λ)

q

1−q < µ then qτ > q. Hence, the

incentive compatibility constraint is slack at all times, so the solution to the Principal problem

corresponds to the one in Section 3, which means that monitoring is deterministic.

8.1 Asymmetric News Intensity

The qualitative results are different if µH 6= µL. In this case, the presence of news changes the

dynamics of incentives: the monitoring rate changes over time and is dependent of the outcome of
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the outcome in the last review. We do not solve the full problem here, and instead focus on the

case in which the principal’s preferences are linear. Based on our previous analysis of the linear,

it is natural to conjecture that the optimal policy has (1) no atoms and that (2) the monitoring

rate is positive only if the incentive compatibility constraint is binding. We can use the maximum

principle to verify if our conjectured policy is optimal. We relegate a detailed discussion of the

solution to the appendix.

We focus on the simplest case with parameters such that the optimal policy has mτ > 0 for

all τ ≥ 0; this case illustrates the effect of introducing exogenous news on the optimal monitoring

policy at the lowest cost of technical complications.23

The dynamics of optimal monitoring are described in Figure 6. In the bad news case, monitoring

increases after (bad) news. The opposite is optimal in the good news case. The dynamics of

monitoring are driven by the dynamics of reputational incentives. In the bad news case, incentives

weaken as reputation goes down. As Board and Meyer-ter-Vehn (2013) point out, a high reputation

firm has more to lose from a collapse in its reputation following a breakdown than a low reputation

firm. Hence, inspections are most needed for incentive purposes when reputation is low. In the

good news case, incentives decrease in reputation; a low reputation firm has more to gain from

a breakthrough that boosts its reputation than a high reputation firm. In the good news case,

inspections are thus most needed when reputation is high. Accordingly monitoring complements

exogenous news, being used when exogenous news are ineffective at providing incentives.

23Such policy is optimal when the rates of exogenous news arrivals are low. When those rates are large, after some
histories the principal will not monitor at all since the exogenous news would be sufficient to provide incentives, as in
Board and Meyer-ter-Vehn (2013). That is, our analysis focuses on the cases where news are not informative enough,
and so some amount of monitoring is needed at all times to solve the agency problem.
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Figure 6: Response of monitoring rates to exogenous news in the bad news and good new cases. In
both pictures the starting belief is x0 = 1. The blue curves represent optimal monitoring intensity,
mτ and the red curves the evolution of reputation, xτ . In the bad news case (left panel) the rate
of monitoring increases after negative news (either from inspection or exogenous news). Moreover,
optimal monitoring intensity is decreasing in beliefs. The dynamics of monitoring are the opposite
in the good news case. Parameters: r = 0.1, k = 0.5, c = 0.1, ā = 0.5, λ = 1. In the bad news case
we take µH = 0, and µL = 0.2, and in the good news case we take µH = 0.2, and µL = 0
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9 Final Remarks

In our model, a firm exerts hidden effort to affect a persistent quality process and has reputation

concerns. The monitoring policy plays a dual role: learning (due to convexity of the principal’s pay-

off flows in beliefs) and incentive provision. Learning favors deterministic inspections and incentive

provision favors random inspections. We show that the optimal policy is very simple: depending

on the result of the last inspection, it either prescribes random inspections with a constant hazard

rate, or a deterministic review, or a mixture between a deterministic review and random monitor-

ing with constant hazard rate and fixed delay. Since in practice, monitoring is often triggered by

the revelation of some news, we also provide some results for the interaction of monitoring and

exogenous news.

We conclude with a discussion of possible extensions and caveats to our analysis that could

capture some aspects of the design of a monitoring system that we have not incorporated in our

analysis.

Fines, bonuses and transfers. We have considered settings without monetary transfers where

incentives are driven purely by reputation concerns. With arbitrary fines, the problem becomes

trivial since a very small intensity of monitoring combined with a large fine would bring us to

first-best. A more realistic setting entails limited fines. Based on our analysis, we conjecture that

limited fines would push the optimal policy away from random monitoring towards deterministic

reviews, because the solution to the relaxed problem (that ignores incentive constraints) would be

more likely to satisfy incentive constraints when low-quality firms pay fines.24

Full Effort We focus on policies that induce full effort, but for some parameters we conjecture

that an optimal policy would prescribe no effort at all, after some bad histories. That could be

optimal for the principal (even if effort is optimal in the first-best), especially if conditional on full

effort the probability of maintaining superior quality is very high. The intuition comes from the

case ā = 1, where once the firm achieves high quality it can maintain it forever. An inspection

revealing low quality would then be off-the-equilibrium path and, to relax incentive constraints,

it would be optimal to use the worst possible punishment for the firm after that outcome. This

can be implemented by stopping monitoring altogether thereafter, leading to no effort. This is

akin to revoking the firm’s license. If ā is very close to 1, we conjuncture that using such strong

punishments with some probability may remain optimal. However, we also conjecture that if the

cost of inspections is not too large and ā is sufficiently away from 1, the optimal policy would

indeed induce full effort.

Another reason to focus on full effort is that in many applications there are institutional con-

straints that may make punishments via no future effort unfeasible. For example, in the case of

24It is not immediately obvious to us what is a satisfactory model of limited fines. For example, if we only bound the
fee charged per inspection, then upon finding the firm to be low quality, the regulator could perform many additional
inspections in a short time interval and fine the firm multiple times. A similar issue arises if the firm incurs part of
the physical cost of inspection: running additional inspections could expose the firm effectively to a large fine.
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public schools, neighbors would probably not allow a policy that implements perpetual low quality

if their local school has failed in the past. In this case, a policy that looks for high effort after any

history might be the only thing that is politically feasible to implement.

Asymmetric Switching Intensities In the model, we have assumed that the switching intensity

from the low to the high state is λa and the switching intensity from the high to the low state is

λ(1− a). Having the λ’s symmetric turns out to simplify the IC constraints because the marginal

return to effort is the same in the high and low state. In consequence, the set of incentive-compatible

policies is the same whether the agent observes or not the current level of quality, and they are

the same on and off the equilibrium path. If λ’s in the two states are asymmetric and the agent

observes current quality, then our analysis can be applied with almost no changes, as long as we

want to maintain full effort in both states. We just need to use the lower of the two λ (since the

marginal return to effort is increasing in λ and both levels of quality are on the equilibrium path

at almost all times).

In the case where the agent does not observe the current state, the analysis is potentially more

complicated because the agent’s beliefs will diverge from the principal’s if the agent deviates from

the recommended effort. A policy that assures that the agent has incentives to put full effort

in both states at all times would still be incentive compatible but not necessarily optimal. The

intuition is that with different λ’s the agent’s incentive constraints would change with his beliefs

about the state and the optimal policy could economize on inspection costs because of that. Our

intuition about the optimal policy, in that case, is as follows. After a deviation to lower effort, the

agent assigns a lower probability to the high state than the principal. If λ in the low state is higher

than in the high state, the IC constraints become slack off-path. In that case, the optimal policy

can be characterized using our current methods (for example, when principal’s payoff is linear, the

optimal policy would have random inspections with an intensity that is high and decreasing after a

high-quality result and vice versa in case of low quality). If λ in the low state were lower than in the

high state, then the analysis would get somewhat more complicated because, if the IC constraint is

just binding on the equilibrium path, then it would be violated after a deviation. Preventing such

“double deviations” may require a higher intensity of monitoring after a good inspection outcome

(and IC constraints that are a bit slack on-path).

Multiple Dimensions In many applications quality is a multi-dimensional attribute and the

principal inspects only a few dimensions at a time. In other words, the principal decides when

and what to inspect. For example, when the Federal Aviation Administration inspects planes, it

is impractical to test all components at every inspection. The FAA sometimes announces a focus

on a particular part (like a hatch door) and sometimes not. As a result, even if the timing of

inspections is deterministic (for example, every 400-600 flight hours), when the airline does not

know which parts will be inspected, the timing of inspections is random from the perspective of

each part. Similar considerations apply to accounting audits (where it often is uncertain which

aspects of the firms financial statements and its internal control system will be scrutinized by the
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auditor) or FDA inspections of drug manufacturers (if there is uncertainty over which elements of

the production process will be inspected).

Communication In our model we did not allow the firm to communicate with the principal. In

some certification systems, certified firms are supposed to self-report any problems and communicate

their resolution.25 Safe-harbor provisions often protect and promote self-reporting. In our model

the bad news process analyzed in Section 8 can be interpreted as capturing the self-reporting

of problems detected by the firm, at least in settings where reporting is compulsory. Analysis of

voluntary self-reporting and the effects of safe-harbor provisions (such as those included the Private

Securities Litigation Act of 1995, which shelters managers disclosing forward looking information

from litigation arising from unattained projections) within our model could provide additional

insights about the effects of those provisions.

Another form of communication in some markets is that a firm that fails an inspection needs to

request a new inspection after it solves its problems (for example, in case of hygiene inspections of

restaurants). Such self-reporting could improve the performance of the optimal policy we identified

in this paper by avoiding unnecessary inspections. To see this, suppose that the optimal policy is

random monitoring. If we allowed firms who failed the last inspection to self-report improvements,

the reputation would remain constant at 0 until the firm requested re-certification. That would

improve the principals payoff because of learning and the possibly of lower certification costs (al-

though the second effect is ambiguous). While we do not provide a characterization of the optimal

policy with self-reporting, we expect the tradeoffs between random and deterministic inspections

we stress in this paper would remain relevant in such a model, while new insights are likely to

emerge (for example, a characterization of when immediate re-certification upon request is optimal

and when it is not).

Non-linearitiy of Firm Payoffs In some markets the firm’s payoffs are non-linear in the firm’s

reputation. For example, some consumers may be willing to buy only from firms with reputation

levels above a certain threshold, making the firm payoffs convex in reputation. In these cases,

monitoring could have an additional effect of providing direct value to the firm. Based on our

analysis, we conjecture that this possibility would push the optimal monitoring policy towards

deterministic reviews, which could explain why many Self-regulatory-organizations controlled by

firms in the industry provide certification on a deterministic schedule (as in the Doctor Board

Certification program). Analyzing the optimal policy in this case would be more difficult than in

our model because when information has direct value to the firm, inspections provide additional

incentives and a future increase or decrease in the inspection frequency could be used by the

regulator to reward or punish the firm. The same complications and tradeoffs would appear if

inspections were costly to the firms. In this case, we conjecture that the regulator would find

25For example the National Association for the Education of Young Children requires accredited child
care centers to notify NAEYC within 72 hours of any critical incident that may impact program quality
http://www.naeyc.org/academy/update accessed 2/28/2017.
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it optimal to reward firms by less frequent future inspections and punish them by more frequent

ones. That would increase the value of good reputation and hence relax moral hazard constraints,

presumably making deterministic monitoring more attractive when information has a direct value.
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Appendix (Not for Publication)

A Relaxed Problem without Agency Problems

Proof of Result 3

Proof. Differentiating the HJB equation we get that for any x /∈ [x, x] we have

(r + λ)U ′(x) = u′(x) + λ(ā− x)U ′′(x) (30a)

(r + 2λ)U ′′(x) = u′′(x) + λ(ā− x)U ′′′(x) (30b)

Using (30b) we get that for any x > ā we have U ′′(x) = 0 ⇒ U ′′′(x) > 0. This means that U ′′(x) ≥ 0 ⇒
U ′′(x) > 0 for all x > x. Similarly, for any x < ā we have U ′′(x) = 0 ⇒ U ′′′(x) < 0 which means that

U ′′(x) ≥ 0 ⇒ U ′′(x) > 0 for all x < x. Evaluating (30a) at x and using the smooth pasting condition we

find that

(r + λ)(U(1)− U(0)) = u′(x) + λ(ā− x)U ′′(x)

Hence, U we have that U ′′(x) ≥ 0 and U ′′(x) ≥ 0 if and only if

u′(x)

r + λ
≤ U(1)− U(0) ≤ u′(x)

r + λ
(31)

The HJB equation together with the boundary conditions imply that

r(U(0) + x(U(1)− U(0))) = u(x) + λ(ā− x)(U(1)− U(0))

r(U(0) + x(U(1)− U(0))) = u(x) + λ(ā− x)(U(1)− U(0))

Taking the difference between these two equations and rearranging terms we find that

U(1)− U(0) =
1

r + λ

u(x)− u(x)

x− x .

It follows from the convexity of u that inequality (31) is satisfied. The fact that U is increasing follows

directly from the convexity of U and equation (30a).

Next, let’s define

H(x) ≡ xU(1) + (1− x)U(0)− U(x).

The convexity of U implies that H is concave and H(x) = c for x ∈ [x, x] and H(x) < c for x /∈ [x, x]. Hence,

we get that

xU(1) + (1− x)U(x)− U(x) ≤ c. (32)

Similarly, let’s define

G(x) ≡ u(x) + λ(ā− x)(U(1)− U(0))− r(xU(1) + (1− x)U(0)− c).

Differentiating the previous equation twice we get that G′′(x) = u′′(x) > 0. Because U(·) is continuously

differentiable we have that G(x) = G(x) = 0. Hence, we can conclude that G(x) < 0 for all x ∈ (x, x).

Accordingly,

0 ≥ u(x) + λ(ā− x)U ′(x)− rU(x), x ∈ [0, 1]. (33)
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The final step is to verify that we can not improve the payoff using an alternative policy. Let (T̃n)n≥1

and let x̃t be the belief process induce by this policy. Applying Ito’s lemma to the process e−rtU(x̃t) we get

e−rtE[U(x̃t)] = U(x0) + E

∫ t

0

e−rs(λ(ā− x̃t)U ′(x̃t)− rU(x̃t))ds+
∑
s≤t

e−rs
(
x̃sU(1) + (1− x̃s)U(0)− U(x̃s))


≤ U(x0)− E

∫ t

0

e−rsu(x̃t)ds−
∑
s≤t

e−rsc

 , (34)

where we have used inequalities (32) and (33). Taking the limit when t→∞ we conclude that

U(x0) ≥ E

∫ ∞
0

e−rsu(x̃t)ds−
∑
T̃n≥0

e−rT̃nc


The proof concludes noting that (34) holds with equality for the optimal policy.

B Principal’s Problem

B.1 Existence: Proof of Lemma 1

Proof. The first step in the proof is to show that the operator Gθ has a unique fixed point. Let’s denote the

vector of expected payoffs by U ≡ (UL, UH). We have that Umax = (u(1) − kā)/r < ∞ is an upper bound

for the principal payoff. The monitoring policy mt = 0, and τ̄ solving e−(r+λ)τ̄ = q provides a lower bound

Umin
θ > −∞. We consider the rectangle R = [Umin

L , Umax]× [Umin
H , Umax]. Let G θ

ε be the Bellman operator

with the extra constraint that E(e−rT ) =
∫∞

0
e−rtdF (t) ≤ e−rε. For any bounded functions f, g we have

that | sup f − sup g| ≤ sup |f − g|, and so because the function Gε = (G L
ε ,G

H
ε ) is bounded in R, we have that

‖GεU0 − GεU
1‖ ≤ e−rε‖U0 − U1‖.

Hence, by the Contraction Mapping Theorem there is a unique fixed-point GεUε = Uε. For any sequence

εk ↓ 0 we have that the sequence Uεk is increasing and bounded above by Umax: Accordingly, Uεk converges

to some limit U , and because Gε is lower semicontinuous as a function of ε (Aliprantis and Border, 2006,

Lemma 17.29) we also have that

lim
εk↓0

GεkUεk ≥ GU.

On the other hand, Gε is increasing in U , decreasing in ε and Uεk is an increasing sequence so

lim
εk↓0

GεkUεk ≤ GU.

Accordingly, limεk↓0 GεkUεk = GU and we conclude that

U = lim
εk↓0

Uεk = lim
εk↓0

GεkUεk = GU.

The next step is to show that a solution to the maximization problem exists. To prove existence, we

consider the space of probability measures over R+ ∪ {∞}, which we denote by P, endowed with the weak*

topology. The extended reals R+ ∪ {∞} are a metrizable compact space so by Theorem 15.11 in Aliprantis
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and Border (2006) the space P is compact in the weak* topology. The incentive compatibility constraint

can be written
∫∞
τ
e−(r+λ)(s−τ)dF (s) ≥ q(1 − F (τ−)) for all τ ∈ R+ ∪ {∞} which means that the set of

incentive compatible monitoring policies is a closed subset of P, and so a compact set. Finally, the objective

function is a bounded linear functional on C(R+ ∪ {∞}) so it is continuous in the weak* topology, and thus

is maximized by some incentive compatible policy F ∗.

B.2 Linear Case: Proof of Proposition 2

Proof. Let T be the first monitoring time so the principal’s cost at time zero satisfies the recursion

C0 = E0[e−rT ](c+ C0)

and the incentive compatibility constraint at time zero is

E0[e−(r+λ)T ] ≥ q

We show that if there is any time τ such that the incentive compatibility constraint is slack, then we can find

a new policy that satisfies the IC constraint and yields a lower expected monitoring cost to the principal. In

fact, it is enough to show that if the IC constraint is slack at some time τ̃ then we can find an alternative

policy that leaves E0[e−(r+λ)T ] unchanged at time zero, remains IC at τ > 0 and reduces E0[e−rT ]. We only

consider the case in which there is positive density just before τ̃ as the argument for the case in which there

is an atom at τ̃ and zero probability just before τ̃ is analogous. Suppose the IC constraint is slack at time

τ̃ and let τ † = sup{τ < τ̃ : IC constraint binds}: such a date must exist as otherwise we could postpone

somewhat all inspection times before τ̃ and still satisfy all IC constraints (obviously saving costs). Moreover,

we can assume without loss of generality that τ † = 0. Suppose the monitoring distribution F (τ) is such

that f(τ) > 0 for some interval (τ̃ − ε, τ̃), then we can find small ε0 and η and construct an alternative

monitoring distribution F̂ (τ) that coincides with F (τ) outside the intervals (0, ε0) and (τ̃ − ε0, τ̃ + ε0). For

any τ ∈ (τ̃ − ε0, τ̃) the density of the alternative policy is

f̂(τ) = f(τ)− η,

while for τ ∈ (0, ε0) it is

f̂(τ) = f(τ) + αη,

and for τ ∈ (τ̃ , τ̃ + ε0) it is

f̂(τ) = f(τ) + (1− α)η.

We can pick α ∈ (0, 1) such that IC constraint is not affected at τ = 0, that is α ∈ (0, 1) satisfies

α

∫ ε0

0

e−(r+λ)τdτ + (1− α)

∫ τ̃+ε0

τ̃

e−(r+λ)τdτ −
∫ τ̃

τ̃−ε0
e−(r+λ)τdτ = 0,

and we can pick ε0 and η small enough so that the IC constraint still holds for all τ > 0. Because the IC

constraint is not affected at τ = 0 we have that∫ ∞
0

e−(r+λ)τdF (τ) =

∫ ∞
0

e−(r+λ)τdF̂ (τ).
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Define the random variable z ≡ e−(r+λ)τ , and let G and Ĝ be the respective CDFs of z. We have that∫ 1

0

zdG(z) =

∫ 1

0

zdĜ(z).

By construction G(z) and Ĝ(z) have same mean and cross only once which means that Ĝ(z) is a mean-

preserving spread of G(z). Noting that∫ ∞
0

e−rτdF (τ) =

∫ 1

0

z
r

r+λ dG(z),

where zr/(r+λ) is a strictly concave function, and using the fact that Ĝ(z) is a mean-preserving spread of

G(z), we immediately conclude that ∫ 1

0

z
r

r+λ dĜ(z) <

∫ 1

0

z
r

r+λ dG(z),

and so the monitoring distribution F̂ (τ) yields a lower cost of monitoring: This contradicts the optimality of

F (τ) and implies that the optimal policy must be such the IC constraint binds at all time, hence it is given

by a constant monitoring rate m∗.

B.3 Convex Case: Necessary Conditions

We start the analysis by deriving some necessary conditions for optimality using Pontryagin’s maximum

principle for problems with state constraints. In order to guarantee existence, we rely in the general formu-

lation in Arutyunov et al. (2005) for free-time impulse control problem with state constraints that allows

for general measures. That being said, this general formulation leads to the same optimality conditions as

the ones in the standard maximum principle presented in Seierstad and Sydsaeter (1986). While the results

in Arutyunov et al. (2005) covers the case with a finite time horizon, Pereira and Silva (2011) extends the

results to consider the infinite horizon case. In addition, because we are considering distributions over the

extended real numbers, which are homeomorphic to the unit interval, it is possible to reparameterize the

independent variable and work using distributions on discounted times rather than calendar time. In general,

the main problem with an infinite horizon is to find the right transversality conditions to pin down a unique

candidate for the solution. This is not a problem in our analysis because we do not use the maximum prin-

ciple to pin down the unique solution. Instead, we use the maximum principle to identify some properties

that any candidate policy must satisfy. This allows to restrict the candidate policies to a simple family of

distributions. The final solution is found maximizing over this family, which is done in Equation (22). At

this point, we only need to solve a one dimensional optimization problem to find the optimal policy.

The statement of Theorem 4.1 in Arutyunov et al. (2005) is quite convoluted. Next, we present the set

of conditions in Theorem 4.1 that will be used in the analysis. Let’s define

H̃(τ) = ζ̃τ
(
rUτ − u(xθτ )

)
+ ν̃τ (r + λ)qτ (35a)

S̃(τ) = ζ̃τ
(
Uτ −M(U, xθτ )

)
− ν̃τ (1− qτ ), (35b)

where S corresponds to the function Q defined in (Arutyunov et al., 2005, p. 1816). It follows from the
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system of Equations (4.1) in Arutyunov et al. (2005) that

ζ̃τ = ζ̃0 −
∫ τ

0

rζ̃sds−
∫ τ

0

ζ̃sdM
c
s −

∑
k

(1− e−∆Md
τk )ζ̃τk− (36a)

ν̃τ = ν̃0 −
∫ τ

0

(r + λ)ν̃sds−
∫ τ

0

ν̃sdM
c
s − Ψ̃τ −

∑
k

(1− e−∆Md
τk )ν̃τk− (36b)

H̃(τ) = H̃(0)−
∫ τ

0

ζ̃su
′(xθs)ẋ

θ
sds−

∫ τ

0

ζ̃sẋ
θ
s(UH − UL)dM c

s (36c)

−
∑
k

(1− e−∆Md
τk )ζ̃τk−ẋ

θ
τk

(UH − UL);

where the Lagrange muliplier Ψτ is a positive nondecreasing function satisfying

Ψ̃τ =

∫ τ

0

1{qu=q}dΨ̃u;

and that the adjoint variables satisfy the transversality conditions

ζ̃0 = −1

ν̃0 ≤ 0

ν̃0(q0 − q) = 0

In addition, it follows from equation (4.2) that the following optimality and complementary slackness con-

ditions must be satisfied:

S̃(τ) ≤ 0 (37a)

Mτ =

∫ τ

0

1{S(u)=0}dMu. (37b)

Noting that the adjoint variables in the optimal control formulation correspond to the derivative of the value

function, we verify that (37) correspond to the optimality conditions (16) and (18). In addition, (37) also

coincide with the first order conditions from the Hamiltonian maximization in (Seierstad and Sydsaeter,

1986, Theorem 2, p. 332).

As it is common in the analysis of discounted optimal control problems, it is convenient to express all

the co-state variables in term of their current value counterparts. We define the following current value

multipliers: ζτ ≡ erτ+Mτ ζ̃τ , ντ ≡ erτ+Mτ ν̃τ , H(τ) ≡ erτ+Mτ H̃(τ), and S(τ) ≡ erτ+Mτ S̃(τ). It follows that

we can write the current value versions of H̃ and S̃ as

H(τ) = ζτ
(
rUτ − u(xθτ )

)
+ ντ (r + λ)qτ (38a)

S(τ) = ζτ
(
Uτ −M(U, xθτ )

)
− ντ (1− qτ ) (38b)

Next, we define the current value Lagrange multiplier as

Ψτ = Ψ̃0 +

∫ τ

0

ers+MsdΨ̃s.
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We can invert the previous equation and write

Ψ̃τ = Ψ0 +

∫ τ

0

e−rs−MsdΨs,

and replacing in equations (36a)-(36b) we get

e−rτ−Mτ ζτ = ζ0 −
∫ τ

0

re−rs−Msζsds−
∫ τ

0

e−rs−MsζsdM
c
s −

∑
k

(1− e−∆Md
τk )e−rτk−Mτk−ζτk−

e−rτ−Mτ ντ = ν0 −
∫ τ

0

(r + λ)e−rs−Msνsds−
∫ τ

0

e−rs−MsνsdM
c
s −Ψ0 −

∫ τ

0

e−rs−MsdΨs

−
∑
k

(1− e−∆Md
τk )e−rτk−Mτk−ντk−.

It can be readily verified then that ζτ = ζ0 = −1. It can also be verified that

ντ = ν0 −
∫ τ

0

λνsds−Ψτ (39)

Equation (39) corresponds to the integral representation of the traditional differential equation for the co-

state variable (Seierstad and Sydsaeter, 1986, Equation (91) in Theorem 2, p. 332). Notice that the current

value adjoint variable ντ is continuous at the jump time τk. Equation (36c) implies that at any jump time

τk we have

H̃(τk)− H̃(τk−) = −(1− e−∆Md
τk )ζ̃τk−ẋ

θ
τk

(UH − UL)

This correspond to the same optimality condition as the one in (Seierstad and Sydsaeter, 1986, Note 7,

p. 197). By definition of the Hamiltonian H(τ), we have

H̃(τk)− H̃(τk−) = ζ̃τk
(
rUτk − u(xθτk)

)
+ ν̃τk(r + λ)qτk − ζ̃τk−

(
rUτk− − u(xθτk−)

)
− ν̃τk−(r + λ)qτk−

By defintion, ζ̃τ = −e−rτ−Mτ and ν̃τk = e−rτk−Mτk ντk = e−rτk−Mτk ντk− = e−∆Md
τk ν̃τk−, so we have that

(1− e−∆Md
τk )e−rτk−Mτk− ẋθτk(UH − UL) = −e−rτk−Mτk

(
rUτk − u(xθτk)

)
+ e−∆Md

τk ν̃τk−(r + λ)qτk

+ e−rτk−Mτk−
(
rUτk− − u(xθτk−)

)
− ν̃τk−(r + λ)qτk−

(1− e−∆Md
τk )e∆Md

τk ẋθτk(UH − UL) = −rUτk + u(xθτk) + erτk+Mτk− ν̃τk−(r + λ)qτk

+ e∆Md
τk rUτk− − e∆Md

τku(xθτk−)− erτk+Mτk ν̃τk−(r + λ)qτk−

(e∆Md
τk − 1)ẋθτk(UH − UL) = r(e∆Md

τkUτk− − Uτk)− u(xθτk)
(
e∆Md

τk − 1
)

− ντk−(r + λ)
(
e∆Md

τk qτk− − qτk
)
.

Replacing the expressions for the jump in Uτ and qτ given by

e∆Md
τUτ− − Uτ = (e∆Md

τ − 1)M(U, xθτ )

e∆Md
τ qτ− − qτ = e∆Md

τ − 1
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we find that

(e∆Md
τk − 1)ẋθτk(UH − UL) = r(e∆Md

τk − 1)M(U, xθτk)− u(xθτk)
(
e∆Md

τk − 1
)

− ντk−(r + λ)
(
e∆Md

τk − 1
)
.

Simplifying, the previous condition reduces to the following optimality condition at the atom:

rM(U, xθτk) = u(xθτk) + ẋθτk(UH − UL) + (r + λ)ντk . (40)

This also corresponds to the transversality condition at free time τ̄ in Equation (4.4) in Arutyunov et al.

(2005). Moreover, this condition also coincides with the optimality condition (21) in our heuristic derivation

using dynamic programming, and also coincides with the condition for free final time problems in (Seierstad

and Sydsaeter, 1986, Equation (152) in Theorem 16, p. 398).

B.4 Proof of Theorem 1

Proof of Lemma 3

Proof. At any point of continuity we have that

dντ = −λντdτ − dΨτ . (41)

We also have the optimality conditions

S(τ) ≤ 0 (42a)

Mτ =

∫ τ

0

1{S(u)=0}dMu. (42b)

Condition (42a) corresponds to

S(τ) =M(U, xθτ )− Uτ − (1− qτ )ντ ≤ 0.

Differentiation S(τ) we find

dS(τ) =ẋθτ (UH − UL)dτ − dUτ + ντdqτ − (1− qτ )dντ

=ẋθτ (UH − UL)dτ −
(
rUτ − u(xθτ )

)
dτ −

(
Uτ −M(U, xθτ )

)
dM c

τ

+ ντ ((r + λ)qτdt− (1− qτ )dM c(τ)) + (1− qτ ) (λντdτ + dΨτ )

=
(
ẋθτ (UH − UL) + u(xθτ )− rUτ + ντ (rqτ + λ)

)
dt+ (1− qτ )dΨτ + S(τ)dM c

τ

The optimality condition (42b) implies that S(τ)dMτ = 0. Thus we can write the evolution of S(τ) as

dS(τ) =
(
ẋθτ (UH − UL) + u(xθτ )− rUτ + ντ (rqτ + λ)

)
dt+ (1− qτ )dΨτ . (43)

Whenever qτ > q we have that dΨτ = 0, which means that S(τ) is absolutely continuous in any interval

(τ ′, τ ′′) with qτ > q (notice that qτ is continuous between jumps so wlog we can assume that if qτ̃ > q at some

time τ̃ between jumps then there is neighborhood of τ̃ such that qτ > q) . Note as well that S(τ)dM c
τ = 0
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implies that we can write

dUτ =
(
rUτ − u(xθτ )

)
dτ − (1− qτ )ντdM c

τ (44)

Let Ṡ(τ) denote the drift of S(τ), which is given by

Ṡ(τ) ≡ ẋθτ (UH − UL) + u(xθτ )− rUτ + ντ (rqτ + λ). (45)

Differentiating Ṡ(τ) we find

dṠ(τ) =
(
ẍθτ (UH − UL) + u′(xθτ )ẋθτ

)
dτ − rdUτ + (rqτ + λ)dντ + rντdqτ (46)

Replacing equations (41) and (44), and the equation for dqτ in (46) we find that

dṠ(τ) =
(
r−1ẍθτ (UH − UL) + r−1u′(xθτ )ẋθτ − rUτ + u(xθτ ) + r−1(r2qτ − λ2)ντ

)
dτ. (47)

The support of M c
τ is A ≡ {τ : S(τ) = 0}, which correspond to the set of maximizers of S(τ). Accordingly,

for any time τ ∈ A, we have that S(τ) = Ṡ(τ) = 0 and S̈(τ) ≤ 0. Suppose that there is τ̃ such that S(τ) = 0,

Ṡ(τ̃) = 0 and S̈(τ̃) = 0, and replacing S(τ̃) = 0 and ẍθτ = −λẋθτ in (47), then we get that it must be the case

that

ντ̃ =
ẋθτ̃

λ(r + λ)

(
u′(xθτ̃ )− (r + λ)(UH − UL)

)
(48)

Let’s define

zτ ≡
ẋθτ

λ(r + λ)

(
u′(xθτ )− (r + λ)(UH − UL)

)
.

Differentiating zτ we get

dzτ =

(
ẍθτ

λ(r + λ)

(
u′(xθτ )− (r + λ)(UH − UL)

)
+

(ẋθτ )2

λ(r + λ)
u′′(xθτ )

)
dt

=

(
ẍθτ
ẋθτ
zτ +

(ẋθτ )2

λ(r + λ)
u′′(xθτ )

)
dτ

=

(
−λzτ +

(ẋθτ )2

λ(r + λ)
u′′(xθτ )

)
dτ

On the other hand, whenever qτ > q we have that dΨτ = 0 so

dντ = −λντdτ.

Accordingly

d(ντ − zτ ) = −λ(ντ − zτ )dτ − (ẋθτ )2

λ(r + λ)
u′′(xθτ )dτ,

so for any τ > τ̃

ντ − zτ =

∫ τ

τ̃

e−λ(τ−s) (ẋθs)
2

λ(r + λ)
u′′(xθs)ds > 0.

This means that there is at most one τ̃ ∈ A satisfying equation (48), which means that there is at most one

τ̃ ∈ A such that S̈(τ̃) = 0, and any other τ ∈ A satisfies S̈(τ) < 0. This means that all, but at most one,

τ ∈ A, are isolated points. And, by Theorem 7.14.23 in (Bogachev, 2007), the only atomless measure in A

is the trivial zero measure, which means that M c
τ −M c

τ ′ = 0 for all τ ∈ [τ ′, τ ′′)
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Proof of Lemma 4

Proof. The fist step is to verify that S(τ) is continuous at any atom τk. We have that

S(τk−) =M(U, xθτk)− Uτk− − ντk−(1− qτk−)

Using the fact that ντ is continuous at a jump τk, we find that

S(τk) =M(U, xθτk)− Uτk − ντk−(1− qτk)

= e∆Md
τk

(
M(U, xθτk)− Uτk− − ντk−(1− qτk−)

)
= e∆Md

τkS(τk−)

Hence, S(τk−) = S(τk) = 0. At any jump time, the following necessary condition must hold

rM(U, xθτk) = u(xθτk) + ẋθτk(UH − UL) + (r + λ)ντk (49)

The objective now is to show that equation (49) cannot be satisfied at more than one point. Let’s define

G(τ) ≡ u(xθτ ) + ẋθτ (UH − UL) + (r + λ)ντ − rM(U, xθτ )

And notice that

Ṡ(τ) = rS(τ) +G(τ) = u(xθτ ) + ẋθτ (UH − UL)− rUτ + ντ (rqτ + λ). (50)

Accordingly, for any atom τk, the following conditions must be satisfied

S(τk−) = 0

G(τk−) = 0

Ṡ(τk−) = 0.

We have from equation (43) that

dS(τ) = Ṡ(τ)dτ + (1− qτ )dΨτ

Notice that, because both G(τ) and S(τ) are continuous at the atom τk, so it is Ṡ(τ). Moreover, because

τk is a local maximum of S(τ) and S(τk−) = S(τk) = Ṡ(τk−) = Ṡ(τk) = 0, it must be the case that

dΨτk = 0. It follows that S(τ) is differentiable at τk and that S̈(τk−) ≤ 0, and equation (50) then implies

that Ġ(τk−) ≤ 0. Differentiating G(τ), we find that

dG(τ) =
(
u′(xθτ )ẋθτ − (r + λ)

(
ẋθτ (UH − UL) + λντ

))
dτ − (r + λ)dΨτ

Let’s J(τ) be given by

J(τ) ≡ u′(xθτ )ẋθτ − (r + λ)ẋθτ (UH − UL)− (r + λ)λντ . (51)

Notice that whenever the IC constraint is slack we have Ġ(τ) = J(τ), so in particular Ġ(τk−) = J(τk−) for
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any atom τk. Next, if we differentiate equation (51) we get

dJ(τ) =
(
u′′(xθτ )(ẋθτ )2 − λu′(xθτ )ẋθτ − (r + λ)(−λẋθτ )(UH − UL)

)
dτ − λ(r + λ)dντ

=
(
u′′(xθτ )(ẋθτ )2 − λu′(xθτ )ẋθτ + (r + λ)λẋθτ (UH − UL)

)
dτ + λ(r + λ)(λντdτ + dΨτ )

=
(
u′′(xθτ )(ẋθτ )2 − λu′(xθτ )ẋθτ + (r + λ)λ(ẋθτ (UH − UL) + λντ )

)
dτ + λ(r + λ)dΨτ ,

which can be rewritten as

dJ(τ) =
(
u′′(xθτ )(ẋθτ )2

)
dτ − λJ(τ)dτ + λ(r + λ)dΨτ .

Thus, for any τ ∈ [τk, τk+1) we have

J(τ) = −
∫ τk+1

τ

eλ(s−τ)
(
(ẋθs)

2u′′(xθs)ds+ λ(r + λ)dΨs

)
+ eλ(τk+1−τ)J(τk+1−)

= −
∫ τk+1

τ

eλ(s−τ)
(
(ẋθs)

2u′′(xθs)ds+ λ(r + λ)dΨs

)
+ eλ(τk+1−τ)Ġ(τk+1−) < 0,

where we have used the fact that J(τk+1−) = Ġ(τk+1−) ≤ 0. But then,

dG(τ) = J(τ)dτ − (r + λ)dΨτ < 0

for all τ ∈ (τk, τk+1) which contradicts the requirement that G(τk+1−) = 0.

Proof of Theorem 1

Proof. Lemma 3 implies that, in the absence of an atom, qτ is increasing if qτ > q because qτ increases

whenever dM c∗
τ = 0. Hence, because there is at most one atom, this means that either there is monitoring

with probability one at the atom, or the incentive compatibility constraint is binding thereafter. If this were

not the case, qτ would eventually reach one, which would require a second atom and contradict lemma 4.

Thus lemmas 3 and 4 imply that the optimal monitoring policy takes the following form:

1. There is τ̃ such that for any τ ∈ [0, τ̃) we have qτ = q.

2. There is τ̂ such that for any τ ∈ [τ̃ , τ̂) there is no monitoring and qτ > q.

3. There is an atom at time τ̂ . If the probability of monitoring at the atom is less than one, then there

is a constant rate of monitoring after τ̂ .

Thus, the problem of solving for the optimal policy is reduced to finding τ̃ and τ̂ . The last step of

the proof shows that τ̃ is either zero or infinity. The intuition is the following. Analogous to standard

contracting models, equation (10) works as a promise keeping constraint. Equation (11) implies that the

largest possible atom consistent with qτ− is (qτ− − q)/(1 − q), which corresponds to the atom in Theorem

1. On the other hand, once the incentive compatibility constraint is binding, equation (10) implies that the

largest monitoring rate consistent with the promise keeping and the incentive compatibility constraint is

m∗. Thus, because the benefit of monitoring is increasing over time, the optimal policy requires to perform

as much monitoring as possible once it becomes profitable to do so. Hence, the support of the monitoring

distribution is either a singleton (deterministic monitoring) or an interval [τ̂ ,∞].
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First, notice that any atom has to be of size

∆Md
τ = log

(
1− q

1− qτ−

)
,

and that the continuation payoff at the atom date satisfies

Uτ− =

(
1− qτ−
1− q

)
Uτ +

(
qτ− − q
1− q

)
M(U, xθτ )

Whenever the IC constraint is binding on an interval of time, the monitoring rate is given by

m = (r + λ)
q

1− q .

The payoff at time zero of a policy with monitoring at a rate m in [0, τ̃) and an atom at time τ̂ = τ̃ + δ is

U(τ̃ , δ) =

∫ τ̃

0

e−(r+m)τ
(
u(xθτ ) +mM(U, xθτ )

)
dτ +

∫ τ̃+δ

τ̃

e−rτ−mτ̂u(xθτ )dτ

+ e−r(τ̃+δ)−mτ̃
[(

1− qτ̃+δ−

1− q

)
Uτ̃+δ +

(
qτ̃+δ− − q

1− q

)
M(U, xθτ̃+δ)

]
(52)

where

Uτ̃+δ =

∫ ∞
τ̃+δ

e−(r+m)(τ−τ̃−δ) (u(xθτ ) +mM(U, xθτ )
)

dτ

Suppose that the IC constraint is binding at time 0, that is assume that q0 = q, then we have that

qτ̃+δ− = e(r+λ)δq,

which means that δ must satisfy

δ ≤ 1

r + λ
log

1

q
.

Replacing qτ̃+δ− in (52) we get

U(τ̃ , δ) =

∫ τ̃

0

e−(r+m)τ
(
u(xθτ ) +mM(U, xθτ )

)
dτ +

∫ τ̃+δ

τ̃

e−rτ−mτ̃u(xθτ )dτ

+ e−r(τ̃+δ)−mτ̃

[(
1− e(r+λ)δq

1− q

)
Uτ̃+δ +

(
e(r+λ)δ − 1

1− q

)
qM(U, xθτ̃+δ)

]
(53)

Next, we show that for any given δ we have that ∂U(τ̃ , δ)/∂τ̃ = 0 ⇒ ∂2U(τ̃ , δ)/∂τ̃2 > 0. This means

that the maximum cannot have an interior value for τ̃ .
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Differentiating (53) we get

∂

∂τ̃
U(τ̃ , δ) = e−(r+m)τ̃

(
u(xθτ̃ ) +mM(U, xθτ̃ )

)
+ e−r(τ̃+δ)−mτ̃u(xθτ̃+δ)− e−(r+m)τ̃u(xθτ̃ )

−m
∫ τ̃+δ

τ̃

e−rτ−mτ̃u(xθτ )dτ − (r +m)e−r(τ̃+δ)−mτ̃

[(
1− e(r+λ)δq

1− q

)
Uτ̃+δ +

(
e(r+λ)δ − 1

1− q

)
qM(U, xθτ̃+δ)

]

+ e−r(τ̃+δ)−mτ̃

[(
1− e(r+λ)δq

1− q

)
∂

∂τ̃
Uτ̃+δ +

(
e(r+λ)δ − 1

1− q

)
qẋθτ̃+δ(UH − UL)

]

where
∂

∂τ̃
Uτ̃+δ = −u(xθτ̃+δ)−mM(U, xθτ̃+δ) + (r +m)Uτ̃+δ

Rearranging terms we get

∂

∂τ̃
U(τ̃ , δ) = e−(r+m)τ̃

[
mM(U, xθτ̃ ) + e−rδu(xθτ̃+δ)

−m
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ − (r +m)

(
eλδ − e−rδ

1− q

)
qM(U, xθτ̃+δ)

−
(
e−rδ − eλδq

1− q

)(
u(xθτ̃+δ) +mM(U, xθτ̃+δ)

)
+

(
eλδ − e−rδ

1− q

)
qẋθτ̃+δ(UH − UL)

]

= e−(r+m)τ̃

[
mM(U, xθτ̃ ) + (eλδ − e−rδ)

(
q

1− q

)
u(xθτ̃+δ)

−m
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ − (r +m)(eλδ − e−rδ)
(

q

1− q

)
M(U, xθτ̃+δ)

−
(
e−rδ − eλδq

1− q

)
mM(U, xθτ̃+δ) + (eλδ − e−rδ)

(
q

1− q

)
ẋθτ̃+δ(UH − UL)

]

= e−(r+m)τ̃m

[
M(U, xθτ̃ ) +

(eλδ − e−rδ)
r + λ

u(xθτ̃+δ)

−
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ − (r +m)
(eλδ − e−rδ)

r + λ
M(U, xθτ̃+δ)

−
(
e−rδ − eλδq

1− q

)
M(U, xθτ̃+δ) +

(eλδ − e−rδ)
r + λ

ẋθτ̃+δ(UH − UL)

]

So, finally, we can write

∂

∂τ̃
U(τ̃ , δ) = e−(r+m)τ̃m

[
M(U, xθτ̃ ) +

(eλδ − e−rδ)
r + λ

u(xθτ̃+δ)

−
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ −
(

r

r + λ
eλδ +

λ

r + λ
e−rδ

)
M(U, xθτ̃+δ) +

(eλδ − e−rδ)
r + λ

ẋθτ̃+δ(UH − UL)

]

Let’s define

G(τ̃) =M(U, xθτ̃ ) +
(eλδ − e−rδ)

r + λ
u(xθτ̃+δ)

−
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ −
(

r

r + λ
eλδ +

λ

r + λ
e−rδ

)
M(U, xθτ̃+δ) +

(eλδ − e−rδ)
r + λ

ẋθτ̃+δ(UH − UL)
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So
∂

∂τ̃
U(τ̃ , δ) = e−(r+m)τ̃mG(τ̃)

Clearly, the first order condition is satisfied only if G(τ̃) = 0. Moreover, G(τ̃) = 0 implies that ∂2

∂τ̃2U(τ̃ , δ) =

G′(τ̃). Differentiating G(τ̃) we get

G′(τ̃) = ẋθτ̃ (UH − UL) +
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ )

− r
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ −
(

r

r + λ
eλδ +

λ

r + λ
e−rδ

)
ẋθτ̃+δ(UH − UL) +

(eλδ − e−rδ)
r + λ

ẍθτ̃+δ(UH − UL)

= ẋθτ̃ (UH − UL) +
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ )

− r
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ −
(

r

r + λ
eλδ +

λ

r + λ
e−rδ

)
ẋθτ̃+δ(UH − UL)− λ (eλδ − e−rδ)

r + λ
ẋθτ̃+δ(UH − UL)

=
(
ẋθτ̃ − eλδẋθτ̃+δ

)
(UH − UL) +

(eλδ − e−rδ)
r + λ

u′(xθτ̃+δ)ẋ
θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ )

− r
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ

Noting that
∂

∂δ
eλδẋθτ̃+δ = λeλδẋθτ̃+δ + eλδẍθτ̃+δ = λeλδẋθτ̃+δ − λeλδẋθτ̃+δ = 0

we conclude that

G′(τ̃) =
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ )− r

∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ (54)

Using integration by parts we find that

−r
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u(xθτ )dτ = e−rδu(xθτ̃+δ)− u(xθτ̃ )−
∫ τ̃+δ

τ̃

e−r(τ−τ̃)u′(xθτ )ẋθτdτ

Replacing in equation (54) we arrive to

G′(τ̃) =
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ − e−rδu(xθτ̃+δ) + u(xθτ̃ ) + e−rδu(xθτ̃+δ)− u(xθτ̃ )−

∫ τ̃+δ

τ̃

e−r(τ−τ̃)u′(xθτ )ẋθτdτ

=
(eλδ − e−rδ)

r + λ
u′(xθτ̃+δ)ẋ

θ
τ̃+δ −

∫ τ̃+δ

τ̃

e−r(τ−τ̃)u′(xθτ )ẋθτdτ (55)

Replacing ẋθτ = λ(ā− θ)e−λτ in equation (55) we get

G′(τ̃) = λ(ā− θ)e−λτ̃
[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)−

∫ τ̃+δ

τ̃

e−(r+λ)(τ−τ̃)u′(xθτ )dτ

]
(56)
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On the one hand, if θ = 0, then we have that u′(xθτ̃+δ) > u′(xθτ ) for all τ̃ + δ > τ , which means that

G′(τ̃) = λ(ā− θ)e−λτ̃
[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)−

∫ τ̃+δ

τ̃

e−(r+λ)(τ−τ̃)u′(xθτ )dτ

]

> λ(ā− θ)e−λτ̃
[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)− u′(xθτ̃+δ)

∫ τ̃+δ

τ̃

e−(r+λ)(τ−τ̃)dτ

]

= λ(ā− θ)e−λτ̃
[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)− u′(xθτ̃+δ)

∫ τ̃+δ

τ̃

e−(r+λ)(τ−τ̃)dτ

]
= 0.

On the other hand, if θ = 1, then we have that u′(xθτ̃+δ) < u′(xθτ ) for all τ̃ + δ > τ , which means that

G′(τ̃) = λ(ā− θ)e−λτ̃
[

(1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ)−

∫ τ̃+δ

τ̃

e−(r+λ)(τ−τ̃)u′(xθτ )dτ

]

= λ(θ − ā)e−λτ̃

[
− (1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ) +

∫ τ̃+δ

τ̃

e−(r+λ)(τ−τ̃)u′(xθτ )dτ

]

> λ(θ − ā)e−λτ̃

[
− (1− e−(r+λ)δ)

r + λ
u′(xθτ̃+δ) + u′(xθτ̃+δ)

∫ τ̃+δ

τ̃

e−(r+λ)(τ−τ̃)diτ

]
= 0.

This means that, for any δ ≥ 0, we have ∂
∂τ̃ U(τ̃ , δ) = 0 implies ∂2

∂τ̃2U(τ̃ , δ) > 0 which means that the optimal

monitoring policy can not have an interior τ̃ , that is τ̃∗ ∈ {0,∞}.

Proof of Proposition 3

Comparative static c: Let Gdet and Grand be the maximization problems in the operators above so

we write the optimization in the fixed point problem as

max
α∈[0,1]

αGrand + (1− α)Gdet

We can fix the continuation values and show that we have single crossing in (c, UH , UL). In the previous

expressions, we have that

∂(Grand −Gdet)

∂(−c) = e−rτ̂
(

r

r + λq
e(r+λ)τ̂q +

λq

r + λq

)
− e−rτ̄

= eλτ̂q

(
r

r + λq
+ e−(r+λ)τ̂ λ

r + λq

)
− e−(r+λ)τ̄eλτ̄

≤ eλτ̂q − e−(r+λ)τbindeλτ̄

=
(
eλτ̂ − eλτ̄

)
q
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which is negative if τ̂ < τ̄ . Next, we have that

∂(Grand −Gdet)

∂UH
= e−rτ̂

[(
e(r+λ)τ̂ − 1

1− q

)
qxθτ̂ +

(
1− e(r+λ)τ̂q

1− q

)∫ ∞
τ̂

e−(r+m)(τ−τ̂)mxθτdτ

]
− e−rτ̄xθτ̄

If we replace ∫ ∞
τ̂

e−(r+m)(τ−τ̂)xθτdτ =
ā

r +m
+

xθτ̂ − ā
r + λ+m∫ ∞

τ̂

e−(r+m)(τ−τ̂)(1− xθτ )dτ =
1− ā
r +m

− xθτ̂ − ā
r + λ+m

,

and after some tedious simplifications we obtain

∂(Grand −Gdet)

∂UH
= e−rτ̂

[
(1− q)e(r+λ)τ̂ m

r + λ
xθτ̂ +

(
1− e(r+λ)τ̂q

) λ(1− q)
(r + λq)(r + λ)

mā

]
− e−rτ̄xθτ̄

= eλτ̂qxθτ̂ +
(
e−rτ̂ − eλτ̂q

) λq

r + λq
ā− e−rτ̄xθτ̄

Noticing that

eλτxθτ = θ + ā(eλτ − 1),

we obtain

∂(Grand −Gdet)

∂UH
= eλτ̂qxθτ̂ +

(
e−rτ̂ − eλτ̂q

) λq

r + λq
ā− e−rτ̄xθτ̄

= q (θ − ā) +

[
eλτ̂

r

r + λq
+ e−rτ̂

λ

r + λq

]
qā− e−(r+λ)τ̄

(
θ + ā(eλτ̄ − 1)

)
≤ q (θ − ā) +

[
eλτ̂

r

r + λq
+ e−rτ̂

λ

r + λq

]
qā− q(θ − ā)− e−rτ̄ ā

=

[
eλτ̂

r

r + λq
+ e−rτ̂

λ

r + λq

]
qā− e−rτ̄ ā

The last expression is increasing in τ̂ , which means that if τ̂ ≤ τ̄ then

∂(Grand −Gdet)

∂UH
≤ −eλτ̄

(
e−(r+λ)τ̄ − q

) rā

r + λq
≤ 0,

where the last inequality follows from the IC constraint. We can repeat the same calculations for UL.

∂(Grand −Gdet)

∂UL
= e−rτ̂

[(
e(r+λ)τ̂ − 1

1− q

)
q(1− xθτ̂ ) +

(
1− e(r+λ)τ̂q

1− q

)∫ ∞
τ̂

e−(r+m)(τ−τ̂)m(1− xθτ )dτ

]
− e−rτ̄ (1− xθτ̄ )

= eλτ̂q(1− xθτ̂ ) +
(
e−rτ̂ − eλτ̂q

) λq

r + λq
(1− ā)− e−rτ̄ (1− xθτ̄ )

Replacing

1− xθτ = e−λτ (1− θ) + (1− e−λτ )(1− ā)
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we get that

∂(Grand −Gdet)

∂UL
= q(ā− θ) +

(
eλτ̂q

r

r + λq
+ e−rτ̂

λq

r + λq

)
(1− ā)− e−rτ̄ (1− xθτ̄ )

= q(ā− θ) +

(
eλτ̂q

r

r + λq
+ e−rτ̂

λq

r + λq

)
(1− ā)− e−(r+λ)τ̄

(
ā− θ + eλτ̄ (1− ā)

)
≤
[
eλτ̂

r

r + λq
+ e−rτ̂

λ

r + λq

]
q(1− ā)− e−rτ̄ (1− ā)

≤ 0

where the last inequality follows if τ̂ ≤ τ̄ by the same reason as in the case of UH . Hence, in order to verify

single crossing in (−c, UL, UH) it is enough to show that τ̂ ≤ τ̄ . Notice that, for a given continuation value

(UL, UH), the solution to the deterministic problem, τ̄ , is increasing in c, and that whenever τ̄ < τbind (so

the IC constraint is slack), the solution to the optimal control problem must be τ̄ . Let c† = sup{c ≥ 0 : τ̄ <

τbind}, so for any c < c† the solution for a given continuation value (UL, UH) is τ̄ . On the other hand, for any

c ≥ c† we have that τ̄ = τbind ≥ τ̂ , which means that Grand − Gdet satisfies single crossing in (UL, UH ,−c)
which means that α(UH , UL, c) is decreasing in UH , UL and increasing in c. Moreover, as UL and UH are

both decreasing in c we can conclude that α(UH(c), UL(c), c) is increasing in c, which means that there is

c̃ such that for any c ≤ c̃ the solution has deterministic monitoring while for any c > c̃ the solution has

random monitoring.

Next, we prove that random monitoring dominates deterministic monitoring when k is large enough and

when ā is high or low enough. For this, it is enough to establish that full random monitoring (that is τ̂ = 0)

dominates fully deterministic as this guarantees that some randomization is going to be used in the optimal

policy. Before proving the statements in the proposition, we start proving the following Lemma

Lemma 5. For any q ∈ (0, 1),

e−rτ
bind

>
m∗

r +m∗

Proof. If we let β ≡ r/(r + λ), then by replacing τbind and m∗ we can verify that it is enough to show that

qβ −
q

β(1− q) + q
> 0.

Consider the function

H(q) ≡ βqβ−1 + (1− β)qβ − 1,

so we need to show that H(q) > 0 for all q ∈ (0, 1). The function H is such H(0) > 0 and H(1) = 0.

Moreover, the derivate of H is given by

H ′(q) = β(β − 1)qβ−2 + (1− β)βqβ−1 = −β(1− β)qβ−2(1− q) < 0,

and so it follows that H(q) > 0 for all q ∈ (0, 1).

Optimality of random monitoring for large k: We compare the payoff of deterministic monitoring

with the payoff of full random monitoring (that is τ̂ = 0) when k converges to its upper bound, λ/(r + λ)

and show that the difference between the benefit of using random and deterministic monitoring converge to

zero while the difference in their cost remains bounded away of zero. For large k, we can restrict attention
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to monitoring policies in which the IC constraint is binding, and it is enough to compare policies that rely

exclusively on deterministic or random monitoring (the argument to rule out policies that alternate between

random and deterministic depending on θTn−1
is analogous).

First, we look at the difference in the cost. The cost of deterministic policy is

Cdet =
e−rτ

1− e−rτ =
qβ

1− qβ

while the cost of the random policy is

Crand =
m∗

r
=

1

β

q

1− q .

The difference in the cost is

Cdet − Crand =
qβ

1− qβ −
1

β

q

1− q =
1

β

βqβ − q + (1− β)qβ+1

1− q − qβ + qβ+1
,

and applying L’Hopital’s rule twice we find that

lim
q→1

βqβ − q + (1− β)qβ+1

1− q − qβ + qβ+1
= lim
q→1

β2qβ−1 − 1 + (1− β)(1 + β)qβ

−1− βqβ−1 + (β + 1)qβ

= lim
q→1

β(β − 1) + (1− β2)q

(1− β) + (β + 1)q

=
1− β

2
> 0

Next, we look at the benefit of monitoring (excluding its cost). First, we compute the benefit of a determin-

istic policy. The benefit of the deterministic policy, Bdet
θ , solves the system of equations

Bdet
L =

∫ τ

0

e−rtu(xLt )dt+ e−rτ (xLτ B
det
H + (1− xLτ )Bdet

L )

Bdet
H =

∫ τ

0

e−rtu(xHt )dt+ e−rτ (xHτ B
det
H + (1− xHτ )Bdet

L ).

Solving this system we get that the payoff is given by

Bdet
L =

∫ τ
0
e−rtu(xLt )dt

1− e−rτ +
e−rτxLτ

1− e−rτ (xHτ − xLτ )

∫ τ
0
e−rt(u(xHt )− u(xLt ))dt

1− e−rτ

Bdet
H =

∫ τ
0
e−rtu(xHt )dt

1− e−rτ − e−rτ (1− xHτ )

1− e−rτ (xHτ − xLτ )

∫ τ
0
e−rt(u(xHt )− u(xLt ))dt

1− e−rτ ,

and taking the limit when τ → 0 (which is equivalent to taking the limit when k → λ/(r + λ)) we get that

Bdet
L → 1

r

(
r + λ(1− ā)

r + λ
u(0) +

λā

r + λ
u(1)

)
Bdet
H → 1

r

(
λ(1− ā)

r + λ
u(0) +

r + λā

r + λ
u(1)

)
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On the other hand, the benefit of the random policy is

Brand
L =

∫ ∞
0

e−(r+m∗)t(u(xLt ) +m∗(xLt B
rand
H + (1− xLt )Brand

L ))dt

Brand
H =

∫ ∞
0

e−(r+m∗)t(u(xHt ) +m∗(xHt B
rand
H + (1− xHt )Brand

L ))dt,

where

Brand
L =

∫ ∞
0

e−(r+m∗)tu(xLt )dt+
m∗

r +m∗
Brand
L +

m∗λā

(r +m∗)(r + λ+m∗)
(Brand

H −Brand
L )

Brand
H =

∫ ∞
0

e−(r+m∗)tu(xHt )dt+
m∗

r +m∗
Brand
L +

[
m∗

r + λ+m∗
+

m∗λā

(r +m∗)(r + λ+m∗)

]
(Brand

H −Brand
L )

From here we get

Brand
H −Brand

L =
r + λ+m∗

r + λ

∫ ∞
0

e−(r+m∗)t(u(xHt )− u(xLt ))dt

So, replacing in the previous equations

Brand
L =

r +m∗

r

∫ ∞
0

e−(r+m∗)tu(xLt )dt+
m∗λā

r(r + λ)(r +m∗)

∫ ∞
0

(r +m∗)e−(r+m∗)t(u(xHt )− u(xLt ))dt.

We can also write

Brand
H −Brand

L =
r + λ+m∗

(r + λ)(r +m∗)

∫ ∞
0

(r +m∗)e−(r+m∗)t(u(xHt )− u(xLt ))dt

From here we get that when m∗ →∞ the benefit converges to

Brand
L → 1

r

(
r + λ(1− ā)

r + λ
u(0) +

λā

r + λ
u(1)

)
,

and

Brand
H −Brand

L → 1

r + λ
(u(1)− u(0))

so

Brand
H → 1

r

(
λ(1− ā)

r + λ
u(0) +

r + λā

r + λ
u(1)

)
Comparing the limit of the deterministic and random policy we verify that both yield the same benefit in

the limit of Cdet − Crand is strictly positive, which means that the random policy dominates.
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Optimality of random monitoring following θTn−1 = H for large ā: First, we find an upper

bound for payoff of following a deterministic policy

Gθdet (U) =

∫ τ

0

e−rtu
(
xθt
)

dt+ e−rτ [UL − c+ a∆U + (θ − a) e−λτ∆U ]

<
u(1)

r
(1− e−rτ ) + e−rτ (UH − c)

≤ u(1)

r
(1− e−rτbin

) + e−rτ
bin

(UH − c)

=
u(1)

r
(1− q r

r+λ ) + q
r

r+λ (UH − c)

Next, we find a lower bound for the payoff of following a random policy

Gθrand (U) =

∫ ∞
0

e−(r+m∗)t
[
u
(
xθt
)

+m∗M
(
U, xθt

)]
dt

>

∫ ∞
0

e−(r+m∗)tdt [u(ā) +m∗(āUH + (1− ā)UL − c)]

=
u(ā)

r +m∗
+
m∗(āUH + (1− ā)UL − c)

r +m∗

Finally, we show that if ā is large enough, then the upper bound for Gθdet (U) is below the lower bound for

Gθrand. This requires that for any U we have

u(1)

r
(1− q r

r+λ ) + q
r

r+λ (UH − c) ≤
u(ā)

r +m∗
+
m∗(āUH + (1− ā)UL)

r +m∗

Following the proof in Lemma 5, we let β ≡ r
r+λ so we can write

u(ā)

r +m∗
+
m∗(āUH + (1− ā)UL)

r +m∗
=
u(ā)

r
(1− qβ) + u(ā)

(
qβ − 1

r
+

1

r +m∗

)
+ qβ(āUH + (1− ā)UL − c)

+

(
m∗

r +m∗
− qβ

)
(āUH + (1− ā)UL − c)

Letting ∆U ≡ UH − UL, we write our required inequality as(
u(1)

r
− u(ā)

r

)
(1− qβ) ≤ u(ā)

r

(
qβ − m∗

r +m∗

)
+

(
m∗

r +m∗
− qβ

)
(UH − c)−

m∗

r +m∗
(1− ā)∆U,

and after replacing m∗ we reduce it to(
u(1)

r
− u(ā)

r

)
(1− qβ) ≤

(
u(ā)

r
+ c− UH

)(
qβ −

q

β(1− q) + q

)
−
q(1− ā)∆U

β(1− q) + q
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Clearly, it must be the case that u(1)
r > UH , which means that

lim
ā→1

(
u(1)

r
− u(ā)

r

)
(1− qβ) = 0

<

(
u(1)

r
+ c− UH

)(
qβ −

q

β(1− q) + q

)
= lim
ā→1

{(
u(ā)

r
+ c− UH

)(
qβ −

q

β(1− q) + q

)
−
q(1− ā)∆U

β(1− q) + q

}
,

and so there is ε > 0 such that for all ā ∈ (1− ε, 1) we have that Gθdet (U) < Gθrand (U)

Optimality of random monitoring following θTn−1 = L for small ā: The proof follows a

similar argument as the one for large ā. The payoff of the deterministic policy satisfies the inequality

Gθdet (U) <

∫ τ

0

e−rtu (a) dt+ e−rτ [UL − c+ a∆U + (θ − a) e−λτ∆U ]

=
u (a)

r

(
1− e−rτ

)
+ e−rτ [UL − c+ a∆U

[
1− e−λτ

]
]

Replacing τbind and taking the limit when ā goes to zero we find

lim
a→0
Gθdet (U) <

u (0)

r

(
1− e−rτbind

)
+ e−rτbind lim

a→0
[UL − c]

Similarly, the payoff of the random policy satisfies

Gθrand (U) =

∫ ∞
0

e−(r+m∗)t
[
u
(
xθt
)

+m∗M
(
U, xθt

)]
dt

=
1

r +m∗

∫ ∞
0

(r +m∗) e−(r+m∗)t
[
u
(
xθt
)

+m∗M
(
U, xθt

)]
dt

>
[u
(

aλ
r+m+λ

)
+ aλ

r+m+λm
∗UH +m∗(1− aλ

r+m+λ )UL −m∗c]
r +m∗

,

and so the limit when ā goes to zero is

lim
a→0
Gθrand (U) >

r u(0)
r +m∗ lima→0 (UL − c)

r +m∗

In the limit, it must be the case that u(0)
r ≥ lima→0 (UL − c): If fact

lim
a→0

UL < lim
a→0

E

[∫ ∞
0

e−rtu (θt) dt|θ0 = L

]
,

and by dominated convergence

lim
a→0

E

[∫ ∞
0

e−rtu (θt) dt|L
]

=

∫ ∞
0

e−rt lim
a→0

E [u (θt) |θ0 = L] dt

=
u (0)

r
.
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From Lemma 5 we have that e−rτbind > m∗

r+m∗ , and so it follows that

lim
a→0
Gθrand (U)− lim

a→0
Gθdet (U) > 0.

This means that there is ε > 0 such that the random policy dominates the deterministic policy for any

ā ∈ (0, ε)

C Proof Brownian Linear-Quadratic Model

Proof of Proposition 4

Proof. We show that the objective function in the model with linear quadratic preferences and brownian

shocks can be reduced to the objective function in the model with binary quality and linear quadratic u(x).

The objective function in the case linear quadratic case is u(xt,Σt) = xt − γΣt where

Σt =
σ2

2λ

(
1− e−2λt

)
.

On the other hand, if we set ā = 1/2 in the binary case we get that

x2
t = xt −

1

4
(1− e−2λt).

It follows that we can normalize the cost of monitoring and reduce the optimization problem in the linear

quadratic case with Brownian quality shocks to the same optimization problem as the one in the binary case

with ā = 1/2 and linear quadratic utility function.

Proof of Proposition 5

Proof. For the first part, notice that the existence of c̃† follows directly from Proposition 4a. Next, let’s

define

Hdet(τ̄) ≡
∫ τ̄

0
e−rτγΣτdτ + e−rτ̄ c

1− e−rτ̄

Hrand(τ̂) ≡

∫ τ̂
0
e−rτγΣτdτ + e−rτ̂

(
1−e(r+λ)τ̂q

1−q

)∫∞
τ̂
e−(r+m∗)(τ−τ̂)γΣτdτ + δ(τ̂)c

1− δ(τ̂)

First, we have that

Hdet
c =

e−rτ̄

1− e−rτ̄ ,

which means that

Hdet
cτ̄ = − re−rτ̄

(1− e−rτ̄ )2
< 0

which means that τ̄ is increasing in c. Secon, we have that

Hrand
c =

δ(τ̂)

1− δ(τ̂)
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so

Hrand
cτ̂ =

δ′(τ̂)

(1− δ(τ̂))2

where

δ′(τ̂) =
qeλτ̂

1− q

[
λ

r

r +m∗
+ re−(r+λ)τ̂

(
1− m∗

(r +m∗)q

)]
=
rλqeλτ̂

1− q

[
1

r +m∗
− e−(r+λ)τ̂

1− q
r + λq

]
= reλτ̂

λq

r + λq

[
1− e−(r+λ)τ̂

]
> 0.

This means that Hrand
cτ̂ > 0 so τ̂∗ is decreasing in c and p∗ is increasing.

Next, let’s consider the comparative statics with respect to k. First, notice that Hdet(τ̄ , c) is independent

of k and that the cost of effort becomes relevant only once the incentive compatibility constraint is binding.

Next, we consider the maximization of Hrand(τ̂). Because k enters into the maximization problem only

through q it is enough to show that τ̂ is decreasing in q. After some lengthy computations, we have that

Hτ̂ = 0 if and only if

g(τ̂ , q) ≡ r(r+λ(2−q)) (2c̃λ(r + 2λ)− 1)+2qr(r+2λ)e−λτ̂ − (r+2λ)(r+λq)e−2λτ̂ +2λ2qe−(r+2λ)τ̂ = 0

Let z ≡ e−(r+2λ)τ̂ and write

g(z, q) ≡ r(r+ λ(2− q)) (2c̃λ(r + 2λ)− 1) + 2qr(r+ 2λ)z
λ

r+2λ − (r+ 2λ)(r+ λq)z
2λ
r+2λ + 2λ2qz = 0. (57)

The incentive compatibility constraint requires that τ̂ ≤ τbind, which means that

z ≥ q r+2λ
r+λ .

Hence, we get that

gz(z, q) = 2qrλz−
r+λ
r+2λ − 2λ(r + λq)z−

r
r+2λ + 2λ2q

≤ 2λ
(
r + λq

) (
1− z− r

r+2λ
)

≤ 0.

Next, we verify that gq(z, q) > 0. Notice that we can write

g(z, q) = g0(z) + g1(z)q.

Hence, if g(ẑ, q) = 0, then it must be the case that

g1(ẑ)q = −g0(ẑ)

which means that it is enough to show that g0(ẑ) < 0 evaluated at the solution. From equation (57) we have
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that

g0(z) = r(r + 2λ) (2c̃λ(r + 2λ)− 1)− (r + 2λ)rz
2λ
r+2λ ,

where

r(r + 2λ) (2c̃λ(r + 2λ)− 1)− (r + 2λ)rz
2λ
r+2λ ≤ r(r + 2λ) (2c̃λ(r + 2λ)− 1)

so the inequality follows from the sufficient condition

c̃ ≤ 1

2λ(r + 2λ)
.

Finally, we verify that the optimal policy in the i.i.d limit is random. The optimal policy is random if

g(1, q) > 0, which means that if

λc̃ ≥
1− q λ

r+λ

2(r + 2λ)
+

1− q r+2λ
r+λ

2r(2− q) −
2q

λ
r+λ + 2q2 − 4q − 1

2(q − 2)(r + λ(2− q))

then we have constant monitoring starting at time zero.

On the other hand, there is random monitoring only if

λc̃ >
1− q λ

r+λ

2(r + 2λ)
+
q

2λ
r+λ − q r+2λ

r+λ

2r(2− q) +
q

2λ
r+λ − 2(1− q)2q

λ
r+λ

2(q − 2)(r + λ(2− q))

In order to keep the steady state distribution constant as we take λ to infinity, we consider the case in which

σ2/λ is constant. As shocks are more transitory, monitoring becomes less informative so we consider the

limit when c̃λ ≡ λc̃ > 0 is constant to adjust for this lower informativeness. Thus we can write

c̃λ >
1− q λ

r+λ

2(r + 2λ)
+
q

2λ
r+λ − q r+2λ

r+λ

2r(2− q) +
q

2λ
r+λ − 2(1− q)2q

λ
r+λ

2(q − 2)(r + λ(2− q)) .

In the limit, q → k, which means that the right hand side above converges to zero, so random monitoring is

optimal.

D Exogenous News

In this appendix, we consider the model with exogenous news and µL 6= µH . We characterize how the

relation between monitoring and market beliefs depends on the nature of the news process. We find that

when the news process conveys negative states faster than positive states, then monitoring tends to intensify

when the firm’s reputation is low because then the moral hazard issue is more severe. By contrast, when the

news process conveys negative states faster than positive states, then monitoring intensifies in good times

since effort incentives are weaker when the firm’s reputation is high.

D.1 Incentive Compatibility and the Principal’s Problem with News

In the presence of exogenous news, we cannot use a single state variable to characterize incentive compat-

ibility. With persistent state variables we need additional state variables to keep track of the continuation

value across states. As in Fernandes and Phelan (2000) we use the continuation value conditional on the
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firm’s private information (i.e., the firm quality).

Let Πθ
τ be the firm’s continuation value conditional on being type θτ and define Dτ ≡ ΠH

τ − ΠL
τ . The

continuation value must satisfy the Bellman equations

rΠH
τ = max

a∈[0,ā]

{
xτ − kaτ − λ(1− aτ )Dτ− + (µH +mτ )(Π(H)−ΠH

τ ) + Π̇H
τ

}
rΠL

τ = max
a∈[0,ā]

{
xτ − kaτ + λaτDτ− + (µL +mτ )(Π(L)−ΠL

τ ) + Π̇L
τ

}
,

where we use the fact that if at = ā for any t ≥ Tn then, given θTn = θ, the continuation payoff is Πθ
0 = Π(θ)

(recall that Π(θ) is given by (5)). From here it follows that full effort aτ = ā is incentive compatible if and

only if:26

Dτ ≥
k

λ
.

The evolution of Dτ can be derived (analogously to what we have done before) to be

Ḋτ = (r + λ+mτ )Dτ − µH(Π(H)−ΠH
τ ) + µL(Π(L)−ΠL

τ )−mτ∆.

with a boundary condition Dτ̄ = ∆ ≡ Π(H)−Π(L) = 1/(r + λ).

From the principal’s viewpoint it does not matter whether he learns the state due to monitoring or

exogenous news. In either case, the problem facing the principal is the same going forward. Hence, we can

write the problem recursively using as state variables both the time elapsed since the last time the firm

type was observed (either by monitoring or news), and the type observed at that time. The optimal control

problem (ignoring jumps in the monitoring distribution) becomes

G θ(U) = sup
τ̄ ,mτ ,Π¬θ0

∫ τ̄

0

e−rτ−Mτ−
(
xθτ + µHx

θ
τUH + µL(1− xθτ )UL +mτM(U, xτ )

)
dτ

+ e−rτ̄−Mτ̄M(U, xτ̄ )

subject to

Π̇H
τ = (r + µH +mτ )ΠH

τ − xτ + kā+ λ(1− ā)(ΠH
τ −ΠL

τ )− (µH +mτ )Π(H), ΠH
τ̄ = Π(H)

Π̇L
τ = (r + µL +mτ )ΠL

τ − xτ + kā− λā(ΠH
τ −ΠL

τ )− (µL +mτ )Π(L), ΠL
τ̄ = Π(L)

Πθ
0 = Π(θ)

k

λ
≤ ΠH

τ −ΠL
τ , ∀τ ∈ [0, τ̄ ]

0 ≤ mτ .

Note that in the previous formulation, the continuation payoff given the counterfactual type ¬θ (if θ = H

then ¬θ = L and vice versa), which we denote by Π¬θ0 , is not given by Π(¬θ). The solution of this problem

critically depends on the intensity of bad versus good news arrivals. We first consider the symmetric case.

We consider the asymmetric case, µH 6= µL, so that the intensity of news arrival depends on firm’s

quality. Such asymmetry seems natural: in some industries and under some market conditions, good news

tend to be revealed faster than bad news, among other things because firms themselves may delay the release

26This incentive compatibility is analogous to that in Board and Meyer-ter-Vehn (2013) except that there the only
source of information is the exogenous news process and we allow for additional information from costly inspections.
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of bad news. Sometimes, bad news tend to be revealed faster than good news, perhaps because news agencies

and TV broadcasts face stronger demand for bad news stories.

The main question we address here is how monitoring rates are affected by reputation when exogenous

news are asymmetric. We do not solve the full problem here, and instead we focus on the case in which the

principal’s preferences are linear. Based on our previous analysis, it is natural to conjecture that the optimal

policy has 1) no atoms in the distribution of monitoring (in particular, τ̄ =∞), and 2) the monitoring rate

is positive (i.e., mτ > 0) only if the incentive compatibility constraint is binding, that is if ΠH
τ −ΠL

τ = k/λ.

We can use the maximum principle to verify if our conjectured policy is optimal. We relegate a detailed

discussion of the optimality conditions to the appendix.

Given this monitoring policy, we can follow the same steps as before, and derive the monitoring rate

using the incentive compatibility constraint: (Π̇H
τ − Π̇L

τ ) = 0 and ΠH
τ − ΠL

τ = k/λ. These conditions are

necessary for the incentive compatibility constraints to bind at all times. They imply:

mτ = α+ βΠL
τ , (58)

where

α =
(r + λ)k/λ+ µH(k/λ−Π(H)) + µLΠ(L)

∆− k/λ
β =

µH − µL
∆− k/λ .

The constant β is positive in the good news case and negative otherwise so in the bad news case the

monitoring rate is positive only if ΠL
τ ≤ −α/β, and in the good news case, the monitoring rate is positive

only if ΠL
τ ≥ −α/β. That is, with bad news, monitoring is needed only if the firm’s continuation value is

low, and with good news, monitoring is needed only if the firm’s continuation value is high. The logic for

these conditions follows the results in Board and Meyer-ter-Vehn (2013): With bad news, the incentives for

effort increase in reputation, while with good news the incentives for effort decrease in reputation.

We focus on the simplest case with parameters such that the optimal policy has mτ > 0 for all τ ≥ 0;

this case illustrates the effect of introducing exogenous news on the optimal monitoring policy at the lowest

cost of technical complications.27 Using the relation ΠH
τ = ΠL

τ + Dτ = ΠL
τ + k/λ and the monitoring rate

(58) we write the evolution of the low quality firm continuation value as

Π̇L
τ = −(µL + α)Π(L) + (r + µL + α− βΠ(L))ΠL

τ + β(ΠL
τ )2 − xτ . (59)

If θ0 = L then the initial condition is ΠL
0 = Π(L). If θ0 = H (and the incentive compatibility is binding) the

initial condition is ΠL
0 = Π(H)− k/λ.28 We can analyze the evolution of monitoring by studying the phase

diagram in the space (xτ ,Π
L
τ ) in Figure 7.

Using the ODE for ΠL
τ in equation (59) we get a quadratic equation for the steady state:

0 = −(µL + α)Π(L) + (r + µL + α− βΠ(L))ΠL + β(ΠL)2 − x. (60)

27Such policy is optimal when the rates of exogenous news arrivals are low. When those rates are large, after some
histories the principal will not monitor at all since the exogenous news would be sufficient to provide incentives, as in
Board and Meyer-ter-Vehn (2013). That is, our analysis focuses on the cases where news are not informative enough,
and so some amount of monitoring is needed at all times to solve the agency problem.

28If the IC constraint is not binding at time zero then the initial value must be computed indirectly.
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Π(L) Π(H) − k/λ
0

xss

1 (xH0 ,Π
L
0 )

(xL0 ,Π
L
0 )

Π̇L = 0

ẋ = 0

ΠL

x

(a) Case with bad news

Π(L) Π(H) − k/λ
0

xss

1 (xH0 ,Π
L
0 )

(xL0 ,Π
L
0 )

Π̇L = 0

ẋ = 0

ΠL

x

(b) Case with good news

Figure 7: Phase diagram. The (xτ ,Π
L
τ ) system has two steady states. In each case, one of the

steady states is a saddle point. If the optimal solution is such that mτ > 0 all τ ≥ 0, then the
optimal solution corresponds to the trajectory converging to the saddle point. In this case, the
analysis of the phase diagram reveals that the trajectory of ΠL

τ must be monotone between news
arrivals. This immediately implies that the evolution of monitoring between news is monotone as
well.

This quadratic equation has two solutions. We show that in the good news case only the largest solution is

consistent with a positive monitoring rate, while in the bad news only the smallest one is consistent with a

positive monitoring rate. So if the solution has positive monitoring rate at all times, then the solution must

correspond to the saddle point trajectory in the phase diagram in Figure 7.

From inspection of the phase diagram it is clear that ΠL
τ is monotone: it starts decreasing after good news

and starts increasing after bad news. This implies the dynamics of optimal monitoring that are described

in Figure 6. In the bad news case, monitoring increases after (bad) news. The opposite is optimal in the

good news case. As previously mentioned, this is driven by the dynamics of reputational incentives. In

the bad news case, incentives weaken as reputation goes down. As Board and Meyer-ter-Vehn (2013) point

out, a high reputation firm has more to lose from a collapse in its reputation following a breakdown than

a low reputation firm. Hence, inspections are most needed for incentive purposes when reputation is low.

In the good news case, incentives decrease in reputation; a low reputation firm has more to gain from a

breakthrough that boosts its reputation than a high reputation firm. In the good news case, inspections are

thus most needed when reputation is high. Accordingly monitoring complements exogenous news, being used

when exogenous news are ineffective at providing incentives. We still need to verify that: (1) the optimal

monitoring policy is optimal, and (2) show that the dynamics of the firm’s continuation value satisfy the

monotonicity properties in Figure 7. We consider the optimality conditions for the optimal policy in Section

D.2 and study the steady states of the firm’s continuation payoffs in Section D.3.
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D.2 Necessary Conditions with Asymmetric News

The Hamiltonian for the optimal control problem is

H(ΠL
τ ,Π

H
τ , ζτ , ν

L
τ , ν

H
τ , ψτ ,mτ , τ) = ζτ ((r +mτ )Uθτ − xθτ − µHxθtUH − µL(1− xθτ )UL −mτM(U, xτ )

+ ψτ (ΠH
τ −ΠL

τ − k/λ) + νHτ
(
(r + µH +mτ )ΠH

τ − xτ + kā+ λ(1− ā)(ΠH
τ −ΠL

τ )

− (µH +mτ )Π(H)
)

+ νLτ
(
(r + µL +mτ )ΠL

τ − xτ + kā− λā(ΠH
τ −ΠL

τ )

− (µL +mτ )Π(L)
)

As before, we have that ζτ− = 1 and the evolution of the remaining co-state variables is The evolution of

the co-state variables is given by

ν̇Hτ = −(µH + λ(1− ā))νHτ − ψτ + λāνLτ

ν̇Lτ = −(µL + λā)νLτ + ψτ + λ(1− ā)νHτ .

The switching function S(τ) is given by

S(τ) =M(U, xτ ) + νHτ (ΠH
τ −Π(H)) + νLτ (ΠL

τ −Π(L))− Uθτ .

We pin-down the boundary condition for the co-state variables νθτ by looking at the switching function. The

rate of monitoring is positive (and finite) at time zero only if S(0) = 0 which implies that

0 =M(U, θ)− Uθ + νH0 (ΠH
0 −Π(H)) + νL0 (ΠL

0 −Π(L)).

If the incentive compatibility constraint is binding at time zero, so ΠH
0 −ΠL

0 = k/λ, then when θ0 = L and

m0 > 0 the initial value of the co-state variable νH0 is

c = −νH0
(

1

r + λ
− k

λ

)
.

The initial value of the co-state variable νL0 is determined by the transversality condition limτ→∞ νLτ = νLss.

If the incentive compatibility constraint at time zero were slack (that is m0 = 0) then the initial value would

be νH0 = 0. The determination of νL0 is more complicated in this latter case as νLτ can jump at the junction

time τm in which the IC constraint becomes binding. Similarly, if θ = H then we have that νL0 is given by

c = νL0

(
1

r + λ
− k

λ

)
while νH0 is determined by the transversality condition limτ→∞ νHτ = νHss. As for θ0 = L, the same qualifi-

cation for the case in which the IC constraint is slack at time zero applies. In the same way as we did in

the case without news, we can use the condition that the switching function is constant on a singular arc,

Ṡτ = 0, to back out the value of the Lagrange multiplier ψτ

ψτ
(
(ΠH

τ −ΠL
τ )− (Π(H)−Π(L))) = ẋθτ (UH − UL)− U̇θτ + (−(µH + λ(1− ā))νHτ + λāνLτ )(ΠH

τ −Π(H)) + νHτ Π̇H
τ

+ (−(µL + λā)νLτ + λ(1− ā)νHτ )(ΠL
τ −Π(L)) + νLτ Π̇L

τ
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If the incentive compatibility constraint is binding, ΠH
τ −ΠL

τ = k/λ, then we can write the Lagrange multiplier

as

ψτ =
1

k/λ−∆

[
ẋθτ (UH − UL)− U̇τ −

(
µHν

H
τ + µLν

L
τ

)
(ΠL

τ −Π(L))

+ +
(
(µH + λ(1− ā))νHτ − λāνLτ

)( 1

r + λ
− k

λ

)
(νLτ + νHτ )Π̇L

τ

]
.

A necessary condition for our conjectured monitoring policy mτ to be optimal is that the Lagrange

multiplier ψτ is non-negative whenever the incentive compatibility constraint is binding. The monitoring

policy mτ is positive if and only if this constraint is binding; hence, the condition reduces to verify that

ψτmτ ≥ 0. Given the higher dimensionality of the state space, we can no longer check this condition

analytically. However, this condition can be easily verified numerically after solving for the system of ODEs.

The Hamiltonian in our problem is not concave, so traditional theorems on the sufficiency of the maximum

principle do not apply. However, our problem is a special case of the generalized linear control processes

considered by Lansdowne (1970), for which he proves the sufficiency of the maximum principle. The results

in Lansdowne (1970) do not apply directly to our problem due to the presence of a state constraint; however,

because the state constraint in our problem is linear, his sufficiency result can be extended to our setting.

D.3 Monotonicity of Monitoring Policy with Asymmetric News

Proof. Looking at the phase diagram in Figure 7 we see that if the optimal solution is given by the saddle

path then the trajectory towards the steady state is monotonic which implies that mτ is decreasing in

xτ . Hence, we only need to rule out that in the optimal policy the continuation values converge to the

stable steady state. We show this by verifying that the trajectory to the stable steady state violates the

non-negativity condition of the monitoring rate.

The roots of the equation for the steady state are

−(r + µL + α− βΠ(L))±
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β

2β
.

Let’s denote by ΠL
− and ΠL

+ the smaller and larger solution to the quadratic equation (60), respectively. We

show next that only one of these roots is consistent with mτ ≥ 0.

Claim 2 (Bad News). If µL > µH then

α+ βΠL
+ < 0.

Given that we are in the bad news case, mτ > 0 only if Πτ < −α/β. When µL > µH , the larger root

ΠL
+ is

ΠL
+ =

r + µL + α− βΠ(L) +
√

(r + µL + α− βΠ(L))2 − 4((µL + α)Π(L) + xss)(−β)

−2β

>
2(r + µL + α− βΠ(L)) + 2

√
((µL + α)Π(L) + xss)(−β)

−2β

= −α
β

+
r + µL − βΠ(L)

−β +

√
((µL + α)Π(L) + xss)(−β)

−β
> −α

β
.
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Hence, in the bad news case only the trajectory towards the saddle point is consistent with mτ > 0.

Claim 3 (Good News). If µL < µH then

α+ βΠL
− < 0.

In the good news case, mτ > 0 only if Πτ > −α/β. The smaller root is

ΠL
− =

−(r + µL + α− βΠ(L))−
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β

2β

If ΠL
− ≤ 0 then there is nothing to prove as the payoff of the firm cannot be negative. Accordingly, let’s

restrict attention to parameters such that ΠL
− > 0. We have that ΠL

− > 0 if and only if

(r + µL − βΠ(L)) +
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β < −α

Monitoring is positive at iff ΠL
− > −α/β which requires

(r + µL − α+ βΠ(L)) +
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β < 0

We consider two separate cases:

Case α ≤ 0 Using the condition for ΠL
− > 0 we get the inequality

r + µL − α+ βΠ(L) +
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β >

2(r + µL + βΠ(L))− α+ 2
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β > 0

which contradicts the condition for positive monitoring ΠL
− > −α/β.

Case α > 0 If (r + µL + α − βΠ(L)) > 0 then we get an immediate contradiction with the hypothesis

that ΠL
− > 0. Hence, assume that (r+ µL +α− βΠ(L)) < 0. For any b > 0 and a < 0 we have the following

inequality √
a2 + b > |a| ⇒ −a−

√
a2 + b < −a− |a| = 0.

If α > 0 then we have 4((µL + α)Π(L) + xss)β > 0. Setting a = (r + µL + α − βΠ(L)) < 0 and b =

4((µL + α)Π(L) + xss)β > 0 in the previous inequality we get

ΠL
− =

−(r + µL + α− βΠ(L))−
√

(r + µL + α− βΠ(L))2 + 4((µL + α)Π(L) + xss)β

2β
< 0,

which yields a contradiction to ΠL
− > 0.
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