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Abstract

We use laboratory experiments to test models of ‘rational inattention’, in which

people acquire information to maximize utility net of information costs. We show that

subjects adjust their attention in response to changes in incentives in line with the

rational inattention model. However, our results are qualitatively inconsistent with

information costs based on Shannon entropy, as is often assumed in applied work. Our

data is best fit by a generalization of the Shannon model which allows for a more flexible

response to incentives and for some states of the world to be harder to distinguish than

others.

1 Introduction

Attention is a scarce resource. The impact of attentional limits has been identified in many

important economic settings.1 This has lead to a wide range of modeling approaches aimed
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We acknowledge the Junior Faculty Summer Research Support Grant from Columbia University which
provided funding for the project. Research funds were also provided by Princeton University and New York
University. This paper reports on experiments similar to those in the unpublished working papers Caplin
and Dean [2013] and Caplin and Dean [2014] and subsumes those parts of that paper that are common.
None of the results presented in this paper have been published previously.
†Department of Economics, Columbia University. Email: mark.dean@columbia.edu
‡Economic Science Institute, Chapman University, neligh@chapman.edu
1For example, shoppers may buy unnecessarily expensive products due to their failure to notice whether

or not sales tax is included in stated prices (Chetty et al. [2009]). Buyers of second-hand cars focus their
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at understanding behavior under such constraints. Particularly influential are models of

‘rational inattention’2 which assume that people choose the information they attend to in

order to maximize the expected utility of subsequent choices net of informational costs.3

The widespread use of the rational inattention model leads to a number of natural research

questions. First, do people in fact actively adjust their attention in response to incentives?

Second, do they do so in line with the predictions of the rational inattention model? Third,

what do the costs of attention look like? Fourth, how much heterogeneity in information

costs is there in the population?

In this paper we use a sequence of four laboratory experiments to provide answers to

these questions. The basic set up is a simple information acquisition task in which subjects

are presented with a number of balls on the screen which can either be red or blue. They

must then choose between different actions, the payoff of which depends on the fraction of

balls which are red (which we call the ‘state of the world’). The prior probability of each

state is known to the subject. There is no time limit or extrinsic cost of information in the

experiment, so if subjects face no intrinsic cost of information acquisition the experiment

would be trivial: they would simply ascertain the number of red balls on the screen and

choose the best action given this state. As we shall see, subjects in general do not behave

in this way.

Within this setup the four experiments vary different features of the decision problem,

including the range of available actions, the value of correct choice and the prior probability

of possible states. By repeatedly exposing the subject to each decision problem we can collect

‘state dependent stochastic choice’(SDSC) data, or the probability that each action is chosen

in each state. Such data is particularly useful for testing models of rational inattention, and

learning about attention cost (see Caplin and Dean [2015]).

In order to answer the four questions above, we rely on several recent theoretical advances.

Caplin and Martin [2015b] and Caplin and Dean [2015] provide necessary and suffi cient con-

ditions for SDSC data to be consistent with a general model of rational inattention which is

agnostic about information costs (henceforth the general model): The No Improving Action

attention on the leftmost digit of the odometer (Lacetera et al. [2012]). Purchasers limit their attention to
a relatively small number of websites when buying over the internet (Santos et al. [2012]).

2We use the term ‘rational attention’to describe any model in which information is chosen to maximize
expected utility net of some additive cost term, while recognizing that others use this term to refer to the
specific case when costs are based on the Shannon mutual information between prior and posterior beliefs.
We refer to the latter as the ‘Shannon model’.

3Recent examples include Sims [2003], van Nieuwerburgh and Veldkamp [2009], Hellwig et al. [2012],
Matejka and McKay [2015] and Caplin and Dean [2015].
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Switches (NIAS) condition ensures that choice of action is optimal given the information

gathered, while the No Improving Attention Cycle (NIAC) condition ensures that the allo-

cation of attention across decision problems can be rationalized by some cost function. Using

this ‘revealed cost’approach, bounds can be placed on the costs associated with different

information structures.

Complementary to this agnostic approach to attention costs, we also ask whether our

data is in line with specific cost functions. Here we initially focus on costs which are linear

in Shannon mutual information (henceforth the Shannon model). Mutual information was

introduced to the economics literature as a measure of attention costs by Sims [2003], and

has been justified on information theoretic grounds, related as it is to the average number

of signals needed to generate a given set of posterior beliefs (see Sims [2003]). The resulting

model has proved popular in theoretical and applied research.4 Costs which are linear in

mutual information have received particular attention due to the link between resulting be-

havior and the Logit model of discrete choice (see Matejka and McKay [2015]). Compared to

the general model, the Shannon model is extremely restrictive, with only a single parameter

related to the marginal cost of information. Recent works by Matejka and McKay [2015]

and Caplin et al. [2017]5 have highlighted a number of behavioral regularities implied by

the Shannon model: The Locally Invariant Posteriors (LIP) and Invariant Likelihood Ratio

(ILR) conditions restrict how optimal information acquisition responds to changes in prior

beliefs and incentives respectively. The Shannon model also implies that behavior is invari-

ant to the addition or subtraction of states which are identical in terms of the payoffs of all

available actions - a property labeled Invariance Under Compression (IUC) by Caplin et al.

[2017]. This property means the model is incommensurate with any notion of ‘perceptual

distance’, by which some states are easier to differentiate than others.

Our sequence of experiments is designed to first determine whether subjects do actively

adjust their attention, (experiment 1), then to test key features of the general and Shannon

models, as outlined above. Each of the experiments 2-4 varies a basic property the decision

problem (respectively incentives, prior beliefs and number of states), and so together provide

a rich data set for studying attentional responses as well as providing simple tests of each

of the key features of the Shannon model (respectively ILR, LIP and IUC). This structure

allows us to take a ‘general to specific’approach to inattention, by first identifying active

adjustment of attention, then asking whether these changes are commensurate with any

model in the rational inattention class, before finally asking in what way the behavior is

4See for example the application of the model to investment decisions (e.g Mondria [2010]), global games
(Yang [2015]), and pricing decisions (Mackowiak and Wiederholt [2009], Matějka [2016], Martin [2017]).

5See also Caplin and Dean [2013].
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consistent with the Shannon model.

Experiment 1 is designed to distinguish rational inattention from models in which atten-

tion is unresponsive but choice is stochastic - including random utility (Block and Marschak

[1960]) and signal detection theory (Green and Swets [1966]). The key observation is that

these alternative models imply the property of Monotonicity: adding alternatives to the

choice set cannot increase the probability of choosing previously available options. This

property is not implied by models of rational inattention, and Matejka and McKay [2015]

describe a scenario in which informational spillovers could lead a rationally inattentive de-

cision maker to violate Monotonicity. We provide an experimental implementation and find

that Monotonicity is strongly rejected by the data in a manner broadly consistent with

rational inattention, indicating the need for models in this class.

Experiment 2 examines the response of information acquisition to incentives using a

simple two state/two action design in which we vary the benefit from choosing the correct

action. This provides a simple test of the NIAC and NIAS conditions which characterize

the general model, in an admittedly undemanding setting. The aggregate data strongly

supports both conditions, and at the individual level 81% of subjects exhibit no significant

violation of either. This implies that there is a notion of information costs which rationalizes

the behavior of the majority of subjects. We find a high degree of heterogeneity in these

costs across subjects. Both in the aggregate and at the individual level we find that subjects

typically respond less strongly to incentives than predicted by Shannon costs.

Experiment 3 looks at the reaction of behavior to changes in prior beliefs, again in a

simple two state/two action setting. This provides us both with a more sophisticated test

of the NIAS condition, and a test of the LIP condition. The former is largely satisfied, both

at the aggregate and the individual level - in particular we find little evidence of base rate

neglect in our subject’s choices. The evidence for the LIP condition is more mixed, but some

aspects of the data do agree with this more stringent condition.

Our final experiment tests the IUC condition of the Shannon model using a decision

problem with multiple states but only two actions to choose from, the payoffs of which are

the same in many different states. The Shannon model implies that behavior should be the

same in all states which are payoff equivalent. This is incommensurate with the idea of a

perceptual distance, by which some states are easier to differentiate between than others.

We show that, in our experimental set up, IUC performs poorly: subjects are better at

differentiating between states which are further apart (e.g. 60 vs 50 red balls) than those

that are closer together (e.g. 51 vs 50 red balls).
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Our experiments uncover behavior that is rationally inattentive but not qualitatively

consistent with Shannon costs for at least two reasons: subjects respond too slowly to in-

centives and are affected by perceptual distance. In section 6 we fit to our data a variety of

models that have the potential to solve these problems, in order to determine if they pro-

vide a quantitatively better fit of our subject’s choices. In order to better model responses

to incentives we take two approaches. First, we consider a cost function from the class of

‘posterior separable’models, introduced by Caplin and Dean [2013], which retain from the

Shannon model the feature that costs are based on the expected change in some convex

function of beliefs, but relax the assumption that this function must be Shannon entropy.6

Second we consider models in which Shannon costs are raised to a power. In order to tackle

the issue of perceptual distance we make use of the ‘neighborhood’structure of Hébert and

Woodford [2017], by which each state is assigned to one or more neighborhoods, and the cost

of differentiating between states depends on the number of neighborhoods they share. Our

results support a model which makes use of a neighborhood structure and either generalized

entropy (Shorrocks [1980]), or a nonlinear function of mutual information as a basis of costs.

To the best of our knowledge ours is the first paper to use experimental data to imple-

ment the tests of rationally inattentive behavior that have been uncovered by the recent

theoretical literature. Overall, there is surprisingly little experimental work in economics

testing models of inattention. Notable exceptions include Gabaix et al. [2006], Caplin et al.

[2011], Taubinsky [2013], Khaw et al. [2016] and Ambuehl and Li [2018]. These papers are

designed to test models which are very different to those we consider here, and as such make

use of very different data. Contemporaneous to this paper, Ambuehl et al. [2018] test two

implications of the Shannon model in a market setting - finding support for both - but do not

test the two implications of Shannon we find violated in our study. Pinkovskiy [2009] and

Cheremukhin et al. [2015] fit the Shannon model using data on stochastic choice between

lotteries, but do not test the sharp behavioral predictions from that model as we do here.

Bartošet al. [2016] report the results of a field experiment which supports rationally inatten-

tive behavior in labor and housing markets, but which is not designed to test the necessary

and suffi cient conditions of rational inattention as we do in this paper. More broadly, our

work fits in to a recent move to use richer data to understand the process of information

acquisition (for example Krajbich et al. [2010], Brocas et al. [2014], Polonio et al. [2015], and

Caplin and Martin [2015a]). In contrast to the relatively small literature in economics, there

is a huge literature in psychology that examines behavior in perceptual tasks (for example

see Ratcliff et al. [2016] for a recent review, and Krajbich et al. [2011] for an application

6Models in this class have recently been used for several economic applications - see for example Clark
[2016], Morris and Strack [2017] and Hébert and Woodford [2017].
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to economic decision making). These studies differ from ours in many ways including the

nature of the decision problem, incentivization, type of task and way in which the data is

analyzed. We discuss our relationship to these literatures in section 6.

The paper is organized as follows. Section 2 describes the theory underlying our exper-

iments. Section 3 describes the experimental design in detail. Section 4 provides results

of the qualitative tests of the RI and Shannon models, section 5 describes our estimation

results, and section 6 describes the related literature. Section 7 concludes.

2 Theory

2.1 Set-Up and Data

For our discussion of the testable implications of the rational inattention model we use the

set up and notation of Caplin and Dean [2015].

We consider a decision maker (DM) who chooses among actions, the outcomes of which

depend on which of a finite number of states of the world ω ∈ Ω occurs. The utility of action

a in state of the world ω is denoted by u(a, ω).

A decision problem is defined by a set of available actions A and a prior over states of

the world µ ∈ ∆(Ω), both of which we assume can be chosen by the experimenter. The data

observed from a particular decision problem is a state dependent stochastic choice (SDSC)

function, which describes the probability of choosing each available action in each state of the

world. For a decision problem (µ,A) we use P(µ,A) to refer to the associated SDSC function,

with P(µ,A)(a|ω) the probability that action a ∈ A was chosen in state ω ∈ Ω (where it will

not cause confusion, we will suppress the subscript on P ). Note that a SDSC function also

implies a conditional probability distribution over states, γa, associated with each action

a ∈ A which is chosen with positive probability. By Bayes’rule we have

γa(ω) = P (ω|a) =
µ(ω)P (a|ω)∑

ω′∈Ω µ(ω′)P (a|ω′) . (1)

These constructs, which we term ‘revealed posteriors’, will be useful in testing the various

theories we discuss below.
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2.2 The Rational Inattention Model

The rational inattention model assumes that the DM can gather information about the state

of the world prior to choosing an action. Importantly, they can choose what information to

gather conditional on the decision problem they are facing. The DM must trade off the costs

of information acquisition against the benefits of better subsequent choices. The rational

inattention model assumes that the DM solves this trade off optimally.

In each decision problem, the DM chooses an information structure: a stochastic mapping

from objective states of the world to a set of subjective signals. While this formalization

sounds somewhat abstract, its subsumes the vast majority of models of optimal information

acquisition that have been proposed (see Caplin and Dean [2015]). Note that we assume

that the subject’s choice of information structure is not observed, and so has to be inferred

from their choice data.

Having selected an information structure, the DM can condition choice of action only on

those signals. For notational convenience we identify each signal with its associated posterior

beliefs γ ∈ Γ. Feasible information structures satisfy Bayes’rule, so for any prior µ the set

of possible structures Π(µ) comprises all mappings π : Ω→∆(Γ) that have finite support

Γ(π) ⊂ Γ and that satisfy Bayes’rule, meaning that for all ω ∈ Ω and γ ∈ Γ(π),

γ(ω) = Pr(ω|γ) =
Pr(ω ∩ γ)

Pr(γ)
=

µ(ω)π(γ|ω)∑
υ∈Ω

µ(υ)π(γ|υ)
,

where π(γ|ω) is the probability of signal γ given state ω and γ(ω) is the probability of state

ω conditional on receiving signal γ. Note that γ is distinct from γa. The former represents

the decision maker’s beliefs after the receipt of a signal and as such is not observable to

the experimenter, while the latter represents state probabilities conditional on the choice of

action a, and so can be estimated from SDSC data.

We assume that there is a cost associated with the use of each information structure,

with K(µ, π) denoting the cost of information structure π given prior µ. We define G as

the gross payoff of using a particular information structure in a particular decision problem.

This is calculated assuming that actions are chosen optimally following each signal,

G(µ,A, π) ≡
∑
γ∈Γ(π)

[∑
ω∈Ω

µ(ω)π(γ|ω)

][
max
a∈A

∑
ω∈Ω

γ(ω)u(a, ω)

]
.
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Here the first bracketed term is the probability of each signal, and the second is the maximum

achievable expected utility from alternatives in A given the resulting beliefs.

The rational inattention model assumes that the decision maker choose actions in order to

maximize utility given information, and chooses information structures to maximize utility

net of costs, i.e.

G(µ,A, π)−K(µ, π).

Our assumptions on the data mean that G is observable but K is not. We use the

convention of describing this as a general model of rational inattention. Other authors have

used rational inattention to refer to the case in which costs are based on mutual information.

We refer to this as the Shannon model, as discussed below.

Caplin and Dean [2015] provide necessary and suffi cient conditions on SDSC data such

that there exists some cost function which rationalizes the general model. The No Improving

Action Switches (NIAS) condition, introduced by Caplin and Martin [2015b], ensures that

choices are consistent with effi cient use of whatever information the DM has. It states that,

for any action a which is chosen with positive probability, it must be that a maximizes

expected utility given γa - the posterior distribution associated with that act. The NIAS

condition holds for any model in which information is used optimally - regardless of how this

information is selected - and so is not specific to the case of rational inattention.

The No Improving Attention Cycles (NIAC) condition ensures that choice of information

structure itself is rationalizable according to some underlying cost function. It relies on

the concept of a revealed information structure, which can be recovered from the data by

assuming that each chosen action is associated with exactly one signal.7 Caplin and Dean

[2015] provide a formal definition of the revealed information structure, but essentially it

assumes that the DM used an information structure which consists of the posteriors described

in equation 1 for each chosen act, with the probability of receiving that posterior given by

the (unconditional) probability of choosing the associated act. NIAC then states that the

total gross payoff (measured by G) in a collection of decision problems cannot be increased

by switching revealed information structures between those problems.

In the interests of brevity, we do not provide a formal definition of NIAS or NIAC here

(we refer the interested reader to Caplin and Dean [2015]). Instead we will describe in section

3 how these conditions apply to our specific experiments.

7Note that we do not require that this is true in the underlying model. Caplin and Dean [2015] show
that constructing a revealed information structure in this manner is enough to test all models in the rational
inattention class.
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We emphasize that the flexibility in the choice of the function K means that general

model includes as special cases almost all models of optimal costly information acquisition

that have been discussed in the literature. In particular, because we do not a priori rule out

the possibility that the cost of some information structures is infinite, this formalization can

cope with models in which the DM is restricted to choosing from certain types of information

structure. These include those in which agents can either pay to receive all information or

learn nothing,8 those that apply additive normal noise to the agent’s information and then

allows them to pay a cost to decrease the variance of that noise,9 in which the decision maker

chooses a partition structure on the state space,10 or in which information is free up to a hard

capacity constraint.11 See Caplin and Dean [2015] for a discussion. The only substantive

assumption is that the objective function is additively separable between gross utility and

costs (see Chambers et al. [2018] for a discussion of non-separable models).

2.2.1 Rational Inattention vs Other Models of Stochastic Choice

Rational inattention is not the only model which allows for stochasticity in choice. Two

highly influential alternatives are the random utility model (Block and Marschak [1960],

McFadden [1974], Gul and Pesendorfer [2006]) and Signal Detection Theory (Green and

Swets [1966]). Here we describe how these can be differentiated from rational inattention.

The random utility model (RUM) assumes that people have many possible utility func-

tions which may govern their choice. On any given trial one of these utility functions is

selected according to some probability distribution, and the DM will choose in order to max-

imize that function. Stochasticity therefore derives from changes in preferences, rather than

noise in the perception of the state of the world.

Typically the RUM has not been applied to situations in which there is an objective,

observable state of the world, and there are many possible ways that the model could be

adapted to such a situation.12 However, as long as we maintain the assumption that the DM

does not actively change their choice of information in response to the decision problem, all

variants of the RUM will imply the property of Monotonicity. This states that adding new

alternatives to the choice set cannot increase the probability of an existing alternative being

8For example Grossman and Stiglitz [1980], Barlevy and Veronesi [2000] and Reis [2006].
9For example Verrecchia [1982] and Hellwig et al. [2012].
10For example Robson [2001] and Ellis [2013].
11For example Sims [2003]
12For example, the DM could be fully informed about the underlying state, have no information about the

state, or receive a noisy signal regarding the state.
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chosen:

Definition 1 A SDSC satisfies Monotonicity if, for every µ ∈ ∆(Ω), A ⊂ B, ω ∈ Ω and

a ∈ A
P(µ,A)(a|ω) ≥ P(µ,B)(a|ω)

That Monotonicity is a necessary property of data generated by random utility models is

intuitively obvious: Adding new alternatives to a set A can only (weakly) reduce the set of

utility functions for which any a ∈ A is optimal. However, Monotonicity is not implied by
rational inattention models, as illustrated by Matejka and McKay [2015]. The introduction

of a new act can increase the incentives to acquire information, which may in turn lead

the DM to learn that an existing act was of high value. We make use of this insight in

Experiment 1.

Signal Detection Theory (SDT) is popular model in the psychological literature on per-

ception and choice. Essentially it assumes that people receive a noisy signal about the state

of the world, then choose actions optimally given subsequent beliefs. As such, it is a special

case of the general model with the added assumption that the costs of all but one information

structure are infinite. A subject behaving according to SDT will therefore satisfy NIAC and

NIAS. However, they will also satisfy Monotonicity: as information selection cannot adjust,

the only way that adding a new option can affect choice is by being chosen instead of one of

the existing options upon the receipt of some signal. Thus a violation of Monotonicity rules

out SDT as well as random utility.

2.3 The Shannon Model

The general model is almost completely agnostic about the form of information costs. How-

ever, for many applied purposes, specific cost functions are assumed. One of the most

popular approaches is to base costs on the Shannon mutual information between states and

signals. Shannon costs can be justified on axiomatic or information theoretic grounds (see

for example Matejka and McKay [2015]), and have been widely applied in the subsequent

literature.

Mutual information costs have the following form

Ks(µ, π) = κ

 ∑
γ∈Γ(π)

π(γ) [−H(γ)]− [−H(µ)]


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where π(γ) =
∑

ω∈Ω µ(ω)π(γ|ω) is the unconditional probability of signal γ and H(γ) =∑
ω∈−γ(ω) ln γ(ω) is the Shannon entropy of distribution γ.13 Mutual information can

therefore be seen as the expected reduction in entropy due to the observation of signals from

the information structure.

Note that we focus on the case in which costs are linear in Shannon mutual information.

In section 5 we discuss costs which are nonlinear transforms of mutual information. An

alternative mode is one in which subjects have a fixed mutual information constraint, with

zero costs up to this constraint and infinite beyond it (e.g. Sims [2003]). This model has the

implication that subjects cannot gather more information as incentives increase. As this is

strongly rejected by the results of experiment 2 below, we do not focus on this case.14

Clearly, the Shannon model puts much more structure on information costs than the

general model as it has essentially one degree of freedom: the marginal cost of mutual in-

formation κ. This in turn means that the Shannon model puts much tighter restrictions

on behavior than the general model. These restrictions have been discussed in several re-

cent papers (particularly Caplin and Dean [2013], Matejka and McKay [2015] and Caplin

et al. [2017]). In this paper we shall concern ourselves with three implications of the Shan-

non model: Invariant Likelihood Ratio, Locally Invariant Posteriors and Invariance Under

Compression.

The Invariant Likelihood Ratio (ILR) property (Caplin and Dean [2013]) states that for

any two chosen actions, the posterior probabilities about a particular state conditional on

those actions depend only on the relative payoffs of those actions and information costs

γa(ω)

γb(ω)
=

exp(u(a, ω)/κ)

exp(u(b, ω)/κ)

As we shall see in the discussion of experiment 2 below, this puts tight restrictions on

the way in which information acquisition can change with the rewards for doing so.

The Locally Invariant Posterior (LIP) property states that local changes in prior beliefs do

not lead to changes in optimal posterior beliefs.15 Specifically, if, for some decision problem

13Recall that we identify a signal with its resulting posterior ditribution.
14We also focus on the ‘unrestricted’version of the Shannon model, in which the DM is free to choose any

information structure they wish. A possible modification is to restrict the DM to learn about certain events
independently - for example Mackowiak and Wiederholt [2009] require that firms have to receive distinct
signals regarding aggregate and idiosyncratic shocks. The question of whether a model of this type, for
example requiring the subject to learn separately about the color of each ball, could explain our data is an
interesting avenue for future research.
15Again, see Caplin and Dean [2013] and Caplin et al. [2017] for further details.
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(µ,A), the associated SDSC reveals some set of posteriors {γa}a∈A, and we change the prior
to some µ′ in such a way that these posteriors are still feasible (i.e. µ′ is in the convex hull

of {γa}a∈A), the LIP property states that precisely these posteriors should also be used in
the decision problem (µ′, A). This property holds for the broader class of posterior separable

cost functions we discuss in section 5. We will test this proposition in experiment 3.

The ILR condition also implies that posterior beliefs depend only on the payoffs of actions

in a particular state, not on any other features of the state. This implies that behavior

should not be affected by adding or subtracting states which are identical in payoff terms

for all acts. Caplin et al. [2017] show that this ‘Invariance Under Compression’property

fully characterizes the Shannon model within a the broader class of posterior separable

models described in section 5. Behaviorally, one implication of this property is that the

Shannon model lacks any notion of ‘perceptual distance’: that some states might be harder

to differentiate than others. We test this implication in experiment 4.

3 Experimental Design

3.1 Set Up

We now introduce our experimental design which we use to produce state dependent sto-

chastic choice data for each subject. In a typical question in the experiment, a subject is

shown a screen on which there are displayed 100 balls, some of which are red and some of

which are blue. The state of the world is determined by the number of red balls on the

screen. Prior to seeing the screen, subjects are informed of the probability distribution over

such states. Having seen the screen, they choose from a number of different actions whose

payoffs are state dependent. As in the theory, a decision problem (DP) is defined by the

prior distribution and the set of available actions. Figure A0.1 in the appendix shows a

typical screenshot from the experiment.

Each experiment consists of a small number of decision problems (between 2 and 4). A

subject faced many repetitions of each decision problem (between 50-75 questions for each).

The order in which subjects faced decision problems was randomized, but all repetitions

of the same decision problem were grouped together (so, for example, in experiment 1 the

subject would face either 75 repetitions of DP 1 then 75 repetitions of DP 2 or visa versa).

At the end of the experiment, one decision problem was selected at random for payment.

There are several things to note about our experimental design. First there is no exter-
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nally imposed limit (such as a time constraint) on a subject’s ability to collect information

about the state of the world. If they so wished, subjects could determine the state with a

very high level of precision in each question by precisely counting the number of red balls -

a very small number of subjects do just this. We are therefore not studying hard limits to

a subject’s perceptual ability to determine the state, as is traditional in many psychology

experiments (see section 6 for a discussion). At the same time, there is no explicit extrinsic

cost to the subject of gathering information. Therefore the extent to which subjects fail to

discern the true state of the world is due to their unwillingness to trade cognitive effort and

time for better information, and so higher payoffs.16

Second, in order to estimate the state dependent stochastic choice function we treat

the multiple times that a subject faced the same decision making environment as multiple

independent repetitions of the same decision problem. To prevent subjects from learning to

recognize patterns, we randomized the position of the balls. The implicit assumption is that

the perceptual cost of determining the state is the same for each possible configuration of

balls. We discuss this assumption further in section 4.6.

Third, in experiments where it is important, we paid subjects in ‘probability points’

rather than money - i.e. subjects were paid in points which increased the probability of

winning a monetary prize. We do so in order to get round the problem that utility is not

directly observable. This is not a problem if utility is linearly related to the quantity of

whatever we use to pay subjects. Expected utility theory implies that utility is linear in

probability points but not monetary amounts.

Fourth, we collected only choice data (not, for example, elicited beliefs) in a setting

where subjects must gather their own information. One alternative design would be to ask

subjects to choose between information structures directly. While such an experiment would

be complementary, we believe there to be an advantage to understanding what subjects pay

attention to when faced with the intrinsic costs of gathering and processing information,

rather than when choosing from an extrinsically imposed menu of information structures. A

second alternative design would be to have measured beliefs directly at the time of choice.

Again we see an advantage in recovering implied beliefs from choice: it might be that subjects

do not have direct access to the beliefs underlying their decisions, or find it hard to articulate

them. Moreover, the theoretical work discussed in the previous section shows that SDSC

provides a rich data set to test models of inattention without the need for stated beliefs: the

16Subjects had a fixed number of tasks to complete during the course of the experiment. They were told
that when they had completed the experiment they had to stay in the lab until all subjects had finished the
experiment.
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revealed posteriors γa are suffi cient.

An copy of the experimental instructions can be found in appendix A0.

3.2 Experiment 1: Testing for Responsive Attention

Experiment 1 is designed to elicit violations of Monotonicity, which therefore also violate the

predictions of the RUM and SDT. Based on a thought experiment discussed in Matejka and

McKay [2015], the design requires subjects to take part in two decision problems described

in table 1 below. Payment was in probability points with a prize of $20. Each subject faces

75 repetitions of each DP.

Table 1: Experiment 1

Payoffs

DP U(a, 1) U(a, 2) U(b, 1) U(b, 2) U(c, 1) U(c, 2)

1 50 50 b1 b2 n/a n/a

2 50 50 b1 b2 100 0

The structure of the two DPs is as follows. There are two equally likely states of the

world - 1 and 2 (defined as 49 and 51 red balls respectively). In DP 1, the subject has the

choice between the sure-thing option a, which pays 50 probability points, and an option b

which pays less than a in state 1, but more in state 2 (i.e. b1 < 50 < b2). b1 and b2 are

chosen to be relatively close to 50. We used 4 different values for b1 and b2 as described in

table 2.17

Table 2: Treatments for Experiment 1

Treatment Payoffs

b1 b2

1 40 55

2 40 52

3 30 55

4 30 52

The incentive for gathering information in DP 1 is low. The subject can simply choose a

17We use multiple values in order to explore the paramater space somewhat - a priori we did not know
the values of b1 and b2 that would generate violations of monotonicity.
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and guarantee that they will receive 50 points. If they try to determine the state then half

the time they will find out that it is highly likely to be 1, in which case a is better than

b. Even if they do find out that the state is highly likely to be 2 the additional payoff over

simply choosing a is low. Thus, for many information cost functions, the optimal strategy

for DP 1 will be to remain uninformed and select a.

In DP 2, the option c is added. This increases the value of information acquisition, as

c pays a high number of points in state 1 and a low number in state 2. Thus, the addition

of c may lead subjects to identify the true state with a high degree of accuracy. However,

having done so, half the time they will determine that the state is in fact 2, in which case b

is the best option. Thus, there is potentially a ‘spillover’effect of adding c to the choice set

which is to increase the probability of selecting b. It is this violation of Monotonicity we will

look for in the data. Matejka and McKay [2015] show that, for a DM with Shannon costs,

such violations are guaranteed for some parameterization of this class of decision problem.

Experiment 1 also provides a first test for the NIAS and NIAC conditions which charac-

terize the general model. In the interests of brevity, we relegate a discussion of these tests to

appendix A1.

3.3 Experiment 2: Changing Incentives

Our second experiment is designed to examine how subjects change their attention as incen-

tives change. We do so using the simplest possible design: decision problems consist of two

actions and two equally likely states, with the reward for choosing the ‘correct’state varying

between problems. Table 3 shows the four DPs that were administered in experiment 2.

Payoffs were in probability points for a prize of $40, with subjects facing 50 repetitions of

each DP. Again, states 1 and 2 were represented by 49 and 51 red balls respectively.

Table 3: Experiment 2

Payoffs

DP U(a, 1) U(a, 2) U(b, 1) U(b, 2)

3 5 0 0 5

4 40 0 0 40

5 70 0 0 70

6 95 0 0 95

The primary aim of this experiment is to provide estimates of the cost function associated
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with information acquisition. However, in order for this to be meaningful it must be the case

that behavior is rationalizable with some underlying cost. We therefore begin by testing

the NIAS and NIAC conditions which are necessary and suffi cient for such a cost function

to exist. In this setting these conditions take on a particularly simple form. NIAS - which

guarantees that subjects are using the information they have effi ciently - requires that

Pi(a|1) ≥ Pi(a|2) for i ∈ {3, 4, 5, 6}.

This condition simply states that the subject must be more likely to choose the action

a in state 1 (when it pays off a positive amount) than in state 2 (when it does not). If and

only if this condition holds then a (resp. b) is the optimal choice of action given the posterior

probabilities over states when a (b) was chosen. See Caplin and Dean [2015] section E for

the derivation of the NIAS and NIAC conditions for experiments 2 and 3.

NIAC is the condition which ensures that behavior is consistent with some underlying cost

function. In this setting it is equivalent to requiring that subjects become no less accurate

as incentives increase - i.e.

P6(a|1) + P6(b|2) ≥ P5(a|1) + P5(b|2)

≥ P4(a|1) + P4(b|2) ≥ P3(a|1) + P3(b|2)

This condition guarantees that gross payoff cannot be increased by reallocating infor-

mation structures across decision problems, and so there exists some cost function which

rationalizes behavior.

Having established that some rationalizing cost function exists, we can consider what it

looks like. Of particular interest is whether behavior is consistent with Shannon costs. In

order to determine this, we can make use of the ILR condition above. Assuming that utility

is linear in probability points, this implies that

κ =
ln(γa3(1))− ln(γb3(1))

5
=

ln(γa4(1))− ln(γb4(1))

40

=
ln(γa5(1))− ln(γb5(1))

70
=

ln(γa6(1))− ln(γb6(1))

95
(2)

Where γaj (1) is the posterior probability of state 1 in decision problem j following the

choice of action a (recall that these posteriors can be directly inferred from the SDSC data).

Moreover, the symmetry of the Shannon model implies that γaj (1) = γbj(2).
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Thus, while the general model implies only that the probability of making the correct

choice is non-decreasing in reward, the Shannon model implies a very specific rate at which

subjects must improve. Effectively, behavior in a single decision problem pins down the

model’s one free parameter, κ, which then dictates behavior in all other decision problems.

3.4 Experiment 3: Changing Priors

The third experiment studies the impact of changing prior probabilities. Again we use

the simplest possible setting with two states (47 and 53 red balls respectively)18 and two

acts. Again there are 4 decision problems, each of which is repeated 50 times. Because

this experiment made use of only two payoff levels, payment was made in cash, rather than

probability points. Table 4 describes the 4 decision problems with payoffs denominated in

US Dollars.
Table 4: Experiment 3

Payoffs

DP µ(1) U(a, 1) U(a, 2) U(b, 1) U(b, 2)

7 0.50 10 0 0 10

8 0.60 10 0 0 10

9 0.75 10 0 0 10

10 0.85 10 0 0 10

Each DP has two acts which pay off $10 in their correct state. The only thing that

changes between the decision problems is the prior probability of state 1, which increases

from 0.5 in DP 7 to 0.85 in DP 10.

The general model has only a limited amount to say about behavior in experiment 3.

NIAC has no bite, as the general model puts no constraint on how information costs change

with changes in prior beliefs. However, NIAS must still hold - subjects must still use whatever

information they have optimally. For this experiment the NIAS condition implies

Pi(a|1) ≥ 2µ(1)− 1

µ(1)
+

1− µ(1)

µ(1)
Pi(a|2)

A natural alternative model is one of base rate neglect (see for example Tversky and

Kahneman [1974]), in which subjects ignore changes in prior probabilities when assessing

18We used a somewhat easier setting for this experiment (relative to experiment 2) in order to ensure that
most subjects collected some information in the baseline DP 7.
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alternatives. A DM who ignored the impact of changing priors on their posterior would be

in danger of violating NIAS as µ(1) increases.

In contrast, the Shannon model puts a lot of structure on behavior in experiment 3,

as captured by the LIP condition. First, one observes the posterior beliefs associated with

the choice of a and b in DP 7, when µ(1) = 0.5. Then, as the prior probability of state 1

increases, there are only two possible responses. If the prior remains inside the convex hull

of the posteriors used at µ(1) = 0.5, the subject must use precisely the same posteriors.19

If the prior moves outside the convex hull of the posteriors used at µ(1) = 0.5, the subject

should learn nothing, and choose option a in all trials.

This experimental design is based on directly informing subjects of the prior probabilities.

It is therefore a joint test of the NIAS and LIP conditions and the assumption that priors

are fully internalized. While our results show that subjects do change their behavior across

treatments, we cannot rule out the possibility that some subjects are not fully aware of the

change in priors. An alternative design in which prior beliefs are measured, rather than

assumed, is an interesting avenue for future research.20

3.5 Experiment 4: Invariance Under Compression

Our final experiment is designed to test the property of IUC which is inherent in the Shannon

model.21 There are N equally likely states of the world and two actions, a and b. Action a

pays off $10 in states of the world {1, ...N
2
} and zero otherwise, while action b pays off $10

in states {N
1

+ 1, N} and zero otherwise.

The predictions of the Shannon model in this environment can be readily determined

from the ILR condition, which shows that posterior beliefs following the choice of each act

depend only on the relative payoff the available acts in that state. This implies immediately

that behavior should be equivalent in all states between 1 and N
2
and in all states between

N
2

+ 1 and N . This is a manifestation of the IUC condition.

This illustrates an important behavioral feature of the Shannon model, which is that it

lacks any sense of ‘perceptual distance’, by which some states are harder to distinguish that

others. According to the Shannon model, subjects are no more likely to make mistakes in

19Of course, for Bayes’rule to hold, it must also be the case that the unconditional probability of choosing
option a increases.
20We thank Sandro Ambuehl for this suggestion.
21This experimental design was developed a part of a distinct project on information acquisition in global

games. See Dean et al. [2016].
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states that are close to the threshold of N
2
than those that are far away.

We test this implication using our experimental interface: states are represented by the

number of red balls centered around 50. Subjects in this experiment faced four different

DPs, each of which was repeated 50 times. DPs varied in the number of possible states -

from 8 to 20 (so, for example, in the 8 state treatment there could be between 47 and 54 red

balls, while in the 20 state treatment there could be between 41 and 60 red balls).22

4 Implementation and Results

Subjects were recruited from the New York University and Columbia University student

populations.23 At the end of each session, one question was selected at random for payment,

the result of which was added to the show up fee of $10. Subjects usually took between 45

minutes and 1.5 hours to complete a session, depending on the experiment. Instructions are

included in appendix A0.

4.1 Matching Theory to Data

The theoretical implications above are couched in terms of the population distribution of

SDSC - i.e. the true probability of a given subject choosing each possible alternative in each

state of the world. Of course this is not what we observe in our experiment for two reasons.

First, we are only able to make inferences based on estimates of these underlying parameters

from finite samples. Second, in order to generate these samples we will need to aggregate

over repetitions of the same decision problem and/or individuals.

We make use of two types of aggregation in the following results. First, because we make

each subject repeat the same decision problem numerous times, we can estimate SDSC data

at the subject level. Second, we can aggregate over subjects who have faced the same decision

problem which gives us more observations and so more power. We relegate a discussion of

the problems that aggregation causes to section 4.6, noting here only that most of our tests

are robust to this issue.

Because we observe estimates of the SDSC function based on finite samples we can only

22A previous version of the paper reported the results of another treatment in which the state of the world
was determined by by the number of letters on the screen. We omit these results for brevity.
23Using the Center for Experimental Social Science subject pool at NYU and the Columbia Experimental

Laboratory in the Social Science subject pool at Columbia.
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make probabilistic statements about whether a given condition holds for the underlying data

generating process. Broadly speaking, there are two possible types of test we can perform:

we can either look for evidence that an axiom is violated, or that it holds. Take the example

of Monotonicity, which states that P{a,b}(b|2) ≥ P{a,b,c}(b|2). On the one hand, we could ask

whether one can reject the hypothesis that P{a,b}(b|2) < P{a,b,c}(b|2). On the other, one could

try to reject the hypothesis that P{a,b}(b|2) ≥ P{a,b,c}(b|2). In the former case, a rejection of

the hypothesis would provide convincing evidence that the axiom holds. In the second, it

would provide convincing evidence that the axiom is violated. The difference between the

two tests is whether the axiom is given the ‘benefit of the doubt’, in terms of data which is

not statistically distinguishable from P{a,b}(b|2) = P{a,b,c}(b|2). Note that the probability of

observing such data should fall as more data is collected, and so power increases.24 Typically

we will use the former approach for data aggregated across subjects, where we have enough

observations to provide powerful tests, and the latter for individual level data where we have

less power.

It is important to note that this approach means that, at least for our aggregate results,

a lack of power would make it more likely that we would reject a particular model: success

is only declared if the point estimate of a parameter is of the right sign and is significantly

different from the boundary.

The null hypotheses above are defined in terms of inequalities. This is typically the case

for the tests we employ. When testing against a null hypothesis which encompasses an entire

region of the parameter space, there are two possible approaches. The Bayesian approach is

to assign some prior to the parameter space and then update it using the data. The null is

rejected if 95% of the posterior weight falls outside the null region. The frequentist approach

simply treats the null hypothesis as a single point hypothesis placed at the location in the

null region which is the most favorable to the null hypothesis. In this paper we will use this

approach - so, in the case of Monotonicity, we will derive our p-values by using a two sided

test against the null of P{a,b}(b|2) = P{a,b,c}(b|2), regardless of whether we are taking as the

null that the axiom holds or that it is violated.

In situations where we are interested in the precise value of conditional action probabilities

or some transformation of those probabilities, OLS regressions (i.e. a linear probability

model) were employed, as the OLS coeffi cients provide unbiased estimates of these quantities.

When we are only concerned with differences in probabilities, we employ logistic regressions

for its better properties when probabilities are extreme. When aggregate data is used,

24Assuming that the values are not equal in the population.
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standard errors are corrected for clustering at the subject level.

4.2 Experiment 1: Testing for Responsive Attention

We now describe the results of our first experiment. Table 5 summarizes the results of the

Monotonicity tests from experiment 1. The first panel reports the probability of choosing

action b in state 1 with and without c available - aggregated across all subjects - and the

p-values from a statistical test to determine whether the latter is significantly higher that

the former. The second panel repeats the exercise for P (b|2). The final column reports the

fraction of subjects who show a significant violation of Monotonicity at the 5% level. 28

subjects took part in this experiment, evenly divided across the 4 treatments.25

Table 5: Results of Experiment 126

P (b|1) P (b|2)

Treat N {a, b} {a, b, c} Prob {a, b} {a, b, c} Prob % Subjects

1 7 2.9 6.8 0.52 50.6 59.8 0.54 29

2 7 5.7 14.7 0.29 21.1 63.1 0.05 43

3 7 9.5 5.0 0.35 21.4 46.6 0.06 29

4 7 1.1 0.8 0.76 19.9 51.7 0.02 57

Total 28 4.8 6.6 0.52 28.3 55.6 <0.01 39

Aggregating across individuals and treatments (final row), we find a significant violation

of Monotonicity in the direction predicted by models of rational inattention. The probabil-

ity of choosing b in state 2 increases from 28.3% to 55.6% following the introduction of c,

significant at the 1% level. The increase in the choice of b in state 1 is small and insignifi-

cant. At the individual level, 39% of subjects show a significant violation of Monotonicity.

Disaggregating by treatment, we see that the point estimate of P (b|2) increases with the

introduction of c in all treatments, significantly so (at the 10% level) in treatments 2-4.

Results for NIAS and NIAC tests are reported in appendix A1. Broadly speaking, both

conditions are supported by the data from experiment 1.

25One session of 12 subjects on 11th May 2016 and one session of 16 subjects on 27th September 2016,
both run at the CELSS laboratory at Columbia University.
26P values from a logit regression of the choice of option b on dummies representing whether or not c was

present and whether the state was 1 or 2. Standard errors clustered at the individual level.
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4.3 Experiment 2: Changing Incentives

We next report the results from experiment 2 in which we examine how subjects’responses

change with incentives. 52 subjects took part in this experiment.27

We begin by testing the NIAS and NIAC conditions which are necessary and suffi cient

for the general model. Table 6 reports the results of the test of NIAS - which requires that

the probability of choosing a in state 1 must be higher than in state 2 - using aggregate

data. It shows the probability of choosing a in each state for each decision problem, and the

p-value for the null that NIAS is violated. The aggregate data firmly supports the NIAS

condition.
Table 6: NIAS Test from Experiment 228

DP Pj(a|1) Pj(a|2) Prob

3 0.74 0.40 0.00

4 0.76 0.34 0.00

5 0.78 0.33 0.00

6 0.78 0.28 0.00

Figure 1 shows the probability of choosing the ‘correct’act in each DP, averaging across

all subjects. This allows us to test the NIAC condition which states that this probability

should be non-decreasing in the reward level. The point estimates from the aggregate data

obey this pattern, with accuracy increasing from 67% at the 5 probability point payment

level to 75% at the 95 probability point payment level. Most of the differences between DPs

are significant at the 10% level.29

27Three sessions of 22, 16 and 14 subjects taking place on 5th Dec 2016, 15th December 2016 and 20th
Jan 2017 at the CELSS laboratory at Columbia University.
28Results of a logistic regression of choice of action a on a dummy for state 1. P value reported is that

associated with the state 1 dummy. Standard errors clustered at the subject level.
29Standard errors produced using a logit regression of correct choice on treatment, with standard errors

clustered at the individual level. The success rate at 5 probabilty points is significantly different from that
at 95 points at <0.1%, and different between 40 and 70 points at 10%. Behavior at 40 probability points is
significantly different from 95 points at 10%. 70 probability points is not significantly different from either
40 or the 95 points.
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Figure 1: Probability of Correct

Response by Decision Problem
Figure 2: Individual Accuracy 5 Point vs 95

Point Reward

Table 7 reports the individual level data, and in particular the fraction of subjects who

exhibit significant violations of the NIAS condition, the NIAC condition, both or neither.

81% of subjects show no significant violations of either condition.30

Table 7: Individual Level Data from Experiment 2

Violate %

NIAS Only 2

NIAC Only 17

Both 0

Neither 81

30We checked the NIAC condition and the NIAS conditions separately for each individual. The NIAS
condition was tested by simply estimating a logit model regressing probability of choice of action a on state.
If the coeffi cient was significantly negative that is considered a significant violation of NIAS.
NIAC was checked by estimating a logit regression. In this model a dummy for correct response was

regressed against dummies for the three higher incentive levels. We then preformed an F-test of the joint
restrictions that (i) the dummy on 40 probability points was greater than or equal to 0, (ii) that the dummy
on 70 points was greater than or equal to that on 40 points and (iii) that the dummy on 95 points was
greater than equal to that on 70 points. Subjects were categorized as violating NIAC if these restrictions
were jointly rejected.
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Table 7 implies that most of our subjects do not have significant violations of the NIAS

and NIAC conditions and therefore act as if they maximize payoffs net of some underlying

attention cost function. Figure 2 gives some idea of the heterogeneity of those costs across

subjects. It graphs the probability of choosing the correct action at the 5 point level vs the

95 point level for each subject. The fact that most points fall above the 45 degree line is the

defining feature of rational inattention. However, within this constraint there is still a great

deal of variation. Our data set includes ‘high fixed cost, high marginal cost’individuals who

gather little information regardless of reward: their accuracy is near 50% for the low and

high reward levels. It also includes ‘low fixed cost’subjects who have accuracy close to 100%,

even in the low reward decision problem. Finally there are ‘high fixed cost, low marginal

cost’subjects, who actively adjust their accuracy as a function of reward.

We next examine the extent to which subjects behave as if their costs are in line with the

Shannon model. Figure 3 shows the estimated cost parameter κ from each decision problem

and in each state using aggregate data, based on the identity from equation (2). The Shannon

model predicts that these should be equal. As we can see this is not the case: estimated

costs are increasing in reward level: they are significantly different at the 0.01% level between

the 5 and 95 point reward levels. The fact that estimated costs are increasing implies that

subjects are increasing their accuracy too slowly in response to changing incentives relative

to the predictions of the Shannon model.31

31Cost estimates and standard errors based on an OLS regression of response on treatment and state
dummies, which were then converted into cost estimates using the method discussed in section 3.3. Standard
errors are clustered at the individual level.
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Figure 3: Estimated Costs for the Shannon

Model

Figure 4: Predicted vs actual accuracy in

the 70% payoff treatment

At the individual level we also see significant violations of the Shannon model. Figure 4

shows a scatter plot of the predicted vs actual accuracy for each subject in the 70 point DP,

where the predictions are made using the Shannon model and the accuracy displayed at the

40 point level.32 The scatter plot shows more subjects below the 45 degree line (i.e. are less

accurate than predicted) than above (more accurate than predicted).33

For each subject and pair of reward levels we can test for significant violations of the

Shannon model which indicate ‘too slow’adjustment (i.e. the accuracy at the higher reward

is lower than it should be given the accuracy at the lower reward level), and for violations

which indicate ‘too fast’adjustment (accuracy at the higher reward level is higher than it

should be).34 Of the 221 possible comparisons, we find 66 violations of the ‘too slow’variety

32We use these two reward levels to illustrate our findings because the predictions derived from more
extreme comparisons typically cluster at the extremes, making the associated graph hard to interpret.
33For the analysis described in this paragraph we drop observations in which the point estimate for accuracy

at the lower reward level is below 50%, as this does not allow us to recover the cost parameter of the Shannon
model and so make predictions for the higher cost level.
34For each person and each incentive level pair we regress correctness on incentive level and a dummy for the

higher incentive level with no constant using a logit regression. Note that a logit regression of correctness on
incentive level with no constant is equivalent to fitting a Shannon model in this case. Significant coeffi cients
on the high incentive dummy mean significant violations of Shannon. Positive coeffi cients mean that accuracy
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and 8 of the ‘too fast’variety. 21 subjects exhibit ‘too slow’violations only, 4 exhibit ‘too

fast’violations’only, 2 have examples of both and 21 examples of neither.

It could be that the violations of Shannon we observe are driven by those subjects that

do not satisfy the conditions of the general model - i.e. violate NIAS or NIAC. In order to

explore this possibility we repeat our analysis dropping such subjects and report the results

in appendix A2. We still find widespread and systematic violations of the Shannon model

when focusing only on subjects whose behavior is rationalizable using some cost function.

4.4 Experiment 3: Changing Priors

Next we report the results from experiment 3. We first examine the extent to which the

54 subjects35 in experiment 3 obeyed NIAS. Table 8 shows the aggregate probability of

choosing act a in state 2, the resulting constraint on the probability of choosing a in state

1, and the related probability in the data. The final column shows the p-value for the null

hypothesis that NIAS is violated in the aggregate data. Table 8 indicates that subjects do on

average change their behavior in response to changing priors, and that NIAS broadly holds

at the aggregate level. The point estimates for P (a|1) are at or above the constraint for all

decision problems, significantly so for decision problems 7-9. This pattern is repeated at the

individual level, where we see only a small number of subjects exhibiting significant violations

of NIAS.36 These results show that subjects are not completely ignoring the changing priors

in the experiment, nor is any base rate neglect strong enough to lead to frequent NIAS

violations.
Table 8: NIAS Test37

DP Pj(a|2) Constraint on Pj(a|1) Pj(a|1) Prob

7 0.29 0.29 0.77 0.000

8 0.38 0.39 0.88 0.000

9 0.40 0.80 0.90 0.045

10 0.51 0.91 0.91 0.538

is responding too fast while negative coeffi cients mean it is responding too slow.

35Data from 3 sessions: 1st October 2012 at the CESS laboratory at NYU (24 subjects), and 25th July
and 12th August 2016 at the CELSS laboratory at Columbia (7 and 23 subjects respectively).
360% of individuals exhibit significant violations of NIAS at the 50% prior, 2% at the 60% and 75% priors

and 11% at the 85% prior.
37Tests based on an OLS regression of choice of action on state for each treatment to obtain estimates of

Pj(a|2) and Pj(a|1). Standard errors clustered at the individual level. These estimates are then used in a
test of the linear restriction implied by the NIAS model.
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We next study the degree to which our data supports the predictions of the Shannon

model in the form of the LIP condition. In order to do so, we first divide subjects based

on the estimated posteriors in DP 7, in which both states are equally likely. The important

distinction is where the posterior associated with the choice of action a falls relative to the

priors for DPs 8-10. Table 9 shows this categorization based on the point estimates.

Table 9: Categorization Based

on Posteriors from DP 7

Posterior Range N %

[0.5,0.6) 14 25

[0.6,0.75) 12 22

[0.75,0.85) 12 22

[0.85,1] 16 29

Of course, it is possible that these point estimates incorrectly categorize subjects as they

are only noisy estimates of the true conditional probabilities. We therefore also report results

based on subjects whose posteriors are significantly above or below the relevant thresholds

at a 5% level.38

The first prediction of the posterior separable model is that, in DP i with prior µi(1),

subjects who use a posterior γa7(1) < µi(1) should exclusively choose action a, while those

with γa7(1) > µi(1) should choose both a and b, where γa7 refers to the posteriors revealed in

DP 7 given the choice of a. Table 10 tests this ‘no learning’prediction. The top panel divides

subjects into those who have a threshold (i.e. point estimate of posterior belief from DP 7)

above µi(1), and those for whose threshold is below µi(1) for µ8(1) = 0.6, µ9 = 0.75 and

µ10 = 0.85. For each of these decision problems, and each of these groups, it then reports

the fraction of subjects who exclusively choose a. The second panel repeats the exercise but

38For the 0.6 prior 9 subjects were significantly below and 28 significantly above. For the 0.75 prior 15
below and 10 above. For the 0.85 prior 24 were below and 8 above.
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for subjects whose posteriors were significantly above or below the relevant threshold.

Table 10: Testing the ‘No Learning’Prediction:

Fraction of subjects who never choose b

µ(1)

DP8 DP9 DP10

0.6 0.75 0.85

Point estimates γa7(1) < µi(1) 35% 27% 29%

γa7(1) ≥ µi(1) 0% 7% 13%

Significant differences γa7(1) < µi(1) 33% 46% 41%

γa7(1) ≥ µi(1) 3% 10% 14%

Table 10 shows that, while it does not perfectly match our data, the ‘no learning’predic-

tion does produce the correct comparative statics. In each DP, around 30% of the subject

who should exclusively choose a based on their point estimates do so, higher than the equiva-

lent fraction for those who should be choosing both a and b. Looking at subjects whose point

estimates are significantly different from the relevant threshold the condition does somewhat

better.

The second part of the LIP condition states that, in each DP, subjects who are still

actively gathering information39 should use the same posteriors as they did in DP 7. Figure

5 tests this hypothesis. Panel a focusses on DP 8. It reports data exclusively on subjects

who should be choosing both a and b in this DP according to the posterior separable model

(i.e. those for whom γa7 > 0.6, significant at the 5% level). It shows the estimated posteriors

associated with the choice of action a and b in DP 7 and DP 8 aggregating across all such

subjects. The LIP prediction is that these posteriors should be the same. Panels b and c

repeat this analysis for DPs 9 and 10. Figure 5 shows some, but imperfect support for the

LIP prediction: of the 6 comparisons, only one (the posterior following choice of b with the

0.75 prior) shows a significant difference at the 10% level.40

39 i.e. those for whom their posterior beliefs from DP 7 are significantly above the prior in that DP.
40Tests based on an OLS regression of choice of state on action for each treatment to obtain estimates

of Pj(1|a) and Pj(2|b) as functions of the coeffi cients. Standard errors clustered at the individual level.
Standard errors for the conditional probabilities were derived using the delta method.
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Figure 5a: Subjects with

threshold above 0.6

Figure 5b: Subjects with

thresholds above 0.75

Figure 5c: Subjects with

threshold above 0.85

4.5 Experiment 4: Symmetry

23 subjects took part in experiment 4.41 The results are summarized in figure 6, which shows

the probability of choosing the correct action as a function of the state for each DP and each

treatment.

Figure 6: Experiment 4

This figure show clear and systematic violations of symmetry: subjects were more likely to

41Data from a single session which took place on 27th June 2013 at the CESS laboratory at NYU.
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make mistakes in states near the threshold of 50. This observation is confirmed by regression

analysis, which finds a significant and positive correlation between distance from threshold

and probability of correct responses for each DP.42

4.6 Discussion

Our overall conclusions from this set of experiments are: (1) that subjects clearly adapt

their attention strategy in response to incentives; (2) that they do so broadly in line with

the general model of rational inattention, at least in the simple environments we consider;

(3) that the Shannon model has some significant diffi culties in explaining our data, both in

terms of the relationship it predicts between changing rewards and information gathering,

and its unrealistic symmetry properties.

In this section we discuss some of the issues which could effect these conclusions. In

particular, could aggregation and order effects be responsible for some of the results we find,

and so be the reason we have rejected the Shannon model? As noted above, we make use

of two types of aggregation: within subject across decision problems and between subjects.

In principle, both of these might be problematic. In the former case, while each repetition

of the decision problem is the same if states are defined by number of red balls, the actual

configuration of red and blue balls varies from trial to trial in order to prevent learning. It

could be that some configurations are easier to understand than others (in extremis, all the

red balls could appear on the left of the screen while all the blue ones appear on the right).

Aggregating across individuals may also cause problems, because different individuals may

have different costs of attention. Of the two, we expect the latter to be the primary source

of variability. Given the large number of balls on the display, the law of large numbers

means that we do not expect significant variation in costs across repetitions. For example,

diffi culty may be related to the degree to which balls are clustered by color, the variance

of which will be low when the number of balls is large. While plausibly more susceptible

to variation, aggregate level data is useful because it provides us with much more power to

detect differences in behavior across decision problems.

For most of the tests that we perform neither type of aggregation presents a problem.

For example, in experiment 1 we look for violations of Monotonicity by studying whether the

42Results from an OLS regression. A distance measure was constructed as equal to the absolute difference
between the number of balls of the more frequent color on the screen and 50. Choice was then regressed on
distance, which action is correct, and DP, aggregating across decision problem. Standard errors clustered at
the subject level. The estimated coeffi cient on distance is 0.032 (P<0.001).
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probability of choosing b increases when c is introduced to the action set. Consider a DM

for whom Monotonicity holds conditional on the diffi culty of the problem, as represented

by the configuration of dots on the screen. This means that, when sampling from different

configurations, the distribution of probabilities of b being selected when c was not available

should stochastically dominate that when c is available, and so Monotonicity should hold

in expectation. Similarly, aggregating across subjects for whom Monotonicity holds should

lead to monotonic data.

The exceptions are the test of the ILR condition in experiment 2 and the test of LIP in

experiment 3. In the former case it is true that variability in information costs or diffi culty

could lead to violations of the predictions of the Shannon model in the direction we observe:

Data generated by aggregating across different cost or diffi culty levels would respond more

slowly to incentives than the Shannon model would predict under the assumption of no

variation. As we believe cost variation is higher than diffi culty variation it is encouraging

that we find responses to be too slow at both the individual and aggregate level. While it

may be that variations in diffi culty are causing the Shannon model to fail at the individual

level, the fact that this occurs in an experimental situation where we believe costs to be

relatively stable means that the model is likely to have problems in other applications as

well.

In the case of the LIP condition, variability in diffi culty would also bias the test towards

a rejection of the ‘no learning’condition: for example a subject who faced a particularly low

cost realization for (say) µ(1) = 0.6 might seek information and choose action b, even if they

would choose to be uninformed at average information costs. Thus the success rate we find

for LIP should be treated as a lower bound.

A further question is whether we find evidence of order effects in our data - i.e. evidence

that subject’s performance changes through the experiment due to, for example, learning

effects or fatigue. Our design randomizes the order in which subjects face decision problems,

which has two advantages. First, we can estimate the impact of order on performance, and

second, such effects should wash out in the aggregate data. Order effects are of most interest

in experiments 2 and 3, in which they could have a substantial effect on our conclusions.

Appendix A3 reports the result of regressions of accuracy (i.e. the probability of picking

the rewarding action) on order (i.e. in which block the question occurred between 1 and 4)

while controlling for the type of question and clustering standard errors at the subject level.

We find significant order effects in experiment 2 but not in experiment 3. In experiment

2 subjects were more accurate in the first block. No other differences were significant. Re-

peating the analysis of section 4.3 while dropping the first block for each subject does not
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significantly change our conclusions: We still find few violations of NIAS and NIAC (88% of

subjects exhibit no significant violations of either condition), and response to incentives is

still slower than predicted by the Shannon model (for example, when comparing the 40% and

70% reward levels we find 25 subjects who respond significantly more slowly than Shannon

predicts, versus 2 who are significantly too fast).

5 Alternative Cost Functions

Our evidence so far has offered support for the general rational inattention model (in the

simple settings we study), but shows substantial violations of important features of the

Shannon model. The IUC and ILR conditions are most clearly violated, while the evidence

against LIP is arguably more mixed. This raises the question of whether there are cost

functions other than Shannon which would do a better job of explaining our data. In this

section we introduce some (non-exclusive) proposals from the literature, and discuss which

of the problems with Shannon they solve. We then estimate a collection of these alternative

models to determine which, if any, offer a significant improvement over Shannon.

We begin by discussing two natural approaches which allow more flexibility in fitting

attentional responses to incentives, as measured in experiment 2. The first is to relax the

assumption that costs are linear in mutual information. The cost function

K(µ, π) = κ

 ∑
γ∈Γ(π)

π(γ) [−H(γ)]− [−H(µ)]

σ

has two parameters: κ and σ. It allows for either decreasing or increasing marginal costs

of mutual information. The resulting model does not imply the ILR condition nor, as it is

not posterior separable, the LIP condition. It does, however, maintain the implication that

payoff equivalent states will be treated equivalently in experiment 4.

An alternative approach is to maintain the ‘posterior separable’structure of the Shannon

cost function, but replace entropy with some other function of the prior and posterior (Caplin

and Dean [2013]). In general these cost functions take the form

KT (µ, π) = κ

 ∑
γ∈Γ(π)

π(γ)T (γ)− T (µ)


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for some strictly convex function T.43 Posterior separable cost functions satisfy LIP, but

not necessarily ILR or IUC. They can therefore allow for different elasticities of attention

with respect to incentives.

One possible choice for T is to replace Shannon entropy with some more general form. In

the estimation below we use the functional form of Generalized entropy (Shorrocks [1980]):

TGenρ (γ) =


(

1
(ρ−2)(ρ−1)|Γ|

∑
Γ γ̂

2−ρ − 1
)
if ρ 6= 1 and ρ 6= 2;

1
|Γ| (
∑

Γ γ̂ ln γ̂) if ρ = 1;

− 1
|Γ| (
∑

Γ ln γ̂) if ρ = 2.

where γ̂ = γ|Γ|.

This again adds a single parameter - ρ - to the Shannon model. Generalized entropy gen-

eralizes Shannon entropy in a manner similar to the way in which Constant Relative Risk

Aversion utility functions generalize log utility: the function changes continuously in the pa-

rameter ρ, with ρ = 1 (an affi ne transform of) Shannon entropy.44 Generalized entropy does

not imply ILR but does imply LIP: Caplin et al. [2017] show that this property characterizes

the class of (uniformly) posterior separable cost functions. Again, costs based on Generalized

entropy will lead payoff equivalent states to be treated equivalently in experiment 4.

Less obvious is how to modify the Shannon model in order to accommodate perceptual

distance effects of the type demonstrated in experiment 4. However, a recent paper by Hébert

and Woodford [2017] offers one promising solution. They propose a class of ‘neighborhood

based’cost functions. In order to construct these costs, the state space is divided into I

‘neighborhoods’X1...XI . An information structure is assigned a cost for each neighborhood

based on the expected change in entropy between prior and posteriors conditional on being

in that neighborhood. The total cost of the information structure is then the sum of costs

across all neighborhoods. An example of a neighborhood based function with entropy costs

is

KN(µ, π) =
I∑
i=1

µ(Xi)κi
∑
γ

π(γ|Xi) (−H(γ|Xi)− [−H(µ|Xi)]) (3)

where µ(Xi) is the prior probability of a state in neighborhood Xi, κi is the marginal

cost of information in neighborhood i, π(γ|Xi) is the probability of signal γ conditional on

43In Caplin et al. [2016] this class of models is refered to as ‘uniformly posterior separable’to differentiate
them from a broader class of models in which the function T is allowed to vary with the prior.
44Specifically, when ρ = 1, generalized entropy is equal to the maximal possible entropy minus the entropy

of the observed distribution.
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a state in Xi occurring and H(γ|Xi) is the entropy of the posterior generated by signal γ

conditional on a state in Xi occurring.

These cost functions have a number of nice features. First and foremost they allow

for it to be more expensive to differentiate between some states than others: the cost of

differentiating between two states depends on which neighborhoods they share. Second,

Hébert and Woodford [2017] show that such cost functions can be microfounded as the

result of a process of sequential information gathering. Finally, this cost function is also

posterior separable.

One important free parameter for the class of neighborhood based cost functions is the

definition of the neighborhoods. Here we follow Hébert and Woodford [2017] and consider

a model with two classes of neighborhood: first, a global neighborhood which contains all

states, and second a collection of local neighborhoods which contain adjacent states (i.e. one

neighborhood will contain 40 and 41 red balls, the next 41 and 42 red balls, etc). We further

restrict the costs associated with all the local neighborhoods to be the same, meaning that

this model has two parameters: the marginal cost of information in the global neighborhood

κg and in the local neighborhoods κl.

5.1 Estimation

We now report the results of estimating models based on the classes above on our data. For

the aggregate data we consider four model variants summarized in table 11 below.

First, as a baseline we will estimate the Shannon model. This allows us to measure

the improvement in fit afforded by our alternative models, all of which nest Shannon as a

special case. Next we estimate the Neighborhood model of Hébert and Woodford [2017] with

entropy costs. This model should improve fit in experiment 4, as it allows for a notion of

perceptual distance. However, as the model reduces to Shannon in the setting of experiment

2 it will do nothing to improve the fit of attentional responses to incentives. We therefore

estimate two variants of the Neighborhood model. The ‘Power with Neighborhood’model

raises the mutual information cost in each neighborhood to a power, while the ‘Generalized

with Neighborhood’function keeps the neighborhood cost structure but replaces Shannon

entropy with Generalized entropy as a measure of uncertainty.

We estimate the above models on both aggregate and individual level data using maxi-

mum likelihood. At the aggregate level we report results from experiment 2 and experiment

4, both jointly and separately. We do not report aggregate results from experiments 1 and 3
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because here aggregation can easily generate behavior that has zero probability under mod-

els in the Shannon class even if the individual level data is consistent (for example choosing

a, b and c with positive probability in experiment 1 or violating LIP in experiment 3). At

the individual level we report results for all four experiments, and also add an ‘Inattentive’

model which assumes the subject gathers no information and selects the best option given

prior beliefs. We do so because a number of subject seem to adopt such behavior - completing

the experiment very rapidly and almost always making the same selection.

In comparing the models we rely primarily on measures which allow for non-nested model

comparison while balancing parsimony and goodness of fit - namely the Bayesian Information

Criterion (BIC) and the Akieke Information Criterion (AIC). However, the Shannon and

Neighborhood models are nested in both the Power and Generalized versions, so we can

also perform likelihood ratio tests when comparing these cost functions. Standard errors are

clustered at the individual level. Details of the estimation procedure appear in appendix A4.

Table 11: Models for Estimation

Model Cost Function Parameters

Shannon κg

(∑
γ∈Γ(π) π(γ) [−H(γ)]− [−H(µ)]

)
κg

Neighborhood
∑I

i=1 µ(X i)κi
∑

γ π(γ|X i) [−H(γ|Xi)]− [−H(µ|Xi)] ] κg, κl

Power w/Nhood
∑I

i=1 µ(Xi)κi

(∑
γ∈Γ(π) π(γ|Xi) [−H(γ|Xi)]− [−H(µ|Xi)]

)σ
κg, κl, σ

Generalized w/Nhood
∑I

i=1 µ(X i)κi
∑

γ π(γ|X i)
[
TGenρ (γ|Xi)

]
−TGenρ (γ|X i)] κg, κl, ρ

5.1.1 Aggregate Results

We begin by reporting the results from aggregate data, estimated from experiments 2 and

4 both separately and jointly. Figure 7 panel A shows the fitted values from the estimation

on experiment 2 only. Note that, in the setting of experiment 2, all models collapse to

their no-neighborhood versions, as the two states in this experiment are only jointly found

in the global neighborhood. Panel B shows the best fit from the 16 state treatment from

the estimation on experiment 4 only. Equivalent graphs for the other treatments in this

experiment can be found in appendix A4. Table 12 reports parameter estimates and AIC

and BIC scores from the models estimated separately and jointly on the two experiments.

Model fits from the joint estimation can also be found in appendix A4.

Looking first at experiment 2, we see in figure 7 that, as anticipated, the Shannon model
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predicts a faster response to incentives than is seen in the data. Both the Power and Gener-

alized models work well as a solution to this problem, allowing for a much flatter expansion

path. When fit to experiment 2 alone the two models give essentially identical estimates. In

table 12 we see that both the AIC and BIC are much lower for the Power and Generalized

models than for the Shannon model, indicating that the better fit these models provide is

worth the addition of one parameter. Likelihood ratio tests confirm this story: for both the

Power and Generalized models the restriction to the Shannon model is rejected at <0.01%.

There is little to choose between the fit of the Power and Generalized models.

Figure 7

Panel A: Model Fit for Experiment 2

Only

Panel B: Model Fit for Experiment 4

Only - 16 States

Looking next at experiment 4, we see that the important difference is between models

that do not allow neighborhoods, and those that do, with the estimates from the latter class

essentially the same, and well able to match the fact that subjects are better at the task for

states further away from the cut off. The AIC and BIC show that all the neighborhood based

models do much better than the no-neighborhood Shannon model, but that the difference

between these models is small. Likelihood ratio tests favor each of the neighborhood based

models over the Shannon model at <0.01%. The restriction of the Power or Generalized

models to the Neighborhood model is not rejected at the 10% level
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Table 12: Parameter Estimates - Aggregate Data

Model κg κl σ ρ BIC AIC

Experiment 2 Only

NHood 28.82 - - - 379 372

Power 7728.00 - 4.23 - 55 41

Generalized 0.16 - - 13.41 56 42

Experiment 4 Only

Shannon 7.38 - - - 485 479

NHood 5.40 5.04 - - 326 313

Power w/NHood 4.98 5.63 0.94 - 334 315

Generalized w/NHood 5.36 4.99 - 1.05 334 315

Experiment 2 and 4

Shannon 23.49 - - - 1689 1681

NHood 25.08 0.38 - - 1690 1675

Power w/NHood 299.50 99.40 2.98 - 670 647

Generalized w/NHood 0.05 2.92 - 13.01 647 624

When estimated jointly on the data from experiments 2 and 4, both the Generalized with

Neighborhood and Power with Neighborhood models with do much better than either the

Neighborhood or Shannon models, with the former doing best according to both the AIC

and BIC criteria.45 As can be seen from the model fits in appendix A4, the Neighborhood

model is unable to match the response to incentives in experiment 2. Moreover, because

global costs have to be so high to even remotely match the data from that experiment, local

costs have to be very small, meaning that it also does a poor job of matching the data from

experiment 4. Despite the fact that the Power with Neighborhood and Generalized with

Neighborhood models provide rather different parameter results when estimated separately

on experiments 2 and 4, both have intermediate parameter values that do a reasonable job in

both cases. The Generalized with Neighborhood model does somewhat better at capturing

the fall in accuracy in states close to the cutoff in experiment 4.

45Note that in this experiment we assume linearity of utility across the two relevant reward levels - $10
and $40.
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5.1.2 Individual Result

Table 13: Individual Results

Experiment NHood Power w/NHood Gen w/NHood Shannon Inattentive

1 36 10 25 - 29

2 29 19 23 - 29

3 35 43 10 - 13

4 43 26 4 17 9

Percentage of subjects best described by each model by AIC

Table 13 shows the fraction of subjects who are best fit by each model according to

the AIC criterion in each experiment. Broadly speaking these results replicate those from

the aggregate analysis: in experiment 2 a significant fraction (42%) of subjects are better

described by either the Power or Generalized models than by the Shannon model (a further

29% are best described is inattentive). In experiment 4, 73% of subjects are best described

by a model that allows for a neighborhood structure. The results from experiment 1 and 3

are similar to those from experiment 2. The fact that the power function performs best in

experiment 3 is notable, as this is the only model which does not imply the LIP condition.

6 Related Literature

Many papers have established the importance of attention limits in economically interesting

contexts, including consumer choice,46 financial markets,47 and voting behavior.48 There

have, however, been far fewer papers that have attempted to test models of inattention. In the

experimental literature, Caplin et al. [2011] and Geng [2016] test models of sequential search

in the ‘satisficing’tradition of Simon [1955]. While these papers find evidence of satisficing

in the context of choice amongst a large numbers of easily understood alternatives, such

models are clearly not suitable for understanding behavior when faced with a small number

of diffi cult to understand alternatives, as we examine in this paper. Indeed, as satisficing

46Chetty et al. [2009], Hossain and Morgan [2006], Allcott and Taubinsky. [2015], Lacetera et al. [2012],
Pope [2009], Santos et al. [2012].
47DellaVigna and Pollet [2007], Huberman [2015], Malmendier and Shanthikumar [2007], Bernard and

Thomas [1989], Hirshleifer et al. [2009].
48Shue and Luttmer [2009], Ho and Imai [2008].
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behavior can be optimal given a particular information cost function (see Caplin et al. [2011]),

the satisficing model can be seen as a special case of the models studied here.

Gabaix et al. [2006] test a dynamic model of information acquisition in which agents are

partially myopic, and so not fully rational, which they label a model of ‘directed cognition’.

Unlike our paper, search costs are imposed explicitly either through financial costs or time

limits. Instead, our aim is to learn about the intrinsic costs to information acquisition that

decision makers face. Gabaix et al. [2006] also make use of a very different data set, looking at

the sequence in which data is collected using Mouselab,49 rather than the resulting pattern of

stochastic choice. The optimal sequence of data acquisition in their set up cannot be readily

determined, meaning that it is hard to tell whether their directed cognition model describes

the data better than a fully rational alternative.50 More recent work (Taubinsky [2013],

Goecke et al. [2013], Khaw et al. [2016]) has also focussed on the dynamics of information

acquisition.

A third set of papers (Pinkovskiy [2009] and Cheremukhin et al. [2015]) estimate the

Shannon model on experimental data sets in which people make binary choices between

gambles. These papers make use of standard stochastic choice data - modeling inconsistent

choices as mistakes caused by lack of information - and not the SDSC data we introduce in

this paper. While they typically find the Shannon model does well relative to other, non-

rational models of stochasticity, they do not focus on the specific features that characterize

this model within the general rational inattention class, such as ILR and LIP. For example,

while Cheremukhin et al. [2015] report that accuracy increases with incentives - effectively

a test of NIAC, which is a property of all models of rational inattention - there is no test of

the specific properties which characterize the Shannon model.

Contemporaneous to our work, Ambuehl et al. [2018] test two implications of the Shan-

non model: that decision makers for whom acquiring and processing information is more

costly respond more strongly to changes in incentives for participating in a transaction with

unknown but learnable consequences, and decide to participate based on worse informa-

tion. They find strong support for both predictions. However, they also show that these

predictions hold for a much broader class of information cost function, so these results are

complementary to our findings in support of more general models of rational inattention.

Ambuehl [2017] also tests a distinct implication of posterior separability, finding support

49An earlier literature used tools such as Mouselab and eye tracking to document what information indi-
viduals gather during the process of choice - see Payne et al. [1993] and Brocas et al. [2014] for a more recent
application of these methods to choice in strategic settings. These papers have not generally used the data
to compare behavior to rational benchmarks.
50Though see Sanjurjo [2017].
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for the prediction that higher incentives for participation in a transaction with unknown

but learnable consequences cause people to skew their information acquisition towards par-

ticipation, and thus lead to an increase in false positives and a decrease in false negatives,

over and above what would be observed without flexible information acquisition. Another

concurrent unpublished study, Dewan and Neligh [2017] also finds violations of IUC in a

different perceptual task.

In contrast to the relatively small amount of work in economics, there is a huge literature

in psychology which has used SDSC data in order to understand the processes underlying

perception and choice. Many of these studies are used to test the implications of the sequen-

tial sampling class of models, in which agents gain information over time, allowing them

to arrive at their final decision.51 Other work has focussed on testing the SDT paradigm

introduced in section 2.2.1. See Yu [2014] and Ratcliff et al. [2016] for recent reviews, and

Krajbich et al. [2011] for a discussion of the application of sequential sampling models to

economic choice. Some of these studies are similar the design of experiments 2 and 3 in this

paper - varying the reward level and prior beliefs in a choice between two uncertain alterna-

tives. Typically these studies focus on subject’s ability to successfully complete perceptual

tasks52 and have design elements that make them unsuitable for our purpose - for example

a lack of explicit incentives (e.g. van Ravenzwaaij et al. [2012] study the effect of changing

priors in an unincentivized task) or a focus on a specific clinical population (for example

Reddy et al. [2015] look at the response to incentives in schizophrenic subjects). To our

knowledge, none of these studies perform the specific tests of the various classes of rational

inattention model that we describe here. Neither does the literature include an equivalent

of our experiments 1 and 4.

51See for example Ratcliff and McKoon [2008] for an introduction to this class of models.
52Probably most popular are dot motion tasks (Britten et al. [1992]), in which participants are shown

screens with numerous moving dots and are asked to determine the overall direction of motion of the group.
Ratcliff et al. [2016] reviews several studies of this type. Another common perceptual task is the lexical
differentiation task (e.g. Zandt et al. [2000]) in which participants are asked to differentiate between letters
or words based on some given rule. The last common experimental approach is static geometric estimate
(e.g. Ratcliff and Smith [2004]). In these studies, participants are asked to categorize static images based on
some visual characteristic such as distance, length, or orientation. It is this static geometric discrimination
task that the experiments in this study most closely resembles, although to our knowledge no psychology
study has used our precise perceptual task.
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7 Conclusion

In this paper we have provided experimental evidence that, when faced with informational

constraints, people do adjust their attention in response to prior beliefs and incentives.

Moreover, in simple settings, they do so broadly in line with a model of rational inattention,

meaning that the act as if they are selecting information in order to maximize utility net

of costs. These costs, however, do not seem to be well described as a linear function of

Shannon mutual information. Our aggregate data is better matched by a model that allows

for a ‘neighborhood’structure, and which uses either a generalized form of entropy, or a

nonlinear function of mutual information as a basis for costs.

One obvious feature of the paper is that it studies information gathering in one particular

setting. Understanding how the form of an information acquisition task affects behavior is an

important avenue for future research. However, it is also important to note that the models

that we test in make at least some claim to universality. Much like utility maximization

or Nash equilibrium, one of the strengths of rational inattention is its portability - it can

potentially explain behavior in any information gathering task. Similarly, due to its basis in

optimal coding theory, the Shannon model might stake a claim at being widely applicable

across many domains. Understanding the limits of this generality - i.e. the situations in which

the General and Shannon models work well and where they do not - is an important step in

the development of broadly applicable models of information acquisition. For example, as

reported in earlier versions of this paper, an alternative version of experiment 4 using stimuli

with no natural perceptual distance does not lead to systematic violations of IUC, meaning

the Shannon model may work well in that domain. We draw the analogy with experimental

game theory, in which an understanding of which simple, stylized settings generate behavior

consistent with Nash equilibrium has been important for developing richer models of strategic

interaction.
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42



Andrew Caplin, Mark Dean, and Daniel Martin. Search and satisficing. The American

Economic Review, 101(7):2899—2922, 2011.

Andrew Caplin, Mark Dean, and John Leahy. Rational inattention, optimal consideration

sets and stochastic choice. 2016.

Andrew Caplin, Mark Dean, and John Leahy. Rationally inattentive behavior: Characteriz-

ing and generalizing shannon entropy. 2017. Unpublished.

Christopher Chambers, Ce Liu, and John Rehbeck. Costly information acquisition. 2018.

Anton Cheremukhin, Anna Popova, and Antonella Tutino. A theory of discrete choice with

information costs. Journal of Economic Behavior & Organization, 113:34—50, 2015.

Raj Chetty, Adam Looney, and Kory Kroft. Salience and taxation: Theory and evidence.

American Economic Review, 99(4):1145—1177, 2009.

Aubrey Clark. Contracts for information acquisition. 2016.

Mark Dean, Stephen Morris, and Isabel Trevino. Endogenous information structures and

play in global games. Mimeo, 2016.

Stefano DellaVigna and Joshua Pollet. Demographics and industry returns. American Eco-

nomic Review, 97(5):1667—1702, 2007.

Ambuj Dewan and Nathaniel Neligh. Estimating information cost functions in models of

rational inattention. 2017.

Andrew Ellis. Foundations for optimal inattention. 2013.

Xavier Gabaix, David Laibson, Guille Moloche, and Stephen Weinberg. Costly information

acquisition: Experimental analysis of a boundedly rational model. American Economic

Review, 96(4):1043—1068, 2006.

Sen Geng. Decision time, consideration time, and status quo bias. Economic Inquiry,

54(1):433—449, 2016.

Henry Goecke, Wolfgang J Luhan, and Michael WM Roos. Rational inattentiveness in a

forecasting experiment. Journal of Economic Behavior & Organization, 94:80—89, 2013.

David Green and John Swets. Signal Detection Theory and Psychophysics. Wiley, New York,

1966.

43



Sanford Grossman and Joseph Stiglitz. On the impossibility of informationally effcient mar-

kets. American Economic Review, 70(3):393—408, 1980.

Faruk Gul and Wolfgang Pesendorfer. Random expected utility. Econometrica, 74(1):121—

146, 2006.

Benjamin Hébert and Michael Woodford. Rational inattention with sequential information

sampling. 2017.

Christian Hellwig, Sebastian Kohls, and Laura Veldkamp. Information choice technologies.

The American Economic Review, 102(3):35—40, 2012.

David Hirshleifer, Sonya Seongyeon Lim, and Siew Hong Teoh. Driven to distraction: Extra-

neous events and underreaction to earnings news. Journal of Finance, 64(5):2289—2325,

2009.

Daniel Ho and Kosuke Imai. Estimating causal effects of ballot order from a randomized

natural experiment: The california alphabet lottery, 1978-2002s. Public Opinion Quarterly,

72(2):216—240, 2008.

Tanjim Hossain and John Morgan. ...plus shipping and handling: Revenue (non) equivalence

in field experiments on ebay. The B.E. Journal of Economic Analysis & Policy, 6(2):1—30,

2006.

Gur Huberman. Familiarity breeds investment. Review of Financial Studies, 14(3):659—680,

Jun 2015.

Mel Win Khaw, Luminita Stevens, andMichael Woodford. Discrete adjustment to a changing

environment: Experimental evidence. Technical report, National Bureau of Economic

Research, 2016.

Ian Krajbich, Carrie Armel, and Antonio Rangel. Visual fixations and the computation and

comparison of value in simple choice. Nature Neuroscience, 13(10):1292—1298, 2010.

I Krajbich, D Lu, C Camerer, and A Rangel. The attentional drift-diffusion model extends

to simple purchasing decisions. Frontiers in Psychology, 3:193—193, 2011.

Nicola Lacetera, Devin Pope, and Justin Sydnor. Heuristic thinking and limited attention

in the car market. American Economic Review, 102(5):2206—2236, 2012.

Bartosz Mackowiak and Mirko Wiederholt. Optimal sticky prices under rational inattention.

American Economic Review, 99(3):769—803, June 2009.

44



Ulrike Malmendier and Devin Shanthikumar. Are small investors naive about incentives?

Journal of Financial Economics, 85(2):457—489, Aug 2007.

Daniel Martin. Strategic pricing with rational inattention to quality. Games and Economic

Behavior, 104:131—145, 2017.

Filip Matejka and Alisdair McKay. Rational inattention to discrete choices: A new founda-

tion for the multinomial logit model. American Economic Review, 105(1):272—98, 2015.
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Appendix A0: Experimental ScreenShot and Instructions

Experimental Screenshot

Figure A0.1: Typical Screenshot
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In experiments in which subjects were paid in probability points the following was added

At the end of the experiment we will randomly select one question you have

answered. You will receive points from that question based on your response and

the number of red/blue balls in the corresponding image.

Experimental points will give you a chance to earn the prize of $xxx. For

every point you receive your chance of receiving the prize will increase by 1%.

For example, imagine that the computer randomly selected the fourth ques-

tion to reward. You earned 72 experimental points for that question. You would

then receive 72 points which would mean you would have a 72% chance of winning

the $30.00 prize.
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Appendix A1: NIAS and NIAC for Experiment 1

Deriving the NIAS and NIAC Conditions

NIAS demands that, for each action a ∈ A chosen with positive probability∑
ω∈Ω

µ(ω)P (a|ω) (u(a, ω)− u(a′, ω)) ≥ 0

for every other available alternative a′ ∈ A.

For notational convenience, we will use P to denote the SDSC data arising from the

decision problem {a, b} and P̂ for that arising from {a, b, c}.

Taking the former DP first, the comparison of a to b requires

P (a|ω1)(50− b1) + P (a|ω2)(50− b2) ≥ 0

while the comparison of b to a requires

(1− P (a|ω1)) (b1 − 50) + (1− P (a|ω2)) (b2 − 50)) ≥ 0

or

P (a|ω1)(50− b1) + P (a|ω2)(50− b2) ≥ 100− (b1 + b2)

As in all our treatments b1 + b2 < 100 it is only the latter condition that binds.

In the DP in which the DM chooses from {a, b, c} the comparison of a to b again requires

P̂ (a|ω1)(50− b1) + P̂ (a|ω2)(50− b2) ≥ 0

while the comparison of a to c demands

P̂ (a|ω1) (50− 100) + P̂ (a|ω2) (50) ≥ 0⇒
50
(
P̂ (a|ω2)− P̂ (a|ω1)

)
≥ 0

⇒ P̂ (a|ω2) ≥ P̂ (a|ω1)
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The comparison of b to a gives

P̂ (b|ω1)(b1 − 50) + P̂ (b|ω2)(b2 − 50) ≥ 0

And that of b to c

P̂ (b|ω1)(b1 − 100) + P̂ (b|ω2)b2 ≥ 0

The comparison of c to a gives

P̂ (c|ω1) (100− 50) + P̂ (c|ω2) (−50) ≥ 0⇒
50
(
P̂ (c|ω1)− P̂ (c|ω2)

)
≥ 0

⇒ P̂ (c|ω1) ≥ P̂ (c|ω2)

While the comparison of c to b gives

P̂ (c|ω1)(100− b1)− P̂ (c|ω2)b2 ≥ 0

Table A1.1 Summarizes these conditions, not all of which will hold simultaneously.

Table A1.1: NIAS tests for Experiment 1

DP Comparison Condition

1 N/A P1(a|1)(50− b1) + P 1(a|2)(50− b2)− (100− (b1 + b2))≥ 0

2 a vs b P2(a|1)(50− b1) + P 2(a|2)(50− b2) ≥ 0

2 a vs c P2(a|2)− P 2(a|1) ≥ 0

2 b vs a P2(b|1)(b1−50) + P 2(b|2)(b2−50) ≥ 0

2 b vs c P2(b|1)(b1−100) + P 2(b|2)b2≥ 0

2 c vs a P2(c|1)− P 2(c|2) ≥ 0

2 c vs b P2(c|1)(100− b1)− P 2(c|2)b2≥ 0

NIAC requires that the total surplus generated from the observed matching of informa-

tion structures to decision problems is greater than that generated by switching revealed

information structures across decision problems

G(µ, {a, b} , π) +G(µ, {a, b, c} , π̂) (4)

≥ G(µ, {a, b} , π̂) +G(µ, {a, b, c} , π)
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where π is the revealed information structure from data P generated from choice set {a, b}
and π̂ is the revealed information structure from data set P̂ generated from choice set {a, b, c}.
See Caplin and Dean [2015] for a formal definition of the revealed information structure,

but essentially it assumes that the DM used an information structure which generates the

posteriors described in equation 1 for each chosen act, with the probability of receiving that

posterior given by the (unconditional) probability of choosing the associated act.

Assuming NIAS holds, we can estimate G(µ, {a, b} , π) directly from the data: these are

just the gross utilities derived from SDSC observed in each DP, so

G(µ, {a, b} , π) = (P (a ∩ ω1) + P (a ∩ ω2)) 50 + P (b ∩ ω1)b1 + P (b ∩ ω2)b2

= 0.5 [(P (a|ω1) + P (a|ω2)) 50 + P (b|ω1)b1 + P (b|ω2)b2]

where we have used the fact that µ(1) = µ(2) = 0.5. Similarly for G(µ, {a, b, c} , π̂) we

have

G(µ, {a, b, c} , π̂) = 0.5
[(
P̂ (a|ω1) + P̂ (a|ω2)

)
50 + P̂ (b|ω1)b1 + P̂ (b|ω2)b2 + P̂ (c|ω1)100

]
Recall that G(µ, {a, b} , π̂) is the hypothetical utility generated from using information

structure π̂ in DP {a, b}. This means that we have to calculate the optimal action to take
from the posteriors γ̂a, γ̂b and γ̂c associated with acts a b and c in the DP in which π̂ is

observed - i.e. when only a and b are present. Note that, assuming NIAS hold, it must be

the case that a is still optimal from γ̂a and b is still optimal from γ̂b in the new problem.

The question is therefore only whether the DM should choose a or b from γ̂c. Note, however,

that NIAS implies that

γ̂c(ω1)100 ≥ γ̂c(ω1)50 + (1− γ̂c(ω1))50

⇒ γ̂c(ω1) ≥ 1

2

which in turn implies that it is optimal to choose a rather than b from this posterior. We

therefore have

G(µ, {a, b} , π̂) =
(
P̂ (a|ω1) + P̂ (a|ω2) + P̂ (c|ω1) + P̂ (c|ω2)

)
50

+P̂ (b|ω1)b1 + P̂ (b|ω2)b2
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Similarly, in order to calculate G(µ, {a, b, c} , π) we need to figure out the optimal choice

of action from γa and γb associated with the choice of a and b in {a, b, c}. Again from NIAS
it is obvious that it must be the case that γb(ω1) ≤ 1

2
, and so it cannot be optimal to choose

c from this posterior. NIAS also implies that it must be better to choose b rather than a

from this posterior. Further, note that by Bayes rule we have

P (a)γa(ω1) + (1− P (a))γb(ω1) =
1

2

Thus, as γb(ω1) ≤ 1
2
it must be the case that γa(ω1) ≥ 1

2
, meaning that c is weakly

optimal from this posterior. This means that

G(µ, {a, b, c} , π) = P (b|ω1)b1 + P (b|ω2)b2 + P (a|ω1)100

Plugging these into inequality 4 and cancelling gives

(P (a|ω1) + P (a|ω2)) 50 + P̂ (c|ω1)100

≥
(
P̂ (c|ω1) + P̂ (c|ω2)

)
50 + P (a|ω1)100

or

P̂ (c|ω1)− P̂ (c|ω2) ≥ P (a|ω1)− P (a|ω2)

This expression has a natural interpretation when one notes that NIAS implies that

P̂ (c|ω1) ≥ P̂ (c|ω2) and P (a|ω1) ≥ P (a|ω2): it implies that the DM has to be more informed

when choosing c in DP {a, b, c} than when choosing a in DP (a, b}. In particular, if the DM
chooses to gather no information in the former problem, meaning that P̂ (c|ω1) = P̂ (c|ω2),

it must also be the case that P (a|ω1) = P (a|ω2), and so the DM is uninformed in the first

problem. NIAS in turn implies that in such cases a must be chosen exclusively in {a, b}.

Empirical Results

Table A1.2 reports the results of the NIAS tests for experiment 1 using aggregate data.53 The

first column reports the mean value for the LHS of the tests described in table A1.1. Recall

53Estimate for the first row generated by constructing, for each choice and each individual

1(choose_a).1(ω1)
P (1)

(50− b1) +
1(choose_a).1(ω2)

P (2)
(50− b2)− 100 + (b1 + b2)
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that the NIAS condition requires each of these to be positive. The second column reports the

probability associated with a test of the hypothesis that this value is equal to zero. Five of the

seven tests provide strong evidence in favor of NIAS with point estimates significantly greater

than zero. The two remaining tests have estimates which are not significantly different from

zero. In the comparison between a and c in DP 2 the point estimate is actually negative -

though not significantly so. This implies that people were choosing a when in fact it would

have provided (marginally) higher expected utility to choose c. One possible explanation for

this is a form of ‘certainty bias’for probability points: subjects may have liked the fact that

a provides a ‘sure thing’of 50 points, while c is ‘risky’.

Table A1.2: NIAS Tests for Experiment 1

Aggregate Data

Test Est. P

NIAS DP 1 0.30 0.41

NIAS DP 2 a vs b 5.46 0.00

NIAS DP 2 a vs c -0.02 0.31

NIAS DP 2 b vs a 1.07 0.06

NIAS DP 2 b vs c 25.57 0.00

NIAS DP 2 c vs a 0.47 0.00

NIAS DP 2 c vs b 30.66 0.00

The NIAC condition requires that (P2(c|ω1)−P2(c|ω2))−(P1(a|ω1)− P1(a|ω2)) is greater

than zero. In the aggregate data the average value of this expression is 0.234, significantly

different from 0 at the 5% level.54

At the individual level we observe only a small number of significant violations of NIAS

or NIAC. Of the 28 tests of NIAS in DP 1 we find 3 violations. In DP 2 of the 168 tests we

find 6 violations. For NIAC, we find 2 significant violations in 28 tests (note each individual

provides a single opportunity to test NIAC, as they face only 2 decision problems).

where 1(choose_a) is a dummy which takes the value 1 if a is chosen, 1(ωi) is a dummy which takes the
value 1 if the state is i and P (i) is the empirical frequencey of state i. Averaging over these values provides an
estimate of the LHS of the first NIAS test described in table A1.2. P values were found using bootstrapping
with standard errors clustered at the individual level.
Data for other rows constructed using the same method.
54Point estimates and standard errors calculated as in the NIAS tests above.
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Appendix A2: Shannon without Subjects who Violate NIAS or

NIAC

In this appendix we rerun the analysis testing the Shannon model using the data from

experiment 2 while excluding those subjects who exhibit significant violations on NIAS and

NIAC. We will refer to the remainder as ‘consistent’subjects.

Figure A2.1 shows estimated costs κ using aggregate data , replicating the analysis of

figure 3. Again, we see that costs are significantly higher at the 95 point level than at the 5

point level, indicating that adjustment is again too slow relative to the Shannon model

Figure A2.1: Estimated Costs - Consistent Subjects Only

Figure A2.2 replicates the individual level analysis of figure 4. As with the equivalent

analysis in section 4.3, we drop observations in which accuracy at the lower reward level is

below 50%. Of the 178 possible comparisons, we find 42 violations of the ‘too slow’variety

and 5 of the ‘too fast’variety. 15 subjects exhibit ‘too slow’violations only, 3 exhibit ‘too
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fast violations’only and 21 have examples of neither.

Figure A2.3: Predicted vs actual accuracy in the 70%

payoff treatment

Appendix A3: Order Effects

Tables A3.1 and A3.2 report the result of regressions of accuracy (i.e. the probability of

picking the rewarding action) on order (i.e. in which block the question occurred, between 1

and 4) controlling for the type of question and clustering standard errors at the subject level

for experiments 2 and 3. In both cases the excluded category is block 1 - i.e. the first set

of questions answered. The lower and upper CI refer to the upper and lower bounds to the

95% confidence interval, while Prob refers to the probability of rejecting the null hypothesis

63



that the coeffi cient is equal to zero.

Table A3.1: Order Effects - Experiment 2

Block Coeffi cient Lower CI Upper CI Prob

2 -0.05 -0.09 -0.00 0.04

3 -0.07 -0.11 -0.03 0.00

4 -0.06 -0.11 -0.02 0.03

Table A3.2: Order Effects - Experiment 3

Block Coeffi cient Lower CI Upper CI Prob

2 -0.01 -0.05 0.04 0.81

3 -0.02 -0.07 0.02 0.34

4 -0.02 -0.08 0.02 0.19

Appendix A4: Estimation Strategy and Additional Results

We estimated all maximum likelihood models using two stage numerical optimization. First,

we have a function that, for a given set of parameters, finds the conditional choice proba-

bilities by numerically maximizing the expected payoff function for a given choice problem

net of the costs of information implied by the conditional choice probabilities and the model

parameters. A second function takes the conditional choice probabilities from the first stage

optimization and uses them to generate a likelihood for the observed data. This likelihood

function is then numerically optimized using the mle function from the "stats4" package in

R to find the parameters which best fit the data.

For the individual level model fits for experiments 1 and 3, the likelihood function also

included an ‘error term’: an additional free parameter which represented a player’s proba-

bility of uniformly randomizing over all available moves. This was done because some of the

models generate very stark predictions in these settings with behaviors often being projected

to occur with zero probability. In some cases, a model cannot be fit to a data set with finite

likelihood regardless of parameters if we do not include this chance of random action.

Where applicable, we took advantages of inherent features of the problem to improve the

performance of the first stage estimation. For example, in experiment 2 we generated one

accuracy parameter for each incentive level rather than separately numerically optimizing a

probability of action A given state 1 and a probability of action b given state 2. We also

imposed a monotonicity restriction on the predicted accuracy of the neighborhood models
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in experiment 4, because we know that the accuracy in the true prediction of the model will

always be monotonically decreasing as the number of red and blue balls in a state get closer

together.

Predicted behaviors were generated by plugging the parameters found in the maximum

likelihood solutions back into the first stage optimizing functions. Confidence intervals in all

cases were generated by running the same process on a bootstrap resampling of the data. In

the aggregate data, errors were clustered at the individual level by resampling individuals

rather than single observations. Likelihood ratio tests were done in the standard manner

with p-values derived from the asymptotic chi-squared approximation of the distribution of

the test statistic. More specifically, we employ the lr.test function from the "exTremes"

package.
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Table A4.1: Estimation Results for Experiment 4: All Treatments

8 States 12 States

16 States 20 States
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Table A4.2: Results from Joint Estimation: Experiment 2
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Table A4.3: Results from Joint Estimation: Experiment 4

8 States 12 States

16 States 20 States
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