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Abstract

To facilitate knowledge spillover between students, the study of
academic peer effects aims to guide the optimization of peer assign-
ments (the seat arrangement of students) in classes. When brought
to actual practice, a theoretically optimal assignment performed
even worse than a randomized assignment. As we show, both the-
oretically and numerically, that successful knowledge spillover de-
pends on non-cognitive peer difference (how peer personalities dif-
fer); its omission in the academic peer effect model specification
generally leads to a sub-optimal peer assignment even in the pres-
ence of peer randomization. Quantitatively, the sub-optimal assign-
ment amounts to a loss of academic achievement of 3% to 5% after a
semester. We obtain this estimate by using data from a field experi-
ment conducted in classrooms in China. We note that class teachers
routinely readjust their peer assignments because assimilation—
the convergence of non-cognitive peer difference over time—does
not necessarily take place between deskmates.
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1 Introduction
The study of academic peer effects is based on a theory of knowledge spillover
between peers (see Hoxby and Weingarth (2005); Sacerdote (2011) for exten-
sive reviews). According to this theory, high-achieving students can potentially
help low-achieving students when they are mixed in the same peer group. This
theory leads to a policy problem of how to assign students into peer groups in
a way that best exploits knowledge spillovers. Peer assignment across classes
according to cognitive ability—ability tracking—is a central topic in education
(Hoxby, 2000; Hoxby and Weingarth, 2005; Hanushek et al., 2003; Ding and
Lehrer, 2007; Figlio, 2007; Aizer, 2008; Carrell and Hoekstra, 2010) despite
its mixed results (Figlio and Page, 2002; Epple et al., 2002; Fu and Mehta,
2014). From a cost-benefit perspective, peer assignment is attractive because
this education policy involves only the reallocation of existing resources—the
students to be assigned—but not new investments. As another major educa-
tion policy in discussion, reducing class size requires a significant investment
in new teachers and classrooms and is hence more common among developed
countries (Hanushek, 1998; Krueger, 1999, 2003; Chetty et al., 2011). As such,
peer assignment could be particularly relevant when class size reduction is not
feasible for financial or institutional reasons.

In a peer assignment problem, the policy-maker searches for the peer as-
signment that yields the highest welfare, which is generally defined as a weighted
average of academic achievements among the students to be assigned.1 Peer ef-
fect researchers contribute to solving the peer assignment problem by identify-
ing the set of feasible outcomes that can be obtained by varying the peer assign-
ment. For instance, mixing high- and low-achieving students would imply that
high-achieving students would lose the chance of benefiting from their high-
achieving peers. Determining the magnitude of this welfare loss requires the
identification of academic peer effects. To this end, much progress has already
been made through the use of (quasi-) experiments (Sacerdote, 2001; Carrell
et al., 2009; Ammermueller and Pischke, 2009; Duflo et al., 2011; Booij et al.,
2017). These experiments randomize peer assignment to eliminate the bias

1Similar to any welfare problem, some subjectivity is involved in deciding the wel-
fare weights. For equality reasons, one may want to place a higher welfare weight on
low-achieving students.
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caused by peer selection.2

By now, a substantial body of experimental peer effect estimates is avail-
able to guide the solution of the peer assignment problem, although it was until
Carrell et al. (2013) that first pointed out that the peer assignment problem is
actually not as straightforward as it may seem. They assigned high-achieving
students as peers of low-achieving students in a U.S. military college; follow-
ing the request of the military, their objective was to best assist low-achieving
students by manipulating the peer assignment. The feasible set of peer assign-
ments was determined based on experimental peer effect estimates. However,
against expectations, the theoretically optimized group performed even worse
than the control group where peers were randomly assigned.3

Carrell et al. (2013) reported that the assigned peers may not necessarily
get along with each other. We explore such argument by hypothesizing that
the success of knowledge spillover does not simply depend on one’s own and
peer baseline scores, which proxy their respective cognitive abilities; given that
its success also depends on how peer relationships manifest, such spillover de-
pends on non-cognitive factors as well. We note that outside the peer effect con-
text, education production functions (Krueger, 1999; Todd and Wolpin, 2003;
Hanushek, 2008) have already incorporated non-cognitive inputs. The skill for-
mation literature (Cunha and Heckman, 2007, 2008; Cunha et al., 2010) identi-
fies a complementarity between cognitive and non-cognitive inputs. In parallel
to the skill formation literature, we measure non-cognitive peer difference, de-
fined as how one’s own and his or her peer’s Big Five measurements differ, and
then introduce such difference into the standard academic peer effect model.
Afterward, we explore the consequences of this extension to the peer assign-
ment problem.

We raise and address the following questions:

2To be more specific, the idea behind peer randomization is that if peers are ran-
domly assigned, then a comparison between the outcomes of two students whose base-
line scores are the same would be entirely due to their respective peers than these
students themselves being different in some way that is unobserved by the researcher.

3This leads to an important open question not necessarily restricted to education;
the same applies to other peer contexts such as the workplace. This remark is true
regardless of the data source, such as laboratory (Falk and Ichino, 2006), a particular
workplace (a supermarket chain) (Mas and Moretti, 2009) or from representative data
(Cornelissen et al., 2017).
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1. If the policy-maker can assign peers only according to baseline scores,
would he obtain a sub-optimal assignment because the non-cognitive peer
difference is ignored?

2. Quantitatively, can the policy-maker do significantly better if she can as-
sign peers according to non-cognitive peer difference as well?

3. Do policy-makers assign peers according to non-cognitive peer difference,
which suggests that the previous literature has assumed a smaller set of
feasible assignments than actual practice allows?

The answers to these three questions are all affirmative.
To address question 1, we show that randomized peer assignment does not

necessarily guarantee, as typically assumed, the identification of peer effects.
As we show, peer randomization only eliminates the selection bias (caused by
own unobservables) but not the bias caused by peer unobservables. Most stud-
ies that apply peer randomization since Sacerdote (2001) interpret peer unob-
servables as classical measurement error.4 If the error term contains a true
non-cognitive input not measured by the researcher, then generally this term
biases the peer effect estimates. We then consider a bilateral assignment ex-
ample, where the optimal assignment should be positive assortative matching
with respect to the peer effects. We show how this new bias generally change
the optimal matching.

To address question 2, we estimate our extended peer effect model. Our
estimation results find that non-cognitive peer difference is critical, that is,
having high-achievers as peers leads to a positive academic peer effect (an elas-
ticity of about 0.1) if and only if non-cognitive peer difference is relatively small
(1 SD below mean). Meanwhile, a reverse-signed academic peer effect with a
comparable magnitude is found if the non-cognitive peer difference is relatively
large (1 SD above mean). Such interaction between baseline scores and non-

4Since Carrell et al. (2013) reported their surprising results, the subsequent litera-
ture has provided some discussion on the effects caused by measurement error. Angrist
(2014) shows that when both own and peer observables (the baseline scores) are subject
to measurement error, peer effect estimates can be biased in any direction; this bias
may misguide the optimization step in Carrell et al. (2013). However, in case the peer
assignment is random, Feld and Zölitz (2017) show that only standard attenuation bias
remains.
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cognitive peer difference matters in the subsequent peer assignment problem.
Without the interaction term, the optimization result based on the confounded
peer effect estimates is indistinguishable from a random assignment bench-
mark, which is similar to the result in Carrell et al. (2013). With the interac-
tion term, optimization yields a 3% to 5% improvement for all classes within
one semester, depending on the subject.

To address question 3, we estimate our model using data from a field ex-
periment conducted in Chinese primary classrooms because of practical rele-
vance. The lack of education resources and the rapid urbanization in sub-urban
China result in very large class sizes that typically includes over 40 students
per class (see Section 2 for details). In this context where class size reduction
is difficult to achieve, Chinese classrooms are managed by having the seats
centrally assigned by a “class teacher.” In solving the peer assignment prob-
lem, class teachers in China make frequent adjustments to their seating plans
whenever peer conflicts arise. From our data we find that assimilation (the
convergence of non-cognitive peer difference over time) fails with about prob-
ability a half, and that assimilation failure leads to a large (17%) reduction in
friendships (in terms of probability). Once we take assimilation into account,
holding baseline scores fixed, the corresponding optimal peer assignment is al-
most entirely changed. Our notion of assimilation operates between peers as in
psychology (Harris, 1995) and is similar to macroscopic assimilation concern-
ing immigrants (Chiswick, 1978; Borjas, 1985, 1995, 2015; Lazear, 1999; Meng
and Gregory, 2005; Konya, 2007; Abramitzky et al., 2016) who cannot avoid the
locals.

We find aggregate assimilation patterns that are consistent with those found
in the existing literature. Specifically, we find that female-female pairs assim-
ilate much better than other possible gender pairs, thereby supporting the re-
sults of another within-classroom peer effect study (Lu and Anderson, 2015)
where female-female pairs are found to have positive academic peer effects
within classes.5 We also find that younger, lower grade peers have better as-

5However, we find a strong reverse gender gap (Goldin et al., 2006; Fortin et al.,
2015) such that females are mostly high-achieving and that males are mostly low-
achieving; consequently, we have few opportunities to form female-female pairs in our
peer assignment. Notably, our conclusion cannot be drawn by just examining the peer
effect estimates without evaluating the peer assignment problem.
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similation than their older, higher grade counterparts. This result agrees with
another major conclusion from the skill formation literature, that is, early edu-
cation inputs yield large returns.

As a within-classroom peer effect study, our work guides the assignment of
seats within classes while holding class composition constant rather than inves-
tigating how class composition affects a particular student within the class.6 In
many countries, ability tracking is discouraged for equity reasons. For the case
of China, this practice is explicitly banned by law for compulsory education.7

Relatively speaking, seat assignment within a class is easier to implement than
ability tracking, both practically and politically.

We conduct several robustness checks and obtain the following results: 1)
peer effects are local, operating within current deskmates only; and 2) our
results are robust to the choice of non-cognitive measures in measuring non-
cognitive peer difference. In the appendix, we discuss several issues including
measurement errors, wild bootstrap clustered standard errors, and the context
of large Chinese classrooms, in detail.

The rest of this paper is organized as follows. Section 2 describes the prac-
tical context of peer assignments within Chinese classrooms, our field experi-
ment design, and the measurement of non-cognitive peer difference. Section 3
describes our peer effect model and explains our econometric arguments in de-
tail. Section 4 reports the academic peer effect estimates. Section 5 discusses
the results of our optimization attempt. Section 6 reports the assimilation pat-
terns. Section 7 concludes our paper.

2 Context, Field Experiment, and Data De-
scription

We choose to study academic peer effects in classrooms in China. China ranks
first worldwide in average class size— a clear outlier with 37 students per class
relative to the OECD average of 21. The typical class size in many schools

6Several macroscopic classroom peer effect papers have discussed non-cognitive re-
lated issues such as class disruptions (Lazear, 2001); see Sacerdote (2011, 2014) for
comprehensive reviews.

7See Article 22, 57 of the Education Law, People’s Republic of China.
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located in the sub-urban areas of China is above 40. In our sample (to be de-
scribed in detail below) the class size ranges from 37 to 64. These figures are
beyond the class size studied in the previous class size literature.8 The major
theoretical justification behind class size reduction is the “Bad Apple Principle"
(Lazear, 2001), where disruptions due to peer conflicts increase along with class
size. Accordingly, China’s large class size should be difficult to sustain.

Education researchers have attributed the large classes in Chinese primary
schools to several reasons (Jin and Cortazzi, 1998; Teng and Liang, 2012).
First, due to the rapid urbanization in China, most rural children tend to live
in county towns (mostly the county capitals) instead of their surrounding vil-
lages.9 Second, local governments have been consolidating education resources
by closing down village primary schools. Third, parents are aware of the bet-
ter education quality of primary schools located in the county towns, thereby
sending their children to these county primary schools even if a village primary
school is located nearby. Given these push and pull factors, the primary schools
located in county towns are typically oversized. The class size in some locations
are surprising. In a provincial study of the education system in Henan Province
(adjacent to Hubei Province in our study), Teng and Liang (2012) found that the
class size in a "key-point" (elite) primary school amounted to 133 students in
2011.

Instead of reducing class size, China solves the class management problem
through the so-called "class teacher system." A class teacher, who is also the
teacher of a particular subject, specializes in managing a class and she is re-
sponsible to design the seating plan.10 While the actual practice varies, a class
teacher typically reassigns the seats within her class whenever she observes
serious conflicts between a pair of deskmates. Furthermore, a class teacher

8For instance, the well-known STAR program reduces the class size from the stan-
dard size of 22 to a smaller size of 15. To provide additional references for class size,
Angrist and Lavy (1999) adopted a regression continuity design to study the effect of
class size with the threshold being 40 students; the cutoff in a similar Swedish study
(Fredriksson et al., 2012) is 30. Among developing countries, Urquiola (2006) examined
the case of Bolivia, where the class size is around 30 to 40 students.

9Since 1978, urban population has increased from 18% to almost 60% by 2015, the
period of our study. See Henderson et al. (2009) for a recent general review of China’s
urbanization.

10Given the lack of a direct English equivalent of the concept of class teacher, we
adopt our own translation.

7



would base on other criteria, such as gender (mixed gender is often preferred),
to decide who should seat next to whom. Such adjustment to the peer assign-
ment continues throughout the semester. This continual adjustment of the peer
assignment is fundamentally different to Carrell et al. (2013) and the academic
peer effect literature in general, which presumes the existence of an optimal
time-invariant peer assignment and searches for it.

As we observe, the class teacher system—a nationalwide instance of peer as-
signment in actual practice—naturally emerges due to cost-benefit concerns. As
discussed in the Introduction, peer assignment costs little to implement since
it involves only the reallocation of existing resources. By contrast, reducing
class size (Hanushek, 1998; Krueger, 1999; Chetty et al., 2011) involves the
employment of new teachers and increasing the number of classrooms. Reduc-
ing class size is particularly difficult in remote rural school districts of China
where attracting a sufficient number of qualified teachers from cities is already
difficult. A recent policy discussion of reducing class size in rural China has
been concerned to reduce class sizes of over 100 to a more reasonable number,
say, 60. The class teacher system is arguably a viable alternative, and has been
effectively applied to maintain classroom order in China for several decades.

To provide the reader with a general idea of how this system operates, Fig-
ure 1 shows an example seating plan within a typical class in China. Each
classroom is organized as an rectangular array. A rectangular array arrange-
ment fits in the largest number of students within a classroom, and is the stan-
dard seating arrangement found in most Chinese classrooms. To minimize con-
fusions in seating, each student is assigned a fixed seat. For easy access to every
seat in the classroom, every two columns is separated by an aisle. As such, stu-
dents sit in pairs, and each student has a fixed deskmate unless reassigned by
the class teacher.

In our sample of 21 classes in three schools in Hubei, China, we record
the x-y coordinates of the seats for the purpose of identifying deskmates. We
identify the deskmates of 892 out of 1005 students. The remaining students sit
alone so that they do not have deskmates.11 The classrooms in our sample vary

11For example, the student seating in the second row, fourth column has the coor-
dinates (2, 4) in our data-set, while his deskmate has the coordinates (2, 5). One aisle
occupies a column (e.g., the leftmost aisle after the first and second rows is labelled
column 3 (missing)). This setup yields the following simple algorithm to identifying
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Figure 1: A Sample Seating Plan

in their dimensions, with some having more rows than the others. As such,
the actual classrooms are typically slightly smaller than the rectangular 9× 11

array shown in Figure 1, although not by much (the average is 7× 11).
Table 1 presents the class-level summary statistics of our sample. One no-

table feature is class size: the smallest class has a class size of 37, while the
largest class has a size of 64; the mean class size is 47.9. The typical number
of rows and columns being 7 and 11 (including 3 aisles), so that a consider-
able physical distance is observed between the teacher and the furthermost
students.

While the actual practice varies, from our discussion with the class teachers,
we identify several common patterns of peer assignment:

1. The class teacher would typically assign students according to their height,
so that shorter students sit in the front rows. Height as an assignment
critierion is necessary because one must minimize the possibility of hav-
ing front row students blocking the vision of back row students. A sub-
stantial within-class variation in height can be observed in our sample
(standard deviation being 7.7 cm, with respect to a mean of 137 cm).

the deskmate of student i:

1. The deskmate shares the same row number x[i] as i.

2. The deskmate is the neighbor in columns, i.e. the mapping is 1 → 2, 2 → 1, 4 →
5, 5→ 4, 7→ 8, 8→ 7, 10→ 11, 11→ 10, with columns 3, 6, 9 as aisles.

9



Table 1: Class-Level Summary Statistics

Statistic N Mean St. Dev. Min Max

Year of Birth (Class Mean) 21 2007 0.683 2005 2007
Year of Birth (Class Std. Dev.) 21 0.531 0.106 0.380 0.776
Baseline Height (Class Mean) 21 137.400 3.706 130.100 143.800
Baseline Height (Class Std. Dev.) 21 7.658 2.005 3.126 11.470
Proportion of Male 21 0.560 0.062 0.451 0.692
Class Size 21 47.860 6.850 37 64
Number of Rows 21 7.190 1.030 6 9
Number of Columns (including aisles) 21 11.000 0.000 11 11

2. Class teachers have a strong tendency to create pairs with mixed gender.
The general belief is that mixed-gender pairs are relatively stable.

3. Initially, the class teacher cannot easily identify whether deskmates can
get along with each other. Therefore, the initial seating plan is often
based on the plan used in the previous academic year; otherwise, the stu-
dents are randomly assigned. Subsequently, the class teacher rearranges
the seats in a trial and error manner, depending on his or her observation
on how each student behaves.

4. Those seats located close to the teacher’s desk are generally preferred by
students. Therefore, parents usually ask teachers to have their children
seated in these preferred seats. This finding implies the importance of a
student’s location in the classroom in general. Consequently, we control
for the exact location in the class by using fixed effects in our regressions.

5. To even out the disadvantages of some seats (some columns are located
further away from the teacher’s desk), some teachers rotate the seats pe-
riodically by rotating columns in pairs. As such, the deskmates pairs are
preserved. We do not regard these rotations as seat reassignments in this
paper.

The three primary schools in our sample have similar daily schedules, start-
ing early at around 7am with morning recitations, followed by a breakfast at
school, and then by regular classes. The first three 40-minute regular classes
take place between 9AM to 11:30AM with a break in between. After lunch,
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the fourth and fifth class take place between 2PM to 4PM. The next 45 min-
utes remaining time is allocated for extra-curricular activities. During these
five regular classes, students stay in their seats and are strictly forbidden to
walk around the classroom. Since most students live far away from the school,
they usually eat their breakfast and lunch in the classrooms at their own seats.
In this environment, a student would interact with his or her deskmate for a
substantial amount of time per day.

In our field experiment, we requested the three schools to randomize the
seat arrangements for all their Grade 3 to 5 classes. To minimize the possibility
of having taller students blocking the sight of shorter students, the randomiza-
tion of seats is conditional on height. Our randomization scheme is similar to
that of Lu and Anderson (2015).12 However, unlike Lu and Anderson (2015), we
enforce the randomization to the entire class without allowing for preferential
treatments. Being aware that teachers and parents might have a tendency to
overrule our randomization, we strictly monitored the classes. Our monitoring
team regularly invigilated these schools.13

Concerning data collection, the three schools provided us with the base-
line, mid-term and the final scores for each semester. We focus on Chinese
Language and Math because for most (3/4) of the sample, the English baseline
score is unavailable. We also collected supplementary information about stu-
dents’ self-reported friendships, and own and peer non-cognitive skills in our
survey. Specifically, we use the Big Five, a widely-used taxonomy that encom-
passes most of the relevant psychological traits (Costa Jr and McCrae, 1992).
The Big Five is measured by a vector of Likert-style questionnaire items (an
ordinal score in the range 1-5). In this paper, we adopt a Chinese version of the
Revised NEO Five-Factor Inventory (NEO-FFI) (Costa and MacCrae, 1992),

12 At the beginning of the first semester, students are sorted by height, then grouped
into four blocks. Within each block, students have their seats assigned randomly by a
lottery. After the students in one block are randomly assigned to two rows following
this procedure, the students in next block are assigned to the next two rows and so on.
In this way, the students in different blocks will not be seated in the same row.

13To this end, we formed a monitoring team consisted of graduate students from
Jinan University, China, and staff from the Hubei Education Bureau. As an adminis-
trative order, the teachers in each class are asked to provide the finalized seating plan
and take photographs each week during the semester, making sure that the seating
plan was followed through. Due to confidentiality, we do not include these photos in
this paper but they are available upon request.

11



which consists of 60 items selected from a longer version of the questionnaire
for their strong correlations with their associated factor scores.

3 Peer Effect Model

3.1 The Standard Academic Peer Effect Model
We first show that peer randomization would eliminate the selection of peers,
but it cannot distinguish observable and unobservable peer effects from each
other. Formally, let i ∈ S = {1, 2, . . . , N} index individuals. t = 0 is the baseline
period where peer randomization takes place, and t = 1 is the time where the
current academic achievement is measured. We denote the academic achieve-
ment for individual i at time t by yit.

A classroom with fixed seats defines a known peer function p : S → S such
that p(i) ∈ S indicates the deskmate of individual i ∈ S. We write yp(i)0 to
represent the baseline test score achievement of p(i).14

A standard academic peer effect model considered in Carrell et al. (2013)
can be expressed as follows:

yi1 = f(yi0, yp(i)0) + ui0 + λup(i)0 (1)

where ui0 is the own unobservable error term, and up(i)0 is the peer counter-
part. f(.) is a non-linear function that depends on own and peer baseline score.
λ ∈ R is a parameter capturing the strength of unobservable peer influences.
Note that the peer effect model (1) is symmetric in the treatment of observable
and unobservable inputs, in the sense that for both kinds of input, the own and
peer components are explicitly stated. In most peer effect models, the unob-
servable peer inputs are subsumed into a correlated effect— a common factor
shared by both i and p(i) (see Manski (1993)); here, we introduce ui0 and up(i)0
as two separate unobservable inputs. The case with common unobservable in-
puts between own and peer is a sub-case of ours.

Note also that most of the peer effect literature discusses a static setup. In
these static peer effect models, the concurrent influence of peer outcomes on

14If p represents deskmates, then p(p(i)) = i so that p ◦ p is the identity mapping.
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own outcomes leads to the classic reflection problem (Manski, 1993). Never-
theless, in many academic peer effect papers, e.g. Sacerdote (2001), data on
baseline score are available. Consequently, several academic peer effect papers
directly consider a one-period lag specification where the main independent
variable is peer baseline score instead of peer current academic performance.
In this case, the reflection problem does not apply. We follow the same approach
in this work. In the context of academic performance, a strictly simultaneous
peer effect on current academic achievement—the exam scores—cannot exist,
under the assumption that no cheating has taken place during the exams.

Peer randomization is important in the estimation of causal peer effects.
Peer randomization at t = 0 implies that for any measurement, Xi0 and Xp(i)0

are i.i.d. draws from the same underlying population X, whether X is observ-
able or not. Therefore,

(yi0, ui0) ⊥⊥ (yp(i)0, up(i)0) (2)

Conceptually, consider the following group comparison:

E[yi1|yi0 = y∗, yp(i)0 = yH ]− E[yi1|yi0 = y∗, yp(i)0 = yL] (3)

which is to compare, among students having the same own baseline score y∗,
the current academic achievement yi1 of two comparison groups, namely, 1)
those who have peers with a higher baseline score yH , and 2) those who have
peers with a lower baseline score yL. According to (1), this between-group com-
parison groups identifies the following:

f(y∗, yH)− f(y∗, yL)

+ E[ui0|yi0 = y∗, yp(i)0 = yH ]− E[ui0|yi0 = y∗, yp(i)0 = yL]

+ λE[up(i)0|yi0 = y∗, yp(i)0 = yH ]− λE[up(i)0|yi0 = y∗, yp(i)0 = yL] (4)

f(y∗, yH) − f(y∗, yL) is the marginal effect of changing the peer baseline score,
ceteris paribus. The sum of the two terms in the second line is zero because
the own unobservable inputs for the two comparisons groups are balanced due
to peer randomization at t = 0, which eliminates the selection effect. However,
given that the average peer unobservable inputs are not balanced by the peer
randomization, the sum of the terms in the third line is generally non-zero.
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We now discuss the consequences of this confounding in the peer assign-
ment problem. We follow Carrell et al. (2013) by assuming the objective func-
tion is to maximize the average current achievement score among the low-
achieving students. Specifically, we consider the following optimization prob-
lem. Let Slow ⊂ S be a set of students whose current academic achievement is
to be maximized in expected terms, and let Shigh = S \ Slow be its complement.
Slow is defined as the set of students whose baseline score is below the median.
For simplicity, suppose that n is even so that Slow and Shigh are equal sized. As
such, the problem becomes one that searches for a mapping q : Slow → Shigh
that maps a deskmate from Shigh to each student from Slow. We denote the
corresponding space of feasible mappings by Q.

The standard academic peer effect model leads to the following peer assign-
ment problem:

max
q∈Q

1

n/2

∑
i∈Slow

f(yi0, yq(i)0) (5)

Note that f must be non-linear, otherwise the peer assignment problem is in-
determinate because all assignments q ∈ Q would lead to the same objective
value.

The ideal peer assignment problem should be one that incorporate the own
and peer unobservables, that is:

max
q∈Q

1

n/2

∑
i∈Slow

[f(yi0, yq(i)0) + ui0 + λuq(i)0] (6)

However, given that the unobservable component
∑

i∈Slow [ui0+λuq(i)0] is invari-
ant to the choice of q, it can be eliminated from the objective function, resulting
in (5). This result critically relies on the linearity of the unobservable compo-
nent.

As we emphasize, a more fundamental concern in using (5) as the objec-
tive function is that f cannot be identified due to the confounding problem, yet
the optimization algorithm assumes so. To illustrate the consequences of this
problem, consider an example where

f(yi0, yq(i)0) = β0(yi0) + β1(yi0)yq(i)0

14



which includes a typical specification in academic peer effect regressions where
yi0 interacts multiplicatively with yp(i)0. In this example, the estimated marginal
effect of raising peer baseline score, holding own baseline score fixed at yi0 = y∗

can be expressed as

β̃1(y
∗) ≡ β1(y∗) + λ

∂E[up(i)0|yi0 = y∗, yp]

∂yp

instead of β1(y∗).
Notice that the assumed functional form is supermodular with respect to

β(yi0) and yp(i)0. Therefore, the true optimal assignment would be positive as-
sortative matching (PAM), i.e. suppose that for i, j ∈ Slow such that if β1(yi0) >
β1(yj0), then yq(i)0 > yq(j)0. However, given that β̃1(y∗) is being identifed in-
stead, the computed optimal assignment would generally be different from the
true optimal one unless a strictly increasing function g exists such that

g(β1(y
∗)) = β̃1(y

∗)

for all y∗, that is, the observable and unobservable peer effects are ordered in
the same way. This monotonicity condition is less demanding than exogeneity,
i.e. shutting down unobservable peer effects:

λ
∂E[up(i)0|yi0 = y∗, yp]

∂yp
= 0

While weaker than exogeneity, the monotonicity condition has no guarantee to
be satisfied in the data, thereby likely resulting in a sub-optimal peer assign-
ment.

3.2 Introducing Non-Cognitive Peer Difference
We now study the case where the policy-maker can perform peer assignments
based on non-cognitive peer difference, which is previously assumed to be un-
observable. The own and peer non-cognitive skills at time 0 are denoted by
ni0, np(i)0 respectively. In our work, they are measured by our Big Five mea-
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surements. We define a metric of non-cognitive peer difference:

di0 ≡ |ni0 − np(i)0|

The resulting peer effect model is:

yi1 = f(yi0, yp(i)0, di0) + ui0 + λup(i)0 (7)

di1 = g(yi0, yp(i)0, di0) + vi0 + γvp(i)0 (8)

which resembles the skill formation model (Cunha and Heckman, 2007, 2008;
Cunha et al., 2010). In the skill formation model, the inputs are own cognitive
and non-cognitive skills in the previous period. Our peer effect model intro-
duces the peer counterparts.

Some discussion of our choice of functional form is warranted. We construct
the metric di0 rather than letting ni0, np(i)0 to enter freely in (7) and (8). This
restriction is due to our notion of non-cognitive peer difference. The Big Five,
while being comprehensive, does not yield a univariate ranking. People are
generally are "different from" rather than "better/worse" under the Big Five
since it involves more than one dimension. In this paper, we are particularly
interested in how peer non-cognitive differences affect academic achievement.
Therefore, for our purpose, only a metric that measures the non-cognitive dif-
ferences between a pair of deskmates, rather than their respective levels, is
needed.

Given that the identification analysis of this model is similar to the above,
we do not repeat the analysis. Extending the model to include general neigh-
bor(s) is straightforward. Let n(i) denote another peer of individual i.15 Peer
randomization at time 0 guarantees that both p(i) and n(i) are randomly as-
signed, such that:

(yi0, di0, ui0, vi0) ⊥⊥ (yp(i)0, dp(i)0, up(i)0, vp(i)0) ⊥⊥ (yn(i)0, dn(i)0, un(i)0, vn(i)0) (9)

holds, i.e. the own, deskmate, and general neighbor variables are independent

15In the more general case with multiple neighbors, then we can extend the defini-
tion of p to be a set function; we consider the "representative peer" so that for each
individual i and any measurement Z, Zp(i)t is its average over all neighbors in p(i) ⊆ S
at time t.
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to each other, whether observable or not. The following analysis is analogous
to the above. To keep the notation simple, we continue our discussion while
suppressing general neighbor terms.

Analogous to the above, we consider the following optimization problem:

max
q∈Q

1

n/2

∑
i∈Slow

[f(yi0, yq(i)0, |ni0 − nq(i)0|)] (10)

which requires ni0, nq(i)0 to be observable. Notably, the non-cognitive peer dif-
ference enters f in a non-linear manner. We consider an example:

f(yi0, yq(i)0, |ni0 − nq(i)0|) ≡ β(yi0)yq(i)0κ(|ni0 − nq(i)0|)

Considering non-cognitive peer difference can break down the PAM assignment
because changing the assignment q(i) would affect both yq(i)0 and |ni0 − nq(i)0|.
In this case, the latter “matching effect,” if dominating, can change the opti-
mal assignment pattern. Whether the two effects offset or reinforce each other
depends on two factors: 1) the joint distribution of peer baseline score and non-
cognitive peer differences and 2) how non-cognitive peer difference affects the
total peer effect as determined by the function κ(.). How the optimal assign-
ment would change is a numerical question that we explore in Section 5.

4 Empirical Results

4.1 Academic Peer Effect Estimates
We report our major peer effect regression results in this section. We run least
square regressions of Chinese Language test scores on the own Chinese Lan-
guage baseline score, deskmate baseline score, and baseline non-cognitive peer
difference di0. We take logs of all test scores, so that the peer effect estimates
are elasticities. We also run the corresponding regressions for Math.

For presentation purposes, in this set of regressions, we standardize di0 to
have a zero mean and unit variance. For the same reason, we also divide the
whole sample into two groups according to own baseline score and then run the
peer effect regressions separately for each sub-group.
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We are also interested in comparing deskmates and more general neigh-
bors. Therefore, following Lu and Anderson (2015) and Hong and Lee (2017),
we construct the neighbor-4 measure corresponding to each variable, including
the two neighbors in the front and the two neighbors at the back. For those
students seated in the first row or the last row, some neighbors could be miss-
ing. Correspondingly, we define the neighbor measures by averaging over the
available neighbors. In this set of regressions, all non-cognitive peer difference
variables are standardized to have a zero mean and unit variance.

In the peer effect regressions, we control for several confounding factors:

1. First, we control for class fixed effects to capture the confounding varia-
tions related to between class heterogeneity.

2. Second, given the large size of classrooms, the locations in the classroom
matter; therefore, we control for the exact location fixed effects (a dummy
for each x−y coordinate). This set of controls is finer than only controlling
for the randomization block (the quartiles in our experiment) as in Lu and
Anderson (2015).

3. Third, we control for gender pairs. Specifically, for own-deskmate pairs,
we introduce male-female, female-male, and female-female dummies. For
neighbors, we introduce dummies to capture all possible variation in own-
neighbor gender pairs; since there are four neighbors, the neighbor gen-
der is a simple average over them (e.g., 0.75 if 3 out of 4 of them are
male).

The results for Chinese and Math are presented in Tables 2 and 3, respec-
tively. In each table, we present three variants of the peer effect regressions
that use the whole sample, the observations with own baseline score below and
above the median. The purpose of dividing the sample according to own base-
line score is to explore non-linearity while avoiding a complicated discussion
of the three-way interactions between own and peer baseline scores and non-
cognitive peer difference. In our peer assignment optimization, we consider a
full three-way interaction.

Several features emerge from these peer effect estimates. If the own base-
line score is above the median, then there is no peer effect and only the low-
achievers can potentially benefit from having a peer with a high baseline score.
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Consequently, we can focus on the welfare of low-achieving students. We also
find that the peer baseline score coefficients are almost zero (and statistically
insignificant), while the interaction term between peer baseline score and non-
cognitive peer difference matters. For example, take the Chinese Final inter-
action coefficient of −0.104 (for students with own baseline score below the me-
dian). This coefficient implies that, the elasticity of peer baseline score for
low-achieving students with respect to Chinese final is:

• approximately 0.10 if the non-cognitive peer difference is −1s.d. relative
to its mean (close peer hereafter).

• ∼ 0 if the non-cognitive peer difference is at its mean; and

• −0.10 if the non-cognitive peer difference is +1s.d. relative to its mean
(distant peer hereinafter).

A similar intepretation can be applied for other interaction coefficients in the
tables. To conclude, we find that assigning a high achiever as one’s peer has
opposite signed effects, depending on whether the peer is a close peer or a dis-
tant peer. That is, if a high-achieving peer is also a close peer, he benefits own
academic achievement; otherwise, he could possibly reduce his or her own aca-
demic achievement.

Our results relate to some well-known classroom peer models (see Hoxby
and Weingarth (2005) for a comprehensive review). Among them, the “Boutique
model" proposes that having homogeneous peers are beneficial to own achieve-
ment, while the “Shining Light" model proposes that high-achieving students
set good examples to their low-achieving peers. Generally, the set of sensible
scenarios of peer interactions (that could be justified by theoretical models) is
rather large, and empirical studies must be performed to find out which among
these scenarios are true. The situation could grow more complicated when more
than one dimension—baseline score and non-cognitive peer difference—needs
to be considered.

We find that the best combination is to have a high-achieving student as
a peer, given that he is close relative to own in terms of non-cognitive skill;
as such, our results are consistent with the Boutique model along the non-
cognitive dimension, and the Shining Light Model along the cognitive dimen-
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sion. Furthermore, a high-achieving peer who is also a distant peer can poten-
tially discourage own achievement, consistent with the "Invidious Comparison"
model.

The aforementioned classroom peer effect models in Hoxby and Weingarth
(2005) concern global peer effects, whereas our results focus on peer effects
that are local between deskmates only. Specifically, we do not find any statis-
tically significant result for general neighbors, whose peer effect estimates are
an order of magnitude smaller than the corresponding ones for deskmates. Our
placebo test in the Appendix demonstrates the same conclusion.
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Table 2: Peer Effect (Chinese)

First Sem. Midterm First Sem. Final
(1) (2) (3) (4) (5) (6)

Own Baseline 0.771∗∗∗ 0.763∗∗∗ 0.780∗∗∗ 0.592∗∗∗ 0.556∗∗∗ 0.844∗∗∗
(0.047) (0.049) (0.071) (0.056) (0.059) (0.099)

Deskmate1 Baseline −0.032 −0.046 −0.018 0.018 −0.016 0.015
(0.028) (0.034) (0.013) (0.019) (0.018) (0.018)

Non-Cog Diff (Deskmate1) −0.006 0.003 −0.001 0.298∗∗∗ 0.392∗∗∗ −0.010
(0.090) (0.101) (0.034) (0.060) (0.104) (0.039)

Neighbor1 Baseline −0.034 −0.118 −0.022 −0.044 −0.066 −0.020
(0.030) (0.095) (0.019) (0.063) (0.134) (0.019)

Non-Cog Diff (Neighbor1) −0.035 −0.149 −0.020 −0.155 −0.162 −0.066
(0.164) (0.540) (0.062) (0.103) (0.207) (0.055)

Interaction (Deskmate1) −0.005 −0.016 −0.001 −0.074∗∗∗ −0.104∗∗∗ 0.001
(0.024) (0.031) (0.008) (0.017) (0.032) (0.009)

Interaction (Neighbor1) 0.015 0.048 0.006 0.042∗ 0.051 0.015
(0.042) (0.134) (0.014) (0.024) (0.050) (0.012)

class FE Yes Yes Yes Yes Yes Yes
location FE Yes Yes Yes Yes Yes Yes
gender pair FEs Yes Yes Yes Yes Yes Yes
Observations 882 444 452 879 442 451
R2 0.636 0.653 0.495 0.697 0.727 0.551
Adjusted R2 0.582 0.541 0.332 0.652 0.638 0.406

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
Standard errors are obtained by wild bootstrap and clustered at class level.
All test scores are in logs.
(1),(4): Whole sample
(2),(5): Own baseline below the median
(3),(6): Own baseline above the median
Baseline non-cognitive peer differences are standardized.
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Table 3: Peer Effect (Math)

First Sem. Midterm First Sem. Final
(1) (2) (3) (4) (5) (6)

Own Baseline 0.843∗∗∗ 0.819∗∗∗ 1.215∗∗∗ 0.845∗∗∗ 0.884∗∗∗ 0.955∗∗∗
(0.060) (0.076) (0.079) (0.079) (0.079) (0.080)

Deskmate1 Baseline −0.018 −0.043 −0.038∗ 0.062 0.069 −0.029∗∗
(0.030) (0.040) (0.022) (0.047) (0.070) (0.015)

Non-Cog Diff (Deskmate1) 0.121 0.328∗∗∗ −0.076 0.393∗ 0.673∗∗ −0.036
(0.111) (0.119) (0.082) (0.215) (0.297) (0.050)

Neighbor1 Baseline 0.014 −0.007 −0.023 0.086 0.163 0.030
(0.039) (0.054) (0.045) (0.063) (0.116) (0.036)

Non-Cog Diff (Neighbor1) 0.107 −0.125 0.240∗ −0.155 −0.336 0.190
(0.081) (0.177) (0.130) (0.217) (0.304) (0.180)

Interaction (Deskmate1) −0.023 −0.066∗∗ 0.019 −0.089∗ −0.153∗∗ 0.009
(0.025) (0.027) (0.019) (0.048) (0.067) (0.011)

Interaction (Neighbor1) −0.028 0.023 −0.055∗ 0.038 0.081 −0.042
(0.019) (0.042) (0.029) (0.050) (0.070) (0.041)

class FE Yes Yes Yes Yes Yes Yes
location FE Yes Yes Yes Yes Yes Yes
gender pair FEs Yes Yes Yes Yes Yes Yes
Observations 882 465 442 879 463 441
R2 0.761 0.787 0.554 0.642 0.676 0.476
Adjusted R2 0.726 0.722 0.406 0.589 0.576 0.301

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
Standard errors are obtained by wild bootstrap and clustered at class level.
All test scores are in logs.
(1),(4): Whole sample
(2),(5): Own baseline below the median
(3),(6): Own baseline above the median
Baseline non-cognitive peer differences are standardized.
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5 Peer Assignment Optimization
Given the causal estimates reported in Section 4, we are now in a position to
discuss the implementation details of the peer assignment optimization and
report the associated results. As a computational note, the size of the set of
feasible assignments Q is (n/2)!. Given the large class sizes in our sample,
brute force computation is not feasible. As one well-known way of attack, we
relax the problem by allowing for fractional assignment, thereby transforming
the problem into the following linear programming problem16:

max
m∈M

1

n/2

∑
i∈Slow

∑
j∈Shigh

f(yi0, yj0, |ni0 − nj0|)m(i, j) (11)

such that m : Slow × Shigh → R+ is the fraction of matches between type i ∈ Slow
and j ∈ Shigh. The function m is to be chosen is restricted to be within a setM
defined by the following constraints:

m(i, j) ≥ 0,∀i ∈ Slow,∀j ∈ Shigh (12)∑
i∈Slow

m(i, j) = 1,∀j ∈ Shigh (13)

∑
j∈Shigh

m(i, j) = 1,∀i ∈ Slow (14)

In particular, the two accounting constraints (13), (14) govern that the num-
ber of matches must match the mass of agents of each type. Since each type
in a deskmate matching problem is a particular seat occupied by exactly one
student, the total mass is 1 for each type. Noting that our problem is discrete,
m can be regarded as a doubly stochastic matrix of dimension (n/2) × (n/2).17

Even though we consider the relaxed problem, the optimal assignments remain
pure.

We first run a set of peer regressions with full three-way interactions among
own baseline score, peer baseline scores, and non-cognitive peer difference.

16In the language of optimal transport, our original problem is the Monge problem
and our relaxed problem is a Kantorovich problem. See Villani (2008) and Galichon
(2016).

17Linear programs of this size can be solved almost instantaneously by using non-
commercial solvers, so that computation is a non-issue.
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We do not discretize the own baseline score like we did previously in Section
4, which we did only for presentation purposes. We evaluate the academic
achievement given four kinds of peer assignments:

1. (Full Interaction) Optimization based on the full interaction model.

2. (Univariate) An assignment based on optimizing a mis-specified model
with only the two-way interaction between own and peer baseline scores;
non-cognitive peer difference is ignored. This is the model considered in
Carrell et al. (2013) and most academic peer effect papers. This univari-
ate model is best-fitted to the same data.

3. (Worst Assignment) The value obtained by the worst assignment (mini-
mizing the objective function).

4. (Random Assignment) The achievement averaged over 1000 random as-
signments.

We then compute the value of the true objective function (11) given the
assignments.

We use random assignments as a benchmark and compare the other op-
timization results against it. We subtract the optimization results from that
obtained from the randomized assignment for each class; then, we compute
the first quartile, the median, and the third quartile of this difference. To be
precise, let a ∈ {1, 2, 3} where 1, 2, 3 label the optimal assignment, univariate,
worst assignment respectively; let c denote a particular class; let ȳac denote the
computed average score of low-achieving students in class c under assignment
a. let ȳrandomc denote the average of average scores under 1000 random assign-
ments. Our exercise is to evaluate the quantiles of ȳac − ȳrandomc for a ∈ {1, 2, 3}.

We repeat this procedure separately for Chinese mid-term and final, and
the math equivalents. The results in Table 4 show that the univariate model
is almost indistinguishable from the random benchmark, such that the first
quartiles, the medians, and the third quartiles are all very close to zero.

Since the dependent variables are all log scores, the differences are all inter-
preted as percentages; for instance, the median increase in Chinese midterm
grades obtained by optimizing according to our extended peer effect model is
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4%. There are variation of this increase among classes, although all classes
shows an improvement.

Another consistent pattern is that the benchmark is relatively close to the
worst assignment than to the optimal assignment, thereby indicating that with-
out significant care in optimizing the peer assignment, the optimized result
cannot be easily obtained by chance.

Table 4: Optimized Achievement Scores
Full Interaction Univariate Worst Assignment

Chinese Midterm 1st Quartile 0.028 0.006 -0.052
Median 0.04 0.01 -0.035
3rd Quartile 0.062 0.015 -0.026

Chinese Final 1st Quartile 0.028 -0.003 -0.04
Median 0.041 0.005 -0.028
3rd Quartile 0.064 0.013 -0.013

Math Midterm 1st Quartile 0.013 0.005 -0.048
Median 0.019 0.008 -0.029
3rd Quartile 0.024 0.011 -0.022

Math Final 1st Quartile 0.016 0.002 -0.038
Median 0.025 0.005 -0.024
3rd Quartile 0.030 0.007 -0.009

Notes: All results are relative to the results obtained by random assignment.

In terms of magnitudes, peer assignment optimization is more effective in
improving Chinese (about 4%) than math (about 2%), which is expected given
that math heavily depends on cognitive ability. These figures are modest yet
expected since this is only a one semester experiment.

One way to interpret our objective function is to think of it as a trade off be-
tween non-linearity (the interaction between yi0, yq(i)0) and non-cognitive peer
difference |ni0 − nq(i)0|. In Table 5, we report the average non-cognitive differ-
ence under the various assignments. Indeed, we find that for Chinese midterm,
Chinese final and Math final, the optimal assignments have an average non-
cognitive peer difference of around 0.8 − 0.86, which is about 14-20% less than
the average non-cognitive peer difference found in the univariate or random as-
signments. In contrast, the worst assignment magnifies the non-cognitive peer
difference in the class.

Math midterm is an exception. The non-linearity between the baseline
scores is particularly strong in this case, so that the optimization algorithm
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tends to match students with a large non-cognitive peer difference in pursue
for gains from non-linearity. However, Math Final does not exhibit the same
phenomenon. One may interpret this result as one that emphasizes the long-
run importance of non-cognitive peer difference.

Table 5: Non-Cognitive Peer Difference (Medians)
Optimal Assignment Univariate Worst Assignment

Chinese Midterm 0.787 1.049 1.035
Chinese Final 0.806 1.028 1.052
Math Midterm 1.270 1.030 1.060

Math Final 0.865 0.977 0.991
Notes: All results are relative to the results obtained by random assignment.

In Table 6, we check whether the optimal assignment tends to assign female-
female pairs. We compare these figures to the corresponding ones under ran-
dom assignment and report their ratios. Again, we report the figures with re-
spect to the four outcomes, and all figures are very close to 1 because, as Table 7
indicates, the baseline non-cognitive peer difference has almost zero systematic
difference across gender pairs.18

Table 6: Number of Same-Sex Pairs (Medians)
Optimal Assignment Univariate Worst Assignment

Chinese Midterm 1.017 1.038 0.981
Chinese Final 0.958 0.974 1.013
Math Midterm 0.977 1.046 0.984

Math Final 0.944 1.063 1.019
Notes: All results are relative to the results obtained by random assignment.

We then perform a hypothetical exercise where we replace |ni0− nq(i)0| with
|ni1 − nq(i)1|, and examine if the optimal assignment significantly changes. If
there is no assimilation such that non-cognitive peer difference is stable over
time, then the optimal assignment should be stable as well. However, we find
that apart from a very small number of exceptions, the optimal assignment q(i)
changes for all i (the percentage is ≥ 95% for all classes). This hypothetical

18We also have tried to characterize the optimal assignment according to age, whose
results are similar.
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assignment demonstrates the need for readjustments instead of considering a
one-shot optimization. Note that a class teacher, who monitors his class daily,
would possess real-time information regarding non-cognitive peer difference.
Athough he or she may not be able to accurately measure non-cognitive peer
difference, he or she possesses significant advantage in having high-frequency
measurements of non-cognitive peer difference that a peer effect researcher (the
authors) do not have. Therefore, it would not be surprising if the class teachers
perform better than our one-shot optimization attempt, which finds a modest
gain of about 4%.

We compute the number female-female pairs for our hypothetical assign-
ment and compare the figure against that of the optimal assignment. We do
not find any systematic results to report. Males account for the majority in
the low-achieving groups (62.0% on average), yet comprises the minority in the
high-achieving group (45.6% on average) which agrees with the reverse gender
gap literature. Consequently, the optimal assignment, that restricts the pair-
ing to be between high- and low-achieving students, cannot form many female-
female pairs.

Although our focus is the peer assignment betwen high- and low-achieving
students, the same methodology can be applied to other kinds of assignments,
for instance that between two randomized groups. The welfare weights may
change so that the academic performance of high-achieving students are also
considered. Since our purpose is to demonstrate the general principles, we do
not elaborate on these possible variations.

6 Assimilation
We report the temporal change in non-cognitive peer difference di1−di0. Figure
2 plots its distribution. In the plot, 51% of the observations assimilate, i.e.
di1−di0 ≤ 0, while the other 49% differentiate, i.e. di1−di0 > 0. The distribution
of di1 − di0 is unimodal, with a mean of −0.03, which is statistically significant
at the one percent significance level.
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Figure 2: Distribution of Change in Non-Cognitive Peer Difference
(Round 2 - Round 1)

6.1 By Gender
We find that the success of assimilation highly depends on own and peer gender.
Table 7 reports how gender explains the differences of the non-cognitive skill
between deskmates. Specifically, we run an OLS regression of dit for t = 0, 1

and di1 − di0 on possible gender pairs, i.e. male-female, male-male and female-
female, with male-male as the omitted group.

At the baseline, there is almost zero level difference in di0 across gender
pairs. After a semester, we find that di1−di0 (Column 3) is heterogeneous across
gender pairs. Specifically, female-female pairs has a significantly negative co-
efficient of −0.1747, which is about 6 times relative to the mean assimilation
of 0.03. While this figure is only 1/5 of the standard deviation of assimilation
di1−di0, it is still significant. We do not find similar effects for the other gender
pairs. In other words, the degrees of assimilation of mixed gender pairs and
male-male pairs are similar.

These result relate to Lu and Anderson (2015), who find that female-female

28



pairs improve academic achievement relative to other possible gender pairs.
Together with our result that a smaller non-cognitive peer difference inter-
acts with the peer baseline score effect, the significantly better assimilation of
female-female pairs can potentially explain their results. Lavy and Schlosser
(2011) also show that adding female students to a class can improve the over-
all academic performance. As the authors point out, a higher proportion of
female peers "lowers the level of classroom disruption and violence, improves
inter-student relationships." While their results are global and our gender as-
similation result is local (between deskmates), our findings are consistent with
each other.

Table 7: Explaining Non-Cognitive Peer Differences (By Gender)

Baseline After the First Semester Change
(1) (2) (3)

Male-Female −0.0112 −0.0911∗ −0.0799
(0.0452) (0.0510) (0.0672)

Female-Male −0.0038 −0.0995∗ −0.0957
(0.0450) (0.0508) (0.0669)

Female-Female −0.0164 −0.1911∗∗∗ −0.1747∗∗
(0.0555) (0.0626) (0.0825)

class FE Yes Yes Yes
location FE Yes Yes Yes

sd of Dep. Variable 0.5706 0.6449 0.7736
Observations 892 892 892
R2 0.4745 0.4773 0.3695
Adjusted R2 0.4125 0.4157 0.2952

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

6.2 By Grade
Similarly, we examine the non-cognitive peer difference by grade. The omitted
group in Table 8 is Grade 3. We do not introduce class dummies because they
would absorb all relevant variation.
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At the baseline, the average non-cognitive peer differences of Grade 4 and
Grade 5 are smaller than that of Grade 3, as indicated by their negative coeffi-
cients. This result suggests that initially the higher grades are more homoge-
nous than the lower grades.

In terms of change, the positive Grades 4 and 5 coefficients suggest that
the non-cognitive peer differences in higher grades are more difficult to be re-
duced relative to those of Grade 3. Similar to our interpretation for gender, the
magnitudes of the coefficients (greater than 0.2 for both Grade 4 and Grade 5)
are large with respect to the baseline non-cognitive peer difference with unit
variance.

Our result also agrees with the skill formation literature, which shows that
non-cognitive skill is more malleable at younger ages (and hence lower grades).
While the findings in the skill formation literature mostly concern school and
family inputs, here we show that the same conclusion holds with respect to peer
inputs. Specifically, we show this result directly by measuring assimilation
between peers. In the skill formation literature, while peer inputs are often
mentioned, the data set used is a representative sample whose observations are
i.i.d.. The peer inputs are measured indirectly by interviewing the respondent
rather than his or her peer.

Table 8: Explaining Non-Cognitive Peer Differences (by Grade)

Baseline After the First Semester Change
(1) (2) (3)

Grade 4 −0.080∗ 0.134∗∗∗ 0.214∗∗∗
(0.043) (0.050) (0.058)

Grade 5 −0.180∗∗∗ 0.108∗∗ 0.288∗∗∗
(0.043) (0.049) (0.058)

location FE Yes Yes Yes

sd of Dep. Variable 0.5706 0.6449 0.7736
Observations 892 892 892
R2 0.095 0.088 0.109
Adjusted R2 0.015 0.006 0.029

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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6.3 By Age Difference
We also examine within each class (and hence grades) how age difference af-
fect the evolution of non-cognitive peer difference. The regression results are
shown in Table 9. The first column shows that at the baseline, due to peer ran-
domization, a larger age difference does not statistically predict a larger peer
non-cognitive difference. However, after a semester, one extra year in peer age
difference predicts a 6% increase in non-cognitive peer difference, suggesting
that pairs with a larger age difference face more difficulties in assimilation.

Comparing with the gender results presented in Table 7, the effect of age
difference on assimilation is not as large, although still notable and strongly
significant. In Chinese rural schools, due to a number of reasons (mostly due
to deferrals, but also include gifted children who are promoted to a higher class
early), the age variation within classes is rather large. As reported in the sum-
mary statistics in Table 1, some classes have a within-class standard deviation
of birth year exceeding 1 year, thereby implying that some pairs can have a
large age difference relative to other pairs.

Table 9: Explaining Non-Cognitive Peer Differences (by Age)

Baseline After the First Semester Change
(1) (2) (3)

Age Difference 0.021∗ 0.059∗∗∗ 0.038∗∗
(0.012) (0.014) (0.018)

class FE Yes Yes Yes
location FE Yes Yes Yes

sd of Dep. Variable 0.5706 0.6449 0.7736
Observations 892 892 892
R2 0.478 0.483 0.371
Adjusted R2 0.418 0.423 0.299

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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6.4 Assimilation and Friendship
As we constructed, non-cognitive peer difference is a psychological factor score.
This measure could be better understood if it relates observable consequences
to the social network. Specifically, we check if differentation actually causes
friendships to break. As another important concern, the non-cognitive ques-
tionnnaire items are self-reported. Given that the students are young in age,
one may also wonder whether the students fully understood the questionnaire
items, and whether they would seriously think about the best answer before
answering. To address these concerns, in our sample, we collect information
on friendships. Specifically, we ask each student to provide the names of three
male friends and three female friends, six persons in total. Using this informa-
tion, we check whether the deskmates are among the self-reported friends in
each round, and check if this reporting relates to assimilation.

Initially, about 30% of the deskmates are named as one of the friends; after
a semester (in Round 2, only 22% of the Round 1 deskmates are named as
friends. These statistics altogether suggest that a student is likely to causally
write down the name of his or her randomly assigned deskmate as one of his/her
friends, given that there are six slots in total. In this case, one interesting issue
is then what causes a student to stop writing his or her Round 1 deskmates
again as a friend in Round 2, given that he/she did so in Round 1. If this is the
case, we expect this behavior is a strong indicator of failed assimilation.

As Table 10 shows, non-cognitive peer difference does not predict whether a
student would report his or her deskmate as a friend in Round 1. In Round 2,
we define a dummy "assimilation" which takes a value of 1 if the change in non-
cognitive peer difference is negative. The interaction between assimilation and
reporting the Round 1 deskmate as a friend in Round 1 has a positive effect.
Quantitatively, this result implies that the probability of reporting a Round 1
deskmate as a friend in Round 2, conditioned on that he did so in Round 1, is
17% lower if the assimilation fails (differentiation occurs).

As a caveat, this result is not a causal statement because the assimilation
and change in friendship are concurrent. Therefore, we do not claim that being
friends (stop being friends) is a result of assimilation (differentiation), or if the
reverse causality channel is true. Instead, we prefer take this result to support
our view that non-cognitive peer difference proxies whether peers have a close
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relationship to each other.
We do not have a direct measure of peer conflict. Although unfortunate,

including this item in the questionnaire could raise ethical issues.

Table 10: Friendship and Deskmates: OLS Regressions

Deskmate1 is Friend in Round 1 Deskmate1 is Friend in Round 2
(1) (2)

Non-Cog Diff (Round1) −0.004 −0.005
(0.014) (0.012)

Assimilation 0.014
(0.027)

Deskmate1 is Friend in Round 1 0.343∗∗∗
(0.035)

Interaction (2)*(3) 0.169∗∗∗

(0.053)

Constant 0.241∗∗∗ 0.088∗∗∗
(0.014) (0.019)

Observations 892 892
R2 0.000 0.124
Adjusted R2 −0.001 0.120

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
Non-cognitive peer difference in both rounds are standardized.

7 Conclusions
We end the paper with several remarks. We aim to shed light on the peer effect
puzzle raised by Carrell et al. (2013), who show that the optimization of peer
assignment could possibly backfire even if the estimates are obtained from an
experiment. As our results show, non-cognitive peer difference is of critical
importance. Therefore, we need to extend the standard academic peer effect
model before we can recommend on actual peer assignments.
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We begin by observing that Chinese class teachers routinely readjust the
seating arrangement in their classes. Although their approach is often trial-
and-error in nature, it is basically a response to peer conflicts between desk-
mates. Therefore, we question whether the existing academic peer effect mod-
els could have ignored a pre-condition that the assigned peers have to get along
with each other well before knowledge spillover can take place effectively. To
get along with each other well, their non-cognitive peer difference should be
small. We quantify this idea by measuring non-cognitive peer difference, and
then we optimize peer assignment based on our richer peer effect model. Our
results are in line with our expectations.

Our paper focuses on a setting with a fixed seats, which provides us the
possibly cleanest environment to study peer interactions. Concerning exter-
nal validity, we not that the fixed seat system, as the traditional way of or-
ganizing seats for primary school classrooms, is common in other East Asian
regions such as Singapore, Hong Kong, India, South Korea, and Japan. Similar
systems can also be found in other regions where limited education resources
demands a compact way of organizing classrooms. A fixed seat system is of-
ten found in workplaces with a limited office space; in these workplaces where
the assignment of employees into fixed seats could result in peer conflicts if
done improperly. However because workers are specialized in particular roles,
thereby giving rise to the need for each worker to communicate with specific
peers, the discussion of optimal seating assignment in workplaces involves is a
more complicated problem than that in classrooms.

As a related remark, the rectangular array arrangement could produce
global effects. Specifically, this approach can be used as a means of inducing
obedience and order. As education researchers suggest, a semi-circular seat-
ing layout can effecitvely encourage students to ask questions to their teacher.
By contrast, a rectangular array seating layout can promote the teacher as a
authoritative figure (Marx et al., 1999). Our peer effect regressions control for
such global effects by using classroom fixed effects. We leave to future studies
the problem of globally changing the classroom seating layout.
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A Measurement Errors and Standard Errors

A.1 Measurement Error
Measurement error is a well-known problem in psychometrics, especially given
the fact that non-cognitive traits are typically more difficult to measure than
cognitive ones. A common way to tackle this problem is to combine many mea-
surements to form an index, in order for the measurement errors in each ques-
tionnaire item to cancel each other.

Formally, suppose that the non-cognitive skill nit is latent, and is linked
to a vector of (observable) measurements (n̂it1, n̂it2, . . . , n̂itK) for individual i at
time k, where k = 1, 2, . . . ,K indexes the questionnaire items. The linkage is
specified by:

n̂itk = ρtknit + εitk (15)

where ρtk is the factor loading, and εitk is the measurement error. Given that
the measurement errors are independent to the factor, E[εitk|nit, t] = 0 for any
(t, k).

In this case, peer randomization at time 0 guarantees that:

(Yi0, εi01, εi02, . . . , εi0K , ui0) ⊥⊥ (Yp(i)0, εp(i)01, εp(i)02, . . . , εp(i)0K , up(i)0) (16)

Accordingly, we proxy dit by

d̂it ≡
K∑
k=1

|(n̂itk − n̂p(i)tk)δtk|
K

where dt = (dt1, dt2, . . . , dtK)′ is a vector of weights. As such, we reduce the
problem to one that has one single latent variable dit, which is proxied by d̂it.

The literature on measurement errors discusses alternative methods other
than simple averaging. The first is to optimize the weights in minimizing the
attenuation bias. If one is willing to make the stronger asumption of indepen-
dence between measurement errors across questionnaire items, as most factor
models do, then

εitk ⊥⊥ εitk′ , εj(i,t)tk ⊥⊥ εj(i,t)t,k′∀k 6= k′

This assumption implies that the latent factor account for all cross-measurement
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correlations. Given this assumption, simple average tends to average out the
measurement errors, although the weights may not be optimal because the
measurement errors may not necessarily have the same variances.

The econometric problem of optimal weighting is discussed in Black and
Smith (2006), who measured an unobserved college quality with multiple noisy
proxies. Black and Smith (2006) estimated an optimized δ, found by minimizing
the resulting expected mean deviation from the true latent factor. Neverthe-
less, even after optimizing the weights, measurement error still exists. Black
and Smith (2006) finds that, after optimizing the weights, the factor score has
statistically significant effects of college quality on various individual outcomes.
In our case, we already find a very large effect without optimizing the weights.
Being conservative, we choose not to optimize the weights and instead let the
estimates to be attenuated.

Alternatively, the cross-measurement independence yields enough moments
to achieve point identification of the factor loadings. This approach has also
been employed in the skill formation literature. Heckman et al. (2006); Cunha
et al. (2010) examined the joint identification of their model without calculating
a factor score for each individual. Here we show the point identification of our
peer effect model (for a linear case).

Conditional on Yi0, Yj(i,0)0, we compute the following partial variance-covariance
matrix:

˜var(Yi1) ˜cov(Yi1, d̂i01) . . . ˜cov(Yi1, d̂i0K)

˜cov(d̂i01, Yi1) ˜var(d̂i01) . . . ˜cov(d̂i01, d̂i0K)
...

... . . . ...
˜cov(d̂i0K , Yi1) ˜cov(d̂i0K , d̂i01) . . . ˜var(d̂i0K)



=


β23 ˜var(d̂i0) + ˜var(ui0) + ˜var(uj(i,0)0) β3ρ01 ˜var(d̂i0) . . . β3ρ0K ˜var(d̂i0)

β3ρ01 ˜var(d̂i0) ρ201 ˜var(di0) + 2 ˜var(εi01) . . . ρ01ρ0K ˜var(d̂i0)
...

... . . . ...
β3ρ0K ˜var(di0) ρ0Kρ01 ˜var(di0) . . . ρ20K ˜var(di0)


(17)

Standardize ρ01 = 1, such that the latent non-cognitive skill Nit shares the
same unit as the first measurement d̂i01. Then the remaining factor loadings
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ρ02, ρ03, . . . , ρ0K are identified. For example,

ρ02 =
˜cov(Yi1, d̂i02)

˜cov(Yi1, d̂i01)
(18)

Given that ˜cov(d̂i01, d̂i02) = ρ02var(di0), ˜cov(Yi1, d̂i02) = β3ρ02 ˜var(di0)

β3 =
˜cov(Yi1, d̂i02)

˜cov(d̂i01, d̂i02)
(19)

i.e. β3 is identified as the instrumental variable estimator, by using the second
measurement to instrument the first. After β3 is identified, β0, β1, β2 can be
identified by regressing Yi1 − β3d̂i0 on Yi0, Yj(i,0)0. Given that other measure-
ments are available, the system is over-identified.

As a result of peer randomization, Ni0 ⊥⊥ Nj(i,0)0 and so are their respective
measurements. Finally, with the factor loadings identified, a standard applica-
tion of the Kotlarski’s lemma identifies the distribution of di0.

As a related remark, measurement errors may directly affect the optimiza-
tion since the policy-maker may not observe di0 perfectly. In this case, the
optimization problem is one that involves Bayesian updating. Let the infor-
mation set at time 0 denoted by Ω0. Ω0 would represent the prior that the
policy-maker knows in advance, specifically the aggregate-level patterns of non-
cognitive peer differences by observable characteristics such as age and gender.
The corresponding Bayesian optimization problem is presented as follows:

max
q∈Q

E[
1

n/2

∑
i∈Slow

[f(yi0, yq(i)0, |ni0 − nq(i)0|)]|Ω0]

Upon receiving further information, the information set Ω0 would change, thereby
providing a reason of readjusting the optimal assignment en route.

A.2 Clustered Standard Errors and Wild Bootstrap
Unlike standard representative samples, peer data sets are inherently non i.i.d.
because peers (classmates) interact with each other. Since a peer effect model
asserts that both own and peer observable inputs would jointly determine out-
comes, the same needs to be considered for unobservable inputs as well. This
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consideration would imply that the composite error terms ui0 + λpup(i)0 are cor-
related across individuals within the same class. Specifically, given that the
deskmate of one’s deskmate is oneself, a mechanical correlation between the
composite error term across individuals exists even if ui0 ⊥⊥ up(i)0.

The violation of the i.i.d. assumption implies that the OLS standard error is
incorrect, often understating the truth (Moulton, 1986). A well-known solution
to this problem is to cluster the standard error by class. One problem in prac-
tice is that the cluster-robust standard errors (CRSE) are derived by assuming
asymptotics with respect to the number of clusters (rather than individuals),
while in field experimental studies the number of clusters is often small. In Lu
and Anderson (2015), only 12 classes are available, while in our study we have
21.19 For a small-cluster correction, we follow Cameron and Miller (2015) and
use cluster wild bootstrap standard error in our regressions, which is a way to
produce bootstrap re-samples by swapping residuals within clusters.

Nevertheless, we find that the cluster wild bootstrap standard errors are
rather close to CRSE, such that the qualitative conclusions of testing tne null
hypothesis of zero peer effects are unaffected. Meanwhile the OLS standard
errors are about half of the cluster-bootstrap standard errors, thereby implying
that our corrections are necessary.

B Randomization Check
As discussed above, randomization guarantees the independence between own
and peer variables, whether observable or not. For observables, this condition
is testable. Given that the randomization in this study is done by the schools
following our instructions, the purpose of this randomization check is to con-
firm whether the teachers have gone through the randomization procedure as
instructed.

Following Sacerdote (2001), we check whether the own and deskmate base-
line non-cognitive skills are uncorrelated given the baseline randomization,
conditional on location (row × column) and class fixed effect, since the random-

19In principle, the cluster unit should be the randomization blocks. However, the
blocks include a very limited number of observations, thereby rendering the estimation
of cluster-specific variances unreliable.
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ization is conditional on these variables. The corresponding regression results
are organized in Table 11. All Big Five proxies have passed the randomization
check, with the p-values all greater than 0.05. We also present in the same ta-
ble the results for baseline test scores and birth year; these variables also pass
the randomization check.

As the only exception, the male dummy fails the randomization check, with
a coefficient of −0.33 and a standard deviation of 0.03. This result implies that
the deskmate is more likely of the opposite gender than of the same gender.

Table 11: Randomization Check
deskmate coeff deskmate (se) deskmate (p-value)

Openness -0.05 0.04 0.18
Conscientiousness -0.07 0.03 0.05

Extraversion 0.04 0.04 0.23
Agreeableness -0.05 0.04 0.15

Neuroticism -0.03 0.04 0.42
Birth Year -0.06 0.04 0.07

Male -0.33 0.03 0.00
Chinese Language (Baseline) 0.03 0.04 0.46

Math (Baseline) 0.03 0.04 0.33

This abnormality warrants a discussion. As one possibility, it could be due
to a "small urn problem" as discussed in Guryan et al. (2009) — Specifically,
given own gender, the remaining pool of students in the same block are more
likely to be of the opposite gender because the sampling is without replacement.
The resulting regression coefficient with respect to baseline gender would be
negative. In our case, each block is relatively small, mostly with less than
20 students. Therefore, this problem is even more acute than that in Guryan
et al. (2009), which studies golfer teams of bigger size. Guryan et al. (2009)
proposed a fix to this small urn problem, that is, to add an additional control of
the proportion of males within a block (i.e., the eligible peers) excluding own.
As Guryan et al. (2009) pointed out, this solution requires significant block size
variation to work. In our case, we find insufficient variation in block size within
a class. Therefore, we do not attempt to use this solution.

The second possibility is that the randomization is, in fact, conditional on
gender given the strong preference of teachers for mixed gender pairs. In any
case, we wish to identify peer effects other than the gender effects found in Lu
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and Anderson (2015). Therefore, for all peer effect regressions in Section 4, we
control for gender pairs.

C Placebo Test of Local Peer Effects
In Round 2 which takes place after the first semester, the class teachers have
become more knowledgeable about their classes. Specifically, these class teach-
ers typically identify certain pairs of deskmates who are in serious conflict with
each other. Consequently, these class teachers typically ask to assign seats ac-
cording to their own initiative. Given this situation, we ask the class teacher to
globally reassign the seats again, although we do not enforce true randomiza-
tion as we did in Round 1.

We find that 95% of the students have changed seats, i.e. their (x, y) coor-
dinates become different in Round 2. Given that each randomization block is
small in size, being assigned exactly the same seat in both semesters remains
a statistical possibility. Regarding the x-coordinates, the randomizations are
conditional on blocks that comprises two rows each. Under the assumption
that the ordering of heights of students remains constant within a semester,
the change in the x coordinate should be within {−1, 0, 1} for all students. We
find that this conclusion is true for 87.86% of the sample. Moreover, we do find
that some students are re-assigned more than 3 rows away from his Round 1
position.

With the peer assignment no longer random, we cannot use Round 2 data
to repeat our estimation of peer effects. Instead, since the deskmates for most
students change in Round 2 we use the opportunity that the deskmates, we use
this opportunity to conduct a placebo test. If peer effects are local, then the
Round 1 deskmate variables should not correlate to the Round 2 outcomes.

We cannot reject the null that the Round 1 peers have zero effect. We add
the Round 2 peers in the specification and the results are unaffected. These
results are shown in Table 12. As expected, the estimated interaction effects
are much smaller in magnitude, have mixed signs, and are all statistically in-
significant.

Together with our previous finding that general neighbors do not matter, we
argue that within-classroom peer effects are local in nature. This property is
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important for our policy recommendations. If within-classroom peer effects are
global, then seat reassignments would be irrelevant.20

D Consistency of di0 Across Traits
As a robustness check, we examine whether our conclusions critically depends
on the definition of the non-cognitive peer difference. This is especially impor-
tant given that our measure is a composite one that mixes the Big Five. In re-
sponse, we compute a correlation matrix between the trait-specific di1−di0. The
high correlations (about 0.8) in Table 13 indicate that inter-peer non-cognitive
differences are consistent across the Big Five traits. If one pair has large peer
difference relative to the average with respect to one Big Five trait, e.g. open-
ness to experience, then a have large peer difference with respect to other traits
(e.g. conscientiousness) is likely to be observed as well.

Table 14 presents an analogue correlation matrix for the second round. The
correlations unambiguously increase by about 0.05, thereby suggesting that the
non-cognitive peer differences become more consistent across factors over time.
Given that the second round survey is done after the re-randomization of seats,
our findings reject an alternative hypothesis that such high correlations is due
to some deskmate pairs copying answers from each other.

Consequently, our peer effect estimates do not depend on whether a specific
trait is used. Given that most economists pay special attention on conscien-
tiousness, we report the same peer effect regressions using the conscientious-
ness peer differences instead in Table 15 and 16 respectively. The signs and
magnitudes of the estimates are consistent to our main results.

As another robustness check, this appendix section provides the academic
peer effect regression estimates if we replace the Big Five measurements with
only conscientiousness. The results are similar to our main regressions.

20Given the independence between deskmates and more general neighbors, the
Round 1 specifications can omit the general neighbor variables.
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Table 12: Local Peer Effect Placebo Test (Round 2 Outcomes, Round 1
Peers)

Chinese Midterm Chinese Final Math Midterm Math Final
(1) (2) (3) (4)

Own Baseline 0.680∗∗∗ 0.701∗∗∗ 0.939∗∗∗ 0.982∗∗∗
(0.086) (0.109) (0.077) (0.074)

Deskmate1 Baseline −0.007 −0.002 −0.023 0.029
(0.022) (0.024) (0.040) (0.046)

Non-Cog Diff (Deskmate1) 0.047 −0.085 0.139 0.212
(0.060) (0.063) (0.278) (0.279)

Neighbor1 Baseline −0.066 −0.059 0.039 −0.011
(0.077) (0.084) (0.056) (0.064)

Non-Cog Diff (Neighbor1) 0.083 −0.152 −0.054 0.212
(0.130) (0.106) (0.160) (0.200)

Interaction (Deskmate1) −0.018 0.014 −0.030 −0.049
(0.015) (0.016) (0.064) (0.063)

Interaction (Neighbor1) −0.015 0.038 0.007 −0.054
(0.029) (0.025) (0.037) (0.047)

Constant 1.400∗∗ 1.651∗∗ −0.058 −0.222
(0.630) (0.703) (0.533) (0.588)

class FE Yes Yes Yes Yes
location2 FE Yes Yes Yes Yes
gender pair FEs Yes Yes Yes Yes
Observations 877 874 877 876
R2 0.704 0.668 0.689 0.623
Adjusted R2 0.660 0.618 0.642 0.567

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
Standard Errors are obtained by wild bootstrap and clustered at class level.
All Test Scores are in logs.
Baseline Non-Cognitive peer differences are standardized.
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Table 13: Correlation Matrix of Peer Differences in Factor-Specific In-
dexes (Baseline)

O (Diff) C (Diff) E (Diff) A (Diff) N (Diff)
O (Diff) 1.00 0.82 0.84 0.81 0.80
C (Diff) 0.82 1.00 0.80 0.78 0.75
E (Diff) 0.84 0.80 1.00 0.81 0.80
A (Diff) 0.81 0.78 0.81 1.00 0.80
N (Diff) 0.80 0.75 0.80 0.80 1.00

Table 14: Correlation Matrix of Peer Differences in Factor-Specific In-
dexes (Second Round)

O (Diff) C (Diff) E (Diff) A (Diff) N (Diff)
O (Diff) 1.00 0.86 0.89 0.86 0.85
C (Diff) 0.86 1.00 0.85 0.84 0.85
E (Diff) 0.89 0.85 1.00 0.86 0.87
A (Diff) 0.86 0.84 0.86 1.00 0.85
N (Diff) 0.85 0.85 0.87 0.85 1.00
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Table 15: Peer Effect (Chinese, Conscientiousness)

First Sem. Midterm First Sem. Final
(1) (2) (3) (4) (5) (6)

Own Baseline 0.774∗∗∗ 0.765∗∗∗ 0.777∗∗∗ 0.592∗∗∗ 0.552∗∗∗ 0.824∗∗∗
(0.047) (0.043) (0.072) (0.058) (0.058) (0.102)

Deskmate1 Baseline −0.029 −0.038 −0.021 0.016 −0.020 0.013
(0.025) (0.038) (0.013) (0.021) (0.017) (0.019)

Non-Cog Diff (Deskmate1) −0.027 −0.055 −0.017 0.307∗∗∗ 0.484∗∗∗ −0.001
(0.103) (0.133) (0.036) (0.062) (0.140) (0.035)

Interaction (Deskmate1) 0.003 0.003 0.004 −0.072∗∗∗ −0.117∗∗∗ 0.001
(0.026) (0.037) (0.008) (0.015) (0.038) (0.008)

Interaction (Neighbor1) 1.110∗∗∗ 1.114∗∗∗ 1.039∗∗∗ 1.682∗∗∗ 2.026∗∗∗ 0.673
(0.190) (0.235) (0.336) (0.199) (0.253) (0.486)

class FE Yes Yes Yes Yes Yes Yes
location FE Yes Yes Yes Yes Yes Yes
gender pair FEs Yes Yes Yes Yes Yes Yes
Observations 891 450 455 888 448 454
R2 0.632 0.642 0.492 0.689 0.717 0.544
Adjusted R2 0.579 0.532 0.334 0.644 0.629 0.402

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
Standard errors are obtained by wild bootstrap and clustered at class level.
All Test Scores are in logs.
(1),(4): Whole sample
(2),(5): Own baseline below the median
(3),(6): Own baseline above the median
Baseline non-cognitive peer differences are standardized.
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Table 16: Peer Effect (Math,Conscientiousness)

First Sem. Midterm First Sem. Final
(1) (2) (3) (4) (5) (6)

Own Baseline 0.840∗∗∗ 0.817∗∗∗ 1.212∗∗∗ 0.839∗∗∗ 0.874∗∗∗ 0.981∗∗∗
(0.058) (0.070) (0.101) (0.079) (0.085) (0.076)

Deskmate1 Baseline −0.023 −0.053 −0.037∗ 0.057 0.051 −0.027∗∗
(0.034) (0.049) (0.019) (0.049) (0.076) (0.013)

Non-Cog Diff (Deskmate1) 0.055 0.266∗ −0.073 0.362∗ 0.721∗∗ −0.009
(0.091) (0.160) (0.071) (0.208) (0.362) (0.038)

Neighbor1 Baseline −0.008 −0.054 0.017 −0.081∗ −0.162∗∗ 0.003
(0.020) (0.036) (0.016) (0.046) (0.082) (0.008)

Non-Cog Diff (Neighbor1) 0.556∗∗ 0.674∗∗ −0.987∗∗ 0.350 0.232 0.094
(0.236) (0.279) (0.450) (0.468) (0.538) (0.360)

class FE Yes Yes Yes Yes Yes Yes
location FE Yes Yes Yes Yes Yes Yes
gender pair FEs Yes Yes Yes Yes Yes Yes
Observations 891 469 448 888 467 447
R2 0.758 0.784 0.539 0.637 0.669 0.469
Adjusted R2 0.724 0.720 0.392 0.585 0.571 0.300

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
Standard errors are obtained by wild bootstrap and clustered at class level.
All Test Scores are in logs.
(1),(4): Whole sample
(2),(5): Own baseline below the median
(3),(6): Own baseline above the median
Baseline non-cognitive peer differences are standardized.
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