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Abstract

This paper develops a nonparametric model that represents how sequences of outcomes
and treatment choices influence one another in a dynamic manner. In this setting, we
are interested in identifying the average outcome for individuals in each period, had a
particular treatment sequence been assigned. The identification of this quantity allows
us to identify the average treatment e↵ects (ATE’s) and the ATE’s on transitions, as
well as the optimal treatment regimes, namely, the regimes that maximize the (weighted)
sum of the average potential outcomes, possibly less the cost of the treatments. The main
contribution of this paper is to relax the sequential randomization assumption widely used
in the biostatistics literature by introducing a flexible choice-theoretic framework for a
sequence of endogenous treatments. This framework allows non-compliance of subjects
in experimental studies or endogenous treatment decisions in observational settings. We
show that the parameters of interest are identified under each period’s two-way exclusion
restriction, i.e., with instruments excluded from the outcome-determining process and
other exogenous variables excluded from the treatment-selection process. We also consider
partial identification in the case where the latter variables are not available. Lastly, we
extend our results to a setting where treatments do not appear in every period.

JEL Numbers: C14, C32, C33, C36
Keywords: Dynamic treatment e↵ect, endogenous treatment, average treatment e↵ect,
optimal treatment regime, instrumental variable.

1 Introduction

This paper develops a nonparametric model that represents how sequences of outcomes and
treatment choices influence one another in a dynamic manner. Often, treatments are chosen
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Sant’Anna, Ed Vytlacil and Nese Yildiz for their thoughtful discussions. Also, comments from participants
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Meeting of the Econometric Society, and the 2018 International Panel Data Conference are appreciated.
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multiple times over a horizon, a↵ecting a series of outcomes. Examples are medical inter-
ventions that a↵ect health outcomes, educational interventions that a↵ect academic achieve-
ments, job training programs that a↵ect employment status, or online advertisements that
a↵ect consumers’ preferences or purchase decisions. Agents endogenously make decisions of
receiving treatments, e.g., whether to comply with random assignments. The relationship of
interest is dynamic in the sense that the current outcome is determined by past outcomes
as well as current and past treatments, and the current treatment is determined by past
outcomes as well as past treatments. Such dynamic relationships are clearly present in the
aforementioned examples. A static model misrepresents the nature of the problem (e.g., non-
stationarity, state dependence, learning) and fails to capture important policy questions (e.g.,
optimal timing and schedule of interventions).

In this setting, we are interested in identifying the dynamic causal e↵ect of a sequence of
treatments on a sequence of outcomes or on a terminal outcome that may or may not be of
the same kind as the intermediate outcomes. We are interested in learning about the average
of the outcome in each period, had a particular treatment sequence been assigned up to that
period, which defines the potential outcome in this dynamic setting. We are also interested
in the average treatment e↵ects (ATE’s) and the transition-specific ATE’s defined based
on the average potential outcome, unconditional and conditional on the previous outcomes,
respectively. For example, one may be interested in whether the success rate of a particular
outcome (or the transition probability) is larger with a sequence of treatments assigned in
relatively later periods rather than earlier, or with a sequence of alternating treatments rather
than consistent treatments. The treatment e↵ect is said to be dynamic, partly because the
e↵ect can vary depending upon the period of measurement, even if the same set of treatments
is assigned. Lastly, we are interested in the optimal treatment regimes, namely, sequences
of treatments that maximize the (weighted) sum of the average potential outcomes, possibly
less the cost of the treatments. For example, a firm may be interested in the optimal timing
of advertisements that maximizes its aggregate sales probabilities over time, or a sequence
of educational programs may be aimed to maximize the college attendance rate. We show
that the optimal regime is a natural extension of a static object commonly sought in the
literature, namely, the sign of the ATE. Analogous to the static environment, knowledge
about the optimal treatment regime may have useful policy implications. For example, a
social planner may wish to at least exclude specific sequences of treatments that are on
average suboptimal.

Dynamic treatment e↵ects have been extensively studied in the biostatistics literature for
decades under the counterfactual framework with a sequence of treatments (Robins (1986,
1987, 1997), Murphy et al. (2001), Murphy (2003), among others). In this literature, the
crucial condition used to identify the average potential outcome is a dynamic version of a
random assignment assumption, called the sequential randomization. This condition assumes
that the treatment is randomized in every period within those individuals who have the
same history of outcomes and treatments.1 This assumption is only suitable in experimental
studies with the perfect compliance of subjects, which is often not easy to achieve (Robins
(1994); Robins and Rotnitzky (2004)). When interventions continue for multiple periods as

1This assumption is also called sequential conditional independence or sequential ignorability. In the
econometrics literature, Vikström et al. (2018) consider treatment e↵ects on a transition to a destination
state, and carefully analyze what the sequential randomization assumption can identify in the presence of
dynamic selection.
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in the examples described above, the issue of non-compliance may become more prevalent
than in one-time experiments, e.g., due to the cost of enforcement or the subjects’ learning.
In addition to partial compliance in experimental settings, sequential randomization is invalid
in many observational contexts as well.

The main contribution of this paper is to relax the assumption of sequential randomiza-
tion widely used in the literature by introducing a flexible choice-theoretic framework for a
sequence of endogenous treatments. To this end, we consider a simple nonparametric struc-
tural model for a dynamic endogenous selection process and dynamic outcome formation.
In this model, individuals are allowed not to fully comply with each period’s assignment in
experimental settings, or are allowed to make an endogenous choice in each period as in obser-
vational settings. The heterogeneity in each period’s potential outcome is given by recursively
applying a switching-regression type of models with a sequential version of rank similarity.
The joint distribution of the full history of unobservable variables in the outcome and treat-
ment equations is still flexible, allowing for arbitrary forms of treatment endogeneity as well
as serial correlation. Relative to the counterfactual framework, the dynamic mechanism is
clearly formulated using this structural model, which in turn facilitates our identification
analysis.

We show that the average potential outcome, or equivalently, the average recursive struc-
tural function (ARSF) given the structural model we introduce, is identified under a two-way
exclusion restriction (Vytlacil and Yildiz (2007), Shaikh and Vytlacil (2011), Balat and Han
(2018)). That is, we assume there exist instruments excluded from the outcome-determining
process and exogenous variables excluded from the treatment-selection process. A leading
example of the former is a sequence of randomized treatment assignments from, e.g., clini-
cal trials, field experiments, and A/B testings, and other examples include sequential policy
shocks. Examples of the latter include factors that agents cannot anticipate when making
treatment or compliance choices but that determine the outcome. We show that such timing
can be justified in this dynamic context, and some covariates in the outcome process may be
valid candidates. Using the exclusion restriction, we gain certain knowledge of each period’s
structural function, which is then iteratively incorporated across periods for identification,
obeying the recursive structure of the potential outcome. The proof is constructive and pro-
vides a closed form expression for the ARSF. The identification of each period’s ARSF allows
us to identify the ATE’s and the optimal treatment regimes. In this paper, we also consider
cases where the two-way exclusion restriction is violated in the sense that only a standard
exclusion restriction holds or that the variation of the exogenous variables is limited. In
these cases, we can calculate the bounds on the parameters. As an extension of our results,
we consider another empirically relevant situation where treatments do not appear in every
period, while outcomes are constantly observed. We show that the parameters of interest
and the identification analysis can be easily modified to incorporate this situation.

This paper contributes to recent research on the identification of the e↵ects of dynamic
endogenous treatments that allows for treatment heterogeneity. Cunha et al. (2007) and
Heckman and Navarro (2007) consider a semiparametric discrete-time duration model for the
choice of the treatment timing and associated outcomes. Building on these works, Heckman
et al. (2016) consider not only ordered choice models but also unordered choice models for up-
or-out treatment choices.2 An interesting feature of their results is that dynamic treatment

2As related works, the settings of Angrist and Imbens (1995), Jun et al. (2016), and Lee and Salanié (2017)
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e↵ects are decomposed into direct e↵ects and continuation values. As an important feature,
these papers consider attrition based on the irreversible treatment decisions; see also Sasaki
(2015). Similar to our approach, Heckman and Navarro (2007) and Heckman et al. (2016)
utilize exclusion restrictions. Unlike these papers, however, we do not necessarily invoke
infinite supports of exogenous variables but instead use the two-way exclusion restriction.
Abraham and Sun (2018), Athey and Imbens (2018), and Callaway and Sant’Anna (2018)
extend a di↵erence-in-di↵erences approach to dynamic settings without specifying fixed-e↵ect
panel data models. They consider the e↵ects of treatment timing on the treated, where
the treatment process is irreversible as in the previous works. We consider nonparametric
dynamic models for treatment and outcome processes with a general form of evolution, where
the processes can freely change states. These models can include an irreversible process as
a special case. Moreover, we consider di↵erent identifying assumptions than those in the
previous works and focus on the identification of the ATE’s and related parameters.

This paper’s structural approach is only relative to the counterfactual framework of
Robins. A fully structural model of dynamic programming is considered in the seminal work
by Rust (1987) and more recently by, e.g., Blevins (2014) and Buchholz et al. (2016). This
literature typically considers a single rational agent’s optimal decision, whereas we consider
a large group of heterogenous agents with no assumptions on agents’ rationality or strong
parametric assumptions. Most importantly, our focus is on the identification of the e↵ects
of treatments formed as agents’ decisions. The robust approach of this paper is, in spirit,
similar to Heckman and Navarro (2007) and Heckman et al. (2016), in that we remain flexible
for the economic and non-economic components of the model. Lastly, Torgovitsky (2016) ex-
tends the literature on dynamic binary response models (with no treatment) by considering a
counterfactual framework without imposing parametric assumptions. In his framework, the
lagged outcome plays the role of a treatment for the current outcome, and the “treatment
e↵ect” captures the state dependence. Here, we consider the e↵ects of the treatments on the
outcomes, and introduce a selection equation for each treatment as an important component
of the model. As an extension of our analysis, we identify the transition-specific ATE, which
is related to the e↵ect of a treatment on the state dependence.

In terms of notation, let W

t ⌘ (W1, ..,Wt

) denote a row vector that collects r.v.’s W

t

across time up to t, and let wt be its realization. We sometimes write W ⌘ W

T for conve-
nience. For a vectorW without the t-th element, we writeW�t

⌘ (W1, ...,Wt�1,Wt+1, ...,WT

)
with realization w�t

. More generally, let W� with realization w� denote some subvec-
tor of W . Lastly, for r.v.’s Y and W , we sometimes abbreviate Pr[Y = y|W = w] and
Pr[Y = y|W 2 W] to Pr[Y = y|w] (or P [y|w]) and Pr[Y = y|W], respectively.

2 Robins’s Framework

We first introduce Robins’s counterfactual framework and state the assumption of sequential
randomization commonly used in the biostatistics literature (Robins (1986, 1987), Murphy
et al. (2001), Murphy (2003)). For a finite horizon t = 1, ..., T with fixed T , let Y

t

be the out-
come at t with realization y

t

and let D
t

be the binary treatment at t with realization d

t

. The
underlying data structure is panel data with a large number of cross-sectional observations

for multiple (or multi-valued) treatment e↵ects may be applied to a dynamic setting. Also, see Abbring and
Heckman (2007) for a survey on dynamic treatment e↵ects.
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over a short period of time (and the cross-sectional index i suppressed throughout, unless
necessary). We call Y

T

a terminal outcome and Y

t

for t  T �1 a intermediate outcome.3 Let
Y and D ✓ {0, 1}T be the supports of Y ⌘ (Y1, ..., YT ) and D ⌘ (D1, ..., DT

), respectively.
Consider a treatment regime d ⌘ (d1, ..., dT ) 2 D, which is defined as a predetermined

hypothetical sequence of interventions over time, i.e., a sequence of each period’s decisions
on whether to treat or not, or whether to choose treatment A or treatment B.4 Then, a
potential outcome at t can be written as Y

t

(d). This can be understood as an outcome for
an individual, had a particular treatment sequence been assigned. Although the genesis of
Y

t

(d) can be very general under this counterfactual framework, the mechanism under which
the sequence of treatments interacts with the sequence of outcomes is opaque. The definition
of Y

t

(d) becomes more transparent later with the structural model introduced in this paper.
Given these definitions, we state the assumption of sequential randomization by Robins:

For each d 2 D,

(Y1(d), ..., YT (d)) ? D

t

|Y t�1
,D

t�1 (2.1)

for t = 1, ..., T . This assumption asserts that, holding the history of outcomes and treatments
(and potentially other covariates) fixed, the current treatment is fully randomized. Sequential
randomization can be violated if agents make decisions D

t

based on time-varying or time-
invariant factors, unobserved to the analyst. In the next section, we relax this assumption
and specify dynamic selection equations for a sequence of treatments that are allowed to be
endogenous, i.e., to be dependent on unobservable factors. Apart from this assumption, we
maintain the same preliminaries introduced in this section.

Remark 2.1 (Irreversibility). As a special case of our setting, the process of D
t

may be
irreversible in that the process only moves from an initial state to a destination state, i.e., the
destination state is an absorbing state. The up-or-out treatment decision (or the treatment
timing) can be an example where the treatment process satisfies D

t

= 1 once D

t�1 = 1
is reached, as in Heckman and Navarro (2007), Heckman et al. (2016), Abraham and Sun
(2018) and Callaway and Sant’Anna (2018). Although it is not the main focus of this paper,
the process of Y

t

may as well be irreversible. This case, however, requires caution due to
dynamic selection; see discussions later in this paper. The survival of patients (Y

t

= 0) in
discrete time duration models can be an example where the transition of the outcome satisfies
Y

t

= 1 once Y

t�1 = 1. In this case, it may be that D
t

is missing when Y

t�1 = 1, which can
be dealt by conventionally assuming D

t

= 0 if Y
t�1 = 1. When processes are irreversible, the

supports D and Y are strict subsets of {0, 1}T .

Remark 2.2 (Terminal outcome of a di↵erent kind). As in Murphy et al. (2001) and
Murphy (2003), we may be interested in a terminal outcome that is of a di↵erent kind than
that of the intermediate outcomes. For example, the terminal outcome can be college atten-
dance, while the intermediate outcomes are secondary school performances. In this case, we
replace Y

T

with a random variable R

T

to represent the terminal outcome, while maintaining

3The terminal period T may be an administrative end of follow-up time.
4This is called a nondynamic regime in the biostatistics literature. A dynamic regime is a sequence of

treatment assignments, each of which is a predetermined function of past outcomes. A nondynamic regime
can be viewed as its special case, where this function is constant. See, e.g., Murphy et al. (2001); Murphy
(2003) for related discussions.
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Y

t

for t  T � 1 to represent the intermediate outcomes. Analogously, R

T

(d) denotes the
potential terminal outcome. Then, the analysis in this paper can be readily followed with the
change of notation.5

3 A Dynamic Structural Model and Objects of Interest

We now introduce the main framework of this paper. Consider a dynamic structural function
for the outcomes Y

t

’s that has the form of switching regression models: For t = 1, ..., T ,

Y

t

= µ

t

(Y
t�1, Dt

, X

t

, U

t

(D
t

)),

where µ

t

(·) is an unknown scalar-valued function, X
t

is a set of exogenous variables, which
we discuss in detail later, and Y0 is assumed to be exogenously determined, with Y0 = 0 for
convenience.6 The unobservable variable satisfies U

t

(D
t

) = D

t

U

t

(1) + (1 �D

t

)U
t

(0), where
U

t

(d
t

) is the “rank variable” that captures the unobserved characteristics or rank, specific
to treatment state d

t

(Chernozhukov and Hansen (2005)). We allow U

it

(d
t

) to contain a
permanent component (i.e., individual e↵ects) and a transitory component.7 Given this
structural equation, we can express the potential outcome Y

t

(d) using a recursive structure:

Y

t

(d) = Y

t

(dt) = µ

t

(Y
t�1(d

t�1), d
t

, X

t

, U

t

(d
t

)),

...

Y2(d) = Y2(d
2) = µ2(Y1(d1), d2, X2, U2(d2)),

Y1(d) = Y1(d1) = µ1(Y0, d1, X1, U1(d1)),

where each potential outcome at time t is only a function of d

t (not the full d). This
is related to the “no-anticipation” condition (Abbring and Heckman (2007)) or the “con-
sistency” condition (Robins (2000)), which is implied from the structure of the model in
our setting. The recursive structure provides us with a useful interpretation of the po-
tential outcome Y

t

(d) in a dynamic setting, and thus facilitates our identification analysis.
Note that, conditional on X

t ⌘ (X1, ..., Xt

), the heterogeneity in Y

t

(d) comes from the
full vector U

t(dt) ⌘ (U1(d1), ..., Ut

(d
t

)). By an iterative argument, we can readily show
that the potential outcome is equal to the observed outcome when the observed treat-
ments are consistent with the assigned regime: Y

t

(d) = Y

t

when D = d, or equivalently,
Y

t

=
P

d2D 1{D = d}Y
t

(d).
In this paper, we consider the average potential terminal outcome, conditional on X = x,

as the fundamental parameter of interest:

E[Y
T

(d)|X = x]. (3.1)

We also call this parameter the average recursive structural function (ARSF) in the terminal

5Extending this framework to incorporate the irreversibility of the outcome variables discussed in Remark
2.1 is not straightforward. We leave this for future research.

6This assumption of an exogenous initial outcome is not necessary but only introduced to simplify our
analysis; see Remark 4.2 for alternative assumptions.

7In this case, it may make sense that the permanent component does not depend on each dt, but that the
transitory component does.
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period, named after the recursive structure in the model for Y

T

(d). Generally, in defining
this parameter and all others below, we can consider the potential outcome in any time
period of interest, e.g., E[Y

t

(d)|Xt = x

t] for any given t. We focus on the terminal potential
outcome only for concreteness. The knowledge of the ARSF is useful in recovering other
related parameters.

First, we are interested in the conditional ATE:

ATE(d, d̃) ⌘ E[Y
T

(d)� Y

T

(d̃)|X = x] (3.2)

for two di↵erent regimes, d and d̃. For example, one may be interested in comparing more
versus less consistent treatment sequences, or earlier versus later treatments.

Second, we consider the optimal treatment regime:

d

⇤(x) = argmax
d2D

E[Y
T

(d)|X = x] (3.3)

with |D|  2T . That is, we are interested in a treatment regime that delivers the maximum
expected potential outcome, conditional on X = x. Notice that, in a static model, the
identification of d⇤ is equivalent to the identification of the sign of the static ATE, which is
the information typically sought from a policy point of view. One can view d

⇤ as a natural
extension of this information to a dynamic setting, which is identified by establishing the
signs of all possible ATE’s defined as in (3.2), or equivalently, by ordering all the possible
ARSF’s. The optimal regime may serve as a guideline in developing future policies. Moreover,
it may be a realistic goal for a social planner to identify this kind of scheme that maximizes
the average benefit, because it may be too costly to find a customized treatment scheme for
every individual. Yet, the optimal regime is customized up to observed characteristics, as it
is a function of the covariates values x. More ambitious than the identification of d⇤(x) may
be recovering an optimal regime based on a cost–benefit analysis, granting than each d

t

can
be costly:

d

†(x) = argmax
d2D

⇧(d;x), (3.4)

where

⇧(d;x) ⌘ wE[Y
T

(d)|X = x]� w̃

T

X

t=1

d

t

or ⇧(d;x) ⌘
T

X

t=1

w

t

E[Y
t

(d)|X = x]�
T

X

t=1

w̃

t

d

t

with (w, w̃) and (w, w̃) being predetermined weights. The latter objective function concerns
the weighted sum of the average potential outcomes throughout the entire period, less the cost
of treatments. Note that establishing the signs of ATE’s will not identify d

†, and a stronger
identification result becomes important, i.e., the point identification of E[Y

T

(d)|X = x] for
all d (or E[Y

t

(d)|X = x] for all t and d).
Lastly, we are interested in the transition-specific ATE :

E[Y
T

(d)|Y
T�1(d) = y

T�1,X = x]� E[Y
T

(d̃)|Y
T�1(d̃) = y

T�1,X = x] (3.5)

for two di↵erent d and d̃. The knowledge of the ARSF does not directly recover this parame-
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ter, but the identification of it (and its more general form introduced later) can be paralleled
by the analysis for the ARSF and ATE.

In order to facilitate identification of the parameters of interest without assuming sequen-
tial randomization, we introduce a sequence of selection equations for the binary endogenous
treatments D

t

’s: For t = 1, ..., T ,

D

t

= 1{⇡
t

(Y
t�1, Dt�1, Zt

) � V

t

},

where ⇡

t

(·) is an unknown scalar-valued function, Z
t

is the period-specific instruments, V
t

is
the unobservable variable that may contain permanent and transitory components, and D0

is assumed to be exogenously given as D0 = 0.8 This dynamic selection process represents
the agent’s endogenous choices over time, e.g., as a result of learning or other optimal be-
haviors. However, the nonparametric threshold-crossing structure posits a minimal notion
of optimality for the agent. We take an agnostic approach by avoiding strong assumptions
of the standard dynamic economic models pioneered by Rust (1987), such as forward look-
ing behaviors and being able to compute a present value discounted flow of utilities. If we
are to maintain the assumption of rational agents, the selection model can be viewed as a
reduced-form approximation of a solution to a dynamic programming problem.

To simplify the exposition, we consider binary Y

t

and impose weak separability in the
outcome equation as in the treatment equation. The binary outcome is not necessary for
the result of this paper, and the analysis can be easily extended to the case of continuous
or censored Y

t

, maintaining weak separability; see Remark 3.3. Then, the full model can be
summarized as

Y

t

= 1{µ
t

(Y
t�1, Dt

, X

t

) � U

t

(D
t

)}, (3.6)

D

t

= 1{⇡
t

(Y
t�1, Dt�1, Zt

) � V

t

}. (3.7)

In this model, the observable variables are (Y ,D,X,Z). All other covariates are suppressed
in the equations for simplicity of exposition. Importantly, in this model, the joint distribution
of the unobservable variables (U(d),V ) for given d is not specified, in that U

t

(d
t

) and V

t

0 for
any t, t

0 are allowed to be arbitrarily correlated to each other (allowing endogeneity) as well as
within themselves across time (allowing serial correlation, e.g., via time-invariant individual
e↵ects). Note that, because we allow an arbitrary form of persistence in the unobservables,
(Y

t

, D

t

) is not a Markov process even after conditioning on the observables. This is in contrast
to the standard dynamic economic models, where conditional independence assumptions or
Markovian unobservables are commonly introduced. By considering the nonparametric index
functions that depend on t, we also avoid other strong assumptions on parametric functional
forms or time homogeneity.

Example 1. As a concrete example of our setting, consider a multi-period experiment, which
is common in clinical trials, such as the Fast Track Prevention Program in Conduct Prob-
lems Prevention Research Group (1992); also see the biostatistics literature referenced in the
introduction. A clinical research organization is interested in improving patients’ symptoms
(Y

t

), and runs an experiment of randomly assigning treatments at each t (Z
t

). Based on

8This is an alternative to simply assuming there is no treatment at t = 0. We maintain the current
assumption to avoid additional definitions for ⇡1(·) and other relevant objects.
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what is assigned, each patient decides whether or not to receive the treatment (D
t

) by be-
ing a complier, defier, always-taker or never-taker. In doing so, the patient has a habit in
her decision (D

t�1) and takes into account her last symptom (Y
t�1). The current symptom

(Y
t

) is formed based on the previous symptom (Y
t�1), the current treatment (D

t

), and other
symptom-influencing factors (X

t

) occurring at time t.

Remark 3.1 (Irreversibility—continued). A process that satisfies D

t

= 1 if D
t�1 = 1 is

consistent with having a structural function that satisfies ⇡

t

(y
t�1, dt�1, zt) = +1 if d

t�1 =
1. Similarly, processes that satisfy Y

t

= 1 and D

t

= 0 if Y

t�1 = 1 are consistent with
µ

t

(y
t�1, dt, xt) = +1 and ⇡

t

(y
t�1, dt�1, zt) = �1 if y

t�1 = 1. This implies that Y
t

(dt) = 1
for any d

t

if Y
t�1(dt�1) = 1. When Y

t

is irreversible, the ARSF E[Y
T

(d)|X] can be interpreted
as (one minus) a potential survival rate. An important caveat is that, with irreversible Y

t

,
the ATE we define contains not only the treatment e↵ect (the intensive margin) but also the
e↵ect on dynamic selection (the extensive margin), and the parameter may or may not be of
interest depending on the application.

Remark 3.2 (Terminal outcome of a di↵erent kind—continued). When we replace
Y

T

with R

T

to represent a terminal outcome of a di↵erent kind, we assume that the model
(3.6) is only satisfied for t  T � 1 and introduce R

T

= 1{µ
T

(Y
T�1, DT

, X

T

) � U

T

(D
T

)}
as the terminal structural function. The potential terminal outcome R

T

(d) can accordingly
be expressed using the structural functions for (Y1, ..., YT�1, RT

). The ARSF is written as
E[R

T

(d)|X], and the other parameters can be defined accordingly.

Remark 3.3 (Non-binary Y

t

). Even though we focus on binary Y

t

in this paper, we can
obtain similar identification results with continuous Y

t

or limited dependent variable Y

t

, by
maintaining a general weak separability structure: Y

t

= m

t

(µ
t

(Y
t�1, Dt

, X

t

), U
t

(D
t

)). As in
the static settings of Vytlacil and Yildiz (2007) and Balat and Han (2018), we impose an
assumption that guarantees certain monotonicity of each period’s average structural function
with respect to the index µ

t

: For each t, E[m
t

(µ
t

, U

t

(d
t

))|V t

,U

t�1] is strictly monotonic in
µ

t

. Examples of the nonparametric model m
t

(µ
t

(y
t�1, dt, xt), ut) that satisfies this assumption

are additively separable models or their transformation models, censored regression models,
and threshold crossing models as in (3.6); see Vytlacil and Yildiz (2007) for more discussions.

4 Main Identification Analysis

We first identify the ARSF’s, i.e., E[Y
t

(d)|Xt] for every d and t, which will then be used to
identify the ATE’s and the optimal regimes d⇤ and d

†. We maintain the following assumptions
on (Z,X) and (U(d),V ) for every d. These assumptions are written for the identification
of E[Y

T

(d)|X], and are su�cient but not necessary for the identification of E[Y
t

(d)|Xt] for
t  T � 1.

Assumption C. The distribution of (U(d),V ) has strictly positive density with respect to
Lebesgue measure on R2T .

Assumption SX. (Z,X) and (U(d),V ) are independent.

Assumption C is a regularity condition to ensure the smoothness of relevant conditional
probabilities. Assumption SX imposes strict exogeneity, which is a simple su�cient condition

9



for necessary requirements we need for identification; see Remark 4.3. It is implicit that the
independence is conditional on the covariates suppressed in the model. Just as the treatments
D, these covariates may be correlated with the individual e↵ects contained in (U(d),V ). The
variable Z

t

denotes the standard excluded instruments. A leading example is a sequence of
randomized treatment assignments. Other examples include sequential policy shocks. In
addition to Z

t

, we introduce exogenous variables X
t

in the outcome equation (3.6), that are
excluded from the selection equation (3.7). We make a behavioral/information assumption
that there are outcome-determining factors that the agent cannot anticipate when making
a treatment decision. Continuing with Example 1, when D

t

is a compliance choice that a
patient makes at the t-th visit, Y

t�1 may be the symptom measured prior to the decision
during the same visit. Then Y

t

is the symptom measured upon the next visit, which may
create enough time gap to prevent the patient from predicting X

t

.9 Note that (Z
t

, X

t

) are
assumed to be excluded from the outcome and treatment equations of all other periods as well.
Next, we introduce a sequential version of the rank similarity assumption (Chernozhukov and
Hansen (2005)):

Assumption RS. For each t and d�t

, U(1,d�t

) and U(0,d�t

) are identically distributed,
conditional on V

t and (Z,X).

Rank invariance (i.e., {U(d)}d being equal to each other) is particularly restrictive in
the multi-period context, because it requires that the same rank be realized across 2T dif-
ferent treatment states. Significantly weaker than the rank invariance would be a joint rank
similarity assumption that U(d)’s are identically distributed across 2T states (conditional on
the observables and treatment unobservables). This allows an individual to have di↵erent
realized ranks across di↵erent d’s. Assumption RS, which we call sequential rank similarity,
relaxes this even further by only requiring that U(1,d�t

) and U(0,d�t

) are identically dis-
tributed instead. That is, the assumption requires that, within individuals with the same
observed characteristics and history of the treatment unobservables, the joint distributions
of the ranks are identical between just two states that di↵er by d

t

= 1 and 0.10

Now, we are ready to derive a period-specific result. Define the following period-specific
quantity directly identified from the data, i.e., from the distribution of (Y ,D,X,Z):

h

t

(z
t

, z̃

t

, x

t

, x̃

t

; zt�1
,x

t�1
,d

t�1
, y

t�1)

⌘Pr[Y
t

= 1, D
t

= 1|zt

,x

t

,d

t�1
, y

t�1] + Pr[Y
t

= 1, D
t

= 0|zt

, x̃

t

,x

t�1
,d

t�1
, y

t�1]

� Pr[Y
t

= 1, D
t

= 1|z̃
t

, z

t�1
,x

t

,d

t�1
, y

t�1]� Pr[Y
t

= 1, D
t

= 0|z̃
t

, z

t�1
, x̃

t

,x

t�1
,d

t�1
, y

t�1]

for t � 1, where (Z0
,X

0
,D

0
, Y0) is understood to mean that there is no conditioning.

Lemma 4.1. Suppose Assumptions C, SX and RS hold. For each t and (zt�1
,x

t�1
,d

t�1
, y

t�1),
suppose z

t

and z̃

t

are such that

Pr[D
t

= 1|zt

,x

t�1
,d

t�1
, y

t�1] 6= Pr[D
t

= 1|z̃
t

, z

t�1
,x

t�1
,d

t�1
, y

t�1]. (4.1)

9In a static scenario, Balat and Han (2018) motivate this reverse exclusion restriction using the notion of
externalities. In their setting where multiple treatments are strategically chosen (e.g., firms’ entry decisions),
factors that determine the outcome (e.g., pollution) are assumed not to appear in the firms’ payo↵ functions.

10In fact, we can further relax Assumption RS by allowing Ut(dt) to be a function of xt from the outset;
see Remark 4.4.
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Then, for given (x
t

, x̃

t

), the sign of h
t

(z
t

, z̃

t

, x

t

, x̃

t

; zt�1
,x

t�1
,d

t�1
, y

t�1) is equal to the sign
of µ

t

(y
t�1, 1, xt)� µ

t

(y
t�1, 0, x̃t).

Without relying on further assumptions, the sign of µ
t

(y
t�1, 1, xt)�µ

t

(y
t�1, 0, x̃t) itself is

already useful for calculating bounds on the ARSF’s and thus on the ATE’s; we discuss the
partial identification in Section 6.

For the analysis of this paper which deals with a dynamic model, it is convenient to define
the U -set and V -set, namely the sets of histories of the unobservable variables that determine
the outcomes and treatments, respectively. To focus our attention on the dependence of the
potential outcomes on the unobservables, we iteratively define the potential outcome given
(d,x) as

Y

t

(dt

,x

t) ⌘ 1{µ
t

(Y
t�1(d

t�1
,x

t�1), d
t

, x

t

) � U

t

(d
t

)}

for t � 2, with Y1(d1, x1) = 1{µ1(0, d1, x1) � U1(d1)}. Now, define the set of U t(dt) as

U t(dt

, y

t

) ⌘ U t(dt

, y

t

;xt) ⌘ {U t(dt) : y
t

= Y

t

(dt

,x

t)}

for t � 1. Then, Y
t

= y

t

if and only if U t(dt) 2 U t(dt

, y

t

;xt), conditional on (Dt

,X

t) =
(dt

,x

t). The V -set Vt(dt

,u

t�1) ⌘ Vt(dt

,u

t�1; zt

,x

t�1) is similarly defined within the proof
of Lemma 4.1 in the Appendix. Then, D

t = d

t if and only if V

t 2 Vt(dt

,U

t�1(dt�1)),
conditional on (Zt

,X

t�1) = (zt

,x

t�1). Given these sets, what we show in the proof of this
lemma is that, under Assumptions C and SX,

h

t

(z
t

, z̃

t

, x

t

, x̃

t

; zt�1
,x

t�1
,d

t�1
, y

t�1)

=Pr[U
t

(1)  µ

t

(y
t�1, 1, xt), ⇡̃t  V

t

 ⇡

t

|Vt�1(dt�1
,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)]

� Pr[U
t

(0)  µ

t

(y
t�1, 0, x̃t), ⇡̃t  V

t

 ⇡

t

|Vt�1(dt�1
,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)],

the sign of which identifies the sign of µ
t

(y
t�1, 1, xt)� µ

t

(y
t�1, 0, x̃t) by Assumption RS. For

example, when this quantity is zero, then µ

t

(y
t�1, 1, xt)� µ

t

(y
t�1, 0, x̃t) = 0.

For the point identification of the ARSF’s, the final assumption we introduce concerns
the variation of the exogenous variables (Z,X). Define the following sets:

S
t

(d
t

, y

t�1) ⌘
n

(x
t

, x̃

t

) : µ
t

(y
t�1, dt, xt) = µ

t

(y
t�1, d̃t, x̃t) for d̃t 6= d

t

o

, (4.2)

T
t

(x�t

, z�t

) ⌘ {(x
t

, x̃

t

) : 9(z
t

, z̃

t

) such that (4.1) holds and

(x
t

, z

t

), (x̃
t

, z

t

), (x
t

, z̃

t

), (x̃
t

, z̃

t

) 2 Supp(X
t

, Z

t

|x�t

, z�t

)} , (4.3)

X
t

(d
t

, y

t�1;x�t

, z�t

) ⌘ {x
t

: 9x̃
t

with (x
t

, x̃

t

) 2 S
t

(d
t

, y

t�1) \ T
t

(x�t

, z�t

)} , (4.4)

X
t

(d
t

;x�t

, z�t

) ⌘ X
t

(d
t

, 0;x�t

, z�t

) \ X
t

(d
t

, 1;x�t

, z�t

), (4.5)

where (4.2) is related to the su�cient variation of X
t

and (4.3) is related to the rectangular
variation of (X

t

, Z

t

).

Assumption SP. For each t and d

t

, Pr[X
t

2 X
t

(d
t

;x�t

, z�t

)|x�t

, z�t

] > 0 almost every-
where.

This assumption requires thatX
t

varies su�ciently to achieve µ
t

(y
t�1, dt, xt) = µ

t

(y
t�1, d̃t, x̃t),

while holding Z

t

to be z

t

and z̃

t

, respectively, conditional on (X�t

,Z�t

). This is a dy-
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namic version of the support assumption found in Vytlacil and Yildiz (2007).11 Note that
even though this assumption seems to be written in terms of the unknown object µ

t

(·),
it is testable because the sets defined above have empirical analogs, according to Lemma
4.1. Let X

t

(d
t

;x�t

) ⌘ {x
t

: x

t

2 X
t

(d
t

;x�t

, z�t

) for some z�t

2 Supp(Z�t

|x�t

)} and
X (d) ⌘ {x : x

t

2 X
t

(d
t

;x�t

) for some (x
t+1, ..., xT ), for t � 1}, which sequentially collect

x

t

2 X
t

(d
t

;x�t

, z�t

) for all t. We are now ready to state the main identification result.

Theorem 4.1. Under Assumptions C, SX, RS and SP, E[Y
T

(d)|x] is identified for d 2 D
and x 2 X (d).

Based on Theorem 4.1, we can identify the ATE’s. Since the identification of all E[Y
t

(d)|xt]’s
can be shown analogously to Theorem 4.1, we can identify the optimal treatment regimes
d

⇤(x) and d

†(x) as well.

Corollary 4.1. Under Assumptions C, SX, RS and SP, ATE(d, d̃) is identified for d, d̃ 2 D
and x 2 X (d) \ X (d̃), and d

⇤(x) and d

†(x) are identified for x 2
T

d2D X (d).

We sketch the identification analysis here; the full proof of Theorem 4.1 is found in the Ap-
pendix. We consider the identification of E[Y

T

(d)|x, z], since E[Y
T

(d)|x] = E[Y
T

(d)|x, z] by
Assumption SX.12 As the first step of identifying E[Y

T

(d)|x, z] for given d = (d1, ..., dT ),
x = (x1, ..., xT ) and z = (z1, ..., zT ), we apply the result of Lemma 4.1. Fix t � 2
and y

t�1 2 {0, 1}. Suppose x

0
t

is such that µ

t

(y
t�1, dt, xt) = µ

t

(y
t�1, d

0
t

, x

0
t

) with d

0
t

6= d

t

by applying Lemma 4.1. The existence of x

0
t

is guaranteed by Assumption SP, as x

t

2
X
t

(d
t

, y

t�1;x�t

, z�t

) ⇢ X
t

(d
t

;x�t

, z�t

). The implication of µ
t

(y
t�1, dt, xt) = µ

t

(y
t�1, d

0
t

, x

0
t

)
for relevant U -sets is as follows: By the definition of the U -set, U 2 U(d, y

T

;x) is equivalent
to U 2 UT (d0

t

,d�t

, y

T

;x0
t

,x�t

) conditional on Y

t�1(dt�1
,x

t�1) = y

t�1 for all x�t

and d�t

.13

Based on this result, we equate the unobserved quantity E[Y
T

(d)|x, z,yt�1
,d

t�1
, d

0
t

] with a
quantity that partly matches the assigned treatment and the observed treatment. Once we
define U t�1(dt�1

,y

t�1) ⌘ U t�1(dt�1
,y

t�1;xt�1) analogous to the U -set defined earlier, we
can show that

E[Y
T

(d)|x, z,yt�1
,d

t�1
, d

0
t

]

=Pr

2

4

U(d) 2 UT (d, 1;x)

�

�

�

�

�

�

U

t�1(dt�1) 2 U t�1(dt�1
,y

t�1),
V

t 2 Vt(dt�1
, d

0
t

,U

t�1(dt�1))

3

5

11Although Assumption SP requires su�cient rectangular variation in (Xt, Zt), it clearly di↵ers from the
large variation assumptions in Heckman and Navarro (2007) and Heckman et al. (2016), which are employed
for identification at infinity arguments. In our setting, it is possible that Xt(dt;x�t, z�t) is nonempty even
when Zt is discrete, as long as Xt contains continuous elements with su�cient support (Vytlacil and Yildiz
(2007)). In all these works, including the present one, the support requirement is conditional on the exogenous
variables in other periods; see also Cameron and Heckman (1998).

12When we are to identify the average potential outcome at t instead, the conditioning variables we use are
the vectors of exogenous variables up to t, i.e., E[Yt(d

t)|xt
, z

t]. Then the entire proof can be easily modified
based on this expression.

13The subsequent analysis is substantially simplified when µt(yt�1, dt, xt) = µt(yt�1, d
0
t, x

0
t) is satisfied for all

yt�1, but this situation is unlikely to occur. Therefore, it is important to condition on Yt�1(d
t�1

,x

t�1) = yt�1

in the analysis.
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for t � 2, by Assumption SX. Then, by Assumption RS and the discussion above, this
quantity is shown to be equal to

Pr

2

4

U(d0
t

,d�t

) 2 UT (d0
t

,d�t

, 1;x0
t

,x�t

)

�

�

�

�

�

�

U

t�1(dt�1) 2 U t�1(dt�1
,y

t�1),
V

t 2 Vt(dt�1
, d

0
t

,U

t�1(dt�1))

3

5

=E[Y
T

(d0
t

,d�t

)|x0
t

,x�t

, z,y

t�1
,d

t�1
, d

0
t

], (4.6)

by Assumption SX. Note that this last quantity is still unobserved, since d

s

for s � t+ 1 are
not realized treatments; e.g., when T = 3 and t = 2,

E[Y3(d)|x, z, y1, d1, d02] = E[Y3(d1, d
0
2, d3)|x1, x02, x3, z, y1, d1, d02].

The quantity, however, will be useful in the remaining proof where we use mathematical induc-
tion to recover E[Y

T

(d)|x, z]; see the Appendix. Recall the abbreviations Vt(dt�1
, d

0
t

,U

t�1(dt�1)) ⌘
Vt(dt�1

, d

0
t

,U

t�1(dt�1); zt

,x

t�1) and U t�1(dt�1
,y

t�1) ⌘ U t�1(dt�1
,y

t�1;xt�1). That is, in
the derivation of (4.6), the key is to consider the average potential outcome for a group of
individuals that is defined by the treatments at time t or earlier and the lagged outcome, for
which x

t

is excluded.
The proof of Theorem 4.1 is constructive in that it provides a closed-form expression

for E[Y
T

(d)|x] in an iterative manner, which can immediately be used for estimation. For
concreteness, we provide an expression for E[Y

T

(d)|x] when T = 2:

E[Y2(d)|x] =P [d|x, z]E[Y2|x, z,d] + P [d1, d
0
2|x, z]µ2,d1,d02

+ P [d01, d2|x, z]E[Y2|x01, x2, z, d01, d2] + P [d01, d
0
2|x, z]µ2,d01,d

0
2
, (4.7)

where

µ2,d1,d02
⌘P [y1|x, z, d1, d02]E[Y2|x1, x02, z, d1, d02, y1]
+ P [y01|x, z, d1, d02]E[Y2|x1, x002, z, d1, d02, y01],

µ2,d01,d
0
2
⌘P [y1|x01, x2, z, d01, d02]E[Y2|x01, x02, z, d01, d02, y1]
+ P [y01|x01, x2, z, d01, d02]E[Y2|x01, x002, z, d01, d02, y01]

for (x01, x
0
2, x

00
2) such that µ1(0, d1, x1) = µ1(0, d01, x

0
1), µ2(y1, d2, x2) = µ2(y1, d02, x

0
2), and

µ2(y01, d2, x2) = µ2(y01, d
0
2, x

00
2).

Remark 4.1. In estimating the parameters identified in this section, one can improve ef-
ficiency by aggregating the conditional expectations (A.4) with respect to X

t

= x

0
t

over the
following set:

�

t

(x
t

; zt�1
,x

t�1
,d

t�1
, y

t�1) ⌘ {x̃
t

: h
t

(z
t

, z̃

t

, x

t

, x̃

t

; zt�1
,x

t�1
,d

t�1
, y

t�1) = 0 for some (z
t

, z̃

t

)}.

Similarly, one can aggregate the identifying equation for E[Y
T

(d)|x] (e.g., equation (4.7))
with respect to Z = z conditional on X = x.

Remark 4.2. The assumption that the initial condition Y0 is exogenously determined is not
necessary but imposed for convenience. Such an assumption appears in, e.g., Heckman and
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Navarro (2007). In an alternative setting where Y0 is endogenously determined in the model,
a similar identification analysis as in this section can be followed by modifying Assumption
SX. We may consider two alternatives depending upon whether Y0 is observable or not: (a)
(U(d),V ) and (Z,X) are independent conditional on Y0; or (b) (U(d),V , Y0) and (Z,X)
are independent. First, recall that each of these statements is “conditional on other covari-
ates.” The assumption (a) can be imposed when Y0 is observable, maybe because t = 1 is not
the start of sample period. The assumption (b) can be imposed when Y0 is unobservable, maybe
because t = 1 is the start of sample period and the logical start of the process. The analysis in
these alternative scenarios is omitted as it is a straightforward extension of the current one.
In this analysis, there is no need to assume the distribution of initial conditions, unlike in the
literature on dynamic models with random e↵ects. Still, we recover certain treatment e↵ects,
unlike in the literature on nonseparable models with unobservable individual e↵ects where, in
general, partial e↵ects are hard to recover. The trade-o↵ is that we require variables that are
independent of the individual e↵ects, even though other covariates are allowed not to be.

Remark 4.3. The strict exogeneity of Assumption SX is a simple su�cient condition for
what we actually need for the identification analysis. As described in Lemma A.1 of the Ap-
pendix, the conditions we need to show Lemma 4.1 and Theorem 4.1, respectively, are the
following: For each t, (i) (Z

t

, X

t

) ? (U
t

(d
t

), V
t

)|Zt�1
,X

t�1; (ii) Z

t

? (U(d),V t)|Zt�1
,X�t

and X

t

? (U(d),V t)|Zt�1
,X�t

. In these high-level conditions, the condition for Z

t

is remi-
niscent of the sequential randomization assumption. In fact, this is consistent with our leading
example of experimental studies with partial compliance. Here, it is apparently the treatment
assignment Z

t

rather than the received treatment D
t

for which the sequential randomization
assumption should be imposed.

Remark 4.4. In order to define the U -set, recall that we use an alternative potential out-
come Y

t

(dt

,x

t) = µ

t

(Y
t�1(dt�1

,x

t�1), d
t

, x

t

, U

t

(d
t

)). Motivated from this, we may consider
a structural model that adds another dimension for heterogeneity by allowing U

t

(d
t

) to be a
function of x

t

as well:

Y

t

(dt

,x

t) = µ

t

(Y
t�1(d

t�1
,x

t�1), d
t

, x

t

, U

t

(d
t

, x

t

)).

Given this extension, we can relax Assumption RS and impose that {U(d
t

,d�t

, x

t

,x�t

)}
dt,xt

are identically distributed conditional on V

t and (Z,X). The current Assumption RS can
be viewed as requiring rank invariance in terms of x

t

, while it allows rank similarity in d

t

.

5 Treatment E↵ects on Transitions

In fact, the identification strategy introduced in the previous section can tackle a more general
problem. In this section, we extend the identification analysis of the ATE (Theorem 4.1 and
Corollary 4.1) and show identification of the transition-specific ATE. Given the vector Y (d) ⌘
(Y1(d), ..., YT (d)) of potential outcomes, let Y�(d) ⌘ (Y

t1(d), ..., YtL(d)) 2 Y� ✓ {0, 1}L be
its 1⇥L subvector, where t1 < t2 < · · · < t

L

 T�1 and L < T . Then, the transition-specific
ATE can be defined as E[Y

T

(d)|Y�(d) = y�,X = x] � E[Y
T

(d̃)|Y�(d̃) = y�,X = x] for
some sequences d and d̃.

Theorem 5.1. Under Assumptions C, SX, RS and SP, for each y�, E[Y
T

(d)|Y�(d) =
y�,X = x]�E[Y

T

(d̃)|Y�(d̃) = y�,X = x] is identified for d, d̃ 2 D and x 2 X (d) \ X (d̃).
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The proof of this theorem extends that of Theorem 4.1; see the Appendix.14 The
transition-specific ATE defined in Theorem 5.1 concerns a transition from a state that is
specified by the value of the vector of previous potential outcomes, Y�(d). When Y

T

(d)
is binary, E[Y

T

(d)|Y�(d) = y�,X = x] can be viewed as a generalization of the transition
probability. As a simple example, with L = T�1, one may be interested in a transition to one
state when all previous potential outcomes have stayed in the other state until T � 1. When
L = 1 with Y�(d) = Y

T�1(d), the transition-specific ATE becomes Pr[Y
T

(d) = 1|Y
T�1(d) =

0]� Pr[Y
T

(d̃) = 1|Y
T�1(d̃) = 0] introduced in Section 3. This is a particular example of the

treatment e↵ect on the transition probability. The treatment e↵ects on transitions have been
studied by, e.g., Abbring and Van den Berg (2003), Heckman and Navarro (2007), Fredriksson
and Johansson (2008) and Vikström et al. (2018).15 Let Y

t

(d
t

) ⌘ µ

t

(Y
t�1, dt, Xt

, U

t

(d
t

)) be
the period-specific potential outcome at time t. Since Y

t�1 = Y

t�1(Dt�1), the period-specific
potential outcome can be expressed as Y

t

(d
t

) = Y

t

(Dt�1
, d

t

) using the usual potential out-
come. As a corollary of the result above, we also identify a related parameter that specifies
the previous state by the observed outcome: E[Y

T

(1)� Y

T

(0)|Y
T�1 = y

T�1].

Corollary 5.1. Under Assumptions C, SX, RS and SP, for each y

T�1, E[Y
T

(1)|y
T�1,x] �

E[Y
T

(0)|y
T�1,x] is identified for x 2 X (d) \ X (d̃).

The corollary is derived by observing that Y
T

(d
T

) = Y

T

(DT�1
, d

T

), and thus

E[Y
T

(d
T

)|y
T�1,x]

=
X

dT�12DT�1

Pr[DT�1 = d

T�1|x]E[Y
T

(dT�1
, d

T

)|Y
T�1(d

T�1) = y

T�1,D
T�1 = d

T�1
,x],

where each E[Y
T

(dT�1
, d

T

)|Y
T�1(dT�1) = y

T�1,d
T�1

,x] is identified from the iteration at
t = T � 1 in the proof of Theorem 5.1 by taking Y�(d) = Y

T�1(dT�1).

6 Partial Identification

Suppose Assumption SP does not hold in that X

t

does not exhibit su�cient rectangular
variation, or that there is no X

t

that is excluded from the selection equation at time t. In
this case, we partially identify the ARSF’s, ATE’s and d

⇤(x) (or d†(x)).
We briefly illustrate the calculation of the bounds on the ARSF E[Y

T

(d)|x] when the
su�cient rectangular variation is not guaranteed; the case where X

t

does not exist at all can
be dealt in a similar manner, and so is omitted. For each E[Y

T

(d)|x, z,yt�1
,d

t�1
, d

0
t

] in the
proof of Theorem 4.1, we can calculate its upper and lower bounds depending on the sign of
µ

t

(y
t�1, 1, xt) � µ

t

(y
t�1, 0, x̃t), which is identified in Lemma 4.1. Note that, in the context

of this section, x̃
t

does not necessarily di↵er from x

t

. For example, for the lower bound on

14As before, the parameters in Theorem 5.1 and Corollary 5.1 below can be defined for any given period
instead of the terminal period T . The identification analysis of such parameters is essentially the same, and
thus omitted.

15The definition of the treatment e↵ect on the transition probability in this paper di↵ers from those defined
in the literature on duration models, e.g., that in Vikström et al. (2018). Since Vikström et al. (2018)’s main
focus is on Yt that is irreversible, they define a di↵erent treatment parameter that yields a specific interpretation
under dynamic selection; see their paper for details. In addition, they assume sequential randomization and
that treatments are assigned earlier than the transition of interest.

15



E[Y
T

(d)|x] = E[Y
T

(d)|x, z], suppose µ
t

(y
t�1, dt, xt)�µ

t

(y
t�1, d

0
t

, x

0
t

) � 0 for given y

t�1, where
x

0
t

is allowed to equal x
t

. Then, by the definition of the U -set and under Assumption RS, it
satisfies that UT (d, y

T

;x) ◆ UT (d0
t

,d�t

, y

T

;x0
t

,x�t

), conditional on Y

t�1(dt�1
,x

t�1) = y

t�1.
Therefore, we have a lower bound on as E[Y

T

(d)|x, z,yt�1
,d

t�1
, d

0
t

] as

E[Y
T

(d)|x, z,yt�1
,d

t�1
, d

0
t

]

=Pr[U(d) 2 UT (d, 1;x)|U t�1(dt�1) 2 U t�1(dt�1
,y

t�1),V t 2 Vt(dt�1
, d

0
t

,U

t�1(dt�1))]

�Pr

2

4

U(d0
t

,d�t

) 2 UT (d0
t

,d�t

, 1;x0
t

,x�t

)

�

�

�

�

�

�

U

t�1(dt�1) 2 U t�1(dt�1
,y

t�1),
V

t 2 Vt(dt�1
, d

0
t

,U

t�1(dt�1))

3

5

=E[Y
T

(d0
t

,d�t

)|x0
t

,x�t

, z,y

t�1
,d

t�1
, d

0
t

]. (6.1)

Then, it is possible to calculate the lower bounds on E[Y
T

(d)|x, z] using the iterative scheme
introduced in the proof of Theorem 4.1. That is, at each iteration, we take the previous
iteration’s lower bound as given, expand each main term in (A.3) as before, and apply (6.1)
for necessary terms.

Lastly, depending on the signs of the ATE’s, we can construct bounds on d

⇤(x) (or d†(x)),
which will be expressed as strict subsets of D. The partial identification of the optimal regimes
may not yield su�ciently narrow bounds unless there are a su�cient number of ATE’s whose
bounds are informative about their signs. In general, however, the informativeness of bounds
truly depends on the policy questions. Note that D is a discrete set. Even though the
bounds may not be informative about the optimal regime, they may still be useful from the
planner’s perspective if they can help her exclude a few suboptimal regimes, i.e., d� such that
E[Y

T

(d)|x] � E[Y
T

(d�)|x] for some d.

7 Subsequences of Treatments

An important extension of the model introduced in this paper is to the case where treatments
do not appear in every period, while the outcomes are constantly observed. For example,
institutionally, there may only be a one-shot treatment at the beginning of time or a few
treatments earlier in the horizon, or there may be evenly spaced treatment decisions with a
lower frequency than outcomes. A potential outcome that corresponds to this situation can be
defined as a function of a certain subsequence d� of d. Let d� ⌘ (d

t1 , ..., dtK ) 2 D� ✓ {0, 1}K
be a 1 ⇥ K subvector of d, where t1 < t2 < · · · < t

K

 T and K < T . Then, the
potential outcomes Y

t

(d�) and the associated structural functions are defined as follows: Let
d

tk
� ⌘ (d

t1 , ..., dtk). A potential outcome in the period when a treatment exists is expressed
using a switching regression model as

Y

tk(d�) = Y

tk(d
tk
� ) = µ

tk(Ytk�1(d
t(k�1)

� ), d
tk , Xtk , Utk(dtk))

for k � 1 with Y

t1�1(d
t0
�) = Y

t1�1, and a potential outcome when there is no treatment is
expressed as

Y

t

(d�) = Y

t

(dtk
� ) = µ

t

(Y
t�1(d

tk
� ), U

t

)
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for t such that t
k

< t < t(k+1) (1  k  K � 1). Lastly, Y
t

(d�) = Y

t

= µ

t

(Y
t�1, Ut

) for t < t1

and Y

t

(d�) = Y

t

(dtK
� ) = µ

t

(Y
t�1(d

tK
� ), U

t

) for t > t

K

. Each structural model at the time of
no treatment is a plain dynamic model with a lagged dependent variable. Let T = 4 and
d� = (d1, d3) for illustration. Then the sequence of potential outcomes can be expressed as

Y4(d�) = Y4(d
3) = µ4(Y3(d

3), U4),

Y3(d�) = Y3(d
3) = µ3(Y2(d1), d3, X3, U3(d3)),

Y2(d�) = Y2(d1) = µ2(Y1(d1), U2),

Y1(d�) = Y1(d1) = µ1(Y0, d1, X1, U1(d1)).

The selection equations are of the following form: For k � 1,

D

tk = 1{⇡
tk(Ytk�1, Dt(k�1)

, Z

tk) � V

tk},

where the lagged outcome and the latest treatment enter each equation. The observable
variables are (Y ,D�,X�,Z�).16

Now all the parameters introduced in Section 3 can be readily modified by replacing
d with d� for some d�; we omit the definitions for the sake of brevity. Moreover, the
identification analysis of Section 4 can be easily modified in accordance with the extended
setting. Let U�(d�) ⌘ (U

t1(dt1), ..., UtK (dtK )) and let U(d�) be the vector of all the outcome
unobservables that consists of U�(d�) and {U

t

}
t2{1,...,T}\{t1,...,tK}.

Assumption C

0
. The distribution of (U�(d�),V�) has strictly positive density with respect

to Lebesgue measure on R2K .

Assumption SX

0
. (Z�,X�) and (U(d�),V�) are independent.

Let d�,�tk be d� without the t

k

-th element.

Assumption RS

0
. For each t

k

and d�,�tk , {U�(dtk ,d�,�tk)}dtk are identically distributed

conditional on (U tk�1(d
t(k�1)

� ),V tk
� ).

Under these modified assumptions, Lemma 4.1 is now only relevant for t = t

k

. Restrict
the definitions of X

t

(d
t

;x�t

, z�t

) in (4.5) and X
t

(d
t

;x�t

) to hold only for t = t

k

.

Assumption SP

0
. For each t

k

and d

tk , Pr[Xtk 2 X
tk(dtk ;x�,�tk , z�,�tk)|x�,�tk , z�,�tk ] > 0

almost everywhere.

Let X�(d�) ⌘ {x� : x
tk 2 X

tk(dtk ;x�,�tk) for some (x
t(k+1)

, ..., x

tK ), for k � 1}.

Theorem 7.1. Under Assumptions C0, SX0, RS0 and SP0, E[Y
T

(d�)|x�] is identified for
d� 2 D�, x� 2 X�(d�).

Corollary 7.1. Under Assumptions C0, SX0, RS0 and SP0, E[Y
T

(d�)� Y

T

(d̃�)|x�] is iden-

tified for d�, d̃� 2 D� and x� 2 X�(d�) \ X�(d̃�), and d

⇤
�(x�) and d

†
�(x�) are identified

for x� 2
T

d�2D�
X�(d�).

16It may be the case that Xt is observed whenever Yt is observed, and thus is included in the Yt-equations
for t 6= tk as well. We ignore that case here.
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8 Conclusions

In this paper, we consider identification in a nonparametric model for dynamic treatments
and outcomes. We introduce a sequence of selection models, replacing the assumption of
sequential randomization, which may be hard to justify under partial compliance or in ob-
servational settings. We consider treatment and outcome processes of general forms, and
avoid making strong assumptions on distribution and functional forms, nor assumptions on
rationality. We show that the treatment parameters and optimal treatment regimes are point
identified under the two-way exclusion restriction and sequential rank similarity. We argue
that the reverse exclusion restriction is a useful alternative tool for empirical researchers who
seek identification in this type of nonseparable models with endogeneity. This source of vari-
ation may especially be easy to find and justify in a dynamic setting as in this paper. When
the reverse exclusion restriction is violated, we show how to characterize bounds on these
parameters.

The identification analysis is constructive and naturally suggests an estimation procedure
by the sample analog principle. Standard approaches in the nonparametric estimation liter-
ature can be use to estimate quantities as E[Y

T

|x, z,d] and P [D = d|x, z]. A few remarks
are worth making. First, a dimensionality problem needs to be addressed in estimation, since
we consider multiple (although short) periods and multiple covariates. Recent techniques
for dimension reduction, such as the LASSO, can be employed to address this problem. In
our specific context, however, we may want to use methods such as the group LASSO (Yuan
and Lin (2006)) that can obey certain grouped structure in the set of conditioning variables.
Consider X = (X1, ..., XT

) where X

t

may contain multiple covariates. Then, for instance, if
sparsity is more likely to hold across covariates but not across time, we may want to select
a covariate across all periods if we are to select that covariate at all. Second, the estima-
tion procedure is in principle two-step as we need to estimate h in the first step. Therefore,
in conducting inference, the sampling error from the first-stage estimation of h should be
reflected, as in other nonparametric two-step estimations.
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A Proofs

A.1 High-Level Conditions for Assumption SX

As discussed in Remark 4.3, Assumption SX is a su�cient condition for high-level conditions
for the proofs of Lemma 4.1 and Theorem 4.1.

Lemma A.1. Assumption SX implies the following: (i) (Z
t

, X

t

) ? (U
t

(d
t

), V
t

)|Zt�1
,X

t�1;
(ii) Z

t

? (U(d),V t)|Zt�1
,X�t

and X

t

? (U(d),V t)|Zt�1
,X�t

.

In the proofs below, we use these high-level conditions. Therefore, some of the intermedi-
ate results we obtain in the proofs are slightly di↵erent from the ones described in the main
text for which Assumption SX is directly applied.

A.2 Proof of Lemma 4.1

We first define the U -set and V -set. The U -set is defined in the main text. Realizing the
dependence of Y

s�1(ds�1
,x

s�1) on (U s�1(ds�1),xs�1
,d

s�1), let

⇡

⇤
s

(U s�1(ds�1),xs�1
,d

s�1
, z

s

) ⌘ ⇡

s

(Y
s�1(d

s�1
,x

s�1), d
s�1, zs),

and define the set of V t as

Vt(dt

,u

t�1) ⌘ Vt(dt

,u

t�1; zt

,x

t�1) ⌘ {V t : d
s

= 1{V
s

 ⇡

⇤
s

(us�1
,x

s�1
,d

s�1
, z

s

)} for all s  t}

for t � 2. Fix t � 3. Given (4.1), consider the case Pr[D
t

= 1|zt

,x

t�1
,d

t�1
, y

t�1] > Pr[D
t

=
1|z̃

t

, z

t�1
,x

t�1
,d

t�1
, y

t�1]; the opposite case is symmetric. Using the definitions of the sets
above, we have

Pr[D
t

= 1|zt

,x

t�1
,d

t�1
, y

t�1]

=Pr[V
t

 ⇡

t

(y
t�1, dt�1, zt)|zt

,x

t�1
,Vt�1(dt�1

,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)]

=Pr[V
t

 ⇡

t

(y
t�1, dt�1, zt)|zt�1

,x

t�1
,Vt�1(dt�1

,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)],

where the last equality is given by Assumption SX and Lemma A.1(i). Note that the sets
Vt�1(dt�1

,U

t�2(dt�2)) and U t�1(dt�1
, y

t�1) do not change with the change in z

t

. There-
fore, a parallel expression can be derived for Pr[D

t

= 1|z̃
t

, z

t�1
,x

t�1
,d

t�1
, y

t�1]. Let ⇡

t

⌘
(y

t�1, dt�1, zt) and ⇡̃

t

⌘ (y
t�1, dt�1, z̃t) for abbreviation. Then, under Assumption C,

0 <Pr[D
t

= 1|zt

,x

t�1
,d

t�1
, y

t�1]� Pr[D
t

= 1|z̃
t

, z

t�1
,x

t�1
,d

t�1
, y

t�1]

=Pr[V
t

 ⇡

t

|zt�1
,x

t�1
,Vt�1(dt�1

,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)]

� Pr[V
t

 ⇡̃

t

|zt�1
,x

t�1
,Vt�1(dt�1

,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)],

which implies ⇡
t

> ⇡̃

t

. Next, we have

Pr[Y
t

= 1, D
t

= 1|zt

,x

t

,d

t�1
, y

t�1]

=Pr[U
t

(1)  µ

t

(y
t�1, 1, xt), Vt

 ⇡

t

|zt�1
,x

t�1
,Vt�1(dt�1

,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)]
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by Assumption SX and Lemma A.1(i). Again, note that Vt�1(dt�1
,U

t�2(dt�2)) and U t�1(dt�1
, y

t�1)
do not change with the change in (z

t

, x

t

), which is key. Therefore, similar expressions can be
derived for the other terms involved in h

t

, and we have

h

t

(z
t

, z̃

t

, x

t

, x̃

t

; zt�1
,x

t�1
,d

t�1
, y

t�1)

=Pr[U
t

(1)  µ

t

(y
t�1, 1, xt), ⇡̃t  V

t

 ⇡

t

|zt�1
,x

t�1
,Vt�1(dt�1

,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)]

� Pr[U
t

(0)  µ

t

(y
t�1, 0, x̃t), ⇡̃t  V

t

 ⇡

t

|zt�1
,x

t�1
,Vt�1(dt�1

,U

t�2(dt�2)),U t�1(dt�1
, y

t�1)],

the sign of which identifies the sign of µ

t

(y
t�1, 1, xt) � µ

t

(y
t�1, 0, x̃t) by Assumption RS.

The case t  2 can be shown analogously with V1(d1) ⌘ V1(d1; z1) ⌘ {V1 : d1 = 1{V1 
⇡1(0, 0, z1)}}. ⇤

A.3 Proof of Theorem 4.1

As the first step of identifying E[Y
T

(d)|x, z] for given d = (d1, ..., dT ), x = (x1, ..., xT ) and
z = (z1, ..., zT ), we apply the result of Lemma 4.1. Fix t � 2 and y

t�1 2 {0, 1}. Suppose x

0
t

is such that µ
t

(y
t�1, dt, xt) = µ

t

(y
t�1, d

0
t

, x

0
t

) with d

0
t

6= d

t

by applying Lemma 4.1. The exis-
tence of x0

t

is guaranteed by Assumption SP, as x
t

2 X
t

(d
t

, y

t�1;x�t

, z�t

) ⇢ X
t

(d
t

;x�t

, z�t

).
The implication of µ

t

(y
t�1, dt, xt) = µ

t

(y
t�1, d

0
t

, x

0
t

) for relevant U -sets is as follows: By the
definition of the U -set, U 2 U(d, y

T

;x) is equivalent to U 2 UT (d0
t

,d�t

, y

T

;x0
t

,x�t

) condi-
tional on Y

t�1(dt�1
,x

t�1) = y

t�1 for all x�t

and d�t

. Analogous to the U -set defined earlier,
define

U t(dt

,y

t) ⌘ U t(dt

,y

t;xt) ⌘ {U t(dt) : y
s

= Y

s

(ds

,x

s) for all s  t}.

Then, for t � 2,
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2

4

U(d) 2 UT (d, 1;x)

�

�

�

�

�

�

x, z

t�1
,

U

t�1(dt�1) 2 U t�1(dt�1
,y

t�1),
V

t 2 Vt(dt�1
, d

0
t

,U

t�1(dt�1))

3

5

=Pr

2

4

U(d) 2 UT (d, 1;x)

�

�

�

�

�

�

x�t

, z

t

,

U

t�1(dt�1) 2 U t�1(dt�1
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5

, (A.1)

where the last equality follows from Assumption SX and Lemma A.1(ii). Then, by Assump-
tion RS and the discussion above, (A.1) is equal to
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t
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0
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where the first equality is by Assumption SX and Lemma A.1. We use the result (A.2) in
the next step.

First, note that E[Y
T

(d)|x, zT

,y

T�1
,d

T ] = E[Y
T

|x, zT

,y

T�1
,d

T ] is trivially identified
for any generic values (d,x, z,yT�1). We prove by means of mathematical induction. For
given 2  t  T � 1, suppose E[Y

T

(d)|x, zt

,y

t�1
,d

t] is identified for any generic values
(d,x, zt

,y

t�1), and consider the identification of
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T
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t�2
,d
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T

(d)|x, zt�1
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T
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,d

t�1
, d

0
t

].
(A.3)

The first main term E[Y
T

(d)|x, zt�1
,y

t�2
,d

t�1
, d

t

] in (A.3) is identified, by integrating over
y

t�1 2 {0, 1} the quantity E[Y
T

(d)|x, zt�1
,y

t�1
,d

t], which is assumed to be identified in the
previous iteration since it is equal to E[Y

T

(d)|x, zt

,y

t�1
,d

t] by Assumption SX and Lemma
A.1(ii). The remaining unknown term in (A.3) satisfies
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By applying (A.2) to the unknown terms in this expression, we have
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0
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] (A.4)

for each ỹ

t�1, which is identified from the previous iteration. Therefore, E[Y
T

(d)|x, zt�1
,y

t�2
,d

t�1]
is identified. Note that when t = 2, Y 0 is understood to mean there is no conditioning. Lastly,
when t = 1,

E[Y
T

(d)|x] =Pr[D1 = d1|x]E[Y
T

(d)|x, d1] + Pr[D1 = d

0
1|x]E[Y

T

(d)|x, d01].

Noting that Y0 = 0, suppose x

0
1 is such that µ1(0, d1, x1) = µ1(0, d01, x

0
1) with d

0
1 6= d1 by

applying Lemma 4.1. Then,
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0
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= E[Y
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0
1],

by Assumption SX and Lemma A.1(ii), which is identified from the previous iteration for
t = 2. Therefore, E[Y

T

(d)|x] is identified. 2

A.4 Proof of Theorem 5.1

We analyze the identification of E[Y
T

(d)|Y�(d) = y�,x, z]. Since

E[Y
T

(d)|Y�(d) = y�,x, z] = Pr[Y
T

(d) = 1,Y�(d) = y�|x, z]/Pr[Y�(d) = y�|x, z],
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we identify each term in the fraction. For each term, the proof is parallel to that of Theorem
4.1. Let ỹ� ⌘ (y1, ..., ytL̃) be a subvector (not necessarily strict) of y, where t1 < t2 < · · · <
t

L̃

 T and L̃  T ; e.g., when L̃ = T , ỹ� = y. Generalizing the U -sets introduced in Section
4, define
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, ỹ�) ⌘ U tL̃(dtL̃

, ỹ�;x
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In the first part of the proof, we identify Pr[Y
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(d) = 1,Y�(d) = y�|x, z]. Take Ỹ�(d) =
(Y�(d), YT (d)) with realization ỹ� = (y�, 1). For simplicity, we directly use Assumption SX
without invoking Lemma A.1(ii). Then, for 2  t  T � 1, we have
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where the second equality uses x

0
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such that µ
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) by applying
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The first term in the expression is identified, by summing over y
t�1 the quantity Pr[Y
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(d) =
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t|x, z], which is identified from the previous iteration.
The second unknown term in (A.6) satisfies
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But note that, by (A.5), each term in (A.7) satisfies
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for each ỹ

t�1, which is identified from the previous iteration. Therefore, Pr[Y
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The first term is identified from the iteration for t = 2. Noting that Y0 = 0, suppose x

0
1 is

such that µ1(0, d1, x1) = µ1(0, d01, x
0
1) with d

0
1 6= d1 by Lemma 4.1. Then, similarly to (A.5),
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which is also identified from the previous iteration for t = 2. Therefore Pr[Y
T

(d) = 1,Y�(d) =
y�|x, z] is identified.

In the second part of the proof, we identify Pr[Y�(d) = y�|x, z]. Take Ỹ�(d) = Y�(d) ⌘
(Y

t1(d), ..., YtL(d)) with realization ỹ� = y�. Then, for 2  t  t

L

� 1, we can show the
following equivalence, analogous to (A.5):
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The rest of the proof is an immediate modification of the iterative argument in the first part,
and hence is omitted. ⇤
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