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Abstract

Long-term nominal interest rates are known to be highly sensitive to high-frequency (daily or
monthly) movements in short-term rates. We find that, since 2000, this high-frequency sensitivity has
grown even stronger in U.S. data. By contrast, the association between low-frequency changes (at 6-
or 12-month horizons) in long- and short-term rates, which was also strong before 2000, has weakened
substantially. This puzzling post-2000 pattern arises because increases in short rates temporarily
raise the term premium component of long-term yields, leading long rates to temporarily overreact to
changes in short rates. The frequency-dependent excess sensitivity of long-term rates that we observe
in recent years is best understood using a model in which (i) declines in short rates trigger “rate-
amplifying” shifts in investor demand for long-term bonds and (ii) the arbitrage response to these
demand shifts is slow. We study, both theoretically and empirically, how such rate-amplifying demand
can be traced to mortgage refinancing activity, investors who overextrapolate recent changes in short
rates, and investors who “reach for yield” when short rates fall. We discuss the implications of our
findings for the validity of event-study methodologies and for the transmission of monetary policy.
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The sensitivity of long-term interest rates to movements in short-term rates is a central feature of

the term structure and is thought to play a crucial role in the transmission of monetary policy. Short-

term nominal interest rates are determined by current monetary policy and its near-term expected path.

Shocks to monetary policy and the macroeconomy are generally thought to be short-lived, so long-

term rates should not be highly sensitive to changes in short rates if the expectations hypothesis holds

(Shiller, 1979). However, a large literature demonstrates that long-term nominal rates are far more

sensitive to high-frequency changes in short rates than is predicted by this standard view (Shiller et al.,

1983; Cochrane and Piazzesi, 2002; Gürkaynak et al., 2005; Giglio and Kelly, 2018), implying either the

existence of surprisingly persistent shocks to short rates and/or “excess sensitivity” of long-term rates

when judged relative to an expectations-hypothesis baseline. Despite its importance for monetary policy,

the deeper forces underpinning this puzzling degree of high-frequency sensitivity—and the extent to which

it has evolved over time—remain poorly understood.

This paper provides new evidence that, in the past two decades, the sensitivity of long-term rates

has grown even stronger at high-frequencies, but has weakened substantially at lower frequencies. This

puzzling post-2000 pattern arises because increases in short rates temporarily raise the term premium

component of long-term bond yields, leading long rates to temporarily overreact to changes in short rates.

We argue that this short-lived excess sensitivity arises because changes in short-term rates induce non-

standard shifts in investor demand for long-term bonds—stemming from a combination of institutional

and psychological factors—that amplify the impact of changes in short rates relative to the expectations-

hypothesis. We study, both theoretically and empirically, how such “rate-amplifying” demand shocks

can arise through three distinct channels: mortgage refinancing activity, investors who overextrapolate

recent changes in short-term rates, and investors who “reach for yield” when short rates decline.

We begin by documenting an important and previously unrecognized fact about the term structure

of nominal interest rates: since 2000, the sensitivity of long-term yields to changes in short-term rates

has become highly frequency-dependent. Prior to 2000, the sensitivity of long yields to changes in short

rates was similarly strong at high and low frequencies. However, since 2000, the association between

high-frequency changes (at daily or 1-month horizons) in long- and short-term rates has strengthened

even further. By contrast, the relationship between low-frequency changes (at 6- or 12-month horizons)

has weakened substantially since 2000.1 Concretely, between 1971 and 1999, a daily regression of changes

in 10-year U.S. Treasury yields on changes in 1-year yields delivers a coefficient of 0.56; and the analogous

regression using 12-month changes gives nearly the same coefficient. But, between 2000 and 2019, the

coefficient from the daily regression jumps to 0.87, while the coefficient from the corresponding 12-month

regression drops to just 0.23. Figure 1, which plots the sensitivity of 10-year yields to changes in 1-year

yields as a function of horizon in both the pre-2000 and post-2000 samples, summarizes this key finding.

This pattern is not specific to the U.S.: we find similar results for Canada, Germany, and the U.K.

What explains this puzzling post-2000 tendency of short- and long-term rates to move together at

high frequencies but not at low frequencies? As a matter of statistical description, we show that this

pattern arises because, all else equal, past increases in short rates predict a subsequent flattening of the

yield curve—and subsequent declines in long-term yields and forward rates—in the post-2000 data. More

1We do not mean to argue that there was a discrete change in the underlying data-generating process around 2000.
Instead, our reading of the evidence is that the underlying data-generating process has changed gradually over time.
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formally, yield-curve dynamics have become “path-dependent” or “non-Markovian” since 2000. Loosely

speaking, to form the best forecast of future bond yields and returns, it is not enough to know the current

shape of the yield curve: one also needs to know how the yield curve has shifted in recent months.

These predictable reversals in long-term rates are linked to a new form of short-lived bond return

predictability: since 2000, the expected returns on long-term bonds (in excess of those on short-term

bonds) are temporarily elevated following increases in short rates. Thus, relative to an expectations-

hypothesis baseline, long rates temporarily overreact to changes in short rates, exhibiting what Mankiw

and Summers (1984) dubbed “excess sensitivity.” For instance, in the post-2000 data, we estimate that

10-year yields rise by 66 basis points in response to a 100 bps monthly increase in 1-year yields. Over the

next 6 months, 10-year yields are expected to fall by 36 bps, reversing over half of the initial response.

What deeper forces underpin the evolving sensitivity of long-term yields to movements in short rates?

Gürkaynak et al. (2005) note that the strong sensitivity of long-term nominal rates could be consis-

tent with the expectations hypothesis if one adopts the view that long-run inflation expectations are

unanchored and are continuously being updated in light of incoming news—i.e., if one allows for highly

persistent shocks to expected inflation. We argue that the narrative in Gürkaynak et al. (2005) is a

good explanation for the high degree of sensitivity observed prior to 2000. Indeed, consistent with the

expectations-hypothesis logic of their explanation, in the pre-2000 data, we find no evidence that the

reaction of long yields to movements in short rates tends to reverse predictably.

However, in the post-2000 period, the strong high-frequency sensitivity of long-term nominal rates

primarily reflects the sensitivity of long-term real rates to nominal short rates, rather than the sensitivity

of break-even inflation (Beechey and Wright, 2009; Hanson and Stein, 2015; Abrahams et al., 2016). To

the extent that one shares the widespread view that expected future real rates at distant horizons do not

fluctuate meaningfully at high frequencies (see Gürkaynak et al., 2005), this makes it hard to square the

strong high-frequency sensitivity of long rates since 2000 with expectations-hypothesis logic. To resolve

this puzzle, Hanson and Stein (2015) argue that the strong post-2000 sensitivity works through the term

premium component of long-term yields: shocks to short rates move term premia in the same direction.

Consistent with this view, we find strong evidence that the reaction of long-term yields to movements

in short rates tends to predictably reverse in the post-2000 data, giving rise to short-lived shifts in the

expected returns to holding long-term bonds.

So, how can we best understand our key empirical finding that, in recent decades, the sensitivity of

long-term yields to changes in short rates declines steeply in the horizon over which these changes are

computed? Because this finding reflects a form of short-lived bond return predictability, the most natural

explanations involve temporary supply-and-demand imbalances in less-than-perfect financial markets

(Grossman and Miller (1988) and Duffie (2010)). Therefore, we develop a model that emphasizes the role

of what we call “rate-amplifying” shocks to the supply-and-demand for long-term bonds.

In our model, risk-averse bond arbitrageurs can either invest in short- or long-term nominal bonds.

While monetary policy pins down the interest rate on short-term nominal bonds, long-term bonds are

available in a net supply that varies randomly over time. This net supply, which arbitrageurs must hold

in equilibrium, equals the gross supply of long-term bonds net of the amount inelastically demanded by

other, non-arbitrageur investors. To induce risk-averse arbitrageurs to absorb an increase in net supply

of long-term bonds, the expected return on long-term bonds in excess of that on short-term bonds must
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rise as in Greenwood and Vayanos (2014) and Vayanos and Vila (2020), thereby lifting the term premium

component of long-term bonds yields. The key friction in these models—which has proved invaluable in

understanding the effect of Quantitative Easing policies—stems from the limited risk-bearing capacity of

the specialized fixed-income arbitrageurs who must absorb shocks to the net supply of long-term bonds.

Consistent with Gurkaynak et al. (2005), we assume there was a large persistent component of short-

term nominal rates before 2000, reflecting shocks to trend inflation as in Stock and Watson (2007). The

existence of this highly persistent component in combination with expectations-hypothesis logic, explains

the strong sensitivity of long rates at both high and low frequencies before 2000. In the post-2000 period,

the volatility of this persistent component of short rates has dropped sharply. From an expectations-

hypothesis perspective, this should have reduced the sensitivity of long rates at all frequencies. In the

data, this occurs at low frequencies, but we see greater-than-ever sensitivity at high frequencies.

The key contribution of our model is to explain how such frequency-dependent sensitivity arises in

the post-2000 data. Our explanation rests on two key ingredients: (i) “rate-amplifying” shifts in the

supply or demand for long-term bonds that move term premia in the same direction as short-term rates

and (ii) and slow-moving arbitrage capital. The first key ingredient is our assumption that shocks to

the net supply of long-term bonds are positively correlated with shocks to short rates. This can either

be because increases in short rates are associated with increases in the gross supply of long-term bonds

or with non-standard reductions in the demand of other, non-arbitrageur investors for long-term bonds.

This assumption implies that increases in short rates are associated with increases in the term premium

component of long-term rates, generating “excess sensitivity” relative to the expectations hypothesis.

This reduced-form assumption is consistent with several distinct amplification mechanisms that we detail

below—each rooted in well-known institutional frictions and facets of investor psychology—that have

arguably grown in importance recent decades.2

The second key ingredient is that arbitrage capital is slow-moving as in Duffie (2010). As a result,

these rate-amplifying demand shocks encounter a short-run arbitrage demand curve that is steeper than

the long-run arbitrage demand curve, generating a short-lived imbalance in the market for long-term

bonds. This slow-moving capital dynamic implies that the shifts in term premia triggered by movements

in short rates are transitory. As a result, the excess sensitivity of long rates is greatest when measured at

high frequencies. Furthermore, we show that frequency-dependent excess sensitivity is most pronounced

when the underlying rate-amplifying demand shocks are themselves short-lived in nature. In summary,

the combination of rate-amplifying demand shocks and slow-moving arbitrage capital enables our model

to match the frequency-dependent sensitivity of long rates observed since 2000.

What are the key source of rate-amplifying demand that together explain why long-term yields tem-

porarily overreact to changes in short rates in the recent U.S. data? We explore three rate-amplification

channels that may help explain why increases in short rates to trigger temporary supply-and-demand

balances in the market for long-term bonds: (i) shifts in the effective gross supply of long-term bonds due

to mortgage refinancing waves (Hanson, 2014; Malkhozov et al., 2016), (ii) shifts in the demand for long-

term bonds from biased investors who overextrapolate recent changes in short rates (Giglio and Kelly,

2018; D’Arienzo, 2020), and (iii) shifts in the demand from investors who “reach for yield” when short

2Where it creates no confusion, we will simply refer to this collection of mechanisms as “rate-amplifying demand shocks”
even though it is most natural to think of some of these specific mechanism as operating on the supply-side of the market.
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rates fall (Hanson and Stein, 2015). For each channel, we first show how it can be used to microfound

rate-amplifying shocks to the net supply of long-term bonds similar to those we previously assumed in

reduced-form. Next, we discuss why the strength of each channel may have grown in recent decades: the

key underlying trend here is the increasing financialization of interest-rate risk. Finally, by looking at

the relationship between bond yields and different financial quantities, we empirically assess the extent

to which each channel contributes to the frequency-dependent sensitivity of long-term rates we observe

since 2000. Given the difficulties inherent in precise attribution, we believe that the primary contribution

of these empirical exercises is to rule in the general class of rate-amplifying mechanisms we emphasize.

That said, we find evidence that mortgage refinancing and investor overextrapolation both help explain

why long yields rates have temporarily overreacted to short rates since 2000 in the U.S. By contrast, we

find less evidence that reaching-for-yield plays an important role in driving our key empirical findings.

This paper contributes to the vast literature demonstrating that, contrary to the expectations hypoth-

esis, the expected excess returns on long-term bonds vary meaningfully over time. Seminal contributions

here include Fama and Bliss (1987), Campbell and Shiller (1991), and Cochrane and Piazzesi (2005). In

contrast to most of the existing literature on bond return predictability—which focuses on business-cycle

frequency variation in expected bond excess returns, our empirical findings point to a new, short-lived

form of bond return predictability that has emerged in recent decades.

Our findings have important implications for how economists should interpret event-study evidence

based on high-frequency changes in long-term bond yields. Macroeconomic news—including news about

monetary policy—comes out in a lumpy manner, and the short-run change in long-term yields around news

announcements is often used as a measure of the expected longer-run impact of news shocks. Nakamura

and Steinsson (2018) is a prominent recent example of this increasingly popular approach to identification

in macroeconomics.3 However, if, as we show, some of the impact of a news shock on long-term yields

tends to wear off quickly over time, then a shock’s short- and long-run impact will be quite different.

And, the event-study approach will necessarily capture only the short-run impact. For instance, it is

common for news announcements to cause large jumps in 10-year forward rates, but we show that a large

portion of these jumps are due to transient shifts in term premia. As a result, event-study methodologies

are likely to provide biased estimated of the longer-run impact of news on long-term yields.

Our results also have implications for monetary policy transmission. In the textbook New Keynesian

view (Gali, 2008), the central bank adjusts short-term nominal rates. This affects long-term rates via

the expectations hypothesis, which in turn influences aggregate demand. Stein (2013) points out that

the excess sensitivity of long-term yields—whereby shocks to short rates move term premia in the same

direction—should strengthen the effects of monetary policy relative to the textbook view. Stein (2013)

refers to this as the “recruitment” channel of monetary transmission. We find that the behavior of

interest rates does not conform to the textbook New Keynesian view in which term premia are constant.

Nonetheless, our findings suggest that the recruitment channel may not be as strong as Stein (2013)

speculates since a portion of the resulting shifts in term premia are transitory and, thus, likely to have

only modest effects on aggregate demand. We do not argue that there is no recruitment channel, just

that it is smaller than one might conclude based on the high-frequency response of term premia to policy

3Earlier papers examining the high-frequency response of long-term rates to news about monetary policy include Evans
and Marshall (1998), Kuttner (2001), and Cochrane and Piazzesi (2002).
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shocks documented in Hanson and Stein (2015), Gertler and Karadi (2015), and Gilchrist et al. (2015).

The plan for the paper is as follows. In Section 1, we document our key stylized facts about the

changing high- and low-frequency sensitivity of long-term interest rates. In Section 2, we show that past

increases in short rates predict a future reversals in long-term yields in the post-2000 data, reflecting

a new form of bond return predictability. Section 3 develops the economic modelling framework that

we use to interpret our findings. We build on this framework in Section 4 where we explicitly model

three specific rate-amplification mechanisms—mortgage refinancing waves, investor overextrapolation,

and investor reaching-for-yield—and then assess empirically the extent to which each mechanism helps

explain our key findings. Section 5 discusses the implications of our findings for event-study identification

strategies that exploit high-frequency movements in long-term yields, the transmission of monetary policy,

bond market “conundrums,” and affine term structure models. Section 6 concludes.

1 The sensitivity of long-term rates to short-term rates

This section presents our main finding. Between 1971 and 2000, the sensitivity of long-term rates to

changes in short-term rates was similarly strong at both high- and low-frequencies. Since 2000, the

association between high-frequency changes in short- and long-term interest rates has grown even stronger.

By contrast, the association between low-frequency changes in short- and long-term interest rates has

weakened substantially. As a result, the sensitivity of long-term rates has become surprisingly frequency-

dependent since 2000. We first document these basic facts for the U.S. We then contrast the patterns we

see in the post-2000 data with those observed in the U.S. prior to the 1970s. Finally, we show that the

sensitivity of long-term rates has evolved in a similar fashion in Canada, Germany, and the U.K.

Baseline findings for the U.S. We begin by regressing changes in 10-year Treasury yields or forward

rates on changes in 1-year nominal Treasury yields. Specifically, we estimate regressions of the form:

y
(10)
t+h − y

(10)
t = αh + βh(y

(1)
t+h − y

(1)
t ) + εt,t+h (1.1)

and

f
(10)
t+h − f

(10)
t = αh + βh(y

(1)
t+h − y

(1)
t ) + εt,t+h, (1.2)

where y
(n)
t is the continuously compounded n-year zero-coupon yield in period t and f

(n)
t is the n-year-

ahead instantaneous forward rate. To do so, we obtain historical data on the nominal and real U.S.

Treasury yield curve from Gürkaynak et al. (2007) and Gürkaynak et al. (2010). We decompose nominal

yields into real yields and inflation compensation, defined as the difference between nominal and real

yields derived from Treasury Inflation-Protected Securities (TIPS). Our sample begins in August 1971,

which is when reliable data on 10-year nominal yields first become available and ends in December 2019.

For real yields and inflation compensation, we only study the post-2000 sample, since data on TIPS are

not available until 1999. All data are measured as of the end of the relevant period—e.g., the last trading

day of each month.

In standard monetary economics models, the central bank sets overnight nominal interest rates, and

other interest rates are influenced by the expected path of overnight rates. A large literature argues that
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central banks in the U.S. and abroad have increasingly relied on communication—implicit or explicit

signaling about the future path of overnight rates—as an active policy instrument (Gurkaynak et al.,

2005; Lucca and Trebbi, 2009). To capture news about the near-term path of monetary policy that

would not impact the current overnight rate, we take the short rate to be the 1-year nominal Treasury

rate which follows approaches in the recent literature (Campbell et al., 2012; Gertler and Karadi, 2015;

Gilchrist et al., 2015; Hanson and Stein, 2015).

Panel A in Table 1 reports estimated coefficients βh in equation (1.1) for zero-coupon nominal yields,

real yields, and inflation compensation using daily data and end-of-month data with h = 1, 3, 6, 12

months—i.e., for daily, monthly, quarterly, semi-annual, and annual changes in yields.4 The results are

shown for the pre-2000 and post-2000 samples separately. We base this sample split on a number of

break-date tests that we will discuss shortly. Figure 1 plots the estimated coefficients βh in equation

(1.1) for nominal yields versus monthly horizon h for the pre-2000 and post-2000 samples.

Since we use overlapping h-month changes in equation (1.1) when h > 1, we report Newey and

West (1987) standard errors using a lag truncation parameter of d1.5× he; when h = 1, we report

heteroskedasticity-robust standard errors. To address the tendency for statistical tests based on Newey

and West (1987) standard errors to over-reject in finite samples, we compute p-values using the asymptotic

theory of Kiefer and Vogelsang (2005) which gives more conservative p-values and has better finite-sample

properties than traditional Gaussian asymptotic theory.

At a daily frequency, the regression coefficients have risen significantly between the pre-2000 and post-

2000 samples. Specifically, the daily coefficient for 10-year yields in Panel A has risen from βday = 0.56

in the pre-2000 sample to βday = 0.87 in the post-2000 sample and this increase is highly statistically

significant (p-val< 0.001). At the same time, Panel A shows the coefficients at lower frequencies are much

smaller after 2000. For example, the coefficient for h = 12-month changes in 10-year yields is β12 = 0.56

before 2000 but only β12 = 0.23 in the post-2000 sample and this difference is statistically significant

(p-val < 0.001).

Combining these two observations, Figure 1 shows our main finding: in the post-2000 sample, the

coefficient βh is a steeply declining function of the horizon h over which yield changes are calculated. By

contrast, βh is a relatively constant function of horizon h in the pre-2000 sample. In other words, Table

1 and Figure 1 show that, prior to 2000, there was a strong tendency for short- and long-term rates to

rise and fall together at both high- and low-frequencies. While the high-frequency relationship has grown

even stronger since 2000, the low-frequency relationship has weakened significantly. Furthermore, Table

1 shows that the majority of the decline in βh as a function of h during the post-2000 sample is due to

the real component of long-term yields.

This is a surprising result: one would not expect βh to vary strongly with monthly horizon h as in the

post-2000 data. In a standard term-structure models with a single factor, we have y
(10)
t = α+ β · y(1)t for

some β ∈ (0, 1), implying that βh = β for all h, regardless of whether or not the expectations hypothesis

holds. More generally, even accounting for multiple risk factors, term premia only fluctuate at business-

cycle frequencies in conventional asset-pricing models, implying that βh should be quite stable across

monthly horizons h. And, as detailed in Section 3 below, if there are both persistent and transient shocks

to short rates, the expectations hypothesis implies that βh should be slightly increasing in h as it was

4Bond maturities are in years and time periods are in months, except when we estimate regressions at a daily frequency.
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in the pre-2000 data. Thus, our finding that βh is a steeply decreasing function of horizon h since 2000

suggests that term structure dynamics have shifted in an important way.

Panel B of Table 1 reports the corresponding βh coefficients in equation (1.2) using changes in instan-

taneous forwards as the dependent variable. Like 10-year yields, the sensitivity of 10-year forward rates

to changes in short-term rates has risen at high frequencies, but has declined markedly at low frequencies.

Specifically, the coefficient for daily changes in 10-year forward rates rose from βday = 0.39 in the pre-2000

sample to βday = 0.49 in the post-2000 sample. By contrast, the coefficient at a 12-month horizon fell

from β12 = 0.39 in the pre-2000 sample to β12 = −0.13 after 2000.

We use two approaches to date the timing of the break and both approaches suggest that there was

a break around 2000. First, we estimate equations (1.1) and (1.2) using 10-year rolling windows. The

estimated coefficients for h = 12-month changes are shown in Figure 2 for 10-year yields and forwards.

These β12 coefficients decline substantially in more recent windows. The second approach is to test for a

structural break in equations (1.1) and (1.2) for h = 12-month changes, allowing for an unknown break

date. We use the test of Andrews (1993) who conducts a Chow (1960) test at all possible break dates,

and then takes the maximum of the Wald test statistics. Figure 3 plots the Wald test statistic for each

possible break date in equations (1.1) and (1.2) along with the Cho and Vogelsang (2017) critical values

for a null of no structural break. The strongest evidence for a break is in 1999 or 2000 in both equations

(1.1) and (1.2) and the break is highly statistically significant.

To clarify, we do not intend to argue that there was a discrete change in the underlying data-generating

process in 2000. Instead, consistent with the rolling-window regressions shown in Figure 2, our reading

of the data is that the underlying data-generating process has changed gradually over time—a gradual

change which then becomes discernible when we compare the behavior of yields in across different samples.

Nonetheless, throughout the remainder of the paper, we will adopt the heuristic of simply splitting the

data into two samples: pre- and post-2000.

Robustness. In the Internet Appendix, we conduct a variety of robustness checks on our key findings.

First, we show that very similar results obtain when we use long-term private yields as the dependent

variable in equation (1.1). Specifically, we examine long-term corporate bond yields with Moody’s ratings

of Aaa and Baa, the 10-year swap yield, and the yield on Fannie Mae mortgage-backed-securities. For of

all these long-term yields, the sensitivity to changes in 1-year Treasury rates was similar irrespective of

frequency before 2000. After 2000, the sensitivity at high frequencies increases while the sensitivity at

low frequencies declines significantly.

Second, we obtain similar results using different proxies for the short-term rate—i.e., using changes

in 3-month, 6-month, or 2-year Treasury yields—as the independent variable in equation (1.1).

Third, one might be concerned about our use of overlapping changes in equations (1.1) and (1.2) when

h > 1. Instead of computing Newey and West (1987) standard errors with a lag truncation parameter

of d1.5× he, we find that one would draw almost identical inferences using Hansen and Hodrick (1980)

standard errors with a lag truncation parameter equal to h. Going further, we show the estimates and

our inferences are similar if we simply use non-overlapping h-month changes.

Finally, one might wonder if our dating of this break is driven by distortions stemming from the 2009–

2015 period when overnight nominal rates were stuck at the zero lower bound in the U.S. Our use of
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1-year rates as the independent variables in equations (1.1) and (1.2) limits any potential distortions since

1-year nominal yields continued to fluctuate from 2009 to 2015 (Swanson and Williams, 2014). Indeed,

even if we end our sample period in 2007 or 2008, we still detect a break around 2000. For instance, if

the post-2000 sample ends in December 2008, we find a daily βday = 0.77 and a yearly β12 = 0.20, which

are essentially indistinguishable from the numbers in Table 1.

U.S. evidence prior to the Great Inflation. Since data on the Treasury term structure is far

more limited prior to the 1970s (Gürkaynak et al., 2007), our baseline findings use data beginning in

1971. Nevertheless, it is useful to examine the sensitivity of long yields to short rates before the Great

Inflation, which ran from the late-1960s to the mid-1980s. Specifically, one plausible explanation for

the strong sensitivity of long-term nominal yields during the 1971-1999 sample is that this was a period

when long-run inflation expectations became unanchored and were continuously being revised in response

to news (Gürkaynak et al., 2005). Since long-run inflation expectations have become firmly moored in

recent decades, it is useful to compare the patterns we see since 2000 to the those observed prior to the

Great Inflation—another period when inflation expectations were more firmly anchored. In the Internet

Appendix, we thus examine the sensitivity of long-term Treasury yields to changes in short-term yields

from 1953 (when the relevant data become available) to 1968 (when long-run inflation expectations

began to drift up). Consistent with the view that long-run inflation expectations were better-anchored

prior to the Great Inflation, the 1953-1968 coefficients are lower than those in the 1971-2000 sample.

However, while the level of the βh coefficients is lower in the 1953-1968 sample, we do not see the strong

dependence on horizon h that is so evident in the post-2000 data. In summary, while the unanchoring

and then reanchoring of long-run inflation expectations may help explain shifts in the level of βh over

time, the strongly frequency-dependent sensitivity of long-term rates that we see since 2000 appears to

be something new under the sun.

International evidence. Our focus is on the U.S., but it is useful to consider whether these same

patterns are also observed in other large, highly-developed economies. In the Internet Appendix, we

report estimates of equation (1.1) for the U.K., Germany, and Canada for both pre-2000 and post-2000

samples. Our data for Canada, Germany, and the U.K. begin in 1986, 1972, and 1985, respectively.

We find similar patterns for Canada, Germany, and the U.K. Specifically, for all three countries, βh is

strongly decreasing in h in the post-2000 data, but not in the pre-2000 data.

2 Yield-curve dynamics and bond return predictability

In this section, we first pinpoint the term-structure dynamics that account for the stronger high-frequency

sensitivity and weaker low-frequency sensitivity of long rates to short rates that we see in the post-2000

data. Specifically, we demonstrate that this frequency-dependent sensitivity of long-term rates arises

because, all else equal, past increases in short rates predict a subsequent flattening of the yield curve—

and a subsequent decline in long-term yields and forwards—in the post-2000 data. Statistically, this

means that post-2000 yield curve dynamics are “path-dependent” or “non-Markovian”: it is not enough

to know the current shape of the yield curve. Instead, to form the best forecast of future bond yields and
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returns, one also needs to know how the yield curve has shifted in recent months.

Second, we show that these non-Markovian dynamics are themselves a reflection of a new short-lived

form of bond return predictability. Specifically, since 2000, the expected returns on long-term bonds over

those on short-term bonds are temporarily elevated following past increases in short rates. Thus, relative

to an expectations-hypothesis baseline, long-term yields exhibit excess sensitivity at high frequencies and

temporarily overreact to changes in short rates.

2.1 Non-Markovian yield-curve dynamics

In this subsection, we show that strong horizon-dependence of βh in the post-2000 period arises because

yield curve dynamics have become non-Markovian: to form the best forecast of future yields, one needs

to know the current shape of the yield curve and how short rates have recently changed.

Predicting level and slope. When examining term structure dynamics, it is useful and customary to

study the dynamics of yield-curve factors, especially level and slope factors (Litterman and Scheinkman,

1991). We define the level factor as the 1-year yield (Lt ≡ y
(1)
t ) and the slope factor as the 10-year

yield less the 1-year yield (St ≡ y
(10)
t − y(1)t )—a.k.a., the “term spread.”5 Most term structure models

are Markovian with respect to current yield curve factors, meaning that the conditional mean of future

yields depends only on today’s yield-curve factors. However, our key finding—the post-2000 horizon-

dependence of the relationship between long- and short-term yields—suggests that it may be useful to

include lagged factors when forecasting yields. This idea has proven useful in several other contexts,

including in Cochrane and Piazzesi (2005), Duffee (2013), and Feunou and Fontaine (2014). Specifically,

we consider the following system of predictive monthly regressions:

Lt+1 = δ0L + δ1LLt + δ2LSt + δ3L(Lt − Lt−6) + δ4L(St − St−6) + εL,t+1 (2.1a)

St+1 = δ0S + δ1SLt + δ2SSt + δ3S(Lt − Lt−6) + δ4S(St − St−6) + εS,t+1. (2.1b)

These regressions include level and slope as well as their changes over the prior six months, which is a

simple way of allowing for longer lags without estimating too many free parameters.

Table 2 reports estimates of equations (2.1a) and (2.1b) for both the pre-2000 and post-2000 samples.

We include specifications omitting all lagged changes (imposing δ3 = δ4 = 0), omitting lagged changes in

slope (imposing δ4 = 0), and including all predictors. Based on the Akaike information criterion (AIC)

or Bayesian information criterion (BIC), the model in column (1) with no lagged changes is chosen in the

pre-2000 sample, while the model in column (5) with lagged changes in level is selected in the post-2000

sample. As shown in the bottom panel, in the post-2000 sample, the lagged change in level is a highly

significant negative predictor of the future slope—i.e., increases in the level of yields predict subsequent

yield-curve flattening. For example, as shown in column (5), a 100 basis point increase in the level over

the prior 6-months is associated with a 11 basis per-month decline in slope in the post-2000 sample (p-val

< 0.001). By contrast, as shown in column (2), the coefficient on Lt − Lt−6 in the pre-2000 sample is

5The level and slope factors are sometimes defined as the first two principal components of a set of yields. For simplicity,
we have defined the level and slope factors using fixed maturities on the yield curve. This choice makes little difference and
we find similar results if we examine the first two principal components.
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zero. And, we can easily reject the hypothesis that the coefficients on Lt−Lt−6 in the pre- and post-2000

samples are equal (p-val < 0.001).6

The model in equations (2.1a) and (2.1b) can match the puzzling post-2000 horizon-dependent be-

havior of βh that we documented above. This model can be written as a restricted vector autore-

gression (VAR) in yt = (Lt, St)
′ of the form: yt+1 = µ + A1yt + A2yt−6 + εt+1. Let Γij(h) de-

note the ijth element of the autocovariance of yt at a lag of h months—i.e., the ijth element of

Γ(h) = E[(yt − E [yt]) (yt−h − E [yt−h])′]. Given the estimated parameters from equations (2.1a) and

(2.1b), we can work out Γij(h) to obtain the VAR-implied values of βh in equation (1.1):

βh =
V ar(Lt − Lt−h) + Cov(St − St−h, Lt − Lt−h)

V ar(Lt − Lt−h)
= 1 +

2Γ12(0)− Γ12(h)− Γ12(−h)

2(Γ11(0)− Γ11(h))
. (2.2)

In the pre-2000 sample, Table 1 reported estimates of β1 = 0.46 and β12 = 0.56. In the post-2000

sample, the estimates are β1 = 0.66 and β12 = 0.23. Table 2 reports the VAR-implied values of β1

and β12 from equation (2.2). In the pre-2000 data, all of the VAR models can roughly match both β1

and β12. In the post-2000 sample, all models can match β1, but only the models that include lagged

changes in level—i.e., models that allow for non-Markovian dynamics—can match the sharp decline in

β12. Specifically, if the post-2000 VAR does not include lagged changes (δ3 = δ4 = 0) as in column (4),

the VAR-implied values of β12 would be 0.59 and would be nowhere near what we observe in the data.

Predictable reversals in long-term rates. We next show that these non-Markovian dynamics imply

that, in the post-2000 data, there are predictable reversals in long-term rates following past increases in

short-term rates—i.e., long-term rates temporarily overreact to changes in short-terms rates. To see this

explicitly, in Table 3 we estimate specifications that are reminiscent of the Jorda (2005) “local projection”

approach to estimating impulse-response functions. Specifically, we predict the future changes in 10-year

yields and forwards from month t to t + h using the current level (Lt) and slope (St) of the yield curve

as well as the prior month’s change in level (Lt − Lt−1) and slope (St − St−1):

zt+h − zt = δ
(h)
0 + δ

(h)
1 Lt + δ

(h)
2 St + δ

(h)
3 (Lt − Lt−1) + δ

(h)
4 (St − St−1) + εt→t+h. (2.3)

Table 3 reports estimates of equation (2.3) for zt = y
(10)
t and f

(10)
t in the pre- and post-2000 samples

for h = 3-, 6-, 9-, and 12- month changes. In Figure 4, we plot the coefficients δ
(h)
3 on Lt − Lt−1 for

h = 1, 2, ..., 12, tracing out the expected future change in zt from month t to t + h in response to an

unexpected change in the level of rates between t− 1 and t.7

Figure 4 plots the coefficients δ
(h)
3 on Lt − Lt−1 versus monthly horizon h for both 10-year yields

and 10-year forward rates. Figure 4 shows that, in the post-2000 data, there are predictable reversals

in both 10-year yields and forwards following a past increase in short-term rates. However, there is no

such reversal in the pre-2000 data. For instance, for 10-year yields, Table 3 reports that δ
(6)
3 = −0.36

6In unreported results, we also find that past changes in the level factor are associated with declines in the slope factor
over the following month when the change in the level is computed over the prior 3 or 12 months.

7The inclusion of Lt and St as controls means that δ
(h)
3 and δ

(h)
4 capture the response of zt to an unexpected changes in

the level and slope between t− 1 and t. The estimated δ
(h)
3 coeffiecients are similar if we omit St−St−1 from the regression.

The estimated δ
(h)
3 coeffiecients are also quite similar, albeit with slightly larger standard errors, if we omit all controls.
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(p-val = 0.07) after h = 6-months in the post-2000 data. (The difference between δ
(6)
3 in the pre- and

post-2000 data is significant with a p-value of 0.04.) Table 1 showed that, since 2000, a 100 bps increase

in short-rates in month t is associated with a 66 bps contemporaneous rise of long-term yields. Thus,

Table 3 suggests that 36 bps—or more than half—of this initial response is expected to reverse within

6 months. As in Table 1, the post-2000 reversion in 10-year forwards is even larger in magnitude and

is statistically stronger. For 10-year forwards, we have δ
(6)
3 = −0.52 (p-val < 0.01) and the difference

between δ
(6)
3 in the pre- and post-2000 data is highly significant (p-val < 0.01). In summary, Table 3 and

Figure 4 show that long-term rates appear to temporarily overreact to changes in short-term rates in the

post-2000 data, but there was no such tendency before 2000.

To better understand these results, we decompose 10-year yields into the sum of a level component

and a slope component as in Table 2—i.e., y
(10)
t = Lt+St—and plot the coefficients δ

(h)
3 versus h for both

level (zt = Lt) and slope (zt = St). Consistent with Table 2, Table 3 shows that the predictable reversals

in long-term yields reflects the juxtaposition of two opposing forces in the post-2000. First, past increases

in short-term rates predict subsequent increases in short-term rates in the post-2000 data, perhaps owing

to the Fed’s growing desire to gradually adjust short rates (Stein and Sunderam, 2018). However, past

increase in short rates strongly predict a subsequent flattening of the yield curve since 2000. Since the

latter effect outweighs the former, we see predictable reversals in long-term yields post-2000.

2.2 Predicting bond returns

In this subsection, we recast our main finding—the fact that, in recent years, βh is so large at high fre-

quencies and then declines rapidly as a function of horizon h—as a result about bond return predictability.

Specifically, we show that this result arises because past increases in the level of rates lead to temporary

rise in the expected return on long-term bonds relative to those on short-term bonds—i.e., a temporary

rise in bond term premia. Thus, our findings reflect a new form of bond return predictability.

Results for 10-year bonds. The k-month log excess return on n-year bonds over the riskless return

on k-month bills, (k/12) y
(k/12)
t , is:

rx
(n)
t→t+k ≡ (k/12) (y

(n)
t − y(k/12)t )− (n− k/12)(y

(n−k/12)
t+k − y(n)t ). (2.4)

We first forecast the k-month excess return on n = 10-year zero-coupon bonds using level, slope, and the

6-month past changes in these two yield-curve factors:

rx
(10)
t→t+k = δ0 + δ1Lt + δ2St + δ3(Lt − Lt−6) + δ4(St − St−6) + εt→t+k. (2.5)

In Table 4, we report the results from estimating these predictive regressions for k = 1, 3, and 6-month

returns. Panel A reports the results for the pre-2000 sample and Panel B shows the post-2000 results.8,9

8The yield on k-month Treasury bills, y
(k/12)
t , is from the yield curve estimates in Gürkaynak et al. (2007). However, this

curve is based on coupon securities with at least three months to maturity and does not fit the very short end of the curve
well in the pre-2000 data. Therefore, we take the 1-month bill yield from Ken French’s website for the pre-2000 sample.

9We obtain broadly similar results in Table 4 if we forecast returns using 3- or 12-month past changes in level and slope.
And, the return predictability associated with past changes in level remains similar if, instead of controlling for level and
slope, we control for the first five forward rates as in Cochrane and Piazzesi (2005).
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In the post-2000 data, Table 4 shows the past change in the level of rates is a robust predictor of the

excess returns on long-term bonds. However, there is no such predictability in the pre-2000 data. For

instance, in column (6) of Panel B, we see that, all else equal, a 100 bps increase in short-term rates over

the prior 6 months is associated with a δ3 = 166 bps (p-val < 0.01) increase in expected 3-month bond

returns and the difference between δ3 in the pre- and post-2000 data is statistically significant (p-val

< 0.01). In untabulated results, we find that the post-2000 return predictability associated with past

increases in the level of rates is short-lived and generally dissipates after k = 6 months. In other words,

past increases in the level of rates lead to a temporary increase in the risk premia on long-term bonds.10

To draw out the connection to the predictable curve flattening discussed above, we show that these

results for 10-year returns are related to predictability of the returns on what we refer to as “level-

mimicking” and “slope-mimicking” portfolios. Specifically, we follow Joslin et al. (2014) and construct

bond portfolios that locally mimic changes in the level and slope factors. Consider a factor-mimicking

portfolio that places weight wn on zero-coupon bonds with n years to maturity. The k-month excess

return on this portfolio from t to t + k is rxPt→t+k = (
∑

nwn · rx
(n)
t→t+k)/ |

∑
nwn|. The level-mimicking

portfolio has a weight of −1 on 1-year bonds and no weight on any other bonds. For small k, we have

rx
(10)
t→t+k ≈ −10 · (∆kLt+k + ∆kSt+k) and rx

(1)
t→t+k ≈ −1 · ∆kLt+k. Thus, the level- mimicking portfolio

has a k-month excess return of rxLEV ELt→t+k = −1 · rx(1)t→t+k ≈ ∆kLt+k. The slope-mimicking portfolio has a

weight of 1 on 1-year bonds and of −0.1 on 10-year bonds, so rxSLOPEt→t+k = (1·rx(1)t→t+k−0.1·rx(10)t→t+k)/0.9 ≈
∆kSt+k/0.9. Finally, we note that the excess returns on 10-year bonds are just a linear combination of

the excess returns on the level- and slope-mimicking portfolios: rx
(10)
t→t+k = −9 · rxSLOPEt→t+k − 10 · rxLEV ELt→t+k .

In the two bottom blocks of Table 4, we estimate equation (2.5) using rxLEV ELt→t+k and rxSLOPEt→t+k as the

dependent variable. In the post-2000 sample, the excess returns on the slope-mimicking portfolio depend

negatively on Lt − Lt−6, but the excess returns on the level-mimicking portfolio depends positively on

Lt − Lt−6.11 While the two effects partially offset when predicting 10-year excess returns, the net effect

is positive and statistically significant in the post-2000 data. Furthermore, the results in Table 4 where

we forecast rxLEV ELt→t+k and rxSLOPEt→t+k are entirely consistent with those in Table 2.12

In summary, we find that, since 2000, term premia on long-term bonds are temporarily elevated

following past increases in short rates. This implies that, relative to an expectations-hypothesis baseline,

long-term rates temporarily overreact to movements in short rates, exhibiting what Mankiw and Summers

(1984) called “excess sensitivity” at high frequencies.

Results for other bond maturities. In the Internet Appendix, we examine the predictability for

bond maturities other than n = 10 years. If, as we argue, past increases in short rates temporarily raise

the compensation that investors require for bearing interest-rate risk, this should have a larger impact on

the expected returns of long-term bonds than intermediate bonds. However, such a short-lived increase

in the compensation for bearing interest rate risk should have relatively constant or even a hump-shaped

10Consistent with the vast literature on lower-frequency movements in bond risk premia initiated by Fama and Bliss (1987)
and Campbell and Shiller (1991), we find δ2 > 0—i.e., expected bond returns are high when the yield curve is steep.

11The latter fact is consistent with Piazzesi et al. (2015) and Cieslak (2018), who account for it either with expectational
errors or time-varying risk premia. Brooks et al. (2017) also show that the federal funds rate displays short-term momentum.

12In the Internet Appendix, we follow Joslin et al. (2014) and control for macroeconomic variables in equation (2.5). Even
after controlling for macroeconomic variables, we find that past changes in level continue to have significant incremental
predictive power for the future excess returns on 10-year bonds and the returns on the slope-mimicking portfolio.
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effect on the yield and forward curves. The intuition is that the impact on bond yields equals the effect

on a bond’s average expected returns over its lifetime. As a result, a temporary rise in the compensation

for bearing interest rate risk can have a greater impact intermediate-term yields than on long-term yields.

Indeed, this is precisely what we find in the post-2000 data.

2.3 Interpreting the evidence

Before developing our economic modelling framework in the next section, we pause here to interpret

our results. Specifically, our findings point towards the view that, in recent years, the term premium

on long-term bonds is increasing in the recent change in short-term rates, all else equal. This simple

non-Markovian assumption can match the facts that, in the post-2000 data, (i) the sensitivity of long-

term yields βh in equation (1.1), declines with horizon h and (ii) that, controlling for current yield curve

factors, past changes in short-term interest rates predict future yield-curve flattening, future declines in

long-term rates, and high future excess returns on long-term bonds.

To develop these ideas, we shift notation slightly. Rather than identifying specific maturities, we

now refer to the long-term yield as yt and the short rate as it . We split the long-term yield into

an expectations-hypothesis component, eht, that reflects expected future short-term rates and a term

premium component, tpt, that reflects expected future bond risk premia: yt = eht + tpt. Thus, by

definition, βh—the total sensitivity of long-term yields at horizon h—is the sum of the expectations-

hypothesis, βehh and the term premium, βtph , components:

βh︷ ︸︸ ︷
Cov [yt+h − yt, it+h − it]

V ar [it+h − it]
=

βeh
h︷ ︸︸ ︷

Cov [eht+h − eht, it+h − it]
V ar [it+h − it]

+

βtp
h︷ ︸︸ ︷

Cov [tpt+h − tpt, it+h − it]
V ar [it+h − it]

. (2.6)

First, consider the expectations-hypothesis piece, βehh . For now, assume the short-rate follows a

univariate AR(1) process, implying eht = αeh + βeh · it and βehh = βeh for all h. Next, consider the

term premium piece. In conventional asset-pricing theories, term premia only vary at business-cycle

frequencies, so one would not expect βtph to vary strongly with monthly horizon h. Thus, conventional

theories suggest that tpt ≈ αtp + βtp · it, implying that βtph = βtp and βh =
(
βeh + βtp

)
for all h. In other

words, it is difficult for conventional theories to match the strong horizon-dependence of βh that is so

evident in the post-2000 data.

To generate horizon-dependent sensitivity, consider, instead, the following non-Markovian assumption:

tpt = αtp + βtp · it + δtp · (it − it−1) , (2.7)

where δtp > 0. This assumption implies that term premia depend on the current level of short-term rates

and the recent change in short rates. Under this assumption, one can show that:

βh = βeh + βtp + δtp · (1− γh) where γh ≡
Cov [it+h−1 − it−1, it+h − it]

V ar [it+h − it]
. (2.8)

The key is then to note that γh—the coefficient from a regression of (it+h−1 − it−1) on (it+h − it)—is an
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increasing function of h. When δtp > 0, this in turn explains why βtph is decreasing in h.13 Furthermore,

when δtp > 0, controlling for current level of short-term rates, past changes in short-rates predict future

yield curve flattening, declines in long-term yields, and high excess returns on long-term bonds.14

In summary, our empirical findings can all be seen as consequences of the fact that, in recent decades,

the term premia on long-term bonds is increasing in the recent change in short-term rates. Put differently,

our findings reflect a new form of short-lived bond return predictability.

3 A model of temporary bond market overreaction

How can we best understand our key empirical finding that, in recent decades, the sensitivity of long-

term yields to changes in short rates is steeply declining in the horizon over which these changes are

computed? Because this finding reflects a form of short-lived return predictability, the most natural class

of explanations involves temporary supply-and-demand imbalances in less-than-perfect financial markets

(Grossman and Miller (1988) and Duffie (2010)). Therefore, we develop a model that emphasizes the role

of what we call “rate-amplifying” shocks to the supply-and-demand for long-term bonds. Naturally, these

rate-amplifying supply-and-demand shocks—which may either stem from institutional factors or investor

psychology—will lead long yields to temporarily over-react if they trigger a short-lived supply-and-demand

imbalance in the market for long bonds. In Section 4, we will build on this framework and explicitly

model three rate-amplification mechanisms—mortgage refinancing waves, investor overextrapolation, and

investor reaching-for-yield—and then assess empirically the extent to which each mechanism helps explain

our key finding. The model in this section emphasizes the common underlying structure and shared asset-

pricing implications of these rate-amplification mechanisms. By contrast, Section 4 emphasizes the idea

that different amplification mechanisms have implications for different financial quantities.

3.1 Model setting

Overview In our model, time is discrete and infinite. Risk-averse arbitrageurs can either hold risky

long-term nominal bonds or riskless short-term nominal bonds. The nominal interest rate on short-term

bonds follows an exogenous stochastic process. Long-term bonds are available in a given net supply that

must be absorbed by the arbitrageurs in our model. Since arbitrageurs’ risk-bearing capacity is limited,

shifts in the net supply of long-term bonds impact the term premium component of long-term yields as

in Greenwood and Vayanos (2014) and Vayanos and Vila (2020).

The first key assumption is that there are rate-amplifying supply-and-demand shocks: shocks to the

net supply of long-term bonds are positively correlated with shocks to short rates. This can either be

because increases in short rates are associated with increases in the gross supply of long-term bonds

or with reductions in the demands of other, non-arbitrageur investors. These rate-amplifying supply-

and-demand shocks mean that arbitrageurs must increase their exposure to long-term bonds when short

13For instance, if it follows an AR(1) of the form it+1− ı̄ = ρi (it − ı̄) + εi,t+1, then γh =
(
2ρi − ρ

h−1
i − ρh+1

i

)
/
(
2− 2ρhi

)
.

We have γ1 = − (1− ρi)
2 / (2− 2ρi) < 0 and limh→∞ γh = ρi > 0. And, treating γh as continous in h, we have ∂γh/∂h > 0.

14Our findings do not directly speak to the sign and magnitude of βtp. The fact that βh − β1 = −δtp · (γh − γ1) declines
rapidly with h in the post-2000 data, tells us about δtp—i.e., the way that term premia depend on past changes in short
rates. By contrast, this finding tells us little about the low-frequency relationship between term premia and the level of
short rates—i.e., about βtp.
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rates rise. To induce arbitrageurs to absorb these net supply shocks, the term premium component of

long-term yields must increase when short rates rise, generating “excess sensitivity” of long-term yields

when judged relative to the expectations hypothesis.

The second key assumption, following Duffie (2010), is that arbitrage capital is slow-moving: these

net supply shocks walk down a short-run demand curve that is steeper than the long-run demand curve.15

This slow-moving capital dynamic implies that an increase in short-term interest rates leads to a temporary

supply-and-demand imbalance in the market for long-term bonds and, thus, a short-lived increase in bond

risk premia. As a result, the excess sensitivity of long-term yields is greatest when measured at short

horizons. Furthermore, we show that this frequency-dependent excess sensitivity is most pronounced

when the underlying rate-amplifying net supply shocks are themselves transitory in nature.

The model can match our key finding in Section 1—βh has fallen for large h and risen for small h

post-2000—if (i) shocks to short-term nominal rates have become less persistent and (ii) the kinds of

rate-amplification mechanisms we emphasize have grown in importance. We argue that (i) is justified

by the strong evidence that shocks to the persistent component of inflation have become less volatile

since the mid-1990s (Stock and Watson, 2007). Similarly, we argue that (ii) is justified since these rate

amplification mechanisms appear to have become more powerful over time.

Short- and long-term nominal bonds. At time t, investors learn that short-term bonds will earn a

riskless log return of it in nominal terms between time t and t+1. Short-term nominal bonds are available

in perfectly elastic supply at this interest rate. One can think of the short-term nominal interest rate as

being determined outside the model by monetary policy.

Long-term nominal bonds are available in a given net supply st that must be absorbed by the arbi-

trageurs in our model. The long-term nominal bond is a perpetuity that pays a coupon of K > 0 each

period. Let Pt denote the price of this bond at time t, so the return on long-term bonds from t to t+ 1 is

1 + Rt+1 = (Pt+1 +K) /Pt. To generate a tractable linear model, we use the well-known Campbell and

Shiller (1988) log-linear approximation to the return on this perpetuity. Defining φ ≡ 1/ (1 +K) ∈ (0, 1),

the log excess return on long-term bonds over short-term bonds from t to t+ 1 is approximately:

rxt+1 ≡ ln (1 +Rt+1)− it ≈
1

1− φ
yt −

φ

1− φ
yt+1 − it, (3.1)

where yt is the log yield-to-maturity on long-term bonds at time t and D = 1/ (1− φ) is the bond’s

duration. Iterating equation (3.1) forward and taking expectations, the yield on long-term bonds is:

yt = (1− φ)
∑∞

j=0
φjEt [it+j + rxt+j+1] . (3.2)

The long-term yield is the sum of (i) an expectations hypothesis piece eht = (1− φ)
∑∞

j=0 φ
jEt [it+j ] that

reflects expected future short rates and (ii) a term premium piece tpt = (1− φ)
∑∞

j=0 φ
jEt [rxt+j+1] that

reflects expected future excess returns on long-term bonds over short-term bonds.

15In this way, our model is a cousin of the model in Greenwood et al. (2018), who incorporate slow-moving capital effects
into a model of the term structure.
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Arbitrageurs. There are two groups of risk-averse arbitrageurs in the model, each with identical risk

tolerance τ , who differ solely in the frequency with which they can rebalance their bond portfolios.

The first group of arbitrageurs are “fast-moving” and are free to adjust their holdings of long-term

and short-term bonds each period. Fast-moving arbitrageurs are present in mass q and we denote their

demand for long-term bonds at time t by bt. Fast-moving arbitrageurs have mean-variance preferences

over 1-period portfolio log returns. Thus, their demand for long-term bonds at time t is:

bt = τ
Et [rxt+1]

V art [rxt+1]
. (3.3)

The second group of arbitrageurs are “slow-moving” and can only rebalance their holdings of long-

term and short-term bonds every k ≥ 2 periods. Slow-moving arbitrageurs are present in mass 1 − q.
A fraction 1/k of slow-moving arbitrageurs are active each period and can rebalance their portfolios,

but then cannot trade again for the next k periods. As in Duffie (2010), this is a reduced-form way to

model the forces—whether due to institutional frictions or limited attention—that may limit the speed

of arbitrage capital flows. Since they only rebalance every k periods, slow-moving arbitrageurs have

mean-variance preferences over their k-period cumulative portfolio excess return. Thus, the demand for

long-term bonds from the subset of slow-moving arbitrageurs who are active at time t is:

dt = τ
Et[
∑k

j=1 rxt+j ]

V art[
∑k

j=1 rxt+j ]
. (3.4)

Risk factors. Holders of long-term bonds face two different types of risk. First, they are exposed

to short rate risk. they will suffer a capital loss on their long-term bond holdings if short-term rates

unexpectedly rise. Second, they are exposed to supply risk : there are shocks to the net supply of long-

term bonds that impact the term premium component of long-term bond yields. We make the following

assumptions about the evolution of these two risk factors.

Short-term nominal interest rates. The short-term nominal interest rate is the sum of a highly

persistent component iP,t and a more transient component iT,t:

it = iP,t + iT,t. (3.5)

A natural interpretation is that the persistent component reflects long-run inflation expectations and

the transient component reflects cyclical variation in short-term real rates and expected inflation. The

persistent component iP,t follows an exogenous AR(1) process:

iP,t+1 = ı̄+ ρP (iP,t − ı̄) + εP,t+1, (3.6)

where 0 < ρP < 1 and V art [εP,t+1] = σ2P . The transient component iT,t also follows an exogenous AR(1):

iT,t+1 = ρT iT,t + εT,t+1, (3.7)

where 0 < ρT ≤ ρP < 1 and V art [εT,t+1] = σ2T .
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If ρT < ρP and σP is large relative to σT , then short-term nominal rates will be highly persistent.

As a result, long-term nominal rates will be highly sensitive to movements in short-term nominal rates

due to standard expectations-hypothesis logic. Indeed, a large value of σP is a good explanation for the

high sensitivity of long-term rates observed in the 1970s, 1980s, and the 1990s when long-run inflation

expectations were not well-anchored (Gürkaynak et al., 2005). However, long-run inflation expectations

have become firmly anchored in recent decades and there is strong evidence that shocks to the persistent

component of nominal inflation have become far less volatile since the mid-1990s.

Rate-amplifying shocks to the supply and demand for long-term bonds. Long-term nominal

bonds are available in an exogenous, time-varying net supply st that must be held in equilibrium by

fast-moving and slow-moving arbitrageurs. This net supply equals the gross supply of long-term bonds

minus the demand from other, non-arbitrageur investors outside the model who have inelastic demands.

We assume that st follows an AR(1) process:

st+1 = s+ ρs (st − s) + CεP,t+1 + CεT,t+1 + εs,t+1, (3.8)

where 0 < ρs ≤ ρT < 1, C ≥ 0, and V art [εs,t+1] = σ2s.

When C > 0, there are rate-amplifying net supply shocks—shocks to short rates are positively as-

sociated with shocks to the net supply of long-term bonds—and C parameterizes the strength of these

rate-amplification mechanisms. This specification for net bond supply in equation (3.8) is a reduced-form

way of capturing several different rate-amplifying supply-and-demand mechanisms. In Section 4, we will

explore three different rate-amplification mechanisms: (i) temporary mortgage refinancing waves that

are triggered by declines in interest rates, (ii) investors who tend to overextrapolate recent changes in

short-term interest rates, and (iii) investors who “reach for yield” by buying more long-term bonds when

short-term interest rates are low. Rate-amplifying net supply shocks can arise either because increases in

short rates are associated with increases in the gross supply of long-term bonds (as in the mortgage refi-

nancing channel) or because they are associated with reductions in the demands of other, non-arbitrageur

investors (as in the investor overextrapolation and reaching-for-yield channels).

By contrast, the εs,t+1 shocks in equation (3.8) capture other forces that are unrelated to short rates

which also impact the net supply of long-term bonds. While the model can be solved for any arbitrary

correlation structure between the εP,t+1, εT,t+1, and εs,t+1 shocks, we assume, for simplicity, that these

three underlying shocks are mutually orthogonal.

The difference between the persistence of these rate-amplifying net supply shocks and the persistence

of the underlying shocks to short-term rates plays an important role in our model’s ability to generate

excess sensitivity that is most pronounced at high frequencies. To see why, note that equation (3.8)

implies that the net supply of long-term bond is given by

st = s+ C[(iP,t − ı̄)− (ρP − ρs)
∑∞

j=0 ρ
j
s (iP,t−j−1 − ı̄)] (3.9)

+C[iT,t − (ρT − ρs)
∑∞

j=0 ρ
j
siT,t−j−1] + [

∑∞
j=0 ρ

j
sεs,t−j ].

When ρs < ρT , the rate-amplifying net supply shocks are less persistent than the underlying short

rate shocks. As a result, net bond supply is increasing in the differences between the current level of
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each component of the short rate and a geometric moving-average of past values of that component.

Thus, when ρs < ρT , net bond supply st will be high when short rates have recently risen—i.e., there

will be short-lived supply-and-demand imbalances in the market for long-term bonds. By contrast, if

ρs = ρT = ρP , net supply will be just as persistent as the underlying shocks to short-term rates. In this

case, st = s+ C(it − ı̄) + [
∑∞

j=0 ρ
j
sεs,t−j ] and only the current level of short rates—as opposed to recent

changes in short rates—impacts net bond supply.

3.2 Equilibrium yields

At time t, there is a mass q of fast-moving arbitrageurs, each with demand bt, and a mass (1− q) k−1 of

active slow-moving arbitrageurs who rebalance their portfolios, each with demand dt. These arbitrageurs

must accommodate the active net supply, which is the total net supply st of long-term bonds less any

supply held off the market by inactive slow-moving arbitrageurs who do not rebalance the portfolios,

(1− q) k−1
∑k−1

j=1 dt−j . Thus, the market-clearing condition for long-term bonds at time t is:

Fast demand︷︸︸︷
qbt +

Active slow demand︷ ︸︸ ︷
(1− q)k−1dt =

Total net supply︷︸︸︷
st −

Inactive slow holdings︷ ︸︸ ︷
(1− q)(k−1

∑k−1
j=1 dt−j). (3.10)

We conjecture that equilibrium yields yt and the demands of active slow-moving arbitrageurs dt are

linear functions of a state vector, xt, that includes the steady-state deviations of both components of

short-term nominal interest rates, the net supply of long-term bonds, and holdings of bonds by inactive

slow-moving arbitrageurs. Formally, we conjecture that the yield on long-term bonds is yt = α0 + α′1xt

and that slow-moving arbitrageurs’ demand for long-term bonds is dt = δ0 + δ′1xt, where the (k + 2)× 1

dimensional state vector, xt, is given by xt = [iP,t − ı̄, iT,t, st − s, dt−1 − δ0, · · · , dt−(k−1) − δ0]′. These

assumptions imply that the state vector follows a VAR(1) process xt+1 = Γxt + εt+1, where Γ depends

on the parameters δ1 governing slow-moving arbitrageurs’ demand.

In the Internet Appendix, we show how to solve for equilibrium yields in this setting. A rational

expectations equilibrium of our model is a fixed point of a specific operator involving the “price-impact”

coefficients, (α′1), which show how the state variables impact bond yields, and the “demand-impact”

coefficients, (δ′1), which show how these variables impact the demand of active slow-moving investors.

Specifically, let ω = (α′1, δ
′
1)
′ and consider the operator f (ω0) which gives (i) the price-impact coefficients

that will clear the market for long-term bonds and (ii) the demand-impact coefficients consistent with

optimization on the part of active slow-moving investors when agents conjecture that ω = ω0 at all future

dates. A rational expectations equilibrium of our model is a fixed point ω∗ = f (ω∗). Solving the model

involves numerically finding a solution to a system of 2k non-linear equations in 2k unknowns.

An equilibrium solution only exists if arbitrageurs are sufficiently risk tolerant (i.e., for τ sufficiently

large). When an equilibrium exists, there can be multiple equilibria. Equilibrium non-existence and

multiplicity of this sort are common in overlapping-generations, rational-expectations models such as ours

where risk-averse arbitrageurs with finite investment horizons trade an infinitely-lived asset that is subject

to supply shocks. Different equilibria correspond to different self-fulfilling beliefs that arbitrageurs can

hold about the price-impact of supply shocks and, hence, the risks of holding long-term bonds. However,

we always find a unique equilibrium that is stable in the sense that equilibrium is robust to a small
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perturbation in arbitrageurs’ beliefs regarding the equilibrium that will prevail in the future. Consistent

with the “correspondence principle” of Samuelson (1947), this unique stable equilibrium has comparative

statics that accord with standard economic intuition. We focus on this unique stable equilibrium in our

analysis. See Greenwood et al. (2018) for an extensive discussion of these issues.

3.3 The sensitivity of long-term yields

We now explain the factors that shape the sensitivity of long-term rates in our model and how this sensi-

tivity depends on horizon. Consider the model-implied counterpart of the empirical regression coefficient

in equation (1.1). In the model, the coefficient βh from a regression of yt+h − yt on it+h − it is:

βh =
Cov [yt+h − yt, it+h − it]

V ar [it+h − it]
=
α′1(2V − ΓhV −V(Γ′)h)e

e′(2V − ΓhV −V(Γ′)h)e
, (3.11)

where V =V ar [xt] denotes the variance of the state vector xt and e denotes the (k + 2)× 1 vector with

ones in the first and second positions and zeros elsewhere.16

We can then establish the following result:

Proposition 1. The dependence of the model-implied coefficient βh defined in (3.11) on the time-horizon
h is determined by (i) the persistence ρx of the three shocks x ∈ {s, T, P}, (ii) the volatilities of the two
short-rate shocks σT , and σP , (iii) the strength of the rate-amplification mechanisms C, and (iv) the
degree to which arbitrage capital is slow moving q.

1. When C = 0, shifts in the net supply of long-term bonds are unrelated to changes in short-term
rates. As a result, changes in term premia are unrelated to shifts in short-term rates and long-term
yields do not exhibit excess sensitivity relative to the expectations hypothesis. Furthermore,

(a) if ρT = ρP , then βh is independent of h. Also, βh is independent of σT , and σP in this case.

(b) if ρT < ρP , then βh is a mildly increasing function of h. Also, in this case, the level of βh
falls with σT and rises with σP for all h.

2. When C > 0, shifts in the net supply of long-term bonds are positively correlated with changes
in short-term rates. As a result, changes in term premia are positively correlated with changes in
short-term rates and long-term yields exhibit excess sensitivity. Furthermore,

(a) if ρs = ρT = ρP , and all capital is fast-moving (q = 1), then βh is independent of h;

(b) if ρs ≤ ρT = ρP and either (i) supply shocks are transient (ρs < ρT ) or (ii) capital is slow-
moving (q < 1), then βh is decreasing in h;

(c) if ρs ≤ ρT < ρP , then βh can be non-monotonic in h.

Proof. See the Internet Appendix for all proofs.

When there are no rate-amplifying net supply shocks (C = 0), long-term interest rates are not

excessively sensitive to short-term rates relative to the expectations hypothesis. To the extent that

short-term interest rates contain both a transient and a more persistent component (ρT < ρP ), one

16To derive this expression, note that yt+h − yt = α′1 (xt+h − xt) and it+h − it = e′ (xt+h − xt). Since the state-vector
xt follows a VAR(1) process xt+1 = Γxt + εt+1 with Σ = V ar [εt+1], we have vec(V) = (I− Γ⊗ Γ)−1vec(Σ). Noting that
Cov [xt+j ,x

′
t] = ΓjV and Cov[xt,x

′
t+j ] = V (Γ′)

j
, we have V ar [xt+h − xt] = 2V − ΓhV −V(Γ′)h and the result follows.
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should actually expect the βh coefficients to increase in horizon h when C = 0. This effect arises since

movements in the persistent short rate component are associated with larger movements in long-term

yields by standard expectations-hypothesis logic and because the persistent component dominates changes

in short rates at longer horizons. Furthermore, when ρT < ρP , the level of βh for any horizon h depends

on σT and σP . For instance, an increase in σP raises the fraction of total short-rate variation at all

horizons that is due to the persistent component. Since shocks to the persistent component of short rates

have larger impact on long-term yields, an increase in σP raises βh at all horizons.

The existence of rate-amplifying demand shocks (C > 0) naturally generates excess sensitivity relative

to the expectations hypothesis. However, Part 2.(a) of Proposition 1 shows that rate-amplifying demand

(C > 0) need not generate horizon-dependent excess sensitivity—i.e., temporary overreaction of long-

term yields when judged relative to the expectations hypothesis. To generate horizon-dependent excess

sensitivity (βh coefficients that decline with h), Part 2.(b) clarifies that either (i) the rate-amplifying

demand shocks must be less persistent than the underlying short-rate shocks (ρs < ρT ) or (ii) these

rate-amplifying demand shocks must be met by a slow-moving arbitrage response.17 Under either of

these conditions, shifts in short-term rates give rise to a short-lived supply-and-demand imbalance in

the market for long-term bonds, leading long-term yields to temporarily overreact to short rates. In

practice, we suspect that both transitory rate-amplifying demand shocks and slow-moving capital play a

role in explaining why βh declines steeply with h in the recent data. Furthermore, these two mechanisms

reinforce one another: it is easier to quantitatively match the steep decline in βh as a function of h in

calibrations that feature both of these elements.

3.4 Model calibration

Our main empirical findings are that βh has declined in the post-2000 sample at low frequencies (high h)

but has risen at high frequencies (low h), leading βh to decline steeply with horizon h in the post-2000

data. Guided by Proposition 1, we now discuss how to best understand the changing sensitivity of long-

term interest rates. We assume that ρs < ρT < ρP throughout and focus on the role of changes in σP

(the volatility of persistent short rate shocks) and C (the strength of any rate-amplifying mechanisms).

We argue that our framework can match these surprising patterns if two underlying parameters shifted

from the 1971-1999 period to the post-2000 period:

1. σP has fallen: Shocks to the persistent component of short-term nominal rates have become less

volatile in the post-2000 period.

2. C has risen: The rate-amplifying supply-and-demand mechanisms that we emphasize have become

more important in recent decades.

17Technically, when capital is slow-moving (q < 1) and ρs ≤ ρT = ρP , βh is only guaranteed to be locally decreasing in
h for h ≤ k—i.e., for horizons shorter than over which all slow-moving arbitrageurs will have rebalanced their portfolios.
Specifically, while we always have βh < βh−1 for h ≤ k, we can have βh > βh−1 for h > k. However, even when there
are local non-monoticities, βh is globally decreasing in the sense that limh→∞ βh < β1. What explains the potential for
these local non-monoticities? As in Duffie (2010), the gradual adjustment of slow-moving arbitrageurs can gives rise to
modest echo effects for h > k, generating a series of damping oscillations that converge to limh→∞ βh. These oscillations
arise because the slow-moving arbitrageurs who reallocate soon after a supply shock lands take large opportunistic positions.
These positions temporarily reduce the active supply of long-term bonds and need to be re-absorbed in later periods.
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Illustrative calibration. We consider an illustrative calibration of the model in which each period is

a month. We assume the following parameters were the same in the 1971-1999 and post-2000 periods:18

� Persistence: ρP = 0.995, ρT = 0.96, and ρs = 0.80. We assume that the rate-amplifying net

supply shocks are less persistent than the underlying short rate shocks. These parameters imply

that shocks to the persistent short rate component have a half-life of 11.5 years, shocks to the

transient component have a half-life of 1.4 years, and shocks to the net supply of long-term bond

have a half-life of 3 months.

� Slow-moving capital: q = 30% and k = 12. Thus, 1 − q = 70% of the arbitrageurs are slow-

moving and only rebalance their bond portfolios every 12 months. These assumptions capture the

idea that many large institutional investors only rebalance their portfolios annually.

� Volatility of the transient component of short rates: σ2T = 0.15%.

� No independent net supply shocks: σ2s = 0. Thus, the net supply shocks induced by shocks

to short rates are the only reason term premia vary. Given our focus, this assumption is without

loss of generality.

� Other parameters: τ = 0.5 and φ = 119/120, so the duration of the perpetuity is D =

1/ (1− φ) = 120 months—i.e., 10 years.

We assume that two model parameters, C and σP , changed between the 1971-1999 and the post-2000

periods. For the pre-2000 period, we assume:

� A large persistent component of short rates: σ2P = 0.15%. The implied standard deviation

of the short rate is 4.12% which compares with a volatility of 1-year yields of 2.63% during the

1971-1999 sample.

� No rate-amplifying net supply shocks: C = 0. We assume there were no rate-amplifying net

supply shocks in the 1971-1999 period.

By contrast, for the post-2000 period, we assume:

� A small persistent component of short rates: σ2P = 0.012%. The implied standard deviation

of the short rate is 1.77% which is similar to the post-2000 volatility of 1-year yields of 1.85%.

� Net supply shocks induced by short rate shocks: C = 0.55. Thus, we assume a meaningful

increase in the strength of rate-amplifying supply-and-demand mechanisms.

Model-implied regression coefficients βh. The first graph in Figure 5 plots the model-implied

regression coefficients βh from equation (3.11) against the monthly horizon h for the pre- and post-2000

calibrations. In the pre-2000 calibration where σP is large and C = 0, βh is high and is largely independent

of horizon h. In fact, βh rises gradually with h in the pre-2000 calibration—as it does in the pre-2000

18The pre-Great Inflation data discussed in Section 1 are consistent with a regime where C was also negligible and σP

was large, although not as large as during the 1971-1999 period.
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data—because the more persistent component of short rates dominates when changes are computed at

longer horizons. By contrast, in the post-2000 calibration where σP is smaller and C is large, βh declines

steeply with h. And, since σP is lower, βh eventually reaches a lower level for large h.

βh declines with h in the post-2000 calibration because short rate shocks give rise to transient rate-

amplifying shocks to the net supply of long-term bonds (C > 0 and ρs < ρT ) that encounter a short-run

demand curve that is steeper than the long-run demand curve due to slow-moving capital (q < 1 and

k > 1), triggering short-lived market imbalances. However, the second graph in Figure 5 shows that βh

only declines moderately with h in our post-2000 calibration if we drop the assumption that arbitrage

capital is slow-moving. Thus, from a quantitative perspective, transient rate-amplifying net supply shocks

and slow-moving capital are both helpful for matching the fact that βh declines so steeply with h in the

post-2000 data.

Figure 6 shows the model-implied impulse response functions in the post-2000 calibration following

a 100 bp shock to short rates that lands in month t = 12. (We assume there is a 50 bp shock to

both the persistent and transient components of the short rate.) The long-term yield is the sum of an

expectations-hypothesis component and a term premium component: yt = eht + tpt. Thus, the term

spread is yt− it = (eht − it)+ tpt. The figure shows impulse responses for short-term rates (it), long-term

yields (yt), the term spread (yt − it), and the term premium (tpt).

The initial shock to short rates leads to a rise in term premia. Thus, relative to the expectations-

hypothesis, long-term rates are excessively sensitive to short rates. However, the rise in term premia

wears off quickly, explaining our key finding that βh declines sharply with horizon h. Nonetheless, the

impulse to short rates causes the yield curve to flatten on impact as in the data. This is because (eht − it)
falls on impact and this flattening due to the expectations hypothesis outweighs the steepening due to the

rise in term premia. However, the initial rise in short rates predicts additional yield curve flattening—and

predictable reversals in long-term yields—over the following months.

Matching related findings. In addition to matching the fact that the βh coefficients decline steeply

with h in the post-2000 period, the model can also match the related empirical findings documented

above. First, the model is consistent with our return forecasting evidence: in the post-2000 calibration,

bond risk premia Et [rxt+1] will be elevated when short-term rates have recently risen. To see this, note

that risk premia are:

Et [rxt+1] = τ−1V (1) · bt = (τq)−1 V (1) · (st − (1− q)k−1
∑k−1

j=0 dt−j). (3.12)

The idea is that, when C > 0, fast-moving arbitrageurs will be bearing greater interest-rate risk when

short-rates have recently risen—i.e., bt = q−1(st − (1 − q)k−1
∑k−1

j=0 dt−j) will be higher—and they will

require compensation for bearing this extra risk. Again, there are two reasons why increases in short rates

lead to increases in bt and, hence, Et [rxt+1]. First, even if there are no slow-moving arbitrageurs (q = 1),

when supply shocks are less persistent than short rates (i.e., ρs < ρT ), equation (3.9) shows that supply

st will be high when short rates have recently risen. Second, even if supply shocks are as persistent as

short-rate shocks (ρs = ρT = ρP ), when there is slow-moving capital, bt will be high when short rates have

recently risen since some slow-moving arbitrageurs will not have rebalanced their portfolios in response

to the related supply shock.
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Second, let Lt = it and St = yt − it denote the model-implied level and slope factors. If we estimate

equation (2.1b) in data simulated from the model, we find that past increases in the level of rates predict

a flattening of the yield curve in the post-2000 calibration but not in the pre-2000 calibration. In the

post-2000 calibration, past increases in the level of rates are associated with a higher current risk premium

on long-term bonds. Since the risk premium is Et [rxt+1] = St − φ (1− φ)−1 (Et [∆St+1] + Et [∆Lt+1]),

all else equal, Et [∆St+1] is lower when short rates have recently risen. Thus, the model generates the

non-Markovian dynamics emphasized in Section 2.1.

4 Rate-amplification mechanisms

What are the key source of rate-amplifying demand that together explain why long yields temporarily

overreact to changes in short rates in the recent U.S. data? In this section, we explore three rate-

amplification mechanisms that may help explain why increases in short rates to trigger temporary supply-

and-demand balances in the market for long-term bonds: (i) the mortgage refinancing channel, (ii) the

investor overextrapolation channel, and (iii) the reaching-for-yield channel.

For each channel, we first show how it can be used to microfound rate-amplifying shocks to the net

supply of long-term bonds similar to those we introduced in reduced-form in Section 3 and we then

embed each channel our general modelling framework. (The Appendix provides additional details and

illustrative calibrations of these three microfounded models).

Next, we discuss why the strength of each channel may have increased in recent decades. The key

underlying trend here is the increasing financialization of interest-rate risk—e.g., the growth of mortgage

securitization or of open-ended bond funds.19

Finally, by examining the relationship between bond yields and different financial quantities, we assess

empirically the extent to which each channel contributes to the frequency-dependent sensitivity of long-

term rates we observe after 2000 in the U.S. Of course, the precise mix of rate-amplifying mechanisms

may vary somewhat over time and across geographic regions (e.g., the U.S. versus the Eurozone). So,

given the difficulties inherent in precise attribution, we believe that the primary contribution of these

empirical exercises is to rule in the general class of rate-amplifying mechanisms we emphasize. With

those caveats in mind, we find evidence that mortgage refinancing and investor overextrapolation both

help explain why long yields rates have temporarily overreacted to short rates since 2000 in the U.S. By

contrast, we find less evidence that reaching-for-yield plays an important role in driving the short-lived

overreaction of long-term U.S. yields.

4.1 Mortgage refinancing

Negative shocks to short-term rates trigger mortgage refinancing waves in the U.S. that lead to temporary

declines in the duration of outstanding fixed-rate mortgages and, thus, reductions in the effective gross

supply of long-term bonds (Hanson, 2014; Malkhozov et al., 2016). Because these induced supply shifts

are large relative to bond investors’ risk appetites, declines in short rates are associated with temporary

19We do not mean to argue that there was a discrete change in the underlying structure of fixed-income markets around
2000. Instead, our argument is that the sorts of rate-amplifying supply-and-demand mechanisms that we emphasize have
gradually become more important, leading to a gradual change in the data-generating process for bond yields that becomes
discernible when we compare the pre-2000 and post-2000 samples.
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declines in bond term premia. As we detail below, there is evidence that strength of this channel has

grown in recent decades in the U.S. because mortgage-backed securities became a larger share of the

bond market (Hanson, 2014). To be sure, the mortgage refinancing channel is only relevant in countries

such as the U.S. where fixed-rate mortgages with an embedded prepayment option are an important

source of mortgage financing. However, Domanski et al. (2017) and Shin (2017) point to a similar rate-

amplification mechanism—one that may be more important in the Eurozone—stemming from the desire

of insurers and pensions to dynamically match the duration of their assets and liabilities.20

Modeling the mechanism. Most fixed-rate, residential mortgages in the U.S. give the borrower the

option to prepay at any time without a penalty. When long-term rates fall, the option to prepay and

refinance older, higher-coupon mortgages at current mortgage rates becomes more attractive to individual

borrowers. Since refinancing entails large financial and nonfinancial costs, households only gradually

exercise their prepayment options following a decline in mortgage rates, leading the effective maturity

or “duration” of outstanding mortgages—i.e., the sensitivity of mortgage prices to changes in interest

rates—to decline when long-term rates fall. What is more, the expected amount of aggregate mortgage

refinancing activity varies significantly over time: depending on the past path of mortgage rates, there

are times when many households move from being far from refinancing to being close to refinancing

and vice versa. The resulting shifts in expected refinancing activity trigger large changes to the total

quantity of interest rate risk that must be borne by bond market investors, leading to transient, but

sizable fluctuations in bond term premia (Hanson, 2014; Malkhozov et al., 2016).

This mortgage refinancing channel can be used to micro-found a specification for the net supply of

long-term bonds that is similar to equation (3.9)—i.e., one that depends on the difference between current

interest rates and a moving-average of past rates. Following (Malkhozov et al., 2016), we assume that

(i) there is a constant quantity M of outstanding fixed-rate mortgages with an embedded prepayment

option; (ii) the primary mortgage rate, yMt , equals the long-term yield, yt, plus a constant spread;

(iii) the average coupon on outstanding mortgages evolves according to cMt+1 − cMt = −η · (cMt − yMt ),

where (cMt − yMt ) is the “refinancing incentive” at time t and η ∈ [0, 1] is the sensitivity of cMt+1 to the

refinancing incentive at t; (iv) the average “duration” or effective maturity of outstanding mortgages is

DURMt = DUR
M − N ·

(
cMt − yMt

)
, where DUR

M
> 0 and N > 0 is the “negative convexity” of the

average mortgage; and (v) the effective gross supply of long-bonds at time t is st = M ·DURMt .

Each of these assumptions captures a well-known and reliable empirical regularity about the U.S.

mortgage market. In particular, assumption (iii) captures the fact that, when the refinancing incentive

(cMt − yMt ) is higher, more households refinance their existing high-coupon mortgages at time t, leading

the average coupon to fall from t to t+ 1. Assumption (iv) captures the fact that, when the refinancing

incentive is higher, more households are expected to refinance their existing mortgages in the near future,

implying that the average outstanding mortgage behaves more like a short-term bond. In other words,

20Domanski et al. (2017) and Shin (2017) argue that the convexity of insurers’ and pensions’ liabilities is greater than the
convexity of their assets. Thus, as interest rates decline, the duration of their liabilities increases more than the duration
of their assets, and insurers and pensions increase their demand for long-term bonds to match asset and liability duration.
Holding fixed the gross supply of long-term bonds, this means that the net supply of long-term bonds that must be held by
arbitrageurs is lower when short rates are low. This mechanism is arguably quite important in European bond markets where
insurers and pensions play an especially important role. And this dynamic may have grown in recent years as regulators
have pushed insurers to more prudently manage their interest rate exposures.
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mortgage prices become less sensitive to long-term yields when the refinancing incentive is high, so

bond investors must bear less interest rate risk when the refinancing incentive is high. Together these

assumptions imply that the effective gross supply of long-term bonds at time t is:

st = M ·DURM +MN · (yt − η
∑∞

j=0 (1− η)j yt−1−j). (4.1)

Thus, the mortgage refinancing channel implies that bond investors must bear greater interest rate risk

when the long-term yields are high relative to their backward-looking, geometric average—i.e., when

long-term rates have recently risen. And, the strength of this channel is given by the product MN .

There have been two structural shifts in the U.S. bond market in recent decades that are relevant for

the strength of the refinancing channel. First, mortgage-backed securities (MBS) have become a larger

share of the U.S. bond market over time. In the language of the model, this means that M has risen. For

instance, from 1976 to 1999, MBS accounted for 21% of the value of the Bloomberg-Barclays Aggregate

Index on average, a proxy for the broad U.S. investment-grade bond market. From 2000 to 2019, the

corresponding figure was 33%. As a result, movements in the duration of the outstanding mortgages

(DURMt ) now generate far larger shifts in the effective supply of long-term bonds when judged relative to

the overall U.S. bond market. Second, due a secular decline in refinancing costs and frictions, mortgage

refinancing has become more interest-rate elastic over time (Bennett and Peristiani, 2001; Fuster et al.,

2019). More elastic mortgage refinancing corresponds to a rise in both N and η. As a result, the

association between DURMt and recent changes in long-term rates has grown stronger. Together these

changes suggest that the strength of the mortgage refinancing channel may have grown in recent decades.21

To solve our model of mortgage refinancing, we substitute the expression for supply in equation (4.1)

into the market-clearing condition in (3.10) from Section 3, thereby allowing for the possibility that the

arbitrage response to mortgage refinancing waves is slow-moving. Specifically, we continue to assume that

fraction q of bond investors are fast-moving with demands given by equation (3.3) and fraction (1− q)
are slow-moving and only rebalance their portfolios every k ≥ 2 periods with demands given by (3.4).

We can then establish the following proposition:

Proposition 2. Mortgage refinancing model. Consider the mortgage refinancing model and for
simplicity suppose ρT = ρP . When MN > 0, long-term yields are excessively sensitive to short rates
when judged relative to the expectations hypotheisis. When MN > 0 and η = 0, this excess sensitivity is
only horizon-dependent—i.e., the model-implied regression coefficient βh in equation (3.11) only declines
with horizon h—when arbitrage capital is slow moving (q < 1). By contrast, when MN > 0 and η > 0,
βh declines with horizon h even if all arbitrage capital is fast-moving (q = 1).

When η > 0, shocks to short rates trigger shifts in effective bond supply that are less persistent than

the underlying short rate shocks, giving rise to horizon-dependent excess sensitivity even in the absence

of slow-moving capital. However, we are best able to quantitatively match the post-2000 behavior of the

21The rise in N means that a given change in the refinancing incentive (cMt − yMt ) now has a larger impact on mortgage
duration DURM

t . Specifically, in our pre-2000 sample, the coefficient from a regression of DURM
t on (yMt − cMt ) is N = 0.19.

In the post-2000 sample, the corresponding coefficient is N = 0.91 and the difference is statistically significant (p-value <
0.001). The increase in η means that cMt has become a faster-moving average of past long-term rates, implying that the
refinancing incentive more closely tracks recent changes in long rates. Specifically, in the pre-2000 sample, the coefficient
from a regression of (cMt+1 − cMt ) on (yMt − cMt ) is η = 0.013. In the post-2000 sample, the corresponding coefficient is
η = 0.022 and the difference is statistically significant (p-value = 0.011).
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βh coefficients using calibrations of this model in which (i) MN has risen substantially from the pre-2000

level and (ii) the resulting rate-amplifying supply shocks are met by a slow-moving arbitrage response.

In addition to explaining the post-2000 behavior of the βh coefficients, our model of mortgage refinanc-

ing predicts that (1) mortgage duration DURMt is high when interest rates have recently risen, (2) the

level of mortgage duration positively predicts future excess returns on long-term bonds (i.e., Et [rxt+1]

is high when DURMt is high), and (3) the level of mortgage duration predicts subsequent yield-curve

flattening (i.e., Et [∆St+1] is low when DURMt is high).

Evidence from mortgage-related quantities. To empirically assess the contribution of the mortgage

refinancing channel to our findings, we use two proxies for the impact of mortgage refinancing on the

effective supply long-term bonds:

� yMt − cMt is the mortgage refinancing disincentive in month t. Here yMt is the average primary

rate for 30-year, fixed-rate mortgages from Freddie Mac’s Primary Mortgage Market Survey and

cMt is the average outstanding coupon of MBS in the Bloomberg-Barclays U.S. MBS index. The

index covers pass-through MBS backed by conventional fixed-rate mortgages that are guaranteed

by Ginnie Mae, Fannie Mae, and Freddie Mac. This refinancing disincentive measure, which is

associated with a higher duration on outstanding mortgages, is available beginning in Jan-1976.

� DURMt is the duration-to-worst of the Bloomberg-Barclays U.S. MBS index in month t, a measure

of the sensitivity of MBS prices to changes in long-term yields. This MBS duration measure is

available on a monthly basis beginning in Jan-1976.22

The correlation between yMt −cMt and DURMt is 0.55 from 1976 to 1999 and 0.66 in the post-2000 sample.

Using each of these proxies (Xt) for mortgage duration, we first estimate

Xt = γ0 + γ1Lt + γ2St + γ3(Lt − Lt−6) + γ4(St − St−6) + εMBS
t , (4.2)

for the pre- and post-2000 samples. We are mainly interested in the coefficient on the 6-month change in

level (Lt −Lt−6), which tells us how MBS duration responds to recent changes in the level of short-term

rates. Second, we estimate

rxZt→t+3 = δ0 + δ1Lt + δ2St + δ(Lt − Lt−6) + δ4(St − St−6) + δ5Xt + εZt→t+3, (4.3)

for Z = 10 and Z = SLOPE for the pre-2000 and post-2000 samples. That is, we run horse race

regressions to assess whether mortgage refinancing waves help explain why past changes in short-term

interest rates forecast bond excess returns in the post-2000 data. We are interested in the coefficients on

22To obtain this duration measure at each point in time, Barclays uses its proprietary mortgage prepayment model to
compute the expected cashflows on each mortgage-backed security in its index. Yield-to-worst is the internal rate of return
that equates MBS price and the present value of expected cash flows. Barclays then computes the Macaulay duration of
MBS treating expected cashflows as given and the duration of the index is just a valued-weighted average of individual
security durations. Beginning in Jan-1989, Barclays reports an option-adjusted, effective duration for the MBS index which
is the duration measure emphasized in Hanson (2014). In the post-2000 sample, this slightly more sophisticated measure
has a 0.84 correlation in levels with the Macaulay duration measure we use here.
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mortgage duration (Xt) and the change in the level of rates (Lt−Lt−6) and how these coefficients change

when these two variables are included jointly in the regression as opposed to one at a time.

Panel A of Table 5 shows the results for estimating equation (4.2) using the refinancing disincentive

(Xt = yMt − cMt ) and shows that the refinancing disincentive is responsive to past changes in level and

slope. Comparing columns (3) and (6), we see that it has become more responsive to past changes in

level since 2000 (p-value = 0.06). Panel B reports the results for estimating this same equation using

the duration of the Barclays MBS index (Xt = DURMt ) and delivers a similar message. Panels C and E

report the results from estimating equation (4.3) using the refinancing disincentive and suggest that the

refinancing channel helps explain why past changes in the level of rates predict high excess returns on

long-term bonds and yield-curve flattening in the post-2000 data. In Panel C column (5), we see that the

refinancing disincentive attracts a positive and significant coefficient when forecasting the 3-month excess

returns on 10-year bonds, rx
(10)
t→t+3, after 2000. By contrast, the corresponding coefficient in column (2)

for the pre-2000 sample is near zero and insignificant. And, the difference between the coefficients in

columns (2) and (5) is highly significant (p-value < 0.01). However, when we use both (yMt − cMt ) and

(Lt−Lt−6) to forecast rx
(10)
t→t+3 in column (6), the coefficients on both variables decline noticeably relative

to those in columns (4) and (5) where they are considered in isolation. This is precisely what we should

expect if the refinancing channel plays an important role in explaining the short-lived excess sensitivity of

long-term rates that we see in the post-2000 data.23 Panels D and F show that DURMt strongly forecasts

rx
(10)
t→t+3 and rxSLOPEt→t+3 in the post-2000 sample with the expected signs.

Thus, the results in Table 5 suggest that the mortgage refinancing channel helps explain why long-term

U.S. yields increasingly appear to temporarily overreact to movements in short rates.

4.2 Investor overextrapolation

Several recent papers, including Cieslak (2018), Giglio and Kelly (2018), Brooks et al. (2017) and

D’Arienzo (2020) have argued that some bond investors make biased forecasts of future interest rates,

generating rate-amplifying shifts in the demand for long-term bonds. Positive shocks to short rates lead

overly-extrapolative investors to overestimate the future path of short-term interest rates and, therefore,

to demand fewer long-term bonds. This means that the quantity of long-term bonds that must be held

by unbiased investors rises when short rates rise, leading to an increase in term premium and generat-

ing excess sensitivity of long-term yields. If these expectational errors are transitory or if the arbitrage

response to these rate-amplifying demand shocks is slow-moving, then investor overextrapolation will

create a short-lived market imbalance, leading long-term yields to temporarily overreact to changes in

short rates. Furthermore, the impact of investor overextrapolation on the U.S. bond market may have

grown in recent decades since fixed-income mutual fund investors, who are thought to be quite prone to

overextrapolation, have become far more important players in the bond market.

Modeling the mechanism. To model investor overextrapolation, we assume that there are some

investors who have “diagnostic expectations” about short-term interest rates in the sense that they

23If mortgage refinancing was the only source of rate amplification in the U.S. bond market and there was no slow-moving
arbitrage capital, then (yMt − cMt ) should be a sufficient statistic for bond risk premia and should completely drive out
(Lt − Lt−6) in a horse race specification. However, if mortgage refinancing was one of several amplification mechanisms, or
if arbitrage capital was slow moving, then one expected both (yMt − cMt ) and (Lt −Lt−6) to attract meaningful coefficients.
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“overweight future outcomes that have become more likely in light of incoming data” (Bordalo et al.,

2017). In contrast to most recent work on diagnostic expectations—which takes a representative agent

approach—we adopt a heterogenous agent approach, enabling us to study the dynamic arbitrage response

of unbiased bond investors to these rate-amplifying demand shocks.

Formally, we assume that fraction f of investors have diagnostic expectations about short rates.

Diagnostic investors’ demand for long-term bonds is ht = τ(EDt [rxt+1] /V ar
D
t [rxt+1]) where EDt [rxt+1]

denotes diagnostic investors’ biased expectation of future bond excess returns. Fraction (1− f) of a bond

investors have fully rational expectations about short-term interest rates. Of these rational investors,

fraction q are fast-moving with demands given by equation (3.3) and fraction (1− q) are slow-moving

and only rebalance the portfolios every k ≥ 2 periods with demands given by (3.4). We assume the gross

supply of long-term bonds is constant over time at st = s.

Following Maxted (2020), we assume that diagnostic investors’ expectation of the transient component

of short-term rates (iT,t) is

EDt [iT,t+1] = ρT iT,t + θ · [iT,t − (ρT − κT )
∑∞

j=0
κjT iT,t−j−1], (4.4)

where θ ≥ 0 and κT ∈ [0, ρT ]. The parameter θ governs the extent to which diagnostic expectations

depart from full rationality (θ = 0) and κT governs the persistence of investors’ mistaken beliefs about

short rates.24 When θ > 0 and κT < ρT , equation (4.4) says that diagnostic investors overestimate iT,t+1

when iT,t has recently risen. Thus, investor overextrapolation leads to a model that is very similar to the

reduced-form specification for net bond supply in equation (3.9). We adopt an analogous specification

for diagnostic investors’ expectations of the persistent component of short rates (iP,t), but assume for

simplicity that diagnostic investors form rational forecasts of all other relevant state variables.

The strength of the investor overextrapolation channel is given by fθ—i.e., by the mass of diagnos-

tic investors (f) times the extent to which their expectations depart from perfect rationality (θ). Why

might fθ have risen in recent decades? While many bond investors may have a tendency to overextrap-

olate past changes in interest rates, it is natural to think that this tendency may be more pronounced

amongst investors in fixed-income mutual funds. Indeed, there is a long literature arguing that mutual

fund investors—who are predominantly households and smaller institutions—tend to be less financially

sophisticated and more prone to common psychological biases than larger institutional investors (Bar-

beris et al., 1998; Frazzini and Lamont, 2008; Dichev, 2007). Furthermore, mutual funds have become

more important players in the U.S. bond market in recent decades. Based on data from Federal Reserve’s

Financial Accounts, mutual funds’ share of Treasury and MBS holdings has gradually risen from roughly

5% in the early 1990s to nearly 10% today. More recently, mutual funds have rapidly gained share in the

corporate bond market, rising from a 7% share in early 2009 to over 20% today. Thus, even if individual

mutual fund investors have not become more extrapolative since 2000 (i.e., if the parameter θ in our

model has not changed), this group of extrapolation-prone investors has become more important in the

bond market (corresponding to a rise in f).

In this setting, we can demonstrate the following result:

24In the limit where κT = 0, ED
t [iT,t+1] = ρT iT,t + θεT,t, so investors’ mistakes (θεT,t) are serially uncorrelated over time.

In the opposite limit where κT = ρT , ED
t [iT,t+1] = ρT iT,t + θiT,t, so investors’ mistakes (θiT,t) are just as persistent as iT,t.
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Proposition 3. Investor over-extrapolation model. Consider the over-extrapolation model and for
simplicity suppose ρT = ρP and κT = κP . When fθ > 0, long-term yields are excessively sensitive
to short-term rates relative to the expectations hypothesis. When fθ > 0 and κT = ρT , this excess
sensitivity is only horizon-dependent—i.e., the model-implied regression coefficient βh in equation (3.11)
only declines with horizon h—when unbiased arbitrage capital is slow moving (q < 1). By contrast, when
fθ > 0 and κP < ρT , βh declines with horizon h even if all arbitrage capital is fast-moving (q = 1).

When fθ > 0 and κP < ρP , overextrapolation generates transitory rate-amplifying demand shocks,

giving rise to frequency-dependent excess sensitivity even without slow-moving capital. However, this

frequency-dependent excess sensitivity becomes more pronounced when these demand shocks are met

by a slow-moving arbitrage response from unbiased investors. Thus, we are best able to quantitatively

match the post-2000 behavior of the βh coefficients using calibrations of our overextrapolation model in

which (i) fθ has risen from its pre-2000 level and (ii) arbitrage by unbiased investors is slow-moving.

In addition to explaining the behavior of the βh coefficients, our model of investor overextrapolation

predicts that: (1) the bond holdings of extrapolative investors, ht, are low when interest rates have

recently risen, (2) the level of extrapolative investors’ bond holdings negatively predicts future excess

returns on long bonds (i.e., Et [rxt+1] is low when ht is high), and (3) the level of extrapolative investors’

bond holdings predicts subsequent yield-curve steepening (i.e., Et [∆St+1] is high when ht is high).

Evidence from bond mutual fund flows. To assess whether investor overextrapolation has con-

tributed to high-frequency excess sensitivity, we obtain monthly data from 1984 to 2019 on the total net

assets of and the net dollar flows into taxable bond mutual funds from the Investment Company Institute.

We then compute the 3-month cumulative percentage flow into bond funds, %FLOWt−3→t.
25 Using bond

fund flows as a proxy for the rate-amplifying demand of extrapolative investors in our model (ht), we first

estimate equation (4.2) with Xt = %FLOWt−3→t for the pre-2000 and post-2000 samples. The results

are presented in Panel A of Table 6 and show that bond mutual funds tend to suffer investor outflows

when short-term interest rates decline. This result is consistent with the vast literature on return-chasing

behavior by mutual fund investors (Warther, 1995; Sirri and Tufano, 1998). Interesting, this relationship

is actually stronger in the pre-2000 sample than in the post-2000 sample, consistent with other evidence

that mutual fund flows have become less performance sensitive in recent years. However, the importance

of mutual funds within the bond market has increased meaningfully since 2000.

In Panels B and C, we estimate equation (4.3) with Xt = %FLOWt−3→t for the pre-2000 and post-

2000 samples. As shown in column (5), past mutual fund inflows predict low future excess returns on

10-year bonds (Panel B) and future yield-curve steepening (Panel C) in the post-2000 data. By contrast,

as shown in column (2), there are no such relationships in the pre-2000 sample. However, when we use

both (Lt − Lt−6) and %FLOWt−3→t to forecast returns in the in column (6), the coefficients on both

variables decline meaningfully relative to the specifications shown in columns (4) and (5) where they are

considered in isolation. As above, this is what one would expect if investor extrapolation plays a role in

explaining why long-term yields temporarily overreact to short rates in the post-2000 data.26

25Formally, letting %FLOWt = FLOWt/TNAt−1 denote the percentage flow in month t, the 3-month cumulative per-
centage flow is %FLOWt−3→t = (1 + %FLOWt)(1 + %FLOWt−1)(1 + %FLOWt−2)− 1.

26The CRSP Mutual Funds Database does not have monthly TNA for most bond mutual funds until 1991. Therefore,
we use ICI data to construct our main proxy for flows into bond mutual funds. However, we obtain similar results for the
post-2000 period if we construct bond mutual fund flows using CRSP. In the post-2000 data, ICI divides taxable bond funds
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In summary, the results in Table 6 suggest that investor overextrapolation helps explain why long-term

U.S. yields have temporarily overreacted to movements in short rates in recent decades.

4.3 Investors who reach for yield

A final source of rate-amplifying demand that may help explain the horizon-dependent excess sensitivity

we observe in the post-2000 data appeals to the idea that there is a growing set of investors who “reach

for yield” when short rates decline. Specifically, according to the reaching-for-yield channel (Hanson and

Stein, 2015), negative shocks to short rates boost the demand for long-term bonds from “yield-seeking

investors” who care about the current yield on their portfolios over and above their expected portfolio

returns. Thus, holding fixed the gross supply, the net supply of long-term bonds that must be held by

fast- and slow-moving arbitrageurs declines when short rates fall, leading term premia to decline when

short rates fall. More generally, low short rates may increase investors’ risk appetites through a variety of

nonstandard channels, either frictional (Rajan, 2005) or behavioral (Lian et al., 2017), thereby depressing

term premia.

Modeling the mechanism. To model reaching for yield, we assume that fraction f of bond investors

are “yield-seeking” and have non-standard preferences as in Hanson and Stein (2015). The idea is that, for

either behavioral or institutional reasons, these investors care about the current yield on their portfolios

over and above their expected portfolio returns. Specifically, yield-seeking investors’ demand for long-term

bonds is:

ht = τ
yt − ii

V art [rxt+1]
. (4.5)

Since Et [rxt+1] = (yt − ii)− (φ/ (1− φ)) · Et [yt+1 − yt], equation (4.5) says that yield-seeking investors

are only concerned with the current income or “carry” from holding long-term bonds and neglect any

expected capital gains and losses from holding long-term bonds. And, because expectations-hypothesis

logic implies that long-term yields are expected to rise when short rates are low, equation (4.5) implies

that yield-seeking investors have an elevated demand for long-term bonds when short rates are low.27

As above, a mass (1− f) of a bond investors are expected-return-oriented and have standard mean-

variance preferences. Of these standard expected-return-oriented investors, fraction q are fast-moving

with demands given by equation (3.3) and fraction (1− q) are slow-moving with demands given by (3.4).

Finally, we assume the gross supply of long-term bonds is constant over time. Thus, the strength of the

reaching-for-yield channel is given by f—i.e., the fraction of investors who are yield-seeking.

Why might investors’ tendency to reach for yield—corresponding to a rise in f—have grown stronger

since 2000? Lian et al. (2017) provide experimental evidence that there is a non-linear relationship

between reaching-for-yield behavior and the prior level of rates—i.e., the tendency to take on greater

risk when short-term riskless rates decline becomes more pronounced when the prior level of short rates

is already low. Building on Prospect Theory (Kahneman and Tversky, 1979), they argue that reaching

into (i) investment grade, (ii) government, (iii) multisector, (iv) high yield, and (v) global bond funds. We obtain similar
results post-2000 if we only use flows into investment grade funds which represent between 40% and 60% of total taxable
bond funds or combined flows into categories (i), (ii), and (iii).

27Formally, Et [yt+1 − yt] > 0 when it is low, so (yt − ii) > Et [rxt+1] when it is low. As a result, ht =
τ ((yt − ii) /V art [rxt+1]) > τ (Et [rxt+1] /V art [rxt+1]) = bt when it is low. Conversely, ht < bt when it is high.
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for yield becomes more pronounced as rates fall further below some reference level that investors are

accustomed to based on past experience.28 In a similar vein, Campbell and Sigalov (2020) build a non-

standard model of institutional portfolio choice which incorporates the kinds of “sustainable spending”

constraints routinely employed by endowments, sovereign wealth funds, and trusts. They show that these

institutional constraints generate reaching-for-yield behavior and that reaching-for-yield is strongest when

the level of short-term rates is initially low. In summary, prior research suggests the reaching-for-yield

channel may have grown stronger in recent years as interest rates have reached historically low levels.

Using this model, we can then show:

Proposition 4. Investor reaching for yield model. Consider the reaching-for-yield model and for
simplicity suppose ρT = ρP . When f > 0, long-term yields are excessively sensitive to short-term rates
when judged relative to the expectations hypotheisis. However, this excess sensitivity is only horizon-
dependent—i.e., the model-implied regression coefficient βh in equation (3.11) only declines with horizon
h—when arbitrage capital is slow moving (q < 1).

As above, our model of investor reaching-for-yield also predicts that: (1) the bond holdings of yield-

seeking investors, ht, are low when interest rates are high, (2) the level of yield-seeking investors’ bond

holdings negatively predicts future excess returns on long-term bonds, and (3) the level of yield-seeking

investors’ bond holdings predicts subsequent yield-curve steepening.

Since these nonstandard shifts in demand are tied to the level of short interest rates as opposed

to the recent change in short rates, reaching for yield generates persistent shifts in rate-amplifying in-

vestor demand. Thus, while reaching-for-yield can generate excess sensitivity relative to the expectations

hypothesis (Hanson and Stein, 2015), in the absence of slow-moving capital, it does not generate horizon-

dependent excess sensitivity. And, while the combination of reaching-for-yield and slow-moving capital

generates horizon-dependent sensitivity, our calibrations of our reaching-for-yield model struggle to quan-

titatively match the profile of βh witnesses in the post-2000 data. Thus, it is not obvious that investor

reaching-for-yield can explain why excess sensitivity has become so pronounced at high frequencies in

recent decades. Going even further, it seems natural to posit that reaching-for-yield itself may be a slow-

moving phenomenon—i.e., investors may only gradually take on greater portfolio risk following a decline

in short-term interest rates. If true, this would further weaken the ability of reaching-for-yield to explain

why the excess sensitivity of long-term yields has become most pronounced at very high frequencies.

Evidence from sectoral bond market flows. To empirically assess this reaching-for-yield expla-

nation for our findings, we use quarterly data from the Federal Reserve’s Financial Accounts on the

aggregate net bond acquisitions by insurers (life plus property-casualty), pension funds (private plus

state and local), and banks to construct empirical proxies for the bond demand of yield-seeking investors,

ht. We focus on these highly-regulated financial intermediaries since prior research has argued that they

are most likely to be concerned about the current yield on their portfolios and, therefore, to reach for

yield when interest rates decline.29 For intermediaries in sector i, we compute the percentage bond flows

28Relatedly, Lian et al. (2017) argue that, because people tend to think in proportions as opposed to in differences small
return differentials loom larger in investors’ minds when short rates are lower (see Bordalo et al. (2013)).

29Insurers and banks are generally not required to include changes in the mark-to-market value of their portfolios in their
reported earnings, which may give way to yield-seeking behavior. For prior work on reaching-for-yield by insurers, see Becker
and Ivashina (2015). For pension funds, see Lu et al. (2019). For banks, see Maddaloni and Peydró (2011), Hanson and
Stein (2015), and Drechsler et al. (2018).
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in quarter t as %FLOWi,t = FLOWi,t/HOLDi,t−1, where FLOWi,t denotes net bond acquisitions by

intermediaries in sector i during quarter t and HOLDi,t−1 is bond holdings at the end of quarter t− 1.

Bonds here include the sum of U.S. Treasury securities, agency debt and GSE-guaranteed mortgage-

backed securities, and corporate bonds. Thus, our construction of these sector-level flows roughly mimics

the construction of bond mutual fund flows above.

In Table 7, we then estimate quarterly regressions that are analogous to equations (4.2) and (4.3)

using these sector-level bond flows %FLOWi,t as Xt. We report the results separately for the pre-

2000 and post-2000 samples. As shown in Panel A of Table 7, in the post-2000 data, we find little

evidence that recent increase in short-term rates lead to a reduction in bond purchases by insurers,

pensions, and banks. Furthermore, in Panels B and C, we find little evidence that bond purchases by

these intermediaries predict low excess returns on long-term bonds in the following quarter or subsequent

yield-curve steepening as would be suggested by a reaching-for-yield explanation for our findings.

In summary, we find little evidence that reaching-for-yield plays a major role in driving the kind of

short-lived overreaction of long-term yields to changes in short rates that we see since 2000. To be sure,

this lack of evidence does not imply that reaching-for-yield plays an unimportant role in determining

financial market risk premia more generally, especially at lower frequencies. This negative conclusion

only applies to the ability of reaching-for-yield to explain the sorts of transitory fluctuations in bond risk

premia that underpin the horizon-dependent excess sensitivity observed in recent decades.

5 Implications

5.1 High-frequency identification

Our findings have clear implications for identification approaches based on the high-frequency responses

of long-term yields to macroeconomic news and monetary policy announcements. Specifically, papers

in the vast event-study literature often implicitly assume that one can directly infer the expected long-

run effects of news shocks by looking at the high-frequency reactions of long-term asset prices—see e.g.,

Ederington and Lee (1993) and MacKinlay (1997). And, several recent papers—see e.g., Nakamura and

Steinsson (2018) and Hördahl et al. (2015)—have made this assumption more explicitly. Intuitively, if

changes in long-term yields during a tight window around a macro news announcement are governed

by the expectations hypothesis, then the high-frequency reaction of long-term yields directly reveals the

expected long-run effect of the associated news shock.30 For instance, if the 10-year forward Treasury

rate fell by 20 basis points in a short window around a Federal Reserve monetary policy announcement,

then one would infer that this announcement led expected future short rates in 10 years time to drop by

20 basis points.

However, our evidence casts serious doubt on this assumption. If, as we argue, a large portion of the

impact of news shock on long-term yields reflects rapidly-reverting shifts in term premia, then the short-

run impact of news shocks on long-term yields will differ meaningfully from their expected long-run impact

on future short rates. As a result, the high-frequency responses of long-term yields are likely to provide

30Thus, the event-study approach provides approximately unbiased estimates if bond risk premia only fluctuate at business-
cycle frequencies since, in that case, the term premium component of long-term yields would remain largely unchanged in
short windows around macro news announcements.
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a highly biased estimate of the longer-run impact of news announcements. Fortunately, it is relatively

straightforward to eliminate this bias: one needs to use an methodology that does not assume that we can

directly infer the expected long-run effects of news shocks simply by looking the high-frequency reactions

of long-term asset prices.31 Of course, these unbiased approaches lead to far less precise estimates, so

economists face a steep bias-variance trade-off. Specifically, the short-run market impact of news on long-

term yields can be estimated very precisely, but these are likely to be biased estimates of the longer-run

impact that is typically of greatest interest to macroeconomists and policymakers.

Still, it is conceivable that changes in 1-year yields that are associated with news announcements

are different, and do not trigger transient movements in term premia, as argued by Nakamura and

Steinsson (2018) and Hördahl et al. (2015). To get some direct evidence on this question, we form an

“economic news index” for month t, Newst, by cumulating daily changes in 1-year yields within month t

on days with important macroeconomic news announcements. Our data on the timing of macroeconomic

news announcements comes from Money Market Services/Action Economics and begins in 1980. The

announcements we consider are: FOMC announcements, the employment situation report, retail sales,

durable goods orders, new and existing home sales, housing starts, CPI, and PPI. We then estimate the

following predictive regression for the subsequent change in 10-year forward rates:

f
(10)
t+h − f

(10)
t = δ0 + δ1Lt + δ2St + δ3(Lt − Lt−1) + δ4(St − St−1) + λ ·Newst + εt+h, (5.1)

where Lt and St denote the level and slope of the yield curve at the end of month t. In other words,

equation (5.1) simply adds Newst to the Jorda (2005) local projections that we previously estimated in

equation (2.3). Table 8 shows the results for both pre- and post-2000 samples and for h = 3-, 6-, 9-, and

12- month future changes in forward rates.

In Panel A, we omit Newst, so the estimates are (essentially) the same as those in Table 3.32 As

previously shown, past increases in short-term rates are associated with predictable future declines in

long-term forward rates in the post-2000 data, but there is no such tendency in the pre-2000 data. In

Panel B, we add Newst, but omit the prior changes in level and slope. We see that positive values of

the news index predict subsequent declines in long-term forwards in the post-2000 data. Indeed, the

coefficients on Newst in Panel B are similar to those on Lt − Lt−1 in Panel A.

In Panel C, we include Newst as well as the prior changes in level and slope as an independent

variables. The goal is to see if shifts in short-term rates on announcement and non-announcement days

have different implications for the expected future change in long-term forward rates. Once we control

for the total change in short rates in month t, Lt − Lt−1, we find that the coefficient on Newst is small

and insignificant, indicating that the response of long-term forwards rates on announcement days is just

as likely to reverse as the response on non-announcement days.

In Panel D, we break Newst into two pieces—one reflecting changes in short-term rates on FOMC

31For instance, one could estimate the long-run effects of a shock using a Structural VAR in which high-frequency asset
prices movements are used as external instruments for monetary policy or other shocks. And, then IV-estimates of the
SVAR would be used to trade out the long-run dynamic effects of the shock—see, e.g., Gertler and Karadi (2015) and Eberly
et al. (2020). Similarly, one could estimate the long-run effects of news shocks using Jorda (2005) style “local projections”
in which one regresses outcomes at future horizons on high-frequency market reactions to news.

32Since the pre-2000 sample in Table 8 runs from 1980-1999, the pre-2000 results in Table 8 (Panel A) differ slightly from
those in Table 3 (Panel B) where the data begins in 1971.
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announcement days (Newst,FOMC) and one for all other news announcements (Newst,Other)—to see if

FOMC announcements differ from other macro news announcements. We exclude the 1980-81 monetary

targeting regime and thus FOMC announcement dates begin in 1982. As in Panel C, we include Lt−Lt−1
as an independent variable. If anything, the results in Panel D suggest that, since 2000, changes in short

rates on FOMC announcement days are more likely to be followed by subsequent reversals in long-term

forward rates than changes on non-announcement days.

In summary, we conclude that, since 2000, the high-frequency response of long-term rates to eco-

nomic news appears to dissipate meaningfully at lower frequencies, posing challenges to interpreting

high-frequency yield curve responses in more recent data.

5.2 Monetary policy transmission

Our results also have important implications for the transmission of monetary policy. Central banks

conduct conventional monetary policy by adjusting short-term nominal rates. According to the standard

New Keynesian view (Gali, 2008), changes in short-term nominal rates affect short-term real rates because

of nominal rigidities. And, the resulting shifts in short-term real rates affects long-term real rates via the

expectations hypothesis, which in turn influence household spending and firm investment. Stein (2013)

points out that the excess sensitivity of long-term yields—whereby shocks to short rates move term premia

on long-term bonds in the same direction—should strengthen the effects of monetary policy relative to

the canonical view. Stein (2013) refers to this as the “recruitment” channel of monetary transmission.

In the framework we developed in Section 3, the strength of this recruitment channel at business-cycle

frequencies (e.g., over a 1 to 3-year horizon) depends on (i) the relative strength of the relevant supply-

and-demand-based amplification mechanisms (i.e., the size of C relative to investor risk tolerance τ) and

(ii) the persistence of the associated supply-and-demand shocks. Specifically, when ρs is well below ρT

as under the mortgage refinancing interpretation of C, the associated shifts in term premia would be

quite transient and would likely have only modest effects on investment and spending at medium-run

frequencies. (A caveat here is that reductions in short rates that trigger mortgage refinancing waves

may only temporarily lower term premia, but the effect of refinancing waves on distribution of household

savings, and hence consumption, may persist long after term premia have reverted in heterogeneous agent

settings.33) By contrast, when ρs ≈ ρT as under the reaching-for-yield interpretation of C, the shifts in

term premia would be more persistent and likely to have larger effects on aggregate demand.

Our empirical results indicate that a significant part of the influence of short-term rates on term

premia is quite transitory. Thus, our findings suggest that recruitment channel may be smaller than

one would conclude based on a simplistic extrapolation of the high-frequency response of term premia to

policy shocks documented by Hanson and Stein (2015), Gertler and Karadi (2015), and Gilchrist et al.

(2015). More generally, our findings suggest that central banks should heed the way that monetary policy

impacts financial conditions at business-cycle frequencies, but should focus less on the immediate market

response to their announcements since, in the presence of slow-moving capital, much of the latter may be

33Indeed, to the extent that mortgage refinancing plays an important role in U.S. monetary policy transmission as in
recent heterogeneous agent models (Beraja et al., 2018; Berger et al., 2018; Eichenbaum et al., 2018; Wong, 2019), then even
short-lived excess sensitivity may make monetary policy more potent than in a world where long rates are not excessively
sensitive. Specifically, the refinancing channel suggests that reductions in short rates may trigger larger refinancing waves
and, hence provide greater monetary stimulus, than one would expect in a world where term premia are constant.
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quite transitory. In this way, our findings lend support to the argument in Stein and Sunderam (2018)

that the Federal Reserve has become too focused on high-frequency asset price movements.

5.3 Bond market “conundrums”

Third, our findings can help explain the rising prevalence of bond market episodes like the one that

former Federal Reserve Chairman Greenspan famously called the “conundrum”—the period after June

2004 when the Fed raised short-term rates, but longer-term yields declined. This “conundrum” was first

noted in Greenspan (2005) and has been explored in many papers, including Backus and Wright (2007).

Consistent with the weaker low-frequency sensitivity of long-term rates in recent years, “conundrum”

episodes—defined as 6-month periods where short- and long-term rates move in opposite directions—have

grown increasingly common. Specifically, since 2000, 1- and 10-year nominal Treasury yields have moved

in the opposite direction in 37% of all 6-month periods. By contrast, from 1971 to 1999, the corresponding

figure was 18%, and the difference is statistically significant (p-val < 0.001).

Here we show that the non-Markovian dynamics documented in Section 2—the fact that past changes

in the level of rates increasingly predict a future flattening of the yield curve—help explain several

noteworthy “conundrums.” Figure 7 plots 1-year and 10-year Treasury rates around three widely discussed

“conundrums”: Greenspan’s original 2004 “conundrum,” 2008 which was a “conundrum in reverse,” and

the 2017 “conundrum.” In all three cases, 1-year and 10-year yields moved in opposite directions.

Consider Greenspan’s original 2004 “conundrum.” To draw the link between non-Markovian yield-

curve dynamics and this “conundrum,” we use the system of predictive equations for level and slope from

Table 2. Starting in May 2004, we simulate the counterfactual path of 10-year yields that would have

prevailed if, in the post-2000 sample, the slope of the yield curve had not responded to past changes in

the level. To do so, we take the unrestricted estimates of the predictive equation (2.1b) for slope from

column (6) in Table 2 and the restricted estimates from column (4) which constrain past changes to have

no effect (δ3S = δ4S = 0). Starting in May 2004, we generate the counterfactual path of 10-year yields

that would have obtained if δ3S = δ4S = 0. We hold the level factor at its actual value and use the

residuals from the unrestricted regression in column (6), but set the parameters for the slope equation to

their estimated values from the restricted regression in column (4).

The top panel of Figure 7 plots the actual 1- and 10-year yields over this 2004 conundrum period

along with the 10-year yield under this counterfactual scenario. Had the slope not responded to lagged

changes in the level of the yield curve, Figure 7 shows that, instead of falling, 10-year yields would have

risen in 2004. The next two panels repeat this exercise for the 2008 “conundrum in reverse” (starting in

December 2007) and the 2017 “conundrum” (starting in November 2016). If the slope had not responded

to past changes in level, 10- and 1-year yields would have moved in the same direction in both cases.

5.4 Affine term structure models

Finally, we explore the implications of our results for affine term structure models which are a widely-

used, reduced-form tools for understanding the term structure of bond yields (Duffee, 2002; Duffie and

Kan, 1996). In these models, the n-year zero coupon yield is y
(n)
t = α0(n) +α′1(n)xt, where xt is a vector

of state variables and the α0(n) and α1(n) coefficients satisfy a set of recursive equations. In the Internet
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Appendix, we apply the estimation methodology of Adrian et al. (2013) and fit affine term structure

models using the first K principal components of 1- to 10-year yields as the state variables xt. We

show that standard affine models—models that are Markovian with respect to these current yield-curve

factors—cannot fit our key finding that the sensitivity of long rates to short rates βh declines so strongly

with horizon h in the post-2000 data. This remains so even if we estimate models that include many

(e.g., K = 5) current yield-curve factors as state variables. However, we show that our key finding is

consistent with non-Markovian term structure models in which past lags of the yield-curve factors are

treated as “unspanned state variables.”34

6 Conclusion

The strong sensitivity of long-term interest rates to changes in short rates is a long-standing puzzle. In

this paper, we have shown that since 2000 this sensitivity has become even stronger at high frequencies.

By contrast, this sensitivity has fallen significantly when looking at low-frequency changes. As a result,

in the post-2000 data, the sensitivity of long-term rates to changes in short-term rates declines steeply

with the horizon over which these changes are computed.

Before 2000, long-term interest rates were quite sensitive to short-term interest rates because inflation

expectations were relatively unanchored, making short rates highly persistent. Since 2000, the sensitivity

of long-term rates has become horizon-dependent and arises because past increases in short-term rates

temporarily raise the term premium component of long-term yields, leading long-term yields to temporar-

ily overreact to changes in short rates. Consistent with this view, we show that, controlling for current

yields, past changes in short rates predict (i) future yield-curve flattening, (ii) future declines in long-term

yields and forwards, and (iii) high future excess returns on long-term bonds in the post-2000 data.

We proposed a simple model that can explain these puzzling facts. In our model, the post-2000

tendency of long-term yields to temporarily overreact to changes in short-term rates is explained by the

combination of (i) rate-amplifying shifts in the demand for long-term bonds and (ii) a gradual arbitrage

response to these demand shifts. We have presented evidence that two specific rate-amplifying demand

mechanisms—mortgage refinancing waves and investor overextrapolation of past changes in short rates—

each help explain the horizon-dependent excess sensitivity of long-term yields that we see since 2000.

Our findings have important implications for the recruitment channel of monetary policy transmission

(Stein, 2013). In recent years this channel appears far more short-lived than one might conclude based

on a simplistic reading of high-frequency evidence. More broadly, part of the high-frequency response of

long rates to shocks to short rates represents term premium movements that tend to wear off quickly.

Consequently, it is important to remember that event-study approaches only measure high-frequency

responses of long-term rates to macroeconomic news and that the impact may often be more muted at

the lower frequencies that are typically of greatest interest to macroeconomists and policymakers.

34An unspanned state variable is a variable that is useful for forecasting future bond yields and returns but that has no
impact on the current yield curve (Duffee, 2002). To be clear, we do not argue that the past increase in the level of rates is
literally unspanned. Instead, as discussed in the Internet Appendix, we think this variable is close to being unspanned.
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Table 1: Regressions of changes in long-term rates on short-term rates. This table reports the
estimated regression coefficients from equations (1.1) and (1.2) for each reported sample. The dependent
variable is the change in the 10-year U.S. Treasury zero-coupon yield or forward rate, either nominal,
real or their difference (IC, or inflation compensation). The independent variable is the change in the
1-year nominal U.S. Treasury zero-coupon yield in all cases. Changes are considered with daily data, and
with monthly data using monthly (h = 1), quarterly (h = 3), semi-annual (h = 6) and annual (h = 12)
horizons. In the 1971-1999 monthly sample, time t runs from Aug-1971 to Dec-1999 and the number of
monthly observations is 341 irrespective of h. In the 2000-2019 monthly sample, t runs from Jan-2000
to Dec-2019, so the number of monthly observations runs 239 from for h = 1 to 228 for h = 12. For
h > 1, we report Newey-West (1987) standard errors are in brackets, using a lag truncation parameter
of d1.5× he; for h = 1, we report heteroskedasticity robust standard errors. Significance: ∗p < 0.1, ∗∗

p < 0.05, ∗∗∗p < 0.01. Significance is computed using the asymptotic theory of Kiefer and Vogelsang
(2005) which has better finite sample properties than traditional asymptotic theory.

Panel A. 10-year zero coupon yields and IC

(1) (2) (3) (4)
Nominal Nominal Real IC

Daily 0.56∗∗∗ 0.87∗∗∗ 0.54∗∗∗ 0.33∗∗∗

[0.02] [0.03] [0.03] [0.02]
Monthly 0.46∗∗∗ 0.66∗∗∗ 0.38∗∗∗ 0.26∗∗∗

[0.04] [0.11] [0.09] [0.09]
Quarterly 0.48∗∗∗ 0.44∗∗∗ 0.22∗∗ 0.22∗

[0.04] [0.07] [0.10] [0.12]
Semi-annual 0.50∗∗∗ 0.34∗∗∗ 0.21∗∗ 0.13

[0.04] [0.07] [0.08] [0.09]
Yearly 0.56∗∗∗ 0.23∗∗∗ 0.15∗∗ 0.08

[0.05] [0.05] [0.06] [0.05]

Sample 1971-1999 2000-2019 2000-2019 2000-2019

Panel B. 10-year instantaneous forward yields and IC

(1) (2) (3) (4)
Nominal Nominal Real IC

Daily 0.39∗∗∗ 0.49∗∗∗ 0.31∗∗∗ 0.17∗∗∗

[0.03] [0.04] [0.03] [0.03]
Monthly 0.29∗∗∗ 0.26∗ 0.18∗∗ 0.06

[0.04] [0.14] [0.08] [0.09]
Quarterly 0.31∗∗∗ 0.06 0.09∗ -0.03

[0.05] [0.09] [0.05] [0.05]
Semi-annual 0.33∗∗∗ -0.02 0.04 -0.06

[0.06] [0.08] [0.04] [0.05]
Yearly 0.39∗∗∗ -0.13∗∗ -0.02 -0.11∗∗

[0.07] [0.06] [0.04] [0.04]

Sample 1971-1999 2000-2019 2000-2018 2000-2019
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Table 2: Estimates of predictive equations for level and slope. This table reports the estimated
regression coefficients from monthly predictive equations (2.1a) and (2.1b) for the Aug-1971 to Dec-

1999 and Jan-2000 to Dec-2019 samples. Dependent variables are the level (Lt ≡ y
(1)
t ) and slope (St ≡

y
(10)
t − y(1)t ) of the U.S. Treasury zero-coupon yield curve. Heteroskedasticity robust standard errors are

in brackets. Significance: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. The table also shows AIC and BIC values
(to be minimized) for each possible specification of the system of two equations. Lastly, the implied β1
and β12 coefficients from equation (2.2) for each possible specification of the system are reported.

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6)

Dependent Variable: Level
Lt 0.98∗∗∗ 0.97∗∗∗ 0.96∗∗∗ 0.97∗∗∗ 0.98∗∗∗ 0.98∗∗∗

[0.02] [0.02] [0.02] [0.01] [0.01] [0.01]
St 0.00 -0.01 -0.02 -0.02∗ -0.01 -0.00

[0.04] [0.04] [0.04] [0.01] [0.01] [0.01]
Lt − Lt−6 -0.01 0.05 0.08∗∗∗ 0.06∗∗

[0.04] [0.05] [0.03] [0.03]
St − St−6 0.13∗ -0.03∗

[0.07] [0.02]

Dependent Variable: Slope
Lt 0.01 0.01 0.01 0.00 -0.01 -0.01

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01]
St 0.96∗∗∗ 0.96∗∗∗ 0.97∗∗∗ 0.98∗∗∗ 0.96∗∗∗ 0.96∗∗∗

[0.03] [0.02] [0.03] [0.02] [0.02] [0.02]
Lt − Lt−6 0.00 -0.03 -0.11∗∗∗ -0.12∗∗∗

[0.02] [0.03] [0.02] [0.03]
St − St−6 -0.08 -0.02

[0.05] [0.03]

N 341 335 335 239 239 239
Implied β1 0.46 0.46 0.46 0.66 0.71 0.71
Implied β12 0.52 0.51 0.58 0.59 0.38 0.30
AIC -5720.3 -5607.9 -5608.7 -4529.0 -4567.0 -4565.6
BIC -5697.3 -5577.4 -5570.5 -4508.1 -4539.2 -4530.8
Sample 1971-1999 1972-1999 1972-1999 2000-2019 2000-2019 2000-2019
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Table 3: Predictable yield-curve dynamics following an impulse to short-term interest rates.
This table reports the estimated regression coefficients in equation (2.3) for the Aug-1971 to Dec-1999
and Jan-2000 to Dec-2019 samples. For h = 3, 6, 9, and, 12-months changes, we show results for 10-year

yields (zt = y
(10)
t ), 10-year forward rates (zt = f

(10)
t ), level (zt = Lt), and slope (zt = St). We report

Newey-West standard errors in brackets using a lag truncation parameter of d1.5× he. Significance:
∗p < 0.1, ∗∗ p < 0.05, ∗∗∗p < 0.01. Significance is computed using the asymptotic theory of Kiefer and
Vogelsang (2005) which has better finite sample properties than traditional asymptotic theory.

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6) (7) (8)

Dep. var with h 3 6 9 12 3 6 9 12

Dependent variable: y
(10)
t+h − y

(10)
t

Lt − Lt−1 -0.03 0.10 0.04 0.23∗ -0.11 -0.36∗ -0.41∗ -0.20
[0.12] [0.13] [0.11] [0.12] [0.13] [0.19] [0.20] [0.20]

St − St−1 0.03 0.30 0.34 0.55∗∗ -0.09 -0.16 -0.11 -0.16
[0.18] [0.19] [0.20] [0.26] [0.15] [0.17] [0.15] [0.20]

Lt -0.06∗ -0.11∗ -0.17∗ -0.23∗∗ -0.07∗∗ -0.14∗∗∗ -0.19∗∗∗ -0.23∗∗∗

[0.03] [0.06] [0.08] [0.10] [0.03] [0.05] [0.06] [0.07]
St -0.13∗ -0.27∗∗ -0.45∗∗∗ -0.62∗∗∗ -0.10∗∗ -0.20∗∗ -0.28∗∗ -0.35∗∗

[0.07] [0.11] [0.16] [0.19] [0.05] [0.09] [0.11] [0.12]

Adj.R2 0.03 0.08 0.14 0.20 0.05 0.11 0.16 0.20

Dependent variable: f
(10)
t+h − f

(10)
t

Lt − Lt−1 -0.08 0.09 -0.05 0.12 -0.30∗∗∗ -0.52∗∗∗ -0.71∗∗∗ -0.74∗∗∗

[0.12] [0.11] [0.10] [0.12] [0.11] [0.17] [0.14] [0.15]
St − St−1 0.01 0.18 0.16 0.34 -0.14 -0.11 -0.02 -0.17

[0.18] [0.19] [0.20] [0.22] [0.16] [0.20] [0.19] [0.21]
Lt -0.04 -0.09 -0.14∗ -0.19∗∗ -0.03 -0.05 -0.06 -0.06

[0.03] [0.05] [0.08] [0.09] [0.03] [0.05] [0.06] [0.07]
St -0.16∗∗ -0.31∗∗∗ -0.48∗∗∗ -0.66∗∗∗ -0.09∗ -0.17∗ -0.27∗∗ -0.35∗∗

[0.06] [0.11] [0.15] [0.19] [0.05] [0.09] [0.11] [0.14]

Adj.R2 0.04 0.10 0.17 0.24 0.04 0.09 0.17 0.23

Dependent variable: Lt+h − Lt
Lt − Lt−1 0.07 0.26 0.18 0.60∗∗∗ 0.66∗∗∗ 0.86∗∗ 1.33∗∗ 1.70∗∗∗

[0.24] [0.21] [0.20] [0.19] [0.17] [0.38] [0.53] [0.59]
St − St−1 0.13 0.64∗∗ 0.57∗ 1.07∗∗ -0.23∗∗ -0.38∗ -0.59∗ -0.58

[0.30] [0.30] [0.31] [0.49] [0.11] [0.21] [0.29] [0.39]
Lt -0.09∗ -0.18∗∗ -0.26∗∗ -0.36∗∗∗ -0.08∗∗ -0.19∗∗ -0.28∗∗∗ -0.38∗∗

[0.05] [0.08] [0.11] [0.12] [0.03] [0.07] [0.11] [0.15]
St -0.00 -0.09 -0.24 -0.33 -0.03 -0.07 -0.04 -0.01

[0.11] [0.15] [0.20] [0.25] [0.04] [0.09] [0.15] [0.21]

Adj.R2 0.03 0.08 0.12 0.17 0.20 0.26 0.36 0.42

Dependent variable: St+h − St
Lt − Lt−1 -0.10 -0.16 -0.14 -0.37∗∗∗ -0.77∗∗∗ -1.23∗∗∗ -1.74∗∗∗ -1.90∗∗∗

[0.16] [0.12] [0.12] [0.11] [0.16] [0.33] [0.39] [0.51]
St − St−1 -0.10 -0.34∗ -0.23 -0.51 0.14 0.22 0.48∗ 0.43

[0.17] [0.18] [0.16] [0.30] [0.12] [0.22] [0.27] [0.32]
Lt 0.03 0.07∗ 0.10∗∗ 0.13∗∗∗ 0.01 0.05 0.09 0.15

[0.03] [0.03] [0.04] [0.04] [0.03] [0.07] [0.10] [0.14]
St -0.12∗ -0.18∗ -0.21∗ -0.29∗∗ -0.07∗ -0.13 -0.24 -0.34

[0.07] [0.10] [0.11] [0.13] [0.04] [0.09] [0.13] [0.20]

Adj.R2 0.08 0.16 0.20 0.28 0.16 0.24 0.37 0.43
N 340 340 340 340 237 234 231 228
Sample 1971-1999 1971-1999 1971-1999 1971-1999 2000-2019 2000-2019 2000-2019 2000-2019
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Table 4: Estimates of predictive equations for bond excess returns. This table reports the
estimated regression coefficients in equation (2.5) using monthly data from the Aug-1971 to Dec-1999
and Jan-2000 to Dec-2019 samples. We report results various return forecast horizon (k). Significance:
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. For k = 1-month returns, we report heteroskedasticity robust standard
errors are in brackets. For k = 3 and 6-month returns, we report Newey and West (1987) standard errors
in brackets, using a lag truncation parameter of 5 and 9 months, respectively. In this case, p-values are
computed using the asymptotic theory of Kiefer and Vogelsang (2005) which has better finite sample
properties than traditional asymptotic theory.

Panel A: Pre-2000 sample
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dep. Var for k 1 1 1 3 3 3 6 6 6

Dependent Variable: rx
(10)
t→t+k

Lt 0.17 0.18 0.22∗ 0.53∗ 0.54 0.65∗ 0.99∗ 1.01 1.25∗∗

[0.13] [0.13] [0.12] [0.31] [0.33] [0.34] [0.57] [0.62] [0.60]
St 0.55∗∗ 0.61∗∗ 0.66∗∗∗ 1.57∗∗ 1.91∗∗∗ 2.07∗∗∗ 3.17∗∗∗ 3.62∗∗∗ 3.98∗∗∗

[0.24] [0.24] [0.24] [0.64] [0.65] [0.64] [1.04] [1.13] [1.09]
Lt − Lt−6 0.10 -0.18 0.59 -0.22 0.79 -1.00

[0.19] [0.29] [0.49] [0.54] [0.69] [0.90]
St − St−6 -0.57 -1.67∗∗ -3.67∗∗∗

[0.44] [0.81] [1.30]

Adj.R2 0.02 0.01 0.02 0.05 0.06 0.07 0.11 0.12 0.17
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: rxLEV ELt→t+k

Lt -0.04∗ -0.04∗ -0.04∗∗ -0.08∗ -0.09∗ -0.10∗∗ -0.11∗∗ -0.11∗∗ -0.13∗∗

[0.02] [0.02] [0.02] [0.04] [0.05] [0.05] [0.05] [0.05] [0.05]
St -0.06 -0.07∗ -0.08∗∗ -0.15∗ -0.21∗∗ -0.24∗∗∗ -0.23∗∗∗ -0.26∗∗∗ -0.29∗∗∗

[0.04] [0.03] [0.04] [0.09] [0.08] [0.08] [0.09] [0.09] [0.09]
Lt − Lt−6 -0.01 0.04 -0.10 0.03 -0.04 0.09

[0.03] [0.04] [0.08] [0.08] [0.09] [0.09]
St − St−6 0.11∗ 0.26∗∗ 0.27∗

[0.06] [0.11] [0.14]

Adj.R2 0.01 0.01 0.02 0.04 0.06 0.08 0.09 0.10 0.12

Dependent Variable: rxSLOPEt→t+k

Lt 0.02 0.02 0.03∗∗ 0.03 0.04 0.04 0.01 0.01 0.01
[0.01] [0.01] [0.01] [0.02] [0.03] [0.03] [0.03] [0.03] [0.03]

St 0.00 0.01 0.01 -0.01 0.02 0.03 -0.09 -0.11 -0.12
[0.03] [0.02] [0.03] [0.06] [0.05] [0.06] [0.08] [0.08] [0.08]

Lt − Lt−6 0.00 -0.03 0.04 -0.00 -0.04 0.01
[0.02] [0.03] [0.05] [0.06] [0.04] [0.05]

St − St−6 -0.06 -0.10 0.11
[0.05] [0.09] [0.10]

Adj.R2 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.06
N 341 335 335 341 335 335 341 335 335
Sample 1971-1999 1972-1999 1972-1999 1971-1999 1972-1999 1972-1999 1971-1999 1972-1999 1972-1999
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dep. Var for k 1 1 1 3 3 3 6 6 6

Dependent Variable: rx
(10)
t→t+k

Lt 0.30∗∗∗ 0.32∗∗∗ 0.28∗∗ 0.73∗∗∗ 0.81∗∗∗ 0.71∗∗ 1.37∗∗∗ 1.50∗∗∗ 1.34∗∗

[0.11] [0.11] [0.11] [0.27] [0.28] [0.30] [0.44] [0.47] [0.51]
St 0.56∗∗∗ 0.63∗∗∗ 0.53∗∗ 1.41∗∗∗ 1.65∗∗∗ 1.42∗∗ 2.71∗∗∗ 3.07∗∗∗ 2.73∗∗∗

[0.21] [0.20] [0.21] [0.48] [0.52] [0.58] [0.83] [0.93] [0.95]
Lt − Lt−6 0.33 0.62∗ 0.98∗∗ 1.66∗∗∗ 1.33∗ 2.39∗∗

[0.24] [0.33] [0.46] [0.61] [0.73] [1.07]
St − St−6 0.48 1.12 1.76

[0.35] [0.72] [1.22]

Adj.R2 0.03 0.03 0.03 0.08 0.10 0.12 0.16 0.18 0.20
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: rxLEV ELt→t+k

Lt -0.03∗∗∗ -0.03∗∗∗ -0.03∗∗∗ -0.09∗∗∗ -0.08∗∗∗ -0.07∗∗∗ -0.12∗∗∗ -0.11∗∗∗ -0.10∗∗∗

[0.01] [0.01] [0.01] [0.03] [0.02] [0.02] [0.04] [0.03] [0.03]
St -0.04∗∗∗ -0.03∗∗ -0.03∗∗ -0.10∗∗∗ -0.07∗∗ -0.05∗ -0.13∗∗∗ -0.08∗ -0.05

[0.01] [0.01] [0.01] [0.03] [0.03] [0.03] [0.04] [0.04] [0.04]
Lt − Lt−6 0.05∗∗ 0.03 0.12∗∗ 0.06 0.19∗∗∗ 0.12

[0.02] [0.02] [0.06] [0.06] [0.07] [0.07]
St − St−6 -0.04∗∗ -0.09∗∗ -0.11∗∗

[0.02] [0.04] [0.05]

Adj.R2 0.06 0.10 0.11 0.13 0.21 0.23 0.21 0.37 0.39

Dependent Variable: rxSLOPEt→t+k

Lt 0.01 -0.00 0.00 0.02 -0.00 0.00 -0.01 -0.05 -0.04
[0.01] [0.01] [0.01] [0.03] [0.03] [0.03] [0.06] [0.04] [0.05]

St -0.01 -0.03∗ -0.03 -0.05 -0.10∗∗ -0.10∗ -0.16∗ -0.26∗∗∗ -0.24∗∗∗

[0.02] [0.02] [0.02] [0.05] [0.05] [0.05] [0.08] [0.08] [0.08]
Lt − Lt−6 -0.09∗∗∗ -0.10∗∗∗ -0.24∗∗∗ -0.25∗∗∗ -0.36∗∗∗ -0.40∗∗∗

[0.02] [0.03] [0.05] [0.06] [0.07] [0.11]
St − St−6 -0.01 -0.02 -0.07

[0.03] [0.07] [0.13]

Adj.R2 0.00 0.06 0.06 0.03 0.19 0.18 0.08 0.28 0.28
N 239 239 239 237 237 237 234 234 234
Sample 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019
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Table 6: The role of investor over-extrapolation: Evidence from bond mutual fund flows.
Data on flows into taxable bond mutual funds is from the Investment Company Institute. Panels A
reports the estimated regression coefficients for equation (4.2) using Xt = %∆FLOWt−3→t. Panels B
and C report the estimated regression coefficients when we use Xt = %∆FLOWt−3→t in equation (4.3) to
forecast 3-month returns. We estimate these regressions using monthly data for the Apr1984 to Dec-1999
and Jan-2000 to Dec-2019 subsamples. Significance: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. We report Newey
and West (1987) standard errors in brackets, using a lag truncation parameter of 9 months in Panel A and
5 months in Panels B and C. p-values are computed using the asymptotic theory of Kiefer and Vogelsang
(2005) which has better finite sample properties than traditional asymptotic theory.

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6)

Dependent Variable: FLOWt−3→t

Lt 1.96∗∗ 2.15∗∗∗ 2.24∗∗∗ 0.06 0.01 0.04
[0.89] [0.67] [0.69] [0.23] [0.20] [0.23]

St 4.08∗∗ 3.24∗∗ 3.92∗∗ 0.60 0.44 0.51
[1.64] [1.27] [1.45] [0.37] [0.36] [0.39]

Lt − Lt−6 -4.00∗∗∗ -5.29∗∗∗ -0.77∗∗ -1.00∗∗

[1.04] [1.29] [0.32] [0.46]
St − St−6 -4.31∗∗ -0.38

[2.15] [0.45]

Adj.R2 0.24 0.43 0.50 0.09 0.16 0.16
N 189 189 189 240 240 240

Dependent Variable: rx
(10)
t→t+3

Lt 1.27∗∗∗ 1.13∗∗∗ 1.04∗∗∗ 0.71∗∗ 0.76∗∗∗ 0.72∗∗

[0.30] [0.29] [0.35] [0.30] [0.27] [0.31]
St 1.88∗∗∗ 1.37∗∗ 1.47∗ 1.42∗∗ 1.63∗∗∗ 1.55∗∗

[0.66] [0.64] [0.74] [0.58] [0.50] [0.60]
Lt − Lt−6 -0.01 0.54 1.66∗∗∗ 1.42∗∗

[0.61] [0.89] [0.61] [0.64]
St − St−6 -1.01 -0.56 1.12 1.02

[0.88] [0.98] [0.72] [0.73]
FLOWt−3→t 0.07 0.10 -0.34∗∗ -0.24

[0.08] [0.11] [0.14] [0.15]

Adj.R2 0.16 0.17 0.17 0.12 0.10 0.12
N 189 189 189 237 237 237

Dependent Variable: rxSLOPEt→t+3

Lt 0.01 0.01 0.02 0.00 0.01 -0.00
[0.04] [0.03] [0.03] [0.03] [0.03] [0.03]

St -0.04 -0.01 -0.03 -0.10∗∗ -0.08∗ -0.12∗∗

[0.05] [0.05] [0.05] [0.05] [0.04] [0.05]
Lt − Lt−6 -0.04 -0.06 -0.25∗∗∗ -0.22∗∗∗

[0.05] [0.07] [0.06] [0.06]
St − St−6 0.10 0.08 -0.02 -0.01

[0.10] [0.10] [0.07] [0.07]
FLOWt−3→t -0.00 -0.00 0.05∗∗∗ 0.03∗∗

[0.01] [0.01] [0.01] [0.01]

Adj.R2 0.03 -0.01 0.02 0.18 0.08 0.20
N 189 189 189 237 237 237
Sample 1984-1999 1984-1999 1984-1999 2000-2019 2000-2019 2000-2019
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Table 7: The role of reaching-for-yield: Evidence from sectoral bond market flows. Data
on sectoral-level bond market flows are from the Federal Reserve’s Financial Accounts. Bond holdings
include the sum of Treasury Securities (Table 210), Agency and GSE-Backed Securities (Instrument
Table 211), and Corporate Bonds (Table 213). Our series for “Insurers” combines together data for
Property-Casualty Insurance Companies (Table 115) and Life Insurance Companies (Table 116); “Pen-
sions” combines together data for Private Pension Funds (Table 118) and State and Local Government
Employee Retirement Funds (Table 120); and “Banks” uses data for U.S.-chartered depository institu-
tions (Table 111). For intermediary sector i, we then compute the percentage bond flow in quarter t as
%FLOWi,t = FLOWi,t/HOLDi,t−1, where FLOWi,t denotes net bond acquisitions by intermediaries in
sector i during quarter t and HOLDi,t−1 is bond holdings at the end of quarter t−1. Panel A reports the
estimated regression coefficients for equation (4.2) using Xt = %FLOWi,t for each sector i. We estimate
these regressions using quarterly data for the 1971Q3-1999Q4 and 2000Q1-2019Q4 samples. Panels B
and C report the estimated coefficients for equation (4.3). We report heteroskedasticity robust standard
errors in brackets. Significance: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6)

Sector (i): Insurance Pensions Banks Insurance Pensions Banks

Dependent Variable: FLOWi,t

Lt 0.24∗∗∗ 0.27∗∗∗ 0.33∗∗∗ 0.23∗∗∗ -0.17 0.06
[0.05] [0.07] [0.12] [0.07] [0.19] [0.16]

St 0.71∗∗∗ -0.25∗ 0.67∗∗ 0.47∗∗∗ -0.00 0.42
[0.11] [0.15] [0.28] [0.11] [0.29] [0.29]

Lt − Lt−2 -0.04 -0.28∗∗ -0.53∗∗ 0.16 1.44∗∗∗ 0.05
[0.09] [0.11] [0.26] [0.17] [0.42] [0.41]

Adj.R2 0.25 0.24 0.12 0.18 0.16 0.01
N 112 112 112 80 80 80

Dependent Variable: rx
(10)
t→t+1

Lt 0.39 0.68∗ 0.68∗ 0.95∗∗ 0.90∗∗ 0.85∗∗

[0.46] [0.41] [0.39] [0.39] [0.35] [0.36]
St 0.99 1.34∗ 1.86∗∗ 1.83∗∗ 1.66∗∗∗ 1.68∗∗

[0.92] [0.78] [0.83] [0.74] [0.61] [0.64]
FLOWt−1→t 0.54 -0.57 -0.50∗∗∗ -0.56 0.24 -0.20

[0.59] [0.40] [0.15] [0.73] [0.18] [0.32]

Adj.R2 0.02 0.03 0.06 0.06 0.07 0.06
N 114 114 114 79 79 79

Dependent Variable: rxSLOPEt→t+1

Lt 0.03 0.04 0.03 0.02 0.01 0.01
[0.03] [0.03] [0.03] [0.04] [0.04] [0.04]

St -0.04 -0.03 -0.04 -0.05 -0.06 -0.06
[0.09] [0.08] [0.08] [0.07] [0.06] [0.06]

FLOWt−1→t 0.02 -0.03 0.02 -0.00 -0.03∗ 0.03
[0.05] [0.03] [0.02] [0.07] [0.02] [0.03]

Adj.R2 0.01 0.01 0.02 0.00 0.04 0.02
N 114 114 114 79 79 79
Sample 1971-1999 1971-1999 1971-1999 2000-2019 2000-2019 2000-2019
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Table 8: Economic news and subsequent changes in forward rates. This table reports the
regression coefficents in equation (5.1) using monthly data from the Aug1971 to Dec-1999 and Jan-
2000 to Dec2019 samples. Newey-West (1987) standard errors are in brackets, using a lag truncation
parameter of d1.5× he. Significance: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Significance is computed using
the asymptotic theory of Kiefer and Vogelsang (2005) which has better finite sample properties than
traditional asymptotic theory.

Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6) (7) (8)

f
(10)
t+h − f

(10)
t with h 3 6 9 12 3 6 9 12

Panel A

Lt − Lt−1 -0.09 0.11 -0.04 0.12 -0.30∗∗∗ -0.52∗∗∗ -0.71∗∗∗ -0.74∗∗∗

[0.12] [0.12] [0.12] [0.13] [0.11] [0.17] [0.16] [0.15]
St − St−1 0.03 0.29 0.19 0.35 -0.14 -0.11 -0.02 -0.17

[0.19] [0.20] [0.22] [0.24] [0.16] [0.20] [0.20] [0.21]
Lt -0.04 -0.08 -0.13 -0.18∗ -0.03 -0.05 -0.06 -0.06

[0.03] [0.06] [0.08] [0.09] [0.03] [0.05] [0.06] [0.07]
St -0.11 -0.24∗ -0.37∗∗ -0.52∗∗ -0.09∗ -0.17∗ -0.27∗∗ -0.35∗∗

[0.07] [0.13] [0.17] [0.21] [0.05] [0.09] [0.11] [0.14]

Adj.R2 0.02 0.05 0.09 0.14 0.04 0.09 0.17 0.23

Panel B

Newst -0.29 -0.12 -0.80∗∗∗ -0.46 -0.45∗∗ -0.63∗ -0.82∗∗∗ -0.67∗∗

[0.21] [0.30] [0.24] [0.26] [0.18] [0.34] [0.27] [0.30]
Lt -0.04 -0.08 -0.12 -0.17∗ -0.04 -0.05 -0.06 -0.06

[0.03] [0.06] [0.08] [0.09] [0.03] [0.05] [0.06] [0.07]
St -0.10 -0.23∗ -0.37∗ -0.52∗∗ -0.10∗∗ -0.18∗∗ -0.26∗∗ -0.35∗∗

[0.07] [0.12] [0.17] [0.20] [0.04] [0.08] [0.11] [0.13]

Adj.R2 0.02 0.05 0.11 0.14 0.04 0.08 0.15 0.21

Panel C

Newst -0.11 -0.11 -0.99∗∗ -0.72∗∗ -0.28 -0.05 0.15 0.38
[0.34] [0.35] [0.42] [0.29] [0.29] [0.47] [0.36] [0.29]

Lt − Lt−1 -0.06 0.14 0.19 0.29 -0.19 -0.50∗ -0.77∗∗∗ -0.89∗∗∗

[0.16] [0.15] [0.16] [0.17] [0.17] [0.24] [0.22] [0.18]
St − St−1 0.03 0.29 0.23 0.38 -0.15 -0.11 -0.02 -0.15

[0.19] [0.20] [0.20] [0.23] [0.16] [0.20] [0.18] [0.21]
Lt -0.04 -0.08 -0.12 -0.17∗ -0.03 -0.05 -0.06 -0.06

[0.03] [0.06] [0.08] [0.09] [0.03] [0.05] [0.06] [0.07]
St -0.11 -0.24∗ -0.37∗ -0.52∗∗ -0.09∗ -0.17∗ -0.27∗∗ -0.35∗∗

[0.07] [0.13] [0.17] [0.21] [0.05] [0.09] [0.11] [0.14]

Adj.R2 0.01 0.05 0.10 0.14 0.04 0.08 0.16 0.23
N 240 240 240 240 237 234 231 228
Sample 1980-1999 1980-1999 1980-1999 1980-1999 2000-2019 2000-2019 2000-2019 2000-2019

Panel D

Newst,FOMC 0.11 -0.01 -1.89 -0.44 -0.99∗∗ -0.74∗ -1.18 0.09
[0.77] [1.04] [1.56] [1.56] [0.46] [0.39] [0.75] [0.56]

Newst,Other -0.25 -0.17 -0.45 -0.32 -0.02 0.21 0.65 0.49
[0.33] [0.45] [0.48] [0.43] [0.29] [0.57] [0.41] [0.41]

Lt − Lt−1 0.09 0.03 0.03 -0.00 -0.20 -0.51∗∗ -0.79∗∗∗ -0.89∗∗∗

[0.18] [0.21] [0.24] [0.27] [0.16] [0.24] [0.20] [0.18]
St − St−1 0.20 0.30 0.33 0.55∗∗ -0.17 -0.13 -0.05 -0.16

[0.24] [0.27] [0.23] [0.25] [0.16] [0.20] [0.18] [0.21]
Lt -0.07∗ -0.13∗ -0.18∗ -0.20∗ -0.03 -0.05 -0.06 -0.06

[0.03] [0.06] [0.09] [0.10] [0.03] [0.05] [0.06] [0.07]
St -0.07 -0.17 -0.28 -0.42∗ -0.10∗∗ -0.18∗ -0.28∗∗ -0.36∗∗

[0.07] [0.14] [0.19] [0.21] [0.05] [0.09] [0.11] [0.14]

Adj.R2 0.03 0.08 0.14 0.16 0.05 0.09 0.18 0.23
N 216 216 216 216 237 234 231 228
Sample 1982-1999 1982-1999 1982-1999 1982-1999 2000-2019 2000-2019 2000-2019 2000-2019
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Figure 1: Regressions of changes in long-term yields on short-term rates. This figure plots the
estimated regression coefficients βh from equation (1.1) versus horizon (h) for the pre-2000 and post-2000

sample: y
(10)
t+h −y

(10)
t = αh+βh(y

(1)
t+h−y

(1)
t )+εt,t+h. The dependent variable is the h-month change in the

10-year nominal zero-coupon U.S. Treasury yield and the independent variable is the h-month change in
the 1-year nominal zero-coupon U.S. Treasury yield. Changes are considered with daily data (plotted as
h = 0 in the figure) and with monthly data using h = 1, ..., 12-month changes.
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Figure 2: Rolling regression estimates of equations (1.1) and (1.2) This figure plots rolling
estimates of the slope coefficients in equations (1.1) and (1.2) with h = 12-month changes using 10-year
rolling windows for estimation. Results are plotted against the midpoint of the 10-year rolling window.
95% confidence intervals are included (shaded areas), formed using Newey-West standard errors with a lag
truncation parameter of 18 and 95% critical values from the asymptotic theory of Kiefer and Vogelsang
(2005). Specifically, the 95% confidence interval is ±2.41 times the estimated standard errors as opposed
to ±1.96 under traditional asymptotic theory.
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Figure 3: Break tests for equations (1.1) and (1.2) This figure plots the Wald test statistic for
each possible break date in equations (1.1) and (1.2) with h = 12-month changes from a fraction 15%
of the way through the sample to 85% of the way through the sample. The horizontal red dashed lines
denote 10%, 5%, and 1% critical values for the maximum of these Wald statistics as in Andrews (1993).
Our Wald tests use a Newey and West (1987) variance matrix with a lag truncation parameter of 18.
To address the tendency for tests based on the Newey-West variance estimator to over-reject in finite
samples, we use the Cho and Vogelsang (2017) critical values for a null of no structural break. The Cho
and Vogelsang (2017) critical values are based on the asymptotic theory of Kiefer and Vogelsang (2005)
and are slightly larger than the traditional critical values from Andrews (1993).
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Figure 4: Predictable yield-curve dynamics following an impulse to short-term interest

rates. The figures plot the coefficients δ
(h)
3 versus horizon h from estimating equations (2.3) for various

horizons h = 1..., 12-months in the pre-2000 and post-2000 samples. We show results for 10-year yields

(zt = y
(10)
t ), 10-year forward rates (zt = f

(10)
t ), level (zt = Lt) and slope (zt = St). 95% confidence

intervals are shown as dashed lines, formed using Newey-West standard errors and 95% critical values from
the asymptotic theory of Kiefer and Vogelsang (2005). We use a Newey-West lag truncation parameter
of 0 for h = 1 and d1.5× he for h > 1.
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Figure 5: Model-implied coefficients βh versus horizon (h) in months. The first figure shows the
model-implied βh coefficients from equation (3.11) for the pre-2000 and post-2000 calibrations discussed
in the text. The second figure isolates the role of slow-moving capital in the post-2000 calibration,
alternately setting q = 100% (“No slow-moving capital”) and q = 30% (“With slow-moving capital”).
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Figure 6: Model-implied impulse response functions for the post-2000 calibration. For the
post-2000 calibration, we show the response of short-term and long-term interest rates following a one-
time shock to short-term interest rates. We plot short-term nominal interest rates (it), long-term nominal
yields (yt), the term spread (yt− it), and the term premium (tpt). Initially, short-term nominal rates are
at their steady-state level of ı̄ = 3% and the term premium on long-term nominal bonds is at a steady-
level of 2%. We then assume there is a 50 bp shock to both the persistent and transient components of
the short rate that lands at t = 12, leading short-term nominal rates to jump from 3% to 4%.
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Figure 7: Counterfactual paths of ten-year yields in selected “conundrum” episodes. This
figure plots 1- and 10-year yields in the original 2004 “conundrum” episode, the 2008 “conundrum in
reverse” episode and the “2017 conundrum.” As described in the text, we also plot counterfactual 10-year
yields (Alt 10-yr) generated from restricting the slope to depend on lags of level and slope, but not also
on lagged changes in level and slope.
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A Appendix

In this Appendix, we formalize the three supply-and-demand driven channels of rate amplification dis-
cussed in the main text: the mortgage refinancing channel, the investor overextrapolation channel, and
the reaching-for-yield channel.

A.1 The mortgage refinancing channel

The model setup follows Malkhozov et al. (2016).35 There is a constant face value M of outstanding long-
term, fixed-rate mortgages with an embedded prepayment option. The primary mortgage rate, denoted
yMt , equals the long-term bond yield, yt, plus a constant spread, λ: yMt = yt + λ. (This constant spread
play no role in the resulting analysis and can be set to zero without loss of generality.) Let cMt denote
the average coupon on outstanding mortgages at the beginning of time t. We assume that cMt evolves
according to the following law of motion:

cMt+1 − cMt = −η · (cMt − yMt ), (A.1)

where η ∈ [0, 1]. The difference between the beginning-of-period average mortgage coupon cMt and the
current primary mortgage rate yMt is called the “refinancing incentive.” Thus, according to equation (A.1),
when the refinancing incentive is higher at time t, more households refinance their existing high-coupon
mortgages at time t, leading the average mortgage coupon to fall from t to t + 1. Iterating on equation
(A.1) and making use of the fact that yMt = yt + λ, we obtain:

cMt =
∑∞

j=0 η (1− η)j yMt−1−j =
∑∞

j=0 η (1− η)j yt−1−j + λ. (A.2)

Thus, the average mortgage coupon is just a backward-looking, geometric average of past long-term yields
plus a constant. While clearly a simplification, this is a good empirical description of the average coupon
on outstanding mortgages.36

We assume the effective gross supply of long-bonds that bond investors must hold at time t is

st = M ·DURMt , (A.3)

whereM is face value of outstanding mortgages andDURMt is the average “duration” or effective maturity
of outstanding mortgages at time t.37 When st is high, bond investors must collectively bear greater
interest rate risk in equilibrium. We assume that average mortgage duration at time t is

DURMt = DUR
M −N ·

(
cMt − yMt

)
, (A.4)

where N > 0 is the so-called “negative convexity” of the average mortgage. Intuitively, when the re-
financing incentive (cMt − yMt ) is high, many households are likely to refinance their mortgages in the
near-term, implying that the average mortgage behaves more like a short-term bond—i.e., DURMt is
low and bond investors must bear less interest rate risk. By contrast, when the refinancing incentive is
low, households are less likely to refinance and the typical mortgage behaves more like a long-term bond.
Again, this is a good empirical description of DURMt (Hanson, 2014; Malkhozov et al., 2016).38

35Hanson (2014) explores the mortgage refinancing channel in a two period model. We follow the modelling approach in
Malkhozov et al. (2016) since this allows us to speak to the dynamics which are our primary focus here.

36A realistic elaboration would incorporate state-dependence in the elasticity of refinancing with respect to the incentive.
For instance, one might assume cMt+1 − cMt = −η

[
cMt − yMt

]
· (cMt − yMt ) where η [·] > 0 and η′ [·] > 0, implying that the

average coupon falls more when cMt > yMt than when cMt < yMt —see e.g., Berger et al. (2018); Eichenbaum et al. (2018)
37Formally, duration is the semi-elasticity of a bond’s price with respect to its yield. Thus, the longer a bond’s duration,

the greater is its exposure to movements in interest rates.
38As detailed in Hanson (2014), there are two key reasons why movements in expected mortgage refinancing temporarily

alters the aggregate amount of interest rate risk that specialized bond investors must bear. First, households only gradually
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Figure 8: Illustrative calibration of mortgage refinancing model.
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Combining equations (A.2), (A.3), and (A.4), the effective supply of long-bonds at time t is

st = M ·DURM +MN · (yt −
∑∞

j=0 η (1− η)j yt−1−j). (A.5)

In other words, bond investors must bear greater interest rate risk when the long-term yield is currently
high relative to its backward-looking, geometric average—i.e., when interest rates have recently risen.

In Internet Appendix C, we solve and calibrate this model of the mortgage refinancing channel. In
this version of the model, there are two reasons why shocks to short-term interest rates give rise to
transitory movements in the term premium component of long-term yields. First, when η > 0, mortgage
refinancing waves trigger temporary shifts in the effective supply of long-term bonds—i.e., these effective
supply shocks are less persistent than the underlying shocks to short-term interest rates. Second, these
supply shocks are met by a slow-moving arbitrage response. This combination of transitory supply shocks
and a slow-moving arbitrage response creates short-lived imbalances in the market for long-term bonds,
leading long-term yields to temporarily overreact to short-term rates.39

Naturally, this version of the model can match the key stylized fact we have documented, namely
that βh = βh = Cov [yt+h − yt, it+h − it] /V ar [it+h − it] is a sharply declining function of h in the post-
2000 data but not in the pre-2000 data. As an illustrative calibration, we assume that MN = 2 in the
post-2000 data and MN = 0 in the pre-2000 calibration. In other words, we assume that the mortgage
refinancing channel is operative in the post-2000 period, but was not operative in the pre-2000 period.
We assume η = 0.15 in both periods. The values of all other model parameters, including q = 0.30 and
k = 12, are the same as those in the calibrations in Section 3.

refinance their mortgages following a decline in primary mortgage rates. Second, household borrowers do not alter their
asset-side holdings of long-term bonds to hedge the time-varying interest rate risk they are bearing on the liability side. In
combination, these features mean that households are effectively borrowing shorter term during refinancing waves when the
refinancing incentive, (cMt − yMt ), is high. As a result, households bear greater interest rate risk during refinancing waves,
while bond investors bear less risk. In summary, refinancing waves function like shocks to the effective supply of long-term
bonds because risk sharing between households and specialized bond investors is imperfect and varies over time.

39One simplification of this model is that all bond investors hold mortgage-backed securities (MBS) and, thus, bear a
time-varying amount interest rate risk. In practice, two different kinds of investors own MBS. One set of MBS investors—
e.g., mortgage banks and the government sponsored enterprises—“delta-hedge” the embedded prepayment option and, thus,
bear a (relatively) constant amount of interest rate risk over time. Other MBS investors do not delta-hedge and bear a time-
varying amount of risk. As discussed in Hanson (2014), in the first instance, it does not matter whether some MBS holders
delta-hedge the prepayment option since the relevant hedging flows correspond one-for-one with changes in the aggregate
quantity of duration risk. However, a slow-moving arbitrage response to refinancing waves arguably becomes more relevant
to the extent that some MBS investors delta-hedge their time-varying interest rate exposure.

59



A.2 Investor overextrapolation channel

Recalling that it = iP,t + iT,t, we assume that diagnostic investors make biased forecasts of the persis-
tent and transitory components of short-term interest rates. Following Maxted (2020), we assume the
expectations of diagnostic investors are given by:

EDt [iP,t+1] = ı̄+ ρP (iP,t − ı̄) + θ ·mP,t, (A.6a)

EDt [iT,t+1] = ρT iT,t + θ ·mT,t, (A.6b)

where

mP,t = κPmP,t−1 + εP,t = (iP,t − ı̄)− (ρP − κP )
∑∞

j=0
κjP (iP,t−j−1 − ı̄) , (A.7a)

mT,t = κTmT,t−1 + εT,t = iT,t − (ρT − κT )
∑∞

j=0
κjT iT,t−j−1, (A.7b)

θ ≥ 0, κP ∈ [0, ρP ], and κT ∈ [0, ρT ]. When θ = 0, diagnostic expectations coincide with rational
expectations, which we continue to denote using Et [·]. When θ > 0, equations (A.6) and (A.7) imply
that diagnostic investors tend to overestimate future short-term rates when short rates have recently
risen. And, the κP and κT parameters govern the persistence of their mistaken beliefs about short
rates.40 While diagnostic investors make biased forecasts of short rates, we assume for simplicity that
they form rational forecasts of all other relevant state variables.

A mass f of bond investors have diagnostic expectations and their demand for long-term bonds is:

ht = τ
EDt [rxt+1]

V arDt [rxt+1]
= τ

EDt [rxt+1]

V art [rxt+1]
, (A.8)

where EDt [rxt+1] denotes diagnostic investors’ biased expectation of bond excess returns.41 There is
a mass (1− f) of a bond investors with rational expectations. Of these rational investors, fraction q
are fast-moving with demands bt = τ (Et [rxt+1] /V art [rxt+1]) and fraction (1− q) are slow-moving and
only rebalance the portfolios every k periods. The demand for long-term bonds from the subset of slow-
moving investors who are active at time t is dt = τ(Et[

∑k
j=1 rxt+j ]/V art[

∑k
j=1 rxt+j ]). We assume the

gross supply of long-term bonds is constant over time and equal to s. Thus, the market clearing condition
for long-term bonds at time t is:

Active demand︷ ︸︸ ︷
fht + (1− f) qbt + (1− f) (1− q) k−1dt =

Active supply︷ ︸︸ ︷
s− (1− f) (1− q)k−1

∑k−1

i=1
dt−i. (A.9)

In Internet Appendix C, we solve for equilibrium in this setting. When short rates have recently
fallen, diagnostic investors underestimate future short-term interest rates and, as a result, want to hold
more long-term bonds. To accommodate this induced demand shock, rational investors must reduce
their holdings of long-term bonds, pushing down the term premium compensation required by rational
investors. Since the biases of diagnostic investors are tied to recent changes in short rates, this model is
nearly isomorphic to our reduced-form specification where the short-rate-driven shocks to bond supply
are more transient than short rates. In particular, this investor overextrapolation channel leads long-

40As shown in Maxted (2020), these κ parameters are a simple way of parameterizing the “background context” that
diagnostic investors use to assess the “representativeness” of incoming data for future states. Specifically, in the limit where
κP and κT → 0, the background context when making forecasts at time t is what diagnostic investors knew at time t − 1
as in Bordalo et al. (2017) and the resulting expectational errors are very short-lived. In the opposite limit where κP → ρP
and κT → ρT , the background context at time t is the unconditional distribution of short rates as in D’Arienzo (2020) and
the resulting expectational errors are far more persistent.

41We have V arDt [rxt+1] = V art [rxt+1] since, as shown by Maxted (2020), diagnostic investors perceive the same condi-
tional variance of future short-term interest rates as rational investors.
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Figure 9: Illustrative calibration of the investor overextrapolation model.
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term rates to temporarily overreact to movements in short rates due to the combination of (i) transitory
shifts in non-fundamental demand for long-term bonds that are triggered by short rate shocks and (ii) a
slow-moving arbitrage response to these non-fundamental demand shifts.

As shown in the illustrative calibration below, this model in which investors overextrapolate changes
in short-term interest rates can match the key stylized facts we document. In the post-2000 period,
we assume that f = 50% of investors have diagnostic expectations with parameter θ = 0.5 (we set
κP = κT = 0.8) and that q = 0.15 and k = 18, so there is a fairly slow-moving arbitrage response to
the resulting non-fundamental shifts in demand for long-term bonds. In the pre-2000 period, we assume
that f = 0. As discussed in the main text, the rise in f is meant to capture the growing importance of
extrapolation-prone bond fund investors in the U.S. bond market in recent decades. The values of all
other model parameters are the same as those in the calibrations in Section 3.

A.3 Reaching-for-yield channel

We assume that fraction f of bond investors are “yield-seeking” and have non-standard preferences as
in Hanson and Stein (2015). The idea is that, for either frictional or behavioral reasons, these investors
care about the current yield on their portfolios over and above expected portfolio returns. Specifically,
yield-seeking investors’ demand for long-term bonds is:

ht = τ
yt − ii
V (1)

. (A.10)

Since Et [rxt+1] = (yt − ii) − (φ/ (1− φ)) · Et [yt+1 − yt], equation (A.10) implies that yield-seeking in-
vestors are only concerned with the current income or carry from holding long-term bonds and neglect
any expected capital gains and losses from holding long-term bonds. A mass (1− f) of a bond investors
are expected-return-oriented and have standard mean-variance preferences. Of these expected-return-
oriented investors, fraction q are fast-moving investors with demands bt = τ (Et [rxt+1] /V art [rxt+1])
and fraction (1− q) are slow-moving. The demand for long-term bonds from the subset of slow-moving
investors who are active at time t is dt = τ(Et[

∑k
j=1 rxt+j ]/V art[

∑k
j=1 rxt+j ]). We assume the gross

supply of long-term bonds is constant over time and equal to s. Thus, the market clearing condition for
long-term bonds at time t is the same as in equation (A.9).

In Internet Appendix C, we solve for equilibrium in this setting. To build intuition, first consider the
case where there is no slow-moving capital. In this case where q = 1, our model is simply an infinite-
horizon version of the 2-period model in Hanson and Stein (2015). Because expected mean reversion in
short rates implies that the yield curve is steep when short rates are low, yield-seeking investors’ demand
for long-term bonds is higher when short rates are lower. To accommodate this induced demand shock,
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Figure 10: Illustrative calibration of the investor reaching-for-yield model.
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expected-return-oriented investors must reduce their holdings of long-term bonds when short rates are
low, pushing down the term premium compensation they require. Thus, in the absence of slow-moving
capital, long-term rates are excessively sensitive to short rates because short rates and term premium
move in the same direction. However, without slow-moving capital, this excess sensitivity is not greater
at short horizons—i.e., changes in short rates do not create temporary market imbalances.

When q < 1, our model adds a slow-moving arbitrage response to the price-pressure created by
yield-seeking investors. This means that the excess sensitivity of long-term rates to short-term rates
will be greatest at short horizons. The intuition is simple. Suppose there is an decline in short rates
which steepens the yield curve, thereby boosting yield-seeking investors’ demand for long-term bonds.
In the short-run, the only expected-return-oriented investors can absorb this induced demand shock for
long-term bonds are the fast-moving ones and the slow-moving ones who initially happen to be active.
However, the mass of slow-moving investors who can absorb this induced demand shock grows over time.
As a result, the excess sensitivity of long-term rates to movements in short-term rates is greatest at high
frequencies and diminishes at lower frequencies.

This model of the reaching-for-yield channel can qualitatively match the key stylized facts we have
documented. Specifically, in the post-2000 period, we assume that f = 0.5, q = 0.1, and k = 24—i.e.,
we assume a good deal of reaching for yield and a fairly sluggish arbitrage response. By contrast, we
assume that f = 0 in the pre-2000 period. The rise in f is consistent with the idea that yield-seeking
investor behavior has become stronger in recent decades. The values of all other model parameters are
the same as those in the calibrations in Section 3. As shown below, we see that βh is decreasing in h in
the post-2000 calibration, but is increasing in h—and far less variable—in the pre-2000 calibration.

While the combination of reaching-for-yield and slow-moving capital generates horizon-dependent
sensitivity, our calibrations struggle to quantitatively match the profile of βh seen in the post-2000 data.
Specifically, comparing the calibration of the reaching-for-yield model in Figure 10 with those for the
mortgage refinancing and investor overextrapolation models in Figures 8 and 9, respectively, we see
that the former model struggles generate quantitatively match the steep post-2000 profile of βh. This
is because the reaching-for-yield channel generates highly persistent shifts rate-amplifying net supply,
whereas the refinancing and overextrapolation channels generate transitory shifts in net supply. And,
as we have emphasized throughout, strongly horizon-dependent excess sensitivity is most likely to arise
when transitory rate-amplifying supply-and-demand shocks are met by a slow-moving arbitrage response.
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