Model 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Market Power in Agricultural Markets: *Rice Supply Chain in India*

Gourika Khanna

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background

- Farmers in developing countries are poor
 - Small farmers make up to 80% of the farming population
- The reasons for their low income are:
 - Low productivity
 - High input costs
 - Lack of formal credit institutions
 - Low prices for their produce

Introduction	Empirical Facts	Model	Estimation
000000	00000000	000000000	000
Why farmers get	low prices?		

• Farmers sell their produce via intermediaries who have market power

Introduction	Empirical Facts	Model	Estimation
0●00000	000000000	000000000	000
Why farmers get	low prices?		

• Farmers sell their produce via intermediaries who have market power

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Potential source of market power for intermediaries
 - Heterogeneous capacity to buy
 - Intermediaries with large capacity have more power

Introduction	Empirical Facts	Model	Estimation
0●00000	00000000	000000000	000
Why farmers get	low prices?		

- Farmers sell their produce via intermediaries who have market power
- Potential source of market power for intermediaries
 - Heterogeneous capacity to buy
 - Intermediaries with large capacity have more power

Question -

• Quantitative importance of intermediaries' heterogeneity in determining their market power

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Implications on farmer's welfare

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Driving Question

- Competition among intermediary traders -
 - * How, and by how much ...
 - * traders are exerting market power matters for policy making

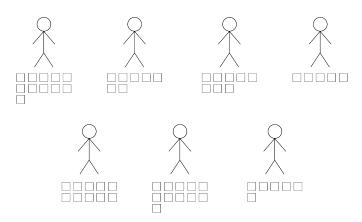
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Driving Question

- Competition among intermediary traders -
 - * How, and by how much ...
 - * traders are exerting market power matters for policy making

Context: Regulated intermediary market in India

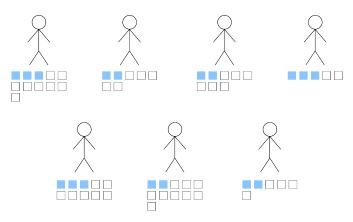
- Intermediaries are capacity constraint
- ... and vary in capacity
- Intermediary gets license to trade in one market


Empirical Fact

Model 0000000000

◆□→ ◆□→ ◆注→ ◆注→ □注

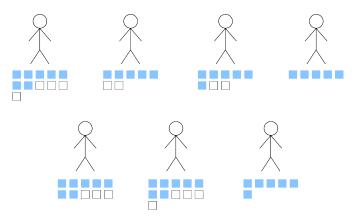
Estimation 000


Core Mechanism

Empirical Fact

Model 0000000000 Estimation 000

Core Mechanism

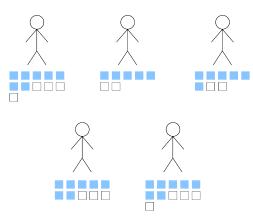


◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Empirical Fact

Model 0000000000 Estimation 000

Core Mechanism



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Empirical Facts

Model 0000000000 Estimation 000

Core Mechanism

Introduction	Empirical Facts	Model	Estimation
0000000			
Provious of)	Mhat I Da		

Part I

• Empirical patterns to motivate the source of market power

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Impact of heterogeneity on the prices paid to farmers

Introduction	
0000000	

Empirical Facts

Model 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Preview of What I Do

Part I

- Empirical patterns to motivate the source of market power
- Impact of heterogeneity on the prices paid to farmers

Part II

• Dynamic Model with bargaining which captures the market structure

Yet to do:

- Quantify the importance of competition on farmer's income
- Relationship between intermediaries' heterogeneity and prices

Introduction	Empirical Facts	Model	Estimation
00000€0	000000000	000000000	000
Rice Supply Cha	ain in India		

$\mathsf{Farmers} \to \mathsf{Marketplace} \longrightarrow \mathsf{Rice} \ \mathsf{Millers} \to \mathsf{Rice} \to \mathsf{Consumer}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Introduction	Empirical Facts	Model	Estimation
00000●0		000000000	000
Rice Supply	Chain in India		

Farmers \rightarrow Marketplace \rightarrow Rice Millers \rightarrow Rice \rightarrow Consumer

- Farmer sows paddy in July-Aug
- Harvested in Oct-Nov

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

0000000	00000000	000000000	000
Rice Supply	Chain in India		

Farmers \rightarrow Marketplace \rightarrow Rice Millers \rightarrow Rice \rightarrow Consumer

- Government-licensed local market places
- Government laws dictate that farmers sell their produce only in the local markets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$\label{eq:Farmers} \textbf{Farmers} \rightarrow \textbf{Marketplace} \longrightarrow \textbf{Rice} \ \textbf{Millers} \rightarrow \textbf{Rice} \rightarrow \textbf{Consumer} \\ Intermediaries$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

• Role is to convert paddy into rice • Miller

Introduction	Empirical Facts	Model	Estimation
0000000	00000000	000000000	000
Rice Supply	Chain in India		

Farmers \rightarrow Marketplace \rightarrow Rice Millers \rightarrow Rice \rightarrow ConsumerSellerBuyer

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Empirical Facts	Model	Estimation
000000●	000000000	ooooooooo	000
Data			

- Time Period: 2013 2016
- Five rice miller's transaction-level data
 - Data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\bullet\,$ Market share is $\sim 40\%$ in the local market
- Variables : Date of transaction, quantity and price transacted and the order of transactions
- Miller's daily total purchases 2014
- Administrative Data: Daily paddy supply in marketplace
- District: 80% of the farmers are small
 - median size of the land holding is 1.08 hectares Land Holdings
- Data on rainfall

Model 0000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Typical Day in the Market

6.00am Farmers come to the marketplace

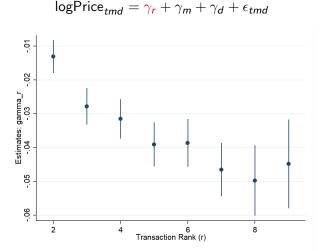
• place their produce around the marketplace • Local Market

8.00am Millers come to the marketplace

- Go to farmers negotiate and buy the produce Negotiation
- Farmers sell their produce to a single miller
- 9.30am Market ends

Introduction 0000000	Empirical Fac		Estimation 000
Fact 1: F	or each miller	, later transactions ge	t lower price

$$\mathsf{logPrice}_{\textit{tmd}} = \gamma_{\textit{r}} + \gamma_{\textit{m}} + \gamma_{\textit{d}} + \epsilon_{\textit{tmd}}$$

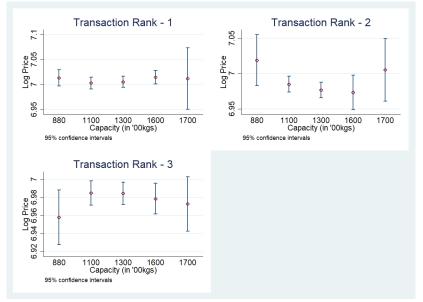

• Transaction Rank (r) is the order of transaction

- Bunched together in groups of 10
- r = 1 is the first 10 transactions of a miller on a day, r = 2 is the next 10 transactions, and so on

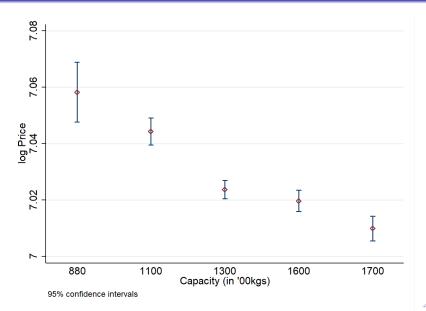

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• Omitted Category is r = 1

l observe the downward trend after controlling for quantity transacted and number of days for payment delay.


- Farmers cannot signal their quality to the miller
- Millers do not know paddy's quality without sampling it.

Variation in price is not due to g	uality - 2	
Introduction Empirical Facts	Model	Estimation
00000000 00000000	000000000	000


- Main driver of quality for paddy is moisture content
- Lu, R., et al. (1995) state that moisture content in paddy on a day can be predicted by the daily weather
 - Conditioning on the day, the quality of paddy should not vary a lot

Fact 3: Large capacity millers pay less

Fact 4 [.] Mill	ers buv relativelv		
Introduction	Empirical Facts	Model	Estimation
0000000	000000000	000000000	000

 $\log \text{Quantity}_{dm} = \beta_{w} \text{Weeks from Harvest}_{dm} + \text{Rainfall}_{mon} + \gamma_{m} + \gamma_{\text{Year}} + \epsilon_{dm}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Weeks from Harvest - Week from the first day that paddy comes to market

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	000000000	000
Fact 4: Mil	llers buy relatively		

log Quantity_{dm} = β_w Weeks from Harvest_{dm}+Rainfall_{mon}+ γ_m + γ_{Year} + ϵ_{dm}

	log(Quantity Bought)		log(Quantity Bought)
Week - 1	0.293	Week - 5	-0.278
Week - 2	0.147	Week - 6	-0.636*
Week - 3	0.0669	Week - 7	0.124
Week - 4	-0.133	Week - 8	0.439
Constant	5.534***		
Rainfall	×		
Miller	×		
Year	×		
N	753		
R^2	0.294		
* <i>p</i> < 0.05,	** p < 0.01, *** p < 0.001		

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Other Facts

• Large millers buy more and do more transactions daily • Fact 5

Farmers

- Farmers are fairly homogeneous in the quantity that they bring to the market **Fact 6**
- There is excessive supply in the market Fact 7

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Beginning of the day, market is more competitive
 - More millers in the market

Introduction	Empirical Facts	Model	Estimation
0000000	00000000●	ooooooooo	000
Forces at Play			

- Beginning of the day, market is more competitive
 - More millers in the market
- For the millers -
 - costly to be in the market
 - they want to fill up to their capacity
- Small millers leave the market sooner
- Large millers are left in the market giving them monopsony power

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction		Empirical Facts	Model	Estimation
0000000		00000000●	ooooooooo	000
-	D 1			

Forces at Play

- Beginning of the day, market is more competitive
 - More millers in the market
- For the millers -
 - costly to be in the market
 - they want to fill up to their capacity
- Small millers leave the market sooner
- Large millers are left in the market giving them monopsony power
- High transportation and storage costs prevent farmers from delaying their sales

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	●ooooooooo	000
Outline - Enviro	nment		

- Finite and discrete transactions t in a day
- Maximum number of transactions in a day T
- On Day d millers and farmers enter the market
 - Each miller has fixed number of units that he buys

• Fixed demand and supply for a given day

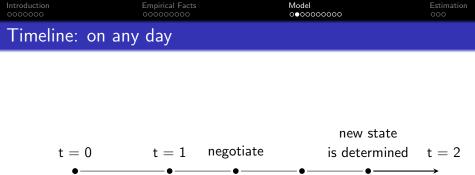
Introduction	Empirical Facts	Model	Estimation
0000000	000000000	●ooooooooo	000
Outline - Enviro	nment		

- Finite and discrete transactions t in a day
- Maximum number of transactions in a day T
- On Day d millers and farmers enter the market
 - Each miller has fixed number of units that he buys
 - Fixed demand and supply for a given day
- Farmers are homogeneous and each sells 1 unit
- Millers
 - homogeneous in their value of unit v_d (retail price)
 - heterogeneous in their capacity (they buy different units)

- Farmers and miller match randomly to negotiate
- Price is negotiated via Nash Bargaining

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	●ooooooooo	000
Outline - Enviro	nment		

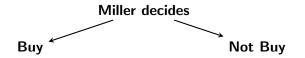
- Finite and discrete transactions t in a day
- Maximum number of transactions in a day T
- On Day d millers and farmers enter the market
 - Each miller has fixed number of units that he buys
 - Fixed demand and supply for a given day
- Farmers are homogeneous and each sells 1 unit
- Millers
 - homogeneous in their value of unit v_d (retail price)
 - heterogeneous in their capacity (they buy different units)
- Farmers and miller match randomly to negotiate
- Price is negotiated via Nash Bargaining
- Cost that a miller considers
 - of staying in the market paid per transaction


Introduction	Empirical Facts	Model	Estimation
0000000	000000000	o●oooooooo	000
Timeline: on any	y day		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

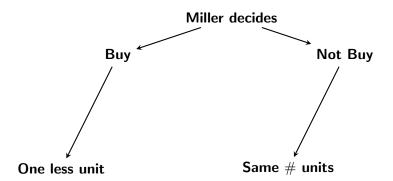
t = 0 • Farmers and millers enter

• Determines the initial state of the day


- * Number of Farmers
- * Number of Millers
- * Distribution of Millers' capacity

Farmers and Farmers and success or not millers enter millers randomly meet


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Miller's Decision

• State of market for round t and day d

$$s_{td} = (M_{td}, F_{td}, C_{td})$$

- M_{td} Number of miller in round t and day d
- *F_{td}* Number of farmers
- C_{td} Vector of miller's leftover capacity in round t and day d

Miller's Dec	ision		
Introduction	Empirical Facts	Model	Estimation
0000000		०००●००००००	000

- Drop *d* subscript
- State of market for round t

$$s_t = (M_t, F_t, C_t)$$

Miller m in round t

$$\mathcal{K}^m(s_t) = \max\{\overbrace{v - p_m(s_t) + \mathbb{E}[\mathcal{K}^m(s_{t+1})|s_t, D_t]}^{ ext{if he buys}}, \ \widetilde{\mathbb{E}[\mathcal{K}^m(s_{t+1}')|s_t, D_t]}\} - c_{mt}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	ooo●oooooo	000
Miller's Decision			

• State of market for round t

$$s_t = (M_t, F_t, C_t)$$

Miller m in round t

$$\mathcal{K}^{m}(s_{t}) = \max\{\underbrace{v - p_{m}(s_{t})}_{\text{Net value of a good}} + \underbrace{\mathbb{E}[\mathcal{K}^{m}(s_{t+1})|s_{t}, D_{t}]}_{\text{Continuation Value}}, \\ \mathbb{E}[\mathcal{K}^{m}(s_{t+1}')|s_{t}, D_{t}]\} - c_{mt}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- v is the retail value of each unit
- D_t is the decision vector of all the millers in round t.
- c_{mt} is the transaction cost paid by miller
- Terminal Value, $K_{T+1} = 0$

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	ooo●oooooo	000
Miller's Decision			

• State of market for round t

$$s_t = (M_t, F_t, C_t)$$

Miller m in round t

$$\begin{aligned} \mathcal{K}^m(s_t) &= \max\{v - p_m(s_t) + \mathbb{E}[\mathcal{K}^m(s_{t+1})|s_t, D_t],\\ &\mathbb{E}[\mathcal{K}^m(s_{t+1}')|s_t, D_t]\} - c_{mt} \end{aligned}$$

- Miller buys if his payoff from buying is higher than from not buying.
- A transaction is successful when the surplus is positive, i.e. $\mathbb{1}\{S_{mt} > 0\}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction	

Empirical Facts

Model oooo●ooooo

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Optimization - Miller

Trade-off - 1

- Waiting to buy produce in the next transaction
- Cost of waiting

Trade-off - 2

- Delay purchasing decision
- Not filling upto his capacity

Introduction 0000000 Empirical Facts

Model 00000●0000 Estimation 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Farmer's Decision

Every time he matches with a miller, he decides based on

- Whether he will later match with a miller or not
- Type of miller that he matches with

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	oooooo●ooo	000
Farmer's Probler	m .		

Value function of a farmer for round t is

$$V(s_t) = \theta_t^F \sum_m Prob(M_t = m) \mathbb{1}\{S_{mt} > 0\} p_m(s_t) + (1 - \theta_t^F + \theta_t^F \sum_m Prob(M_t = m)(1 - \mathbb{1}\{S_{mt} > 0\}) V(s_{t+1})$$

• $\theta_t^F = \frac{M_t}{F_t}$ is the probability of matching with a miller

• Terminal Value $V_{T+1} > 0$

* As a farmer has high transportation costs, he prefers to sell his produce on the same day.

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	oooooooooo	000
Bargaining			

Surplus from matching with miller m in round t is,

$$S_{mt} = v + A - B - V(s_{t+1})$$

where,

$$A = \mathbb{E}[K^m(s_{t+1})|s_t, D_t]$$
$$B = \mathbb{E}[K^m(s'_{t+1})|s_t, D_t]$$

Surplus is the sum of grain's value and his gain from transacting in period t, net of the farmer's continuation value.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

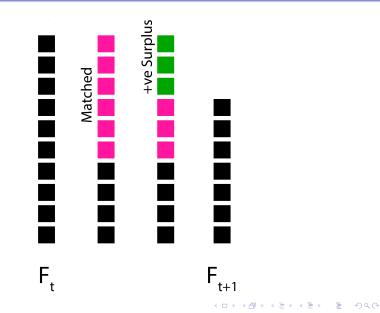
Introduction	Empirical Facts	Model	Estimation
0000000	00000000	ooooooooooo	000
Bargaining			

Surplus from matching with miller m in round t is,

$$S_{mt} = v + A - B - V(s_{t+1})$$

where,

$$A = \mathbb{E}[K^m(s_{t+1})|s_t, D_t]$$
$$B = \mathbb{E}[K^m(s'_{t+1})|s_t, D_t]$$


- A positive surplus gets divided between miller and farmer proportional to their bargaining weight.
- Miller's payoff from buying is ρS_{mt} and farmer's payoff is $(1 \rho)S_{mt}$.
- $\bullet~\rho$ is the bargaining weight for the miller.

Introduction 0000000 Empirical Fact

Model oooooooooooo

Estimation 000

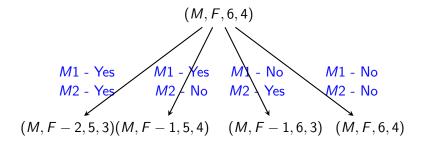
Transitions: Farmers

	Millers and their of		000
Introduction	Empirical Facts	Model	Estimation
0000000	00000000	00000000●	000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Millers leave the market once the fill their capacity
- Capacity changes:
 - Decreases by 1 if they buy
 - Stays the same if they do not buy

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	000000000	●00
Estimation: Stat	e Transitions		


initial state: (M, F, 6, 4)

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

- M = 2
- *F* > 10
- T = 2: maximum number of transactions in a day

Model Estimation **Empirical Facts** •00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Empirical Facts	Model	Estimation
0000000	00000000	ooooooooo	0●0
Dimensionality	Concerns		

• As T - maximum number of transactions in a day increase

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• As M - number of millers increase

Model 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dimensionality Concerns

- As T maximum number of transactions in a day increase
- As M number of millers increase

Conjecture

- There are some states that never happen in the data
- What if I can remove such states from the model

Introduction	Empirical Facts	Model	Estimation
0000000	00000000	000000000	00●
Algorithm			

- Start with limiting T = 3.
- List all the state transitions
- Solve the model for each parameter value
- I note the states that are not reached for all the parameter values calling them *dominated*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A			
			000
Introduction	Empirical Facts	Model	Estimation

- Start with limiting T = 3.
- List all the state transitions
- Solve the model for each parameter value
- I note the states that are not reached for all the parameter values calling them *dominated*
- Increase T to 4

Algorithm

• When listing all the state transitions, I do not extend the states that were dominated for T = 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Empirical Facts	Model	Estimation
0000000	000000000	ooooooooo	00●
Algorithm			

- Start with limiting T = 3.
- List all the state transitions
- Solve the model for each parameter value
- I note the states that are not reached for all the parameter values calling them *dominated*
- Increase T to 4
- When listing all the state transitions, I do not extend the states that were dominated for T = 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Keep doing this till T = 50.