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Abstract. We study the impact for mechanism design of the possibility that
some participants are uninformed about the rules associated with a trading
mechanism but otherwise rational. Since ’deviations’ by the mechanism de-

signer are not observed by these uninformed participants the nature of the
’equilibrium’ of the design game changes, as do equilibrium mechanisms. We
study the traditional independent private value auction environment and pro-
pose a method that makes it possible to characterize an interesting class of

equilibrium outcomes for the game using standard reduced form direct mech-
anisms. We show that payoffs in the equilibrium where the seller’s expected

revenue is highest within this class can be characterized using a surprisingly

simple mechanism called an equal priority auction. Informed bidders with
intermediate valuations receive offers with the same probability as uninformed
buyers, despite the fact the seller believes that the informed will accept the

offers for sure, while uninformed buyers might not.
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1. Introduction

There is an acronym that floats around the internet - TLDNR - that explains
why no one reads your email messages. It means “too long, didn’t read”. The
long translation we adapt in this paper is “... there is undoubtedly information in
your message, but its’ value to me isn’t likely to be as high as what I could get by
reading something else”. We refer to this as ’rational ignorance’.

The message of this paper is that this kind of behavior can impact trading mech-
anisms. We aren’t the first to notice this. The marketing literature has documented
buyers’ tendency to ignore information when they make purchase decisions. The
simplest commitment of all is a price commitment. Dickson and Sawyer (1990)
asked buyers in supermarkets about their price knowledge as they were shopping.
Only 50% of all respondents to their in store survey claimed to know the price of the
object they had just taken off the supermarket shelf to put in their basket. Even
when the item being placed in the basket had been specially marked down and
heavily advertised, 25% of consumer did not even realize the good was on special.

Of course, having buyers be pleasantly surprised to learn that a price is lower
than they expected isn’t really a problem. The problem is the buyers who didn’t
know the price was on special, and went somewhere else to buy it. If prices can’t
influence buyer behavior, marketing has a problem.

We are interested in more than prices, we want to know how this kind of rational
ignorance can impact trading mechanisms. We consider what is probably the best
understood trading problem of all - the independent private value auction. We
show that within a plausible class of equilibria - equilibria in which ignorant buyers
convey no information to sellers - the revenue maximizing mechanism is something
we call an equal priority mechanism.

The equal priority mechanism treats informed buyers and sellers with interme-
diate valuations in exactly the same way as ignorant buyers. When a mechanism
chooses to attempt to trade with them, it makes them a take it or leave it price
offer that is independent of any messages they may have sent. When buyers have
very high or very low valuations, the seller treats messages as bids. If the seller
decides to sell to one of these buyers, she will make an offer equal to the second
highest bid she has received - much as she would in a standard auction.

Rationally ignorant buyers will be pooled with intermediate valuation buyers
and receive a take it or leave it offer (which they might reject). In our formulation,
this offer will be exactly the offer the buyers expected to receive. In other words,
these buyers have rational expectations - there is nothing behavioral about them
at all.

One appealing feature of the independent private value auction problem for
mechanism design is that finding the revenue maximizing mechanism can be re-
duced to a problem of solving a maximization problem with a single parameter
- the reserve price. The revenue maximizing mechanism with rationally ignorant
buyers can be found by solving a problem with four parameters - harder, but still
computationally tractable. The numerical solutions we have found in simple envi-
ronments suggest that fixed priced trading is quite common. In fact, it is easy to
show theoretically that if every buyer is equally likely to be informed or rationally
ignorant, the trade will occur at a fixed price (with no auctions) much more than
half the time. This may be another explanation for why auctions aren’t particularly
common in many consumer trading platforms.
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One well known trading platform on which auctions are used is eBay. The
environment on eBay doesn’t fit our model exactly because buyers arrive randomly,
but the mechanisms used by eBay resemble the equal priority action we describe
below. A seller can implement something very close to what we describe here
by running an auction with a ’buy it now’ option, then offering the same model
separately at a fixed price. Since buy it now options disappear on eBay once a
buyer with a low valuation submits a bid, trade will occur at the fixed price (which
should be the same as the buy it now price) a lot of the time, though auctions will
continue to occur.

1.1. Heuristic. The formal derivation below is based on two arguments.
The first is that in an environment with uninformed buyers, standard auction

mechanisms can’t be supported as equilibrium even though the seller would much
prefer to use them. The fault lies with the seller who can’t resist the temptation of
exploiting rationally ignorant buyers.

To see why, suppose the seller wants to use a second price auction with optimal
reserve. This means that informed buyers read the auction rules, as they might
on eBay, then realize they should bid their valuations. Uninformed buyers don’t
read the rules, so they only anticipate a second price auction. Acting on their
expectations, they also bid their valuations.

What makes this break down is the fact that if the seller changes the auction
rules, the uninformed won’t realize it, and will continue to bid their valuations no
matter what the seller does. A simple deviation can extract the surplus of the
uninformed.

The seller can ’deviate’ from the second price auction and ask for bidders to
attach a coupon code to their bid. The coupon code isn’t secret, it is plainly visible
in the description of the bidding rules. A buyer who reads the new rules will see
the coupon code and attach it to their bid.

A bidder who doesn’t read won’t add the code. The new mechanism commits
to a second price auction for bids submitted with a code, but to treat bids with no
code attached as if it were a first price auction. In other words, if the highest bid is
submitted by an uninformed bidder, the seller will commit to make them an offer
which is equal to their bid, instead of offering them the second highest bid.

The second argument involves how the seller should respond. The seller will
want to sell to the uninformed buyers when informed buyers have low valuations.
So the natural idea would be to have an auction, then if bids are too low, make
an offer to the uninformed. The complication is that informed bidders don’t have
to bid. They can pretend to be uninformed. Since they are informed, they know
when the seller will make an offer to the uninformed and what that offer will be.
To prevent the informed from pretending to be uninformed, the seller has to keep
the offer to the uninformed higher than she would like it to be, since the seller is
never sure whether an uninformed buyer will accept the offer.

The seller then faces a trade off - keep the offer high and fully separate the
informed from the uninformed, or lower the take it or leave it offer and allow some
of the informed buyer to pool with the uninformed. We show that the latter is
always revenue maximizing, which is where the equal priority phrase comes from
in our title.
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1.2. Literature. As mentioned above, the idea that consumers might not notice
prices is an old one in the marketing literature, as in Dickson and Sawyer (1990)
and references therein. The approach had been used earlier in economics, as in,
say Butters (1977), in which buyers randomly observe price offers in a competitive
environment. In that literature, firms advertise prices which some buyers see, while
others do not.1 These papers considered the same problem that we do, which is
how this unobservability would affect the prices that firms offer. The difference
here is that we are interested in mechanisms, not prices.

What ignorant buyers do is to provide type dependent outside options to in-
formed buyers. This is one of the most basic problems in the literature on competing
mechanisms. One example is the paper by McAfee (1993). His model had buyers
whose outside option involved waiting until next period to purchase in a competing
auction market just like the one in the current period. He imposed large market
assumptions to ensure that the value of these outside options was independent of
the reserve price that any seller in the existing market chose.

In our paper, the value of this outside option depends on the nature of the
mechanism the seller chooses for the informed. This makes it resemble the later
papers on competing mechanisms (at least in terms of outside options) like Virag
(2010) who studies finite competing auction models where a seller who raises her
reserve price increases congestion in other auctions, or Hendricks and Wiseman
(2020) who study the same problem in a sequential auction environment.

With buyers potentially uninformed of the selling mechanism but nonetheless
having rational expectations, the seller’s commitment power is limited. There is an
extensive literature on limited commitment (for example Bester and Strausz (2001),
Kolotilin et al. (2013), Liu et al. (2014), or Skreta (2015)). To our knowledge, our
model is the first to study commit with respect to a subset of traders involved in
the same transaction.

A recent paper by Akbarpour and Li (2020) provides another model of limited
commitment. They assume that each individual buyer only observes the part of
the seller’s commitment in relation to the buyer’s own report, and impose a “cred-
ibility” constraint that the seller does not wish to secretly alter other parts of the
commitment. The logic we described above explaining why the second price auction
can’t survive as an equilibrium is used in a similar way in their paper. The differ-
ence between their approach and ours is that they assume the credibility constraint
applies to all buyers and describe mechanisms that are immune to this constraint.
Here we assume that credibility is an issue only for some buyers and find optimal
mechanisms.

Our informed buyers can ’prove’ they are informed in the same sense as Ben-
Porath et al. (2014). The main difference is that they assume that the social
choice function is known by all the players, while in our model the driving force is
the presence of buyers who are uninformed of the seller’s mechanism. They also
assume players have complete information about the state, but in our model only
buyers know their own valuations.

Finally, our informed buyers can pretend they are uninformed but not the other
way around. The one-sidedness of this incentive condition is similar to Denekere
and Severinov (2006), who study an optimal non linear pricing problem with a

1See also Varian (1980), or Stahl (1994). Varian calls buyers informed if they see prices of all

firms, and uninformed if they do not.
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fraction of consumers constrained to reporting their valuations truthfully. As in
our paper, a ’password’ mechanism separates ‘honest’ consumers from ‘strategic’
consumers who can misrepresent their valuations costlessly. The main difference
is that we start with a standard independent private value auction problem rather
than a non linear pricing problem. More importantly, our uninformed buyers are
uncommunicative in the class of equilibria we focus on, but they are rational rather
than behavioral or face prohibitive communication cost.

2. Unobserved Mechanism Design

There are n potential buyers of a single homogeneous good. Each buyer has a
privately known valuation w that is independently drawn from the interval [0, 1].
Assume for the moment, all valuations are distributed according to some distribu-
tion F with strictly positive density f . Buyers’ payoff when they buy at price p is
given by w− p. The seller’s cost is zero, so the profit from selling at price p is just
p.

Each buyer is informed about the rules of the seller’s mechanism with probability
(1− α). Otherwise a buyer is rationally ignorant and pays no attention to the rules
of the mechanism.

Define

π(w) = (1− F (w))w

as the revenue function from a take-it-or-leave-it offer w to uninformed buyers.
In what follows,2 we restrict attention to distribution functions such that π(w) is
strictly concave. Following the standard auction literature, we also define

φ(w) = w −
1− F (w)

f(w)

as the virtual valuation function for informed buyers. We have φ(0) < 0 and
φ(1) = 1, and so φ(w) crosses 0 at least once. Since π′(w) = −φ(w)f(w), concavity
of π(·) implies that φ(w) crosses 0 only once. Let the crossing point be r∗; this is
also the unique maximizer of π(w). Furthermore, φ(w) is strictly increasing in v
for w ≥ r∗.3 The valuation r∗ represents the optimal reserve price in a standard
auction, regardless of the number of buyers.4 That is, when α = 0, the seller’s
outside option is always 0, so the reserve price is such that the virtual valuation of
the buyer with w at the reserve price is equal to the seller’s outside option.

There is a common message space M which is used by all buyers to communicate
with the seller. For example, M might be the set of possible browsing histories for
a buyer. A message from buyer i will be denoted bi. We make no assumptions on

2The concavity assumption is used when we characterize the optimal equal priority auction

and show that it achieves an equilibrium of our unobserved mechanism design game. It is not
used in Theorem 1.

3At any w ∈ (0, 1), if f(w) is non-decreasing, then by definition φ(w) is strictly increasing; if
f(w) is strictly decreasing at w and if φ(w) ≥ 0, then φ(w) is strictly increasing in w, because
concavity of π(w) implies that φ(w)f(w) is strictly increasing in w.

4In much of the auction literature, the seller has the fixed outside option of keeping the good.

The virtual valuation function φ(w) is assumed to be strictly increasing to simplify the analysis
(the “regular case” in Myerson (1981)). In our model, the seller’s outside option in an auction
with informed buyers is to give it to an uninformed buyer with a take-it-or-leave-it offer, and is

endogenous. We do not need to assume that φ(w) is strictly increasing for valuations below r∗.
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M itself except that it is rich enough to embed the product of the set of buyer
valuations and the interval [0, 1]. The message space M is common knowledge.

After processing all the buyers’ messages, the seller’s mechanism makes an offer
to one of the buyers.5 Our assumption is that it is common knowledge that all
buyers understand and believe a take it or leave it price commitment.

This offer can be refused. For the moment, we’ll assume that when it is, there
is simply no trade at all. This makes for a cleaner analysis of the issues we are
interested in. We’ll explain later the sense in which the mechanism we describe will
be part of an equilibrium even if multiple offers are allowed after the first one is
rejected. We’ll also defer until later to show the sense in which in this environment,
sellers won’t offer a mechanism that commits buyers to accept offers ex post.

Whether or not a buyer has taken the time to understand how a mechanism
works is private information. In what follows we’ll use the convention that a buyer
who has figured out the mechanism is referred to as an informed buyer. One who
hasn’t is just called an uninformed buyer. So buyer i’s type is given by the pair
(vi, τi), where vi ∈ [0, 1] and τi ∈ {ǫ, µ}, where ǫ means informed, and µ means
uninformed. Each buyer has type µ with probability α that is independent of their
valuation or the types of the other bidders.

A mechanism γ for the seller is a collection {M, (pi, qi)
N
i=1}, where M is the

common message space, pi is a mapping from a profile of messages (b1, . . . , bN ) to a
take-it-or-leave-it offer designed for buyer i, while qi maps the same set of messages
into the probability with which the offer will actually be made to buyer i. The
mapping qi must satisfy

∑

i

qi (b1, . . . , bN ) ≤ 1

for every profile of messages. Let Γ be the set of feasible mechanisms.6

Definition. The imperfect information game G (α) is defined to be the extensive
form game of imperfect information in which the seller first commits to some γ ∈
Γ, the informed buyers send messages to the seller that depend on γ, and the
uninformed send messages that are independent of γ. Allocations and final payoffs
are determined by the mechanism γ, the realized messages, and the acceptance
decisions of any buyer who receives an offer. The parameter α gives the common
belief with which each buyer and the seller believes that each of the buyers is
uninformed.

A strategy rule in G (α) for buyer i is a function σi : [0, 1] × {ǫ, µ} × Γ →
△ (M) that specifies what message the buyer will send for each of the valuations
conditional on whatever the buyer knows about the seller’s mechanism. Since an

5In the standard mechanism design paradigm, a mechanism produces an allocation according
to a mapping from messages. Representing the output of a mechanism as an offer instead of an
allocation has no implications. This is no longer the case in our unobserved mechanism problem.
See section 4.1 for additional comments on modeling the output of an unobserved mechanism as

an algorithm.
6We have thus restricted each mechanism γ in Γ to be a “pure” one, in that each pi maps a

profile of messages to a single price, instead of a distribution of prices. This can be easily dropped
without affecting the formalism; for the equilibria we construct in the paper this restriction is

without loss.
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uninformed buyer never sees the mechanism a seller offers, we have the informa-
tional constraint

σi (vi, µ, γ) = σi (vi, µ, γ
′) = σi (vi, µ)

for all γ and γ′. We retain this assumption throughout the paper.
As mentioned above, informed buyers can pretend to be uninformed, but not

conversely. This allows the seller to identify informed buyers by, for example, pro-
viding a coupon code that must be submitted with a bid. One of the stranger
properties of equilibrium in this game is that pure strategy (for the seller) equilib-
rium typically won’t exist. If such equilibrium did exist, uninformed bidders would
guess the coupon code. This is just because of the fact that strategies are common
knowledge in any Nash based equilibrium. This is just another way of saying that
uninformed bidders have ’rational expectations’.

Once the uninformed guess the coupon code, they will submit informative bids
and the seller won’t be able to prevent himself from exploiting that information. To
prevent the uninformed buyers from guessing this password, it has to be random.
There is nothing secret about this password, it is freely available to anyone who
takes the time to read the rules of the mechanism.

Refer to the seller’s mixture as ψ ∈ △ (Γ). Let R (γ, (σi (·, ·, γ))
n
i=1) be the

expected revenue for the seller from mechanism γ when an uninformed buyer i uses
strategy σi (·, µ) an informed buyer i uses σi (·, ǫ, γ).

A perfect Bayesian equilibrium for this game is a mixture ψ for the seller, and

pairs of strategy rules (σi (·, ǫ, γ) , σi (·, µ))
N

i=1 for informed and uninformed buyers
respectively that satisfy the usual conditions:7 for each informed buyer i,

Ev−i,τ−i
{qi (σi (vi, ǫ, γ) , σ−i (v−i, τ−i, γ)) ·max [vi − pi (σi (vi, ǫ, γ) , σ−i (v−i, τ−i, γ)) , 0]}

(2.1)

≥ Ev−i,τ−i
{qi (b

′, σ−i (v−i, τ−i, γ)) ·max [vi − pi (b
′, σ−i (v−i, τ−i, γ)) , 0]}

(2.2)

for all vi ∈ [0, 1], b′ ∈ M and realized γ from the mixture ψ; for each uninformed
buyer i,

Ev−i,τ−i,γ {qi (σi (vi, µ) , σ−i (v−i, τ−i, γ)) ·max [vi − pi (σi (vi, µ) , σ−i (v−i, τ−i, γ)) , 0]}

(2.3)

≥ Ev−i,τ−i,γ {qi (b
′, σ−i (v−i, τ−i, γ)) ·max [vi − pi (b

′, σ−i (v−i, τ−i, γ)) , 0]}

(2.4)

for all vi ∈ [0, 1], and bi ∈ M; and for the seller,

(2.5) Eγ {R (γ, (σi (·, ·, γ))
n
i=1)} ≥ R (γ′, (σi (·, ·, γ

′))ni=1)

for all γ′ ∈ Γ.

2.1. Relationship to standard mechanism design. Our unobserved mecha-
nism design game is a kind of informed principal problem. The unusual part about
it is that the seller has more information about the mechanism he is using than
about the product itself. The equilibrium we describe has a kind of ’punishment
by beliefs’ aspect that is based on this.

7For simplicity we assume below that each buyer uses a pure strategy. It is straightforward to
extend the following conditions to allow for mixing by buyers. The max operation appears when

taking expectations because a mechanism generates an offer instead of an outcome.
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For example, we have restricted the game to one in which the seller makes just
a single take it or leave offer after processing messages. The seller might like to
make additional offers if he makes an offer to the uninformed which is rejected.
However, if the uninformed believe there is only a single offer, they can support
the equilibrium by simply disappearing if they don’t get the first offer. If the seller
understands this he won’t find it profitable to alter his mechanism to introduce
these second offers.

Like all Bayesian games, in our unobserved mechanism design game, equilibrium
strategies must constitute a fixed point. In its simplest form, uninformed buyers’
expectations about the relationship between the messages they send and the offers
they get must coincide with the actual relationship once the seller best replies
to those expectations. As a result, our game potentially has many equilibrium
outcomes. The source of multiplicity comes from different information contents of
messages by uninformed buyers.

A babbling equilibrium is one example. No uninformed buyer will send an in-
formative message because he or she believes the seller’s mechanism won’t respond
to it. Since the seller thinks uninformed buyers are babbling, there is no reason for
their mechanism to respond to these messages.

There may exist equilibrium outcomes in which uninformed buyers with very
low valuations will separate from higher valuation buyers by saying they aren’t
interested in an offer. To support this, some of the uninformed who believe they
will never accept a seller offer must nonetheless act as if they might accept an
offer. Messages from uninformed buyers are informative of their valuations, but
they expect at most one ‘serious’ offer. These outcomes can be constructed as
straightforward extensions of what we describe below,8 but the challenge is to show
that the seller will commit not to make offers to uninformed buyers who say they
are uninterested for incentive reasons (even when he has no better alternative).

There may also exist equilibria in which uninformed buyers send much richer
information with their messages, which are effectively cheap talk. All of these
alternative equilibria where uninformed buyers convey information to the seller
exhibit the same logic that we describe below. For example, informative cheap talk
messages allow the seller to make offers to the buyers whose messages say they are
most likely to accept them. This effect tends to raise the seller’s expected revenues.
Yet to maintain incentive compatibility the seller has to make fairly attractive
offers so that the informed are incentivized to reveal that they are informed. This
makes it hard to determine whether equilibria with more information conveyed by
uninformed buyers actually benefit the seller.

A natural approach to find an equilibrium outcome as a fixed point is to use the
revelation principle and all the well known properties of reduced form mechanisms.
The usual composition of the outcome function and the strategies can be used to
create something that looks like a direct mechanism. Yet not all direct mecha-
nisms that look incentive compatible correspond to equilibrium outcomes because

8To be precise, for any threshold valuation sufficiently close to 0, we can construct an equal

priority auction in which informed buyers with intermediate valuations are pooled together with
uninformed buyers with valuations above the threshold (who tell the seller that they are interested
in an offer). Further, the equal priority auction is revenue maximizing conditional on the seller

not making an offer to uninformed buyers with valuations below the threshold.
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uninformed buyers can only use a restricted set of communication strategies. In ad-
dition, equilibrium outcomes in which uninformed buyers learn how to participate
in a direct mechanism can’t correspond to equilibrium outcomes.

A conceptually workable approach is to condition the search for equilibrium
outcomes as fixed points on a particular communication strategy of uninformed
buyers. Given this strategy, the seller solves an optimal mechanism design problem
where the objective function includes both revenues from uninformed and informed
buyers, but incentive constraints are imposed only on informed buyers. These con-
straints require informed buyers to report their valuations truthfully and not to
have strict incentives to pretend to be uninformed by adopting the latter’s commu-
nication strategy. There are no incentive constraints on uninformed buyers at this
stage, even if the communication strategy is informative of their valuations and is
exploited by the seller. If an optimal mechanism of this kind can be character-
ized, then one may hope to find a fixed point by showing that the communication
strategy of uninformed buyers is indeed a best response to the optimal mechanism.
This last step relies on randomization by the seller in implementing the optimal
mechanism to prevent uninformed buyers from participating in the mechanism in
the same way as informed buyers.

There are at least three difficulties with the above approach. We have to be
able to characterize optimal mechanisms for a given communication strategy of
uninformed buyers. Finding a fixed point in terms of a particular communication
strategies within a class can be hard. It is not clear what class of communication
strategies should be considered.

2.2. Direct mechanisms. So we are going to define a special kind of direct mech-
anism that we can use to characterize an important class of equilibrium outcomes.
In particular, it will allow us to characterize equilibrium in which the seller uses
a symmetric mechanism, informed buyers use the same strategy, and uninformed
buyers use uninformative messages (babble).

First we introduce notation to help define what symmetry means. In what follows
the notation m always means the number of uninformed buyers. We reorder n
buyers such that the first n−m of them are informed; the orders among the informed
and among the uninformed are arbitrary. For each v = (v1, . . . , vn) ∈ [0, 1]n, and
for each i = 1, . . . , n−m, let

ρim(v) = (vi, v2, . . . , vi−1, v1, vi+1, . . . , vn−m, vn−m+1, . . . , vn};

that is, ρim(v) switches the positions of v1 and vi. Now we have

Definition. A direct mechanism δ is a collection of functions
{

(qǫm, p
ǫ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1

}

where qτm, p
τ
m : [0, 1]

n
→ [0, 1], τ = ǫ, µ, satisfy

• (qτm(v), pτm(v)), τ = ǫ, µ, are invariant to (vn−m+1, . . . , vn);
• (qǫm, p

ǫ
m) are invariant to permutations of (v2, . . . , vn−m), and (qµm, p

µ
m) are

invariant to permutations of (v1, . . . , vn−m);
• for all v and for all m,

(2.6)

n−m
∑

i=1

qǫm
(

ρim (v)
)

+mqµm(v) ≤ 1.
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The function qµm (v) gives the probability with which an offer pµm(v) is made to
an uninformed buyer given that there are m uninformed buyers and the profile of
valuations is v = {v1, . . . , vn}. The function q

ǫ
m (v) gives the probability with which

an offer pǫm(v) is made to buyer 1 given that there are m uninformed buyers and
the valuation profile of buyers i = 2, . . . , n is v−1 = {v2, . . . , vn}. Since uninformed
buyers babble, we require the allocation and the offer functions of both the informed
and the uninformed to be independent of the valuations of the latter. Symmetry
requires the allocation and the offer functions of uninformed buyers to be invariant
to permutations of the valuation profile of the informed, and the allocation and
the offer functions of each informed buyer to be invariant to permutations of the
valuation profile of the other informed buyers. Since ρim (v) switches the positions

of the first element of v and its i-th element, the sum
∑n−m

i=1 qǫm
(

ρim (v)
)

gives the
probability that the offer is made to one of the first n−m elements of v. Then (2.6)
ensures that when the informed buyers have valuations given by the first n − m
valuations in v, the probability with which the good is offered to one of them plus
the probability that it is offered to one of the uninformed buyers is less than or
equal to 1.

We can use the above definitions to build something that looks exactly like a
traditional reduced form mechanism. The probability with which an informed buyer
whose valuation is w receives an offer when there are m uninformed is

Qǫ
m(w) = Ev {q

ǫ
m(v)|v1 = w} .

Similarly

P ǫ
m(w) = Ev {q

ǫ
m(v)pǫm(v)|v1 = w}

is the expected price the informed bidder with valuation w would pay. Note that
we have assumed that in any direct mechanism an informed buyer accepts the offer
he receives with probability one. The is no max operator for informed buyers. This
assumption is justified because informed buyers know the mechanism.

For each m = 0, . . . , n − 1, let B(m;n − 1, α) be the probability that there are
m uninformed buyers among the n− 1 others. This probability is given by

B(m;n− 1, α) =

(

n− 1
m

)

(1− α)n−1−mαm.

Now by taking expectations over m we have the usual reduced form functions:

Qǫ (w) =

n−1
∑

m=0

B(m;n− 1, α)Qǫ
m (w) ,

P ǫ (w) =

n−1
∑

m=0

B(m;n− 1, α)P ǫ
m (w) .

We then have

U ǫ (w) = wQǫ (w)− P ǫ (w) .

At this point, we inherit all the usual results from mechanism design in iid
environments for each of the informed buyers. In particular, if the mechanism δ
is incentive compatible with respect to valuations, the payoff to an informed buyer
with valuation w can be written as

(2.7) U ǫ (w) =

∫ w

0

Qǫ (x) dx,
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with Qǫ(·) non-decreasing.9 The (interim) payoff to an uninformed bidder with
valuation w is

Uµ (w) =

n−1
∑

m=0

B(m;n− 1, α)Ev

{

qµm+1(v)max
[

w − pµm+1(v), 0
]}

.

Definition. The mechanism δ is incentive compatible for informed buyers if (2.7)
holds, Qǫ(·) is non-decreasing and

U ǫ (w) ≥ Uµ (w)

for every w.

From standard arguments and properties of the binomial distribution, it is
straightforward to show that the seller’s revenue from informed buyers (again from
any incentive compatible mechanism) is given by

n(1− α)

∫ 1

0

Qǫ (w)φ(w)f(w)dw.

The seller’s revenue from uninformed buyers is given by
n
∑

m=1

B(m;n, α)Ev {mq
µ
m(v)π (pµm(v))} .

The seller’s total revenue R(δ) from a direct mechanism δ is the sum of the above
two expressions.

The following result provides a two-way relationship between the optimal direct
mechanism and a symmetric equilibrium of the unobserved mechanism design game
with babbling by uninformed buyers. Any equilibrium outcome can be found by
characterizing optimal direct mechanisms, and an optimal direct mechanism can
be used to construct an equilibrium.

Theorem 1. Suppose that uninformed buyers send uninformative messages in some
symmetric equilibrium of the game G (α). Then there is an incentive compatible
direct mechanism δ∗ that achieves the equilibrium expected revenue for the seller
and R (δ∗) ≥ R (δ) for every incentive compatible direct mechanism δ. Conversely,
any incentive compatible direct mechanism δ∗ that maximizes R (δ) can be used to
construct an equilibrium in the Bayesian game G (α).

Our argument for going from an equilibrium outcome to an incentive compat-
ible direct mechanism follows the standard revelation principle. The assumption
that the equilibrium has uninformative messages from buyers is used because direct
mechanisms as we have defined them do not allow an allocation to depend on the
valuations of the uninformed. In a direct mechanism, the equilibrium condition
(2.2) for informed buyers becomes incentive compatibility condition for truthful
bidding and a participation condition with type dependent outside option from
pretending to be uninformed. The equilibrium condition (2.5) for the seller re-
quires the incentive compatible direct mechanism derived from the equilibrium to
be revenue maximizing.

9See, for example, Myerson (1981). We have assumed Uǫ(0) = 0 for simplicity. This is
usually not part of requirement for incentive compatibility, but clearly necessary for any revenue

maximizing direct mechanism.
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In the other direction, from an optimal direct mechanism, we construct a sym-
metric equilibrium of the unobserved mechanism design game G (α) where unin-
formed buyers babble. This is done through introducing a random password in
the direct mechanism. Informed buyers are identified as those who match the real-
ized password, and their valuation reports are accepted as truthful, while valuation
reports from buyers who don’t match the password have their valuation reports
ignored by the seller. In equilibrium then uninformed buyers babble, and the seller
finds it optimal to commit to mechanisms that ignore buyers who can’t match the
realized password.

3. Equal-priority auctions

Our main result is that for distributions such that π(·) is concave, the outcome
of a symmetric equilibrium of the game G (α) where uninformed buyers babble
corresponds to a revenue maximizing “equal priority auction.” We’ll show this in
two parts. First we’ll describe the set of equal priority auctions and describe one
that gives the seller the highest expected revenue. Later we’ll show how to verify
this is the best for the seller among all direct mechanisms.

An equal priority auction is fully characterized by four numbers, a ’reserve price’
r, a price offer t, and the upper and lower bound v+ and v− of an interval of buyer
types. We’ll assume throughout that r ≤ t ≤ v− ≤ v+.

In what follows, there is some message that is treated as if the buyer who sent
that message is uninformed. Each of the informed buyers sends a bid. A realized
profile of messages and bids will then have m messages saying uninformed, and
n−m bids. Denote the number of informed buyers who bid in the interval [v−, v+]
as k. The auction treats the k informed buyers and m uninformed buyers with the
same allocation priority. Priorities of informed buyers who bid above v+ and who
bid below v− are equal to their bids, with the former all higher than the (m + k)
buyers and the latter all lower than them. The allocation and offers in an equal
priority auction are determined in the following way:

• If m ≥ 1 and the highest bid received from the informed bidders is no larger
than v+, then the seller makes an offer t to each uninformed bidder and
an offer v− to each informed bidder who bid in the interval [v−, v+] with
probability 1/(m+ k).

• Otherwise, the seller makes an offer to the informed buyer who made the
highest bid. Let v′ be the second highest bid by an informed buyer. The
offer to the high bidder is



















v′ v′ > v+

r m = 0; v′ < r

v′ m = 0; v′ ∈ (r, v−)
v−+(m+k)v+

m+k+1 otherwise.

These rules constitute an indirect mechanism and support some kind of Bayesian
equilibrium in bidding strategies. Our main theorem is going to say that conditional
on uninformative messages from the uninformed bidders, the revenue maximizing
mechanism is going to be a special kind equal priority auction. To see what that
means, and to understand how to find the optimal one, one bit of notation is re-
quired. Suppose for the moment, potentially counterfactually, that informed buyers
bid their true valuations Then using the allocation rule in the indirect mechanism,
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we can calculate the probability with which each type of informed buyer trades.
This probability of trade function Qǫ for an informed buyer is given by
(3.1)














0 if w < r
(1− α)n−1Fn−1(w) if w ∈ [r, v−)

∑n−1
m=0B(m;n− 1, α)

∑n−1−m

k=0 Bn−1−m
k (v−, v+)/(m+ k + 1) if w ∈ [v−, v+]

∑n−1
m=0B(m;n− 1, α)Fn−1−m(w) if w > v+,

where

Bn−1−m
k (v−, v+) =

(

n− 1−m
k

)

(F (v+)− F (v−))
kFn−1−m−k(v−).

For informed buyers with valuation w between r and v−, Q
ǫ(w) is such that

trade occurs only when there are no uninformed buyers who have a higher priority.
For w > v+, we have

Qǫ (w) = ((1− α)F (w) + α)
n−1

,

so informed buyers with valuation w above v+ have a higher priority than unin-
formed buyers.

For convenience, we denote Qǫ(w) for w ∈ [v−, v+] as χ(v−, v+). To provide a
convenient formula, we re-do the double summations overm and k by first summing
over k for fixed l = m+ k, and then summing over l. We can rewrite χ(v−, v+) as

n−1
∑

l=0

(

n− 1
l

)

((1− α)F (v−))
n−1−l 1

l + 1

l
∑

k=0

(

l
k

)

((1− α)(F (v+)− F (v−)))
kαl−k

=

n−1
∑

l=0

(

n− 1
l

)

((1− α)F (v−))
n−1−l 1

l + 1
((1− α)(F (v+)− F (v−)) + α)l.

Thus,

(3.2) χ(v−, v+) =
((1− α)F (v+) + α)n − ((1− α)F (v−))

n

n((1− α)(F (v+)− F (v−)) + α)
.

The function χ gives the probability that a buyer whose valuation is in the pooling
interval [v−, v+] receives an offer. The logic in χ (v−, v+) is that an informed bidder
has the same chance of receiving an offer as any of the uninformed buyers and
informed buyers whose valuations are in the interval [v−, v+] as long as none of the
other informed bidders has valuation above v+. This explains why in the formula
(3.2) the denominator is the expected number of buyers who have the equal priority,
and the numerator is the total probability that there is one with the priority.

The trading probability Qǫ(w) of an informed buyer with valuation w is weakly
increasing. It is continuous except at three valuations. It jumps up at w = r from
0 to Qǫ(r). Another upward jump occurs at w = v−:

χ(v−, v+) > B(0;n− 1, α)Bn−1
0 (v−, v+) = (1− α)n−1Fn−1(v−).

It jumps up for the third time at w = v+:

χ(v−, v+) <

n−1
∑

m=0

B(m;n− 1, α)

n−1−m
∑

k=0

Bn−1−m
k (v−, v+) = ((1− α)F (v+) + α)n−1.
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Then mimicking direct mechanisms we could define an expected payoff U ǫ(w) to
an informed buyer as follows:

(3.3) U ǫ(w) =

∫ w

0

Qǫ(x)dx.

We have the following result.

Lemma 2. There is a Bayesian equilibrium in truthful bidding strategies if

(3.4)

∫ v−

r

(1− α)n−1Fn−1(w)dw ≥ χ(v−, v+)(v− − t)

Two arguments are needed. The first is to show that the transfers defined above
together with the allocation rule are the ones that make truthful bidding incentive
compatible by informed buyers. Note when informed buyers bid their valuations
truthfully, they accept their offers with probability one. Since the allocation rule
is monotone, we accomplish the first stope by showing that the payoff of informed
buyers from truthful bidding matches the payoff defined by (3.3) and (3.1) (Myer-
son,1981). The second is to show that when t satisfies condition (3.4) no informed
buyer can improve his or her payoff by pretending to be uninformed. This just
follows from the observation that the right hand side of (3.4) is the expected payoff
for an informed buyer with valuation v− pretending to be uninformed. By con-
struction, uninformed buyers have the same allocation priority as informed buyers
whose valuations are in [v−, v+]. The expected payoff of informed buyers given
by (3.3) and (3.1) is strictly convex between r and v− and above v+. Thus, the
incentive condition for informed buyers not to pretend to be uninformed is satisfied
if and only if it holds for an informed buyer with valuation v−.

The following figure shows the Bayesian equilibrium payoffs to bidders with
various valuations in an equal priority auction with a binding incentive compatible
constraint (3.4). The green line represents the payoff each buyer type achieves by
acting as an uninformed bidder. The red curve represents the payoff to informed
bidders - except that the payoff to informed bidders who bid in the interval [v−, v+]
coincides with the green line.

U

v0 r v−t v+
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In an equal priority auction with a binding incentive compatible constraint (3.4),
it is a matter of indifference for informed buyers with valuations in [v−, v+] whether
they participate in the auction by truthfully reporting their valuations, or wait
for the take-it-or-leave-it offer t just like an uninformed buyer. Indeed, the same
truth telling equilibrium among informed buyers is implemented if we change the
transfer rule, so that an informed buyer with valuations in the pooling interval
[v−, v+] receives the offer t, instead of the maximum of the second highest bid and
reserve price r when there are no other buyers in the equal priority pool, or v−
when there is at least one buyer in the pool. Informed buyers with low valuations,
between r and v−, and those with high valuations, above v+, have strict incentives
to participate in the auction.

3.1. Revenue Maximizing Equal Priority Auction. This already looks like
a direct mechanism, albeit one with very specific allocation rules. The seller’s
expected revenue from informed buyers is given by

(3.5) n(1− α)

∫ 1

r

Qǫ(w)φ(w)f(w)dw,

and the revenue from uninformed buyers is given by

(3.6)

n
∑

m=1

B(m;n, α)

n−m
∑

k=0

Bn−m
k (v−, v+)

m

m+ k
π(t) = nαχ(v−, v+)π(t).

The revenue maximizing equal-priority auction {r, t, v−, v+} maximizes the sum of
(3.5) and (3.6) subject to

r ≤ t ≤ v− ≤ v+;

and (3.4). The following lemma characterizes optimal equal-priority auctions.

Lemma 3. If (r, t, v−, v+) is an optimal equal-priority auction, then

0 < r < r∗ < t < v− < v+ < 1.

Further, (3.4) holds with equality, and

α(π(t)− φ(v+)) = (1− α)

(

(v− − t)(φ(v+)− φ(v−))f(v−) +

∫ v+

v−

f(w)(φ(v+)− φ(w))dw

)

;

(3.7)

− απ′(t) = (1− α)(φ(v+)− φ(v−))f(v−);

(3.8)

− φ(r)f(r) = (φ(v+)− φ(v−))f(v−).

(3.9)

The three conditions (3.7), (3.8) and (3.9) are just the first order conditions
for an interior optimum. To establish that the optimal auction is indeed interior,
satisfying 0 < r < t < v− < v+ < 1, our proof (in the appendix) uses a variational
argument.

In a revenue maximizing equal priority auction, the reserve price r for selling to
informed buyers with low valuations (below v−) is set below the standard optimal
reserve price r∗ in the absence of uninformed buyers, as can be seen from (3.9).
This sacrifices revenue when all informed buyers have low valuations and there are
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no uninformed buyers, but provides incentives for informed buyers whose valuations
are low but close to v− to participate in the auction instead of pretending to be
uninformed. Correspondingly, (3.8) implies that the take-it-or-leave-it price t to
uninformed buyers is raised above the optimal monopoly price r∗ in the absence
of informed buyers. This reduces the revenue when all buyers are uninformed, but
provides disincentive for informed buyers to pretend to be uninformed.

If the seller does not give the good to an informed buyer, he can always make a
take-it-or-leave-it offer to an uninformed buyer if there is one. Absent of incentives,
the seller would set the reserve price r(t) for informed buyers so that the virtual
valuation is equal to the expected profit π(t) of making the offer t to an uninformed
buyer:

φ(r(t)) = π(t).

However, by condition (3.7), the optimal equal priority auction has φ(v+) < π(t).
This means that the seller gives the good to informed buyers even though their
virtual valuations are lower than the value of the seller’s ’outside option’ π(t). This
reason for doing this is to provide incentives for informed buyers with valuations just
above v+ to participate in the auction rather than wait for the take-it-or-leave-it
offer.

The interval [v−, v+] is non-degenerate as long as uninformed buyers are present
in the model, i.e., α > 0. Briefly if the interval is degenerate, the seller can raise
expected revenue by cutting the price t that he offers to the uninformed. The
downside is that he loses revenue from the informed who are pooled together with
the uninformed. A variational argument can be used more generally to show that
the cutting the price offer to the uninformed has a first order impact on profits,
while the loss from the informed is second order.

When all bidders are surely informed the revenue from the optimal equal priority
auction converges to the revenue from the standard auction with reserve price r∗,
as it becomes optimal for the seller not to distort the reserve price r at all to
provide incentives (equation 3.9). The pooling interval shrinks to a single valuation
v0 as α goes to 0, satisfying the binding constraint (3.4) that an informed buyer
with valuation v0 is indifferent between participating in the auction and receiving
a take-it-or-leave-it offer t0 when all other buyers have valuations below v0,

10

∫ v0

r∗
Fn−1(w)dw = Fn−1(v0)(v0 − t).

The limit values of v0 and t0 satisfy the above indifference condition and the limit
version of first order conditions (3.7) and (3.8), given by

π′(t0)(v0 − t) + π(t0)− φ(v0) = 0.

We have t0 > r∗ and π(t0) > φ(v0). When α is arbitrarily close to 0, the incentives
for informed buyers not to pretend to be uninformed are provided by raising the
take-it-leave-it offer to an unlikely uninformed buyer above r∗, and not selling to
uninformed buyers even when the profit from doing so exceeds virtual valuations
of informed buyers.

10The limit of χ(v−, v+) as α goes to 0 and v− and v+ shrink to the same point of v0 is
Fn−1(v0). That is, when all other bidders are almost surely informed, a deviating informed
bidder will be the only buyer in the equal priority pool and will get the good with probability one

if all other bidders (who are informed) have valuation below v0.
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In the opposite limit of α = 1, bidders are surely uninformed, and the revenue
from the optimal equal priority auction converges to the revenue from a take-it-or-
leave-it offer r∗. By (3.8), the seller no longer distorts t to provide incentives for
informed buyers. From (3.7), the upper-bound of the pooling interval converges to
r(r∗), satisfying

φ(r(r∗)) = π(r∗),

as the need for the seller to provide incentives for informed buyers with valuations
just above the upper-bound becomes second order. From the binding constraint
(3.4), the lower-bound of the pooling interval becomes r∗.11 This is to prevent an
unlikely informed buyer with a valuation equal to the lower bound from pretending
to be uninformed, as the buyer has almost zero chance of winning the auction with
the limit reserve price r1 satisfying (3.9)

−φ(r1)f(r1) = π(r∗)f(r∗).

As long as α is strictly less than 1, however, the auction is what provides incentives
for informed buyers with valuations just below the lower bound of the interval not
to pretend to be uninformed.

3.2. Equilibrium mechanisms. We use Lagrangian relaxation to show that an
optimal equal-priority auction provides the seller the highest expected revenue
among all direct mechanisms.

Recall that a direct mechanism δ consists of a series of functions (qǫm, p
ǫ
m)n−1

m=0 and
(qµm, p

µ
m)nm=1. We first use the assumption that π(·) is strictly concave to simplify

the optimal design problem. We show that replacing offers pµm(v) to uninformed
buyers with a single offer reduces the deviation payoff for informed from pretending
to be uninformed, and improves the seller’s revenue from uninformed buyers due
to concavity of π(·).

Lemma 4. If π(·) is strictly concave, then in any optimal direct mechanism, pµm(v)
is independent of m and v.

Using Lemma 4, we denote the constant price offered to the uninformed as pµ.
Define

Qµ =

n−1
∑

m=0

B(m;n− 1, α)Ev

{

qµm+1(v)
}

to be the total probability of an offer expected by an uninformed buyer (or a devi-
ating informed bidder). As we have shown in Theorem 1 the revenue maximizing
direct mechanism can be found by choosing a feasible mechanism δ that supports a
trading probability for the uninformed Qµ and a non-decreasing trading probability
function Qǫ (·) that maximizes

n(1− α)

∫ 1

0

{Qǫ (w)φ(w)f(w)dw}+ nαQµπ (pµ)

subject to

(3.10)

∫ w

0

Qǫ (x) dx ≥ Qµ max [w − pµ, 0]

for all w.

11The limit of χ(v−, v+) as α goes to 1 is 1/n, as an unlikely informed buyer will surely face

n− 1 uninformed buyers in the equal priority pool after pretending to be uninformed.
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Let λ(·) be an arbitrary non-negative Lagrangian function from [0, 1] into R.
The relaxed problem is to maximize

n(1− α)

∫ 1

0

{Qǫ (w)φ(w)f(w)dw}+ nαQµπ (pµ)

+

∫ 1

0

λ (w)

{
∫ w

0

Qǫ (x) dx−Qµ max [w − pµ, 0]

}

dw,

again by choosing (qǫm, p
ǫ
m)

n−1
m=0, (q

µ
m)

n

m=1, and p
µ such that the feasibility constraint

(2.6) is satisfied, and Qǫ (·) is non-decreasing.
The above problem can have different solutions depending on the choice of λ(·).

It is well known that the solution to the relaxed problem is an upper bound on
the solution to the full problem no matter what the Lagrangian function.12 The
method of proof is to try to find a function λ (·) such that the solution to the
relaxed problem is an equal priority auction. Since the equal priority auction yields
an upper bound on the seller’s payoff in the full problem, and since it satisfies all
the constraints in the full problem, it must be a solution to the full problem.

To see how we came up with the multiplier function λ(·), use integration by parts
and rewrite the Lagrangian as

n−1
∑

m=0

B(m;n− 1, α)

∫ 1

0

{

n(1− α)φ(w)f(w) +

∫ 1

w

λ(x)dx

}

Qǫ
m(w)dw

+

n−1
∑

m=0

B(m;n− 1, α)

(

nαπ(pµ)−

∫ 1

0

λ(w)max[w − pµ, 0]dw

)

Qµ
m+1.

We want to choose λ(·) to have the following properties: (i) It takes value of 0
outside of [v−, v+] so that the constraint (3.10) is slack. (ii) It takes non-negative
values on [v−, v+] such that the value of the expression in the first bracket in the
above Lagrangian is constant, so that it is point wise maximizing to have constant
Qǫ

m(w) for all w ∈ [v−, v+]. (iv) The constant value of the expression in the first
bracket in the above Lagrangian matches the constant value of the expression in
the second bracket, so that it is point wise maximizing to treat informed buyers
with valuations in the pooling interval the same as uninformed buyers in terms of
allocation. (iv) The value of the expression in the first bracket is greater than that
in the second bracket for w > v+ and smaller for w < v−, so that informed buyers
have higher priorities than uninformed buyers if their valuations are higher than
v+ and lower priorities if their valuations are lower than v−.

Theorem 5. Suppose that π(·) is strictly concave. Then, a revenue maximizing
equal priority auction is a revenue maximizing direct mechanism.

Putting together Theorems 5 and 1, we have shown that when π(·) is concave,
the outcome of a symmetric equilibrium of the game G (α) where uninformed buyers
babble corresponds to an optimal equal priority auction. Conversely, once we solve
for the revenue maximizing equal priority auction, we can construct a password
mechanism to support a symmetric equilibrium of the game. Since equal priority
auctions are relatively straightforward to describe and optimize over, we believe our

12The solution to the original problem is feasible, so the integral in the payoff to the relaxed
problem is non-negative. In turn, the solution to the original problem gives a lower payoff in the

relaxed problem than the solution to the relaxed problem itself.
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result provides a simple characterization of equilibrium outcomes of the unobserved
mechanism design game in the important class of uncommunicative messaging by
uninformed buyers.

The relative simplicity of optimal equal priority auctions also allows us to under-
stand welfare implications of unobserved mechanism design. The seller is of course
worse off compared to when all buyers are informed, as unobservability reduces
the power of commitment necessary for standard optimal auctions. This means
that the seller has incentives to ’educate’ buyers about his mechanism. But such
attempt would be thwarted so long as the commitments in the mechanism remain
unverifiable.

When all n buyers are informed, they face the standard optimal reserve price
of r∗. In a symmetric uncommunicative equilibrium of the unobserved mechanism
design game G (α), the seller sets r < r∗, so an informed buyer with a valuation
between r and r∗ is better off than when there are no uninformed buyers around.
Informed buyers with higher valuations are affected by the presence of uninformed
and uncommunicative buyers in two opposing ways: they can win the auction even
though some uninformed buyer has a higher valuation, but they may also lose to
an uninformed with a lower valuation. The net effect is generally ambiguous, but
we can show that informed buyers with sufficiently high valuations benefit from
having uninformed buyers around if the number of buyers is sufficiently large.13

For uninformed buyers, the relevant welfare comparison question is how they
are affected by the presence of informed buyers. If there are no informed buyers,
uninformed buyers have an equal chance of receiving a take-it-or-leave-it offer equal
to r∗. Since in a symmetric uncommunicative equilibrium of G (α) the seller sets the
take-it-or-leave-it offer t strictly above r∗, an uninformed buyer with a valuation w
just above r∗ is worse off in equilibrium than when there are no informed buyers
around. For uninformed buyers with higher valuations, they have a higher priority
than informed buyers with valuations below v−, which makes them better off in
equilibrium, but lose out to informed buyers with valuations above v+. The net
effect is again ambiguous, but we can show that uninformed buyers are all worse
off in equilibrium than when there are no informed buyers if the number of buyers
is sufficiently large.14

13To see this, note that

Uǫ(1) =

∫
1

r

Qǫ(w)dw >

∫
1

v+

((1− α)F (w) + α)n−1dw.

The above is greater than
∫
1

r∗
Fn−1(w)dw when n is sufficiently large, because by integration by

parts, it is implied by

(1− α)

∫
1

v+

((1− α)F (w) + α)n−2f(w)wdw <

∫
1

r∗
Fn−2(w)f(w)wdw,

which is true for large enough n by using another integration by parts.
14To see this, note that

Uµ(1) = χ(v−, v+)(1− t) < ((1− α)F (v+) + α)n−1(1− r∗).

The above is less than (1− r∗)/n when n is sufficiently large. The payoff functions are piece wise

linear, an uninformed buyer with any valuation is worse off in equilibrium.
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4. Discussion

We have assumed that the objective of the seller is to make a single take it or
leave it offer. If this offer is rejected, which it will sometimes be if it is made to
an uninformed bidder, the game ends without trade. For the auction among the
informed buyers this is without loss, since the winner of the auction always wants
to accept the offer when they win the auction. For the uninformed this assumption
is unrealistic. Once the seller learns who the uninformed buyers are, the seller is
likely to approach them in sequence with offers. One question is how this might
change if the seller could follow up a rejection by making an offer to one of the
other bidders.

A general approach to unobserved mechanisms is to model the output of a mech-
anism as an “algorithm,” which is a sequence of take-it-or-leave-it offers and the
identities of the buyers to whom the offers are made. As in the present paper, the
seller first makes a commitment in terms of how a particular algorithm is chosen in
response to the messages sent by the buyers, who however may not observe it. It is
straightforward to generalize the analysis in the present paper to the case in which
algorithms are restricted to at most one take-it-or-leave-it offer for each buyer. The
main insights are intact - an uninformed buyer receives an expected offer indepen-
dent of the buyer’s valuation, while informed buyers face a secret reserve price when
they bid in an auction. We leave the characterization of unrestricted equilibrium
algorithms to future research.

A more challenging question with multiple offers arises if uninformed buyers are
unsure how many offers are made and how long they should wait for one. They
might then choose to give up in a manner that depends on their waiting costs. We
won’t persue this here because it is obviously far more complex.

Yet we can make one observation. There will be at least one equilibrium in such
a game that resolves exactly to our equal priority auction. In this equilibrium we
just imagine that all buyer, informed and uninformed believe that only a single offer
will be made at some arbitrary point in time. If they don’t receive the offer at that
point, they just don’t expect to get one at all. Under those conditions, the seller
can do no better than the equal priority auction because once an offer is rejected
there won’t be any buyers around to consider another one.

It is unclear whether alternative equilibrium with multiple offers might increase
the seller’s revenue. As always, multiple offer equilibrium improves the payoff to
an informed buyer who wants to pretend to be uninformed. We defer this to future
research since it is not clear at this point what is the best way to generalize to
multiple offers.

Another sort of ’partial equilibrium’ possibility is to assume that buyers wait
around forever for offers. In this case the seller can do well by making a very high
offer to each buyer in turn until all have rejected it. Then the seller could lower the
offer slightly and continue to do this until some buyer accepts. This implements
something that looks like a descending price auction.

The assumption that uninformed buyers will wait forever seems inconsistent at
least with our view of why there are uninformed buyers in the first place - they have
alternatives. Also, this is not the same as implementing a descending clock auction.
Uninformed buyers won’t understand how to bid in a descending clock auction for
the same reason we described above. If they expected a descending clock auction
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and stopped optimally, the seller would add a password then change the rules to
make them a counter offer.

4.1. Concluding remarks. In this paper we have considered a traditional mech-
anism design problem and modified it by assuming some buyers do not know the
mechanism the seller is using. We show that, assuming uninformed buyers don’t
communicate any useful information, the seller’s revenue optimal equilibrium can
be implemented with an equal priority auction. This mechanism is new as far as
we know. It lies nicely between the extremes of pure auction, which is best when
the seller is sure everyone is informed, and a simple take it or leave price offer to a
buyer chosen randomly.

One of the nice advantages of the equal priority auction is that it is parametric -
all equal priority auctions can be described using only 4 parameters, which makes
is easy to show existence. The parameters all lie in a compact set, and the payoff
functions are integrals which depend continuously on the parameters.

The parametric representation makes it possible to do computations, and in
principal, do empirical work. As we mentioned above, one of the implications of
the the equal priority auctions is that the distribution of bids in the auction will
be endogenous. In particular, it will be bi-modal with high and low bids while
intermediate valuation bidders trade at a fixed price. This is something like what
happens on eBay, though eBay auctions differ in many ways from what we have
modeled here.

Perhaps a restrictive assumption we use is that buyers are either fully informed
or fully uninformed. A more reasonable assumption might be that buyers have
partial information about commitments. For example, we could assume that some
buyers may only be able to understand commitments to actions based on their
own messages, but not commitments that depend on the messages of others. If all
buyers have this type of partial information, then there is an equilibrium in which
the seller implements the optimal auction of Myerson (1981) through a first-price
sealed bid auction. This corresponds to the main result of Akbarpour and Li (2018),
who frame the issue of partial observability in terms of limited commitment by the
seller. When buyers have differential information about the seller’s commitments -
for example, if buyers either fully observe the seller’s commitment or only observe
the part based on their own message - we nonetheless believe that our basic insight
could be extended to this kind of assumption. Yet we are reluctant to pursue
without a better model of what buyers can and cannot understand.

5. Appendix: Omitted Proofs

Proof of Theorem 1.

Proof. Recall that a perfect Bayesian equilibrium in G (α) is given by some mixture

ψ for the seller, and strategy rules (σi (·, ǫ, γ) , σi (·, µ))
N

i=1 for informed and unin-
formed buyers respectively. These formulas can be reduced using the two assump-
tions in the theorem - symmetry and babbling by uninformed buyers. Symmetry
means that all informed buyers use the same strategy, so we drop the subscript i
from σi (·, ǫ, γ). Since uninformed buyers babble, their messages won’t affect any
outcomes can be implemented without these message. Therefore we can ignore the
message strategy σi (·, µ) of the uninformed entirely.
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Symmetry also means all informed buyers that send the same message are treated
the same way in each mechanism γ = {M, (pi, qi)

N
i=1} in the support of ψ. We

reorder the n buyers such that the first n −m of them are informed, and use the
same permutation device ρ in direct mechanisms on bids from informed buyers to
rewrite γ. Denote as q̃µm (b, γ) the probability with which an offer p̃µm(b, γ) is made
to an uninformed buyer given that there are m uninformed buyers and the profile
of n −m bids from informed buyers is b = {b1, . . . , bn−m}. The function q̃ǫm (b, γ)
gives the probability with which an offer p̃ǫm(b, γ) is made to the buyer with the
first value in b, given that there are m uninformed buyers and the other n−m− 1
informed buyers bid b−1 = {b2, . . . , bn−m}. Feasibility of γ requires

n−m
∑

i=1

q̃ǫm
(

ρim (b) , γ
)

+mq̃µm(b, γ) ≤ 1

for all m.
The equilibrium condition (2.2) for an informed buyer with valuation v1 in mech-

anism γ can now be rewritten as

n−1
∑

m=0

B(m;n− 1, α)Ev2,...,vn−m
{q̃ǫm (σ (v1, ǫ, γ) , . . . , σ (vn−m, ǫ, γ) , γ)

·max [v1 − p̃ǫm (σ (v1, ǫ, γ) , . . . , σ (vn−m, ǫ, γ) , γ) , 0]}

≥

n−1
∑

m=0

B(m;n− 1, α)Ev2,...,vn−m
{q̃ǫm (b′, . . . , σ (vn−m, ǫ, γ) , γ)

·max [v1 − p̃ǫm (b′, . . . , σ (vn−m, ǫ, γ) , γ) , 0]} ,

for all b′ ∈ M. The expected payoff for the informed buyer from pretending to be
uninformed, and also the equilibrium payoff for an uninformed buyer with the same
valuation, is given by

n−1
∑

m=0

B(m;n− 1, α)Ev2,...,vn−m

{

q̃µm+1 (σ (v2, ǫ, γ) , . . . , σ (vn−m, ǫ, γ) , γ)

·max
[

v1 − p̃µm+1 (σ (v2, ǫ, γ) , . . . , σ (vn−m, ǫ, γ) , γ) , 0
]}

.

We now define a direct mechanism δ∗ =
{

[0, 1], (qǫm, p
ǫ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1

}

,

where for each m = 1, . . . , n and each v = (v1, . . . , vn),

qµm(v) = q̃µm(σ(v1, ǫ, γ), . . . , σ(vn−m, ǫ, γ), γ),

pµm(v) = q̃µm(σ(v1, ǫ, γ), . . . , σ(vn−m, ǫ, γ), γ);

and for each m = 0, . . . , n− 1 and each v = (v1, . . . , vn),

qǫm(v) = q̃ǫm(σ(v1, ǫ, γ), . . . , σ(vn−m, ǫ, γ), γ),

pǫm(v) = q̃ǫm(σ(v1, ǫ, γ), . . . , σ(vn−m, ǫ, γ), γ)

if p̃ǫm(σ(v1, ǫ, γ), . . . , σ(vn−m, ǫ, γ), γ) ≥ v1; and

qǫm(v) = 0, pǫm(v) = v1

if p̃ǫm(σ(v1, ǫ, γ), . . . , σ(vn−m, ǫ, γ), γ) > v1.
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It is now easy to see that the direct mechanism defined above is incentive com-
patible in that truthful bidding is a Bayesian Nash equilibrium among informed
buyers. The feasibility constraint (2.6) is satisfied. The direct mechanism achieves
the same revenue as γ.

In any equilibrium of G (α), the seller’s revenue is the same for each realization
γ in the support of ψ. Thus the expected revenue R(δ∗) from δ∗ achieves the
same equilibrium revenue for the seller. Further, there is no incentive compatible
direct mechanism δ that achieves a strictly revenue R(δ) than R(δ∗). If there were,
then given that uninformed buyers babble and informed buyers can condition their
strategies on the mechanism, the seller would deviate to the more profitable direct
mechanism δ, which contradicts the equilibrium condition (2.5) for the seller.

The reverse direction of Theorem 1 follows by constructing a symmetric equilib-
rium of G (α) using password mechanisms derived from an optimal direct mechanism

δ∗ = {[0, 1], (qǫm, p
ǫ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1}. The seller’s equilibrium strategy ψ is a
mixture ψ over password mechanisms γ(ζ), where each ζ is a realization ζ of a
uniform random variable on [0, 1]. Each password mechanism γ(ζ) has message
space [0, 1]2, with a typical message b = (z, v). Given a realized password mech-
anism γ(ζ), the equilibrium strategy of an informed buyer i with valuation vi is
to send message (ζ, vi). The equilibrium strategy of an uninformed buyer with
any valuation is a pair of independent and random draws from the uniform dis-
tribution over [0, 1]. For each password mechanism γ(ζ), the trading probabilities
and offers (q̂i, p̂i)

N
i=1 are derived from δ∗ as follows. For each profile of messages

(b1, . . . , bn) = ((z1, v1), . . . , (zn, vn)), let m = #{i : zi 6= ζ}, and reorder the buyers
zi = ζ for each i = 1, . . . , n−m. Define

q̂i(b, ζ) = qǫm(v), p̂i(b, ζ) = pǫm(v)

for each i = 1, . . . , n−m, and

q̂i(b, ζ) = qµm(v), p̂i(b, ζ) = pµm(v)

for each i = n−m+ 1, . . . , n.
It is straightforward to verify that the strategies of the seller, informed and

uninformed buyers form a perfect Bayesian equilibrium. In particular, given that
the seller ignores any valuation report by buyer i when i does not match the realized
password ζ, it is an optimal response for uninformed buyers report a random number
from [0, 1] as his valuation since he does not observe the password. Conversely, given
that uninformed buyers report a random number as their valuation, it is optimal
for the seller to commit to mechanisms that ignore any valuation report by a buyer
who does not match the realized password. �

Proof of Lemma 2.

Proof. First, an informed buyer with v < r never wins the auction, and thus the
expected payoff is 0, matching U ǫ(v) in (3.1) and (3.3) for v < r.

Second, an informed buyer with v ∈ [r, v−) wins the auction only when m = 0
and all n− 1 other informed buyers have valuation at most v, pays the maximum
of r and the second highest valuation. Thus, the expected payoff is

v(1− α)n−1Fn−1(v)−

(

r(1− α)n−1Fn−1(r) +

∫ v

r

w d
(

(1− α)n−1Fn−1(w)
)

)

.

By integration by parts, the above matches U ǫ(v) in (3.1) and (3.3) for v ∈ [r, v−).
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Third, an informed buyer with v ∈ [v−, v+] wins the auction when m = 0 and
all n− 1 other informed buyers have valuation at most v−, and pays the maximum
of r and the second highest valuation. The contribution of this event to the buyer’s
expected payoff is

v(1− α)n−1Fn−1(v−)−

(

r(1− α)n−1Fn−1(r) +

∫ v−

r

w d
(

(1− α)n−1Fn−1(w)
)

)

=U ǫ(v−) + (v − v−)(1− α)n−1Fn−1(v−).

The buyer also wins the auction with probability 1/(m+ k + 1) when there are m
uninformed buyers, all n−m− 1 other informed buyers have valuation at most v+,
and m + k is at least 1 (where k is the number of informed buyers with valuation
on [v−, v+]), and pays v−. The contribution of this event to the buyer’s expected
payoff is

(v − v−)
(

χ(v−, v+)− (1− α)n−1Fn−1(v−)
)

.

The sum of the above two expressions matches U ǫ(v) in (3.1) and (3.3) for v ∈
[v−, v+].

Fourth, for an informed buyer with v > v+ who wins the auction, he pays
the maximum of the second highest bid and the reserve price. When the second
highest bid is below v−, which implies that m = k = 0, the reserve price is r, and
the contribution to the expected payoff is

U ǫ(v−) + (v − v−)(1− α)n−1Fn−1(v−).

When the second highest bid is between v− and v+, which implies that m+ k ≥ 1,
the reserve price is (v− + v+(m + k))/(m + k + 1), and the contribution to the
expected payoff is

n−1
∑

m=0

B(m;n− 1, α)

n−1−m
∑

k=0

Bn−1−m
k (v−, v+)

(

v −
v− + v+(m+ k)

m+ k + 1

)

− (1− α)n−1Fn−1(v−)(v − v−)

=(v − v+)((1− α)F (v+) + α)n−1 + (v+ − v−)χ(v−, v+)− (1− α)n−1Fn−1(v−)(v − v−).

When the second highest bid w is above v+, which occurs with probability

n−1
∑

m=0

B(m;n− 1, α)(Fn−1−m(w)− Fn−1−m(v+)),

the buyer pays this bid, and so by integration by parts the contribution to the
expected payoff is

∫ v

v+

n−1
∑

m=0

B(m;n− 1, α)(Fn−1−m(w)− Fn−1−m(v+))dw

=

∫ v

v+

n−1
∑

m=0

B(m;n− 1, α)Fn−1−m(w)dw − (v − v+)((1− α)F (v+) + α)n−1.

The sum of the three expressions for the contributions to the expected payoff
matches U ǫ(v) in (3.1) and (3.3) for v > v+. �
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Proof of Lemma 3.

Proof. Define

D(r, t, v−, v+) = U ǫ(v−)−U
µ(v−) =

∫ v−

r

(1−α)n−1Fn−1(w)dw−χ(v−, v+)(v−−t),

and let R be the revenue from the equal-priority auction. We have

∂D

∂r
= −(1− α)n−1Fn−1(r);

∂R

∂r
= −n(1− α)nFn−1(r)φ(r)f(r)

and

∂D

∂t
= χ(v−, v+);

∂R

∂t
= nαχ(v−, v+)π

′(t).

If v− < v+, or if v− = v+ and dv− < 0, we have

∂χ(v−, v+)

∂v−
=

(1− α)f(v−)

(1− α)(F (v+)− F (v−)) + α

(

χ(v−, v+)− ((1− α)F (v−))
n−1
)

;

∂D

∂v−
= (1− α)n−1Fn−1(v−)− χ(v−, v+)−

∂χ(v−, v+)

∂v−
(v− − t);

∂R

∂v−
= n(1− α)((1− α)n−1Fn−1(v−)− χ(v−, v+))φ(v−)f(v−)

+ n((1− α)(π(v−)− π(v+)) + απ(t))
∂χ(v−, v+)

∂v−
.

If v− < v+, or if v− = v+ and dv+ > 0, we have

∂χ(v−, v+)

∂v+
=

(1− α)f(v+)

(1− α)(F (v+)− F (v−)) + α

(

((1− α)F (v+) + α)n−1 − χ(v−, v+)
)

;

∂D

∂v+
= −

∂χ(v−, v+)

∂v+
(v− − t);

∂R

∂v+
= n(1− α)

(

χ(v−, v+)− ((1− α)F (v+) + α)n−1
)

φ(v+)f(v+)

+ n((1− α)(π(v−)− π(v+)) + απ(t))
∂χ(v−, v+)

∂v+
.

If v− = v+ = v̂, we have

dχ(v̂, v̂)

dv̂
=

(1− α)f(v̂)

α

(

((1− α)F (v̂) + α)n−1 − ((1− α)F (v̂))n−1
)

;

∂D

∂v̂
= (1− α)n−1Fn−1(v̂)− χ(v̂, v̂)−

dχ(v̂, v̂)

dv̂
(v̂ − t);

∂R

∂v̂
= n(1− α)

(

(1− α)n−1Fn−1(v̂)− ((1− α)F (v̂) + α)n−1
)

φ(v̂)f(v̂) + nαπ(t)
dχ(v̂, v̂)

dv̂

= n(1− α)f(v̂)
(

((1− α)F (v̂) + α)n−1 − (1− α)n−1Fn−1(v̂)
)

(π(t)− φ(v̂)).

Let (r, t, v−, v+) be an optimal equal-priority auction. We first show that it is
interior.
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Suppose that r = t < v− ≤ v+. Recall that U
ǫ(v) is strictly convex for v ∈ (r, v−)

while Uµ(v) is linear for v ∈ (t, v−). Since Qǫ(v) has an upward jump at v = v−,
we have U ǫ(v−) < Uµ(v−), violating the critical bidding condition (3.4).

Suppose that r < t = v− ≤ v+. We have U ǫ(v−) > Uµ(v−) = 0, and so the
critical bidding condition (3.4) is slack. Since r < t, we have r < r∗ or t > r∗, or
both. If r < r∗, then by raising r marginally, the seller could increase the revenue
because φ(r) < 0 implies ∂R/∂r > 0. If t > r∗, then by lowering t marginally, the
seller could increase the revenue because π′(t) < 0 implies ∂R/∂t < 0. With the
critical bidding condition (3.4) slack, we have a contradiction to the assumption of
optimality.

Suppose that r = t = v− ≤ v+. If r = t < r∗, then by raising t marginally, the
seller relaxes the critical bidding condition (3.4) because ∂D/∂t > 0, and increases
the revenue because π′(t) > 0 implies ∂R/∂t > 0. If r = t > r∗, then by lowering r
marginally, the seller relaxes the critical bidding condition (3.4) because ∂D/∂r < 0,
and increases the revenue because φ(r) > 0 implies ∂R/∂r < 0. If r = t = r∗ = v−,
then by lowering r marginally, the seller relaxes the critical bidding condition (3.4)
because ∂D/∂r < 0, without changing the revenue because ∂R/∂r = 0. With
(3.4) slack, the seller could then increase the revenue by either further raising v−
marginally if v− = r∗ < v+, because φ(v−) = 0 implies ∂R/∂v− > 0, or by
raising both v− and v+ by the same infinitesimal amount if v− = v+ = r∗, because
∂R/∂v̂ > 0 when v̂ = r∗. In each case, we have a contradiction to the assumption
of optimality.

Suppose that r < t < v− = v+ = v̂. We have ∂D/∂v̂ < 0 and ∂R/∂v̂ < 0 has
the same sign as π(t) − φ(v̂). Thus, π(t) > φ(v̂): otherwise, by decreasing v− and
v+ by the same marginal amount, the seller relaxes the critical bidding condition
(3.4) without decreasing the revenue, which would then allow the seller to increase
the revenue by either raising r or lowering t, as r < t implies r < r∗ or t > r∗, or
both. Since φ(1) = 1, this implies that v̂ < 1. Now, consider perturbing the equal
priority auction by reducing v− from v̂ and raising v+ from v̂ such that

−(χ(v̂, v̂)− (1− α)n−1Fn−1(v̂))dv− = (((1− α)F (v̂) + α)n−1 − χ(v̂, v̂))dv+.

By construction,
∂χ(v̂, v̂)

∂v−
=
∂χ(v̂, v̂)

∂v+
.

This implies that the critical bidding condition (3.4) is relaxed, because

∂D

∂v−
dv− +

∂D(v̂)

∂v+
dv+ = ((1− α)n−1Fn−1(v̂)− χ(v̂, v̂))dv,

which is strictly negative. The seller’s revenue is unchanged, because

∂R

∂v−
dv− +

∂R

∂v+
dv+

=n(1− α)f(v̂)
(

χ(v̂, v̂)− (1− α)n−1Fn−1(v̂)
)

(π(t)− φ(v̂))dv−

+ n(1− α)f(v̂)
(

((1− α)F (v̂) + α)n−1 − χ(v̂, v̂)
)

(π(t)− φ(v̂))dv+,

which is equal to 0 by construction. The seller could now increase the revenue by
either raising r or lowering t, as r < t implies r < r∗ or t > r∗, or both. This
contradicts the assumption of optimality.

Now, we establish the first-order conditions stated in the lemma. To begin,
the critical bidding condition (3.4) binds at any optimal equal-priority auction.
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Otherwise, since r < t implies that r < r∗ or t > r∗, or both, the seller could
increase the revenue by either raising r or lowering t, a contradiction to the assumed
optimality. Further, r < r∗ < t. Otherwise, if r∗ ≤ r < t, the seller could relax (3.4)
by lowering r marginally without decreasing the revenue, which then would allow
the seller to increase the revenue by lowering t. Similarly, if r < t ≤ r∗, the seller
could relax (3.4) by raising t marginally without decreasing the revenue, which then
would allow the seller to increase the revenue by raising r. Finally, π(t) > φ(v+).
Otherwise, by lowering v+ marginally, the seller relaxes (3.4) because ∂D/∂v+ < 0,
and increases the revenue, as ∂R/∂v+ has the same sign as

α(π(t)− φ(v+)) + (1− α)(π(v−)− π(v+))− φ(v+)(F (v+)− F (v−))

=α(π(t)− φ(v+))−

∫ v+

v−

(φ(v+)− φ(w))f(w)dw

<α(π(t)− φ(v+)),

contradicting the assumed optimality. Note that π(t) > φ(v+) implies v+ < 1.
To obtain (3.7), consider perturbations dv− and dv+, while keeping r and t

unchanged. An optimality condition is that

∂R

∂v−
dv− +

∂R

∂v+
dv+ = 0,

for all perturbations dv− and dv+ satisfying

∂D

∂v−
dv− +

∂D

∂v+
dv+ = 0.

Thus we have
∂R/∂v−
∂D/∂v−

=
∂R/∂v+
∂D/∂v+

.

Using the expressions for χ(v−, v+), ∂χ(v−, v+)/∂v− and ∂χ(v−, v+)/∂v+, straight-
forward algebra lead us to the first-order condition (3.7) for an optimal equal-
priority auction with respect to v− and v+. Note that (3.7) implies that

∂R/∂v+
∂D/∂v+

= −n(1− α)(φ(v+)− φ(v−))f(v−).

Next, to obtain (3.8), consider perturbations dt and dv+. The resulting optimal-
ity condition is

∂R/∂t

∂D/∂t
=
∂R/∂v+
∂D/∂v+

.

This gives the first order condition (3.8) with respect to t and v+.
Lastly, to obtain (3.9), consider perturbations dr and dv+, while keeping t and

v− unchanged. The resulting optimality condition is

∂R/∂r

∂D/∂r
≥
∂R/∂v+
∂D/∂v+

,

and r ≥ 0, with complementary slackness. This gives the first-order condition

−φ(r)f(r) ≤ (φ(v+)− φ(v−))f(v−),

and r ≥ 0, with complementary slackness. Note that −φ(0)f(0) = 1. Since φ(v+) <
π(t) and t > r∗, we have φ(v+) < π(r∗) < r∗, while v− > t > r∗. Thus,

(φ(v+)− φ(v−))f(v−) = (φ(v+)− v−)f(v−) + 1− F (v−) < 1.
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It follows that the optimal r is interior and so (3.9) holds. �

Proof of Lemma 4.

Proof. Fix a direct mechanism {qǫm, p
ǫ
m}

n−1
m=0 and {qµm, p

µ
m}

n

m=1. Define pµ ∈ [0, 1]
to be the expected offer to uninformed buyers, given by

n−1
∑

m=0

B(m;n− 1, α)Ev{q
µ
m+1(v)(p

µ − pµm+1(v))} = 0.

Since pµm(v) ∈ [0, 1] for all v,

n−1
∑

m=0

B(m;n− 1, α)Ev{q
µ
m+1(v)}max[w − pµ, 0]

=

n−1
∑

m=0

B(m;n− 1, α)Ev

{

qµm+1(v)max[w − pµm+1(v), 0]
}

for all w ≤ min pµm(v) and for all w ≥ max pµm(v). Since Uµ(w) is convex in w, we
have

Uµ(w) ≥

n−1
∑

m=0

B(m;n− 1, α)Ev{q
µ
m+1(v)}max[w − pµ, 0]

for all w. Thus, replacing each all functions {pµm(·)}nm=1 with pµ reduces the devi-
ation payoff of an informed buyer from pretending to be uninformed. The seller’s
revenue from uninformed buyers is

n
∑

m=1

B(m;n, α)Ev {mq
µ
m(v)π (pµm(v))} = nα

n−1
∑

m=0

B(m;n−1, α)Ev

{

qµm+1(v)π
(

pµm+1(v)
)}

.

The lemma then follows from the strict concavity of π(·). �

Proof of Theorem 5.

Proof. Suppose that {r, t, v−, v+} is a revenue maximizing equal priority auction.
By Lemma 3, the first order conditions (3.7)-(3.9) are satisfied. We construct
a non-negatively valued multiplier function λ(w) for all w ∈ [0, 1] such that the

allocative rule (qǫm)
n−1
m=0 and (qµm)

n

m=1, together with the offer to uninformed pµ

defined by {r, t, v−, v+} solves the Lagrangian relaxation. By Lemma 2, the trans-
fer rule we have specified for an equal priority auction supports a truthful bid-
ding equilibrium among informed buyers. Thus we have found a direct mechanism
{

(qǫm, p
ǫ
m)

n−1
m=0 , (q

µ
m, p

µ
m)

n

m=1

}

that point-wise maximizes the Lagrangian.

For each w ∈ [0, 1], denote

Kǫ(w) = n(1− α)φ(w) +

∫ 1

w

λ(x)dx/f(w);

Kµ = nαπ(pµ)−

∫ 1

0

λ(x)max[x− pµ, 0]dx.
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We can then rewrite the Lagrangian as

(1− α)n−1

∫ 1

0

Kǫ(w)Qǫ
0(w)f(w)dw + αn−1Kµqµn

+

n−1
∑

m=1

(
∫ 1

0

B(m;n− 1, α)Kǫ(w)Qǫ
m(w)f(w)dw +B(m− 1;n− 1, α)KµQµ

m

)

,

where Qǫ
0(w) is the probability that an informed buyer with valuation w gets the

good when all buyers are informed, and qµn is the probability that each uninformed
buyer gets the good when all buyers are uninformed.

Now we construct λ(·) as follows. Let λ(w) = 0 for all w 6∈ [v−, v+], and let

λ(w) =n(1− α)
d

dw
(f(w)(φ(w)− φ(v+)))

=n(1− α)(2f(w) + f ′(w)(w − φ(v+)))

for all w ∈ (v−, v+), with λ(v−) and λ(v+) given by the corresponding limit from
above and from below. Since by assumption π(·) is strictly concave, f(w)φ(w) is
strictly increasing in w, and thus λ(w) > 0 at any w ∈ [v−, v+] such that f ′(w) ≤ 0.
By (3.7) we have φ(v+) < π(t) < π(r∗) < r∗. Since w ≥ v− > t > r∗, we have
λ(w) > 0 at any w ∈ [v−, v+] such that f ′(w) > 0. Thus, λ(w) as constructed is
non-negative for any w.

We will first show that pµ = t maximizes the Lagrangian. For any w ∈ [v−, v+],
by construction

∫ 1

w

λ(x)dx = n(1− α)f(w)(φ(v+)− φ(w)).

Using integration by parts, we have
∫ 1

0

λ(w)max[w − pµ, 0]dw

=−

∫ v+

v−

(w − pµ) d

(
∫ 1

w

λ(x)dx

)

=n(1− α)

(

(v− − pµ)f(v−)(φ(v+)− φ(v−)) +

∫ v+

v−

f(w)(φ(v+)− φ(w))dw

)

=n(1− α) ((v− − pµ)f(v−)(φ(v+)− φ(v−)) + φ(v+)(F (v+)− F (v−))− (π(v−)− π(v+))) .

By (3.7), we have

Kµ = nαφ(v+) + nα(π(pµ)− π(t)) + (pµ − t)n(1− α)f(v−)(φ(v+)− φ(v−)).

The above is strictly concave in pµ. By (3.8), it is maximized at pµ = t, and thus

Kµ = nαφ(v+).

The remainder of the proof establishes that the direct mechanism (qǫm)
n−1
m=0,

(qµm)
n

m=1, and pµ = t defined by {r, t, v−, v+} is a point-wise maximizer of the
Lagrangian relaxation. For w ∈ [v−, v+], we have

B(m;n− 1, α)

n−m
Kǫ(w) =

B(m− 1;n− 1, α)

m
Kµ.

For all w > v+, since π(·) is strictly concave,

Kǫ(w) = n(1− α)φ(w) > n(1− α)φ(v+) = Kǫ(v+),
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and so
B(m;n− 1, α)

n−m
Kǫ(w) >

B(m− 1;n− 1, α)

m
Kµ.

For all w < v−,

Kǫ(w) = n(1− α)φ(w) +

∫ v+

v−

λ(x)dx/f(w)

= n(1− α)(φ(w) + f(v−)(φ(v+)− φ(v−))/f(w)).

We claim that

φ(w) +
f(v−)(φ(v+)− φ(v−))

f(w)
< φ(v+)

for all w < v−, and thus Kǫ(w) < Kǫ(v+) and

B(m;n− 1, α)

n−m
Kǫ(w) ≤

B(m− 1;n− 1, α)

m
Kµ.

To establish the claim, recall that in showing that the constructed multiplier func-
tion λ(w) is positive for w ∈ [v−, v+], we have proved that f(w)(φ(w) − φ(v+)) is
strictly increasing in w for all w ≥ φ(v+). This immediately implies that the claim
holds for any w ∈ [φ(v+), v−). For w < φ(v+), we have

f(w)(φ(w)−φ(v+)) = f(w)(w−φ(v+))−(1−F (w)) < −(1−F (w)) < −(1−F (r∗)),

where the last inequality follows because φ(v+) < π(t) < π(r∗) < r∗, while

f(v−)(φ(v+)− φ(v−)) < f(r∗)φ(v+) < f(r∗)r∗,

where the first equality comes from f(w)(φ(w)−φ(v+)) being strictly increasing in
w for all w ≥ φ(v+). The claim then follows from the definition of r∗.

To show that the direct mechanism defined by the equal-priority auction {r, v−, v+, t}
is a point-wise maximizer of the Lagrangian, we disaggregate Qm(w) and write the
Lagrangian as

(1− α)n−1

∫ 1

0

Kǫ(w)Qǫ
0(w)f(w)dw + αn−1Kµqµn+

n−1
∑

m=1

Ev

{

B(m;n− 1, α)

n−m

n−m
∑

i=1

Kǫ(vi)q
ǫ
m(ρim(v)) +B(m− 1;n− 1, α)Kµqµm(v)

}

.

Fix any realized number m of uninformed buyers such that 1 ≤ m ≤ n − 1,
and consider the last term in the above objective function. Suppose that for some
realized valuation profile v we have vi > v+ for some i = 1, . . . , n−m, but qµm(v) > 0.
By (2.6), we can decrease qµm(v) marginally by dqµm(v) > 0 and increase qǫm(ρim(v))
by mdqµm(v). Since

m

n−m
B(m;n− 1, α)Kǫ(vi) > B(m− 1;n− 1, α)Kµ,

the effect on the seller’s revenue is strictly positive. Therefore, qµm(v) = 0 for any
v such that vi > v+ for some i = 1, . . . , n − m. Further, since Kǫ(w) is strictly
increasing for w > v+, we have qǫm(ρim(v)) = 1 for vi = max[v1, . . . , vn−m]. Finally,
since

B(m;n− 1, α)

n−m
Kǫ(w) ≤

B(m− 1;n− 1, α)

m
Kµ.
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for all w ≤ v+, with equality if w ∈ [v−, v+], if v is such that max[v1, . . . , vn−m] ≤
v+, there is a maximizer of the Lagrangian such that qǫm(ρim(v)) = 0 whenever
vi < v−, and q

ǫ
m(ρim(v)) = qµm(v) if vi ∈ [v−, v+].

For m = 0 and the first term in the Lagrangian, the strict concavity of π(·) im-
pliesKǫ(w) for w < v− crosses 0 at most once and only from below. Thus, for r that
satisfies (3.9), it is point-wise maximizing to set qǫ0(ρ

i
0(v)) = 1 if vi = max[v1, . . . , vn]

and vi > v+, or if vi = max[v1, . . . , vn] and vi ∈ [r, v−); set qǫ0(ρ
i
0(v)) = 1/k if

vi ∈ [v−, v+], max[v1, . . . , vn] ∈ [v−, v+] and #{j : vj ∈ [v−, v+]} = k; and set
qǫ0(ρ

i
0(v)) = 0 otherwise.

For m = n and the second term in the Lagrangian, we have qµn = 1/n because
Kµ > 0. �
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