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Nonlinear Scale in Physics



Nonlinear Scale in Physics

Needle position is non-linear w.r.to input

input

needle position

Engineers:

invert the needle position after the measurement

customize the non-linearity to the anticipated measurement



Nonlinear Scale in Psychophysics
Kahneman and Tversky



Formalization
Netzer ’09, Robson ’01

Two draws from:
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Choose your scale (your pointer is noisy)
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Literature

Psychophysics: Weber’s law, Fechner 1860, Thurstone ’27

Kahneman&Tversky ’79: psychophysics rationale for s-shaped utility

Adaptive encoding of visual stimuli: Attneave ’54, Barlow et al. ’61,
Laughlin et al. ’81

Econ [riskless]: Robson ’01, Netzer ’09, Rayo&Becker ’07
(hedonic utility)

Econ [risky]: Khaw&Li&Woodford ’20, Frydman&Jin ’19
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In This Paper

Optimal perception of lotteries (as opposed to simple stimuli)

s-shaped encoding function

over-sampling of low-prob arms

Focus on behavior (Bernoulli instead of hedonic utility)

surprising risk ⇒ perception-driven risk attitudes

anticipated risk ⇒ risk-neutrality

Method: asymptotic misspecified learning (White ’82, Berk ’66)
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Decision Problem
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versus alternative s

Risk-neutrality: ` is optimal ⇔
∑

i pi ri > s

DM observes (pi )i and s frictionlessly

Friction in information-processing of the rewards



Rewards’ Perception

Perception strategy:

encoding function m : R −→ [m,m]

sampling frequencies (πi )i ∈ ∆ ({set of arms})

DM samples n signals:

xk = (m̂k , ik)

ik specifies the lottery arm

m̂k = m (rik ) + εk ; iid Standard Normal noise

sampling frequencies πi distinct from arm probs pi

Sophistication: DM knows conditional signal distributions

Estimation:

MLE from a set A of anticipated lotteries

or Bayesian estimator for a given prior on A

Nearly complete information: n→∞

A posteriori optimal choice
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Small World
allude to Savage ’54

We admit redundant states because

world’ll get more complex after adaptation

⇒ maladaptation

Arms i and j are payoff-equivalent if ri = rj for all lotteries

J – partition of the set of all arms into payoff-equivalent classes

For now, think about J ∈ J as of a lottery arm



Ex Ante Optimization

Environment defined as distribution of the decision problems (r, s)

all rJ and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E [max {r , s} − 1qn>s r − 1qn≤ss],

where r and qn are the true and estimated lottery values

Proposition

Under a regularity condition condition

lim
n→∞

L(n) = const. E

[∑
J∈J

p2J
πJm′2 (rJ)

| r = s

]
1

n
+ o

(
1

n2

)
.



Ex Ante Optimization

Environment defined as distribution of the decision problems (r, s)

all rJ and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E [max {r , s} − 1qn>s r − 1qn≤ss],

where r and qn are the true and estimated lottery values

Proposition

Under a regularity condition condition

lim
n→∞

L(n) ∝ E [MSE conditional on tie] + o

(
1

n2

)
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Tie condition because small perception error distorts choice only if r ≈ s
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Ex Ante Optimization

Environment defined as distribution of the decision problems (r, s)

all rJ and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E [max {r , s} − 1qn>s r − 1qn≤ss],

where r and qn are the true and estimated lottery values

Proposition

Under a regularity condition condition
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n→∞
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]
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(
1

n2

)
.

MSE is a weighted sum of MSEs for each rJ
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Environment defined as distribution of the decision problems (r, s)
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MSE for rJ is mitigated by high πJ or m′ (rJ)



Ex Ante Optimization

Environment defined as distribution of the decision problems (r, s)

all rJ and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E [max {r , s} − 1qn>s r − 1qn≤ss],

where r and qn are the true and estimated lottery values

Proposition

Under a regularity condition condition

lim
n→∞

L(n) = const. E

[∑
J∈J

p2J
πJm′2 (rJ)

| r = s

]
1

n
+ o

(
1

n2

)
.

Tie conditioning is implied by consequentialism



Information-Processing Problem

min
m′(·),(πJ )J>0

E

[∑
J∈J

p2J
πJm′

2(rJ)
| r = s

]

s.t.:

∫
R
m′(r)dr ≤ m −m

∑
J∈J

πJ = 1

Constraints:

m(·) is bounded – your ‘scale’ can’t be fine everywhere∑
J πJ = 1 – you can’t sample all the arms frequently



Optimal Perception

Proposition

1 Optimal encoding function m is s-shaped

convex below and concave above the reward mode

2 Over-sampling of low-prob arms

binary lotteries: if pJ < 1/2, then πJ > pi and vice versa
I > 2: for any two arms J, J ′ such that pJ < pJ′ ,

πJ
pJ
>

πJ′
pJ′

Intuition

1 s-shape

m(·) steep at reward values that you’re likely to encounter at ties

2 Over-sampling

diminishing return to sampling
over-sample the arm that you expect to be poorly informed on
you measure tail rewards poorly
low-prob arm has more spread-out rewards conditional on tie
since

∑
J′ pJ′ rJ′ = s isn’t too informative on rJ
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Verbally

Canonical example: flying involves a small prob of accident

Accident is a tail event – hard to assess

If a nontrivial choice features a tail event, then the event has a small prob

otherwise, the choice is trivial

⇒ Small probs are often attached to tail events in nontrivial choices

Oversampling of small prob events compensates for this



Table of Contents

1 Model

2 Optimal Perception in Small World

3 Behaviour in Grand World

4 Somewhat Surprising Lotteries



Example
allude to Savage ’54

DM chooses whether to buy a convertible car

Reward from the convertible, r1 or r2, depends on weather

DM samples n signals:

ik ∈ {1, 2} – weather for k ’th sampled experience

m̂k = m (rik ) + εk – k ’th perturbed message

Both true type probs and sampling probs are 50-50

fine DM

understands role of weather

anticipates (r1, r2) ∈ R2

well-specified

coarse DM

disregards weather

anticipates (r , r), r ∈ R
misspecified

DM’s estimate of the car’s value?



Fine DM ⇒ Risk Neutrality

ri

m

r1 q r2

m(r1)

m(r2)



Coarse DM ⇒ EUT

ri

m

r1 q r2

m(r1)

m(q)

m(r2)



Paths to Misspecification

Complexity increase:

adaptation took place in riskless world

world got risky

DM continues to model it as riskless

or

DM got framed:

adaptation took place in risky world

afterwards, DM got convinced that the next lottery is riskless



Expected-Utility Representation

DM anticipates no risk: A =
{
r ∈ RI : ri = rj for all arms i , j

}
Proposition

Prob that DM chooses the lottery in problem (r, s) converges to 1 (0) if∑
i

πim(ri ) > (<)m(s).

Proof based on White ’82:

MLE
a.s.−→ arg minr ′∈A DKL (fr, fr′)

Gaussian errors ⇒

MLE of m is the convex combination of m(ri ) for each arm i

with weights equal to the sampling frequencies

Berk ’66 for the analogous result for Bayesian estimation



‘Risk Attitudes’ of Engineers

Bouncing needle caused by stochastic input

‘Risk attitudes’ emerge if

engineer misattributes the tremble to stochasticity of measurement



Omitted Variable
illustration

Reward ρ(x, y)

(x, y) drawn from a joint density

DM omits variables y: she thinks that the reward is ρ̃(x)

For each x, she

observes n signals m(ρ(x, yk)) + εk

estimates ρ̃(x)

For each x

the reward ρ(x, y) is a lottery since ρ(x, y) | x is random

DM conceptualizes this lottery as a riskless reward ρ̃(x)

Economist

incorrectly thinks that DM is well-specified

concludes that DM has Bernoulli utility u(·) = m(·)



Coarse Anticipation of Risk

K – a partition of the set of all arms

DM anticipates lotteries to be measurable w.r.to K

Proposition (mixed representation)

Prob that DM chooses the lottery in problem (r, s) converges to 1 (0) if∑
J∈K

pJ r
∗
J > (<)s,

where for each J ∈ K:

r∗J is ‘certainty equivalent’: m (r∗J ) =
∑

i∈J
πi∑
j∈J πj

m(ri )

pJ =
∑

i∈J pi is the true prob of J

Corollary: risk-neutrality w.r.to anticipated lotteries



Omitted Variable (continued)

As before

reward ρ(x, y)

DM omits y and estimates ρ̃(x) using encoding m

But

at the point of decision, observes only a signal z of x

Each value of z

corresponds to a lottery over ρ(x,y) | z
DM thinks the lottery is over ρ̃(x) | z and computes E [ρ̂(x) | z]

Representation of DM:

for each x, she computes c.e. over uncertainty y | x under Bernoulli
utility u = m,

proceeds as risk-neutral w.r.to uncertainty x | z
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Bayesian Robustness Check

Let’s bridge two extreme cases:

anticipated lotteries

surprising lotteries

Joint limit of:

number of signals

precision of the prior density

We get

robustness check

comparative statics with respect to

time pressure
level of anticipated risk



Prior Belief

Binary lottery is drawn from prior density

exp
(
− n

∆
(r1 − r2)2

)

Prior is concentrated alongside riskless lotteries on the diagonal

∆ parametrizes the degree of the a priori anticipated risk

As n↗, risk becomes a priori unlikely



Sampling

a× n perturbed messages

a captures decision span:

sample size increases with a for fixed n

n has a double role. As n↗:

risk becomes a priori unlikely

sample size grows



Arrow-Pratt Measure

Realized rewards r1 = r + δ, r2 = r − δ, 50-50 probs, uniform sampling

Proposition

As n→∞, DM’s valuation of the lottery converges to

r +
1

2

m′′(r)

m′(r)

1 + a∆m′2(r)

(1 + a∆m′2(r)/2)2
δ2 + o(δ3).

DM:

thinks that ri = r∗ ± δ′ for δ′ < δ (large risk is unlikely)

then, must shift r∗ relative to r to fit data (due to curvature of m)

Thinking fast/slow:

risk attitudes decrease with time span (a)

Rabin’s paradox:

risk attitudes decrease with anticipated risk (∆)



Conclusion

Optimal attention-allocation

s-shaped encoding function and over-sampling of low-prob arms

Link between reward encoding and risk attitudes is subtle

psychophysics intuition applies to surprising lotteries

Two adaptation channels

slow: optimal encoding

fast: anticipation of lotteries



Regularity Condition

There exists e(r, ε) ≥ n ×MSE(r, ε) such that E e(r, ε) < +∞.

MSE(r, ε) is of order 1/n because qi − ri ≈ εi√
πinm′(ri )

But m(·) gets flat at tails

⇒ Perception error diverges at tail rewards

RC requires reward density to vanish fast enough at tails relative to m′(·)

It allows for application of Dominated Convergence Theorem

back
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