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Abstract

In this paper we analyze a discrete choice model for partially ordered alternatives.

The alternatives are differentiated along two dimensions, the first an unordered “hori-

zontal” dimension, and the second an ordered “vertical” dimension. The model can be

used in circumstances in which individuals choose amongst products of different brands,

wherein each brand offers an ordered choice menu, for example by offering products of

varying quality. The unordered-ordered nature of the discrete choice problem is used

to characterize the identified set of model parameters. Following an initial nonpara-

metric analysis that relies on shape restrictions inherent in the ordered dimension of

the problem, we then provide a specialized analysis for a parametric generalization of

the ordered probit model. Conditions for point identification are established when

the distribution of unobservable heterogeneity is known, but remain elusive when the
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distribution is instead restricted to the multivariate normal family with parameterized

variance. Rather than invoke the restriction that the distribution is known, or simply

assume that model parameters are point identified, we consider the use of inference

methods that allow for the possibility of set identification, and which are therefore

robust to the possible lack of point identification. A Monte Carlo analysis is provided

in which inference is carried out using a method proposed by Chen, Christensen, and

Tamer (2018), which is insensitive to the possible lack of point identification and is

found to perform adequately. An empirical illustration is then conducted using con-

sumer purchase data in the UK to study consumers’ choice of razor blades in which

each brand has product offerings vertically differentiated by quality.

JEL classification: C01, C31, C35.

1 Introduction

In this paper we study a discrete choice model in which alternatives are distinguished by

two dimensions. The alternatives are first horizontally differentiated according to one of a

number of unordered categories. In the context of a consumer choice problem the alterna-

tives could be products differentiated by brands b = 1, ..., b̄. Within each such category,

alternatives are vertically differentiated by quality q = 1, 2, ..., qb. Individuals are assumed

to have ordered preferences over the vertical quality dimension, within each horizontally dif-

ferentiated category, but preferences across horizontal categories are unordered. Prominent

examples of product offerings in which different firms compete to sell vertically differentiated

products to consumers include airline tickets for a given city pair where each airline offers

vertically differentiated travel classes, and vertically-differentiated cable television packages

offered by multiple providers.

As initially set out by McFadden (1974), and as is now standard in the discrete choice

literature, we assume that each consumer chooses the brand-quality combination that max-

imizes her latent utility. Yet our model differs from standard models of discrete choice by

explicitly incorporating both the horizontal and vertical dimensions of differentiation. Mod-

els that consider choice amongst unordered discrete alternatives, such as those of McFadden

(1974) and Hausman and Wise (1978), allow for horizontal differentiation by brand but do

not incorporate vertical differentiation. Models for choice amongst totally ordered alterna-

tives can be used to estimate demand for vertically differentiated products, as in Bresnahan

(1987).
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We combine features of models for ordered and unordered choice in order to incorporate

both aspects of differentiation. Relative to existing methods, this approach allows the model

to respect the unordered-ordered nature of the choice problem when both kinds of differ-

entiation are present. This may be useful for accurately estimating important features of

substitution patterns in such scenarios.

A related line of research, and an important area of potential application, is the model-

ing of consumer choice in oligopoly markets in which competing firms each offer vertically

differentiated products. Some empirical work in this area includes Davies, Waddams, and

Wilson (2009) and Song (2015). Davies, Waddams, and Wilson (2009) focus on two-part

tariffs and bundling in the British gas and electricity markets, and use linear panel data

regression and instrumental variables to investigate whether the market operates in accord

with economic theory. Song (2015) develops an explicit model of consumer demand for ver-

tically and horizontally differentiated products, but our model and Song’s model are quite

distinct and suited for different contexts. Song’s (2015) model is a hybrid of those of Berry,

Levinsohn, and Pakes (1995) and Berry and Pakes (2007) and is well-suited to settings where

products span multiple markets. Moreover, Song (2015) models demand for attributes in

characteristics space, and is thus capable of handling a large product space. Our model is

instead focused at the consumer level, requiring individual-specific choice data, and is best

suited to competition among relatively few brands, or firms, with vertically differentiated

product offerings.

In our model, if attention is restricted to any single brand b, the quality of the utility-

maximizing option offered by that brand for a given consumer is determined by a standard

ordered choice structure. That is, the shape of the latent utility function results in an ordered

choice model, e.g. ordered probit or logit, when consumers’ choices are restricted to brand

b. From a modeling standpoint, this can be used to recover an indirect utility function for

each brand b. The solution to the problem of choosing the best brand-quality offering from

among all products can then be recovered as the brand that maximizes the indirect utility

function, and the quality level that maximizes the corresponding brand-specific utility.

The structure of the problem is thus analogous to that of the mixed discrete-continuous

choice model of Dubin and McFadden (1984). However, due to the discrete nature of both

dimensions of choice, one cannot use differential arguments and in particular Roy’s Identity

to characterize the optimal choice of either dimension. Nonetheless, the model is complete

in that conditional on any value of exogenous variables, there is a unique solution to the

consumer choice problem with probability one. This is because the model is for a single-
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agent decision problem, rather than a simultaneous move game with strategic interactions

and, potentially, multiple equilibria, as encountered for instance in simultaneous equations

model for ordered actions considered by Aradillas-Lopez and Rosen (2014).

Nonetheless, despite the lack of strategic interactions in the single-agent decision prob-

lem studied here, the discrete nature of both dimensions of the decision problem and the

unordered-ordered nature of the brand-quality decision gives rise to identification challenges.

This is true even when we impose a linear index structure to model within-brand utility. We

first show that under a rank condition there is point identification of model parameters if

the distribution of unobserved heterogeneity is known and log-concave, for example mul-

tivariate normal. If instead unobserved heterogeneity is assumed to belong to a family of

distributions with parameters indexed by Σ ∈ Λ, this identification result no longer holds.

We show however that under some mild conditions the identified set for utility parameters θ

takes the form Θ∗ = {θ (Σ) : Σ ∈ Λ} where θ (Σ) maximizes the expected log-likelihood for

the heterogeneity distribution with parameters Σ.

More generally, since the model pertains to a single agent decision problem it is com-

plete, and a log-likelihood can be constructed. The identified set for the combined vector

of all model parameters (i.e. both payoff and distributional parameters (θ,Σ)), though

possibly not a singleton, can be characterized as the set of maximizers of the expected log-

likelihood. This characterization in turn permits application of results on the distribution of

likelihood ratio statistics when point identification need not hold, such as those of Liu and

Shao (2003) for parametric likelihood models and Chen, Tamer, and Torgovitsky (2011) for

semi-parametric likelihood models. In Monte Carlo experiments we investigate the use of an

inference approach developed by Chen, Christensen, and Tamer (2018) – henceforth CCT –

that allows construction of confidence intervals for individual parameters, and which is easy

to implement. These confidence intervals are valid and slightly conservative when there is

partial identification, but have the desirable feature that they are asymptotically exact if

the parameter of interest is point identified. This inference method is found to perform well

in our Monte Carlo experiments, and is subsequently used in an empirical application to

consumer choice of vertically differentiated razors from each of two different brands using

data on consumers in the United Kingdom.

The paper proceeds as follows. In Section 2 we provide our econometric model for par-

tially ordered response in its most general form. In Section 3 we provide identification

analysis. In Section 4 we provide a parametric probit-type model with two brands each with

two quality levels, and illustrate how characterization of the identified set simplifies in this
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context. Section 5 provides details for computation of the log-likelihoods, implementation of

results from CCT for construction of confidence intervals, and Monte Carlo analysis illustrat-

ing performance of the inference approach. Section 6 presents an application to the market

for women’s razor blades using consumer data from the United Kingdom in the early 2000s.

Section 7 concludes and discusses directions of continuing research. Proofs of propositions

and theorems are provided in the Appendix.

2 The Model

Each individual in the population is characterized by observables (Y,B,X) and an unob-

servable vector V . It is assumed that each individual chooses either an ordered alternative

Y ∈ Yb ≡ {1, ..., ȳb} of some type B ∈ B ≡
{

1, ..., b̄
}

, or an outside alternative denoted by

Y = 0. The setMBY ≡ {(b, y) : B ∈ B, Y ∈ Yb} denotes the set of possible (B, Y ) alterna-

tives, andMBY ≡MBY ∪{(b, 0) : B ∈ B} denotes the joint support of (B, Y ). When Y = 0

brand choice is undefined, and any (b, y) pair with y = 0 denotes the outside alternative. The

set X denotes the support of observable covariates X, such as individual characteristics. The

vector V ∈ Rb̄ represents unobserved heterogeneity that affects individuals’ preferences both

within and across types through the utility specification now described. The probability

measure of V is denoted G (·) so that for any set S ⊆ Rb̄, G (S) ≡ Pr [V ∈ S].

The utility obtained by an individual with covariates x and unobservable v from any

choice (b, y) ∈MBY is given by

Uby ≡ u (b, y, x, vb) , (2.1)

where each function u (b, y, x, vb) is strictly increasing in vb for each (b, y, x) ∈ MBY × X .

Each individual chooses precisely one (B, Y ) pair. We normalize the utility from the outside

alternative (Y = 0) to zero and define

Ub0 ≡ 0,

for each b ∈ B. Because the choice Y = 0 is intended as an outside alternative, this notation

will prove convenient when comparing utilities of the general form Uby, but the value of b

when y = 0 carries no meaning.
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We assume that each individual chooses the alternative that maximizes her utility.1 For

any b ∈ B let

U∗b ≡ max
y∈Yb

Uby, Y ∗b ≡ argmax
y∈Yb

Uby,

denote the indirect utility and optimal choice of Y , respectively, if the individual’s alterna-

tives were limited to only those of type b. The structure of the model will be such that

for any fixed b, the choice of the ordered outcome Y produces a standard model of ordered

response, in the sense that this choice is weakly increasing in Vb. For example, if Vb is

normally distributed, independent of X, and the consumer may only purchase from brand

b, then we have an ordered probit model. A consumer who has the option to choose any

quality-level from any brand then chooses

B = argmax
b∈B

U∗b , Y = Y ∗B. (2.2)

Note in the case where none of the products deliver positive utility, Y = 0, so that U∗b =

Y ∗b = 0 for all b ∈ B, and a purchase is not made from any brand.

Restriction A1: (Probability space) (B, Y,X, V ) are defined on a probability space (Ω,F ,P),

where F contains the Borel sets. The support of B is B ≡
{

1, ..., b̄
}

, the support of Y is

Yb ≡
{

0, 1, ...,max
b∈B

ȳb

}
, and their joint support is denoted MBY . The support of (X, V ) is

X × V where V ⊆ R|B|.

Restriction A2: (Identification of f 0
x (b, y)) For each value x ∈ X there is a proper condi-

tional distribution of (B, Y ) given X = x and f 0
x (b, y) ≡ P [B = b ∧ Y = y|X = x] is point

identified over the support of (B, Y ) for almost every x ∈ X .

Restriction A3: (Distribution of unobserved heterogeneity) The conditional distribution of

V given X = x is absolutely continuous with respect to Lebesgue measure with everywhere

positive density on R|B|.

Restriction A4: (Independence) X and V are stochastically independent.

Restriction A5: (Admissible structures) Structure S ≡ (u,G) belongs to a known collection

S of pairs of utility functions and distributions of unobserved heterogeneity, (u,G).

1Under Restriction A3 below ties in the utility obtained from different alternatives occur with zero
probability conditional on any realization of x. How ties are handled is therefore of no consequence in the
determination of conditional choice probabilities, but to simplify notation we adopt the convention that if
alternatives (b, y) and (b, y′), y < y′, achieve the same utility, then (b, y) is chosen, and if (b, y) 6= (b′, y′),
b < b′ achieve the same utility, then (b′, y′) is chosen.
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Restriction A6: (Utility maximization) Given (X, V ), (B, Y ) are chosen to maximize

u (B, Y,X, Vb), where u belongs to a known class of functions U satisfying (i) u (b, 0, x, vb) = 0

for all (b, x, vb), (ii) u (b, y, x, vb) is strictly increasing and continuous in vb for all (b, y, x),

and (iii) for each (b, x) ∈ B×X , {u (b, y, x, vb) : vb ∈ R} satisfies the single-crossing property

in (y, vb), namely that if v′b > vb and y′ > y, then

u (b, y′, x, vb)− u (b, y, x, vb) ≥ (>) 0⇒ u (b, y′, x, v′b)− u (b, y, x, v′b) ≥ (>) 0.

Restriction A1 defines the underlying probability space and notation for the support of

random variables (B, Y,X, V ). Restriction A2 stipulates that the conditional distribution of

(B, Y ) given covariates x is point identified for almost every x ∈ X , as would be the case

for example under random sampling. Restriction A3 requires that unobserved heterogeneity

V is absolutely continuously distributed with full support in Euclidean space. Restriction

A4 imposes independence of X and V . This is an important restriction. If X includes

prices, then it requires that prices are exogenous, ruling out the possibility that unobserved

components of individual utility are correlated with prices. This could be violated if different

sellers offer different prices for the products being sold and if some individuals choose where

to shop based on these prices. This assumption may still be appropriate however if the price

of the product makes up a only small fraction of expenditure, such that individuals do not

choose where to shop based on the price offered. It also holds if all individuals make their

purchase decisions in a single market, where they face identical prices. Restriction A5 defines

a structure S as a utility function and distribution of unobserved heterogeneity, assumed to

belong to some class of admissible pairs S. Note that any given structure S gives rise to

a collection of conditional distributions f 0
x (b, y) for almost every x ∈ X . The identification

problem is to determine the set of structures that can generate the observed distributions

f 0
x (b, y). The set of structures S admitted by the model can be restricted to a parametric,

semiparametric, or nonparametric class.

In particular, the underlying structure S maps to conditional distributions f 0
x (b, y)

through the specification of the individual choice problem. Restriction A6 specifies that

individuals choose (B, Y ) to maximize utility u (B, Y,X, Vb), on which we impose some con-

ditions. First, the specification (2.1) requires that there is a single, separate component

of unobserved heterogeneity for each brand b, and through Restriction A6(ii) that utility

from each product of this brand is weakly increasing in the associated unobservable. The
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components of V may however by jointly dependent, allowing for potential correlation across

brand preferences, and quality tastes across brands. With Restriction A6(i) we normalize the

utility from the outside option to zero. Restriction A6(iii) requires that the utility function

satisfies the single-crossing property in (y, vb). By Milgrom and Shannon (1994) Theorem

4 this guarantees that for all consumers and all b ∈ B, the optimal choice within brand b,

Y ∗b , is nondecreasing in vb, so that quality-choice within any brand b assumes the structure

of an ordered choice problem. This combined with the within brand monotonicity given by

Restriction A6(ii) allows for characterizations of regions of unobservables that give rise to

conditional choice probabilities for each brand-quality combination. This plays a key role in

the identification of underlying structure S, as we show in the next Section.

3 Identification

We begin this section with a general characterization of the identified set of structures

compatible with Restrictions A1-A6. We then show that if the model is correctly specified,

the identified set can be written as the maximizers of the expected log-likelihood, and we

derive the form of the multivariate integral delivering conditional choice probabilities as a

function of the underlying structure S.

3.1 General Characterization of the Identified Set

Before adding further restrictions we first characterize the identified set of structures S under

Restrictions A1-A6, denoted S0 (X ). The notation expresses the dependence of the identified

set on the support of the exogenous variables X. This set is by definition given by

S0 (X ) ≡
{

(u,G) ∈ S : ∀ (b, y) ∈MBY , G (Vby (x;u)) = f 0
x (b, y) a.e. x ∈ X

}
, (3.1)

where Vby (x;u) denotes that set of values for unobserved heterogeneity V on which (b, y)

maximizes utility u:

Vby (x;u) ≡
{
V ∈ V : ∀

(
b̃, ỹ
)
6= (b, y) , u (b, y, x, vb) ≥ u

(
b̃, ỹ, x, vb̃

)}
. (3.2)

In words, S0 (X ) is the set of admissible structures (u,G) that generate identified condi-

tional choice probabilities f 0
x (b, y) for all (b, y) and almost every x ∈ X . Note that given the

absolute continuity of the distribution of V and continuity of utility in unobserved hetero-
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geneity, the sets Vby (x;u) and Vb̃ỹ (x;u),
(
b̃, ỹ
)
6= (b, y), overlap at most on a set of Lebesgue

measure zero, so that there is a unique utility maximizing pair (b, y) with probability one

given any x ∈ X . Hence G (Vby (x;u)) is the conditional probability of observing (b, y) given

X = x when the utility function is u and V ∼ G. Structures (u,G) that do not belong in

the identified set S0 (X ) in (3.1) are those such that the set

X ∗ (u,G) ≡
{
x ∈ X : ∃ (b, y) ∈MBY s.t. G (Vby (x;u)) 6= f 0

x (b, y)
}

, (3.3)

has positive measure PX .

Given the representation of the identified set through the equalities G (Vby (x;u)) =

f 0
x (b, y) we can equivalently characterize the identified set as those structures that maximize

the log-likelihood. For this we require that the model is correctly specified, formalized with

the following additional assumption.

Restriction A7: (Correct Specification) ∃S∗ ∈ S, S∗ ≡ (u∗, G∗) such that ∀ (b, y) ∈MBY

G∗ (Vby (x;u∗)) = f 0
x (b, y) a.e. x ∈ X .

This restriction requires that the distribution of (B, Y ) conditional on X is obtained by

at least one admissible structure S∗ ∈ S. This assumption is also imposed in Liu and Shao

(2003) and Chen, Tamer, and Torgovitsky (2011), while Chen, Christensen, and Tamer

(2018) note that their methods can be applied to perform inference on the identified set

under misspecification in separable likelihood models. Nonetheless, interpretation of partially

identifying models under misspecification is delicate, see Ponomareva and Tamer (2011), and

this is not studied here.

Consider the expected log-likelihood function

Q (u,G) ≡ E [lnG (VBY (X;u))] ,

where the expectation is taken with respect to population measure P. It follows by arguments

identical to those with singleton S0 (X ) that Q (u,G) attains its maximum at all (u,G) ∈
S0 (X ), since by definition of S0 (X ) these all produce the same probabilities G (Vby (x;u))

for almost every x. The general observation that when point identification is lacking the set

of maximizers of the expected log-likelihood are precisely those observationally equivalent to

the population data generating structure has been made previously, see e.g. Bowden (1973)

and Redner (1981). The formal statement in the present setting, a proof of which is included

in the appendix for completeness, is made in the following Proposition.
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Proposition 1 Let restrictions A1-A7 hold. Then

S0 (X ) ≡ argmax
(u,G)∈S

Q (u,G) ,

with S0 (X ) as defined in (3.1).

In order to better understand the properties of the set S0 (X ), we now investigate the

form of the conditional choice probabilities G (Vby (x;u)). Unless sufficiently strong para-

metric restrictions on S are imposed, S0 (X ) may not be singleton, so that there may not be

point identification. When sufficiently strong restrictions for point identification do hold, es-

timation and inference can proceed under the classical maximum likelihood paradigm. When

these restrictions do not hold, the classical results do not apply. But the characterization of

S0 (X ) as the (set of) maximizers of the expected log-likelihood enables us to apply inference

techniques for maximum likelihood estimators when point identification is lacking. The sub-

sequent characterization of choice probabilities G (Vby (x;u)) enables derivation of sufficient

conditions for point identification, as well as computation of set estimates and inferential

statistics when point identification fails.

3.2 Conditional Choice Probabilities

The utility maximization hypothesis together with the shape restrictions in Restriction A6

enable concise characterization of the conditional choice probabilities

pby (x;S) ≡ G (Vby (x;u))

for brand-quality pair (b, y) given X = x, considered as a function of any structure S =

(u,G). Without parametric restrictions on u, the monotonicity and single-crossing conditions

suffice to establish the representation of each choice probability pby (x;S) as a particular form

of a b̄-variate integral. Thus, given a specific (u,G), pby (x;S) can be computed by either

numerical integration or simulation. The formal result follows.

Theorem 1 Let Restriction A6 hold. Then for each (b, y, x) ∈ MBY × X , the region

Vby (x;u) is a convex polytope in Rb̄ and the choice probability pby (x;S) takes the form

pby (x;S) =

gb(y+1)∫
gb(y)

hb,1(y)∫
−∞

· · ·
hb,b−1(y)∫
−∞

hb,b+1(y)∫
−∞

· · ·

hb,b̄(y)∫
−∞

dG (v) , (3.4)
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where {gb (y) : y = (0, ..., ȳb + 1)} are within-brand threshold functions and {hbk (y) : k 6= b}
are cross-brand threshold functions such that (b, y) is chosen if and only if:

Vb ∈ [gb (y) , gb (y + 1)) , (3.5)

∀k < b, Vk ≤ hbk (y) , and (3.6)

∀k > b, Vk < hbk (y) , (3.7)

where gb (0) ≡ −∞ and gb (ȳb + 1) ≡ ∞. The threshold function gb (·) may depend on x and

each function hbk (·) : k 6= b, may depend on both vb and x.

4 A Parametric Example: A Partially Ordered Probit

Model

In this section we consider a simple parametric example with two firms b ∈ B = {1, 2}, each

selling a low-quality product offering (Y = 1) and a high-quality product offering (Y = 2),

so that Y1 = Y2 ≡ {0, 1, 2}. We specify the utility functions u (b, ·, ·, ·) : Yb × X × R → R
for each b ∈ B and y ∈ {1, 2} as:

u (b, y, x, vb) ≡ y × (xbβb + vb)− αby (4.1)

where θ ≡ (β1, β2, α11, α12, α21, α22)′ are the parameters of the utility function. The utility

of choosing the outside option is normalized to zero, such that u (b, 0, x, vb) ≡ 0.

This model generalizes a three-choice ordered probit model, in that for any fixed b ∈ B
we have

Y ∗b = 0⇔ Vb ≤ λb1 −Xbβb, (4.2)

Y ∗b = 1⇔ λb1 −Xbβb < Vb ≤ λb2 −Xbβb,

Y ∗b = 2⇔ λb2 −Xbβb < Vb,

where

λb1 ≡ min
{
αb1,

αb2
2

}
, λb2 ≡ max

{
αb2 − αb1,

αb2
2

}
. (4.3)
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denote threshold parameters. Some algebra reveals that

αb2 > 2αb1 ⇒ λb1 = αb1, and λb2 = αb2 − αb1, (4.4)

while

αb2 ≤ 2αb1 ⇒ λb1 = λb2 =
αb2
2

. (4.5)

The inequality on the left hand side of (4.4) ensures that for each b,

P [αb1 −Xbβb ≤ Vb ≤ αb2 − αb1 −Xbβb|X = x] > 0,

or equivalently that some randomly chosen individuals prefer y = 1 to both the other alter-

native of type b and the outside alternative. When instead the inequality on the left hand

side of (4.5) holds, then the probability of this event is zero. In this case, if one were to

imagine taking a randomly selected individual and increasing their unobservable Vb contin-

uously from −∞ to ∞, that individual would choose the outside alternative for values of Vb

up to αb2
2
−Xbβb, and then switch to Y = 2 for all Vb >

αb2
2
−Xbβb, respecting the ordered

nature of the quality dimension y, but skipping over the lower quality alternative y = 1.

With αb1, αb2 fixed parameters that do not depend on observable variables, the inequality

αb2 ≤ 2αb1 implies that B = b and Y = 1 never occurs. So if B = b and Y = 1 are indeed

observed in the data, then it would be sensible to simply impose the inequality αb2 > 2αb1,

and parameter configurations with αb2 ≤ 2αb1 would imply a log-likelihood of −∞.

We further restrict V = (V1, V2) to be bivariate normally distributed with mean zero and

variance

Σ =

(
1 ρσ

ρσ σ2

)
.

Given the parametric specification (4.1) for u, the resulting regions of unobserved vari-

ables Vby defined in (3.2) take the form of convex polytopes in R2. Figure 1 gives an example

illustrating these regions for a particular parameter vector θ and a given value of the condi-

tioning variables x in which the inequality αb2 > 2αb1 on the left hand side of (4.4) holds.

The resulting choice model can alternatively be cast as a multinomial probit model with

a 4 dimensional jointly normal unobservable, but with a singular variance matrix due to the

ordered structure of the within brand choice. This is problematic, complicating standard

arguments for identification and inference. See for example Weeks and Orme (1999) and

Poirier and Kapadia (2012) for models in which similar issues arise when agents make mul-
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Figure 1: Regions of unobservables V resulting in each choice of (b, y) ∈ MBY with utility
as specified in (4.1).

tiple discrete choices simultaneously. In the next section we provide identification analysis

by making explicit use of the particular structure of the partially ordered probit model.

The specification set out here treats the thresholds (α11, α12, α21, α22) as fixed param-

eters to be estimated. Fixed threshold specifications for ordered probit and logit models

are common, and we begin our analysis with this restriction. It is however conceptually

straightforward to allow these thresholds to be functions of observable parameters. This is

important in our application, where observed prices may affect the utility of purchasing each

product. We thus begin with identification analysis with the fixed threshold specification

in Section 4.1, before considering the case where the thresholds can be a function of an

observable variable in Section 4.2.

4.1 Fixed Thresholds

We now specialize the characterization of the set S0 (X ) from Proposition 1 and the form of

the conditional choice probabilities given in Theorem 1 to the case of the partially ordered

probit model. In this section we have admissible structures S ≡ U × G, where

U ≡

{
u : B × Y × X × V → R : u (b, y, x, v) ≡ y × (xbβb + vb)− αby

for some θ ≡ {(βb, αb1, αb2) : b ∈ B} ∈ Θ.

}
, (4.6)
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where Θ is a compact subset of Euclidean space, and

G ≡

{
bivariate normal distribution functions G with variance Σ =

(
1 ρσ

ρσ σ2

)}
. (4.7)

Each admissible utility function and distribution pair (u,G) is completely specified given

(θ,Σ), so we simply write (θ,Σ) to denote the corresponding structure (u,G) ∈ S, henceforth

writing S0 (X ) as a set of parameterizations (θ,Σ) for structures that lie in the identified set.

Let Λ denote some set of positive definite matrices Σ with Σ11 = 1, and let G (·; Σ) be

the distribution function for the bivariate normal distribution with zero mean and variance

Σ of the form specified in (4.7). Define

pby (x; θ,Σ) ≡ G (Vby (x;u) ; Σ) ,

to be the conditional probability that B = b and Y = y given X = x generated by utility

function u from (4.6) with parameter vector θ and distribution from (4.7) with parameter

Σ. Then by definition the identified set as given in (3.1) is

S0 (X ) ≡
{

(Σ, θ) ∈ Λ×Θ : ∀ (b, y) ∈ B × Y , pby (x; θ,Σ) = f 0
x (b, y) a.e. x ∈ X

}
.

Application of Proposition 1 gives the likelihood characterization of the identified set:

S0 (X ) ≡ argmax
(Σ,θ)∈Λ×Θ

E [ln pBY (X; θ,Σ)] .

Using the conditional choice probability integrals of Theorem 1 this becomes

S0 (X ) = argmax
(Σ,θ)∈Λ×Θ

L (θ,Σ) ,

with L (θ,Σ) the expected log-likelihood:

L (θ,Σ) ≡ E [ln pBY (X; θ,Σ)] = ExE [ln pBY (X; θ,Σ) |X = x] .
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Using the parametric structure set out above we have

E [ln pBY (X; θ,Σ) |X = x] ≡
∑

(b,y)∈B×Y
f 0
x (b, y) ln

 gb(y+1;x,θ)∫
gb(y;x,θ)

hby(y,x,v,θ)∫
−∞

φ2 (v,Σ) dv3−bdvb

 ,

where φ2 (·,Σ) denotes the density of a zero mean bivariate normal random variable with

variance Σ and where

gb (y;x, θ) ≡ αby − αb,y−1 −Xbβb, αb0 ≡ 0,

and for all d 6= b,

hb (y, x, v, θ) ≡ min
ỹ∈{1,...,ȳd}

1

ỹ
[y (xbβb + vb)− (αby − αdỹ)]− xdβd.

Thus each pby (x; θ,Σ) takes the form of an integral over a region defined by inequalities that

are linear in the parameters θ, equivalently

pby (x; θ,Σ) =

∫
R2

φ2 (v,Σ) 1 [v ∈ Vby (x; θ)] dv.

Written in this form it is straightforward to verify that pby (x; θ,Σ) is log-concave for each

value (b, y, x). This in turn implies that the maximizers of L (θ,Σ) for any fixed Σ comprise

a convex set.

Theorem 2 Suppose that Restrictions A1-A7 hold, that u ∈ U defined in (4.6), and G is

known with log-concave density g. Then the identified set for θ is

Θ∗ ≡ arg max
θ∈Θ

L (θ,G) ,

with the expected log-likelihood

L (θ,G) ≡
∑

(b,y)∈B×Y

f 0
x (b, y) ln

∫
R|B|

g (v) 1 [v ∈ Vby (x; θ)] dv,

concave in θ.

Many commonly used distributions are log-concave, with the normal distribution being
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a leading example. If the distribution G is not known, but the elements of the admissible set

of distributions G are all log-concave, for example if all such distributions are multivariate

normal but with different variances, then it follows that the identified set for θ is contained

in a union of convex sets, namely the union of set delivered by Theorem 2 for each G ∈ G.

Under some additional but mild conditions on the variation in observable variables X, a

known G in fact delivers point identification, as stated in Theorem 3 below.

The first part of Theorem 3, which establishes identification of (αb1, β
′
b)
′

for each b ∈
{1, 2}, is a restatement of a result initially proven in Theorem 2 of Aradillas-Lopez and Rosen

(2014), up to minor changes in notation. The second part then provides a straightforward

extension applicable to prove identification of the additional parameters (α12, α22). The

reason the result from Aradillas-Lopez and Rosen (2014) applies is the equivalence of the

conditional probability of consumer choosing not to purchase, i.e. pb0 (X; θ,Σ) in the present

model, to the conditional probability that (0, 0) is an equilibrium in the ordered outcome

simultaneous equations model studied by Aradillas-Lopez and Rosen (2014).2 While both

models feature the same conditional probabilities for these particular outcomes, the rest of

their observable implications differ. The simultaneous equations model of Aradillas-Lopez

and Rosen (2014) produces inequalities on the conditional probabilities of other outcomes,

due to the presence of strategic interactions and multiple equilibria. They then combine the

conditional moment equality from the probability of outcome (0, 0) with conditional moment

inequalities to produce a test statistic for inference. In the single agent decision problem

studied here, the model delivers equalities for the conditional probabilities of all outcomes,

enabling estimation of and inference on the resulting identified set by maximum likelihood.

The full result is now provided for completeness.

Theorem 3 Suppose that Restrictions A1-A7 hold and that we have the probit structure

S = U × G given in (4.6) and (4.7) with singleton G so that Σ is known, with |ρ| < 1

and σ > 0. For each b ∈ {1, 2}, let Zb ≡ (1,−Xb). Then if (i) for each b ∈ {1, 2}
there exists no proper linear subspace of the support of Zb that contains Zb with probability

one, and (ii) for all conformable column vectors c1, c2 with c2 6= 0, we have that either (a)

P {Z2c2 ≤ 0|Z1c1 < 0} > 0; or (b) P {Z2c2 ≥ 0|Z1c1 > 0} > 0, then θ is point identified.

The Theorem above shows that under conditions that guarantee sufficient variation in ex-

2Indeed, Theorem 2 of Aradillas-Lopez and Rosen (2014) can also be applied to simplify characterization
of the identified set for a subset of parameters in simultaneous binary models studied in e.g. Heckman (1978),
Bresnahan and Reiss (1991), and Tamer (2003) when the large support conditions stated in Tamer (2003)
do not hold.
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ogenous variables X, θ is point identified. The first of these, condition (i), is standard. Note

that this requires that each Xb contains no constant components. Condition (ii) first ap-

peared in Aradillas-Lopez and Rosen (2014). It restricts the joint distribution of Z1 and Z2,

requiring that conditional on Z1c1 negative (positive), Z2c2 takes nonpositive (nonnegative)

values with nonzero probability. Intuitively this condition helps to achieve identification be-

cause when there is a change in values of z such that the indices z1

(
δ̃1 − δ1

)
and z2

(
δ̃2 − δ2

)
move in the same direction, there is for fixed G a strict difference in the induced change in

the conditional probability of choosing the outside alternative. This implies that the lower

left rectangles labeled (0, 0) in Figure 1 associated with parameter vectors δ̃ and δ are such

that one is strictly contained in the other. This in turn implies different conditional proba-

bilities for the outside option, so that δ̃ and δ are not observationally equivalent. Note that

this condition is automatically satisfied under a large support restriction on a component

of either X1 or X2, for example if X11 has positive density on the real line conditional on

any realization of X2, with β11 6= 0, but is considerably weaker and does not rely on an

identification at infinity argument.

Theorem 3 requires that the distribution of unobserved heterogeneity G is known, which

is a strong restriction. However, the Theorem has useful implications for settings where G is

not known, but rather restricted to belong to some set of admissible distributions G. Under

the stated conditions, we have that for each G̃ ∈ G, if we were to assume V ∼ G̃, that is

G = G̃, there would be a singleton identified set with element denoted θ
(
G̃
)

. Thus the

identified set can only consist of parameter values for θ that are θ
(
G̃
)

for some G̃ ∈ G.

Furthermore, since θ is identified under the restriction that V ∼ G̃, θ
(
G̃
)

is consistently

estimable via maximum likelihood. The following corollary formalizes these results, which

are immediate consequences of Theorems 1 and 3.

Corollary 1 Let all the restrictions of Theorem 3 hold except for the restriction that G is

singleton. Then the identified set for θ, denoted S0 (X ) is a subset of the set S� (X ) defined

as

S� (X ) ≡ {(θ,Σ) ∈ Θ×Λ : θ = θ∗ (Σ)} ,

where for each Σ ∈ Λ, θ∗ (Σ) is the unique solution to

max
θ∈Θ
L (θ,Σ) .
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Moreover, each θ∗ (Σ) is consistently estimated by the maximum likelihood estimator

θ̂ (Σ) ≡ arg max
1

n

n∑
i=1

[ln pbiyi (xi; θ,Σ)] .

Corollary 1 shows that the identified set for parameters θ in this model must maximize

L (θ,Σ) for some Σ. Put another way, the set S� (X ) is an outer region for the identified

set S0 (X ), in the sense that S0 (X ) ⊆ S� (X ). In principle, an analogous implication can be

extended to settings where G is nonparametrically specified, keeping the parametric structure

for u of (4.6), by profiling over G ∈ G rather than Σ ∈ Λ.

4.2 Variable Thresholds

As in classical ordered choice models, in some applications it may be desirable to allow

the threshold parameters (α11, α12, α21, α22) to depend functionally on observable variables.

In our empirical application in Section 6 prices for each alternative are observed, and it is

reasonable to allow the thresholds to depend on the menu of prices each consumer faces.

The price menu faced by each consumer depends on the prices offered in the store in which

they shop, which is observable in our data. We presume that all covariates and all prices

are jointly independent of unobservable heterogeneity (V1, V2), a reasonable assumption if

consumers are thought to choose the store where their purchase is made independently of the

price menu for the product studied, here safety razors. If instead consumers are thought to

choose their store based on the price of razors in that store, then prices could be correlated

with unobserved heterogeneity, but this is assumed not to be the case here.

For each b = 1, 2 and y = 1, 2 parameters αby are determined by

αby = δb + g (pby, γb) , (4.8)

where pby ∈ R denotes the price of alternative (b, y) and for each b ∈ B, δb and γb denote

parameters on the real line. More generally, pby could be used to denote any vector of

observable variables thought to influence αby. The utility function for choice (b, y) is now

u (b, y,X, vb) ≡ y (xβb + vb)− δb − g (pby, γb) ,

while the utility of the outside alternative continues to be normalized to zero. The within b

optimal choice Y ∗b is still determined by (4.2) and (4.3), but with (4.8) as above.
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Various specifications for g (pby, γb) are possible, and in each specification the parameters

δ1, δ2, γ1, γ2 pin down the trade-off between quality and price. We focus here on the linear

specification

g (pby, γb) = γbpby, (4.9)

with γb ≥ 0 such that utility is decreasing in price for each choice (b, y). Other possible spec-

ifications include the CRRA or isoelastic utility specification g (pby, γb) = (1− γb)
−1 p

1−γb
by

with γb > 0 or the exponential utility specification g (pby, γb) = 1 − exp (−γbpby) for some

γb ∈ R.

With price now entering the utility function, the possibility of values of exogenous vari-

ables that imply that consumers never choose quality offering Y = 1 for a given brand

B = b becomes empirically relevant. This is because unlike the brand-specific covariates Xb,

prices vary across the vertical dimension y within brand. For the sake of explanation, let

Z = (X1, X2, P11, P12, P21, P22). In contrast to the fixed threshold specification, it is possible

now that there are values of the conditioning variables Z = z such that the conditional choice

probability P [(B, Y ) = (b, 1) |Z = z] equals zero for either b, while conditional on other val-

ues Z = z̃, P [(B, Y ) = (b, 1) |Z = z̃] > 0. This is practically relevant because there may be

consumers who face prices such that the higher quality product offering will always be more

desirable than the lower product quality offering no matter their realization of unobservables

V , as could happen when a firm introduces a sale for the high quality offering in order to

induce consumers to try it. Thus both cases (4.4) and (4.5) are allowed in all that follows,

depending on the value of conditioning variables Z.

Under the linear price specification (4.9) used here, the functional form of the utility

function for Y = 1 can be manipulated so as to establish point identification of the utility

function parameters (βb, δb, γb), b = 1, 2, by application of Theorem 3. To see how, define

Z∗ ≡ {z ∈ Supp (Z) : P [(B, Y ) = (b, 1) |Z = z] > 0, each b = 1, 2} .

Then for any z ∈ Z∗,
P [Y = 0|Z = z] = Φ2 (z1ϑ1, z2ϑ2; Σ)

where for each b, ϑb ≡ (δb, γb, βb)
′ and Zb ≡ (1, Pb1,−Xb). Now the same approach used to

guarantee point identification of parameters when Σ is known in the fixed threshold setting

of Section 4.1 can be applied by comparing Φ2 (z1ϑ1, z2ϑ2; Σ) with Φ2

(
z1ϑ̃1, z2ϑ̃2; Σ

)
for

(ϑ1, ϑ2) 6=
(
ϑ̃1, ϑ̃2

)
as in lines (A.2) and (A.3) in the proof of Theorem 3. The formal result
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is stated in the following Corollary.

Corollary 2 Let the same restrictions hold as in Theorem 3. For each b ∈ {1, 2}, let

Zb ≡ (1, Pb1,−Xb). Then if (i) for each b ∈ {1, 2} there exists no proper linear sub-

space of the support of Zb that contains Zb with probability one conditional on Z ∈ Z∗,
and (ii) for all conformable column vectors c1, c2 with c2 6= 0, we have that either (i)

P {Z2c2 ≤ 0|Z1c1 < 0, Z ∈ Z∗} > 0; or (ii) P {Z2c2 ≥ 0|Z1c1 > 0, Z ∈ Z∗} > 0, then θ is

point identified.

The Corollary establishes conditions whereby model parameters are point-identified if

the distribution of unobservable heterogeneity is known with variable thresholds satisfying a

linear specification. In practice, it may not be desirable to restrict the distribution of unob-

servable heterogeneity to be known. This will not be imposed in the next two sections, and

we consequently allow for the possibility that the identified set is not a singleton. Trivially,

by similar reasoning a result analogous to Corollary 1 also holds.

Point identification of utility parameters (up to scale) for either brand b may alternatively

be achieved by imposing a large support restriction on unobservable heterogeneity. This

would require that prices have full support on R2
+ for the other brand, in addition to mild

rank conditions. Intuitively, the probability of B = b conditional on Z = z could then be

made arbitrarily close to one by considering z with arbitrarily large values for the prices

of the other brand’s product offering. Conditional on such values of z, the conditional

probabilities become arbitrarily close to that of a simple ordered probit model from brand

b’s product offerings, so that the usual rank condition establishes point identification. In

practice however it is hard to argue that the price of any good has full support on [0,∞), so

we do not consider this condition any further.

5 Likelihood Computation and Inference

In this section ζ will be used to denote the full vector of model parameters of the bi-

variate probit model with variable threshold specification given by (4.8) and (4.9). Thus

ζ ≡ (γ1, γ2, δ1, δ2, β1, β2, ρ, σ), where each βb is a vector of coefficients on variables Xb that

affect utility from alternatives from brand b. The parameter space for ζ is denoted Υ,

the parameter space for ζk is denoted Υk and Υ coincides with the product of Υk across

k = 1, ..., dim (ζ).
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For inference we use Procedure 3 of CCT to construct confidence intervals for each

individual element of ζ. The approach does not require point identification. It is designed

to perform inference on individual parameter components in models in which the identified

set can be represented as the set of maximizers of a likelihood or by a system of moment

equalities and inequalities. We chose their third procedure for its combination of ease of

implementation and good performance reported in CCT. The approach entails collecting the

set of values for the parameter component such that a profile likelihood ratio statistic is

no greater than the corresponding quantile of a χ2
1 random variable. When there is point

identification, confidence intervals constructed this way have exact asymptotic coverage. As

CCT show, the approach can be conservative when there is partial identification, but only

to a limited extent when the nominal level of the confidence sets considered is roughly 0.85

or greater.

The choice probabilities implied by the partially ordered probit model – and which must

be computed in order to compute the likelihood – are of the form set out in (3.4). These

choice probabilities must be computed in order to compute the log-likelihood at candidate

parameter values ζ for each observed value of conditioning variables zi. In our application

in Section 6 there are two brands, so (3.4) takes the form of a bivariate integral. The choice

probabilities can thus be computed using numerical integration or by way of simulation for

any given (ζ, zi). Although we experimented with implementing both approaches, maximiza-

tion of the log-likelihood was found to perform relatively slowly using these methods, likely

due to the nonlinear nature of the objective function. With (ρ, σ) unknown the log-likelihood

is generally not concave in parameters, and while it is continuous, it is not everywhere differ-

entiable due to points at which individuals are indifferent between choosing the best option

among the competing brands.

To compute the choice probabilities (and therefore the log-likelihood) more quickly, we

used results from Owen (1980) that allow us to show equivalence of the choice probabili-

ties to a closed form expression that does not involve integration. Instead, the alternative

formulation of the choice probabilities involves univariate and bivariate normal CDFs evalu-

ated at functions of parameters and observable variables. Software was used that vectorizes

application of these CDFs, performing fast evaluation of the CDFs at each component of a

vector of values in one function call.3 This enabled computing the likelihood contribution for

each observation in the data through use of the vectorized function, rather than performing

numerical integration or computing simulated probabilities separately for each observation.

3We used the pbivnorm R package Kenkel (2015), which is based on Azzalini and Genz (2016).
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The details of how the conditional choice probabilities were manipulated to bypass the need

for explicitly computing or simulating integrals are now set out. Section 5.2 then explains

how Procedure 3 of CCT was implemented and examines the performance of the approach

in Monte Carlo experiments.

5.1 Computation of Choice Probabilities

In the partially ordered probit model exposited in Section 4, application of (3.4) gives the

following representation for the conditional choice probabilities:

∀ (b, y) ∈MBY , pby (x, ζ) =

λb,y+1∫
λb,y

hby(x,v,θ)∫
−∞

φ2 (v,Σ) dvddvb, (5.1)

p0 (x, ζ) = Φ2 (α11 − x1β1, α21 − x2β2; Σ) , (5.2)

where as before

hby (x, v, θ) ≡ min
ỹ∈{1,...,ȳd}

1

ỹ
[y (xbβb + vb)− (αby − αdỹ)]− xdβd, (5.3)

and d ≡ 3 − b denotes the brand other than b. The inner integral in (5.1) can then be

replaced by decomposing the joint density of Vb and Vd with the product of the marginal

density of Vb with the conditional density of Vd given Vb and integrating with respect to vd.

This gives

pby (x, ζ) =
1

σb

λb,y+1∫
λb,y

Φ

(
hby (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz. (5.4)

To remove the need to simulate or numerically approximate the above integral, condi-

tional choice probabilities pby (x, θ) can be further simplified using formulas for integrals of

normal densities and distribution functions collected in Owen (1980). The representation so

obtained is given in the following Proposition.

Proposition 2 Let Restrictions A1-A7 hold with b̄ = 2, ȳb = 2 for each b, the utility

specification

u (b, y, x, vb) ≡

{
y × (xbβb + vb)− αby, if y ∈ {1, 2}
0, if y = 0
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as in (4.1) and with V = (V1, V2) normally distributed with mean zero and variance matrix

Σ =

(
1 ρσ

ρσ σ2

)
with unknown parameters ρ ∈ (−1, 1) and σ > 0 as specified in (4.7). Then

the conditional choice probabilities for each b = 1, 2 and y = 1, 2 can be expressed as

pby (x, ζ) =

(
1
[
z∗by < λb,y+1

]
∆
(
σ−1
b max

{
z∗by, λby

}
, σ−1

b λb,y+1,m
+
1 ,m

+
2

)
+1
[
z∗by > λb,y

]
∆
(
σ−1
b λby, σ

−1
b min

{
z∗by, λb,y+1

}
,m−1 ,m

−
2

) ) , (5.5)

where λb1 and λb2 are as defined in (4.3), for any reals h, k, c1, c2,

∆ (h, k,m1,m2) ≡ Φ2 (k,m1;m2)− Φ2 (h,m1;m2) , (5.6)

where Φ2 (a, b, ρ) denotes the probability that a bivariate normal random vector Z with mean

zero and unit variance components with correlation ρ satisfies both Z1 ≤ a and Z2 ≤ b, and

for d ≡ 3− b,
z∗by ≡

αd2 + αby − 2αd1

y
− xbβb,

and

m+
1 ≡ yxbβb + αd2 − αby − 2xdβd√

σ2
by

2 − 4ρσbσdy + 4σ2
d

, m+
2 ≡

2ρσd − σby√
σ2
by

2 − 4ρσbσdy + 4σ2
d

, (5.7)

m−1 ≡ yxbβb + αd1 − αby − xdβd√
σ2
by

2 − 2ρσbσdy + σ2
d

, m−2 ≡
ρσd − σby√

σ2
by

2 − 2ρσbσdy + σ2
d

. (5.8)

5.2 Computation of Confidence Sets and Monte Carlo Experi-

ments

Before applying the partially ordered probit model of Section 4 to study consumer preferences

for razors in the U.K. market, we first conducted Monte Carlo experiments to investigate

the finite sample performance of the inference procedure used.4 For these experiments we

generated data from the partially ordered probit model, with the number of parameters

matching those employed in the subsequent application. There were five individual-specific

dummy variables with corresponding coefficients βb1, ..., βb5 for each b = 1, 2. Each product

offering had a price pby generated differently in each of the three data generation processes

(DGPs) – referred to as DGP1, DGP2, and DGP3 – as described below. The variable

4Code for the Monte Carlo experiments is available at https://sites.google.com/site/amr331/home/
por-code.
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threshold linear-in-price specification described by (4.8) and (4.9) was used.

To simulate data population parameter values were set as follows.

γ1 = 1, γ2 = 0.8, δ1 = −1.5, δ2 = −1.2, ρ = 0.5, σ = 1, (5.9)

β1 = (1.3, 0.3,−0.1,−0.3, 0.7)′ , β2 = (1.0, 0.3,−0.1,−0.3, 0.7)′ .

In our application the first two components of X, X1 and X2, are dummy variables indicating

whether age of a female shopper is from 31-40, or 41-50, with 18-30 denoting the base

category. These variables were drawn from a population distribution in which Pr [X1 = 1] =

0.426 and Pr [X2 = 1] = 0.234. The remaining components of X are dummy variables for

marriage, employment, and a variable “more females” indicating the presence of more than

one female in the household. In the Monte Carlos these were generated from the Bernoulli

distribution with parameters 0.4, 0.85, and 0.554, respectively. All components of X were

generated independently of each other.

Prices (p11, p12, p21, p22) were generated independently of X, as follows. First, for each

DGP and for each observation a vector ε was drawn from the bivariate normal distribution

with each component having mean zero and variance one, with correlation 0.25. In DGP1

prices p11 and p21 were generated independently, and uniformly on the intervals [1, 4] and

[1.35, 2.15], respectively. Prices p12 and p22 were then set to p12 = p11 +ε1 and p22 = p21 +ε2.

In this DGP, prices p12 and p22 thus both have positive density on all of R conditional

on all other variables. This implies that there is positive probability that the price of the

higher quality product for either brand b undercuts the price of the lower quality product,

i.e. pb2 < pb1, as could happen under a promotion for the higher quality product. In such

cases the conditional probability of choosing the lower quality product for the brand will be

zero. Moreover, the large support for both p12 and p22 imply that this happens with positive

probability for both brands, in which case the choice problem reduces to a simple multinomial

choice setting between each brand’s higher quality product and the outside option. Thus,

the large support of these variables, artificial though it may be, demonstrates a setting in

which point identification can be achieved. This is in fact borne out in the Monte Carlo

simulations below.

In practice prices will not have support on the entire real line, and neither DGP2 nor

DGP3 have this feature. In DGP2 p11 and p21 were generated independently from the

uniform distribution on [1, 2] and [1.35, 2.15], respectively, and each pb2 was set to pb1 +

max {1,min {|εb| , 2}}. Thus the higher quality product for each brand always has a higher
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price than the lower quality product of that brand. Moreover, all prices have continuous, but

bounded support. In DGP3 p11 and p21 were generated the same way, but the term added

on to pb1 to determine pb2 was instead rounded to the nearest integer (which was either one

or two) before adding. In this design prices again have bounded continuous support, but for

each b the conditional support of pb2 given pb1 is discrete.

With variables X, prices P = (p11, p12, p21, p22) generated as described above, and unob-

servables V = (V1, V2) drawn from the bivariate normal distribution with parameters ρ and

σ, data (bi, yi, xi, pi) were generated with each (bi, yi) solving the individual choice problem

with the corresponding (xi, pi, vi) and utility parameters as in (5.9). The expression (5.5)

obtained for choice probabilities in Proposition 2 was used in the log-likelihood function

based on n observations in each experiment, with n ∈ {200, 500, 1000, 2000}. In prelimi-

nary investigation, choice probabilities computed using (5.5) conditional on several values

of observable variables were compared to those obtained using the integral formula (5.4)

and those obtained by simulation, and these were all found to be in close agreement up to

negligible computation difference.

In order to perform inference on structural parameters the third procedure proposed

by CCT was used. This is a particularly attractive approach for constructing confidence

intervals for parameter components because it is obtained by inverting a likelihood ratio

test statistic using a simple chi-square critical value5. Specifically, an asymptotic α-level

confidence set for any individual parameter component, say ζk is

M̂χ
α,k =

{
µ ∈ Υk : inf

ζ∈Υ:ζk=µ
Qn (ζ) ≤ χ2

1,α

}
, (5.10)

where χ2
1,α denotes the α quantile of the χ2

1 distribution, and

Qn (ζ) ≡ 2n [L∗n − Ln (ζ)]

is the quasi likelihood ratio statistic, with L∗n ≡ max
ζ∈Υ

Ln (ζ) and

Ln (ζ) ≡
n∑
i=1

[ln pbiyi (xi; ζ)]

5See CCT for sufficient conditions for their procedure to provide asymptotically valid confidence intervals
for the identified set of parameter components ζk, each k. For coverage of the true parameter value ζk itself,
it may be possible to establish either weaker sufficient conditions or strictly smaller confidence intervals –
questions we leave open to future research.
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denoting the log-likelihood. Define the profile log-likelihood for ζk evaluated at any param-

eter value µ ∈ Υk as

PLk,n (µ) ≡ sup
ζ∈Υ:ζk=µ

Ln (ζ) , (5.11)

and the profile log-likelihood ratio statistic as

Qk,n (µ) ≡ inf
ζ∈Υ:ζk=µ

Qn (ζ) = 2n [L∗n − PLk,n (µ)] . (5.12)

In order to compare the empirical coverage frequencies of classical ML confidence inter-

vals to those of the identification robust confidence intervals M̂χ
α,k in each repetition of our

Monte Carlo simulations, we carried out the following steps. First, the R package Ghalanos

and Stefan (2015) was used to minimize −Ln (ζ) with respect to the full parameter vector

ζ, producing an optimizing vector ζ̂ML and an optimal value L∗n. To ensure accuracy 500

randomly generated starting values were employed using the function gosolnp.6 The opti-

mization routine also returned a numerical approximation to the Hessian at the optimal

value, and this was used to construct standard errors for the maximum likelihood estimator

ζ̂ML. There is no guarantee that ζ is point identified. If it is point identified confidence in-

tervals for each parameter component based on the usual asymptotic normal approximation

should be expected to perform well, but if it is not point identified the classical theory will

be invalid. Classical maximum likelihood confidence intervals for each component of ζ were

thus computed for the sake of comparison to M̂χ
α , as also suggested by CCT.

In Monte Carlo experiments where the true population parameter is known, the same

routine was also used to compute the maximum likelihood estimator taking the values of ρ

and σ fixed at their population values. In our application ρ and σ are not known, so this

approach is infeasible. However, with these parameters known, the rest of the parameters are

point identified under mild conditions on the variation in observable payoff shifters. Thus,

confidence intervals constructed using this ML estimator and the classical asymptotic normal

approximation should be expected to perform well, and in our Monte Carlo experiments this

was indeed the case. We refer to this as the “oracle ML” procedure in the results reported

below, whereas the maximum likelihood procedure treating ρ and σ as additional parameters

to estimate is referred to as “feasible ML”.

The steps described so far are sufficient to construct oracle ML and feasible ML con-

6In Monte Carlo simulations the population parameter value was also used as an additional starting
value. The number of randomly generated starting values was chosen based on experimentation; increasing
it further was not found to be beneficial.
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DGP 1 Realized Coverage Percent, n = 200, 500, 1000, 2000
Parameter Oracle ML Feasible ML Profile LRTS

γ1 99, 97, 98, 95 97, 95, 96, 96 96, 96, 96, 95
γ2 95, 96, 96, 92 95, 95, 96, 99 97, 96, 96, 99
δ1 94, 94, 93, 96 96, 91, 94, 94 97, 93, 95, 93
δ2 97, 94, 97, 94 95, 95, 93, 96 94, 94, 95, 96
β11 95, 97, 95, 95 94, 98, 98, 94 91, 98, 97, 95
β12 96, 98, 96, 94 96, 98, 94, 95 95, 97, 93, 95
β13 96, 97, 96, 95 95, 97, 97, 98 93, 97, 96, 96
β14 95, 96, 99, 93 95, 97, 97, 95 93, 96, 97, 95
β15 94, 98, 97, 96 94, 92, 96, 98 93, 92, 96, 97
β21 96, 97, 98, 95 93, 96, 95, 97 94, 97, 96, 97
β22 96, 96, 94, 97 97, 93, 96, 98 97, 95, 96, 97
β23 98, 96, 94, 96 98, 97, 92, 97 94, 96, 91, 97
β24 98, 93, 96, 99 96, 93, 94, 95 92, 94, 94, 94
β25 94, 96, 96, 96 90, 92, 93, 99 92, 93, 93, 98
ρ – 89, 93, 96, 96 94, 93, 95, 96
σ – 91, 96, 94, 96 90, 96, 94, 95

Table 1: Monte Carlo coverage frequencies out of 100 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP1, as described in the text.

fidence intervals for each ζk. This is done by taking each of the likelihood estimators for

ζk and adding and subtracting 1.96 times their respective standard errors. This makes it

easy to compute the empirical frequency with which these confidence intervals contain the

population ζk in Monte Carlo experiments. In order to compute Monte Carlo empirical

coverage frequencies of M̂χ
α,k for ζk in simulations, one also needs to compute PLk,n (ζk) and

then check whether Qk,n (µ) ≤ χ2
1,α in each simulation. A profile likelihood function was

computed, employing the solnp function from the package Ghalanos and Stefan (2015) to

compute supζ∈Υ:ζk=µ Ln (ζ).7

The empirical coverage frequency of the three different procedures for DGPs 1-3 out

of 100 Monte Carlo repetitions for each sample size are reported in Tables 1, 2, and 3.

The target coverage level in each case was 0.95. A first observation is that the Oracle ML

procedure that makes use of knowledge of ρ and σ – which are not known in practice –

does quite well across DGPs and sample sizes. This is not surprising. There are some cases

7In the constrained optimization conducted with solnp, the population value of ζ−k was used as a starting
value to speed up computations. In terms of coverage frequency for ζk, this was found to produce the same
results in a subset of the Monte Carlo iterations attempted when as many of 500 random starting values
were used.
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DGP 2 Realized Coverage Percent, n = 200, 500, 1000, 2000
Parameter Oracle ML Feasible ML Profile LRTS

γ1 93, 96, 91, 95 95, 96, 91, 96 93, 95, 92, 96
γ2 94, 94, 96, 98 88, 88, 93, 95 94, 89, 95, 95
δ1 93, 93, 95, 97 95, 93, 95, 97 90, 93, 95, 97
δ2 97, 93, 98, 95 88, 93, 95, 93 91, 91, 92, 92
β11 99, 95, 92, 95 93, 95, 92, 94 92, 95, 95, 93
β12 91, 97, 94, 96 94, 97, 93, 96 93, 96, 93, 96
β13 91, 94, 93, 97 92, 95, 95, 97 91, 95, 95, 97
β14 98, 96, 97, 96 98, 96, 94, 95 97, 95, 94, 96
β15 93, 93, 91, 94 90, 91, 93, 91 93, 93, 94, 93
β21 95, 95, 97, 94 89, 93, 92, 92 92, 95, 93, 93
β22 91, 96, 95, 96 83, 93, 91, 98 92, 95, 90, 95
β23 96, 95, 96, 96 95, 98, 96, 98 98, 97, 93, 98
β24 95, 96, 96, 98 89, 95, 91, 96 90, 96, 94, 96
β25 95, 95, 94, 95 88, 94, 92, 98 91, 95, 93, 98
ρ – 77, 83, 82, 95 84, 96, 93, 96
σ – 89, 93, 94, 95 95, 92, 93, 93

Table 2: Monte Carlo coverage frequencies out of 100 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP2, as described in the text.
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DGP 3 Realized Coverage Percent, n = 200, 500, 1000, 2000
Parameter Oracle ML Feasible ML Profile LRTS

γ1 96, 89, 90, 95 97, 94, 93, 98 97, 93, 93, 97
γ2 93, 98, 96, 92 86, 92, 93, 97 91, 91, 92, 96
δ1 96, 94, 96, 98 96, 93, 97, 98 95, 94, 98, 98
δ2 93, 97, 96, 90 83, 89, 92, 93 90, 92, 93, 94
β11 98, 94, 92, 98 96, 96, 92, 97 96, 95, 91, 97
β12 93, 97, 90, 96 95, 98, 92, 95 92, 97, 92, 95
β13 93, 91, 94, 97 95, 94, 95, 96 93, 93, 95, 96
β14 99, 95, 95, 95 99, 95, 96, 94 98, 95, 96, 93
β15 96, 96, 97, 96 92, 96, 95, 93 92, 97, 95, 92
β21 93, 96, 96, 90 91, 94, 92, 94 96, 97, 92, 94
β22 95, 95, 95, 96 97, 95, 95, 96 96, 94, 95, 96
β23 96, 96, 95, 96 99, 97, 95, 99 98, 96, 94, 98
β24 94, 95, 92, 96 93, 98, 93, 98 94, 95, 95, 97
β25 93, 96, 94, 97 90, 90, 89, 95 93, 94, 91, 96
ρ – 78, 90, 92, 93 89, 93, 95, 92
σ – 85, 92, 92, 95 92, 91, 91, 93

Table 3: Monte Carlo coverage frequencies out of 100 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP3, as described in the text.
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in which the observed coverage frequencies are below 0.95, but with 14 parameters, three

DGPs, and four sample sizes comprising a total of 168 different reported empirical coverage

probabilities, some variation should be expected. The lowest coverage probability (which

occurred just once) was 0.89. As should be expected, feasible ML did not perform quite as

well, but it performed reasonably well at least in some cases. A second observation is that the

profile LRTS test, robust to a potential lack of point identification, also generally performs

well. Further, unlike the oracle ML procedure, it can be used in practice. A third observation

is that the feasible ML procedure does not always perform as well as the other two. For

DGP1 its performance is fine, but for DGP2 in some cases it substantially under-covers the

true parameter value. The degree of undercoverage seems to fall at larger sample sizes, but

even at n = 1000 the empirical coverage for ρ is only 0.82.8 On the other hand the LRTS

procedure does not exhibit nearly as severe degrees of undercoverage. In general the feasible

ML and LRTS procedures applied to DGP2 produce empirical coverage probabilities that

are quite close, i.e. within just two or three percent, except for the cases in which feasible

ML severely undercovers, in which case the LRTS procedure performs considerably better

with coverage closer to the nominal level than feasible ML. A similar observation holds up

for DGP3. It may very well be that parameters ρ and σ are not identified in all DGPs, but

we cannot say for sure.

In any case, CCT’s profile LRTS procedure performs adequately, and seemingly better

than confidence intervals using the classical asymptotically normal approximation of the

feasible ML procedure for two of the three DGPs considered. Moreover, as CCT point out,

their LRTS procedure is in fact asymptotically exact in point-identified regular models.

In the application carried out in the next section, our goal is not to compute an empirical

coverage frequency (which is indeed unknown since ζ is unknown), but rather to construct

confidence intervals by inverting the LRTS test to compute M̂χ
α,k as in (5.10). To do this

we first computed L∗n by maximizing the likelihood over all parameters, as described above.

Then the following steps were additionally carried out for each k = 1, ..., dim (ζ). First, the

profile log-likelihood PLk,n (µ) was computed on values of µ over a grid of values M. The

8It should be noted that in a handful of cases with n = 200 – specifically two, five, and two cases for
DGP1, DGP2, and DGP3, respectively – the Hessian produced by feasible ML was singluar. In these cases
standard errors were treated as infinite, so that feasible ML failed to reject the true parameter in all such
cases. That is, the reported results count these cases as covering the true parameter value, and even so
empirical coverage frequencies for many parameters are well below the nominal level. The oracle ML Hessian
was always positive definite, as was the feasible ML Hessian for sample sizes greater than 200.
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values

µ0 ≡ min
{
µ ∈M : Qk,n (µ) ≤ χ2

1,α

}
, µ0 ≡ max {µ ∈M : µ < µ0} ,

µ1 ≡ max
{
µ ∈M : Qk,n (µ) ≤ χ2

1,α

}
, µ1 ≡ min

{
µ ∈M : µ > µ1

}
,

were recorded. Here µ0 and µ1 are the lowest and greatest values of µ on the grid M that

pass the criterion Qk,n (µ) ≤ χ2
1,α required for µ ∈ M̂χ

α,k. The value µ0 is the next lowest

value to µ0 on M while µ1 is the next highest value to µ1 on the grid. Then a minimal

tolerance ε > 0 was set for the desired precision within which to compute each endpoint of

M̂χ
α,k and the following steps were iterated.

1. Set µ̃ ≡
(
µ0 + µ0

)
/2 the halfway point between µ0 and µ0. Compute PLk,n (µ̃).

2. If Qk,n (µ̃) ≤ χ2
1,α then set µ0 ≡ µ̃. Otherwise set µ0 ≡ µ̃.

3. If
∣∣∣µ0 − µ0

∣∣∣ > ε then return to step 1 and continue. Otherwise set the terminal value

µ0 ≡ µ0 and stop iterating.

Then the same steps were carried out for the upper bound of M̂χ
α,k by setting µ̃ ≡(

µ1 + µ1

)
/2 and replacing µ0 with µ1 and µ0 with µ1 in the subsequent step. Here we let

the terminal value be denoted µ1. When the procedure is done, µ0 and µ1 serve as lower and

upper bounds for M̂χ
α,k.

6 Application to Razor Blade Purchases

This section presents an application of the parametric model in Section 4 to the market for

women’s razor blades using consumer data from the United Kingdom in the early 2000s.

We use household purchase data from the Kantar Worldpanel. The data comprise repeated

observations of purchases made by a representative sample of U.K. households, obtained by

the use of a handheld scanner used to record all households grocery purchases at the UPC

level. Data on razor blade purchases is used for the years 2004 − 2005.9 In particular we

focus on consumers’ decisions to buy a double or triple blade cartridge from one of the two

leading razor blade brands in the UK, Gillette and Wilkinson Sword.

9Razor blades can be purchased in three forms: on disposable razors, on reusable razors sold with razor
blade cartridges, or as razor blades cartridges for use with a previously purchased handle.
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In our application, we consider households in which the primary shopper is a female

between the age of 18 and 50 years old, who was observed purchasing either blades for a

reusable non-electric women’s razor (which we refer to as “system blades”) or disposable

women’s razors. We focus on purchases of Gillette and Wilkinson Sword blades made in

the time period 2004− 2005.10 In each period it is assumed that consumers buy the brand-

quality combination that maximizes their utility. The outside alternative consists of all

those individuals observed buying a disposable razor blade in the period 2004 − 2005. The

total sample size consists of 4842 observations. Table 4 shows the observed market shares

of Gillette and Wilkinson Sword system blades and disposable razors, while Table 5 shows

the observed market shares for the years 2004-2005, conditional on buying either double or

triple blade cartridges from either brand.

Razor Blade Type Market Share

Gillette Blades 29.82%
Wilkinson Sword Blades 10.93%

Disposable Razors 59.25%

Table 4: Market shares for Gillette blades, Wilkinson Sword blades and disposable razors in
2004-2005.

Trading Company Blade Type Total
Double Blade Triple Blade

Gillette 17.74% 55.45% 73.19%
Wilkinson Sword 9.22% 17.59% 26.81%

Total 26.96% 73.04% 100.00%

Table 5: Market shares conditional on purchasing double or triple blade cartridges from
Gillette or Wilkinson Sword in 2004-2005.

The covariates used for each household are indicator variables for age of the shopper being

between each of 18-30, 31-40 and 41-50, indicator variables for marital status, employment

and the presence of more than one female in the household. Table 6 provides descriptive

statistics.

For each observation in the sample the brand-quality combination of blades purchased is

observed, in addition to the individual characteristics. For estimation we also make use of the

prices of the razor blade cartridges available to consumers. For the razor blade purchased,

10Consumers who switch to a new refillable razor will not be present in the sample at the time of the
switch, but they will appear the next time they buy cartridges for their handle.
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Age group Marital status Employment status Number of females

18-30 34.30% Married 61.83% Employed 70.76% One female 43.04%
31-40 40.75% Other 38.17% Unemployed 29.24% More than one 56.96%
41-50 24.95%

Table 6: Consumer Characteristics for 2004-2005.

we observe the total expenditure, w, as well as the pack size, v, and the number of packs, n,

of the purchased razor blades in a specific store, in a specific month for a specific brand and

quality level, in a specific pack size. The average per cartridge price of the purchased razor

blades, in a specific month and store, and for the specific brand, blade type and pack size,

is thus calculated by

pby =
wby
nbyvby

. (6.1)

We do not however directly observe the counterfactual price per cartridge faced by each

consumer for the razor blade types that they did not actually purchase. The counterfactual

prices were thus imputed using data on all cartridge purchases in 2004−2005. To do this we

estimated counterfactual prices pcby by using a best linear predictor of pby under two different

specifications:

pcbymsv = β0+1(B = 2)β2+1(Y = 3)β3+

24∑
m=1

1(M = m)βm+

15∑
s=1

1(S = s)βs+

3∑
v=1

1(V = v)βv+εbymsv,

(6.2)

pcbyms = β0 + 1(B = 2)β2 + 1(Y = 3)β3 +
24∑
m=1

1(M = m)βm +
15∑
s=1

1(S = s)βs + εbyms, (6.3)

where M = month, S = store, B = 2 corresponds to Wilkinson Sword, Y = 3 corresponds

to triple blade, and V = pack size, and the intercept corresponds to the price of a Gillette

double blade cartridge. The best linear predictors were computed using all purchases of

cartridges in our data from the 24 months spanning 2004 – 2005, 15 stores, and three different

pack sizes. To impute counterfactual prices, the best linear predictor pcbymsv was then matched

to each consumer according the actual month, store and (in the case of specification (6.2))

pack size purchased. Specification (6.2) was estimated using the average price per cartridge

in a fixed month, in a specific store, for a specific brand-quality combination in a fixed pack

size, while specification (6.3) estimates the counterfactual prices without conditioning on the

pack size. We chose to differentiate between the two specifications as not all the blade-types

and/or brands offer all pack sizes. For example, the double blade razor was only offered in a
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five cartridge pack. In order to deal with this, pack size was categorized according to small,

medium and large when specification (6.2) was used, see Appendix B for further details.

Tables 7 and 8 report point estimates obtained by maximum likelihood, conventional

maximum likelihood confidence intervals, and confidence intervals constructed as described

in Section 5.2 following CCT using specifications (6.2) and (6.3) for counterfactual prices.

Here by conventional confidence intervals, we mean that 1.96 standard errors obtained by

inverting the Hessian form of the asymptotic variance are added and subtracted from the ML

point estimate. When reported, the two different types of confidence intervals are found to be

quite close to each other, suggesting either the possibility of point identification, or that the

identified set is quite small. Note that the parameter vector point estimator reported here is

a maximizer of the log-likelihood. Given the dimension of the parameter space it cannot be

guaranteed with certainty that it is unique, and in any case this would not guarantee that

the population expected log-likelihood has a unique maximizer. Nonetheless, from Redner

(1981) we know that a point estimator defined as a maximizer of the log-likelihood will be

contained in the identified set with probability approaching one as n→∞.

The estimates and confidence intervals in Table 7 lead to several observations. The

coefficients γ1 and γ2 on the price charged for blades of both brands are positive, so that

utility is measured to be descreasing in price, although the coefficient on price for Gillette

cartidges (γ1) is considerably smaller than the coefficient for Wilkinson Sword cartridges

(γ2), even after scaling by the estimate of the standard deviation (σ2) of the unobservable

component of utility from a Wilkinson Sword purchase. The coefficient on the dummy

variables for both age groups 31-40 and 41-50 are negative, as are their associated confidence

intervals, with the exception of the coefficient on the 31-40 age group for Wilkinson Sword.

This indicates a lower utility of system blade purchases of these age groups relative to the

18-30 age group, as compared to the outside alternative. Likewise, the coefficient on the

more females indicator for either brand is found to be negative. Coefficients for employment

and married dummy variables are negative and statistically indistinguishable from zero for

both brands. The estimated correlation coefficient between brand-specific unobservables is

effectively one, indicating perfect correlation in preference for quality as reflected by blades

per cartridge across the two different brands.11 In this case the Hessian of the log-likelihood

computed at the maximizing parameter vector was found to be singular. The value of

ρ̂ indicates that the point estimate is on the boundary of the parameter space. Thus,

11Maximum likelihood produced an estimate for the correlation coefficient of 0.99999992, effectively indis-
tinguishable from 1.
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conventional maximum likelihood confidence intervals are not reported for this specification.

However, this does not preclude computation of CCT confidence intervals by inverting the

likelihood ratio statistic. The CCT confidence interval for ρ is very tightly concentrated

around 1.

Table 8 reports results obtained using specification (6.3) for counterfactual prices. The

estimate of the correlation coefficient ρ between brand-specific unobservables is again very

close to one, indicating near perfect correlation in preference for quality (blades per car-

tridge) across the two different brands. However, the likelihood-maximizing value of ρ was

slightly lower than was found using specification (6.3) for counterfactual prices. Moreover,

the Hessian was nonsingular, and consequently conventional maximum likelihood confidence

intervals for each parameter are reported alongside the CCT confidence intervals.12 The

point estimate for γ1, the price coefficient for Gillette, is negative, indicating that utility

is increasing in price, although its magnitude is small. The coefficient estimate on price

for Wilkinson Sword is positive, and statistically significantly different from zero, indicating

that utility from purchasing these products is decreasing in price. For the most part, the

signs of coefficient estimates and confidence intervals on other variables accord qualitatively

with those of the prior specification. Two slight exceptions are that although β2Age31−40

and β2married are again estimated to be negative, their associated confidence intervals now

lie fully below zero. The estimate of σ2 is slightly larger than it was using the previous

specification, but of similar magnitude.

12Small perturbations of ρ near the maximizing parameter vector were investigated and found to result in
a small decrease in the log-likelihood.
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Parameter ML Point Estimate CCT CI

γ1 0.0617 (-0.0380, 0.1737)
γ2 4.2788 (3.4006, 5.6788)
δ1 -0.202 (-0.2485, -0.2020)
δ2 -4.0525 (-5.3889, -3.3035)

β1Age31−40 -0.1566 (-0.2358, -0.0772)

β1Age41−50 -0.2264 (-0.3202, -0.1323)

β1Married -0.0444 (-0.1092, 0.0202)
β1Employed -0.0382 (-0.1072, 0.0320)

β1Females -0.2236 (-0.2920, -0.1559)
β2Age31−40 -0.2392 (-0.4837, 0.0042)

β2Age41−50 -0.3644 (-0.6418, -0.0868)

β2Married -0.1864 (-0.3953, 0.0128)
β2Employed -0.1157 (-0.3316, 0.0915)

β2Females -0.6098 (-0.8768, -0.4080)
ρ 1.0000 (0.9994, 1.0000)
σ2 2.6941 (2.3474, 3.3302)

Table 7: 95% confidence intervals with prices as specified in (6.2).

Parameter ML Point Estimate Conventional CI CCT CI

γ1 -0.0643 (-0.1274, -0.0013) (-0.1157, -0.0036)
γ2 2.6258 (2.3479, 2.9037) (2.3449, 2.9131)
δ1 -0.1650 (-0.1862, -0.1438) (-0.1850, -0.1467)
δ2 -2.5891 (-2.7832, -2.3951) (-2.7805, -2.3872)

β1Age31−40 -0.1595 (-0.2378, -0.0813) (-0.2369, -0.0822)

β1Age41−50 -0.2162 (-0.3079, -0.1246) (-0.3087, -0.1240)

β1Married -0.0814 (-0.1435, -0.0194) (-0.1435, -0.01923)
β1Employed -0.0585 (-0.1321, 0.0152) (-0.1266, 0.0098)

β1Females -0.2378 (-0.3085, -0.1670) (-0.3045,-0.1710)
β2Age31−40 -0.3057 (-0.4779, -0.1335) (-0.4763, -0.1361)

β2Age41−50 -0.4181 (-0.6207, -0.2154) (-0.6209, -0.2171)

β2Married -0.1937 (-0.3342, -0.0532) (-0.3319 ,-0.0553)
β2Employed -0.1126 (-0.2741, 0.0488) (-0.262 ,0.0369)

β2Females -0.5249 (-0.6796, -0.3702) (-0.6719, -0.3800)
ρ 0.9998 (0.9996, 1.0000) (0.9996, 1.0000)
σ2 2.1580 (2.0505, 2.2655) (2.0334, 2.2734)

Table 8: 95% confidence intervals with prices as specified in (6.3).

7 Conclusion

In this paper we proposed a new discrete choice model for partially ordered alternatives,

applicable when discrete choices are differentiated along both vertical and horizontal dimen-
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sions. We provided a general characterization of the identified set of structures admitted

by the model under mild shape restrictions. We further showed that with some additional

restrictions, such as the parametric restrictions in Section 4, characterization of the iden-

tified set can be further simplified. General conditions under which such sets reduce to

a singleton set are not easily obtained, but inference methods robust to the possibility of

set identification can be used. This was demonstrated using a recently developed method

for inference by Chen, Christensen, and Tamer (2018), which was found to perform well in

Monte Carlo simulations. An empirical illustration was provided using data on razor blade

cartridge purchases in the United Kingdom, a setting that features two dominant competing

firms with vertically differentiated products.
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A Proofs

Proof of Proposition 1. First consider any (u0, G0) ∈ S0 (X ). By the same argument as

when there is point identification we have for almost every x ∈ X ,

E [lnG0 (VBY (x;u0)) |x] ≥ E [lnG (VBY (x;u)) |x] (A.1)

for all (u,G) ∈ S. Thus S0 (X ) is contained in the set of maximizers of Q (u,G). Consider

now
(
ũ, G̃

)
/∈ S0 (X ). Then for some (b, y) ∈ Y × B there exists a positive measure set

X ∗
(
ũ, G̃

)
as defined in (3.3) on which G̃ (Vby (x; ũ)) 6= G0 (VBY (x;u0)) = f 0

x (b, y) for at

least one (b, y) pair. We therefore have

∀x ∈ X ∗
(
ũ, G̃

)
, E [lnG0 (VBY (x;u0)) |x] > E

[
ln G̃ (VBY (x; ũ)) |x

]
.

Combining this with (A.1) it follows that Q (u0, G0) > Q
(
ũ, G̃

)
, completing the proof. �

Proof of Theorem 1. From the utility maximization hypothesis, (b, y) is chosen if and only

if it maximizes u (b, y, x, vb). This is so if and only (i) (b, y) provides higher utility than that

delivered by all within brand options {u (b, ỹ, x, vb) : ỹ 6= y}, and (ii) (b, y) provides higher

utility than that delivered by all alternative brand options
{
u
(
b̃, ỹ, x, vb̃

)
:
(
b̃, ỹ
)
6= (b, y)

}
.

Condition (i) requires that y maximizes u (b, ·, x, vb) for the stated brand b, that is Y ∗b = y.

Given the single-crossing property of Restriction A6(iii) we can apply Theorem 4 of Milgrom
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and Shannon (1994), implying that Y ∗b is nondecreasing in vb. It follows that for each

y ∈ {0, ..., ȳb + 1}, there is a nondecreasing sequence of thresholds {gb (y) : y = (0, ..., ȳb + 1)}
such that Y ∗b = y if and only if vb ∈ [gb (y) , gb (y + 1)), where possibly gb (y) = gb (y + 1) if

alternative (b, y) is never chosen. That gb (0) ≡ −∞ and gb (ȳb) ≡ ∞ follows from y = 0 and

ȳb being the lowest and highest feasible values of y.

Condition (ii) stems from Restriction A6(ii), strict monotonicity of u (b, y, x, vb) in vb for

each b. The consumer will choose brand b if and only if for any other brand d, the utility

from choosing (b, Y ∗b ) exceeds that from choosing (d, Y ∗d ), that is if

u (b, Y ∗b , x, vb) > max
y∈Yd

u (d, y, x, vd) , if b < d,

u (b, Y ∗b , x, vb) ≥ max
y∈Yd

u (d, y, x, vd) , if b > d.

By A6(ii) it follows that

u∗d (x, vd) ≡ max
y∈Yd

u (d, y, x, vd)

is strictly monotonic and hence invertible in vd. Therefore the above inequalities can be

written as

gd {u (b, Y ∗b , x, vb) ;x} > vd, if b < d,

gd {u (b, Y ∗b , x, vb) ;x} ≥ vd, if b > d,

where gd (·;x) denotes the inverse of u∗d (x, vd) with respect to vd, i.e. for any (x, vd),

gd (u∗d (x, vd) ;x) = vd.

Then we have the inequalities (3.6) and (3.7) with

hbd (y) ≡ gd {u (b, Y ∗b , x, vb) ;x} ,

for each pair b 6= d. The integral (3.4) for the conditional choice probabilities then follows

immediately from their definition pby (x;S) ≡ G (Vby (x;u)) . �

Proof of Theorem 2. It is straightforward to verify that the function

h (v, θ) ≡ g (v) 1 [v ∈ Vby (x; θ)]

is log-concave in (v, θ). This follows from log-concavity of g (v) and log-concavity of 1 [v ∈ Vby (x; θ)]
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in (v, θ), which is easy to establish given Vby (x; θ) comprises a system of linear inequalities

in (v, θ). By Theorem 6 of Prekopa (1973) it then follows that

∫
R|B|

h (v, θ) dv

is log-concave in θ and concavity of L (θ,G) follows. �

Proof of Theorem 3. Let θ̃ 6= θ and for each b ∈ {1, 2} let δb ≡ (αb1, β
′
b)
′

and δ̃b ≡(
α̃b1, β̃

′
b

)′
. Identification of δ1 and δ2 follows directly from Aradillas-Lopez and Rosen (2014)

Theorem 2. We provide the steps for completeness. Define the sets

S+
b ≡

{
z : z1

(
δ̃1 − δ1

)
> 0 ∧ z2

(
δ̃2 − δ2

)
≥ 0
}

,

S−b ≡
{
z : z1

(
δ̃1 − δ1

)
< 0 ∧ z2

(
δ̃2 − δ2

)
≤ 0
}

.

For any z ∈ S+
b we have that

Φ2

(
z1δ̃1, z2δ̃2; Σ

)
> Φ2 (z1δ1, z2δ2; Σ) = f 0

x (0) , (A.2)

and likewise for any z ∈ S−b ,

Φ2

(
z1δ̃1, z2δ̃2; Σ

)
< Φ2 (z1δ1, z2δ2; Σ) = f 0

x (0) , (A.3)

where Φ2 denotes the cumulative distribution of a mean zero bivariate normal random

variable with variance Σ, and where f 0
x (0) = P {Y = 0|X = x}. The probability that

Z ∈ Sb ≡ S+
b ∪ S

−
b is

P {Z ∈ Sb} = P
{
Z ∈ S+

b

}
+ P

{
Z ∈ S−b

}
=

 P
{
Z2

(
δ̃2 − δ2

)
≥ 0|Z1

(
δ̃1 − δ1

)
> 0
}
P
{
Z1

(
δ̃1 − δ1

)
> 0
}

+P
{
Z2

(
δ̃2 − δ2

)
≤ 0|Z1

(
δ̃1 − δ1

)
< 0
}
P
{
Z1

(
δ̃1 − δ1

)
< 0
}  .

Both P
{
Z1

(
δ̃1 − δ1

)
> 0
}

and P
{
Z1

(
δ̃1 − δ1

)
< 0
}

are strictly positive by condition (i),

and at least one of P
{
Z2

(
δ̃2 − δ2

)
≥ 0|Z1

(
δ̃1 − δ1

)
> 0
}

and P
{
Z2

(
δ̃2 − δ2

)
≤ 0|Z1

(
δ̃1 − δ1

)
< 0
}

must be strictly positive by condition (ii). Therefore P {Z ∈ Sb} > 0, implying that δ̃ is

observationally distinct from δ since for each z ∈ Sb, f
0
x (0) 6= Φ2

(
z1δ̃1, z2δ̃2; Σ

)
. Thus

41



δ1 = (α11, β
′
1)
′

and δ2 = (α21, β
′
2)
′

are identified.

Given identification of (δ1, δ2), it is now straightforward to show that (α12, α22) are

identified. Identification of (δ1, δ2) implies that in order for θ̃ and θ to be observation-

ally equivalent, we must have
(
α̃11, α̃21, β̃1, β̃2

)
= (α11, α21, β1, β2). Suppose however that

α12 > α̃12. Then, if p12 (x; θ,Σ) = p12

(
x; θ̃,Σ

)
we must have that α22 > α̃22, as other-

wise p12 (x; θ,Σ) < p12

(
x; θ̃,Σ

)
. But α12 > α̃12 and α22 > α̃22 together then imply that

p21 (x; θ,Σ) > p21

(
x; θ̃,Σ

)
since the utility of choice (b, y) = (2, 1) is the same for both θ̃

and θ, but the utility of (b, y) = (1, 2) or (b, y) = (2, 2) is smaller at θ than at θ̃. �

Before proving Proposition 2, the following Lemma is first proven.

Lemma 1 When ȳb = 2 for each b, then (5.3) can be simplified to

hby (x, v, θ) = 1
[
vb < z∗by

]
m−by (x, z, θ) + 1

[
vb ≥ z∗by

]
m+
by (x, z, θ) , (A.4)

where

m−by (x, vb, θ) ≡ y (xbβb + vb) + αd1 − αby − xdβd, (A.5)

m+
by (x, vb, θ) ≡

1

2
[y (xbβb + vb) + αd2 − αby]− xdβd, (A.6)

Proof. Since ȳb = 2, (5.3) simplifies to

hby (x, v, θ) = min
ỹ∈{1,...,ȳd}

1

ỹ
[y (xbβb + vb)− (αby − αdỹ)]− xdβd (A.7)

= min
{
m−by (x, vb, θ) ,m

+
by (x, vb, θ)

}
. (A.8)

Bothm−by (x, z, θ) andm+
by (x, z, θ) are linear and strictly increasing in vb. Settingm−by (x, vb, θ) =

m+
by (x, vb, θ) reveals that the two functions are equal at

vb = z∗by ≡
αd2 + αby − 2αd1

y
− xbβb,

and since m−by (x, vb, θ) has a larger slope with respect to vb, it follows that for all vb < z∗by,

m−by (x, vb, θ) < m+
by (x, vb, θ), while for all vb > z∗by, m

−
by (x, vb, θ) > m+

by (x, vb, θ). Thus (A.8)

simplifies to (A.4), completing the proof. �
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Proof of Proposition 2. The starting point is (5.4):

pby (x, θ) =
1

σb

λb,y+1∫
λb,y

Φ

(
hby (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz,

which is broken into three cases, depending on whether z∗by lies below, inside, or above the

interval [λb,y, λb,y+1] on which the integral is to be evaluated.

1. λb,y < z∗by < λb,y+1.

pby (x, θ) = σ−1
b

z∗by∫
λb,y

Φ

(
m−by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz+σ−1

b

λb,y+1∫
z∗by

Φ

(
m+
by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
(A.9)

2. λb,y ≤ λb,y+1 ≤ z∗by.

pby (x, θ) = σ−1
b

λb,y+1∫
λb,y

Φ

(
m−by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz (A.10)

3. z∗by ≤ λb,y ≤ λb,y+1.

pby (x, θ) = σ−1
b

λb,y+1∫
λb,y

Φ

(
m+
by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz (A.11)

The expressions in each case simplify as follows, using (A.5) and (A.6) and a change of

variables substitution for z
σb

.

σ−1
b

z∗by∫
λb,y

Φ

(
m−by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz

=

σbz
∗
by∫

σbλb,y

Φ

(
yxbβb + αd1 − αby − xdβd + (σby − ρσd) z

σd
√

1− ρ2

)
φ (z) dz (A.12)
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σ−1
b

λb,y+1∫
z∗by

Φ

(
m+
by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)

=

σbλb,y+1∫
σbz
∗
by

Φ

(
1
2

[yxbβb + αd2 − αby]− xdβd +
(

1
2
σby − ρσd

)
z

σd
√

1− ρ2

)
φ (z) dz. (A.13)

σ−1
b

λb,y+1∫
λb,y

Φ

(
m−by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz

=

σbλb,y+1∫
σbλb,y

Φ

(
yxbβb + αd1 − αby − xdβd + (σby − ρσd) z

σd
√

1− ρ2

)
φ (z) dz (A.14)

σ−1
b

λb,y+1∫
λb,y

Φ

(
m+
by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz

=

σbλb,y+1∫
σbλb,y

Φ

(
1
2

[yxβb + αd2 − αby]− xdβd +
(

1
2
σby − ρσd

)
z

σd
√

1− ρ2

)
φ (z) dz (A.15)

Page 403 of Owen (1980) gives as formula 10,010.4:

k∫
h

Φ (c1 + c2z)φ (z) dz = Λ (k, c1, c2)− Λ (h, c1, c2) (A.16)

where the function Λ (·, ·, ·) is given by

Λ (k, c1, c2) =

c1√
c22+1∫

−∞

φ (z) Φ

(
k
√
c2

2 + 1 + c2z

)
dz. (A.17)
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Formula 10,010.1 on page 402 of Owen (1980) is

y∫
−∞

φ (z) Φ (a+ bz) dz = Φ2

(
a√

1 + b2
, y;

−b√
1 + b2

)
. (A.18)

Applying this formula to (A.17) with

a = k
√
c2

2 + 1, b = c2

gives

Λ (k, c1, c2) = Φ2

(
k,

c1√
c2

2 + 1
;
−c2√
1 + c2

2

)
.

Define now

c−1 ≡ yxbβb + αd1 − αby − xdβd
σd
√

1− ρ2
, c−2 ≡

σby − ρσd
σd
√

1− ρ2
,

c+
1 ≡ yxbβb + αd2 − αby − 2xdβd

2σd
√

1− ρ2
, c+

2 ≡
σby − 2ρσd

2σd
√

1− ρ2
.

as well as

∆̃ (h, k, c1, c2) ≡ Λ (k, c1, c2)− Λ (h, c1, c2) .

Referring back to (A.16), substitution of c2 with those coefficients multiplying z and substi-

tution of c1 with those terms not multiplying z in the integrands on the rights hand side of

(A.12) - (A.15) combined with (A.9) - (A.11) gives the following expression for conditional

choice probabilities according to where z∗by lies with respect to the interval [λb,y, λb,y+1].

1. λb,y < z∗by < λb,y+1.

pby (x, θ) = σ−1
b



z∗by∫
λb,y

Φ

(
m−by(x,z,θ)−ρσd

σb
z

σd
√

1−ρ2

)
φ
(
z
σb

)
dz

+

λb,y+1∫
z∗by

Φ

(
m+
by(x,z,θ)−ρσd

σb
z

σd
√

1−ρ2

)
φ
(
z
σb

)


= ∆̃

(
σ−1
b λb,y, σ

−1
b z∗by, c

−
1 , c

−
2

)
+ ∆̃

(
σ−1
b z∗by, σ

−1
b λb,y+1, c

+
1 , c

+
2

)
.
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2. λb,y ≤ λb,y+1 ≤ z∗by.

pby (x, θ) = σ−1
b

λb,y+1∫
λb,y

Φ

(
m−by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz

= ∆̃
(
σ−1
b λb,y, σ

−1
b λb,y+1, c

−
1 , c

−
2

)
.

3. z∗by ≤ λb,y ≤ λb,y+1.

pby (x, θ) = σ−1
b

λb,y+1∫
λb,y

Φ

(
m+
by (x, z, θ)− ρσd

σb
z

σd
√

1− ρ2

)
φ

(
z

σb

)
dz

= ∆̃
(
σ−1
b λb,y, σ

−1
b λb,y+1, c

+
1 , c

+
2

)
.

Using indicators for whether z∗by < λb,y+1 and z∗by > λb,y to cover each of these cases gives

pby (x, θ) =

(
1
[
z∗by < λb,y+1

]
∆̃
(
σ−1
b max

{
z∗by, λb,y

}
, σ−1

b λb,y+1, c
+
1 , c

+
2

)
+1
[
z∗by > λb,y

]
∆̃
(
σ−1
b λb,y, σ

−1
b min

{
z∗by, λb,y+1

}
, c−1 , c

−
2

) ) . (A.19)

This produces (5.5) by noting that that variables defined in (5.7) and (5.8) satisfy

m+
1 =

c+
1√(

c+
2

)2
+ 1

, m+
2 = − c+

2√(
c+

2

)2
+ 1

,

m−1 =
c−1√(
c−2
)2

+ 1
, m−2 = − c−2√(

c−2
)2

+ 1
,

from which it follows that pby (x, θ) in (A.19) is equal to (5.5) in the statement of the Theorem

for each b and y ∈ {1, 2}.

B Data

In the application in Section 6 we used data on purchases of women’s razor blades for the

years 2004-2005 in the UK. The razor blade market is divided into three different sectors:

cartridges bought with a razor, cartridges bought alone, known as “system blades”, and

disposable razors. The original data consists of 7234 observations. Table 9 shows the market
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share of the three sectors in 2004-2005.

Sector Total

Bought with razor 16.80%
System blades 33.67%

Disposable razors 49.53%

Table 9: Market shares of the sectors Bought with razor, System blades and Disposable
razors in 2004-2005

For the application we concentrate on the market for system blades, where consumers buy

a set of cartridges to use with an already existing handle. We define the outside option as

buying a disposable blade. Disposable blades are on average sold at a cheaper price relative

to reusable cartridges, which can indicate that conditional on the blade type, disposable

razors are considered of lower quality. On average in our sample and using equation (6.1),

double blade disposable razors cost £0.26 and a triple blade razors cost £0.63. For system

blades a double blade cartridge costs £0.79 and a triple blade cartridge costs £1.45, on

average.13

The market for reusable razors is dominated by two firms, Gillette and Wilkinson Sword,

each offering razors and cartridges with two or three blades.14 Gillette’s double blade reusable

razor model, Sensor, was introduced in 1992 and the triple blade reusable razor model, Venus,

was introduced in 2001. Wilkinson Sword introduced its double blade reusable razor, Lady

Protector, in 1994, while its triple blade reusable model, Intuition, was introduced in 2003.

We use observations in which the main shopper of the household is a female between

18-50 years old who is active in the labor force. This includes women who work full time,

work part time, are unemployed or not working, or in full time education.15 In the analysis

we also include the marital status of the main shopper, and a variable indicating whether

there is more than one female in the household. Table 10 gives summary statistics of the

main shopper characteristics.

For each individual in the sample we observe whether they purchased cartridges for

reusable razors or disposable razors and the type of blade they bought, as well as the total

13According to Gillette, Venus disposable razors are for one-time or limited use and in general last between
three to ten shaves, while reusuable razor cartridges typically last five to ten shaves, and are also environmen-
tally friendlier (source: www.gillettevenus.com/en-us/womens-shaving-guide/learning-to-shave/disposable-
razors-vs-refillable-razors/)

14Some stores offer own-label reusable razors but these were dropped from the sample as they accounted
for only 4.41% of the market share for system blades.

15Retired individuals were excluded from the sample.
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Employment status Marital status No of females

Works more than 30 hours 39.20% Married 61.83% One female 43.04%
Works 8-29 hours 29.18% Single 38.17% More than one 56.96%

Works less than 8 hours 2.38%
Unemployed/not working 28.13%

Full time education 1.12%

Table 10: Main shopper characteristics for 2004-2005.

amount they spent, the pack size of the product they bought, the month they made the

purchase, and the store in which the purchase was made. As shown in Tables 11 and 12 ,

cartridges of system blades were offered in pack sizes of 3-8 cartridges, with double blade

cartridges only offered in a pack size of 5. In the calculation of the average price in equation

(6.1) and of the counterfactual prices in equation (6.2) the pack sizes were redefined as small

(S) if they contained 3 or 4 cartidges, medium (M) if they contained 5 or 6 cartridges, and

large (L) if they contained 8 or more cartridges.

Pack size System Blades Disposables
Double Blade Triple Blade Gillette Wilkinson Sword

3 22.00% 59.92% 0.10%
4 72.80% 72.65% 23.74%
5 100.00% 24.24% 34.40% 43.67%
6 3.05% 0.97% 5.67% 3.62%
8 2.15% 2.15% 13.21%

more than 8 15.65%

Table 11: Pack sizes offered.

Pack size System Blades Total

S 69.23% 42.34%
M 29.19% 39.92%
L 1.57% 17.74%

Table 12: Pack size grouping.

The counterfactual prices in equations (6.2) and (6.3) were calculated both conditioning

and not conditioning on the pack size of the product purchased, respectively. As is evident

from Table 11 not all blade types and not all brands offer all pack sizes. Table 14 gives the

estimates of regressions (6.2) and (6.3). For the calculation of the average price in equation

(6.1) and of the counterfactual prices in equations (6.2) and (6.3), the individual shops were

grouped using the company groups in Table 13.
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Company group Total

Asda 22.24%
Boots 8.57%
Co-op 0.48%

Kwiksave 0.56%
Morrisons 7.95%
Safeway 1.47%

Sainsbury 7.97%
Savacentre 0.64%
Somerfield 0.91%
Superdrug 3.90%

Tesco 25.20%
Waitrose 0.33%
Wilkinson 13.78%

Default 3.61%
All other 2.40%

Table 13: Company groups of stores observed.

Specification (6.2) Specification (6.3)
Wilkinson Sword 0.4048*** 0.3961***

(0.008) (0.0081)
Triple blade 0.5043*** 0.6948***

(0.024) (0.0082)
Medium pack size -0.1988***

(0.0236)
Large pack size -0.0205

(0.0277)
Constant 0.7385*** 0.5456***

(0.0429) (0.037)

Notes: Monthly and store dummies are suppressed. Standard
errors are reported in parentheses. *** denotes significance at
1%.

Table 14: OLS Regression Estimates of regressions (6.2) and (6.3)
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