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nlinear Scale in Physics

Scale factor = 5

Accurate reading area

o

Infinity Scale factor = 0.2



Nonlinear Scale in Physics

Needle position is non-linear w.r.to input

needle position

input

Engineers:
@ invert the needle position after the measurement

@ customize the non-linearity to the anticipated measurement



Nonlinear Scale in Psychophysics
Kahneman and Tversky
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Psychophysics: Weber's law, Fechner 1860, Thurstone 27
Kahneman& Tversky '79: psychophysics rationale for s-shaped utility

Adaptive encoding of visual stimuli: Attneave '54, Barlow et al. '61,
Laughlin et al. '81

Econ [riskless]: Robson '01, Netzer '09, Rayo&Becker '07
(hedonic utility)

Econ [risky]: Khaw&Li&Woodford '20, Frydman&Jin '19
(large encoding noise)



In This Paper

Optimal perception of lotteries (as opposed to simple stimuli)
@ s-shaped encoding function

@ over-sampling of low-prob arms

Focus on behavior (Bernoulli instead of hedonic utility)
@ surprising risk = perception-driven risk attitudes

@ anticipated risk = risk-neutrality

Method: asymptotic misspecified learning (White '82, Berk '66)
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Decision Problem

n
P1

! = versus alternative s
r
Risk-neutrality: / is optimal < >, piri > s
DM observes (p;); and s frictionlessly

Friction in information-processing of the rewards



Rewards’ Perception

Perception strategy:
@ encoding function m : R — [m, ]

e sampling frequencies (7;); € A ({set of arms})

DM samples n signals:
o xi = (M, ix)
@ iy specifies the lottery arm
@ iy = m(r;,) + ek, iid Standard Normal noise
@ sampling frequencies 7; distinct from arm probs p;

Sophistication: DM knows conditional signal distributions

Estimation:
@ MLE from a set A of anticipated lotteries
@ or Bayesian estimator for a given prior on A

Nearly complete information: n — oo

A posteriori optimal choice
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Small World
allude to Savage '54

We admit redundant states because
@ world'll get more complex after adaptation

@ = maladaptation

Arms i and j are payoff-equivalent if r; = r; for all lotteries
J — partition of the set of all arms into payoff-equivalent classes

For now, think about J € 7 as of a lottery arm



Ex Ante Optimization

Environment defined as distribution of the decision problems (r, s)

@ all r; and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E[max{r,s} — Ly ~sr — Lg,<s5],

where r and g, are the true and estimated lottery values

Proposition

Under a regularity condition €D
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Ex Ante Optimization

Environment defined as distribution of the decision problems (r, s)
@ all r; and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E[max{r,s} — 1 ~sr — 14 <ss],

where r and g, are the true and estimated lottery values

Proposition

Under a regularity condition €D

1
lim L(n) o< E[MSE conditional on tie] + o (2) .
n

n—o00

Tie condition because small perception error distorts choice only if r ~ s



Ex Ante Optimization

Environment defined as distribution of the decision problems (r,s)

@ all r; and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E[max{r,s} — Ly ~sr — L4, <s5],

where r and g, are the true and estimated lottery values

Proposition

Under a regularity condition @D

1
lim L(n) o< E[MSE conditional on tie] + o <2> .
n— 00 n

MSE because prob of choice distortion o< error size, and loss is too



Ex Ante Optimization

Environment defined as distribution of the decision problems (r, s)

@ all r; and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E[max{r,s} — 1 ~sr — 14 <ss],

where r and g, are the true and estimated lottery values

Proposition

Under a regularity condition @D

lim L(n) x E Z p3MSE(r,) conditional on tie

n—o0
Jeg

(3)

MSE is a weighted sum of MSEs for each r;



Ex Ante Optimization

Environment defined as distribution of the decision problems (r,s)
@ all r; and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E[max{r,s} — Ly ~sr — L4, <s5],

where r and g, are the true and estimated lottery values

Proposition

Under a regularity condition @D

2
: _ 2 : P 1 1
nllm L(n) — const. E = m ‘ r=s ; + o0 <n2) o

MSE for r; is mitigated by high 7, or m’ (r))



Ex Ante Optimization

Environment defined as distribution of the decision problems (r, s)

@ all r; and s are iid from a Normal density

Minimize ex ante expected loss L(n) = E[max{r,s} — 1 ~sr — 14 <ss],

where r and g, are the true and estimated lottery values

Proposition

Under a regularity condition @D

lim L(n) = const. E Z L — |r=s

n— o0 7ij/2 (rJ)

Tie conditioning is implied by consequentialism



Information-Processing Problem

ZTI'_}:].

Jeg

Constraints:

e m(-) is bounded — your ‘scale’ can't be fine everywhere

@ > ,m; =1~—you can't sample all the arms frequently



Optimal Perception

Proposition

@ Optimal encoding function m is s-shaped
e convex below and concave above the reward mode
@ Over-sampling of low-prob arms
e binary lotteries: if py < 1/2, then 7, > p; and vice versa

e [ > 2: for any two arms J, J' such that p; < py, % > %
J

© s-shape

e m(-) steep at reward values that you're likely to encounter at ties
@ Over-sampling
e diminishing return to sampling
e over-sample the arm that you expect to be poorly informed on
e you measure tail rewards poorly
@ low-prob arm has more spread-out rewards conditional on tie
since >, pyry = s isn't too informative on ry




Optimal Perception

Proposition

@ Optimal encoding function m is s-shaped
e convex below and concave above the reward mode
@ Over-sampling of low-prob arms
e binary lotteries: if p; < 1/2, then 7, > p, and vice versa

o | > 2: for any two arms J, J' such that p; < py, Z—j > %

© s-shape

e m(-) steep at reward values that you're likely to encounter at ties
@ Over-sampling

o diminishing return to sampling

e over-sample the arm that you expect to be poorly informed on

e you measure tail rewards poorly

o low-prob arm has more spread-out rewards conditional on tie

since >, pyry = s isn't too informative on r,




Verbally

Canonical example: flying involves a small prob of accident
Accident is a tail event — hard to assess

If a nontrivial choice features a tail event, then the event has a small prob

otherwise, the choice is trivial
= Small probs are often attached to tail events in nontrivial choices

Oversampling of small prob events compensates for this
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Example
allude to Savage '54

DM chooses whether to buy a convertible car
Reward from the convertible, r; or r, depends on weather

DM samples n signals:
@ i, € {1,2} — weather for k'th sampled experience

@ iy = m(r;,) + ek — k'th perturbed message

Both true type probs and sampling probs are 50-50

coarse DM
@ understands role of weather @ disregards weather
e anticipates (r, ) € R? e anticipates (r,r), r € R
o well-specified @ misspecified

DM'’s estimate of the car’s value?



Fine DM Risk Neutrality

m

m(rg)

rn q r



Coarse DM EUT

m(rg)

n q rn



Paths to Misspecification

Complexity increase:
@ adaptation took place in riskless world
@ world got risky

@ DM continues to model it as riskless

or

DM got framed:
@ adaptation took place in risky world

o afterwards, DM got convinced that the next lottery is riskless



Expected-Utility Representation

DM anticipates no risk: A = {r € R': r; = r; for all arms /,j}

Proposition

Prob that DM chooses the lottery in problem (r,s) converges to 1 (0) if

Z mim(r;) > (<)m(s).

Proof based on White '82:
o MLE 2% argmin .. 4 Dk (£, fy')

@ Gaussian errors =

e MLE of m is the convex combination of m(r;) for each arm i

o with weights equal to the sampling frequencies

Berk '66 for the analogous result for Bayesian estimation



‘Risk Attitudes’ of Engineers

Bouncing needle caused by stochastic input

‘Risk attitudes’ emerge if

@ engineer misattributes the tremble to stochasticity of measurement



Omitted Variable
illustration

Reward p(x,y)
@ (x,y) drawn from a joint density

DM omits variables y: she thinks that the reward is j(x)

For each x, she
@ observes n signals m(p(x,yx)) +
@ estimates j(x)

For each x
o the reward p(x,y) is a lottery since p(x,y) | x is random

o DM conceptualizes this lottery as a riskless reward j(x)

Economist
@ incorrectly thinks that DM is well-specified
o concludes that DM has Bernoulli utility u(-) = m(+)



Coarse Anticipation of Risk

IC — a partition of the set of all arms

DM anticipates lotteries to be measurable w.r.to /C

Proposition (mixed representation)

Prob that DM chooses the lottery in problem (r,s) converges to 1 (0) if
> piri > (<)s,
Jek

where for each J € K:

@ rj is ‘certainty equivalent’: m (r}) =3 e, s—m(r)
s

® pj =) o, piis the true prob of J

Corollary: risk-neutrality w.r.to anticipated lotteries



Omitted Variable (continued)

As before
e reward p(x,y)
e DM omits y and estimates j(x) using encoding m

But
@ at the point of decision, observes only a signal z of x

Each value of z
@ corresponds to a lottery over p(x,y) | z
@ DM thinks the lottery is over j(x) | z and computes E [5(x) | z]

Representation of DM:
@ for each x, she computes c.e. over uncertainty y | x under Bernoulli
utility v = m,
@ proceeds as risk-neutral w.r.to uncertainty x | z
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Bayesian Robustness Check

Let's bridge two extreme cases:
@ anticipated lotteries

@ surprising lotteries

Joint limit of:
@ number of signals

@ precision of the prior density

We get
@ robustness check

@ comparative statics with respect to

o time pressure
o level of anticipated risk



Prior Belief

Binary lottery is drawn from prior density
n 2>
exp(——(n—r
P ( A (n—r2)
Prior is concentrated alongside riskless lotteries on the diagonal
A parametrizes the degree of the a priori anticipated risk

As n 7, risk becomes a priori unlikely



Sampling

a x n perturbed messages

a captures decision span:

@ sample size increases with a for fixed n

n has a double role. As n
@ risk becomes a priori unlikely

@ sample size grows



Arrow-Pratt Measure

Realized rewards r; = r + 9, rn = r — §, 50-50 probs, uniform sampling

Proposition

As n — oo, DM'’s valuation of the lottery converges to

1m"(r) 14 aAm’™(r)

507 + 0(8°).

DM:
e thinks that r; = r* + ¢’ for ' < § (large risk is unlikely)
@ then, must shift r* relative to r to fit data (due to curvature of m)

Thinking fast/slow:
o risk attitudes decrease with time span (2a)

Rabin’s paradox:
o risk attitudes decrease with anticipated risk (A)



Conclusion

Optimal attention-allocation

@ s-shaped encoding function and over-sampling of low-prob arms

Link between reward encoding and risk attitudes is subtle

@ psychophysics intuition applies to surprising lotteries

Two adaptation channels
@ slow: optimal encoding

o fast: anticipation of lotteries



Regularity Condition

There exists e(r,e) > n x MSE(r, €) such that Ee(r,e) < +oc.

MSE(r, ) is of order 1/n because q; — rj ~ ="y
But m(-) gets flat at tails
= Perception error diverges at tail rewards

RC requires reward density to vanish fast enough at tails relative to m'(+)

It allows for application of Dominated Convergence Theorem



	Model
	Optimal Perception in Small World
	Behaviour in Grand World
	Somewhat Surprising Lotteries

