
Identifying Procrastination from the Timing of Choices

Paul Heidhues Philipp Strack

1DICE, University of Düsseldorf

2Yale

September 4.

1 / 51



Motivation

Time-inconsistency: intuition and evidence suggests that people are
time-inconsistent and present-focused.

• Strotz (1956); Frederick et al. (2002); Augenblick et al. (2015); Augenblick and Rabin
(2019).

• Degree of time-inconsistency important for optimal policy design.

Psychological intuition: time-inconsistent preferences—especially in
combination with forecasting errors about own future behavior—leads to
procrastination (tendency to delay unpleasant tasks). Formalized, in

• Akerlof (1991), and

• O’Donoghue and Rabin (1999a,b, 2001).
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Motivation

Stylized fact: in line with procrastination, people often complete tasks last
minute.

• Homework, EARIE conference registrations.

• Parking tickets (Heffetz et al., 2016); health care plan choice (Brown and Previtero,
2018); taxes (e.g Martinez et al., 2017); patent officers’ fillings (Frakes and Wasserman,
2016).

Natural idea: if task completion is driven by the tendency to procrastinate, use
data on task completion to identify time preferences.

• “Common wisdom” (see, e.g., Frakes and Wasserman, 2016): observed bunching at the
deadline is evidence of time-inconsistency.

• Argument: inconsistent with δ ≈ 1.

Option-value of waiting: if task completion cost are not deterministic, may
wait for lower cost draw.

• See Wald (1945); Weisbrod (1964); Dixit and Pindyck (1994).

• Waiting decision determined by other factors than time-preferences!

• One way to disentangle: parameteric assumptions on net-benefit or opportunity cost
distribution (Martinez et al., 2017).
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Uncovering Time-Preferences

Our research question: can one non-parameterically uncover time preference
from task completion data?

• We suppose the net benefit/opportunity cost of doing the task at a given
point in time are unobservable to the analyst.

• Otherwise, we impose a lot of helpful structure.

In a nutshell: Despite strong stationary, homogeneity, and observability
assumptions, and restriction to quasi-hyperbolic discounting, we find:

• The degree of present bias and the discount factor are for any data set
unidentifiable in our basic setting.

• Importantly, present bias parameter is unidentified even when fixing the
long-run discount factor.

• Naivite vs Sophistication are also not identifiable.

• With a stationary net-benefit distribution, a hyperbolic discounter never
sets an earlier deadline.
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Overview

1 Quasi-Hyperbolic Discounting

2 Task Completion Problem
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5 Agent’s Behavior

6 Non-Identifiability

7 Non-Identifiability for Naives

8 Non-Identifiability for Sophisticates
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Quasi-Hyperbolic Discounting



Time-Preferenes: Quasi-Hyperbolic Discounting

• Let ut denote the instantaneous utility in period t ∈ {1, · · · ,T + 1}.

• The agent’s time preference satisfy quasi-hyperbolic discounting.
• δ ∈ (0, 1] is the long-run discount rate.
• β ∈ (0, 1] is the present-bias parameter.

• The agent has a belief β̂ ∈ (0, 1] regarding her future selves’ taste for
immediate gratification (O’Donoghue and Rabin, 1999a).
• β̂ = 1 is the case of naivete.
• β̂ = β is the case of sophistication.

• We solve for perception-perfect equilibria. Time t self maximizes

U t = ut + β E

[
T+1∑
s=t+1

δs−t us ,

]
thinking future selves r > t maximize

Û r = ur + β̂ E

[
T+1∑
s=r+1

δs−r us

]
.
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Task Completion Problem



Agent’s Task-Completion Problem

• Think of preparing your taxes or paying a parking ticket.

• The agent needs to complete the task before the deadline T .

• If she did not complete the task by the end of period T , the agent gets a
penalty of y/(βδ) ≤ 0 in period T + 1.
• So y is the period-T continuation value when not having done the task.
• Task could be mandatory (y = −∞) or voluntary (y = 0).

• In every period t ≤ T , the instantaneous utility of completing the task is
drawn independently from a given payoff distribution F .
• Instantaneous benefit of completing the task net of opportunity costs.
• F is known to the agent.
• Instantaneous utility of not doing the task is normalized to zero.

• Tie-breaking assumption: when indifferent, agent waits.
• Absent a tie-breaking assumption, can rationalize any data by assuming cost

are always zero.
• Exact tie-breaking rule not important.

9 / 51



Agent’s Task-Completion Problem

• Think of preparing your taxes or paying a parking ticket.

• The agent needs to complete the task before the deadline T .

• If she did not complete the task by the end of period T , the agent gets a
penalty of y/(βδ) ≤ 0 in period T + 1.
• So y is the period-T continuation value when not having done the task.

• Task could be mandatory (y = −∞) or voluntary (y = 0).

• In every period t ≤ T , the instantaneous utility of completing the task is
drawn independently from a given payoff distribution F .
• Instantaneous benefit of completing the task net of opportunity costs.
• F is known to the agent.
• Instantaneous utility of not doing the task is normalized to zero.

• Tie-breaking assumption: when indifferent, agent waits.
• Absent a tie-breaking assumption, can rationalize any data by assuming cost

are always zero.
• Exact tie-breaking rule not important.

9 / 51



Agent’s Task-Completion Problem

• Think of preparing your taxes or paying a parking ticket.

• The agent needs to complete the task before the deadline T .

• If she did not complete the task by the end of period T , the agent gets a
penalty of y/(βδ) ≤ 0 in period T + 1.
• So y is the period-T continuation value when not having done the task.
• Task could be mandatory (y = −∞) or voluntary (y = 0).

• In every period t ≤ T , the instantaneous utility of completing the task is
drawn independently from a given payoff distribution F .
• Instantaneous benefit of completing the task net of opportunity costs.
• F is known to the agent.
• Instantaneous utility of not doing the task is normalized to zero.

• Tie-breaking assumption: when indifferent, agent waits.
• Absent a tie-breaking assumption, can rationalize any data by assuming cost

are always zero.
• Exact tie-breaking rule not important.

9 / 51



Agent’s Task-Completion Problem

• Think of preparing your taxes or paying a parking ticket.

• The agent needs to complete the task before the deadline T .

• If she did not complete the task by the end of period T , the agent gets a
penalty of y/(βδ) ≤ 0 in period T + 1.
• So y is the period-T continuation value when not having done the task.
• Task could be mandatory (y = −∞) or voluntary (y = 0).

• In every period t ≤ T , the instantaneous utility of completing the task is
drawn independently from a given payoff distribution F .
• Instantaneous benefit of completing the task net of opportunity costs.
• F is known to the agent.
• Instantaneous utility of not doing the task is normalized to zero.

• Tie-breaking assumption: when indifferent, agent waits.
• Absent a tie-breaking assumption, can rationalize any data by assuming cost

are always zero.
• Exact tie-breaking rule not important.

9 / 51



Agent’s Task-Completion Problem

• Think of preparing your taxes or paying a parking ticket.

• The agent needs to complete the task before the deadline T .

• If she did not complete the task by the end of period T , the agent gets a
penalty of y/(βδ) ≤ 0 in period T + 1.
• So y is the period-T continuation value when not having done the task.
• Task could be mandatory (y = −∞) or voluntary (y = 0).

• In every period t ≤ T , the instantaneous utility of completing the task is
drawn independently from a given payoff distribution F .
• Instantaneous benefit of completing the task net of opportunity costs.
• F is known to the agent.
• Instantaneous utility of not doing the task is normalized to zero.

• Tie-breaking assumption: when indifferent, agent waits.
• Absent a tie-breaking assumption, can rationalize any data by assuming cost

are always zero.

• Exact tie-breaking rule not important.

9 / 51



Agent’s Task-Completion Problem

• Think of preparing your taxes or paying a parking ticket.

• The agent needs to complete the task before the deadline T .

• If she did not complete the task by the end of period T , the agent gets a
penalty of y/(βδ) ≤ 0 in period T + 1.
• So y is the period-T continuation value when not having done the task.
• Task could be mandatory (y = −∞) or voluntary (y = 0).

• In every period t ≤ T , the instantaneous utility of completing the task is
drawn independently from a given payoff distribution F .
• Instantaneous benefit of completing the task net of opportunity costs.
• F is known to the agent.
• Instantaneous utility of not doing the task is normalized to zero.

• Tie-breaking assumption: when indifferent, agent waits.
• Absent a tie-breaking assumption, can rationalize any data by assuming cost

are always zero.
• Exact tie-breaking rule not important.

9 / 51



The Analyst’s Problem



Analyst’s Problem.

• The analyst observes agent’s stopping probabilities at every point in time.
• Either observes infinitely many homogeneous agents,
• or the same agent infinitely many times.

• Obviously homogeneity facilitates identifying time preferences.

• We suppose it is known that opportunity costs are i.i.d.
• Otherwise can rationalize any data by assuming cost are either one or zero,

with the probability that they are zero being equal to a period’s stopping
probability.

• Well known in dynamic discrete choice literature (e.g., Section 3.5 in Rust,
1994; Magnac and Thesmar, 2002).

• Best case scenario for identification!
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Examples



Observed Task Completion Time for a Mandatory Task

β=1, Log(-y)~N (1,1)

β=0.8, Log(-y)~N (1,1)
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β=1, Log(-y)~N (1,1)

β=0.8, Log(-y)~N (1,1.38)
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Parameter Estimates of β

Agent is time-consistent with β = δ = 1, T = 5, and the value of completing
the task is drawn from a uniform distribution with mean 0 and variance 1.

Analyst knows
• the true mean and standard deviation of F
• correctly imposes δ = 1
• but does not know the functional form of F .

Parametric Family
Sq. Distance Minimzation Likelihood Maximization

β Distance β Log-Likelihood
Normal Naive 0.82 0.00231668 0.82 -1.59187
Normal Sophisticate 0.82 0.00267663 0.82 -1.59188
Extreme Value Naive 0.56 0.0396876 0.56 -1.59627
Extreme Value Sophisticate 0.57 0.0402888 0.57 -1.59638
Logistic Naive 0.76 0.00267137 0.76 -1.59188
Logistic Sophisticate 0.76 0.00331131 0.76 -1.59189
Laplace Naive 0.63 0.008065 0.63 -1.59202
Laplace Sophisticate 0.64 0.00933172 0.63 -1.59207

Table: Parameter estimates of β and squared distance and log-likelihood.
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Parameter Estimates of β

• Estimates vary widely depending on the functional form assumption.

• β is missestimated.

• the example is robust to

• simultaneous estimation of mean and variance

• more periods 30 periods 60 periods

• More data can make the estimates worse example

• different true distributions

• a truely time-inconsistent agent β = 0.9

• Our theoretical results show that for every dataset estimates will be driven
by functional form assumption.
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Agent’s Behavior



Preliminary Analysis

Self T uses a cutoff strategy.

• Completes the task if and only if yT > y .

Earlier selves think Self T uses a cutoff strategy.

• Completes the task if and only if yT > β̂δ
y

βδ =
(
β̂/β
)
y .

By induction, all earlier selves (are perceived to) use cutoff strategies.

• Let vt be the perceived continuation value or actual cutoff of Self t.

• Let ct =
(
β̂/β
)
vt be the cutoff earlier selves think t uses.

For t < T , the perceived continuation values vt satisfy the equation

vt = β δ

∫ ∞
ct+1

z dF (z)︸ ︷︷ ︸
anti. payoff of doing task tomorrow

+ F (ct+1) δ vt+1︸ ︷︷ ︸
anti. payoff of continuing

.

• Relative to tomorrow’s self, discount the perceived continuation value by
extra δ. ⇒ simple recursive structure!
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Rate of Task Completion Increases Over Time

Theorem (Monotonicity of the Continuation Value)
i.) The subjective continuation value is non-increasing over time

v1 ≥ v2 ≥ . . . ≥ vT .

ii.) Every self t prefers a later deadline.

Corollary: the observed conditional stopping probability is non-decreasing toward
the deadline; i.e.

p1 ≤ p2 ≤ . . . ≤ pT .
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Why is the Perceived Continuation Value Decreasing?

Intuition when doing the task is always costly:

• Consider a sophisticated hyperbolic discounter.

• Let Self 1 compare a (T − 1)-period to T -period deadline.

• If Self 1 waits in the T -period problem, Self 2 faces a (T − 1)-period
problem.

• Future selves behavior s-periods before the deadline is identical, and so is
task completion s periods before the deadline.

• Due to discounting, Self 1 is strictly better off selecting the T -period
problem and not doing the task in the first period.

Since partially naive agents think they are sophisticated, and soph. agents never
benefits, they also do not impose a deadline.
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Why is the Perceived Continuation Value Decreasing?

Intuition when doing the task always yields a positive payoff:

• Future selves are to impatient, and therefore too willing to stop.

• Suppose Self 1 can extend the deadline from T − 1 to T periods.

• With a longer deadline, Self T − 1 will wait for sufficiently low net benefits.

• Whenever the impatient Self T − 1 chooses to wait, Self 1 strongly prefers
it to wait.

• Conditional on reaching period T − 1, thus, the longer deadline benefits
Self 1.

• With the longer deadline, Self T − 2’s benefits from waiting increases as it
also thinks of T − 1 as to impatient.

• Hence, Self T − 2 will also act less impatiently, which again benefits Self 1
conditional on reaching period T − 2.

• .... Self 1 benefits from longer deadline.
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Non-Identifiability



Time-Preferences are Unidentifiable

Theorem (Non-identifiability for Fully Naive Case: β̂ = 1)
For every non-decreasing sequence of stopping probabilities
0 < p1 ≤ p2 ≤ . . . ≤ pT < 1, every (δ, β) ∈ (0, 1)× (0, 1], and every penalty
y/βδ < 0, there exists a distribution F that rationalizes the agent’s stopping
probabilities as the unique outcome of any perception perfect equilibrium.

Theorem (Non-identifiability for Sophisticated Case: β̂ = β)
For every non-decreasing sequence of stopping probabilities
0 < p1 ≤ p2 ≤ . . . ≤ pT < 1, every (δ, β) ∈ (0, 1]× (0, 1], and every penalty
y/βδ, there exists a distribution F that rationalizes the agent’s stopping
probabilities as the outcome of a perception perfect equilibrium.
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Why are Time-Preferences Unidentifiable?

Rough Intuition:

• Whether a self prefers to do a task today or wait depends on her time
preferences and on the perceived option value of waiting.

• The option value of waiting depends on the payoff distribution.

• By changing the unobservable payoff distribution, can undo a change in the
time preference of the agent.

• But, since a local change in the payoff distribution affects all continuation
values in a highly non-linear way, need a non-local argument.

For non-local argument:

• Fully naive case: map continuation values into payoff distributions and
back to continuation values in a “monotone way” that allows using
Tarsky’s Theorem.

• Sophisticated case: focus on distributions for which the recursive structure
for continuation values gives rise to a linear system of equations (which can
be solved forward).

Jump to A Priori Knowledge.
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Non-Identifiability for Naives



Outline of the Proof.

1 Fix time preferences and y .

2 Take a vector of perc. continuation values v1 ≥ v2 ≥ . . . ≥ vT−1.

3 Generate a payoff distribution that gives the desired stopping probabilities.
• Put probability mass equal to pt − pt−1 between vt and vt−1.
• Maps continuation values into distributions with correct stopping prob.

4 Calculate the actual continuation values.
• Maps the set of distributions back into the vector of continuation values.
• By earlier theorem, these continuation values are non-increasing.
• So function maps a non-increasing sequence into a non-increasing sequence.

5 Function is bounded, maps sequences from an appropriately chosen interval
into itself, and monotone.
• Higher continuation values lead to a better distribution (in the sense of

first-order stochastic dominance) and for β̂ = 1 a better distribution
increases the subjective continuation values.

6 Apply Tarski’s Theorem.
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Monotonicity in Payoffs and Naivete

Important step: a FOSD increase in F raises continuation value (with β̂ = 1).

• For a time-consistent agent, a FOSD in F increases vT−1.

• From perspective of T − 2, for a time-consistent agent, above plus the
FOSD makes it more desirable to reach T − 1.

• Since agent thinks she acts time-consistently from tomorrow on, vt ’s
increase.

We show via a simple example that a FOSD in F need not raise continuation
values if β̂ < 1.

• Ex.: soph. agent prefers to pay lump-sum tax when doing task.

• T = 3. Payoffs are either high or low.

• Tax eliminates the temptation to quit in period 2 for low payoff realization.

• Commitment to only stop when payoff are high in t = 2 increases v1.

• Benefits of commitment overcompensate the direct payoff reduction
through the tax.
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Non-Identifiability for Sophisticates



Time-Preferences are Unidentifiable: Sophisticated Case

Theorem (Non-identifiability for β̂ = β)
For every non-decreasing sequence of stopping probabilities
0 < p1 ≤ p2 ≤ . . . ≤ pT < 1, every (δ, β) ∈ (0, 1]× (0, 1], and every penalty
y/βδ, there exists a distribution F that rationalizes the agent’s stopping
probabilities as the outcome of a perception perfect equilibrium.

Rough outline of the proof:
• Choose a distribution with t + 1 interals with constant density, of which the non-extreme

values are set equal to the continuation values. (With the second lowest value being set
at vT = y , etc... .)

• Select the probability mass on the intervals to match the increasing stopping
probabilities.

• When β̂ = β, the recursive structure for continuation values in this case gives rise to a
linear system of equations.

• Can solve forward for all continuation values, and if lowest mass point is low enough,
gives rise to well-defined solution.
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A Priori Knowledge



Knowledge of Expected Value and Variance (but not Penalty)

Consider the case of a time-consistent agent that is fully patient β = δ = 1.

• By our last theorem, we can rationalize the agent’s stopping behavior
through some distribution F .

• For β = δ = 1, we can determine the continuation value recursively as

vt = E [max{yt+1, vt+1}] .

• Hence for any c1, c2 > 0, the stopping behavior is also optimal for the
payoff c1y + c2 and penalty c1y + c2.

• Thus, we can freely choose mean and variance of F and still match the
observed stopping behavior.

• Parameteric identification of β must rely on other features of the
distribution!

Jump to Conclusion.
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Rich Data



Observable Perceived Continuation Values

Analyst’s problem: disentangle desire to delay from option value:

• High option value requires payoff to differ significantly.

• But then perc. continuation value should drop quickly as deadline
approaches.

• Present-bias can lead to delay even if option value is (relatively) constant.

Can observing option value help with non-parametric identification?

• For clean answer, suppose contemporaneous utility is linear in money and
agent sophisticated.

• Aside: since need to ask only once, analyst does not (implicitly) elicit
time-preferences over money (see Ericson and Laibson, 2019; Ramsey,
1928, for why this is important).
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Simplifying from Infinite-Dimensional to Finite Dimensional Space

• Intuitively, option value of waiting is determined by
• probability with which agents stops at given t;
• expected payoff conditional on stopping at t.

• Can move probability mass between any two perc. continuation values to
expected payoff conditional on falling between these.
• Does not change continuation values or stopping probabilities.

• Analyst only needs to consider distributions with T + 1 mass points falling
between the continuation values.

We say the data is plausible if conditional stopping probabilities are increasing
and continuation values decreasing.
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Non-Parametric Identification with Rich Data

Theorem
Suppose u(mt) = mt for all t and that p1 > 0. Plausible data (v , p) is
consistent with β, δ and sophistication β̂ = β if and only if (i)

β <
δ−1 v1 − (1− p2) v2

v2(p2 − p1) + v1p1

and (ii) vt+1β < vt+1a(δ, t) ≤ vtβ for all t ∈ {2, . . . ,T − 1}, where

a(δ, t) = 1− δ−1(vt−1 − vt)− (1− pt)(vt − vt+1)

vt+1(pt+1 − pt)
.

Boils down to checking a simple set of inequalities.

Extends to non-linear utility and partial naivete at cost of using numerical
techniques.
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Consistent Parameter Estimates for Example with T = 5 and T = 20
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Jump to Conclusion.
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Relationship to Dynamic Discrete Choice Literature



Conceptual Difference to Dynamic Discrete Choice Literature

Vast literature on dynamic discrete choice considers identification of

• time preferences; and

• instantaneous payoffs.

Dynamic Discrete Choice focusses on:

1 non-parametric state and action dependent mean utility (state = time ⇒
non-iid data);

2 unobservable shock is distributed with some known distribution (e.g.,
extreme-value type 1).

We focus on:

1 single unknown mean utility level;

2 non-parametric in the distribution of the unobservable shock.
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Common Setup in Dynamic Discrete Choice Literature

Common setup in dynamic discrete choice literature:

1 infinite horizon;

2 agent is time-consistent;

3 feasible actions do not depend on past actions;

4 additive separability between observable part and shock; and

5 shocks are drawn from some (typically given) distribution with unbounded
support.

Formally, 3. to 5. rule out stopping problems.

• Nevertheless, our results “question” some existing parametric identification
ideas.
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Non-Identification in Dynamic Discrete Choice Literature

Classic parametric non-identification result (e.g., Section 3.5 in Rust, 1994;
Magnac and Thesmar, 2002) of dynamic discrete choice literature:

• With a state-dependent shock (or mean utility), for any known invertible
distribution of unobservable payoffs impossible to identify time-preference
parameter.

• Corresponding state in our setting is time to deadline.

• Result extends straightforwardly to our setting for any combination of
(δ, β, β̂).

If unknown payoffs are iid, however, parametric identification possible for
time-consistent agent (and beyond)!

• Martinez et al. (2017) prove that β is identified when β̂ = 1, the analyst
knows δ, and shocks are logistic with know variance.
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Parametric Identification in Dynamic Discrete Choice Literature

As Levy and Schiraldi (2020)—who provide parametric identification results in
β, δ dynamic discrete choice model with at least four actions—put it:

[a] typical approach to identification in the exponential discounting
model adds exclusion restrictions on utility (conditional value function)
across states, the presence of an absorbing choice (e.g. Magnac and
Thesmar, 2002; Abbring and Daljord, 2019b), or restricts attention to
a finite horizon model (e.g. Yao et al., 2012; Chung et al., 2014; Bajari
et al., 2016; Chou, 2016), usually coupled with a strong normalization
on the utility of the reference alternative.

We imposes all of the above restrictions but our analyst doesn’t know the
parametric form of the distribution of shocks.
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Related Approaches

• Norets and Tang (2014) provide a system of equations for (“common”)
dynamic discrete binary choice environments that allows one to check
(numerically) for a given δ whether it possible to find a stationary error
distribution F that rationalizes the data.
• No non-identification result in their environment.
• Relates to our exercise with observable continuation values.

• Christensen and Connault (2019) observe that predictions might depend on
untestable assumptions on unobservable shocks and provide methods for
“robust estimation”
• provide an dynamic discrete choice example to illustrate the crucial role of

parametric assumptions.
• Our result: in task-completion estimates are always driven by the paramteric

assumption.

• Imposing time-consistency, De Oliveira and Lamba (2019) characterize
what an analyst can infer about δ when she observes an agent who chooses
actions over time.
• General decision environment.
• A single sequence of actions instead of distribution.

41 / 51



Related Approaches

• Norets and Tang (2014) provide a system of equations for (“common”)
dynamic discrete binary choice environments that allows one to check
(numerically) for a given δ whether it possible to find a stationary error
distribution F that rationalizes the data.
• No non-identification result in their environment.
• Relates to our exercise with observable continuation values.

• Christensen and Connault (2019) observe that predictions might depend on
untestable assumptions on unobservable shocks and provide methods for
“robust estimation”
• provide an dynamic discrete choice example to illustrate the crucial role of

parametric assumptions.
• Our result: in task-completion estimates are always driven by the paramteric

assumption.

• Imposing time-consistency, De Oliveira and Lamba (2019) characterize
what an analyst can infer about δ when she observes an agent who chooses
actions over time.
• General decision environment.
• A single sequence of actions instead of distribution.

41 / 51



Related Approaches

• Norets and Tang (2014) provide a system of equations for (“common”)
dynamic discrete binary choice environments that allows one to check
(numerically) for a given δ whether it possible to find a stationary error
distribution F that rationalizes the data.
• No non-identification result in their environment.
• Relates to our exercise with observable continuation values.

• Christensen and Connault (2019) observe that predictions might depend on
untestable assumptions on unobservable shocks and provide methods for
“robust estimation”

• provide an dynamic discrete choice example to illustrate the crucial role of
parametric assumptions.

• Our result: in task-completion estimates are always driven by the paramteric
assumption.

• Imposing time-consistency, De Oliveira and Lamba (2019) characterize
what an analyst can infer about δ when she observes an agent who chooses
actions over time.
• General decision environment.
• A single sequence of actions instead of distribution.

41 / 51



Related Approaches

• Norets and Tang (2014) provide a system of equations for (“common”)
dynamic discrete binary choice environments that allows one to check
(numerically) for a given δ whether it possible to find a stationary error
distribution F that rationalizes the data.
• No non-identification result in their environment.
• Relates to our exercise with observable continuation values.

• Christensen and Connault (2019) observe that predictions might depend on
untestable assumptions on unobservable shocks and provide methods for
“robust estimation”
• provide an dynamic discrete choice example to illustrate the crucial role of

parametric assumptions.

• Our result: in task-completion estimates are always driven by the paramteric
assumption.

• Imposing time-consistency, De Oliveira and Lamba (2019) characterize
what an analyst can infer about δ when she observes an agent who chooses
actions over time.
• General decision environment.
• A single sequence of actions instead of distribution.

41 / 51



Related Approaches

• Norets and Tang (2014) provide a system of equations for (“common”)
dynamic discrete binary choice environments that allows one to check
(numerically) for a given δ whether it possible to find a stationary error
distribution F that rationalizes the data.
• No non-identification result in their environment.
• Relates to our exercise with observable continuation values.

• Christensen and Connault (2019) observe that predictions might depend on
untestable assumptions on unobservable shocks and provide methods for
“robust estimation”
• provide an dynamic discrete choice example to illustrate the crucial role of

parametric assumptions.
• Our result: in task-completion estimates are always driven by the paramteric

assumption.

• Imposing time-consistency, De Oliveira and Lamba (2019) characterize
what an analyst can infer about δ when she observes an agent who chooses
actions over time.
• General decision environment.
• A single sequence of actions instead of distribution.

41 / 51



Related Approaches

• Norets and Tang (2014) provide a system of equations for (“common”)
dynamic discrete binary choice environments that allows one to check
(numerically) for a given δ whether it possible to find a stationary error
distribution F that rationalizes the data.
• No non-identification result in their environment.
• Relates to our exercise with observable continuation values.

• Christensen and Connault (2019) observe that predictions might depend on
untestable assumptions on unobservable shocks and provide methods for
“robust estimation”
• provide an dynamic discrete choice example to illustrate the crucial role of

parametric assumptions.
• Our result: in task-completion estimates are always driven by the paramteric

assumption.

• Imposing time-consistency, De Oliveira and Lamba (2019) characterize
what an analyst can infer about δ when she observes an agent who chooses
actions over time.
• General decision environment.
• A single sequence of actions instead of distribution.

41 / 51



Conclusion

• Homogeneity is important for predicting increasing stopping probability.

• Even when knowing the first two moments of F , can always rationalize
data if size of penalty unknown or task mandatory.

• “Proof of concept” for non-parameteric identification with rich data.

• Cannot infer time-preferences from bunching at the deadline even when
having individual data.

• Even sophisticated agents do not choose deadlines in stationary
task-completion problem.
• So no puzzle that people do not commit (in this environment).

• Most important: time-inconsistency may still be a major driver for why
some agents complete tasks last minute.
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Thank You!
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Parametric Family β Mean Std. Deviation Log-Likelihood
Uniform Naive 1. -1.86762 5.78115 -1.59186
Uniform Sophisticate 1. -2.04179 1.87369 -1.59186
Normal Naive 0.82 0.0942045 3.47898 -1.59187
Normal Sophisticate 0.83 0.0978794 3.10058 -1.59187
Extreme Value Naive 0.81 -2.05785 2.37227 -1.59186
Extreme Value Sophisticate 0.83 -1.84762 1.85227 -1.59187
Logistic Naive 0.76 0.193664 9.44528 -1.59187
Logistic Sophisticate 0.77 0.105082 4.10288 -1.59188
Laplace Naive 0.64 0.206991 8.82003 -1.59199
Laplace Sophisticate 0.65 0.0614326 2.24342 -1.59204

Table: Log-likelihood estimates of β and the mean and standard deviation for the
example if the analyst does not know the mean and standard deviation of the payoff
distribution.
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Parametric Family β Log-Likelihood
Uniform Naive 1. -3.29153
Uniform Sophisticate 1. -3.29153
Normal Naive 0.871612 -3.29198
Normal Sophisticate 0.88423 -3.29228
Extreme Value Naive 0.765061 -3.29383
Extreme Value Sophisticate 0.792468 -3.29483
Logistic Naive 0.814908 -3.29203
Logistic Sophisticate 0.836259 -3.29254
Laplace Naive 0.758422 -3.29317
Laplace Sophisticate 0.787311 -3.29418

Table: Log-likelihood estimates of β for the payoff distribution and parameters
specified in the example if the analyst knows the mean and standard deviation of the
payoff distribution with T = 30 periods.
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Parametric Family β Log-Likelihood
Uniform Naive 1. -3.95505
Uniform Sophisticate 1. -3.95505
Normal Naive 0.889306 -3.95576
Normal Sophisticate 0.903474 -3.95624
Extreme Value Naive 0.801094 -3.95715
Extreme Value Sophisticate 0.8301 -3.95833
Logistic Naive 0.835118 -3.95584
Logistic Sophisticate 0.85936 -3.9566
Laplace Naive 0.794377 -3.95701
Laplace Sophisticate 0.824827 -3.95823

Table: Log-likelihood estimates of β for the payoff distribution and parameters
specified in the example if the analyst knows the mean and standard deviation of the
payoff distribution with T = 60 periods.
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Parametric Family β Log-Likelihood
Uniform Naive 1.1051 -1.61023
Uniform Sophisticate 1.10823 -1.61029
Normal Naive 1.02514 -1.60953
Normal Sophisticate 1.0253 -1.60953
Extreme Value Naive 1.1942 -1.61034
Extreme Value Sophisticate 1.19231 -1.61008
Logistic Naive 1. -1.60944
Logistic Sophisticate 1. -1.60944
Laplace Naive 0.959755 -1.61017
Laplace Sophisticate 0.960106 -1.61016

Table: Log-likelihood estimates of β if the true distribution is Logistic and has the
same mean and standard deviation as in the example. We suppose the analyst knows
the mean and standard deviation of the payoff distribution, and that T = 5 periods.
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Parametric Family β Log-Likelihood
Uniform Naive 0.9 -1.57692
Uniform Sophisticate 0.900684 -1.57692
Normal Naive 0.725994 -1.57692
Normal Sophisticate 0.730595 -1.57693
Extreme Value Naive 0.467228 -1.58092
Extreme Value Sophisticate 0.477292 -1.58106
Logistic Naive 0.670309 -1.57692
Logistic Sophisticate 0.676695 -1.57693
Laplace Naive 0.545986 -1.57699
Laplace Sophisticate 0.555965 -1.57705

Table: Log-likelihood estimates of β for the mean and standard deviation from the
example if the agent is naive and β = 0.9, the true distribution is Uniform, and the
analyst knows the mean and standard deviation of the payoff distribution with T = 5
periods.
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Parametric Family β Mean Std. Deviation Log-Likelihood
Uniform Naive 0.899999 -0.0000121032 3.08835 -1.57692
Uniform Sophisticate 0.901039 0.00221368 0.838862 -1.57692
Normal Naive 0.729808 0.0281063 2.91605 -1.57692
Normal Sophisticate 0.736594 0.0731089 4.76987 -1.57692
Extreme Value Naive 0.706168 -0.347689 0.621169 -1.57692
Extreme Value Sophisticate 0.633785 0.144273 0.652626 -1.60398
Logistic Naive 0.6741 0.0166023 2.176 -1.57692
Logistic Sophisticate 0.683439 0.0773394 5.63958 -1.57693
Laplace Naive 0.55626 0.017136 1.21714 -1.57698
Laplace Sophisticate 0.569426 0.0941048 5.09827 -1.57703

Table: Log-likelihood estimates of β, the mean, and standard deviation if the agent is
naive and β = 0.9, the true distribution is Uniform with parameters as in the example,
and the analyst does not know the mean and standard deviation of the payoff
distribution with T = 5 periods.
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Figure: Estimates of β in the example when the agent is naive and time-inconsistent
with β = 0.9, β̂ = 1, δ = 1 for different number of periods T under different
parametric assumptions. The analyst knows that δ = 1, β̂ = 1, as well as the mean
and standard deviation of the shock distribution, and estimates β. As the analyst
observes the behavior in more and more periods, the estimated value of β eventually
moves further away from the true value of 0.9.
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