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Abstract

This paper proposes an adaptive randomization procedure for two-stage randomized con-

trolled trials. The method uses data from a first-wave experiment in order to determine how to

stratify in a second wave of the experiment, where the objective is to minimize the variance of an

estimator for the average treatment e↵ect (ATE). We consider selection from a class of stratified

randomization procedures which we call stratification trees : these are procedures whose strata

can be represented as decision trees, with di↵ering treatment assignment probabilities across

strata. By using the first wave to estimate a stratification tree, we simultaneously select which

covariates to use for stratification, how to stratify over these covariates, as well as the assign-

ment probabilities within these strata. Our main result shows that using this randomization

procedure with an appropriate estimator results in an asymptotic variance which minimizes the

variance bound for estimating the ATE, over an optimal stratification of the covariate space.

Moreover, by extending techniques developed in Bugni et al. (2018), the results we present are

able to accommodate a large class of assignment mechanisms within strata, including stratified

block randomization. We also present extensions of the procedure to the setting of multiple

treatments, and to the targeting of subgroup-specific e↵ects. In a simulation study, we find that

our method is most e↵ective when the response model exhibits some amount of “sparsity” with

respect to the covariates, but can be e↵ective in other contexts as well, as long as the first-wave

sample size used to estimate the stratification tree is not prohibitively small. We conclude by

applying our method to the study in Karlan and Wood (2017), where we estimate stratification

trees using the first wave of their experiment.
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1 Introduction

This paper proposes an adaptive randomization procedure for two-stage randomized controlled

trials (RCTs). The method uses data from a first-wave experiment in order to determine how to

stratify in a second wave of the experiment, where the objective is to minimize the variance of an

estimator for the average treatment e↵ect (ATE). We consider selection from a class of stratified

randomization procedures which we call stratification trees: these are procedures whose strata can

be represented as decision trees, with di↵ering treatment assignment probabilities across strata.

Stratified randomization is ubiquitous in randomized experiments. In stratified randomization,

the space of available covariates is partitioned into finitely many categories (i.e. strata), and ran-

domization to treatment is performed independently across strata. Stratification has the ability to

decrease the variance of estimators for the ATE through two parallel channels. The first channel

is from ruling out treatment assignments which are potentially uninformative for estimating the

ATE. For example, if we have information on the sex of individuals in our sample, and outcomes

are correlated with sex, then performing stratified randomization over this characteristic can re-

duce variance (we present an example of this for the standard di↵erence-in-means estimator in

Appendix C.1). The second channel through which stratification can decrease variance is by al-

lowing for di↵erential treatment assignment probabilities across strata. For example, if we again

consider the setting where we have information on sex, then it could be the case that for males

the outcome under one treatment varies much more than under the other treatment. As we show

in Section 3.2, this can be exploited to reduce variance by assigning treatment according to the

Neyman Allocation, which in this example would assign more males to the more variable treatment.

Our proposed method leverages supervised machine-learning techniques to exploit both of these

channels, by simultaneously selecting which covariates to use for stratification, how to stratify over

these covariates, as well as the optimal assignment probabilities within these strata, in order to

minimize the variance of an estimator for the ATE.

Our main result shows that using our procedure results in an estimator whose asymptotic

variance minimizes the semi-parametric e�ciency bound of Hahn (1998), over an “optimal” strat-

ification of the covariate space, where we restrict ourselves to stratification in a class of decision

trees. A decision tree partitions the covariate space such that the resulting partition can be in-

terpreted through a series of yes or no questions (see Section 2.2 for a formal definition and some

examples). We focus on strata formed by decision trees for several reasons. First, since the res-

ulting partition can be represented as a series of yes or no questions, it is easy to communicate
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and interpret, even with many covariates. This feature could be particularly important in many

economic applications, because many RCTs in economics are undertaken in partnership with ex-

ternal organizations (for example, every RCT described in Karlan and Appel 2016 was undertaken

in this way), and thus clear communication of the experimental design could be crucial. Second,

using partitions based on decision trees gives us theoretical and computational tractability. Third,

as we will explain below, using decision trees allows us to flexibly address the additional goal of

minimizing the variance of estimators for subgroup-specific e↵ects. Lastly, decision trees naturally

encompass the type of stratifications usually implemented by practitioners. The use of decision

trees in statistics and machine learning goes back at least to the work of Breiman (see Breiman

et al., 1984; Gyorfi et al., 1996, for classical textbook treatments), and has seen a recent resurgence

in econometrics (examples include Athey and Imbens, 2016; Athey and Wager, 2017).

An important feature of our theoretical results is that we allow for the possibility of so-called

restricted randomization procedures within strata. Restricted randomization procedures limit the

set of potential treatment allocations, in order to force the true treatment assignment proportions

to be close to the desired target proportions (common examples used in a variety of fields include

Antognini and Giovagnoli, 2004; Efron, 1971; Kuznetsova and Tymofyeyev, 2011; Wei, 1978; Zelen,

1974). Restricted randomization induces dependence in the assignments within strata, which com-

plicates the analysis of our procedure. By extending techniques recently developed in Bugni et al.

(2018), our results will accommodate a large class of restricted randomization schemes, includ-

ing stratified block randomization, which as we discuss in Example 2.5 is a popular method of

randomization.

Stratified randomization has additional practical benefits beyond reducing the variance of ATE

estimators. For example, when a researcher wants to analyze subgroup-specific e↵ects, stratifying

on these subgroups serves as a form of pre-analysis registration, and as we will show, can help reduce

the variance of estimators for the subgroup-specific ATEs. It is also straightforward to implement

stratified randomization with multiple treatments. Although our main set of results apply to

estimation of the global ATE in a binary treatment setting, we also present results that apply

to settings with multiple treatments, as well as results for targeting subgroup-specific treatment

e↵ects.

The literature on randomization in RCTs is vast (references in Athey and Imbens 2017, Cox

and Reid 2000, Glennerster and Takavarasha 2013, Pukelsheim 2006, Rosenberger and Lachin

2015, and from a Bayesian perspective, Ryan et al. 2016, provide an overview). The classical

literature on optimal randomization, going back to the work of Smith (1918), maintains a parametric

relationship for the outcomes with respect to the covariates, and targets e�cient estimation of the

model parameters. In contrast, our paper follows a recent literature which instead maintains a

non-parametric model of potential outcomes, and targets e�cient estimation of treatment e↵ects

(see Remark 2.2 for a discussion about alternative objectives, in particular maximizing population
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welfare). This recent literature can be broadly divided into “one-stage” procedures, which do not use

previous experiments to determine how to randomize (examples include Aufenanger, 2017; Barrios,

2014; Kallus, 2018; Kasy, 2016), and “multi-stage” procedures, of which our method is an example.

Multi-stage procedures use the response information from previous experimental waves to determine

how to randomize in subsequent waves of the experiment. We will call these procedures response-

adaptive. Although response adaptive methods require information from a prior experiment, such

settings do arise in economic applications. First, many social experiments have a pilot phase or

multi-stage structure. For example, Simester et al. (2006), Karlan and Zinman (2008), and Karlan

and Wood (2017) all feature a multi-stage structure, and Karlan and Appel (2016) advocate the

use of pilot experiments to help avoid potential implementation failures when scaling up to the

main study. Second, many research areas have seen a profusion of related experiments which could

be used as a first wave of data in a response-adaptive procedure (see for example the discussion in

the introduction of Hahn et al., 2011). The study of response-adaptive methods to inform many

aspects of experimental design, including how to randomize, has a long history in the literature

on clinical trials, both from a frequentist and Bayesian perspective (see for example the references

in Cheng et al., 2003; Hu and Rosenberger, 2006; Sverdlov, 2015), as well as in the literature on

bandit problems (see Bubeck et al., 2012).

Two papers which propose response-adaptive randomization methods in a framework similar

to ours are Hahn et al. (2011) and Chambaz et al. (2014). Hahn et al. (2011) develop a procedure

which uses the information from a first-wave experiment in order to compute the propensity-score

that minimizes the asymptotic variance of an ATE estimator, over a discrete set of covariates (i.e.

they stratify the covariate space ex-ante). They then use the resulting propensity score to assign

treatment in a second-wave experiment. In contrast, our method computes the optimal assignment

proportions over a data-driven discretization of the covariate space. Chambaz et al. (2014) pro-

pose a multi-stage procedure which uses data from previous experimental waves to compute the

propensity score that minimizes the asymptotic variance of an ATE estimator, where the propensity

score is constrained to lie in a class of functions with appropriate entropy restrictions. However,

their method requires the selection of several tuning parameters as well as additional regularity

conditions, and their optimal target depends on these features in a way that may be hard to assess

in practice. Their results are also derived in a framework where the number of experimental waves

goes to infinity, which may not be a useful asymptotic framework for many settings encountered in

economics. Finally, the results in both Hahn et al. (2011) and Chambaz et al. (2014) assume that

assignment was performed completely independently across individuals. In contrast, we reiterate

that our results will accommodate a large class of stratified randomization schemes.

The paper proceeds as follows: In Section 2, we provide a motivating discussion, an overview of

the procedure, and the formal definition of a stratification tree. In Section 3, we present the formal

results underlying the method as well as several relevant extensions. In Section 4, we perform
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a simulation study to assess the performance of our method in finite samples. In Section 5, we

consider an application to the study in Karlan and Wood (2017), where we estimate stratification

trees using the first wave of their experiment. Section 6 concludes.

2 Preliminaries

In this section we discuss some preliminary concepts and definitions. Section 2.1 presents a series

of simplified examples which we use to motivate our procedure. Section 2.2 establishes the notation

and provides the definition of a stratification tree, which is a central concept of the paper. Section

2.3 presents a high-level discussion of the proposed method.

2.1 Motivating Discussion

We present a series of simplified examples which we use to motivate our proposed method. First we

study the problem of optimal experimental assignment without covariates. We work in a standard

potential outcomes framework: let pY p1q, Y p0qq be potential outcomes for a binary treatment A P

t0, 1u, and let the observed outcome Y for an individual be defined as

Y “ Y p1qA ` Y p0qp1 ´ Aq .

Let

ErY paqs “ µa, V arpY paqq “ �
2
a ,

for a P t0, 1u. Our quantity of interest is the average treatment e↵ect

✓ :“ µ1 ´ µ0 .

Suppose we perform an experiment to obtain a size n sample tpYi, Aiqu
n

i“1, where the sampling

process is determined by tpYip1q, Yip0qqu
n

i“1, which are i.i.d, and the treatment assignments tAiu
n

i“1,

where exactly n1 :“ tn⇡u individuals are randomly assigned to treatment A “ 1, for some ⇡ P p0, 1q

(however, we emphasize that our results will accommodate other methods of randomization). Given

this sample, consider estimation of ✓ through the standard di↵erence-in-means estimator:

✓̂S :“
1

n1

nÿ

i“1

YiAi ´
1

n ´ n1

nÿ

i“1

Yip1 ´ Aiq .

It can then be shown that
?
np✓̂S ´ ✓q

d
›Ñ Np✓, V1q ,

where

V1 :“
�
2
1

⇡
`

�
2
0

1 ´ ⇡
.
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In fact, it can be shown that under this randomization scheme V1 is the finite sample variance of

the normalized estimator, but this will not necessarily be true for other randomization schemes.

Our goal is to choose ⇡ to minimize the variance of ✓̂. Solving this optimization problem yields the

following solution:

⇡
˚ :“

�1

�1 ` �0
.

This allocation is known as the Neyman Allocation, which assigns more individuals to the treatment

which is more variable. Note that when �20 “ �
2
1, so that the variances of the potential outcomes are

equal, the optimal proportion is ⇡˚
“ 0.5, which corresponds to the standard “balanced” treatment

allocation. In general, implementing ⇡˚ is infeasible without knowledge of �20 and �21. In light of

this, if we had prior data tpYj , Ajqu
m

j“1 (either from a first-wave or a similar prior study), then we

could use this data to estimate ⇡˚, and then use this estimate to assign treatment in a subsequent

wave of the study. The idea of sequentially updating estimates of unknown population quantities

using past observations, in order to inform experimental design in subsequent stages, underlies many

procedures developed in the literatures on response adaptive experiments and bandit problems, and

is the main idea underpinning our proposed method.

Remark 2.1. Although the Neyman Allocation minimizes the variance of the di↵erence-in-means

estimator, it is entirely agnostic on the welfare of the individuals in the experiment itself. In

particular, the Neyman Allocation could assign the majority of individuals in the experiment to the

inferior treatment if that treatment has a much larger variance in outcomes (see Hu and Rosenberger

2006 for relevant literature in the context of clinical trials, as well as Narita (2018) for recent work

on this issue in econometrics). While this feature of the Neyman Allocation may introduce ethical

or logistical issues in some relevant applications, in this paper we focus exclusively on the problem

of estimating the ATE as accurately as possible. See Remark 2.2 for further discussion on our

choice of optimality criterion.

Next we repeat the above exercise with the addition of a discrete covariate S P t1, 2, ...,Ku

over which we stratify. We perform an experiment which produces a sample tpYi, Ai, Siqu
n

i“1,

where the sampling process is determined by i.i.d draws tpYip1q, Yip0q, Siqu
n

i“1 and the treatment

assignments tAiu
n

i“1. For this example suppose that the tAiu
n

i“1 are generated as follows: for

each k, exactly n1pkq :“ tnpkq⇡pkqu individuals are randomly assigned to treatment A “ 1, with

npkq :“
∞

n

i“1 1tSi “ ku.

Note that when the assignment proportions ⇡pkq are not equal across strata, the di↵erence-

in-means estimator ✓̂S is no longer consistent for ✓. Hence we consider the following weighted

estimator of ✓:

✓̂C :“
ÿ

k

npkq

n
✓̂pkq ,
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where ✓̂pkq is the di↵erence-in-means estimator for S “ k:

✓̂pkq :“
1

n1pkq

nÿ

i“1

YiAi1tSi “ ku ´
1

npkq ´ n1pkq

nÿ

i“1

Yip1 ´ Aiq1tSi “ ku .

In words, ✓̂C is obtained by computing the di↵erence in means for each k and then taking a weighted

average over each of these estimates. Note that when K “ 1 (i.e. when S can take on one value),

this estimator simplifies to the di↵erence-in-means estimator. It can be shown under appropriate

conditions that
?
np✓̂C ´ ✓q

d
›Ñ Np0, V2q ,

where

V2 :“
Kÿ

k“1

P pS “ kq

„ˆ
�
2
0pkq

1 ´ ⇡pkq
`
�
2
1pkq

⇡pkq

˙
` pErY p1q ´ Y p0q|S “ ks ´ ErY p1q ´ Y p0qsq

2
⇢

,

with �2
d
pkq “ ErY pdq

2
|S “ ks´ErY pdq|S “ ks

2. The first term in V2 is the weighted average of the

conditional variances of the di↵erence in means estimator for each S “ k. The second term in V2

arises due to the additional variability in sample sizes for each S “ k. We note that this variance

is the semi-parametric e�ciency bound derived by Hahn (1998) for estimators of the ATE which

use the covariate S. Following a similar logic to what was proposed above without covariates, we

could use first-wave data tpYj , Aj , Sjqu
m

j“1 to form a sample analog of V2, and choose t⇡
˚
pkqu

K

k“1 to

minimize this quantity.

Now we introduce the setting that we consider in this paper: suppose we observe covariates

X P X Ä R
d, so that our covariate space is now multi-dimensional with potentially continuous

components. How could we practically extend the logic of the previous examples to this setting?

A natural solution is to discretize (i.e. stratify) X into K categories (strata), by specifying a

mapping S : X Ñ t1, 2, 3, ...,Ku, with Si :“ SpXiq, and then proceed as in the above example.

As we argued in the introduction, stratified randomization is a popular technique in practice,

and possesses several attractive theoretical and practical properties. In this paper we propose a

method which uses first-wave data to estimate (1) the optimal stratification, and (2) the optimal

assignment proportions within these strata. In other words, given first-wave data tpYj , Aj , Xjqu
m

j“1

from a randomized experiment, where X P X Ä R
d, we propose a method which selects t⇡pkqu

K

k“1

and the function Sp¨q, in order to minimize the variance bound in Hahn (1998). In particular, our

proposed solution selects a randomization procedure amongst the class of what we call stratification

trees, which we introduce in the next section.

Remark 2.2. Our focus on the minimization of asymptotic variance is in line with standard

asymptotic optimality results for regular estimators (see for example Theorems 25.20 and 25.21

in Van der Vaart, 1998). However, accurate estimation of the ATE is not the only objective one

could consider when designing an RCT. In particular, we could instead consider using an ATE
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estimator to construct a statistical decision rule, with the goal of maximizing population welfare

(see Manski 2009 for a textbook discussion). If, as in Manski (2004), we evaluate decision rules

by their maximum regret, then our optimality objective would be to design the randomization

procedure in order to minimize the maximum regret of the decision rule. We remark that selecting

a randomization procedure to minimize asymptotic variance may in fact reduce pointwise regret,

when paired with an appropriate decision rule. In particular, Athey and Wager (2017) derive a

bound on regret whose constant scales with the semi-parametrically e�cient variance. Our method

selects a randomization procedure which minimizes this variance, and hence subsequently minimizes

the constant in this bound.

2.2 Notation and Definitions

In this section we establish the notation of the paper and define the class of randomization pro-

cedures that we will consider. Let Ai P t0, 1u be a binary variable which denotes the treatment

received by a unit i (we consider the extension to multiple treatments in Section 3.2), and let Yi

denote the observed outcome. Let Yip1q denote the potential outcome of unit i under treatment 1

and let Yip0q denote the potential outcome of unit i under treatment 0. The observed experimental

outcome for each unit is related to their potential outcomes through the expression:

Yi “ Yip1qAi ` Yip0qp1 ´ Aiq .

Let Xi P X Ä R
d denote a vector of observed pre-treatment covariates for unit i. Let Q de-

note the distribution of pYip1q, Yip0q, Xiq and assume that tpYip1q, Yip0q, Xiqu
n

i“1 consists of n i.i.d

observations from Q. We restrict Q as follows:

Assumption 2.1. Q satisfies the following properties:

• Y paq P r´M,M s for some M † 8, for a P t0, 1u, where the marginal distributions Y p1q and

Y p0q are either continuous or discrete with finite support.

• X P X “
ë

d

j“1rbj , cjs, for some tbj , cju
d

j“1 finite.

• X “ pXC , XDq, where XC P R
d1 for some d1 P t0, 1, 2, ..., du is continuously distributed with

a bounded, strictly positive density. XD P R
d´d1 is discretely distributed with finite support.

Remark 2.3. The restriction that the Y paq are bounded is used several times throughout the

proofs for technical convenience, but it is possible that this assumption could be weakened. In

applications it may be the case that XC as defined above may not be continuous on
ë

j
rbj , cjs, but

is instead censored at its endpoints; see for example the application considered in Section 5. Our

results will continue to hold in this case as well.
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Our quantity of interest is the average treatment e↵ect (ATE) given by:

✓ “ ErYip1q ´ Yip0qs .

An experiment on our sample produces the following data:

tWiu
n

i“1 :“ tpYi, Ai, Xiqu
n

i“1 ,

whose joint distribution is determined by Q, the potential outcomes expression, and the randomiz-

ation procedure. We focus on the class of stratified randomization procedures: these randomization

procedures first stratify according to baseline covariates and then assign treatment status inde-

pendently across each of these strata. Moreover, we attempt to make minimal assumptions on how

randomization is performed within strata, in particular we do not require the treatment assignment

within each stratum to be independent across observations.

We will now describe the structure we impose on the class of possible strata we consider. For L

a positive integer, let K “ 2L and let rKs :“ t1, 2, ...,Ku. Consider a function S : X Ñ rKs, then

tS
´1

pkqu
K

k“1 forms a partition of X with K strata. For a given positive integer L, we work in the

class Sp¨q P SL of functions whose partitions form tree partitions of depth L on X , which we now

define. Note that the definition is recursive, so we begin with the definition for a tree partition of

depth one:

Definition 2.1. Let �j Ä rbj , cjs, let � “
ë

d

j“1 �j, and let x “ px1, x2, ..., xdq P �. A tree partition

of depth one on � is a partition of � which can be written as

�Dpj, �q Y �U pj, �q ,

where

�Dpj, �q :“ tx P � : xj § �u ,

�U pj, �q :“ tx P � : xj ° �u ,

for some j P rds and � P �j. We call �Dpj, �q and �U pj, �q leaves (or sometimes terminal nodes),

whenever these are nonempty.

Example 2.1. Figure 1 presents two di↵erent representations of a tree partition of depth one on

r0, 1s
2. The first representation we call graphical : it depicts the partition on a square drawn in the

plane. The second depiction we call a tree representation: it illustrates how to describe a depth

one tree partition as a yes or no question. In this case, the question is “is x1 less than or greater

than 0.5?”.

9



x1

x2

1 2

0.5

1

x1
§ 0.5

2

x
1 °

0.5

Figure 1: Two representations of a tree partition of depth 1 on r0, 1s
2.

Graphical representation (left), tree representation (right).

Next we define a tree partition of depth L ° 1 recursively:

Definition 2.2. A tree partition of depth L ° 1 on � “
ë

d

j“1 �j is a partition of � which can be

written as �pL´1q
D

Y �pL´1q
U

, where

�pL´1q
D

is a tree partition of depth L ´ 1 on �Dpj, �q ,

�pL´1q
U

is a tree partition of depth L ´ 1 on �U pj, �q ,

for some j P rds and � P �j. We call �pL´1q
D

and �pL´1q
U

left and right subtrees, respectively,

whenever these are nonempty.

Example 2.2. Figure 2 depicts two representations of a tree partition of depth two on r0, 1s
2.

x1

x2

1

2

3 4

0.5 0.9

0.8

1

x 2
§
0.
8

2

x
2 °

0.8

x1
§ 0.

5

3

x 1
§
0.
9

4

x
1 °

0.9

x
1 °

0.5

Figure 2: Two representations of a tree partition of depth 2 on r0, 1s
2.

Graphical representation (left), tree representation (right).

We focus on strata that form tree partitions for several reasons. First, these types of strata are

easy to represent and interpret, even in higher dimensions, via their tree representations or as a series
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of yes or no questions. We argued in the introduction that this could be of particular importance in

economic applications. Second, as we explain in Remark 3.4 and the Appendix, restricting ourselves

to tree partitions gives us theoretical and computational tractability. In particular, computing an

optimal stratification is a di�cult discrete optimization problem for which we exploit the tree

structure to design an evolutionary algorithm. Third, the recursive aspect of tree partitions makes

the targeting of subgroup-specific e↵ects convenient, as we show in Section 3.2.

For each k P rKs, we define ⇡ :“ p⇡pkqq
K

k“1 to be the vector of target proportions of units

assigned to treatment 1 in each stratum.

A stratification tree is a pair pS,⇡q, where Sp¨q forms a tree partition, and ⇡ specifies the target

proportions in each stratum. We denote the set of stratification trees of depth L as TL.

Remark 2.4. To be precise, any element T “ pS,⇡q P TL is equivalent to another element T
1

“

pS
1
,⇡

1
q P TL whenever T 1 can be realized as a re-labeling of T . For instance, if we consider Example

2.1 with the labels 1 and 2 reversed, the resulting tree is identical to the original except for this

re-labeling. TL should be understood as the quotient set that results from this equivalence.

Example 2.3. Figure 3 depicts a representation of a stratification tree of depth two. Note that

the terminal nodes of the tree have been replaced with labels that specify the target proportions

in each stratum.

⇡p1q “ 0.3

x 2
§
0.
8

⇡p2q “ 0.7

x
2 °

0.8

x1
§ 0.5

⇡p3q “ 0.5

x 1
§
0.
9

⇡p4q “ 0.4

x
1 °

0.9

x
1 °

0.5

Figure 3: Representation of a Stratification Tree of Depth 2

We further impose that the set of trees cannot have arbitrarily small (nonempty) cells, nor can

they have arbitrarily extreme treatment assignment targets:

Assumption 2.2. We constrain the set of stratification trees T “ pS,⇡q P TL such that, for some

fixed ⌫ ° 0 and � ° 0, ⇡pkq P r⌫, 1 ´ ⌫s and P pSpXq “ kq ° � whenever S
´1

pkq ‰ H.

Remark 2.5. In what follows, we adopt the following notational convention: if S´1
pkq “ H, then

ErW |SpXq “ ks “ 0 for any random variable W .

Remark 2.6. The depth L of the set of stratification trees will remain fixed but arbitrary through-

out most of the analysis. We return to the question of how to choose L in Section 3.2.
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For technical reasons, we will impose one additional restriction on TL. We emphasize that this

assumption is only used to avoid issues which may arise from the potential non-measurability of

certain objects.

Assumption 2.3. Let T :
L

Ä TL be a countable, closed subset of the set of stratification trees1. We

then consider the set of stratification trees restricted to this subset.

Remark 2.7. A restriction similar to Assumption 2.3 was recently considered in Kitagawa and

Tetenov (2018) in order to avoid measurability issues. Note that, in practice, restricting the set of

stratification trees to a finite grid satisfies Assumption 2.3. However, our results also apply much

more generally.

Recall that we are interested in randomization procedures that stratify on baseline covariates

and then assign treatment status independently across strata. For T “ pS,⇡q, let Si :“ SpXiq be

the strata label for an individual i. For each T P TL, and given sample of size n, an experimental

assignment is described by a random vector A
pnq

pT q :“ pAipT qq
n

i“1 for each T P TL. For our

purposes a randomization procedure (or randomization scheme) is a family of such random vectors

A
pnq

pT q for each T “ pS,⇡q P TL. The only assumptions that we require on the randomization

procedure are that the assignments are exogenous conditional on the strata, and that the assignment

proportions converge to the target proportions asymptotically. Assumptions 3.4 and 3.5 re-state

these conditions formally. Examples 2.4 and 2.5 illustrate two such randomization schemes which

are popular in economics, and many more schemes have been considered in the the literature on

clinical trials: examples include Efron (1971), Wei (1978), Antognini and Giovagnoli (2004), and

Kuznetsova and Tymofyeyev (2011).

Example 2.4. Simple random assignment assigns each individual within stratum k to treatment

via a coin-flip with weight ⇡pkq. Formally, for each T , A
pnq

pT q is a vector with independent

components such that

P pAipT q “ 1|Si “ kq “ ⇡pkq .

Simple random assignment is theoretically convenient, and features prominently in papers on ad-

aptive randomization. However, it is considered unattractive in practice because it results in a

“noisy” assignment for a given target ⇡pkq, and hence could be very far o↵ the target assignment

for any given random draw. Moreover, this extra noise increases the finite-sample variance of ATE

estimators relative to other assignment procedures which target ⇡pkq more directly (see for example

the discussion in Kasy, 2013).

Example 2.5. Stratified block randomization (SBR) assigns a fixed proportion ⇡pkq of individuals

within stratum k to treatment 1. Formally, let npkq be the number of units in stratum k, and let

1Here “closed” is with respect to an appropriate topology on TL, see Appendix B for details. It is possible that

Assumption 2.3 could be eliminated by using the theory of weak convergence developed by Ho↵man-Jorgensen, see

Van der Vaart and Wellner (1996) for a textbook discussion.
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n1pkq be the number of units assigned to treatment 1 in stratum k. In SBR, n1pkq is given by

n1pkq “ tnpkq⇡pkqu .

SBR proceeds by randomly assigning n1pkq units to treatment 1 for each k, where all
ˆ
npkq

n1pkq

˙
,

possible assignments are equally likely. This assignment procedure has the attractive feature that

it targets the proportion ⇡pkq as directly as possible. An early discussion of SBR can be found in

Zelen (1974). SBR has recently become a popular method of assignment in economics (for example,

every RCT published in the Quarterly Journal of Economics in 2017 used SBR).

2.3 Overview of Procedure

In this section we provide an overview of our procedure, before stating the formal results in Section

3. Recall the setting from the end of Section 2.1: given first-wave data, our goal is to estimate a

stratification tree which minimizes the asymptotic variance in a certain class of ATE estimators,

which we now introduce. For a fixed T P TL, consider estimation of the following equation by OLS:

Yi “

ÿ

k

↵pkq1tSi “ ku `

ÿ

k

�pkq1tAi “ 1, Si “ ku ` ui .

Then our ATE estimator is given by

✓̂pT q “

ÿ

k

npkq

n
�̂pkq ,

where npkq “
∞

i
1tSi “ ku. In words, this estimator takes the di↵erence in means between treat-

ments within each stratum, and then averages these over the strata. Given appropriate regularity

conditions, the results in Bugni et al. (2018) imply the following result for a fixed T “ pS,⇡q P TL:

?
np✓̂pT q ´ ✓q

d
›Ñ Np0, V pT qq ,

where

V pT q “

Kÿ

k“1

P pSpXq “ kq

„
pErY p1q ´ Y p0q|SpXq “ ks ´ ErY p1q ´ Y p0qsq

2
`

ˆ
�
2
0pkq

1 ´ ⇡pkq
`
�
2
1pkq

⇡pkq

˙⇢
,

and

�
2
apkq “ ErY paq

2
|SpXq “ ks ´ ErY paq|SpXq “ ks

2
.

Again we remark that this variance is the semi-parametric e�ciency bound of Hahn (1998)

amongst all (regular) estimators that use the strata indicators as covariates. We propose a two-

stage adaptive randomization procedure which asymptotically achieves the minimal variance V pT q

13



across all T P TL. In the first stage, we use first-wave data tpYj , Aj , Xjqu
m

j“1 to estimate some

“optimal” tree rT which is designed to minimize V pT q. More formally, what we require is that

|V p rT q ´ V
˚
|

a.s
››Ñ 0 ,

as m Ñ 8, where V
˚ is the minimum of V pT q in TL. We show in Proposition 3.1 that a straight-

forward way to construct such a rT is to minimize an empirical analog of V pT q:

rTEM
P arg min

TPTL
rV pT q ,

where rV p¨q is an empirical analog of V p¨q defined in Appendix D. In general, computing rTEM

involves solving a complicated discrete optimization problem. In Appendix D, we describe an

evolutionary algorithm that we use to solve this problem. In Section 3.2, we describe a version of

this estimator that selects the appropriate depth L via cross-validation.

In the second stage, we perform a randomized experiment using stratified randomization with

A
pnq

p rT q to obtain second-wave data tpYi, Ai, Xiqu
n

i“1. Finally, to analyze the results of the exper-

iment, we consider the use of two possible estimators. The first estimator we consider “pools”

the first-wave and second-wave data together. To accomplish this, we stratify on the experimental

waves; that is, we append an extra stratum which contains the first-wave data, indexed by k “ 0,

to rT . We call the resulting stratification tree an “augmented” tree, and denote it by T̂ , (see Ex-

ample 2.6 for an illustration). We then use all of the available data when estimating the saturated

regression. The resulting pooled estimator is denoted by ✓̂pT̂ q. The second estimator we consider

uses only the second-wave data to estimate the ATE. We call this estimator the unpooled estimator

and denote it by ✓̂p rT q. From now on, we state all of our results for the pooled estimator ✓̂pT̂ q, with

the understanding that analogous results hold for the unpooled estimator as well (see Remark 3.1

for details).

Example 2.6. Figure 4 depicts a representation of an augmented tree. First the tree partitions

the first-wave data into its own stratum indexed by k “ 0, and then proceeds as before.
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Figure 4: An Augmented Stratification Tree

Remark 2.8. In applications it may also be the case that the first-wave experiment was itself

stratified. It would then be natural to incorporate this stratification into the specification of the

augmented tree T̂ . Analogous results to what we derive in Section 3 will hold in this case as well.

From now on, to be concise, we will call data from the first-wave the pilot data, and data from

the second-wave the main data. To summarize, the method proceeds as follows:

OUTLINE OF PROCEDURE

• Obtain pilot data pYj , Aj , Xjq
m

j“1.

• Use pilot data to construct rT (either rTEM or the cross-validated version rTCV defined in

Section 3.2).

• Perform a randomized experiment using A
pnq

p rT q (as defined in Section 2.2) to obtain main

data pYi, Ai, Xiq
n

i“1.

• Perform inference on the average treatment e↵ect using ✓̂pT̂ q, where T̂ is the augmented tree

as described above.

In Section 3.1, we provide conditions under which

?

Np✓̂pT̂ q ´ ✓q
d
›Ñ Np0, V ˚

q ,

where N “ m ` n, as m,n Ñ 8. We also describe a consistent estimator of the asymptotic

variance. In Section 3.2, we consider several extensions of the procedure: to multiple treatments,

to the targeting of subgroup-specific e↵ects, as well as to using cross-validation to select the depth

L of the stratification tree.
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Remark 2.9. It is common practice in the analysis of RCTs to estimate ✓ by running OLS on a

linear regression with strata fixed e↵ects:

Yi “ �Ai `

ÿ

k

�pkq1tSi “ ku ` ui .

If the assignment targets ⇡pkq are not equal across strata, as in this paper, then �̂ is not a consistent

estimator of ✓. However, it can be shown that �̂ is consistent when the assignment targets are equal

across strata. Moreover, in the special case where assignment is conducted using a randomization

procedure with “strong balance”, such as SBR, this estimator has the same limiting distribution as

✓̂ (see Bugni et al., 2018, for details). It can be shown that our results continue to hold with this

alternative estimator, as long as the assignment proportions ⇡pkq are restricted to be equal, and

SBR is used as the randomization procedure.

3 Results

In this section we derive the theoretical properties of our estimator. Section 3.1 presents the main

result of the paper, that ✓̂pT̂ q is asymptotically normal with minimal variance in TL, and describes

a consistent estimator of its asymptotic variance. Section 3.2 presents several extensions: a cross-

validation procedure to select the depth L of the stratification tree, as well as extensions for the

targeting of subgroup specific e↵ects and to multiple treatments.

3.1 Main Results

In this section we present the main theoretical properties of our method. In particular, we provide

conditions under which ✓̂pT̂ q is asymptotically normal with minimal variance in the class of estim-

ators defined in Section 2.3, as well as provide a consistent estimator of its asymptotic variance.

Recall that our goal is to use pilot data in order to estimate some “optimal” stratification tree rT ,
and then use this tree to perform the experimental assignment in a second wave of the experiment.

To that end, we assume the existence of pilot data tWiu
m

i“1 :“ tpYi, Xi, Aiqu
m

i“1, generated from a

randomized experiment performed on a sample from the same population as the main experiment,

which we use to construct rT . Throughout the analysis of this section we consider the following

asymptotic framework for the size of m (the size of the pilot) relative to the size of n (the size of

the main study):

Assumption 3.1. We consider the following asymptotic framework:

m

N
“ o

ˆ
1

?

N

˙
,

where N “ m ` n, as m,n Ñ 8.
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Remark 3.1. Rate assumptions like Assumption 3.1 are only required to study the properties of

the pooled estimator ✓̂pT̂ q. The properties of the unpooled estimator ✓̂p rT q can be derived under

the weaker assumption that m Ñ 8 and n Ñ 8 without any restrictions on their relative rates. In

what follows, we state all of our results for the estimator ✓̂pT̂ q only, with the understanding that

analogous results will hold for ✓̂p rT q under this weaker assumption.

Remark 3.2. The asymptotic framework introduced in Assumption 3.1 will ensure that the asymp-

totic variance of ✓̂pT̂ q is not distorted. However, this asymptotic framework requires that m{N

vanishes quite quickly, which may inaccurately reflect the finite sample behavior of our estimator

in applications where the first wave of the experiment is large relative to the second: see for example

the application considered in Section 5, where two waves of equal size were used. In Remark 3.5

we explain how our results would change in an asymptotic framework where we allow

m

N
“ �` o

ˆ
1

?

N

˙
,

for 0 § � § 1. See Appendix C.2 or details. However, we emphasize here that this alternative

framework does not change the mechanics of the procedure in any way. We also explore the e↵ect

of large pilot samples in the simulation study of Section 4.

In all of the results of this section, the depth L of the class of stratification trees is fixed and

specified by the researcher. We return to the question of how to choose L in Section 3.2. Given a

pilot sample tWiu
m

i“1, we require the following high-level consistency property for our estimator rT :

Assumption 3.2. The estimator rTm is a �tpWiq
m

i“1u{BpTLq measurable function of the pilot data2

and satisfies

|V p rTmq ´ V
˚
|

a.s
››Ñ 0 ,

where

V
˚

“ inf
TPTL

V pT q ,

as m Ñ 8.

Note that Assumption 3.2 does not imply that V ˚ is uniquely minimized at some T P TL and so

we do not make any assumptions about whether or not rT converges to any fixed tree. In Proposition

3.1, we show that a straightforward method to construct such a rT is to solve the following empirical

minimization problem:
rTEM

P arg min
TPTL

rV pT q ,

where rV pT q is an empirical analog of V pT q (as defined in Appendix D) constructed using the pilot

data. A nice feature of this choice of rT is that it also corresponds to minimizing (an estimated

2BpTLq is the Borel-sigma algebra on TL generated by an appropriate topology and �tpWiqmi“1u is the sigma-algebra

generated by the pilot data. See the appendix for details.

17



version of) the finite sample variance of our estimator in the case of SBR. In Section 3.2, we consider

an alternative construction of rT which uses cross-validation to select the depth of the tree. We

verify Assumption 3.2 for rTEM under the following assumption about the randomization procedure

used in the pilot study (although we emphasize that this assumption is not necessary to establish

such a result in general):

Assumption 3.3. The pilot experiment was performed using simple random assignment (see Ex-

ample 2.4).

Proposition 3.1. Let rTEM be a minimizer of the empirical variance. Under Assumptions 2.1,

2.2, 2.3, 3.1 and 3.3, Assumption 3.2 is satisfied.

Next, we describe the assumptions we impose on the randomization procedure in the second-

wave experiment. For T “ pS,⇡q, let Si :“ SpXiq and S
pnq :“ pSiq

n

i“1 be the random vector of

stratification labels of the observed data (note that, although Sp¨q is a deterministic function, Xi is a

random variable and hence the resulting composition Si is itself random). Let ppk;T q :“ P pSi “ kq

be the population proportions in each stratum. We require the following exogeneity assumption:

Assumption 3.4. The randomization procedure is such that, for each T “ pS,⇡q P TL:

”
pYip0q, Yip1q, Xiq

n

i“1 K A
pnq

pT q

ı ˇ̌
ˇ̌Spnq

.

This assumption asserts that the randomization procedure can depend on the observables only

through the strata labels.

We also require that the randomization procedure satisfy the following “consistency” property:

Assumption 3.5. The randomization procedure is such that

sup
TPTL

ˇ̌
ˇ̌n1pk;T q

n
´ ⇡pkqppk;T q

ˇ̌
ˇ̌ p

›Ñ 0 ,

for each k P rKs. Where

n1pk;T q “

nÿ

i“1

1tAipT q “ 1, Si “ ku .

This assumption asserts that the assignment procedure must approach the target proportion

asymptotically, and do so in a uniform sense over all stratification trees in TL. Other than Assump-

tions 3.4 and 3.5, we do not require any additional assumptions about how assignment is performed

within strata. Bugni et al. (2018) make similar assumptions for a fixed stratification function and

show that it is satisfied for a wide range of assignment procedures, including those introduced in

Examples 2.4 and 2.5. In Proposition 3.2 below, we verify that Assumptions 3.4 and 3.5 hold for

stratified block randomization, which is a common assignment procedure in economic applications.
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Proposition 3.2. Suppose randomization is performed through SBR (see Example 2.5), then As-

sumptions 3.4 and 3.5 are satisfied.

Finally, we impose one additional regularity condition on the distribution Q when pY p0q, Y p1qq

are continuous. We impose this assumption because of technical complications that arise from the

fact that the set of minimizers of the population variance V pT q is not necessarily a singleton:

Assumption 3.6. Fix some a and k and suppose Y paq is continuous. Let G be the family of

quantile functions of Y paq|SpXq “ k, for S
´1

pkq nonempty. Then we assume that G forms a

pointwise equicontinuous family.

Remark 3.3. To our knowledge this assumption is non-standard. In Lemma E.3 we show that

a su�cient condition for Assumption 3.6 to hold is that the quantile functions be continuous (i.e.

that the densities of Y paq|SpXq “ k do not contain “gaps” in their support), and that the quantile

functions vary “continuously” as we vary S P SL.

We now state the main result of the paper: an optimality result for the pooled estimator ✓̂pT̂ q.

In Remark 3.4 we comment on some of the technical challenges that arise in the proof of this result.

Theorem 3.1. Given Assumptions 2.1, 2.2, 2.3, 3.1, 3.2, 3.4, 3.5, and 3.6, we have that
?

Np✓̂pT̂ q ´ ✓q
d
›Ñ Np0, V ˚

q ,

where N “ m ` n, as m,n Ñ 8.

Remark 3.4. Here we comment on some of the technical challenges that arise in proving Theorem

3.1. First, we develop a theory of convergence for stratification trees by defining a novel metric on

SL based on the Frechet-Nikodym metric, and establish basic properties about the resulting metric

space. In particular, we use this construction to show that a set of minimizers of V pT q exists given

our assumptions, and that rT converges to this set of minimizers in an appropriate sense. For these

results we exploit the properties of tree partitions for two purposes: First, we frequently exploit

the fact that for a fixed index k P rKs, the class of sets tS
p´1q

pkq : S P SLu consists of rectangles,

and hence forms a VC class. Second, as explained in Remark 2.4, every T P TL is in fact an

equivalence class. Using the structure of tree partitions, we define a canonical representative of T

(see Definition B.1) which simplifies our derivations.

Next, because Assumptions 3.4 and 3.5 impose so little on the dependence structure of the ran-

domization procedure, standard central limit theorems cannot be applied. When the stratification

is fixed, Bugni et al. (2018) establish asymptotic normality by essentially re-writing the sampling

distribution of the estimator as a partial-sum process. In our setting the stratification is random,

and so to prove our result we generalize their construction in a way that allows us to re-write the

sampling distribution of the estimator as a sequential empirical process (see Van der Vaart and

Wellner, 1996, Section 2.12.1 for a definition). We then exploit the asymptotic equicontinuity of

this process to establish asymptotic normality (see Lemma A.1 for details).
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We finish this subsection by constructing a consistent estimator for the variance V
˚. Let

Npkq :“ m if k “ 0 and Npkq :“ npkq otherwise. Let

pVH “

Kÿ

k“0

Npkq

N

´
�̂pkq ´ ✓̂

¯2
,

and let
pVY “ R

1
V̂hcR ,

where V̂hc is the robust variance estimator for the parameters in the saturated regression, and R is

following vector with K ` 1 “leading” zeros:

R
1

“

„
0, 0, 0, . . . , 0,

Np0q

N
,
Np1q

N
, . . . ,

NpKq

N

⇢
.

We obtain the following consistency result:

Theorem 3.2. Given Assumptions 2.1, 2.2, 2.3, 3.1, 3.2, 3.4, 3.5, and 3.6, then

pV pT̂ q
p
›Ñ V

˚
,

where
pV pT q “ pVHpT q ` pVY pT q ,

as m,n Ñ 8.

Remark 3.5. In Appendix C.2 we provide results under the “large pilot” asymptotic framework

which we presented in Remark 3.2. Here we will briefly preview these results: under appropriate

conditions it can be shown that in this alternative framework,
?

Np✓̂pT̂ q ´ ✓q
d
›Ñ Np0, V ˚

�
q ,

where

V
˚
�

“ �V0 ` p1 ´ �qV
˚
,

and

V0 “
�
2
0p0q

1 ´ ⇡p0q
`
�
2
1p0q

⇡p0q
.

In words, we see that the pooled estimator ✓̂pT̂ q now has an asymptotic variance which is a weighted

combination of the optimal variance and the variance from estimation in the pilot experiment, with

weights which correspond to their relative sizes.

3.2 Extensions

In this section we present some extensions to the main results. First we present a version of rT
whose depth is selected by cross-validation. Second, we explain how to accommodate the targeting

of subgroup-specific e↵ects. Finally, we explain how to extend our method to the setting with

multiple treatments.
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3.2.1 Cross-validation to select L

In this section we describe a method to select the depth L via cross-validation. The tradeo↵ in

choosing L can be framed as follows: by construction, choosing a larger L has the potential to lower

the variance of our estimator, since now we are optimizing in a larger set of trees. On the other

hand, choosing a larger L will make the set of trees more complex, and hence will make the optimal

tree harder to estimate accurately for a given pilot-data sample size. We suggest a procedure to

select L with these two tradeo↵s in mind. We proceed by first specifying some maximum upper

bound L̄ on the depth to be considered. For each 0 § L § L̄ (where we understand L “ 0 to mean

no stratification), define

V
˚
L :“ arg min

TPTL
V pT q .

Note that by construction it is the case that V ˚
0 • V

˚
1 • V

˚
2 • ... • V

˚̄
L
. Let rTL be the stratification

tree estimated from class TL, then by Assumption 3.2, we have that

|V p rTLq ´ V
˚
L |

a.s
››Ñ 0 ,

for each L § L̄. Despite the fact that rTL asymptotically achieves a (weakly) lower variance as

L grows, it is not clear that, in finite samples, a larger choice of L should be favored, since we

run the risk of estimating the optimal tree poorly (i.e. of overfitting). In order to protect against

this potential for overfitting, we propose a simple cross-validated version of the stratification tree

estimator. The use of cross-validation to estimate decision trees goes back at least to the work

of Breiman (see Breiman et al., 1984). For an overview of the use of cross-validation methods in

statistics in general, see Arlot et al. (2010).

The cross-validation procedure we propose proceeds as follows: let tWiu
m

i“1 be the pilot data,

and for simplicity suppose m is even. Split the pilot sample into two halves and denote these

by D1 :“ tWiu
m{2
i“1 and D2 :“ tWiu

m

m{2`1, respectively. Now for each L, let rT p1q
L

and rT p2q
L

be

stratification trees of depth L estimated on D1 and D2. Let rV p1q
p¨q and rV p2q

p¨q be the empirical

variances computed on D1 and D2 (where, in the event that a cell in the tree partition is empty, we

assign a value of infinity to the empirical variance). Define the following cross-validation criterion:

rV CV

L :“
1

2

´
rV p1q

´
rT p2q
L

¯
` rV p2q

´
rT p1q
L

¯¯
.

In words, for each L, we estimate a stratification tree on each half of the sample, compute the

empirical variance of these estimates by using the other half of the sample, and then average the

results. Intuitively, as we move from small values of L to large values of L, we would expect

that this cross-validation criterion should generally decrease with L, and then eventually increase,

in accordance with the tradeo↵ between tree complexity and estimation accuracy. We define the

cross-validated stratification tree as follows:

rTCV
“ rT

L̂
,
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with

L̂ “ argmin
L

rV CV

L ,

where in the event of a tie we choose the smallest such L. Hence rTCV is chosen to be the strati-

fication tree whose depth minimizes the cross-validation criterion rV CV

L
. If each rTL is estimated by

minimizing the empirical variance over TL, as described in Sections 2.2 and 3.1, then we can show

that the cross-validated estimator satisfies the consistency property of Assumption 3.2:

Proposition 3.3. Under Assumptions 2.1, 2.2, 2.3, 3.1 and 3.3, Assumption 3.2 is satisfied for
rTCV

“ rTEM

L̂
in the set T

L̄
, that is,

|V p rTCV
q ´ V

˚̄
L

|
a.s
››Ñ 0 ,

as m Ñ 8.

Remark 3.6. Our description of cross-validation above defines what is known as “2-fold” cross-

validation. It is straightforward to extend this to “V -fold” cross-validation, where the dataset is

split into V pieces. Breiman et al. (1984) find that using at least 5 folds is most e↵ective in their

setting (although their cross-validation technique is di↵erent from ours), and in many statistical

applications 5 or 10 folds has become the practical standard. For our purposes, we focus on 2-

fold cross validation because of the computational di�culties we face in solving the optimization

problem to compute rTEM .

In light of Proposition 3.3 we see that all of our previous results continue to hold while using
rTCV as our stratification tree. However, Proposition 3.3 does not help us conclude that rTCV should

perform any better than rT
L̄
in finite samples. Although it is beyond the scope of this paper to

establish such a result, doing so could be an interesting avenue for future work. Instead, we assess

the performance of rTCV via simulation in Section 4, and note that it does indeed seem to protect

against overfitting in practice. In Section 5, we use this cross-validation procedure to select the

depth of the stratification trees we estimate for the experiment undertaken in Karlan and Wood

(2017).

3.2.2 Stratification Trees for Subgroup Targeting

In this subsection we explain how the method can flexibly accommodate the problem of variance

reduction for estimators of subgroup-specific ATEs, while still minimizing the variance of the un-

conditional ATE estimator in a restricted set of trees. It is common practice in RCTs for the strata

to be specified such that they are the subgroups that a researcher is interested in studying (see for

example the recommendations in Glennerster and Takavarasha, 2013). This serves two purposes:

the first is that it enforces a pre-specification of the subgroups of interest, which guards against
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ex-post data mining. Second, it allows the researcher to improve the e�ciency of the subgroup

specific estimates.

Let S1
P SL1 be a tree of depth L

1
† L, whose terminal nodes represent the subgroups of interest.

Suppose these nodes are labelled by g “ 1, 2, ..., G, and that P pS
1
pXq “ gq ° 0 for each g. The

subgroup-specific ATEs are defined as follows:

✓
pgq :“ ErY p1q ´ Y p0q|S

1
pXq “ gs .

We introduce the following new notation: let TLpS
1
q Ä TL be the set of stratification trees which

can be constructed as extensions of S1. For a given T P TLpS
1
q, let KgpT q Ä rKs be the set of

terminal nodes of T which pass through the node g in S
1 (see Figure 5 for an example).
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Figure 5: On the left: a tree S
1 whose nodes represent the subgroups of interest.

On the right: an extension T P T2pS
1
q. Here K1pT q “ t1, 2u,K2pT q “ t3, 4u

Given a tree T P TLpS
1
q, a natural estimator of ✓pgq is then given by

✓̂
pgq

pT q :“
ÿ

kPKg

npkq

n1pgq
�̂pkq ,

where n
1
pgq “

∞
n

i“1 1tS
1
pXiq “ gu and �̂pkq are the regression coe�cients of the saturated regres-

sion over T . It is then straightforward to show using the recursive structure of stratification trees

that choosing T as a solution to the following problem:

V
˚
pS

1
q :“ min

TPTLpS1q
V pT q ,

will minimize the asymptotic variance of the subgroup specific estimators ✓̂pgq, while still minimizing

the variance of the global ATE estimator ✓̂ in the restricted set of trees TLpS
1
q. Moreover, to

compute a minimizer of V pT q over TLpS
1
q, it su�ces to compute the optimal tree for each subgroup,

and then append these to S
1 to form the stratification tree. Finally, the appropriate analogues to

Theorems 3.1 and 3.2 for the estimators ✓̂pgq will also follow without any additional assumptions.
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In Section 5 we illustrate the application of this extension to the setting in Karlan and Wood

(2017). In their paper, they study the e↵ect of information about a charity’s e↵ectiveness on

subsequent donations to the charity, and in particular the treatment e↵ect heterogeneity between

large and small prior donors. For this application we specify S
1 to be a tree of depth 1, whose

terminal nodes correspond to the subgroups of large and small prior donors. We then compute rT
for each of these subgroups and append them to S1 to form a stratification tree which simultaneously

minimizes the variance of the subgroup-specific estimators, while still minimizing the variance of

the global estimator in this restricted class.

3.2.3 Extension to Multiple Treatments

Here we consider the extension to multiple treatments. Let A “ t1, 2, ..., Ju denote the set of

possible treatments, where we consider the treatment A “ 0 as being the “control group”. Let

A0 “ A Y t0u be the set of treatments including the control. Our quantities of interest are now

given by

✓a :“ ErY paq ´ Y p0qs ,

for a P A, so that we consider the set of ATEs of the treatments relative to the control. Let

✓ :“ p✓aqaPA denote the vector of these ATEs.

The definition of a stratification tree T P TL is extended in the following way: instead of

specifying a collection ⇡ “ p⇡pkqq
K

k“1 of assignment targets for treatment 1, we specify, for each k, a

vector of assignment targets for all a P A0, so that ⇡ “ pt⇡apkquaPA0q
K

k“1, where each ⇡apkq P p0, 1q

and
∞

aPA0
⇡apkq “ 1. We also consider the following generalization of our estimator: consider

estimation of the following equation by OLS

Yi “

ÿ

kPrKs
↵pkq1tSi “ ku `

ÿ

aPA

ÿ

kPrKs
�apkq1tAi “ a, Si “ ku ` ui ,

then our estimators are given by

✓̂apT q “

ÿ

k

npkq

n
�̂apkq .

Now, for a fixed T P TL, the results in Bugni et al. (2018) imply that
?
np✓̂pT q´✓q is asymptotically

multivariate normal with covariance matrix given by:

VpT q :“
ÿ

k

ppk;T q pVHpk;T q ` VY pk;T qq ,

with

VHpk;T q :“ outer rpErY paq ´ Y p0q|SpXq “ ks ´ ErY paq ´ Y p0qsq : a P As ,

VY pk;T q :“
�
2
0pkq

⇡0pkq
◆|A|◆

1
|A| ` diag

ˆˆ
�
2
apkq

⇡apkq

˙
: a P A

˙
,
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where the notation v :“ pva : a P Aq denotes a column vector, outerpvq :“ vv
1, and ◆M is a vector

of ones of length M . Note that from the results in Cattaneo (2010), this is the semi-parametric

e�ciency bound in the multiple treatment setting for the discretization Sp¨q.

Because we are now dealing with a covariance matrix VpT q as opposed to the scalar quantity

V pT q, we need to be more careful about what criterion we will use to decide on an optimal T . The

literature on experimental design has considered various targets (see Pukelsheim, 2006, for some

examples). In this paper we will consider the following collection of targets:

V
˚

“ min
TPTL

||VpT q|| ,

where ||¨|| is some matrix norm. In particular, if we let ||¨|| be the Euclidean operator-norm, then our

criterion is equivalent to minimizing the largest eigenvalue of VpT q, which coincides with the notion

of E -optimality in the study of optimal experimental design in the linear model (see for example

Section 6.4 of Pukelsheim, 2006). Intuitively, if we consider the limiting normal distribution of our

estimator, then any fixed level-surface of its density forms an ellipsoid in R
|A|. Minimizing ||VpT q||

in the Euclidean operator-norm corresponds to minimizing the longest axis of this ellipsoid.

If we consider the following generalization of the empirical minimization problem:

rTEM
“ arg min

TPTL
||rVpT q|| ,

where rVpT q is an empirical analog of VpT q, then analogous results to those presented in Section

3.1 continue to hold in the multiple treatment setting as well, under some additional regularity

conditions (see Appendix C.3 for precise statements).

4 Simulations

In this section we analyze the finite sample behaviour of our method via a simulation study. We

consider three DGPs in the spirit of the designs considered in Athey and Imbens (2016). For all

three designs, the outcomes are specified as follows:

Yipaq “ apXiq ` ⌫apXiq ¨ ✏a,i .

Where the ✏a,i are i.i.d Np0, 0.1q, and ap¨q, ⌫ap¨q are specified individually for each DGP below.

In all cases, Xi P r0, 1s
d, with components independently and identically distributed as Betap2, 5q.

The specifications are given by:

Model 1: d “ 2, 0pxq “ 0.2, ⌫0pxq “ 5,

1pxq “ 10x11tx1 ° 0.4u ´ 5x21tx2 ° 0.4u ,

⌫1pxq “ 10x11tx1 ° 0.6u ` 5x21tx2 ° 0.6u .
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This is a “low-dimensional” design with two covariates. The first covariate is given a higher weight

than the second in the outcome equation for Y p1q.

Model 2: d “ 10, 0pxq “ 0.5, ⌫0pxq “ 5,

1pxq “

10ÿ

j“1

p´1q
j´110´j`2

1txj ° 0.4u ,

⌫1pxq “

10ÿ

j“1

10´j`2
1txj ° 0.6u .

This is a “moderate-dimensional” design with ten covariates. Here the first covariate has the largest

weight in the outcome equation for Y p1q, and the weight of subsequent covariates decreases quickly.

Model 3: d “ 10, 0pxq “ 0.2, ⌫0pxq “ 9,

1pxq “

3ÿ

j“1

p´1q
j´110 ¨ 1txj ° 0.4u `

10ÿ

j“4

p´1q
j´15 ¨ 1txj ° 0.4u ,

⌫1pxq “

3ÿ

j“1

10 ¨ 1txj ° 0.6u `

10ÿ

j“4

5 ¨ 1txj ° 0.6u .

This is a “moderate-dimensional” design with ten covariates. Here the first three covariates have

similar weight in the outcome equation for Y p1q, and the next seven covariates have a smaller but

still significant weight.

In each case, 0p¨q is calibrated so that the average treatment e↵ect is close to 0.1, and ⌫0p¨q

is calibrated so that Yip1q and Yip0q have similar unconditional variances (see Appendix D for

details). In each simulation we test five di↵erent methods of stratification, where we estimate the

ATE using the saturated regression estimator described in Section 2.3. In all cases, when we stratify

we consider a maximum of 8 strata (which corresponds to a stratification tree of depth 3). In all

cases we use SBR to perform assignment. We consider the following methods of stratification:

• No Stratification: Here we assign the treatment to half the sample, with no stratification.

• Ad-hoc: Here we stratify in an “ad-hoc” fashion and then assign treatment to half the sample

in each stratum. To construct the strata we iteratively select a covariate at random, and

stratify on the midpoints of the currently defined strata.

• Stratification Tree: Here we split the sample and perform a pilot experiment to estimate a

stratification tree, we then use this tree to assign treatment in the second wave.

• Cross-Validated Tree: Here we estimate a stratification tree as above, while selecting the

depth via cross validation.
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• Infeasible Optimal Tree: Here we estimate an “optimal” tree by using a large auxiliary sample.

We then use this to assign treatment to the entire sample (see Appendix D for further details).

We perform the simulations with a sample size of 5, 000, and consider three di↵erent splits of

the total sample for the pilot experiment and main experiment when performing our method (for

all other methods all 5, 000 observations are used in one experiment). For all cases with a pilot,

the pilot experiment was performed using simple random assignment without stratification. To

estimate the stratification trees we minimize an empirical analog of the asymptotic variance as

described in Appendix D.

We assess the performance of the randomization procedures through the following criteria:

the empirical coverage of a 95% confidence interval formed using a normal approximation, the

percentage reduction in average length of the 95% CI relative to no stratification, the power of a

t-test for an ATE of 0, and the percentage reduction in root mean-squared error (RMSE) relative

to no stratification. For each design we perform 5000 Monte Carlo iterations. Table 1 presents the

simulation results for Model 1.

Sample Size
Stratification Method

Criteria

Pilot Main Coverage %�Length Power %�RMSE

100 4900

No Stratification 94.4 0.0 78.6 0.0

Ad-Hoc 94.5 -7.0 83.8 -7.1

Strat. Tree 94.4 0.0 77.1 2.0

CV Tree 94.9 -5.1 81.3 -4.8

Infeasible Tree 94.7 -19.0 91.4 -18.3

500 4500

No Stratification 94.6 0.0 78.3 0.0

Ad-Hoc 94.3 -7.0 83.4 -6.8

Strat. Tree 94.5 -13.5 88.1 -13.1

CV Tree 94.8 -12.9 88.2 -13.2

Infeasible Tree 94.1 -19.0 92.1 -18.3

1500 3500

No Stratification 94.4 0.0 77.4 0.0

Ad-Hoc 94.4 -7.0 82.7 -7.0

Strat. Tree 94.3 -12.0 86.2 -11.5

CV Tree 94.3 -11.7 85.9 -11.9

Infeasible Tree 94.4 -19.0 92.2 -19.6

Table 1: Simulation Results for Model 1

In Table 1, we see that when the pilot study is small (sample size 100), our method can perform
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poorly relative to ad-hoc stratification. However, the CV tree does a good job of avoiding overfitting,

and performs only slightly worse than ad-hoc stratification for this design. When we consider a

medium-sized pilot study (sample size 500), we see that both the stratification tree and the CV

tree outperform ad-hoc stratification. To put these gains in perspective, the ad-hoc stratification

procedure would require 500 additional observations to match the performance of the stratification

trees, and the no-stratification procedure would require 1500 additional observations. Finally, when

using a large pilot study (sample size 1500), we see a small drop in performance for both trees. This

drop in performance can be explained through the alternative “large-pilot” asymptotic framework

that we introduced in Remark 3.5. Summarizing the results of Table 1, the CV tree seems to do a

good job of preventing overfitting and in general performs as well or better than the stratification

tree in all three scenarios. Overall, the stratification tree and CV tree display modest gains relative

to ad-hoc stratification in this low-dimensional setting. Next we study the results for Model 2,

presented in Table 2:

Sample Size
Stratification Method

Criteria

Pilot Main Coverage %�Length Power %�RMSE

100 4900

No Stratification 94.1 0.0 46.8 0.0

Ad-Hoc 94.8 -1.8 48.2 -3.7

Strat. Tree 94.4 7.0 42.1 6.5

CV Tree 94.1 -7.7 53.2 -7.7

Infeasible Tree 94.2 -19.6 64.4 -19.5

500 4500

No Stratification 94.2 0.0 46.1 0.0

Ad-Hoc 94.4 -1.8 48.6 -2.1

Strat. Tree 94.5 -12.7 58.0 -13.5

CV Tree 94.5 -14.0 58.1 -13.7

Infeasible Tree 94.3 -19.7 65.0 -19.4

1500 3500

No Stratification 93.9 0.0 46.6 0.0

Ad-Hoc 94 .4 -1.8 49.0 -1.8

Strat. Tree 94.0 -12.4 57.9 -11.7

CV Tree 94.1 -12.1 58.9 -11.9

Infeasible Tree 93.8 -19.7 65.9 -18.6

Table 2: Simulation Results for Model 2

In Table 2, we see that for a small pilot, we get similar results to Model 1, with the CV

tree again doing a good job of avoiding overfitting. For a medium-sized pilot, both trees display

sizeable gains relative to ad-hoc stratification. To put these gain in perspective, both the ad-hoc
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stratification and the no-stratification procedures would require 1500 additional observations to

match the performance of the stratification trees. To summarize the results of Table 2, we again

have that the CV tree performs best across all three specifications. For small pilots it does a

good job of preventing overfitting, and for larger pilots it displays sizeable gains relative to ad-hoc

stratification. Finally, we study the results of Model 3, presented in Table 3.

Sample Size
Stratification Method

Criteria

Pilot Main Coverage %�Length Power %�RMSE

100 4900

No Stratification 95.4 0.0 30.9 0.0

Ad-Hoc 95.1 -2.2 31.7 -0.6

Strat. Tree 94.5 16.3 24.2 19.5

CV Tree 94.8 1.0 30.4 2.1

Infeasible Tree 94.6 -7.4 36.0 -5.5

500 4500

No Stratification 95.2 0.0 30.9 0.0

Ad-Hoc 95.4 -2.2 32.2 -4.5

Strat. Tree 94.4 -2.1 32.4 -1.1

CV Tree 95.4 -1.9 31.7 -4.4

Infeasible Tree 95.1 -7.4 35.0 -9.8

1500 3500

No Stratification 94.2 0.0 30.9 0.0

Ad-Hoc 94.8 -2.2 31.9 -3.1

Strat. Tree 94.6 -4.0 32.1 -4.7

CV Tree 94.4 -3.5 32.1 -2.7

Infeasible Tree 95.0 -7.4 35.2 -7.5

Table 3: Simulation Results for Model 3

In Table 3, we see very poor performance of our method when using a small pilot. However,

as was the case for Models 1 and 2, the CV tree still helps to protect against overfitting. When

moving to the medium and large sized pilots, we see that both trees perform comparably to ad-

hoc stratification. We note that the gains from stratification in this design are quite small. For

example, the no-stratification procedure would require only 200 additional observations to match

the performance of ad-hoc stratification, and approximately 500 additional observations to match

the performance of the optimal tree.

Overall, we conclude that stratification trees can provide moderate to substantial improvements

over ad-hoc stratification, with the greatest improvements coming from DGPs with some amount

of “sparsity”, as in Model 2. The cross-validation method seems most robust to the choice of

pilot-study size, however, in general we caution against using the method with very small pilots.
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5 An Application

In this section we study the behavior of our method in an application, using the experimental

data from Karlan and Wood (2017). First we provide a brief review of the empirical setting:

Karlan and Wood (2017) study how donors to the charity Freedom from Hunger respond to new

information about the charity’s e↵ectiveness. The experiment, which proceeded in two separate

waves corresponding to regularly scheduled fundraising campaigns, randomly mailed one of two

di↵erent marketing solicitations to previous donors, with one solicitation emphasizing the scientific

research on FFH’s impact, and the other emphasizing an emotional appeal to a specific beneficiary

of the charity. The outcome of interest was the amount donated in response to the mailer. Karlan

and Wood (2017) found that, although the e↵ect of the research insert was small and insignificant,

there was substantial heterogeneity in response to the treatment: for those who had given a large

amount of money in the past, the e↵ect of the research insert was positive, whereas for those who

had given a small amount, the e↵ect was negative. They argue that this evidence is consistent with

the behavioural mechanism proposed by Kahneman (2003), where small prior donors are driven by

a “warm-glow” of giving (akin to Kahneman’s System I decision making), in contrast to large prior

donors, who are driven by altruism (akin to Kahneman’s System II decision making). However, the

resulting confidence intervals of their estimates are wide, and often contain zero (see for example

Figure 1 in Karlan and Wood, 2017). The covariates available in the dataset for stratification are

as follows:

• Total amount donated prior to mailer

• Amount of most recent donation prior to mailer (denoted pre gift below)

• Amount of largest donation prior to mailer

• Number of years as a donor (denoted # years below)

• Number of donations per year (denoted freq below)

• Average years of education in census tract

• Median zipcode income

• Prior giving year (either 2004/05 or 2006/07) (denoted p.year below)

As a basis for comparison, Figure 6 depicts the stratification used in Karlan and Wood (2017).
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Figure 6: Stratification used in Karlan and Wood (2017)

We estimate two di↵erent stratification trees using data from the first wave of the experiment

(with a sample size of 10, 869)3, that illustrate stratifications which could have been used to assign

treatment in the second wave. We compute the trees by minimizing an empirical analog of the

variance, as described in Sections 2.3 and 3.1. The first tree is fully unconstrained, and hence

targets e�cient estimation of the unconditional ATE estimator, while the second tree is constrained

in accordance with Section 3.2 to e�ciently target estimation of the subgroup-specific e↵ects for

large and small prior donors (see below for a precise definition). In both cases, the depth of the

stratification tree was selected using cross validation as described in Section 3.2, with a maximal

depth of L̄ “ 5 (which corresponds to a maximum of 32 strata). When computing our trees, given

that some of these covariates do not have upper bounds a-priori, we impose an upper bound on the

allowable range for the strata to be considered in accordance with Remark 2.3 (we set the upper

bound as roughly the 97th percentile in the dataset, although in practice this should be set using

historical data).

Figure 7 depicts the unrestricted tree estimated via cross-validation. We see that the cross-

validation procedure selects a tree of depth one, which may suggest that the covariates available to

us for stratification are not especially relevant for decreasing the variance of the estimator. However,

we do see a wide discrepancy in the assignment proportions for the selected strata. In words, the

subgroup of respondents who have been donors for more than 16 years have a larger variance in

outcomes when receiving the research mailer than the control mailer. In contrast the subgroup of

respondents who have been donors for less than 16 years have roughly equal variances in outcomes

under both treatments.
3Replication data is available by request from Innovations for Poverty Action. Observations with missing data on

median income, average years of education, and those receiving the “story insert” were dropped.
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Figure 7: Unrestricted Stratification Tree estimated from Karlan and Wood (2017) data

Next, we estimate the restricted stratification tree which targets the subgroup-specific treat-

ment e↵ects for large and small prior donors. We specify a large donor as someone who’s most

recent donation prior to the experiment was larger than $100. We proceed by estimating each sub-

tree using cross-validation. Figure 8 depicts the estimated tree. We see that the cross-validation

procedure selects a stratification tree of depth 1 in the left subtree and a tree of depth 0 (i.e. no

stratification) in the right subtree, which further reinforces that the covariates we have available

may be uninformative for decreasing variance.
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Figure 8: Restricted Stratification Tree estimated from Karlan and Wood (2017) data

The results of this exercise suggest a potential added benefit from using our method: when

using cross-validation, the depth of the resulting tree could serve as a diagnostic tool to help assess

the potential gains from stratification in a given application. In particular, if the procedure outputs

a very shallow tree given a relatively large sample, this may suggest that the potential gains from

stratification are small. To further assess the potential gains from stratification in this application,

in Appendix D we repeat the simulation exercise of Section 4 with an application-based simulation

design, where we treat the sample data as the true DGP. There we find that using an “optimal”

stratification tree of depth 2 results in an 8% reduction in RMSE and a 6% reduction in CI length

relative to no stratification (using a CV tree with a maximum depth of 2 results in a 3% reduction
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in RMSE and a 2% reduction in CI length). This again reinforces that the gains from stratification

may be fairly small in this setting.

6 Conclusion

In this paper we proposed an adaptive randomization procedure for two-stage randomized controlled

trials, which uses the data from a first-wave experiment to assign treatment in a second wave of the

RCT. Our method uses the first-wave data to estimate a stratification tree: a stratification of the

covariate space into a tree partition along with treatment assignment probabilities for each of these

strata. The main result of the paper showed that using our procedure results in an estimator with

an asymptotic variance which minimizes the semi-parametric e�ciency bound of Hahn (1998), over

an optimal stratification of the covariate space. We also described extensions which accommodate

multiple treatments, as well as to target subgroup-specific e↵ects. In simulations, the method was

most e↵ective when the response model exhibited some amount of “sparsity” with respect to the

covariates, but was shown to be e↵ective in other contexts as well, as long as the sample size of the

pilot being used to estimate the stratification tree was not prohibitively small.

Going forward, there are several extensions of the paper that we would like to consider. First,

many RCTs are performed as cluster RCTs, that is, where treatment is assigned at a higher level

of aggregation such as a school or city. Extending the results of the paper to this setting could

be a worthwhile next step. Another avenue to consider would be to combine our randomization

procedure with other aspects of the experimental design. For example, Carneiro et al. (2016) set up

a statistical decision problem to optimally select the sample size, as well as the number of covariates

to collect from each participant in the experiment, given a fixed budget. It may be interesting to

embed our randomization procedure into a similar decision problem. Finally, although our method

employs stratified randomization, we assumed throughout that the experimental sample is an i.i.d

sample. Further gains may be possible by considering a setting where we are able to conduct

stratified sampling in the second wave as well as stratified randomization. To that end, Song and

Yu (2014) develop estimators and semi-parametric e�ciency bounds for stratified sampling which

may be useful.
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A Proofs of Main Results

The proof of Theorem 3.1 requires some preliminary machinery which we develop in Appendix B.

In this section we take the following facts as given:

• We select a representative out of every equivalence class T P T by defining an explicit labeling

of the leaves, which we call the canonical labeling (Definition B.1).

• We endow T with a metric ⇢p¨, ¨q that makes pT , ⇢q a compact metric space (Definition B.2,

Lemma B.2).

• We prove that V p¨q is continuous in ⇢ (Lemma B.1).

• Let T ˚ be the set of minimizers of V p¨q, then it is the case given our assumptions that

inf
T˚PT ˚

⇢p rTm, T
˚
q

a.s.
››Ñ 0 ,

as m Ñ 8 (note that ⇢p¨, ¨q is measurable due to the separability of T ). Furthermore, there

exists a sequence of �tpWiq
m

i“1u{BpTLq-measurable trees T̄m P T
˚ such that

⇢p rTm, T̄mq
a.s.
››Ñ 0 .

(Lemma B.4)

Remark A.1. To simplify the exposition, we derive all our results for the subset of TL which

excludes trees with empty leaves. In other words, this means that we will only consider trees of

depth L with exactly 2L leaves.

Proof of Theorem 3.1

Proof. By the derivation in the proof of Theorem 3.1 in Bugni et al. (2018), we have that

?

Np✓̂pT̂ q ´ ✓q “

Kÿ

k“0

”
⌦1pk; T̂ q ´ ⌦0pk; T̂ q

ı
`

Kÿ

k“0

⇥kpk; T̂ q ,

where

⌦apk;T q :“
Npk;T q

Napk;T q

«
1

?

N

Nÿ

i“1

1tAipT q “ a, Si “ ku ipa;T q

�
,

with the following definitions:

 ipa;T q :“ Yipaq ´ ErYipaq|SpXqs ,

Npk;T q :“
Nÿ

i“1

1tSi “ ku ,
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Napk;T q :“
Nÿ

i“1

1tAipT q “ a, Si “ ku ,

and

⇥kpT q :“
?

N

ˆ
Npk;T q

N
´ ppk;T q

˙
rEpY p1q|SpXq “ kq ´ EpY p0q|SpXq “ kqs

2
.

Note that by Assumptions 2.1 and 3.1, ⌦ap0; T̂ q and ⇥p0; T̂ q are both oP p1q, so we omit them for

the rest of the analysis. To prove our result, we study the process

OpT q :“

»

———————————————–

⌦0p1;T q

⌦1p1;T q

⌦0p2;T q

...

⌦1pK;T q

⇥p1;T q

...

⇥pK;T q

fi

���������������fl

. (1)

By Lemma A.1, we have that

OpT̂mq
d
“ ŌpT̄mq ` oP p1q ,

where Ōp¨q is defined in Lemma A.1 and T̄m P T
˚ is defined in Lemma B.4 (note that we have

explicitly indexed the trees by the pilot sample index m). Hence

?

Np✓̂pT̂mq ´ ✓q
d
“B

1
ŌpT̄mq ` oP p1q ,

where B is the appropriate vector of ones and negative ones to collapse ŌpT̄ q:

B
1

“ r´1, 1,´1, 1, . . . , 1, 1, 1, . . . , 1s .

Now, we study ŌpT̄mq conditional on the sigma algebra generated by all of the pilot data: �tpWjq
8
j“1u.

Note that T̄m is a measurable function of the pilot data and that all other sources of randomness

in ŌpT̄mq are independent of the pilot data, so that we can “treat” T̄m as a deterministic sequence

after conditioning (see Remark A.2). Fix a subsequence T̄mj of T̄m. By Lemma B.4, T̄m P T
˚ which

is a compact set, so that T̄mj contains a convergent (sub)subsequence:

T̄mj`
Ñ T̄

˚
,

where T̄
˚ is in T

˚ and convergence is with respect to the metric we define in Appendix B. Now by

repeating many of the arguments of Lemma A.1,

ŌpT̄mj`
q “ ŌpT̄

˚
q ` oP p1q ,
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conditional on the pilot data. By the partial sum arguments in Lemma C.1. of Bugni et al. (2018),

ŌpT̄
˚
q

d
›Ñ N

˜˜
0

0

¸
,

˜
⌃1pT̄

˚
q 0

0 ⌃2pT̄
˚
q

¸¸

conditional on the pilot data, where ⌃1pT̄
˚
q and ⌃2pT̄

˚
q are such that

B
1
ŌpT̄

˚
q

d
›Ñ Np0, V ˚

q ,

which follows from the fact that, by definition, every T P T
˚ is a minimizer of our variance. Hence

we have that

B
1
ŌpT̄mj`

q
d
›Ñ Np0, V ˚

q ,

conditional on the pilot data, and so since every subsequence of T̄m contains a sub-sub sequence

that converges to the same value, we conclude that

B
1
ŌpT̄mq

d
›Ñ Np0, V ˚

q ,

conditional on the pilot data. By the Dominated Convergence Theorem we get that this convergence

holds unconditionally as well. It thus follows that

?

Np✓̂pT̂ q ´ ✓q
d
›Ñ Np0, V ˚

q ,

as desired.

Lemma A.1. Given the Assumptions required for Theorem 3.1,

OpT̂ q
d
“ ŌpT̄ q ` oP p1q ,

where Op¨q is defined in the proof of Theorem 3.1 and Ōp¨q is defined in the proof of this result.

Proof. By a slight modification of the argument in Lemma C1 in Bugni et al. (2018), we have that

OpT̂ q
d
“ rOpT̂ q ,

where

rOpT q :“

»

—————————————–

r⌦0p1;T q

r⌦1p1;T q

r⌦0p2;T q

...

⇥p1;T q

...

⇥pK;T q

fi

�������������fl

, (2)
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with

r⌦apk;T q “
Npk;T q

Napk;T q

»

– 1
?

N

NpF̂ pk;T q`F̂a`1pk;T qqÿ

i“NpF̂ pk;T q`F̂apk;T qq`1

G
k

apUi,paqpkq;T q

fi

fl ,

with the following definitions: tUi,paqpkqu
N

i“1 are i.i.d U r0, 1s random variables generated independ-

ently of everything else, and independently across pairs pa, kq, Gk
ap¨ ;T q is the inverse CDF of the

distribution of  pa;T q|SpXq “ k, F̂ pk;T q :“ 1
N

∞
N

i“1 1tSi † ku, and F̂apk;T q :“ 1
N

∞
N

i“1 1tSi “

k,Ai † au. Note that here it is important that we argue that this is true for T̂ and not just

pointwise in T P T : to do this we repeat the argument in Bugni et al. (2018) for each T and then

argue by conditioning on the pilot data.

Let us focus on the term in brackets. Fix some a and k for the time being, and let

G :“ tG
k

ap¨ ;T q : T P T u

be the class of all the inverse CDFs defined above, then the empirical process ⌘N : r0, 1s ˆ G Ñ R

defined by

⌘N pu, fq :“
1

?

N

tNuuÿ

i“1

fpUiq ,

is known as the sequential empirical process (see Van der Vaart and Wellner (1996)) (note that by

construction ErfpUiqs “ 0). By Theorem 2.12.1 in Van der Vaart and Wellner (1996), ⌘N converges

in distribution to a tight limit in `8
pr0, 1s ˆ Gq if G is Donsker, which follows by Lemma A.4. It

follows that ⌘N is asymptotically equicontinuous in the natural (pseudo) metric

d ppu, fq, pv, gqq “ |u ´ v| ` ⇢P pf, gq ,

where ⇢P is the variance pseudometric. Note that since Ui „ U r0, 1s and ErfpUiqs “ 0 for all f P G,

⇢P is equal to the L2 norm ||¨||. Define F pk;T q :“ P pSpXq † kq and Fapk;T q :“
∞

j†a
ppk;T q⇡jpkq,

where ⇡0pkq :“ 1 ´ ⇡pkq, ⇡1pkq :“ ⇡, then it follows by Lemmas A.2, and A.5 that:

|F̂apk; T̂ q ´ Fapk; T̄ q|
p
›Ñ 0 ,

|F̂ pk; T̂ q ´ F pk; T̄ q|
p
›Ñ 0 ,

||G
k

ap¨ ; T̂ q ´ G
k

ap¨ ; T̄ q||
p
›Ñ 0 ,

where T̄ P T
˚ as defined in Lemma B.4. Hence we have by asymptotic equicontinuity that

⌘N

´
F̂ pk; T̂ q ` F̂apk; T̂ q, G

k

ap¨ ; T̂ q

¯
“ ⌘N

´
F pk; T̄ q ` Fapk; T̄ q, G

k

ap¨ ; T̄ q

¯
` oP p1q .

By Lemma A.3,
Npk; T̂ q

Napk; T̂ q
“

1

⇡pk; T̄ q
` oP p1q .

37



Using the above two expressions, it can be shown that

r⌦apk; T̂ q “ ⌦̄apk; T̄ q ` oP p1q ,

where

⌦̄apk;T q :“
1

⇡pk;T q

»

– 1
?

N

tNpF pk;T q`Fa`1pk;T qquÿ

i“tNpF pk;T q`Fapk;T qqu`1

G
k

apUi,paqpkq;T q

fi

fl .

Now we turn our attention to ⇥pk;T q. To show that

⇥pk; T̂ q “ ⇥pk; T̄ q ` oP p1q ,

we consider the following expansion:

?

N

ˆ
Npk;T q

N
´ ppk;T q

˙
“

?

N

ˆ
npk;T q

n

n

N
´

npk;T q

n

˙
`

?

N
?
n

?
n

ˆ
npk;T q

n
´ ppk;T q

˙
,

where we recall that Npkq “ npkq for k ° 0. The result then follows by Assumption 3.1, Lemma

B.4 and standard empirical process results for

?
n

ˆ
npk;T q

n
´ ppk;T q

˙
,

since the class of indicators t1tSpXq “ ku : S P Su is Donsker for each k (since the partitions are

rectangles and hence for a fixed k we get a VC class). Finally, let

ŌpT q :“

»

—————————————–

⌦̄0p1;T q

⌦̄1p1;T q

⌦̄0p2;T q

...

⇥p1;T q

...

⇥pK;T q

fi

�������������fl

, (3)

then we have shown that

OpT̂ q
d
“ ŌpT̄ q ` oP p1q,

as desired.

Remark A.2. We treated various objects as “fixed” by conditioning on the sigma algebra gen-

erated by the pilot data. These arguments can be made more formal by employing the following

substitution property of conditional expectations (see Bhattacharya and Waymire (2007)):

Let W , V be random maps into pS1,S1q and pS2,S2q, respectively. Let  be a measurable function

on pS1ˆS2,S1ˆS2q. IfW isH-measurable, and �pV q andH are independent, and E|pW,V q| † 8,

then

ErpW,V q|Hs “ hpW q ,

where hpwq :“ Erpw, V qs.
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Proof of Theorem 3.2

Proof. Adapting the derivation in Theorem 3.3 of Bugni et al. (2018), and using the same techniques

developed in the proof of Theorem 3.1 of this paper, it can be shown that

V̂ pT̂ q
d
“V pT̄ q ` oP p1q .

By definition, T̄ P T
˚ so that the result follows.

Proof of Proposition 3.2

Proof. By definition,
n1pkq

n
“

tnpkq⇡pkqu
n

.

We bound the floor function from above and below:

⇡pkq
npkq

n
§

n1pkq

n
§ ⇡pkq

npkq

n
`

1

n
.

We consider the lower bound (the upper bound proceeds identically). It su�ces to show that

sup
TPT

ˇ̌
ˇ̌npk;T q

n
´ ppk;T q

ˇ̌
ˇ̌ p

›Ñ 0 .

Since the partitions are rectangles, for a fixed k we get a VC class and hence by the Glivenko-Cantelli

theorem the result follows.

Proof of Proposition 3.1

Proof. First note that, for a given realization of the data, there exists an optimal choice of ⇡

for every S P SL by continuity of rVmpT q in ⇡ (which we’ll call ⇡˚
pSq), so our task is to choose

pS,⇡
˚
pSqq to minimize rVmpT q. Given this, note that for a given realization of the data, the empirical

objective rVmpT q can take on only finitely many values, and hence a minimizer rT exists. Re-write

the population-level variance V pT q as follows:

V pT q “ Er⌫T pXqs ,

where

⌫T pxq “

«
�
2
1,Spxq

⇡pSpxqq
´

�
2
0,Spxq

1 ´ ⇡pSpxqq
` p✓Spxq ´ ✓q

2

�
,

�
2
a,Spxq “ V arpY paq|SpXq “ Spxqq ,

✓Spxq “ ErY p1q ´ Y p0q|SpXq “ Spxqs .
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Write rVmpT q as

rVmpT q “
1

m

mÿ

i“1

⌫̂T pXiq ,

with

⌫̂T pxq “

«
�̂
2
1,Spxq

⇡pSpxqq
´

�̂
2
0,Spxq

1 ´ ⇡pSpxqq
` p✓̂Spxq ´ ✓̂q

2

�
,

where the hats in the definition of ⌫̂ simply denote empirical analogs. For the sake of the proof we

also introduce the following intermediate quantity:

VmpT q “
1

m

mÿ

i“1

⌫T pXiq .

Now, let T ˚ be any minimizer of V pT q (which exists by Lemma B.4), then

V p rT q ´ V pT
˚
q “ V p rT q ´ rVmp rT q ` rVmp rT q ´ V pT

˚
q

§ V p rT q ´ rVmp rT q ` rVmpT
˚
q ´ V pT

˚
q

§ 2 sup
TPT

|rVmpT q ´ V pT q| .

So if we can show

sup
TPT

|rVmpT q ´ V pT q|
a.s
››Ñ 0 ,

then we are done.

To that end, by the triangle inequality:

sup
TPT

|rVmpT q ´ V pT q| § sup
TPT

|rVmpT q ´ VmpT q| ` sup
TPT

|VmpT q ´ V pT q| ,

so we study each of these in turn. Let us look at the second term on the right hand side. This

converges almost surely to zero by the Glivenko-Cantelli theorem, since the class of functions

t⌫T p¨q : T P T u is Glivenko-Cantelli (this can be seen by the fact that ⌫T p¨q can be constructed

through appropriate sums, products, di↵erences and quotients of various types of VC-subgraph

functions, and by invoking Assumption 2.2 to avoid potential degeneracies through division). Hence

it remains to show that the first term converges a.s. to zero.

Re-writing:

rVmpT q “

Kÿ

k“1

«˜
1

m

mÿ

i“1

1tSpXiq “ ku

¸ ˜
�̂
2
1,Spkq

⇡pkq
´

�̂
2
0,Spkq

1 ´ ⇡pkq
` p✓̂Spkq ´ ✓̂q

2

¸�
,

and

VmpT q “

Kÿ

k“1

«˜
1

m

mÿ

i“1

1tSpXiq “ ku

¸ ˜
�
2
1,Spkq

⇡pkq
´

�
2
0,Spkq

1 ´ ⇡pkq
` p✓Spkq ´ ✓q

2

¸�
,

where, through an abuse of notation, we define �2
a,S

pkq :“ V arpY paq|SpXq “ kq etc. By the

triangle inequality it su�ces to consider each di↵erence for each k P rKs individually. Moreover,
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since the expression 1
m

∞
m

i“1 1tSpXiq “ ku is bounded, we can factor it out and ignore it in what

follows. It can be shown by repeated applications of the triangle inequality, Assumption 2.2, the

Glivenko-Cantelli Theorem and the following expression for conditional expectation:

ErY |SpXq “ ks “
ErY 1tSpXq “ kus

P pSpXq “ kq
,

that

sup
TPT

ˇ̌
ˇ̌
ˇ

˜
�̂
2
1,Spkq

⇡pkq
´

�̂
2
0,Spkq

1 ´ ⇡pkq
` p✓̂Spkq ´ ✓̂q

2

¸
´

˜
�
2
1,Spkq

⇡pkq
´

�
2
0,Spkq

1 ´ ⇡pkq
` p✓Spkq ´ ✓q

2

¸ˇ̌
ˇ̌
ˇ

a.s
››Ñ 0 .

Hence, we see that our result follows.

Proof of Proposition 3.3

Proof. For simplicity of exposition suppose that V ˚
1 ° V

˚
2 ° ... ° V

˚̄
L
. It su�ces to show that

ˇ̌
ˇ rV p1q

p rT p2q
L

q ´ V
˚
L

ˇ̌
ˇ a.s

››Ñ 0 ,

for each L, and similarly with 1 and 2 reversed. Then we he have that

rV CV

L

a.s
››Ñ V

˚
L ,

and hence

L̂
a.s
“ L̄ ,

for m su�ciently large. To that end, by the triangle inequality

ˇ̌
ˇ rV p1q

p rT p2q
L

q ´ V
˚
L

ˇ̌
ˇ §

ˇ̌
ˇ rV p1q

p rT p2q
L

q ´ rV p2q
p rT p2q

L
q

ˇ̌
ˇ `

ˇ̌
ˇ rV p2q

p rT p2q
L

q ´ V
˚
L

ˇ̌
ˇ .

Consider the second term on the RHS, applying the triangle inequality again,

ˇ̌
ˇ rV p2q

p rT p2q
L

q ´ V
˚
L

ˇ̌
ˇ §

ˇ̌
ˇ rV p2q

p rT p2q
L

q ´ V p rT p2q
L

q

ˇ̌
ˇ `

ˇ̌
ˇV p rT p2q

L
q ´ V

˚
L

ˇ̌
ˇ ,

and both of these terms converge to zero a.s. by the arguments made in the proof of Proposition

3.1. Next we consider the first term on the RHS, this is bounded above by

sup
T

ˇ̌
ˇ rV p1q

pT q ´ rV p2q
pT q

ˇ̌
ˇ ,

and another application of the triangle inequality yields

sup
T

ˇ̌
ˇ rV p1q

pT q ´ rV p2q
pT q

ˇ̌
ˇ § sup

T

ˇ̌
ˇ rV p1q

pT q ´ V pT q

ˇ̌
ˇ ` sup

T

ˇ̌
ˇ rV p2q

pT q ´ V pT q

ˇ̌
ˇ ,

with both terms converging to 0 a.s. by the arguments made in the proof of Proposition 3.1.

41



Lemma A.2. Let F̂ , F̂a, F and Fa be defined as in the proof of Theorem 3.1. Given the Assump-

tions of Theorem 3.1, we have that, for k “ 1, ...,K,

|F̂apk; T̂ q ´ Fapk; T̄ q|
p
›Ñ 0 ,

and

|F̂ pk; T̂ q ´ F pk; T̄ q|
p
›Ñ 0 .

Proof. We prove the first statement for a “ 1, as the rest of the results follow similarly. We want

to show that ˇ̌
ˇ̌
ˇ
1

N

Nÿ

i“1

1tSipT̂ q “ k,AipT̂ q “ 0u ´ p1 ´ ⇡pk; T̄ qqppk; T̄ q

ˇ̌
ˇ̌
ˇ

p
›Ñ 0 .

By the triangle inequality, we bound this above by

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

i“1

1tSipT̂ q “ k,AipT̂ q “ 0u ´ p1 ´ ⇡pk; T̂ qqppk; T̂ q

ˇ̌
ˇ̌
ˇ `

`

ˇ̌
ˇp1 ´ ⇡pk; T̂ qqppk; T̂ q ´ p1 ´ ⇡pk; T̄ qqppk; T̄ q

ˇ̌
ˇ .

The first line of the above expression converges to zero by Assumption 3.5. Next consider the

second line: by Lemma B.4, we have that |ppk; T̂ q ´ ppk; T̄ q|
p
›Ñ 0 and |⇡pk; T̂ q ´ ⇡pk; T̄ q|

p
›Ñ 0

(recall that T̂ is simply rT with and extra stratum appended for k “ 0), and hence the second line

converges to zero.

Lemma A.3. Given the Assumptions of Theorem 3.1, we have that, for k “ 1, ...,K,

Npk; T̂ q

Napk; T̂ q
“

1

⇡pk; T̄ q
` oP p1q .

Proof. This follows from Assumption 3.5, the Glivenko-Cantelli Theorem, and the fact that ⇡pk; T̄ qppk; T̄ q

and 1
ppk;T̄ q are Opp1q.

Lemma A.4. Given Assumption 2.1, the class of functions G defined as

G :“ tG
k

ap¨ ;T q : T P T u ,

for a given a and k is a Donsker class.

Proof. This follows from the discussion of classes of monotone uniformly bounded functions in Van

Der Vaart (1996).

Lemma A.5. Given the Assumptions of Theorem 3.1, we have that, for k “ 1, ...,K,

||G
k

ap¨ ; T̂ q ´ G
k

ap¨ ; T̄ q||
p
›Ñ 0 .
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Proof. We show this for the case where Y paq is continuous. We proceed by showing convergence

pointwise a.s. by invoking Lemma E.2, and then using the dominated convergence theorem. It thus

remains to show that

|Z
k

a pt; T̂ q ´ Z
k

a pt; T̄ q|
a.s.
››Ñ 0 ,

where Z
k
a p¨ ;T q is the CDF of the distribution of pY paq ´ ErY paq|SpXqsq

ˇ̌
SpXq “ k. To that end,

fix some ! in the sample space such that

⇢p rT p!q, T̄ p!qq Ñ 0 ,

(note that by Lemma B.4 this convergence holds almost surely in !, and recall that T̂ is simply
rT with an extra stratum appended to k “ 0). To emphasize the fact that we are now studying

a deterministic sequence of trees, let T
p1q
m “ T̂ p!q, T p2q

m “ T̄ p!q, where have have also explicitly

indexed the trees by the pilot sample size. Then our goal is to show that:

|Z
k

a pt;T p1q
m q ´ Z

k

a pt;T p2q
m q| Ñ 0 .

Re-writing, this di↵erence is equal to:

ˇ̌
ˇ̌
ˇ
Er1tY paq § t ` EpY paq|S

p1q
m pXq “ kqu1tS

p1q
m pXq “ kus

P pS
p1q
m pXq “ kq

´

Er1tY paq § t ` EpY paq|S
p2q
m pXq “ kqu1tS

p2q
m pXq “ kus

P pS
p2q
m pXq “ kq

ˇ̌
ˇ̌
ˇ , (4)

(where the randomness is with respect to the distribution of pY paq, Xq). By the triangle inequality,

Assumption 2.2 and a little bit of algebra, this is less than or equal to

1

�

ˇ̌
ˇEr1tY paq § t ` EpY paq|S

p1q
m pXq “ kqu1tS

p1q
m pXq “ kus´

Er1tY paq § t ` EpY paq|S
p2q
m pXq “ kqu1tS

p2q
m pXq “ kus

ˇ̌
ˇ`

1

�2

ˇ̌
ˇP pS

p1q
m pXq “ kq ´ P pS

p2q
m pXq “ kq

ˇ̌
ˇ . (5)

The third line of the expression in (5) goes to zero by Lemma B.4. It remains to show that the rest

goes to zero. Again by the triangle inequality, the first two lines of (5) are less than or equal to

1

�

˜ˇ̌
ˇEr1tY paq § t ` EpY |S

p1q
m pXq “ kqu1tS

p1q
m pXq “ kus´

Er1tY paq § t ` EpY paq|S
p1q
m pXq “ kqu1tS

p2q
m pXq “ kus

ˇ̌
ˇ`

ˇ̌
ˇEr1tY paq § t ` EpY paq|S

p1q
m pXq “ kqu1tS

p2q
m pXq “ kus´

Er1tY paq § t ` EpY paq|S
p2q
m pXq “ kqu1tS

p2q
m pXq “ kus

ˇ̌
ˇ

¸
. (6)
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The first two lines of (6) are bounded above by

1

�

´
E

ˇ̌
ˇ1tS

p1q
m pXq “ ku ´ 1tS

p2q
m pXq “ ku

ˇ̌
ˇ
¯

,

(where we recall here that this expectation is with respect to the distribution of X). This bound

converges to zero by Lemma B.4 and the definition of the metric ⇢2 on SL. The last two lines of

(6) are bounded above by

1

�

´
E

ˇ̌
ˇ1tY paq § t ` EpY paq|S

p1q
m pXq “ kqu ´ 1tY paq § t ` EpY paq|S

p2q
m pXq “ kqu

ˇ̌
ˇ
¯

.

By similar arguments to what we have shown above, this also converges to zero, and hence we’re

done.

B A Theory of Convergence for Stratification Trees

Remark B.1. For the remainder of this section, suppose X is continuously distributed. Modifying

the results to include discrete covariates with finite support is straightforward. Also recall that as

discussed in Remark A.1, to simplify the exposition we derive our results for the subset of TL which

excludes trees with empty leaves.

We will define a metric ⇢ on the space TL and study its properties. To define ⇢, we write it as

a product metric between a metric ⇢1 on SL, which we define below, and ⇢2 the Euclidean metric

on r0, 1s
K . Recall from Remark 2.4 that any permutation of the elements in rKs simply results in

a re-labeling of the partition induced by Sp¨q. For this reason we explicitly define the labeling of a

tree partition that we will use, which we call the canonical labeling :

Definition B.1. (The Canonical Labeling)

• Given a tree partition t�D,�Uu of depth one, we assign a label of 1 to �D and a label of 2 to

�U (recall by Remark A.1 that both of these are nonempty).

• Given a tree partition t�pL´1q
D

,�pL´1q
U

u of depth L ° 1, we label �pL´1q
D

as a tree partition of

depth L ´ 1 using the labels t1, 2, ...,K{2u, and use the remaining labels tK{2 ` 1, ...,Ku to

label �pL´1q
U

as a tree partition of depth L´1 (recall by Remark A.1 that each of these subtrees

hase exactly 2L´1 leaves).

• If it is ever the case that a tree partition of depth L can be constructed in two di↵erent

ways, we specify the partition unambiguously as follows: if the partition can be written as

t�pL´1q
D

,�pL´1q
U

u with cut pj, �q and t�
1pL´1q
D

,�
1pL´1q
U

u with cut pj
1
, �

1
q, then we select whichever

of these has the smallest pair pj, �q where our ordering is lexicographic. If the cuts pj, �q are

equal then we continue this recursively on the subtrees, beginning with the left subtree, until a

distinction can be made.
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In words, the canonical labeling labels the leaves from “left-to-right” when the tree is depicted

in a tree representation (and the third bullet point is used to break ties whenever multiple such

representations are possible). All of our previous examples have been canonically labeled (see

Examples 2.1, 2.2). From now on, given some S P SL, we will use the the version of S that has

been canonically labeled. Let PX be the measure induced by the distribution of X on X . We are

now ready to define our metric ⇢1p¨, ¨q on SL as follows:

Definition B.2. For S1, S2 P SL,

⇢1pS1, S2q :“
2Lÿ

k“1

PXpS
´1
1 pkq�S

´1
2 pkqq .

That ⇢1 is a metric follows from the properties of symmetric di↵erences. We show under

appropriate assumptions that pS, ⇢1q is a complete metric space in Lemma B.2, and that pS, ⇢1q

is totally bounded in Lemma B.3. Hence pS, ⇢1q is a compact metric space under appropriate

assumptions. Combined with the fact that pr0, 1s
2L
, ⇢2q is a compact metric space, it follows that

pT , ⇢q is a compact metric space.

Next we show that V p¨q is continuous in our new metric.

Lemma B.1. Given Assumption 2.1, V p¨q is a continuous function in ⇢.

Proof. We want to show that for a sequence Tn Ñ T , we have V pTnq Ñ V pT q. By definition,

Tn Ñ T implies Sn Ñ S and ⇡n Ñ ⇡ where Tn “ pSn,⇡nq, T “ pS,⇡q. By the properties of

symmetric di↵erences,

|P pSnpXq “ kq ´ P pSpXq “ kq| § PXpS
´1
n pkq�S

´1
pkqq ,

and hence P pSnpXq “ kq Ñ P pSpXq “ kq. It remains to show that ErfpY paqq|SnpXq “ ks Ñ

ErfpY paqq|SpXq “ ks for fp¨q a continuous function. Re-writing:

ErfpY paqq|SnpXq “ ks “
ErfpY paqq1tSnpXq “ kus

P pSnpXq “ kq
.

The denominator converges by the above inequality, and the numerator converges by the above

inequality combined with the boundedness of fpY q.

Lemma B.2. Given Assumptions 2.1 and 2.2, pS, ⇢1q is a complete metric space.

Proof. We proceed by induction on the depth of the tree in the following fashion: Let �n “
ë

d

j“1rajn, bjns be a Cauchy sequence w.r.t ⇢1 of depth 0 tree partitions (i.e. simply rectangles). Sup-

pose for the time being that we have shown that tajnun and tbjnun are both convergent as sequences

in R, so that t�nun converges to a depth zero decision tree given by � “
ë

d

j“1rlim ajn, lim bjns.
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Now for the induction step, suppose it is the case that a Cauchy sequence of depth pL´ 1q tree

partitions tS
pL´1q
n un on �n “

ë
d

j“1rajn, bjns converges to a depth pL ´ 1q tree partition S
pL´1q on

� “
ë

d

j“1rlim ajn, lim bjns. Consider a Cauchy sequence of depth L tree partitions tS
L
n un on �n,

and consider the corresponding subtrees tS
pL´1q
D;n un on �D;npjn, �nq and tS

pL´1q
U ;n un on �U ;npjn, �nq

for some jn and �n. By the definition of ⇢1, it is immediate that tS
pL´1q
D;n un and tS

pL´1q
U ;n un are

Cauchy, and so by the induction hypothesis each of these converges to some tree S
pL´1q
D

and

S
pL´1q
U

on �Dplim jn, lim �nq and �U plim jn, lim �nq respectively. But then the resulting collection

tS
pL´1q
D

, S
pL´1q
U

u describes a limit of the original sequence tS
L
n un and so we’re done.

It remains to show that our conclusion holds for the base case. Our goal is to show that for a

sequence of cubes �n “
ë

d

j“1rajn, bjns which is Cauchy, that the corresponding sequences tajnu

and tbjnu are both Cauchy as sequences in R. First note that it su�ces to treat PXp¨q as Lebesgue

measure � on r0, 1s
d, since by Assumption 2.1, for any measurable set A,

PXpAq “

ª

A

fXd� • c�pAq ,

for some c ° 0. Moreover to show each sequence tajnun tbjnun is Cauchy, it su�ces to argue this

for d “ 1, since we can argue for d ° 1 by repeating the argument on the projection onto each axis.

So let d “ 1 and consider a sequence of intervals tran, bnsun which is Cauchy (w.r.t to the metric

induced by Lebesgue measure), then

�pran, bns�ran1 , bn1sq “ |bn1 ´ bn| ` |an1 ´ an|,

and hence it follows that the sequences tanun and tbnun are Cauchy as sequences in R, and thus

convergent. It follows that tran, bnsun converges to rlim an, lim bns.

Lemma B.3. Given Assumption 2.1 pSL, ⇢1q is a totally bounded metric space.

Proof. Given any measurable set A, we have by Assumption 2.1 that

PXpAq “

ª

A

fXd� § C�pAq ,

where � is Lebesgue measure, for some constant C ° 0. The result now follows immediately

by constructing the following ✏-cover: at each depth L, consider the set of all trees that can be

constructed from the set of splits t
✏

Cp2L´1q ,
2✏

Cp2L´1q , ..., 1u. By construction any tree in SL is at

most ✏ away from some tree in this set.

Lemma B.4. Given Assumptions 2.1, 2.2, 3.1, and 3.2. Then the set T ˚ of maximizers of V p¨q

exists, and

inf
T˚PT ˚

⇢p rTm, T
˚
q

a.s.
››Ñ 0 ,

where measurability of ⇢p¨, ¨q is guaranteed by the separability of T . Furthermore, there exists a

sequence of �tpWiq
m

i“1u{BpTLq-measurable trees T̄m P T
˚ such that

⇢p rTm, T̄mq
a.s.
››Ñ 0 .
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Proof. First note that, since pT , ⇢q is a compact metric space and V p¨q is continuous, we have that

T
˚ exists and is itself compact. Fix an ✏ ° 0, and let

T✏ :“ tT P T : inf
T˚PT ˚

⇢pT, T
˚
q ° ✏u ,

then it is the case that

inf
TPT✏

V pT q ° V
˚
.

To see why, suppose not and consider a sequence Tm P T✏ such that V pTmq Ñ V
˚. Now by the

compactness of T , there exists a convergent subsequence tTm`u of tTmu, i.e. Tm` Ñ T
1 for some

T
1

P T . By continuity, it is the case that V pTm`q Ñ V pT
1
q and by assumption we have that

V pTm`q Ñ V
˚, so we see that T 1

P T
˚ but this is a contradiction.

Hence, for every ✏ ° 0, there exists some ⌘ ° 0 such that

V pT q ° V
˚

` ⌘ ,

for every T P T✏. Let ! be any point in the sample space for which we have that V p rTmp!qq Ñ V
˚,

then it must be the case that T̃mp!q R T✏ for m su�ciently large, and hence

inf
T˚PT ˚

⇢p rTm, T
˚
q

a.s.
››Ñ 0 .

To make our final conclusion, it su�ces to note that ⇢p¨, ¨q is itself a continuous function and so by

the compactness of T ˚, there exists some sequence of trees T̄ such that

inf
T˚PT ˚

⇢p rTm, T
˚
q “ ⇢p rTm, T̄mq .

Furthermore, by the continuity of ⇢, the measurability of rT , and the compactness of T ˚, we can

ensure the measurability of the T̄m, by invoking a measurable selection theorem (see Theorem 18.19

in Aliprantis and Border (1986)).

C Supplementary Results

C.1 Supplementary Example

In this section we present a result which complements the discussion in the introduction on how

stratification can reduce the variance of the di↵erence-in-means estimator. Using the notation from

Section 2.2, let tYip1q, Yip0q, Xiu
n

i“1 be i.i.d and let Y be the observed outcome. Let S : X Ñ rKs

be a stratification function. Consider treatments tAiu
n

i“1 which are assigned via stratified block

randomization using S, with a target proportion of 0.5 in each stratum (see Example 2.5 for a

definition). Finally, let

✓̂ “
1

n1

nÿ

i“1

YiAi ´
1

n ´ n1

nÿ

i“1

Yip1 ´ Aiq ,
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where n1 “
∞

n

i“1 1tAi “ 1u. It can be shown using Theorem 4.1 of Bugni et al. (2017) that

?
np✓̂ ´ ✓q

d
›Ñ Np0, V q ,

with V “ VY ´ VS , where VY does not depend on S and

VS :“ E

”
pErY p1q|SpXqs ` ErY p0q|SpXqsq

2
ı
.

In contrast, if treatment is assigned without any stratification, then

?
np✓̂ ´ ✓q

d
›Ñ Np0, V 1

q ,

with V
1

“ VY ´ ErY p1q ` Y p0qs
2. It follows by Jensen’s inequality that VS ° ErY p1q ` Y p0qs

2 as

long as ErY p1q ` Y p0q|SpXq “ ks is not constant for all k. Hence we see that stratification lowers

the asymptotic variance of the di↵erence in means estimator as long as the outcomes are related

to the covariates as described above.

C.2 Alternative Asymptotic Framework

In this section we present some supplementary results about the asymptotic behavior of ✓̂pT̂ q. We

consider an asymptotic framework where the pilot study can be large relative to the total sample

size:

Assumption C.1. We consider the following asymptotic framework:

m

N
“ �` o

ˆ
1

?

N

˙
,

where N “ m ` n, for some � P r0, 1s as m,n Ñ 8.

To prove an analogous result to Theorem 3.1 in this setting, we impose one additional assump-

tion:

Assumption C.2. The pilot-experiment data tWiu
m

i“1 was generated through a simple randomized

experiment without stratification.

In contrast, in our original asymptotic framework we made no assumptions about how the pilot

experiment was performed, except to prove Proposition 3.1. As explained in Remark 2.8, if the

pilot experiment were stratified, we may want to incorporate this information into the specification

of T̂ . In this case Assumption C.2 could be weakened in various ways at the cost of making the

expression for the variance in Theorem C.1 slightly more complicated.

We now obtain the following result about the ATE estimator ✓̂pT̂ q:
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Theorem C.1. Given Assumptions 2.1, 2.2, 2.3, C.1, 3.2, 3.4, 3.5, C.2, and 3.6, we have that

?

Np✓̂pT̂ q ´ ✓q
d
›Ñ Np0, V ˚

�
q ,

where

V
˚
�

“ �V0 ` p1 ´ �qV
˚
,

and

V0 “
�
2
0p0q

1 ´ ⇡0
`
�
2
1p0q

⇡0
.

Hence we see that in this asymptotic framework the pooled estimator ✓̂pT̂ q has an asymptotic

variance which is a weighted combination of the optimal variance and the variance in the pilot

experiment, with weights which correspond to their relative sizes.

We now explain how to modify the proofs of Lemma A.1 and 3.1 to prove this result. In

comparison to the proof of Lemma A.1 we now have an extra component which corresponds to the

pilot stratum, but the proof continues to hold with that stratum left untouched. For Theorem 3.1,

we modify the argument as follows. Let RppT̄ q denote the components of ŌpT̄ q which correspond

to the pilot (where it is implicit that we have augmented T̄ to include an extra stratum at k “ 0

for the pilot data), let RmpT̄ q denote the components of ŌpT̄ q which correspond to the main study,

and let pCp, Cmq be the corresponding re-arrangement of B such that pCp, Cmq
1
pRp, Rmq “ B

1
Ō.

Then we claim that

P pC
1
pRppT̄ q § tp, C

1
mRmpT̄ q § tmq Ñ P p⇣p § tp, ⇣m § tmq ,

where tp, tm are arbitrary real numbers and p⇣p, ⇣mq are independent mean zero normals, independ-

ent of everything else, with variances such that varp⇣pq ` varp⇣mq “ V
˚
�
. To see this consider the

following derivation, where �tpWjq
8
i“1u is the sigma algebra generated by the pilot data:

P pC
1
pRppT̄ q § tp, C

1
mRmpT̄ q § tmq “ E

“
P pC

1
pRppT̄ q § tp, C

1
mRmpT̄ q § tmq|�tpWjq

8
i“1uq

‰

“ E
“
P pC

1
mRmpT̄ q § tm|�tpWjq

8
i“1uq1tC

1
pRppT̄ q § tpu

‰

“ E
“`
P pC

1
mRmpT̄ q § tm|�tpWjq

8
i“1uq ´ P p⇣m P Amq

˘
1tC

1
pRppT̄ q § tpu

‰

` E
“
P p⇣m P Amq1tRppT̄ q P Apu

‰

“ E
“`
P pC

1
mRmpT̄ q § tm|�tpWjq

8
i“1uq ´ P p⇣m P Amq

˘
1tC

1
pRppT̄ q § tpu

‰

` P p⇣m P AmqP pC
1
pRppT̄ q § tpq ,

Where the first equality comes from the law of iterated expectations, and the second equality

follows from the fact that RppT̄ q is non-stochastic once we condition on �tpWjq
8
i“1u. By a standard

multivariate CLT, P pC
1
pRppT̄ q § tpq Ñ P p⇣p § tpq, and by the proof of Theorem 3.1

ˇ̌
P pC

1
mRmpT̄ q § tm|�tpWjq

8
i“1uq ´ P p⇣m P Amq

ˇ̌
“ opp1q ,

and so the result follows.
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C.3 Details on the Multiple Treatment Case

In this section we present formal results for the setting with multiple treatments. Recall from

Section 3.2 that here we are interested in the vector of ATEs

✓ “ p✓a : a P Aq ,

where ✓a “ ErY paq´Y p0qs. We also generalized the concept of a stratification tree to accommodate

multiple treatments, and extended our estimator ✓̂ accordingly.

Given a matrix norm || ¨ ||, our goal is to choose T P TL to minimize ||VpT q|| as defined in Section

3.2. Define V pT q :“ ||VpT q|| and let V ˚ be the minimum of this objective function. Consider the

following extensions of Assumptions 2.1, 2.2, 3.2, 3.4, and 3.5 to multiple treatments:

Assumption C.3. Q satisfies the following properties:

• Y paq P r´M,M s for some M † 8, for a P A0, where the marginal distributions of each Y paq

are either continuous or discrete with finite support.

• X P X “
ë

d

j“1rbj , cjs, for some tbj , cju
d

j“1 finite.

• X “ pXC , XDq, where XC P R
d1 for some d1 P t0, 1, 2, ..., du is continuously distributed with

a bounded, strictly positive density. XD P R
d´d1 is discretely distributed with finite support.

Assumption C.4. Constrain the set of stratification trees TL such that, for some fixed ⌫ ° 0,

⇡apkq P r⌫, 1 ´ ⌫s for all T .

Assumption C.5. The estimator rT is a �tpWiq
m

i“1u{BpTLq measurable function of the pilot data

and satisfies

|V p rT q ´ V
˚
|

a.s
››Ñ 0 ,

where

V
˚

“ inf
TPTL

||VpT q|| ,

as m Ñ 8.

Assumption C.6. The randomization procedure is such that, for each T “ pS,⇡q P T :

”
pYip0q, Yip1q, ..., Yip|A|q, Xiq

n

i“1 K A
pnq

pT q

ı ˇ̌
ˇ̌Spnq

.

Assumption C.7. The randomization procedure is such that

sup
TPT

ˇ̌
ˇ̌napk;T q

n
´ ⇡apkqppk;T q

ˇ̌
ˇ̌ p

›Ñ 0 ,

for each k P rKs. Where

napk;T q “

nÿ

i“1

1tAipT q “ a, Si “ ku .
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We also require the following uniqueness assumption:

Assumption C.8. The minimizer T
˚ of V pT q over TL is unique.

This assumption is quite strong: in general, we are not aware of any conditions that guarantee

the uniqueness of the minimum of V pT q. Clearly this assumption could be violated, for example,

if all the covariates enter the response model symmetrically, since then many distinct trees could

minimize V pT q. However, it is not clear if such examples would arise in real applications. Finding

appropriate conditions under which this should be true, or weakening the result to move away from

this assumption, are important considerations for future research.

We now obtain the following result:

Theorem C.2. Given Assumptions C.3, C.4, 2.2, 2.3, 3.1, C.5, C.6, C.7, and C.8, we have that

?

Np✓̂pT̂ q ´ ✓q
d
›Ñ Np0,V

˚
q ,

where V
˚

“ VpT
˚
q, as m,n Ñ 8.

Note that, since we are now imposing Assumption C.8, Assumption 3.6 is no longer required.

The proof proceeds identically to the proof of Theorem 3.1: we simply add the necessary components

to the vector Op¨q to accommodate the multiple treatments and follow the derivation in Theorem

3.1 of Bugni et al. (2018) accordingly. We also skip the final conditioning/subsequence step by

invoking Assumption C.8.

To show that minimizing the empirical variance still satisfies Assumption 3.2, the argument

proceeds component-wise in a manner similar to the proof of Proposition 3.1. Essentially the

argument proceeds as follows: let ⌫T pXq and ⌫̂T pXq be the matrix-valued analogues to those

described in the proof of Proposition 3.1, and suppose we want to show, for example, that

sup
T

|VnpT q ´ V pT q|
a.s
››Ñ 0 .

It follows by the reverse triangle inequality that it su�ces to show

sup
T

ˇ̌
ˇ
ˇ̌
ˇ
1

m

mÿ

i“1

⌫T pXiq ´ Er⌫T pXqs

ˇ̌
ˇ
ˇ̌
ˇ a.s

››Ñ 0 ,

which follows by applying the Glivenko-Cantelli Theorem component-wise.
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D Computational Details and Supplementary Simulation Details

D.1 Computational Details

In this section we describe our strategy for computing stratification trees. We are interested in

solving the following empirical minimization problem:

rTEM
P arg min

TPTL
rV pT q ,

where

rV pT q :“
Kÿ

k“1

mpk;T q

m

„´
ÊrY p1q ´ Y p0q|SpXq “ ks ´ ÊrY p1q ´ Y p0qs

¯2
`

ˆ
�̂
2
0pkq

1 ´ ⇡pkq
`
�̂
2
1pkq

⇡pkq

˙⇢
,

with

ÊrY p1q´Y p0q|SpXq “ ks :“
1

m1pk;T q

mÿ

j“1

YjAj1tSpXjq “ ku´
1

m0pk;T q

mÿ

j“1

Yjp1´Ajq1tSpXjq “ ku ,

ÊrY p1q ´ Y p0qs :“
1

m

mÿ

j“1

YjAj ´
1

m

mÿ

j“1

Yjp1 ´ Ajq ,

�̂
2
apkq :“ ÊrY paq

2
|SpXq “ ks ´ ÊrY paq|SpXq “ ks

2
.

Finding a globally optimal tree amounts to a discrete optimization problem in a large state

space. Because of this, the most common approaches to fit decision trees in statistics and machine

learning are greedy: they begin by searching for a single partitioning of the data which minimizes

the objective, and once this is found, the processes is repeated recursively on each of the new

partitions (Breiman et al. (1984), and Friedman et al. (2001) provide a summary of these types

of approaches). However, recent advances in optimization research provide techniques which make

searching for globally optimal solutions feasible in our setting.

A very promising method is proposed in Bertsimas and Dunn (2017), where they describe how

to encode decision tree restrictions as mixed integer linear constraints. In the standard classifica-

tion tree setting, the misclassification objective can be formulated to be linear as well, and hence

computing an optimal classification tree can be computed as the solution to a Mixed Integer Lin-

ear Program (MILP), which modern solvers can handle very e↵ectively (see Florios and Skouras

(2008), Chen and Lee (2016), Mbakop and Tabord-Meehan (2016), Kitagawa and Tetenov (2018),

Mogstad et al. (2017) for some other applications of MILPs in econometrics). Unfortunately, to

our knowledge the objective function we consider cannot be formulated as a linear or quadratic

objective, and so specialized solvers such as BARON would be required to solve the resulting pro-

gram. Instead, we implement an evolutionary algorithm (EA) to perform a stochastic search for a

global optimum. See Barros et al. (2012) for a survey on the use of EAs to fit decision trees.
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The algorithm we propose is based on the procedure described in the evtree package description

given in Grubinger et al. (2011). In words, a “population” of candidate trees is randomly generated,

which we will call the “parents”. Next, for each parent in the population we select one of five

functions at random and apply it to the parent (these are called the variation operators, as described

below), which produces a new tree which we call its “child”. We then evaluate the objective

function for all of the trees (the parents and the children). Proceeding in parent-child pairs, we

keep whichever of the two produces a smaller value for the objective. The resulting list of winners

then becomes the new population of parents, and the entire procedure repeats iteratively until

the top 5% of trees with respect to the objective are within a given tolerance of each other for at

least 50 iterations. The best tree is then returned. If the algorithm does not terminate after 2000

iterations, then the best tree is returned. We describe each of these steps in more detail below.

Although we do note prove that this algorithm converges to a global minimum, it is shown

in Cerf (1995) that similar algorithms will converge to a global minimum in probability, as the

number of iterations goes to infinity. In practice, our algorithm converges to the global minimum

in simple verified examples, and consistently achieves a lower minimum than a greedy search.

Moreover, it reliably converges to the same minimum in repeated runs (that is, with di↵erent

starting populations) for all of the examples we consider in the paper.

Optimal Strata Proportions: Recall that for a given stratum, the optimal proportion is given

by

⇡
˚

“
�1

�0 ` �1
,

where �0 and �1 are the within-stratum standard deviations for treatments 0 and 1. In practice,

if ⇡˚
† 0.1 then we assign a proportion of 0.1, and if ⇡˚

° 0.9 then we assign a proportion of 0.9

(hence we choose an overlap parameter of size ⌫ “ 0.1, as required in Assumption 2.2).

Population Generation: We generate a user-defined number of depth 1 stratification trees (typ-

ically between 500 and 1000). For each tree, a covariate and a split point is selected at random,

and then the optimal proportions are computed for the resulting strata.

Variation Operators:

• Split : Takes a tree and returns a new tree that has had one branch split into two new leaves.

The operator begins by walking down the tree at random until it finds a leaf. If the leaf

is at a depth smaller than L, then a random (valid) split occurs. Otherwise, the procedure

restarts and the algorithm attempts to walk down the tree again, for a maximum of three

attempts. If it does not find a suitable leaf, a minor tree mutation (see below) is performed.

The optimal proportions are computed for the resulting strata.

• Prune: Takes a tree and returns a new tree that has had two leaves pruned into one leaf.

The operator begins by walking down the tree at random until it finds a node whose children

53



are leaves, and destroys those leaves. The optimal proportions are computed for the resulting

strata.

• Minor Tree Mutation: Takes a tree and returns a new tree where the splitting value of some

internal node is perturbed in such a way that the tree structure is not destroyed. To select the

node, it walks down the tree a random number of steps, at random. The optimal proportions

are computed for the resulting strata.

• Major Tree Mutation: Takes a tree and returns a new tree where the splitting value and

covariate value of some internal node are randomly modified. To select the node, it walks

down the tree a random number of steps, at random. This modification may result in a

partition which no longer obeys a tree structure. If this is the case, the procedure restarts

and repeats the algorithm for a maximum of three attempts. If it does not produce a valid

tree after three attempts, it destroys any subtrees that violate the tree structure in the final

attempt and returns the result. The optimal proportions are computed for the resulting

strata.

• Crossover : Takes a tree and returns a new tree which is the result of a “crossover”. The

new tree is produced by selecting a second tree from the population at random, and replacing

a subtree of the original tree with a subtree from this randomly selected candidate. The

subtrees are selected by walking down both trees at random. This may result in a partition

which no longer obeys a tree structure, in which case it destroys any subtrees that violate the

tree structure. The optimal proportions are computed for the resulting strata.

Selection: For each parent-child pair (call these Tp and Tc) we evaluate rV pTpq and rV pTcq and

then keep whichever tree has the lower value. If it is the case that for a given T any stratum has

less than two observations per treatment, we set rV pT q “ 8 (this acts as a rough proxy for the

minimum cell size parameter �, as specified in Assumption 2.2).

D.2 Supplementary Simulation Details

In this section we provide additional details on our implementation of the simulation study.

For each design we compute the ATE numerically. For Model 1 we find ATE1 “ 0.1257, for

Model 2 we find ATE2 “ 0.0862 and for Model 3 we find ATE3 “ 0.121. To compute the optimal

infeasible trees, we use an auxiliary sample of size 30, 000. The infeasible trees we compute are

depicted in Figures 9, 10 and 11 below.
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Figure 9: Optimal Infeasible Tree for Model 1
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Figure 10: Optimal Infeasible Tree for Model 2
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Figure 11: Optimal Infeasible Tree for Model 3

D.3 Application-based Simulation

In this section we repeat the simulation exercise of Section 4 using an application-based simulation

design, in order to assess the gains from stratification in our application. To generate the data,

we draw observations from the entire dataset with replacement, and impute the missing potential

outcome for each observation using nearest-neighbour matching on the Euclidean distance between

covariates. We perform the simulations with a sample size of 30, 000, which corresponds approx-

imately to the total number of observations in the dataset. In order to reproduce the empirical

setting, we conduct the experiment in two waves, with sample sizes of 12, 000 and 18, 000 in each

wave, respectively. In all cases, when we stratify we consider a maximum of 4 strata, which corres-

ponds to the number of strata in Figure 6, and use SBR to perform assignment. We compare the

following stratification methods using the same criteria as in Section 4:

• No Stratification: Here we assign treatment to half the sample, with no stratification.

• Fixed Stratification: Here we use the stratification from Figure 6, and assign treatment to

half the sample in each stratum.

• Stratification Tree: Here we perform the experiment in two waves. In the first wave, we assign

individuals to treatment using the Fixed stratification, and then use this data to estimate a

stratification tree. In the second wave we use the estimated tree to assign treatment.

• Cross-Validated Tree: Here we perform the experiment in two waves. In the first wave,

we assign individuals to treatment using the Fixed stratification, and then use this data to

estimate a stratification tree with depth selected via cross-validation. In the second wave we

use the cross-validated tree to assign treatment.
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• Infeasible Optimal Tree: Here we estimate an infeasible “optimal” tree by using a large

auxiliary sample (see Figure 12). In the first wave, we assign individuals to treatment using

the Fixed stratification. In the second wave, we assign individuals to treatment using the

infeasible tree.
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Figure 12: Infeasible Optimal Tree for App.-based Simulation

When constructing the augmented tree T̂ , we incorporate the stratifications from both waves

in accordance with Remark 2.8. We perform 6000 Monte Carlo iterations. Table 4 presents the

simulation results.

Stratification Method
Criteria

Coverage %�Length Power %�RMSE

No Stratification 93.7 0.0 51.9 0.0

Fixed 93.9 -0.6 52.4 -1.6

Strat.Tree 93.0 0.3 52.2 1.1

Strat. Tree (CV) 93.8 -1.9 53.9 -3.0

Infeasible Tree 94.8 -5.9 58.1 -7.7

Table 4: Simulation Results for Application-Based Simulation

We see in Table 4 that the overall gains from stratification are small. The Stratification Tree

performs slightly worse than no stratification, which agrees with the fact that the cross-validation

procedure returned a tree of depth one in Section 5. However, despite the fact that the DGP is

relatively complex and the gains from stratification are small, the cross-validated Stratification Tree

nevertheless performs fairly well.
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E Auxiliary Lemmas

Lemma E.1. Let tAnun, tBnun be sequences of continuous random variables such that

|An ´ Bn|
a.s.
››Ñ 0 .

Furthermore, suppose that the sequences of their respective CDFs tFnptqun tGnptqun are both

equicontinuous families at t. Then we have that

|Fnptq ´ Gnptq| Ñ 0 .

Proof. Fix some ✏ ° 0, and choose a � ° 0 such that, for |t
1

´ t| † �, |Gnptq ´ Gnpt
1
q| † ✏.

Furthermore, choose N such that for n • N , |An ´ Bn| † � a.s.. Then for n • N :

Fnptq “ P pAn § tq § P pBn § t ` �q ` P p|An ´ Bn| ° �q § Gnptq ` ✏ ,

and similarly

Gnptq § Fnptq ` ✏ .

We thus have that |Gnptq ´ Fnptq| † ✏ as desired.

Lemma E.2. Let tFnptqun and tGnptqun be sequences of (absolutely) continuous CDFs with bounded

support r´M,M s, such that

|Fnptq ´ Gnptq| Ñ 0 ,

for all t. Let tF
´1
n un and tG

´1
n un be the corresponding sequences of quantile functions, and suppose

that each of these form an equicontinuous family for every p P p0, 1q. Then we have that

|F
´1
n ppq ´ G

´1
n ppq| Ñ 0 .

Proof. Let V be a random variable that is uniformly distributed on r´2M, 2M s, and let �p¨q be

the CDF of V. Then it is the case that

|FnpV q ´ GnpV q|
a.s
››Ñ 0 .

By the uniform continuity of � and the equicontinuity properties of tF
´1
n un and tG

´1
n un, we have

that tP pFnpV q § ¨qun and tP pGnpV q § ¨qun are equicontinuous families for p P p0, 1q. It thus

follows by Lemma E.1 that

|P pFnpV q § pq ´ P pGnpV q § pq| Ñ 0 .

By the properties of quantile functions we have that |�pF
´1
n ppqqq ´ �pG

´1
n ppqq| Ñ 0. Hence by the

uniform continuity of �´1, we can conclude that

|�´1
p�pF

´1
n ppqqq ´ �´1

p�pG
´1
n ppqqq| “ |F

´1
n ppq ´ G

´1
n ppq| Ñ 0 ,

as desired.
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Our final lemma completes the discussion in Remark 3.3. It shows that, as long as the family

of quantile functions defined in Assumption 3.6 are continuous, and vary “continuously” in S P SL,

then Assumption 3.6 holds.

Lemma E.3. Let pD, dq be a compact metric space. Let F be some class of functions

F “ tfd : p0, 1q Ñ RudPD

such that fdp¨q is continuous and bounded for every d P D. Define g : D Ñ L
8

p0, 1q by gpdq “ fdp¨q,

and suppose that g is continuous. Then we have that, for every x0 P p0, 1q, tfdp¨, dqudPD is an

equicontinuous family at x0.

Proof. By construction, gpDq “ F , and so by the continuity of g and the compactness of D, F is

compact. Let ✏ ° 0 and fix some x0 P p0, 1q. Let F✏{3 “ tfdkp¨qu
K

k“1 be a finite ✏{3 cover for F .

By continuity, there exists a � ° 0 such that if |x ´ x0| † �, |fdkpxq ´ fdkpx0q| † ✏{3 for every

k “ 1, ...,K. By the triangle inequality, for any d:

|fdpxq ´ fdpx0q| § |fdpxq ´ fdkpxq| ` |fdkpxq ´ fdkpx0q| ` |fdkpx0q ´ fdpx0q| ,

for all k “ 1, ...,K. It thus follows that, for |x ´ x0| † �, and by virtue of the fact that F✏{3 is an

open cover for F ,

|fdpxq ´ fdpx0q| † ✏ ,

and hence tfdp¨qudPD is an equicontinuous family at x0.
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