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Abstract

This paper studies a linear model in which the regressors and errors covary with drivers

of link formation in a large network. Neither the endogenous relationship between the

regressors and errors nor the distribution of network links are restricted parametri-

cally. Instead, the model is identified by variation in the regressors unexplained by the

distribution of network links. I first demonstrate that agents with similar columns of

the squared adjacency matrix, the ijth entry of which contains the number of other

agents linked to both agents i and j, necessarily have a similar distribution of network

links. I then propose a semiparametric estimator based on matching pairs of agents

with similar columns of the squared adjacency matrix. I find sufficient conditions for

the estimator to be consistent and asymptotically normal, and provide a consistent

estimator for its asymptotic variance. While this paper focuses on cases in which the

network is represented by a binary, symmetric, and square adjacency matrix, I also dis-

cuss extensions to weighted, directed, bipartite, multiple, sampled, and higher-order

networks.
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1 Introduction

In many social networks, linked agents make similar decisions. One explanation for this phe-

nomenon is peer effects, in which agents are influenced by or choose to imitate the behavior

of their peers. Another is latent homophily, in which linked agents have underlying char-

acteristics that generate correlated though otherwise unrelated behaviors. Distinguishing

between peer effects and latent homophily matters because the former often suggests that a

policy maker can efficiently influence mass behavior by manipulating only a small number of

key agents or links.1 However, recent work has questioned not only the existence of network

peer effects, but the extent to which they can be identified in nonexperimental settings at

all.2

This paper considers network peer effects as part of a broader study about the identifica-

tion and estimation of models with endogenous network formation.3 In this paper, I address

two fundamental questions. First, when are models with endogenous networks identified?

Second, how can data on network links be used to control for this sort of endogeneity in

estimation?

I study these questions in the context of a linear model in which a correlation between

the regressors and errors is caused by an omitted vector of unobserved social characteristics.

I do not assume that the researcher has access to instrument or control variables for the en-

dogenous regressors. Instead, relevant features of the social characteristics are to be inferred

using variation in how agents link in a network. To do this, I consider a nonparametric model

of link formation in which the probability that two agents link is some unknown function of

their social characteristics. The model admits a basic random utility interpretation and is

consistent with a number of network formation models from the literature, including Chan-

drasekhar and Jackson (2014), Graham (2014), Leung (2015), Ridder and Sheng (2015), and

1Recent examples include Ballester, Calvó-Armengol, and Zenou (2006), Christakis and Fowler (2007),
Calvó-Armengol, Patacchini, and Zenou (2009), Banerjee, Chandrasekhar, Duflo, and Jackson (2013), and
Elliott, Golub, and Jackson (2014)

2For instance, Shalizi and Thomas (2011), Carrell, Sacerdote, and West (2013), Angrist (2014), Jackson
(2014), and Graham (2015)

3Endogeneity refers to models in which the regressors and errors are correlated. A network represents
a collection of pairs of agents that are distinguished in some economically meaningful way (i.e, the pairs
are “linked,” “connected,” “friends,” etc.). Network endogeneity refers to models in which the correlation
between the regressors and errors is explained by latent factors that influence link formation in a network.
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Menzel (2015).

In recent work Goldsmith-Pinkham and Imbens (2013), Hsieh and Lee (2014), Johnsson

and Moon (2015), and Arduini, Patacchini, and Rainone (2015) all consider related models

with endogenous networks. However, their models all impose parametric restrictions on the

network formation model to identify and estimate the parameters of interest. As a result,

the performance of their estimators generally depends on the accuracy of these assumptions

which may potentially fail to capture the full heterogeneity in linking behavior underlying

many real world networks.

The first contribution of this paper is to provide identification conditions that do not

require parametric restrictions on the network model. The idea behind these conditions

is familiar: the model is identified if conditional on the distribution of network links, the

regressors and errors are uncorrelated and the distribution of the regressors is nondegenerate.

A key feature of this paper is that it introduces new tools to formalize these conditions and

make them straightforward to apply in practice.

For instance, I demonstrate that the linear peer effects model of Bramoullé, Djebbari, and

Fortin (2009) is not generally identified when the network is endogenous. In particular, the

nondegeneracy condition is violated because the explanatory variable of interest (an agent’s

expected peers’ characteristics) is completely determined by the distribution of network links.

Similar non-identification results are found in the related grouped peer effects literature (for

instance, Manski 1993, Graham and Hahn 2005, Graham 2008), and I discuss how strategies

from this literature might be used to restore identification in the network setting.

The second contribution of this paper is to propose a new matching procedure to estimate

models with endogenous networks. Specifically, I propose matching pairs of agents with

similar columns of the squared adjacency matrix, the ijth entry of which contains the number

of other agents linked to both agents i and j.4 The motivation for this procedure follows from

a new result I derive in this setting that agents with similar columns of the squared adjacency

matrix necessarily have a similar distribution of network links. The logic is related to recent

4Formally, the adjacency matrix of a network is a matrix with the number of rows and columns equal to
the number of agents that contains a 1 in the ijth entry if agents i and j are linked and a 0 otherwise. The
squared adjacency matrix refers to the matrix square of the adjacency matrix and agent i’s column of the
squared adjacency matrix is the ith column of this matrix.

3



arguments from the link prediction literature (for example, Bickel, Chen, and Levina 2011,

Zhang, Levina, and Zhu 2015), though to my knowledge the results of this paper and its

application to the study of network endogeneity are original.

The proposed estimator resembles other matching estimators from the literature (for

instance, Powell 1987, Heckman, Ichimura, and Todd 1998, Abadie and Imbens 2006) and is

similarly straightforward to implement and interpret. However, its large sample properties

are nonstandard when compared to this literature for two reasons.

The first reason concerns the dimension of the matching variable. The above literature

makes asymptotic approximations that require the density function of the matching variable

to exist and be bounded away from zero. In this paper, the matching variable is a column

vector of length equal to the sample size. Since the usual notion of a density function does not

necessarily exist in this setting, these asymptotic approximations are generally inapplicable.

I sidestep the issue by appealing to arguments from the functional nonparametrics literature

(for example, Ferraty and Vieu 2006, Hong and Linton 2016) in which the density function is

replaced by the more general notion of a small ball probability. I then adapt tools from the

literature on dense graph limits (for instance, Lovász 2012) to characterize this probability

and find sufficient conditions for consistency and asymptotic normality. As is common in

the matching literature, the bias of my estimator is potentially large relative to its variance.

Accurate inference requires a bias correction and I propose a variation on the jackknife

technique proposed by Powell, Stock, and Stoker (1989).

The second reason this estimator is nonstandard is that even though the matching vari-

able is generated in the sense that its entries are sample averages with variances on the

order of the inverse of the sample size, this variation does not influence the asymptotic

distribution of the proposed estimator. This result is unusual because it seemingly contra-

dicts a developed literature on asymptotic variance formulas for semiparametric estimators

(for instance, Newey 1994, Chen, Linton, and Van Keilegom 2003, Hahn and Ridder 2013).

The intuition behind this result is that the average squared difference between two agents’

matching variables estimates a particular measure of network distance between the agents.

Evaluating the variance of my estimator does not require bounding the sampling variation of

all of these estimated distances, but only those that correspond to pairs of matched agents.
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Since the estimated distances between matched agents is small by construction, their means

and variances must also be small, and under certain regularity conditions the total variation

is small enough to be asymptotically negligible. As a result, the asymptotic variance of my

estimator does not have the usual correction term for a first stage estimation error.

The matching logic extends to various nonlinear and nonparametric settings or to allow

for weighted, directed, bipartite, multiple, sampled, or higher-order networks. I explore some

of these extensions in an appendix to this paper, though formal results are left to future work.

The method also has important limitations. The model and estimator generally require the

network to be dense (the expected number of links is proportional to the square of the

sample size) and that the network links are conditionally independent. Some sparsity can be

accommodated by letting the link probabilities decrease with the sample size (as in Bickel

and Chen 2009), and although the rate of convergence is likely to be affected, this may

be unimportant if the total number of agents is large. The assumption of conditional link

independence can also be weakened. For instance, it can be replaced with the conditional

independence of some higher-order network event, such as the formation of cliques of a

particular size, along the lines proposed by Chandrasekhar and Jackson (2014).

The structure of this paper is as follows. Section 2 introduces the model, identification

conditions, and proposed estimator. Section 3 contains the main results of the paper. Section

3.2 provides the main identification results and section 3.3 the main asymptotic results:

sufficient conditions for consistency and asymptotic normality. Section 4 provides simulation

evidence and Section 5 concludes. Proofs of the various lemmas and theorems are collected

in Appendix A and some extensions to the proposed model and estimator can be found in

Appendix B. Appendices C and D contain additional context for the results. Appendix C

illustrates the proposed matching strategy using three example parametric link distributions

from the literature. Appendix D provides details about a behavioral interpretation for the

model and estimator. Appendices B, C, and D have been collected in an online appendix, a

link to which can be found on the title page of this paper.
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2 Model and Estimator

2.1 Model

Let {yi, xi}ni=1 be an independent and identically distributed sequence of data for n agents

with yi ∈ R, xi ∈ Rk for some positive integer k, and D be an n × n stochastic binary

adjacency matrix corresponding to an unlabelled, unweighted, and undirected random net-

work between the n agents. The joint distribution of {yi, xi}ni=1 and D is determined by the

following semiparametric model

yi = xiβ + λ(wi) + εi (1)

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j} (2)

in which {wi}ni=1 is an independent and identically distributed sequence of unobserved social

characteristics, λ and f are unknown Lebesgue measurable functions with the latter symmet-

ric in its arguments, and {ηij}ni,j=1 is a symmetric matrix of unobserved scalar disturbances

with independent and identically distributed upper diagonal entries that are mutually inde-

pendent of {xi, wi, εi}ni=1. I suppose for the sake of exposition that E[εi|xi, wi] = 0, although

the main results of this paper will be derived under a weaker uncorrelatedness assumption. It

is generally without loss to normalize the marginal distributions of wi and ηij to be standard

uniform.

In this model, endogeneity takes the form of a dependence between xi and the unob-

served error λ(wi) + εi through wi. Network formation is represented by
(
n
2

)
conditionally

independent Bernoulli trials in which the probability that agents i and j link is proportional

to f(wi, wj). Parametric examples of (2) in the network formation literature include Holland

and Leinhardt (1981), Duijn, Snijders, and Zijlstra (2004), Krivitsky, Handcock, Raftery,

and Hoff (2009), Dzemski (2014), Graham (2014) and Nadler (2016) (see section 3 of Gra-

ham 2015, for a review). Leung (2015), Ridder and Sheng (2015) and Menzel (2015) also

consider network formation models with strategic interaction that imply equation (2) as a

reduced form distribution of links. More details about a behavioral interpretation for this

model can be found in Appendix D.
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Example 1 (Network Peer Effects): Let yi be student GPA, xi be a vector of student

characteristics (age, grade, gender, etc.), and Dij = 1 if students i and j are friends and 0

otherwise. One extension of the Manski (1993) linear-in-means peer effects model of

student achievement to the network setting is

yi = xiβ + E[xj|Dij = 1, wi]ρ1 + E[yj|Dij = 1, wi]ρ2 + λ(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}

in which E[xj|Dij = 1, wi] denotes the mean characteristics and E[yj|Dij = 1, wi] the mean

GPA of agent i’s friends, conditional on agent i’s social characteristics wi. Bramoullé,

Djebbari, and Fortin (2009) consider a similar model in which the network is exogenous

(λ(wi) = 0) and Goldsmith-Pinkham and Imbens (2013), Hsieh and Lee (2014), Johnsson

and Moon (2015), and Arduini, Patacchini, and Rainone (2015) consider related models

with additional parametric assumptions on λ or f .5

Example 2 (Information Diffusion) Banerjee, Chandrasekhar, Duflo, and Jackson

(2013) model household participation in a microfinance program in which information

about the program diffuses over a social network. The authors control for household-level

heterogeneity in program information by specifying and simulating a joint model of

information diffusion and program participation. Ignoring for now that their outcome is

binary,6 I propose a semiparametric alternative

yi = xiβ + E[yj|Dij = 1, wi]ρ+ λ(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}

In this linear example, i = 1, ..., n indexes households with program participants, yi is a

measure of the intensity of participation (for example, the amount of money borrowed or

5The use of the expected peer outcomes E[yj |Dij = 1, wi] instead of their empirical counterparts∑
j yjDij/

∑
j Dij masks another endogeneity issue generated by having dependent variables on the right

hand side of the outcome equation. Bramoullé, Djebbari, and Fortin (2009) resolve this issue by using func-
tions of D and {xi}ni=1 as instruments for

∑
j yjDij/

∑
j Dij . I ignore the complication here because the

simultaneity issue is unrelated to the unobserved heterogeneity focus of this paper.
6In future work I plan to demonstrate how the results of this paper can be extended to certain nonlinear

and nonparametric models along the lines of Manski (1987) and Honoré and Powell (1997).
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the average time to repayment), xi is a vector of observed household characteristics (caste,

religion, wealth, etc.), Dij = 1 if households i and j have a social connection, and wi are

characteristics that influence social network formation (for example, the physical location

of the household). λ(wi), the probability that household i is informed about the program

given their social characteristics, is a correction term for selection into the program due to

heterogeneous information.

Example 3 (Job Mobility): Schmutte (2014) studies a bipartite labor market network7

between workers and industry-occupations in which worker i and industry-occupation j are

linked if worker i is observed working in industry-occupation j at some point in time. The

author identifies several clusters of highly connected workers and industry-occupations in

the labor market network and uses the clusters as proxy variables for unobserved worker

and industry-occupation heterogeneity in a linear model of labor market earnings. I

characterize the relationship between this unobserved heterogeneity and the observed

network clusters using the network formation model of this paper and recast the model as

a model with an endogenous network along the lines of

log(yit) = xitβ + θ(φ1(wi)) + ψ(φ2(wj(i,t))) + εit

Dij = 1{ηij ≤ f(φ1(wi), φ2(wj))}

in which yit is the earnings of worker i in time period t, xit are worker characteristics (age,

gender, race, education, etc.), j(i, t) indexes the industry-occupation of worker i in period

t, wi and wj(i,t) denote unobserved worker and industry-occupation characteristics (for

instance, ability or productivity), and φ1 and φ2 map worker and industry-occupation

characteristics to the network clusters.

Example 4 (Research Productivity): Ductor, Fafchamps, Goyal, and van der Leij

(2014) study a model of research productivity in which a researcher’s current publication

quality depends on past quality, researcher characteristics, and a vector of network

7A bipartite network is a network in which the agents can be sorted into two groups such that two agents
in the same group never form a link. In Appendix B, I describe how one might extend the methods of this
paper to the bipartite setting.
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statistics derived from a coauthorship network (in which two researchers are linked if they

have previously been coauthors) including agent degree, eigenvector centrality, betweeness

centrality, etc. The authors experiment with several different models of productivity,

including various combinations of network statistics. An alternative approach treats the

unknown combination of network statistics as unobserved network heterogeneity

yi = xiβ + λ(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}

in which xi is a vector of researcher characteristics, wi characterizes the academic community

of researcher i (for instance, a field of study) and λ(wi) represents heterogeneity in research

productivity due to this community. A key feature of this model is that the estimation of

β (which measures the impact of researcher characteristics on publication quality) does not

require the researcher to correctly identify the relevant features of the network that make up

λ(wi).

In many cases, the function λ (or the functions φ and ψ in Example 3) are not nuisance

parameters, but also objects of interest in the analysis. In future work I plan to demonstrate

how the tools of this paper can be extended to estimate and conduct inference about features

of these parameters as well.

2.2 Estimator

Estimation is complicated by the fact that the social characteristics {wi}ni=1 are unobserved.

If the social characteristics were observed, (1) corresponds to the partially linear regression

of Engle, Granger, Rice, and Weiss (1986), and many tools exist to estimate β (for example,

Chamberlain 1986, Powell 1987, Newey 1988, Robinson 1988). If the social characteristics

were unobserved but identified by the distribution of D, one can extend these methods

by replacing the social characteristics with empirical analogs as in Ahn and Powell (1993),

Ahn (1997), and Hahn and Ridder (2013). This particular approach is taken by Arduini,

Patacchini, and Rainone (2015) and Johnsson and Moon (2015).

However, in many empirical applications the social characteristics are neither observed
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nor identified by the distribution of D. This paper demonstrates that identifying, estimating,

and conducting inference about β is still possible without imposing parametric restrictions

on either f or λ by matching pairs of agents with similar link distributions. The result is

motivated by two key insights.

One insight concerns the identification of β, which holds if two conditions are satisfied.

The first condition is that λ(wi) depends on wi only through the schedule of linking proba-

bilities f(wi, ·) : [0, 1]→ [0, 1]. The second is that there is excess variation in the distribution

of xi that is not explained by f(wi, ·). Formally, consider the pseudometric on the space of

social characteristics defined by

d(u, v) = ||f(u, ·)− f(v, ·)||2 =

(∫
(f(u, τ)− f(v, τ))2 dτ

)1/2

The linking function f(u, ·) gives the collection of probabilities that an agent with social

characteristics u links with the other agents in the network as indexed by their social char-

acteristics in [0, 1]. The pseudometric d(u, v) is then the integrated squared difference in

the linking functions of agents with social characteristics u and v. The identification con-

ditions are then that β is identified if E[(xi − xj)
′(λ(wi) − λ(wj))|d(wi, wj) = 0] = 0 and

E[(xi − xj)′(xi − xj)|d(wi, wj) = 0] is positive definite. These conditions are similar to the

usual identification conditions for linear models with unobserved heterogeneity in the panel

data setting (see for example Wooldridge 2010, Chapter 10): it is the notion of the network

distance measure d used to partial out the endogenous variation that is different.

The logic behind the first identification condition is that d describes the totality of in-

formation that the distribution of D contains about wi. That is, if d(wi, wj) = 0 then

there is no feature of the network that can distinguish between the social characteristics

of agents i and j. They will have the same probability of being connected in any par-

ticular configuration of links, and thus will have the same distribution of degrees, eigen-

vector centralities, average peer characteristics, and any other agent-level statistic of D.

If E[(xi − xj)
′(λ(wi) − λ(wj))|d(wi, wj) = 0] 6= 0, then matching agents with similar link

distributions will not control for all of the unobserved heterogeneity in (1), but under (2)

there is no further information in the distribution of D that can identify it. Additionally,
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when wi is identified by the distribution of D, d(wi, wj) = 0 implies |wi − wj| = 0, so that

E[(xi − xj)′(λ(wi) − λ(wj))|d(wi, wj) = 0] = 0 holds trivially. As a consequence, this first

identification condition is more general than those imposed by Goldsmith-Pinkham and Im-

bens (2013), Hsieh and Lee (2014), Johnsson and Moon (2015), and Arduini, Patacchini,

and Rainone (2015).

A sufficient condition for E[(xi − xj)′(λ(wi) − λ(wj))|d(wi, wj) = 0] = 0 is for λ(wi) to

be continuous in d (i.e, if {wt}∞t=1 is such that d(wi, wt) → 0 then |λ(wi) − λ(wt)| → 0).

An advantage of the more general condition is that in some cases there is variation in λ(wi)

that is not continuous in d but is uncorrelated with xi. For instance, suppose the omitted

function is an indicator for whether or not an agent is linked to agent 1, or λ(wi) = Di1.

Then λ(wi) is not continuous with respect to d, but Di1 = E[Di1|wi] + (Di1 − E[Di1|wi]) in

which the first summand is continuous with respect to d and the second is uncorrelated with

xi.

The logic behind the second identification condition is that matching agents with similar

link distributions only identifies β if there is excess variation in the distribution of xi not

explained by the linking function f(wi, ·). Otherwise there is a dimension of the covariate

space such that all of the variation in yi can be explained by wi regardless of the magnitude

of β. One example of this is when xi contains agent-level statistics of the adjacency matrix.

Another is the case of a linear-in-means network peer effects model. I discuss these cases in

more detail below.

The second insight is that the average squared difference in the ith and jth columns

of the squared adjacency matrix (D × D) can be used to bound d(wi, wj). The logic has

two steps. First, there exists another pseudometric δ on [0, 1]2 such that d(wi, wj) can be

bounded in terms of δ(wi, wj). Second, δ(wi, wj) can be consistently estimated by the root

average squared difference in the ith and jth columns of the squared adjacency matrix

δ̂ij =

n−1 n∑
t=1

(
(n− 2)−1

n∑
s=1

Dts(Dis −Djs)

)2
1/2

(3)

Here, the codegree
∑n

s=1DtsDis gives the number of other agents that are linked to both
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agents i and t, {
∑n

s=1DtsDis}nt=1 is the collection of codegrees between agent i and the other

agents in the sample, and δ̂ij gives the root average squared difference in i’s and j’s collection

of codegrees. Similar relationships between configurations of such network moments and the

distribution of links have also been exploited in arguments by Lovász and Szegedy (2007;

2010), Bickel, Chen, and Levina (2011), Lovász (2012), and Zhang, Levina, and Zhu (2015).

The two insights indicate that when the ith and jth columns of the squared adjacency

matrix are similar and the identification conditions for β hold then (yi−yj) and (xi−xj)β+

(εi − εj) are approximately equal. This result is limited in the sense that it is insufficient to

estimate λ by a series approximation as in Newey (1988) and Ai and Chen (2003) because

wi is not necessarily identified. However, one can recover β by matching pairs of agents

with d-similar social characteristics. This paper demonstrates that under certain regularity

conditions β is consistently estimated by a pairwise difference estimator

β̂ =

(
n−1∑
i=1

n∑
j=i+1

(xi − xj)′(xi − xj)K

(
δ̂ij
hn

))−1(n−1∑
i=1

n∑
j=i+1

(xi − xj)′(yi − yj)K

(
δ̂ij
hn

))
(4)

in which K is a kernel density function and hn a bandwidth parameter depending on the

sample size.

The estimator has a form similar to established pairwise difference estimators from the

literature (in particular Ahn and Powell 1993). However, the large sample properties of

β̂ are not typical of this literature. For example, unless the researcher is willing to put

substantial structure on the unknown linking function f , the distribution of δ̂ij can be difficult

to characterize near 0, complicating the usual balancing of large sample bias and variance.

The problem is related to the small ball problem in the functional nonparametrics literature

(see for instance Masry 2005, Ferraty and Vieu 2006, Hong and Linton 2016) and can severely

amplify the usual curse of dimensionality. Of particular concern is the possibility that the

quantity of matches shrinks to zero quicker than the averages in (4) converge, though in

the proofs of this paper I demonstrate how the structure of the network model sufficiently

mitigates this problem such that under certain regularity conditions the proposed estimator

is consistent and asymptotically normal.

The following translates the identification conditions for the examples posed above
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Example 1 (Network Peer Effects) In the network peer effects model

yi = xiβ + E[xj|Dij = 1, wi]ρ1 + E[yj|Dij = 1, wi]ρ2 + λ(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}

the parameter β is identified if there is variation in xi that is unrelated to the distribution

of network links f(wi, ·). However, the parameters ρ1 and ρ2 are not identified since

E[xj|Dij = 1, wi] = E[xjDij|wi]/E[Dij|wi] is a fixed function of wi that is indistinguishable

from λ(wi). In particular, the model violates the nondegeneracy identification condition

since

E[xj|Dij = 1, wi] =

∫
E[xj|wj = w]f(wi, w)dw/

∫
f(wi, w)dw

and d(wi, wi′) = ||f(wi, ·)− f(wi′ , ·)||2 = 0 implies

E[(E[xj|Dij = 1, wi]− E[xj|Di′j = 1, wi′ ])
2 |d(wi, wi′) = 0] = 0

The same logic applies for the variable E[yj|Dij = 1, wi].

It is helpful to contrast the nonidentification result with the setting of Goldsmith-Pinkham

and Imbens (2013). They study a model along the lines of

yi = xiβ + E[xj|Dij = 1, wi, Zij]ρ1 + E[yj|Dij = 1, wi, Zij]ρ2 + wiρ3 + εi

Dij = 1{ηij ≤ |wi − wj|γ1 + Zijγ2}1{i 6= j}

Their model is identified by two restrictions. The first is the functional form restriction on

the network heterogeneity λ(wi) = wiρ3. The second is the introduction of exogenous link

covariates Zij, assumed to be independent of wi and wj.
8

8 It is also possible to incorporate link covariates into the framework of this paper by replacing equation
(2) with Dij = 1{ηij ≤ f(wi, wj , Zij)}. In the appendix, I demonstrate how the estimator of this paper can
be extended to models with link covariates by matching on conditional codegree vectors, although a formal
study of the large sample properties of such an estimator is left to future work.
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Example 2 (Information Diffusion) In the microfinance program participation model

yi = xiβ + E[yj|Dij = 1, wi]ρ+ λ(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}

the parameter ρ is not identified following previous arguments. The parameter β is

identified if two households with the same distribution of links have the same probability of

being informed about the program and a household’s covariates are not completely

determined by their distribution of links. The first condition is satisfied in the information

diffusion model of Banerjee, Chandrasekhar, Duflo, and Jackson (2013). The second

condition may be violated if households only link to other households of the same religion

or caste, which does not seem to be the case in this setting (see Jackson 2014, for a

discussion). A key feature of the model and estimator proposed in this paper is that they

do not require many-networks asymptotics.

Example 3 (Job Mobility): In the labor market earnings model

log(yit) = xitβ + θ(φ1(wi)) + ψ(φ2(wj(i,t))) + εit

Dij = 1{ηij ≤ f(φ1(wi), φ2(wj))}

β is identified if agents in different network clusters have a different distribution of network

links and there is excess variation in the worker and industry-occupation covariates that

are not explained by the network clusters. The first is satisfied by construction since

Schmutte (2014) defines the clusters as collections workers and industry-occupations with

few links between clusters. The second is satisfied if the covariates have overlapping

support across clusters, which is the case in this particular setting.

Example 4 (Research Productivity): In the research productivity model

yi = xiβ + λ(wi) + εi

Dij = 1{ηij ≤ f(wi, wj)}1{i 6= j}
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β is identified if there is excess variation in the covariates that is not explained by the

network links. This may not be satisfied if researchers only coauthor with other researchers

with similar publication histories. This does not seem to be the case empirically.

3 Main Results

3.1 Terminology and Notation

This section details additional constructions required for the lemmas, theorems, and proofs.

I define agent i’s network type to be the projection of the link function f onto his social

characteristics: fwi(·) := f(wi, ·) : [0, 1]→ [0, 1]. In words, it is the collection of probabilities

that agent i links to agents with each social characteristic in [0, 1]. I consider network types to

be elements of L2([0, 1]), the usual inner product space of square integrable functions on the

unit interval. As suggested by the notation of the previous section, d(wi, wj) = ||fwi − fwj ||2
is the L2 metric on the space of network types.

I require two network theoretic constructions: (average) agent degrees and (average)

agent-pair codegrees, as well as their population analogs. The degree of agent i is the

fraction of other agents linked to agent i in D, or (n − 1)−1
∑

t6=iDit. Under (2), that

(n − 1)−1
∑

t6=iDit →a.s.

∫
fwi(τ)dτ follows from the usual strong law of large numbers. I

refer to
∫
fwi(τ)dτ as agent i’s population degree.

Similarly, for i 6= j the codegree of agent pair (i, j) is the fraction of other agents

linked to both agent i and agent j, or (n − 2)−1
∑

t6=i,j DitDjt. Again, under (2), (n −

2)−1
∑

t6=i,j DitDjt →a.s.

∫
fwi(τ)fwj(τ)dτ = 〈fwi , fwj〉L2 . I define p̂ij := (n−2)−1

∑
t6=i,j DitDjt

and p(wi, wj) :=
∫
fwi(τ)fwj(τ)dτ and refer to p(wi, wj) as the population codegree of agents

i and j. I emphasize that p(wi, wi) refers to the population codegree of two distinct agents

with social characteristics equal to wi and not to the limiting degree of agent i. That is

p(wi, wi) :=
∫
fwi(τ)2dτ = ||fwi ||22 6=

∫
fwi(τ)dτ .

Notice that p also defines a link function, in which p(wi, wj) gives the probability that

agents i and j are both linked to a third agent, as opposed to f(wi, wj), which gives the

probability that they are directly linked themselves. To distinguish p from f I refer to it as the
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codegree link function (associated with f), and the function pwi(·) := p(wi, ·) : [0, 1]→ [0, 1]

as agent i’s codegree type. I also take codegree types to be elements of L2([0, 1]). I refer to

the pseudometric on [0, 1] induced by L2-differences in codegree types with δ, so that

δ(u, v) = ||p(u, ·)− p(v, ·)||2 =

(∫
(p(u, τ)− p(v, τ))2 dτ

)1/2

=

(∫ (∫
f(τ, s) (f(u, s)− f(v, s)) ds

)2

dτ

)1/2

for any pair of social characteristics u and v. Under (2), my Lemma 1 demonstrates that the

root average squared difference in the ith and jth columns of the squared adjacency matrix

(given by (3)) provides a uniformly consistent estimator for δ(wi, wj) over [0, 1]2.

I use two different conditional expectations defined over events on the network types.

Let Zi and Zij be arbitrary random matrices indexed at the agent and agent-pair level

respectively. Then E[Zij| ||fwi − fwj ||2 = x] refers to the conditional expectation

lim
h→0

E[Zij| (wi, wj) ∈ {(u, v) ∈ [0, 1]2 : x ≤ ||fu − fv||2 ≤ x+ h}]

and E [Zi|fwi = f ] refers to the conditional expectation

lim
h→0

E [Zi| wi ∈ {w ∈ [0, 1] : ||fw − f ||2 ≤ h}]

Though fwi is a random function, these conditional expectations implicitly refer to the

measure induced by the random variable wi. Conditional means with respect to the agent

codegree differences or types are defined in an analogous way.

Let ui = λ(wi) + εi. I use the functional λ(f) to denote E[ui|fwi = f ] and νi for the

associated residual ui− λ(fwi). This allows me to rewrite the model (equations (1) and (2))

in a way that emphasizes the identification and estimation strategy described in the previous

section.

yi = xiβ + λ(fwi) + νi (5)

Dij = 1{ηij ≤ f(wi, wj)} (6)
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3.2 Model Identification

This section provides conditions for agents with similar network types but different regressors

to identify β.

Assumption 1: The random sequence {xi, νi, wi}ni=1 is independent and identically

distributed with entries mutually independent of {ηij}nj>i=1, a symmetric random array

with independent and identically distributed entries above the diagonal. The variables wi

and ηij have standard uniform marginals. The conditional distributions of {yi}ni=1 and D

are given by equations (5) and (6) respectively. The functions λ : [0, 1]→ R and

f : [0, 1]2 → [0, 1] are Lebesgue-measurable with the latter symmetric in its arguments.

Assumption 1 is a restatement of the discussed model and is included primarily as a

reference. Since the marginal distributions of wi and ηij are not separately identified from f ,

the assumption of standard uniform marginals is without loss of generality (see Bickel and

Chen 2009, Orbanz and Roy 2015, for a discussion).

Assumption 2: The variables xi and ui both have finite sixth moments with

E[(xi − xj)′(ui − uj)| ||fwi − fwj ||2 = 0] = 0.

The second part of Assumption 2 is satisfied if xi and ui are uncorrelated conditional on

fwi .

Assumption 3: The conditional covariance matrix

Γ0 = E
[
(xi − xj)′ (xi − xj) | ||fwi − fwj ||2 = 0

]
is positive definite.

Assumption 3 states that there is some independent variation in each of the regressors

that is not explained by the network types. Section 2 explores cases when it may not be

satisfied, for example when the regressors include functions of the adjacency matrix. The

assumption can be weakened in cases when the researcher has some additional information

about the network formation process (for example, exogenous link covariates) or structure

on the endogenous covariation in equation (5).

Theorem 1: Suppose Assumptions 1-3 hold. Then β is the unique minimizer of

E
[
((yi − yj)− (xi − xj)b)2 | ||fwi − fwj ||2 = 0

]
over b ∈ Rk.
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Theorem 1 demonstrates that β is identified from the joint distribution of (yi, xi, fwi).

The fact that the network types fwi are in turn identified by the distribution of the adjacency

matrix D is shown in the following section.

3.3 Model Estimation

This section characterizes the large sample properties of β̂. The first part provides sufficient

conditions for consistency. The second part provides sufficient conditions for the limiting

distribution to be normal. Accurate inference may require a bias correction and the third

part demonstrates how a variation on the jackknife method proposed by Powell, Stock, and

Stoker (1989) can be used for this purpose. The fourth part provides a consistent estimator

for the asymptotic variance.

3.3.1 Consistency

Consistency of β̂ requires an additional continuity condition on the conditional expectation

functions from Assumptions 2 and 3, and restrictions on the bandwidth sequence and kernel

density function.

Assumption 4: The conditional expectation functions satisfy

limh→0E[(xi − xj)′(ui − uj)| ||fwi − fwj ||2 = h] = 0 and

limh→0E[(xi − xj)′(xi − xj)| ||fwi − fwj ||2 = h] = Γ0.

Assumption 4 is satisfied if Assumptions 2 and 3 hold and the conditional expectation

functionals E[x′iui|fwi ] and E[x′ixi|fwi ] as defined in Section 3.1 are continuous with respect to

fwi in the L2-sense. This condition might not be satisfied if the network is sparse, because fwi

may be uniformly close to zero so that small variations in fwi correspond to large variations

in xi and ui.
9 In the appendix I discuss a number of ways in which the model and estimator

can be altered to mitigate this problem, for example, by including observable link covariates.

9The problem is not unique to the sparse case. If the network is very dense so that f is uniformly close to
1, a similar problem occurs. Thus it is not sparsity per se that is a problem for the model of this paper, but
situations in which the relative amount of information that the network types contain about the covariation
between xi and ui is small.
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Assumption 5: The bandwidth sequence hn → 0, n1−γh2n →∞ for some γ > 0, and

nrn →∞ for rn = E
[
K
(
||pwi−pwj ||2

hn

)]
. K is supported, bounded, and differentiable on

[0, 1], and strictly positive on [0, 1).

The first two restrictions on the bandwidth sequence are standard. The third condition,

that nrn → ∞ is less so. This condition is required to ensure that the number of matches

used to estimate β̂ is increasing with n. If pwi was a d-dimensional random vector with

compact support and a strictly positive density function, P (||pwi − pwj ||2 ≤ hn) would be

on the order of hdn. The average number of agent pairs with similar codegree types would

then be on the order of nhdn, which increases with n if the second bandwidth condition were

changed to n1−γhdn → ∞. However, since pwi is infinite dimensional, P (||pwi − pwj ||2 ≤ hn)

cannot necessarily be approximated by a polynomial of hn of known order and so this third

bandwidth condition is required.

The conditions on the kernel density function K are satisfied by a type-II kernel density

function (examples include the Epanechnikov, Biweight, and Bartlett kernels). It is possible

to extend this proof to include type-I kernel density functions (for example, the uniform

kernel), although kernels supported on all of R (for example the Gaussian kernel) may

potentially cause problems in this setting (see Hong and Linton 2016, for a discussion).

If the collection of network differences between agents {||fwi−fwj ||2}i 6=j were observed and

used to construct the matches in β̂, the arguments for consistency would be similar to those of

Ahn and Powell (1993), though with some alterations to accommodate the dimensionality of

fwi . That the estimator is still consistent when ||fwi−fwj ||2 is replaced by δ̂ij follows from two

arguments. First, {δ̂ij}i 6=j converges uniformly to the codegree differences {||pwi−pwj ||2}i 6=j.

Second, agent-pairs with small codegree differences have small network differences. These

results are stated in Lemmas 1 and 2 respectively.

Lemma 1: Suppose Assumptions 1 and 5 hold. Then

max
(i 6=j)

∣∣∣δ̂ij − ||pwi − pwj ||2∣∣∣ = oa.s.
(
n−γ/4hn

)
in which γ refers to the exponent from Assumption 5.
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Lemma 1 demonstrates that the collection of
(
n
2

)
empirical codegree differences observed

by the researcher converges uniformly to their population analogs at a rate slightly slower

than n−1/2 (since hn can be taken to be arbitrarily close to n−1/2 by taking γ close to 0).

The proof involves repeated applications of Bernstein’s Inequality and the union bound over

the
(
n
2

)
distinct empirical codegrees that make up {δ̂ij}i 6=j.

Lemma 2: Suppose Assumption 1 holds. Then for every ε > 0 there exists a δ > 0 such

that with probability at least 1− ε2/4

||pwi − pwj ||2 ≤ δ =⇒ ||fwi − fwj ||2 ≤ ε

Lemma 2 is the main justification for the matching strategy of this paper. The result is

somewhat unexpected since ||pwi−pwj ||2 ≤ ||fwi−fwj ||2 is almost an immediate consequence

of Jensen’s inequality,10 which suggests that differences in codegree types provide a coarser

notion of network distance than differences in network types. Nevertheless, pairs of agents

with similar codegree types have similar network types with high probability.

The lemma is related to Theorem 13.27 of Lovász (2012), which demonstrates that ||pwi−

pwj ||2 = 0 implies ||fwi − fwj ||2 = 0 when f is continuous. The logic of his result is sketched

below.

||pwi − pwj ||22 = 0 =⇒
∫ (∫

f(τ, s) (f(wi, s)− f(wj, s)) ds

)2

dτ = 0

=⇒
∫
f(τ, s) (f(wi, s)− f(wj, s)) ds = 0 for every τ

=⇒
∫
f(wi, s) (f(wi, s)− f(wj, s)) ds = 0 and

∫
f(wj, s) (f(wi, s)− f(wj, s)) ds = 0

=⇒
∫

(f(wi, s)− f(wj, s))
2 ds = 0 =⇒ ||fwi − fwj ||22 = 0

Essentially, the result follows from the fact that if agents i and j have identical codegree

types, then the difference in their network types (fwi − fwj) must be uncorrelated with

each other network type in the population, as indexed by τ . In particular, the difference is

10 To see this, note ||pwi
− pwj

||22 =
∫ (∫

f(t, s) (f(wi, s)− f(wj , s)) ds
)2
dt ≤∫ (∫

(f(t, s) (f(wi, s)− f(wj , s)))
2
ds
)
dt ≤

∫
(f(wi, s)− f(wj , s))

2
ds = ||fwi

− fwj
||22, where the first

inequality is due to Jensen and the second due to the fact that f is bounded between 0 and 1.
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uncorrelated with both fwi and fwj , the network types of agents i and j. However, this can

only be the case if the network types of i and j are perfectly correlated.

Lovász’s theorem demonstrates that agent-pairs with identical codegree types also have

identical network types. However, consistency of β̂ requires a stronger result, that agent-

pairs with similar but not necessarily equivalent codegree types have similar network types.

This is the statement of Lemma 2. Unfortunately the above proof cannot simply be extended

by replacing each occurrence of 0 with some function of a small ε > 0, because the third

implication relies on
∫
f(τ, s) (f(wi, s)− f(wj, s)) ds = 0 for exactly all τ , which is not

guaranteed by the condition ||pwi − pwj ||22 ≤ ε for any ε > 0. Despite this, the proof of

Lemma 2 demonstrates that the two notions of distance are similar in enough places on

[0, 1]2 that matching agents with similar codegree types is sufficient to partial out λ(fwi) in

equation (5) and consistently estimate β.

Theorem 2: Suppose Assumptions 1-5 hold. Then β̂ →p β.

Theorem 2 is almost a direct consequence of Lemmas 1 and 2, several applications of the

continuous mapping theorem, and Lemma 3.1 from Powell, Stock, and Stoker (1989).

3.3.2 Asymptotic Normality

I provide two asymptotic normality results. The first result concerns the case when the

support of the network and codegree types is finite, so that P (||fwi− fwj ||2 = 0) = P (||pwi−

pwj ||2 = 0) > 0 and there exists an ε > 0 such that P (0 < ||fwi − fwj ||2 < ε) = P (0 <

||pwi − pwj ||2 < ε) = 0.

Theorem 3: Suppose Assumptions 1-5 hold. Further suppose the support of fwi is finite.

Then

V
−1/2
3,n

(
β̂ − β

)
→d N (0, Ik)

where V3,n = Γ−10 Ω0Γ
−1
0 × s/n, Γ0 is as defined in Assumption 3, Ik is the k × k identity
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matrix, and

s = P (||pwi − pwj ||2 = 0, ||pwi − pwk ||2 = 0)/P (||pwi − pwj ||2 = 0)2

Ω0 = E
[
(xi − xj)′(xi − xk)(ui − uj)(ui − uk)| ||pwi − pwj ||2 = 0, ||pwi − pwk ||2 = 0

]
When the support of network and codegree types is finite, pairs of agents with similar

codegree types have identical network types with high probability, and so the proof of The-

orem 3 follows from Assumptions 1-5, Lemmas 1 and 2, and standard arguments. I include

this theorem for three reasons. First, it adds to a literature noting that the adverse effects

of unobserved heterogeneity can be mild when the support of this variation is finite (for

example Hahn and Moon 2010, Bonhomme and Manresa 2015). Second, the assumption

of discrete heterogeneity is not uncommon in empirical work (for instance Schmutte 2014,

Bonhomme, Lamadon, and Manresa 2015). Third, it provides an easy to interpret condition

such that β̂ is consistent and asymptotically normal at the
√
n-rate.

The second result concerns the more general case when the support of fwi is not nec-

essarily finite. In this case, the proof of asymptotic normality requires additional structure

on f and the conditional expectations from Assumption 4, which is given in the following

Assumptions 6 and 7. Assumption 8 modifies the bandwidth sequence accordingly.

Assumption 6: There exists an integer K and a partition of [0, 1) into K equally spaced,

adjacent, and non-intersecting intervals ∪Kt=1[x
1
t , x

2
t ) with x11 = 0 and x2K = 1 such that for

any t ∈ {1, ..., K} and almost every x, y ∈ [x1t , x
2
t ) and s ∈ [0, 1], |f(x, s)− f(y, s)|

≤ C6|x− y|α, for some C6 ≥ 0 and α > 0.

Assumption 6 imposes that the space of social characteristics can be partitioned into K

segments such that on each partition segment the link function f is almost everywhere Hölder

continuous of some order. The partition allows for discrete jumps of the link function as to

include discrete models such as the stochastic blockmodel (see Appendix C for a definition

and discussion) as a special case. The restriction that the partition is uniformly sized is

without loss, and the results can also be extended to let Kn → 0 slowly with n. This

corresponds to a stochastic blockmodel with a growing number of blocks as in Wolfe and

Olhede (2013). A similar condition is used by Zhang, Levina, and Zhu (2015).
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Assumption 7: The conditional expectation

E[(xi − xj)′(ui − uj)| ||fwi − fwj ||2 = h] ≤ C7h
ζ for some C7, ζ > 0 and all h in a

neighborhood to the right of 0.

Assumption 7 strengthens the first condition of Assumption 4 so that the slope of the con-

ditional expectaton E[(xi−xj)′(ui−uj)| ||fwi−fwj ||2] is bounded by a fractional polynomial

to the right of 0.

Assumption 8: The bandwidth sequence hn = C8 × n−ρ for ρ ∈
(

α
4+8α

, α
2+4α

)
and some

C8 > 0. K(
√
u) is supported, bounded, and twice differentiable on [0, 1], and strictly

positive on [0, 1).

The rate of convergence of the bandwidth sequence depends on the exponent from As-

sumption 6. When α = 1 this bandwidth choice is approximately on the order of magnitude

considered by Ahn and Powell (1993). The proof of Theorem 4 is simplified by requiring

K(
√
u) to be twice differentiable at 0 and all of the kernel density functions in the discussion

of Assumption 5 satisfy this additional condition.

The second asymptotic normality proof uses Assumption 6 to strengthen Lemma 2 in

the following way.

Lemma 3: Suppose Assumptions 1 and 6 hold. Then for almost every (wi, wj) pair

||pwi − pwj ||2 ≤ ||fwi − fwj ||2 ≤ 32 C
1

2+4α

6

(
||pwi − pwj ||2

) α
1+2α

so long as ||pwi − pwj ||2 <
√

8C6K
−α, where C6 and α are the constants from Assumption 6.

Theorem 4: Suppose Assumptions 1-4 and 6-8 hold. Further suppose α× ζ > 1/2. Then

V
−1/2
4,n

(
β̂ − βhn

)
→d N (0, Ik)

where V4,n = Γ−10 ΩnΓ−10 /n, Γ0 is as defined in Assumption 3, rn is as defined in Assumption
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5, and Ik is the k × k identity matrix, and

βhn = β + (Γ0)
−1E

[
(xi − xj)′(ui − uj)K

(
||pi − pj||2

hn

)]
/ (2rn)

Ωn = E

[
(xi − xj)′(xi − xk)(ui − uj)(ui − uk)K

( ||pwi − pwj ||2
hn

)
K

(
||pwi − pwk ||2

hn

)]
/
(
r2n
)

The statement of Theorem 4 warrants three remarks. First, the variance is not necessarily

on the order of the inverse of the sample size. This is because the variance of the kernel

r−2n E
[
K
(
||pwi−pwj ||2

hn

)
K
(
||pwi−pwk ||2

hn

)]
can potentially diverge with n. When this variance

converges to a limit, then
(
β̂ − βhn

)
is asymptotically normal with variance Γ0Ω0Γ0 × σ/n

where σ = limn→∞ r
−2
n E

[
K
(
||pwi−pwj ||2

hn

)
K
(
||pwi−pwk ||2

hn

)]
and Ω0 is as defined in Theorem

3. Even when this variance diverges, Assumptions 6-8 and Lemma 3 ensure that the rate of

convergence for V4,n is on the order of at least n−1/2 and is close to n−1 when α is close to 1. In

the appendix, I propose an adaptive bandwidth procedure that requires each agent to belong

to the same number of matches, which normalizes r−2n E
[
K
(
||pwi−pwj ||2

hn

)
K
(
||pwi−pwk ||2

hn

)]
=

1. Though this choice of bandwidth potentially inflates the bias of the estimator relative to

β̂, simulation evidence suggests that this inflation is often small relative to the reduction in

variance.

Second, the estimator has an oracle property in the sense that the estimation error of δ̂ij

around δ(wi, wj) is asymptotically negligible, so that the researcher may conduct inference

as though the codegree differences between agents were known. The intuition in this case is

that conditional on (wi, wj), the asymptotic variance of
√
n(δ̂ij − δ(wi, wj)) is bounded from

above by d(wi, wj). If δ̂ij is close to zero and the sample size is large then Lemmas 2 and 3

imply that d(wi, wj) is close to zero so that the variance of
√
n(δ̂ij−δ(wi, wj)) is also close to

zero. When α× ζ > 1/2 this variance is sufficiently small as to not influence the asymptotic

distribution of β̂. This is distinct from the results of Ahn and Powell (1993). Their approach

would roughly correspond to matching agents based on δ(ŵi, ŵj), where ŵi is a consistent

estimator for wi and δ is known. In their case, the variation of ŵi around wi and ŵj around

wj is unrelated to δ(wi, wj), so that the variance of
√
n(δ(ŵi, ŵj) − δ(wi, wj)) is not small.

As a result, this variation does inflate the asymptotic variance of their estimator.
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Third, the asymptotic distribution β̂ is not centered at β, but at the pseudo-truth βhn .

Though Theorem 2 implies that βhn converges to β, the rate of convergence can be slow

depending on the size of α and ζ. This problem is common with matching estimators,

although it is exacerbated here by the relatively weak relationship between the codegree and

network distances as described by Lemma 3. In particular, Assumptions 6-8 and Lemma 3

only imply that |βhn − β| = Op

(
n
−ζα2

2(1+2α)2

)
which can imply a large worst-case scenario bias

on the order of n−1/36.

3.3.3 Bias Correction

Inferences about β based on the asymptotic distribution provided by Theorem 4 will only

be valid if V
−1/2
4,n (βhn − β) = op(1). Otherwise, accurate inference requires a bias correction.

The technique proposed in this paper requires an additional smoothness condition.

Assumption 9: The pseudo-truth function βh satisfies βh =
∑L

l=1Clh
l/θ +O

(
h(L+1)/θ

)
for

some positive integer L > ((1 + 2α)θ − α)/α, k-dimensional constants C1, C2, ..., CL, θ > 0,

and h in a fixed open neighborhood to the right of 0.

Assumption 9 essentially requires that the asymptotic bias from Theorem 4 is sufficiently

smooth with respect to the bandwidth choice.

I propose the following jackknife bias corrected estimator β̄L. For an arbitrary sequence

of distinct positive numbers {c1, c2, ..., cL} with c1 = 1, β̄L is defined to be

β̄L =
L∑
l=1

alβ̂clhn (7)

in which β̂clhn refers to the pairwise difference estimator (4) with the choice of bandwidth

cl × hn and the sequence{a1, a2, ...aL} satisfies


1 1 ... 1

1 c
2/θ
2 ... c

2/θ
L

...
...

. . .
...

1 c
L/θ
2 ... c

L/θ
L

×


a1

a2
...

aL

 =


1

0
...

0


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Theorem 5: Suppose Assumptions 1-4 and 6-9 hold, and L > ((1 + 2α)θ − α)/α. Then

V
−1/2
5,n

(
β̄L − β

)
→d N (0, Ik)

where V5,n =
∑L

l1=1

∑L
l2=1 al1al2Γ

−1
0 Ωn,l1l2Γ

−1
0 /n, Γ0 is as defined in Assumption 3,

rn,l = E
[
K
(
||pwi−pwj ||2

clhn

)]
, Ik is the k × k identity matrix, and

Ωn,l1l2 = E

[
(xi − xj)′(xi − xk)(ui − uj)(ui − uk)K

( ||pwi − pwj ||2
cl1hn

)
K

(
||pwi − pwk ||2

cl2hn

)]
/ (rn,l1rn,l2)

3.3.4 Variance Estimation

The asymptotic variances from Theorems 3-5 can be consistently estimated using the sample

analogs of Γ0 and Ωn,l1l2 . That is for ûi = yi − β̂xi,

Γ̂h =

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

(xi − xj)′ (xi − xj)K
(
||p̂i − p̂j||2

h

)

and Ω̂h1,h2 =

(
n

3

)−2 n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

(xi − xj)′ (xi − xk) (ûi − ûj) (ûi − ûk)K
(
||p̂i − p̂j||2

h1

)
K

(
||p̂i − p̂k||2

h2

)

then

Theorem 6: Suppose Assumptions 1-5 hold. Then
(

Γ̂−1hn Ω̂hn,hnΓ̂−1h − nV4,n
)
→p 0 and(∑L

l1=1

∑L
l2=1 Γ̂−1cl1hn

Ω̂cl1hn,cl2hn
Γ̂−1cl2hn

− nV5,n
)
→p 0

A corollary to Theorem 6 is that Γ̂−1hn Ω̂hn,hnΓ̂−1hn also consistently estimates nV3,n under the

hypothesis of Theorem 3. These statistics can be used to build confidence intervals or test

hypotheses about β under the relevant assumptions in the usual way. Asymptotic theory has

little to say about the actual choices of bandwidths and constants used in the construction

of the estimators in this section. The setting potentially allows for choices based on cross

validation which I leave to future work.
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4 Simulations

This section presents simulation evidence for three types of network formation models: a

stochastic blockmodel, a beta model, and a homophily model. To simplify the exposition, a

detailed explanation of the models is deferred to Appendix C. For each of R simulations, I

draw a random sample of n observations {ξi, εi, ωi}ni=1 from a trivariate normal distribution

with mean 0 and covariance given by the identity matrix. I also draw a random symmetric

matrix {ηij}ni,j=1 with independent and identically distributed upper diagonal entries with

standard uniform marginals. For each of the following link functions f , the adjacency matrix

D is formed by D = 1{ηij ≤ f (Φ(ωi),Φ(ωj))} where Φ is the cumulative distribution

function for the standard univariate normal distribution.

The first design draws D from a stochastic blockmodel where

f1(u, v) =



1/3 if u ≤ 1/3 and v > 1/3

1/3 if 1/3 < u ≤ 2/3 and v ≤ 2/3

1/3 if u > 2/3 and (v > 2/3 or v ≤ 1/3)

0 otherwise

The linking function f1 generates network types with finite support as in the hypothesis of

Theorem 3. For this model, I take λ(ωi) = d3Φ(ωi)e, xi = ξi+λ(ωi), and yi = βxi+γλ(ωi)+εi.

The second and third designs draw D from a beta model and homophily model respectively

where

f2(u, v) =
exp(u+ v)

1 + exp(u+ v)
and f3(u, v) = 1− (u− v)2

For these models, λ(ωi) = ωi, xi = ξi + λ(ωi) and yi = βxi + γλ(ωi) + εi.

I use x and y to refer to the stacked n-dimensional vector of observations {xi}ni=1 and

{yi}ni=1 and Z1 for the (n × 2) matrix {xi, λ(ωi)}ni=1. I use ci to denote a vector of network

statistics for agent i based on D containing agent degree n−1
∑n

j=1Dij, eigenvector cen-

trality,11 and average peer covariates
∑n

j=1Dijxj/
∑n

j=1Dij. Z2 denotes the stacked vector

{xi, ci}ni=1.

11Agent i’s eigenvector centrality statistics refers to the ith entry of the eigenvector of D associated with
the largest eigenvalue.
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For each design, I evaluate the performance of six estimators. The benchmark is β̂1 =

(Z ′1Z1)
−1(Z ′1y), the infeasible OLS regression of y on x and λ(ωi). β̂2 = (x′x)−1(x′y) is the

näıve OLS regression of y on x. β̂3 = (Z ′2Z2)
−1(Z ′2y) is the OLS regression of y on x and

the vector of network controls c. β̂4 is the proposed pairwise difference estimator given in

(4) without bias correction, β̂5 is the bias corrected estimator (7), and β̂6 is the pairwise

difference estimator with an adaptive bandwidth but without bias correction (see Appendix

A for more information). The pairwise difference estimators all use the Epanechnikov kernel

K(u) = 3(1− u2)1{u2 < 1}/4 and the bandwidth sequence n−1/9/10. Since n1/9 is roughly

equal to 2 for the sample sizes considered, the results are close to a constant bandwidth

choice of hn = 1/20. The adaptive bandwidth estimator uses L = 2 with (c1, c2) = (1, 2).

Tables 1-3 demonstrate results for R = 1000, β = γ = 1 and for n equal to 50, 100,

200, 500, and 800. For each model, estimator and sample size, the first row (bias) gives the

mean minus β = 1, the second row (MAE) gives the mean absolute error around β = 1,

and the third row (rMAE) gives the mean absolute error around β = 1 divided by that

of the infeasible benchmark β̂1. The fourth row (size) is the proportion of draws that are

rejected by rule |β̂k − 1|/
√
V̂k > 1.96 for k = 1, ..., 6. For the first three estimators V̂1 =[

(Z ′1Z1)
−1Z ′1(y − Z1β̂1)(y − Z1β̂1)

′Z1(Z
′
1Z1)

−1
]
1,1

, V̂2 = (x′x)−1x′(y−β̂2x)(y−β̂2x)′x(x′x)−1,

and V̂3 =
[
(Z ′2Z2)

−1Z ′2(y − Z2β̂3)(y − Z2β̂3)
′(Z ′2Z2)

−1
]
1,1

. For the last three estimators, V̂4 =

V̂4,n, V̂5 = V̂5,n, and V̂6 = V̂6,n (see Appendix A for more details) respectively.

Table 1 contains results for the stochastic blockmodel. The näıve estimator β̂2 has a

large and stable positive bias that is not reduced as n is increased. The OLS estimator with

network controls β̂3 also has a large and persistent bias that decreases with n but at a very

slow rate.

The results for the pairwise difference estimators illustrate the content of Theorem 3,

that when the unobserved heterogeneity is discrete, the proposed estimator identifies pairs of

agents of the same type with high probability. As a result, the pairwise difference estimators

β̂4 and the pairwise difference estimator with an adaptive bandwidth β̂6 behave similar to

the infeasible β̂2, for n greater than 50. For the stochastic blockmodel, Assumption 9 is not

valid, and so the jackknife bias correction actually inflates both the bias and variance of β̂4.

Looking at the relative mean absolute error for this estimator, it is clear that the relative
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Table 1: Simulation Results, Stochastic Blockmodel

Infeasible Näıve OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference Corrected Bandwidth

n β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

50
bias -0.000 0.831 0.444 0.075 0.038 0.065

MAE 0.118 0.831 0.444 0.194 0.201 0.155
rMAE 1.000 7.042 3.763 1.644 1.703 1.313

size 0.056 1.000 0.880 0.130 0.127 0.163
100

bias -0.000 0.826 0.387 0.008 -0.036 0.005
MAE 0.082 0.826 0.387 0.099 0.110 0.090
rMAE 1.000 10.073 4.720 1.207 1.342 1.098

size 0.044 1.000 0.958 0.052 0.080 0.085
200

bias 0.001 0.825 0.322 0.002 -0.042 0.002
MAE 0.056 0.825 0.322 0.060 0.073 0.060
rMAE 1.000 14.732 5.750 1.071 1.304 1.071

size 0.055 1.000 0.958 0.059 0.110 0.065
500

bias 0.002 0.825 0.237 0.002 -0.043 0.002
MAE 0.036 0.825 0.237 0.036 0.051 0.037
rMAE 1.000 22.917 6.583 1.000 1.417 1.028

size 0.042 1.000 0.959 0.042 0.168 0.045
800

bias -0.001 0.824 0.187 -0.000 -0.045 -0.001
MAE 0.029 0.824 0.187 0.029 0.049 0.029
rMAE 1.000 28.414 6.448 1.000 1.690 1.000

size 0.056 1.000 0.928 0.056 0.265 0.065

Table 1: This table contains simulation results for 1000 replications and a sample size of n =

50, 100, 200, 500, 800 and β = 1. Bias gives the simulation mean minus β. MAE gives the mean absolute

error around β. rMAE gives the mean absolute error divided by that of the benchmark β̂1. Size gives the

proportion of draws that fall outside the asymptotic 0.95 confidence interval based on a normal distribution

with mean β and variances given in the text.
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performance of the estimator slowly deteriorates as n increases (though the bias and variance

of this estimator are still on the order of 1/
√
n).

Table 2 contains results for the beta model. Relative to the stochastic blockmodel, all of

the estimators for the beta model (except infeasible OLS) have large biases. This is because

the link function f2 is very flat, so that the variation in linking probabilities that identifies

the network positions is relatively small (a similar point is made in Section 5 of Johnsson

and Moon 2015). As per the discussion in Section 3, this model demonstrates complications

due to network sparsity. In Appendix C I demonstrate that the social characteristics are

identified by the distribution of D (they are consistently estimated by the order statistics of

the degree distribution), but the bound on the deviation of the social characteristics given

by the network metric is large: |u− v| ≤ 40× d(u, v).

The proposed pairwise difference estimator offers a substantial improvement in perfor-

mance relative to both the näıve estimator β̂2 and the estimator with network controls β̂3,

even without a bias correction. When n = 100, β̂5 has approximately half the bias and mean

absolute error of β̂2 while β̂3 offers a reduction of less than ten percent. When n = 800 the

difference between the estimators is even more dramatic.

Table 3 contains results for the homophily model. As in the case of the beta model, I

demonstrate in Appendix C that the social characteristics are also identified in the homophily

model. Unlike the beta model, there is a relatively large amount of information about the

network positions in the link probabilities so that all of the estimators in Table 3 are much

better behaved. In fact, for this model |u− v| ≤ d(u, v).

In this example, the OLS estimator with network controls actually performs comparably

to the uncorrected pairwise difference estimator β̂4. This is because the peer characteristics

variable
∑n

j=1Dijxj/
∑n

j=1Dij is a good approximation of wi when n is large. However, the

adaptive bandwidth and bias corrected estimators outperform both estimators over all of

the sample sizes considered.

30



Table 2: Simulation Results, Beta Model

Infeasible Näıve OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference Corrected Bandwidth

n β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

50
bias -0.002 0.499 0.470 0.380 0.331 0.366

MAE 0.120 0.499 0.470 0.382 0.343 0.372
rMAE 1.000 4.158 3.917 3.183 2.858 3.100

size 0.066 0.979 0.902 0.644 0.394 0.654
100

bias 0.005 0.500 0.458 0.320 0.240 0.296
MAE 0.080 0.500 0.458 0.321 0.243 0.297
rMAE 1.000 6.250 5.725 4.013 3.038 3.713

size 0.048 1.000 0.999 0.856 0.558 0.791
200

bias 0.003 0.501 0.447 0.260 0.146 0.227
MAE 0.054 0.501 0.447 0.260 0.148 0.227
rMAE 1.000 9.278 8.278 4.815 2.741 4.204

size 0.040 1.000 1.000 0.943 0.484 0.870
500

bias -0.000 0.500 0.406 0.193 0.055 0.146
MAE 0.035 0.500 0.406 0.193 0.062 0.146
rMAE 1.000 14.286 11.600 5.514 1.771 4.171

size 0.046 1.000 1.000 0.992 0.249 0.848
800

bias 0.001 0.501 0.378 0.170 0.029 0.121
MAE 0.029 0.501 0.378 0.170 0.040 0.121
rMAE 1.000 17.276 13.035 5.862 1.379 4.172

size 0.054 1.000 1.000 1.000 0.145 0.880

Table 2: This table contains simulation results for 1000 replications and a sample size of n =

50, 100, 200, 500, 800 and β = 1. Bias gives the simulation mean minus β. MAE gives the mean absolute

error around β. rMAE gives the mean absolute error divided by that of the benchmark β̂1. Size gives the

proportion of draws that fall outside the asymptotic 0.95 confidence interval based on a normal distribution

with mean β and variances given in the text.
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Table 3: Simulation Results, Homophily Model

Infeasible Näıve OLS with Pairwise Bias Adaptive
OLS OLS Controls Difference Corrected Bandwidth

n β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

50
bias -0.003 0.497 0.224 0.160 0.105 0.126

MAE 0.118 0.497 0.232 0.193 0.176 0.205
rMAE 1.000 4.212 1.996 1.636 1.492 1.737

size 0.064 0.978 0.356 0.175 0.122 0.279
100

bias 0.003 0.497 0.138 0.127 0.067 0.071
MAE 0.078 0.497 0.147 0.141 0.112 0.118
rMAE 1.000 6.372 1.885 1.8077 1.436 1.513

size 0.051 1.000 0.274 0.180 0.098 0.174
200

bias -0.000 0.502 0.083 0.096 0.030 0.049
MAE 0.056 0.502 0.091 0.106 0.075 0.078
rMAE 1.000 8.964 1.625 1.893 1.339 3.393

size 0.049 1.000 0.219 0.215 0.075 0.150
500

bias -0.001 0.498 0.044 0.074 0.006 0.025
MAE 0.036 0.498 0.052 0.078 0.045 0.045
rMAE 1.000 13.833 1.444 2.167 1.250 1.250

size 0.048 1.000 0.170 0.312 0.061 0.114
800

bias -0.000 0.502 0.037 0.063 -0.007 0.021
MAE 0.028 0.502 0.042 0.065 0.035 0.035
rMAE 1.000 17.929 1.500 2.321 1.250 1.250

size 0.050 1.000 0.184 0.338 0.054 0.115

Table 3: This table contains simulation results for 1000 replications and a sample size of n =

50, 100, 200, 500, 800 and β = 1. Bias gives the simulation mean minus β. MAE gives the mean absolute

error around β. rMAE gives the mean absolute error divided by that of the benchmark β̂1. Size gives the

proportion of draws that fall outside the asymptotic 0.95 confidence interval based on a normal distribution

with mean β and variance given in the text.
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5 Directions for Future Work

I highlight two directions for future work. The first is to consider models in which the

parameter of interest depends on the distribution of network links. For example, one might

be interested in the functions β(wi) and λ(wi) in the model yi = xiβ(wi) +λ(wi) + εi. To see

why, suppose that xi is an indicator for the adoption of some treatment. Then the function

β describes how the treatment effect varies over the network, which intuitively might be

nonconstant if the impact of treatment for a particular agent depends on the fraction of that

agent’s social connections that have been similarly treated. Estimating β(wi) potentially

allows the researcher to determine which positions in the network are associated with, for

example, the largest or smallest treatment effects. I plan to demonstrate how the tools of

this paper might be used to estimate these and other features of both β(wi) and λ(wi) in

future work.

The second direction for future work concerns a behavioral motivation for the model and

estimator of this paper. In Appendix D, I provide a basic random utility interpretation for

the network model along the lines of Graham (2014). However, the discussion is otherwise

largely divorced from a developed literature on network formation models with strategic

interaction. In future work, I hope to explore more connections between the setting of this

paper and that literature.

One connection is potentially provided by the literature on network formation games

with private information. Recent work in this literature employs a similar network forma-

tion model as a within-equilibrium reduced form characterization of linking behavior (see for

example Leung 2015, Ridder and Sheng 2015, Menzel 2015). Here the social characteristics

constitute public information about individual agents and the linking probabilities are con-

ditionally independent given these characteristics and some equilibrium selection process.

In this setting the link errors {ηij}i 6=j constitute private information about the quality of

individual links.

Understanding the mapping between structural models of network formation and this

reduced-form representation might be mutually beneficial for both the network formation

and network endogeneity literatures. For instance, the tools of this paper could be used
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to fit models of network formation in which not all of the public information that informs

linking decisions is observed by the researcher. At the same time, a deeper understanding of

network formation is important to help researchers fitting models with endogenous network

formation identify and control for the many types of unobserved heterogeneity potentially

lurking in the model’s errors.
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A Proofs of Lemmas and Theorems

This section contains proofs of the various Lemmas and Theorems from Section 3. Auxiliary

lemmas that are not formally stated in the paper are labelled Lemma A1, Lemma A2, etc.

A.1 Lemmas and Theorems in Section 3.2

Theorem 1: Suppose Assumptions 1-3 hold. Then β is the unique minimizer of

E
[
((yi − yj)− (xi − xj)b)2 | ||fwi − fwj ||2 = 0

]
over b ∈ Rk.

Proof of Theorem 1:

E
[
((yi − yj)− (xi − xj)b)2 | ||fwi − fwj ||2 = 0

]
= E

[
((xi − xj)(β − b) + (ui − uj))2 | ||fwi − fwj ||2 = 0

]
= (β − b)′E

[
(xi − xj)′(xi − xj)| ||fwi − fwj ||2 = 0

]
(β − b) + E[(ui − uj)2| ||fwi − fwj ||2 = 0]

− 2(β − b)′E[(xi − xj)′(ui − uj)| ||fwi − fwj ||2 = 0]

The first summand is unique minimized at b = β by Assumption 3. The second summand

does not depend on b. The third summand is equal to 0 by Assumption 2. Notice

Assumptions 2 and 3 are also necessary: if either assumption fails the sum of the first and

third terms may be minimized at a b that is not equal β. �
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A.2 Lemmas and Theorems in Section 3.3.1

Lemma 1: Suppose Assumptions 1 and 5 hold. Then

max
(i 6=j)

∣∣∣δ̂ij − ||pwi − pwj ||2∣∣∣ = oa.s.(n
−γ/4hn)

Proof of Lemma 1: The lemma is proved in four steps. Set h′n = n−γ/4hn and recall

h′nn
(1−γ)/2 →∞, pwiwj =

∫
fwi(τ)fwj(τ)dτ and p̂ij = 1

n−2
∑

t6=i,j DitDjt. Let

||p̂wi − p̂wj ||2,n := δ̂ij. I first show that max(i 6=j) h
′−1
n |p̂wiwj − pwiwj | →a.s. 0. By Bernstein’s

Inequality, for any ε > 0

P
(
h′−1n |p̂wiwj − pwiwj | > ε

)
= P

(
h′−1n

∣∣∣∣∣(n− 2)−1
∑
t6=i,j

(
DitDjt − pwiwj

)∣∣∣∣∣ > ε

)
≤ 2 exp

(
−(n− 2)(h′nε)

2

2 + 2h′nε/3

)

and so by the union bound

P

(
max
(i 6=j)

h′−1n |p̂wiwj − pwiwj | > ε

)
≤ 2n(n− 1) exp

(
−(n− 2)(h′nε)

2

2 + 2h′nε/3

)

Since (n− 2)1−γ/2h′2n →∞ by the assumed choice of bandwidth sequence and∑∞
n=3 n(n− 1) exp

(
−(n−2)(h′nε)2

1+2h′nε/3

)
<∞ by the ratio test,

P
(
lim supn→∞max(i 6=j) h

′−1
n |p̂wiwj − pwiwj | > ε

)
= 0 follows from the first Borel-Cantelli

Lemma. To see the summability claim, note that (n− 2)h′2n > (n− 2)γ and 2h′nε < 1

eventually, so that
∑∞

n=3 n(n− 1) exp
(
−(n−2)(h′nε)2

1+2h′nε/3

)
is finite if∑∞

n=3 n(n− 1) exp
(
−(n−2)γε2

2

)
is. Letting m(n) = (n− 2)1/γ, the latter sum is eventually

less than∑∞
m=1 2m2/γ exp

(
−mε2

2

)
× |{n ∈ {N + 2} : nγ/2 ∈ (m− 1,m]}| ≤

∑∞
m=1 2m4/γ exp

(
−mε2

2

)
.

This final sum is absolutely convergent by the ratio test, for any γ > 0.

Second, let ||p̂wi − pwi ||2,n,j =
(

(n− 2)−1
∑

s 6=i,j (p̂wiws − pwiws)
2
)1/2

. Then
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max(i 6=j) h
′−1
n |p̂wiwj − pwiwj | →a.s. 0 implies max(i 6=j) h

′−1
n ||p̂wi − pwi ||2,n,j →a.s. 0, since

P

(
lim sup
n→∞

max
(i 6=j)

h′−1n ||p̂wi − pwi ||2,n,j > ε

)

= P

lim sup
n→∞

max
(i 6=j)

h′−1n

(
(n− 2)−1

∑
s 6=i,j

(p̂wiws − pwiws)
2

)1/2

> ε


≤ P

(
lim sup
n→∞

max
(i 6=j)

h′−1n

∣∣p̂wiwj − pwiwj ∣∣ > ε

)

because h′−1n

(
(n− 2)−1

∑
s 6=i,j (p̂wiws − pwiws)

2
)1/2

> ε only if h′−1n |p̂wiwt − pwiwt | > ε for

some t 6= i, j.

Third, for ||pwi − pwj ||2,n =
(

(n− 2)−1
∑

s 6=i,j (pwiws − pwiws)
2
)1/2

,

max(i 6=j) h
′−1
n

∣∣||pwi − pwj ||2,n − ||pwi − pwj ||2∣∣→a.s. 0 since

P
(
h′−1n

∣∣||pwi − pwj ||2,n − ||pwi − pwj ||2∣∣ > ε
)

= P

h′−1n

∣∣∣∣∣∣
(

(n− 2)−1
∑
s6=i,j

(
pwiws − pwjws

)2)1/2

−
(∫ (

pwi(s)− pwj(s)
)2
ds

)1/2

∣∣∣∣∣∣ > ε


≤ P

h′−1n

∣∣∣∣∣(n− 2)−1
∑
s 6=i,j

((
pwiws − pwjws

)2 − ∫ (pwi(s)− pwj(s))2 ds)
∣∣∣∣∣
1/2

> ε


≤ 2 exp

(
−(n− 2)h′nε

2 + 2
√
h′nε/3

)

with the last line again by Bernstein. So

P

(
max
(i 6=j)

h′−1n

∣∣||pwi − pwj ||2,n − ||pwi − pwj ||2∣∣ > ε

)
≤ 2(n− 2)2 exp

(
−(n− 2)h′nε

2 + 2
√
h′nε/3

)

which is again absolutely summable for the assumed choice of h′n, since it is eventually

bounded above by the summable sequence considered in the first part of this proof.

Finally, the second and third parts of this proof and a few applications of the triangle
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inequality yield

P

(
lim sup
n→∞

max
(i 6=j)

h′−1n

∣∣||p̂wi − p̂wj ||2,n − ||pwi − pwj ||2∣∣ > ε

)
= P

(
lim sup
n→∞

max
(i 6=j)

h′−1n

∣∣||p̂wi − p̂wj ||2,n − ||pwi − pwj ||2,n + ||pwi − pwj ||2,n − ||pwi − pwj ||2
∣∣ > ε

)
≤ P

(
lim sup
n→∞

max
(i 6=j)

h′−1n

∣∣||p̂wi − p̂wj ||2,n − ||pwi − pwj ||2,n∣∣ > ε/2

)
+ P

(
lim sup
n→∞

max
(i 6=j)

h′−1n

∣∣||pwi − pwj ||2,n − ||pwi − pwj ||2∣∣ > ε/2

)
= P

(
lim sup
n→∞

max
(i 6=j)

h′−1n

∣∣||p̂wi − p̂wj ||2,n − ||pwi − pwj ||2,n∣∣ > ε/2

)
≤ P

(
lim sup
n→∞

max
(i 6=j)

h′−1n ||(p̂wi − p̂wj)− (pwi − pwj)||2,n > ε/2

)
≤ 2P

(
lim sup
n→∞

max
(i 6=j)

h′−1n ||(p̂wi − pwi)||2,n,j > ε/4

)
= 0

where P
(
lim supn→∞max(i 6=j) h

′−1
n

∣∣||pwi − pwj ||2,n − ||pwi − pwj ||2∣∣ > ε/2
)

in the second

equality follows from the third part of the proof, and

P
(
lim supn→∞max(i 6=j) h

′−1
n ||(p̂wi − pwi)||2,n,j > ε/4

)
in the final inequality from the second

part of the proof. Since h′n = n−γ/4hn, this completes the argument. �

Lemma 2: Suppose Assumption 1 holds. Then for every (wi, wj) pair

||pwi − pwj ||2 ≤ ||fwi − fwj ||2

Furthermore, for every ε > 0 there exists a δ > 0 such that with probability at least 1− ε2/4

||pwi − pwj ||2 ≤ δ =⇒ ||fwi − fwj ||2 ≤ ε
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Proof of Lemma 2: To see the first part, observe that for every (wi, wj) pair

||pwi − pwj ||22 =

∫ (∫
f(τ, s) (f(wi, s)− f(wj, s)) ds

)2

dτ

≤
∫ ∫

(f(τ, s) (f(wi, s)− f(wj, s)))
2 dsdτ

≤
∫

(f(wi, τ)− f(wj, τ))2 dτ = ||fwi − fwj ||22

where the first inequality is due to Jensen and the second is due to the fact that

|f(τ, s)| ≤ 1 for every (τ, s) ∈ [0, 1]2.

The proof of the second part is more complicated. I first note that since f is Lebesgue

measurable, Lusin’s theorem (Dudley (2002), Theorem 7.5.2) implies that it is almost

everywhere equivalent to a uniformly continuous function. That is, for any η′ > 0, f is

uniformly continuous when restricted to a closed subset A of [0, 1]2 with measure at least

1− η′.

It follows that for any η > 0 there must also exist B, a closed subset of [0, 1] with measure

of at least 1− η such that for any b ∈ B, there exists another closed subset C(b) of [0, 1]

with measure of at least 1− η, such that for any c ∈ C(b), f is uniformly continuous when

restricted to the set A′ = {(b, c) ∈ [0, 1]2 : b ∈ B, c ∈ C(b)}.

Second, I show that for all ε′ > 0 there exists a δ(ε′, η) > 0 such that ||pwi − pwj ||2 ≤ δ(ε′, η)

implies |
∫
fwi(s)(fwi(s)− fwj(s))ds| < ε′ with probability at least 1− ε′/4, so long as

η ≤ ε′/16 .

I prove the contrapositive. Suppose |
∫
fwi(s)(fwi(s)− fwj(s))ds| ≥ ε′. Then by the

negative triangle inequality |
∫
fτ (s)(fwi(s)− fwj(s))ds| > ε′/2 for any τ ∈ [0, 1] chosen

such that |
∫

(fτ (s)− fwi(s))(fwi(s)− fwj(s))ds| < ε′/4. Since ||fwi − fwj ||2 ≤ 1 for every

(wi, wj) pair, it follows by Cauchy-Schwartz that ||fwi − fτ ||2 ≤ ε′/4 implies

|
∫
fτ (s)(fwi(s)− fwj(s))ds| > ε′/2.
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Since f is uniformly continuous when restricted to A′, there exists a universal ω(ε′, η) > 0

such that |τ − wi| < ω(ε′, η) implies that ||fτ − fwi ||2 < ε′/8 + 2η so long as wi, τ ∈ B.

Taking η ≤ ε′/16 gives |τ − wi| < ω(ε′, η) implies that ||fτ − fwi ||2 < ε′/4 so long as

wi, τ ∈ B. It follows that choosing τ such that |τ − wi| < ω(ε′, η) implies

|
∫
fτ (s)(fwi(s)− fwj(s))ds| > ε′/2

It is without loss to further restrict ω(ε′, η) < ε′/16. Since wi is uniformly distributed on

[0, 1], the probability that wi is in the ε′/16 interior of B (that is, the interval

(wi − ε′/16, wi + ε′16) is contained in B) is greater than 1− η − 2ω(ε′, η) ≥ 1− ε′/4. This

implies that |
∫
fτ (s)(fwi(s)− fwj(s))ds| > ε′/2 on a subset of [0, 1] of measure at least

2ω(ε′, η) with probability at least 1− ε′/4.

Thus |
∫
fwi(s)(fwi(s)− fwj(s))ds| ≥ ε′ implies

∫ (∫
fτ (s)(fwi(s)− fwj(s))ds

)2

dτ > (ε′/2)
2 × 2ω(ε′, η)

with probability at least 1− ε′/4

Since the left hand side is just ||pi − pj||22, it follows that ||pi − pj||2 > (ε′/2)× (2ω(ε′, η))1/2

with probability at least 1− ε′/4, which proves this second part. Taking the contrapositive

yields ||pi − pj||2 ≤ δ(ε′, η) implies that |
∫
fwi(s)(fwi(s)− fwj(s))ds| < ε′ with probability

at least 1− ε′/4, where δ(ε′, η) = (ε′/2)× (2ω(ε′, η))1/2.

To finish the proof, note that
∣∣∫ fwi(s)(fwi(s)− fwj(s))ds∣∣ < ε′ and∣∣∫ fwj(s)(fwi(s)− fwj(s))ds∣∣ < ε′ also imply that∣∣∫ (fwi(s)− fwj(s))(fwi(s)− fwj(s))ds

∣∣ < 2ε′ by the triangle inequality, so that

||pi − pj||2 ≤ (ε′/2)× (2ω(ε′, η))1/2 implies ||fwi − fwj ||2 <
√

2ε′ with probability at least

1− ε′/2. Thus ||pi − pj||2 ≤ δ(ε, η) implies ||fwi − fwj ||2 < ε with probability at least

> 1− ε2/4 as claimed, where δ(ε, η) = (ε2/4)× (2ω(ε2/2, η))
1/2

. �
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Notice ε depends on η for a given δ through the choice of ω(ε, η), so that η cannot be

chosen to be arbitrarily small for a fixed δ. Doing so requires a decoupling of the link func-

tion approximation error (due to the fact that f might not be smooth off of the set A′) from

the codegree approximation error (due to the fact that p induces a strictly coarser topol-

ogy on [0, 1] than f). Lemma 3 accomplishes this by replacing the measurability of f with a

stronger continuity assumption, which essentially implies that the former error does not exist.

The proof of Theorem 2 also relies on the auxiliary Lemma A1.

Lemma A1: Suppose Assumption 1 holds. Then for any ε > 0, P
(
||fwi − fwj ||2 ≤ ε

)
> 0.

Proof of Lemma A1: As in the proof of the second part of Lemma 2, I begin with an

appeal to Lusin’s theorem (Dudley (2002), Theorem 7.5.2): for any η > 0 there must exist

B, a closed subset of [0, 1] with measure of at least 1− η such that for any b ∈ B, there

exists another closed subset C(b) of [0, 1] with measure of at least 1− η, such that for any

c ∈ C(b), f is uniformly continuous when restricted to the set

A′ = {(b, c) ∈ [0, 1]2 : b ∈ B, c ∈ C(b)}. That is, for all ε′ > 0 and u, v ∈ B there exists a

ω(ε′, η) > 0 such that |u− v| ≤ ω(ε′, η) implies that |f(u, t)− f(v, t)| ≤ ε′ for

t ∈ C(u) ∩ C(v), a set with Lebesgue measure at least 1− 2η.

So |u− v| ≤ ω(ε′, η) and u, v ∈ B imply that ||fu − fv||2 ≤ (ε′2(1− 2η) + 2η)
1/2 ≤ ε′ +

√
2η.

Since wi, wj are independent with standard uniform marginals, this means that

||fwi − fwj ||2 ≤ ε′ +
√

2η with probability at least (1− 2η)ω(ε′, η). Now just choose ε′ < ε/2

and η < ε′2/2 to get P
(
||fwi − fwj ||2 ≤ ε

)
≥ (1− ε2/8)ω(ε/2, ε2/8) > 0. �

A direct implication of the first part of Lemma 2 and Lemma A1 is that for any ε > 0,

P
(
||pwi − pwj ||2 ≤ ε

)
> 0.

Theorem 2: Suppose Assumptions 1-5 hold. Then β̂ →p β.

Proof of Theorem 2: Write

β̂ = β+

(
n−1∑
i=1

n∑
j=i+1

(xi − xj)′(xi − xj)K

(
δ̂ij
hn

))−1(n−1∑
i=1

n∑
j=i+1

(xi − xj)′(ui − uj)K

(
δ̂ij
hn

))
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I show
((
n
2

)
rn
)−1∑n−1

i=1

∑n
j=i+1(xi − xj)′(xi − xj)K

(
δ̂ij
hn

)
→p 2Γ0, which is positive definite

under Assumption 3. Similar arguments yield((
n
2

)
rn
)−1∑n−1

i=1

∑n
j=i+1(xi − xj)′(ui − uj)K

(
δ̂ij
hn

)
→p 0, so that the claim follows from

Slutsky and the continuous mapping theorem. Since rn > 0 with high probability from

Lemma A1, both statistics are eventually well-defined.

Let Dn =
((

n
2

)
E
[
K
(
δij
hn

)])−1∑
i

∑
j(xi − xj)′(xi − xj)K

(
δ̂ij
hn

)
then by the mean value

theorem Dn =
((

n
2

)
E
[
K
(
δij
hn

)])−1∑
i

∑
j(xi − xj)′(xi − xj)

[
K
(
δij
hn

)
+K ′

(
ιij
hn

)(
δ̂ij−δij
hn

)]
where {ιij}i 6=j is the collection of intermediate values implied by that theorem. By Lemma

1 maxi 6=j
δ̂ij−δij
hn

= op
(
n−γ/4

)
and by Markov’s inequality K ′

(
ιij
hn

)
= op(rnn

γ/2), since

P
(
K ′
(
ιij
hn

)
≥ rnn

γ/2
)
≤ E[K′(

ιij
hn

)]
rnnγ/4

= o(1) by choice of kernel density function in

Assumption 5. It follows that

Dn =

((
n

2

)
E

[
K

(
δij
hn

)])−1∑
i

∑
j

(xi − xj)′(xi − xj)K
(
δij
hn

)
+ op(1)

= D′n + op(1)

since xi has finite second moments and K ′(u) is bounded.

Recall that δij = δ(wi, wj) so that D′n is a second order U-statistic with kernel depending

on n, in the sense of Ahn and Powell (1993). In particular, their Lemma A.3 implies

D′n =

(
E

[
K

(
δij
hn

)])−1
E

[
(xi − xj)′(xi − xj)K

(
δij
hn

)]
+ op(1)

since nrn →∞. Additionally, measurability of f and Assumption 4 imply

E

[
(xi − xj)′(xi − xj)K

(
δij
hn

)]
=

∫
E [(xi − xj)′(xi − xj)|δij = u]K

(
u

hn

)
dP (δij = u)

=

∫
(Γ0 + op(1))K

(
u

hn

)
dP (δij = u) = Γ0rn + op (rn)

with the second equality is due to E [(xi − xj)′(xi − xj)|δij ≤ u] = Γ0 + op(1) by Lemma 2
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and Assumptions 3 and 4. So Dn = Γ0 + op(1)

A nearly identical argument gives

Un =

((
n

2

)
rn

)−1 n−1∑
i=1

n∑
j=i+1

(xi − xj)′(ui − uj)K

(
δ̂ij
hn

)
= op(1)

since E [(xi − xj)′(ui − uj)|d(wi, wj) = hn] = op(1) by Assumptions 2 and 4. D−1n Un = op(1)

then follows from Slutsky and the continuous mapping theorem. �

A.3 Lemmas and Theorems in Section 3.3.2

The proof of Theorem 3 relies on using discreteness of the network types to strengthen

Lemma 1 to auxiliary Lemma A2.

Lemma A2: Suppose Assumption 5 holds and fwi has finite support. Then

max
(i 6=j)
||p̂wi − p̂wj ||2,n × 1{||p̂wi − p̂wj ||2,n ≤ ε/2} = oa.s.(n

−1/2hn)

Proof of Lemma A2: The assumption that fwi has finite support implies

δij1{δij ≤ ε} = 0 and mijt1{δij ≤ ε/2} :=
(
pwiwt − pwjwt

)
× 1{δij ≤ ε/2} = 0 both with

probability one. Consider the decomposition of δ̂ij1{δ̂ij ≤ ε/2} into

δ̂ij

(
1{δ̂ij ≤ ε/2} − 1{δij ≤ ε/2}

)
+ δ̂ij1{δij ≤ ε/2}

I first show maxi 6=j
√
nh−1n δ̂ij1{δij ≤ ε/2} = oa.s.(1). As in the proof of Lemma 1,

Bernstein’s inequality gives

P

(
(n− 3)−1

∣∣∣∣∣ ∑
s 6=i,j,t

Dts(Dis −Djs)1{δij ≤ ε/2}

∣∣∣∣∣ ≥ η

)
≤ 2 exp

(
−(n− 3)η2

3

)
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so that by the union bound

P

sup
i,j,t

[
(n− 3)−1

∑
s 6=i,j,t

Dts(Dis −Djs)

]2
1{δij ≤ ε/2} ≥ η

 ≤ 2n(n− 1)(n− 2) exp

(
−(n− 3)η

3

)

Averaging over t implies

P

(
max
i,j

√
nh−1n δ̂ij1{δij ≤ ε/2} ≥ η

)
≤ 16(n− 3)3 exp

(
−(n− 3)ηhn

3
√
n

)

so long as n ≥ 6. Since the right hand side is absolutely summable by arguments made in

the proof of Lemma 1, maxi 6=j
√
nh−1n δ̂ij1{δij ≤ ε/2} = oa.s.(1).

I now show maxi 6=j
√
nh−1n δ̂ij

(
1{δ̂ij ≤ ε/2} − 1{δij ≤ ε/2}

)
= oa.s.(1). First,

√
nh−1n |δ̂ij

(
1{δ̂ij ≤ ε/2} − 1{δij ≤ ε/2}

)
| ≤ 2

√
nh−1n × 1{|δ̂ij − δij| > |ε/2− δij|}

Since δij1{δij ≤ ε} = 0 with probability one, δij ∈ (ε/4, 3ε/4) is a probability zero event,

and so it is sufficient to show

max
i 6=j

√
nh−1n 1{|δ̂ij − δij| > ε/4} = oa.s.(1)

Using the inequality from before, the left hand side is nonzero on a set of probability at

most 16(n− 3)3 exp
(
−(n−3)εhn

12
√
n

)
. Since this is again absolutely summable,

supi 6=j
√
nh−1n δ̂ij

(
1{δ̂ij ≤ ε/2} − 1{δij ≤ ε/2}

)
= oa.s.(1) follows.

Taken together, the two arguments demonstrate that maxi 6=j
√
nh−1n δ̂ij1{δ̂ij ≤ ε} = oa.s.(1),

as claimed. �

Theorem 3: Suppose Assumptions 1-5 hold and the support of fwi is finite. Then

V
−1/2
3

(
β̂ − β

)
→d N (0, Ik)

48



where V3 = Γ−10 Ω0Γ
−1
0 × s/n, Γ0 is as defined in Assumption 3, Ik is the k × k identity

matrix, and

s = P (||pi − pj||2 = 0, ||pi − pk||2 = 0)/P (||pi − pj||2 = 0)2

Ω0 = E [(xi − xj)′(xi − xk)(ui − uj)(ui − uk)| ||pi − pj||2 = 0, ||pi − pk||2 = 0]

Proof of Theorem 3: In the proof of Theorem 2, I demonstrate that Assumptions 1-5 are

sufficient for

1

m

∑
i

∑
j>i

(xi − xj)′(xi − xj)K

(
δ̂ij
hn

)
→p 2Γ0E

[
K

(
δij
hn

)]

where m = n(n− 1)/2. Since the support of fwi is finite, E
[
K
(
δij
hn

)]
= K(0)P (||fwi − fwj ||2 = 0) > 0 eventually (for hn ≤ ε) since P (δij = 0) > 0.

As for the numerator, I follow the proof of Theorem 2 to write

Un =
1

m

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)K

(
δ̂ij
hn

))

=
1

m

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K

(
δij
hn

)
+K ′

(
ιij
hn

)(
δ̂ij − δij
hn

)
1{δ̂ij ≤ hn}

])

where ιij is a mean value between δij and δ̂ij. I first show

1
m

∑
i

∑
j>i

(
(xil − xjl) (ui − uj)K ′

(
ιij
hn

)(
δ̂ij−δij
hn

)
1{δ̂ij ≤ hn}

)
= op(n

−1/2) for any positive

integer l ≤ k. By Cauchy-Schwartz

1

m

∣∣∣∣∣∑
i

∑
j>i

(
(xil − xjl) (ui − uj)K ′

(
ιij
hn

)(
δ̂ij − δij
hn

))∣∣∣∣∣
≤ K̄ ′

m

(∑
i

∑
j>i

((xil − xjl) (ui − uj))2
)1/2

×

∑
i

∑
j>i

((
δ̂ij − δij
hn

)
1{δ̂ij ≤ hn}

)2
1/2

where K̄ ′ = supu∈[0,1]K
′(u) <∞,

∑
i

∑
j>i ((xil − xjl) (ui − uj))2 = Op(m) since xi and ui
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have finite fourth moments, and maxi 6=j

(
δ̂ij−δij
hn

)
1{δ̂ij ≤ hn} = oa.s.

(
n−1/2

)
by Lemma A2.

It follows that

Un =
1

m

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)K

(
δ̂ij
hn

))

=
1

m

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)K

(
δij
hn

))
+ op(n

−1/2)

The first summand is a second order U-statistic with symmetric L2-integrable kernel, so by

Lemma A.3 of Ahn and Powell (1993)

√
n (Un − U)→ N (0, V )

where U = E
[
(xi − xj))′ (ui − uj)K

(
δij
hn

)]
and for Zi = (xi, νi, wi)

V = lim
h→0

4E

[
E

[
(xi − xj)′ (ui − uj)K

(
δij
h

)
| Zi
]
E

[
(xi − xj) (ui − uj)K

(
δij
h

)
| Zi
]]

= lim
h→0

4E

[
(xi − xj)′ (xi − xk) (ui − uj)(ui − uk)K

(
δij
h

)
K

(
δik
h

)]

Since fwi has finite support, E[δij|δij ≤ ε] = 0 for some ε > 0, and so

U = E
[
(xi − xj))′ (ui − uj)K (0) 1{δij = 0}

]
for n sufficiently large such that hn ≤ ε. By

Lemma 2, 1{δij = 0} = 1{dij = 0} with probability one, so Assumption 5 implies that

U = 0 for any choice of hn ≤ ε (i.e. U = 0 eventually). Similarly

V = 4Ω0K(0)2P
(
||fwi − fwj ||2 = 0, ||fwi − fk||2 = 0

)
so long as hn ≤ ε. So by Slutsky’s

Theorem,

√
n
(
β̂ − β

)
→d N (0, V3)

where V3 = Γ−10 Ω0Γ
−1
0 × s as claimed. �
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Lemma 3: Suppose Assumptions 1 and 6 hold. Then for almost every (wi, wj) pair

||pwi − pwj ||2 ≤ ||fwi − fwj ||2 ≤ 32 C
1

2+4α

6

(
||pwi − pwj ||2

) α
1+2α

so long as ||pwi − pwj ||2 <
√

8C6K
−α.

Proof of Lemma 3: The first inequality follows from the first part of Lemma 2 holding

exactly for every (wi, wj) pair. The proof of the second inequality essentially mirrors the

second part of Lemma 2, and so only a quick sketch is provded here. I first demonstrate

that ||pwi − pwj ||2 ≤
(
4(4C6)

1/α
)−1

ε′
4α+2
α and

(
ε′

4C6

) 1
α
< K−1 imply that

||fwi − fwj ||2 ≤
√

2ε′ with probability one.

Suppose
∣∣∫ fwi(s) (fwi(s)− fwj(s)) ds∣∣ > ε′. Then

∣∣∫ fτ (s) (fwi(s)− fwj(s)) ds∣∣ > ε′/2 for

τ ∈ [0, 1] so long as τ and wi are in the same block of the partition of [0, 1] and

C6|wi − τ |α < ε′/4. If
(

ε′

4C6

) 1
α
< K−1, then the measure of τ in [0, 1] that satisfty these

conditions is at least
(

ε′

4C6

) 1
α
. It follows that so long as

(
ε′

4C6

) 1
α
< K−1

∫ (∫
fτ (s)

(
fwi(s)− fwj(s)

)
ds

)2

dτ >

(
ε′

2

)2(
ε′

4C6

) 1
α

with probability one.

Following the logic of Lemma 2, I conclude that ||pi − pj||2 ≤
(
4(4C6)

1/α
)−1

ε′
4α+2
α implies

that ||fwi − fwj ||2 ≤
√

2ε′ with probability one so long as
(

ε′

4C6

) 1
α
< K−1. Replacing ε′ with

ε2/2 yields

2
2α

4α+2 4
4

4α+2 (4C6)
1

4α+2 ||pi − pj||
2α

4α+2

2 ≤ ε implies that ||fwi − fwj ||2 ≤ ε

with probability one if
(

ε2

8C6

) 1
α
< K−1.

It follows that for almost every wi and wj, 2
2α+10
4α+2 C

1
4α+2

6 ||pi − pj||
2α

4α+2

2 = ε implies that

||fwi − fwj ||2 ≤ ε, so long as ε <
√

8C6K
−α/2. The statement of the lemma follows by
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noting that 2
2α+10
4α+2 is bounded below 32 when α > 0. �.

The proof of Theorem 4 relies on the following strengthening of auxiliary Lemma A1 to

auxiliary Lemma A3.

Lemma A3: Suppose Assumptions 1 and 6 hold. Then P
(
||fwi − fwj ||2 ≤ ε

)
> C

−1/α
6 ε1/α,

so long as ε ≤ C6K
−α

Proof of Lemma A3: The proof of Lemma A3 essentially mirrors that of Lemma A1,

except Assumption 6 allows for the replacement of ω(ε, η) with
(

ε
C6

)1/α
. Notice that that

so long as K ≤
(

ε
C6

)− 1
α

the probability that wi and wj are in the same partition of [0, 1]

and that |wi − wj| ≤
(

ε
C6

)1/α
is bounded from below by

(
ε
C6

)1/α
. So

P
(
||fwi − fwj ||2 ≤ ε

)
> 1

C
1/α
6

ε1/α as claimed. �

Theorem 4: Suppose Assumptions 1-4 and 6-8 hold and α× ζ > 1/2. Then

V
−1/2
4,n

(
β̂ − βhn

)
→d N (0, Ik)

where V4,n = Γ−10 ΩnΓ−10 /n, Γ0 is as defined in Assumption 3, rn is as defined in Assumption

5, and Ik is the k × k identity matrix, and

βhn = β + (Γ0)
−1E

[
(xi − xj)′(ui − uj)K

(
||pi − pj||2

hn

)]
/ (2rn)

Ωn = E

[
(xi − xj)′(xi − xk)(ui − uj)(ui − uk)K

(
||pi − pj||2

hn

)
K

(
||pi − pk||2

hn

)]
/
(
r2n
)

Proof of Theorem 4: The proof is simplified by squaring the empirical codegree

differences so that

(
β̂ − β

)
=

(
1(
n
2

)
rn

n−1∑
i=1

n∑
j=i+1

(xi − xj)′(xi − xj)K1/2

(
δ̂2ij
h2n

))−1
1(
n
2

)
rn

(
n−1∑
i=1

n∑
j=i+1

(xi − xj)′(ui − uj)K1/2

(
δ̂2ij
h2n

))
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where rn = E
[
K1/2

(
δ2ij
h2n

)]
and K1/2(u) = K(

√
u) is supported, positive, and twice

differentiable on [0, 1) by Assumption 8. Recall rn > 0 by Lemma A1.

The proof of Theorem 2 demonstrates that Assumptions 1-5 are sufficient for the

denominator to converge in probability to 2Γ0, which is eventually invertible by

Assumption 3. As for the numerator,

Un =
1(
n
2

)
rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)K1/2

(
δ̂2ij
h2n

))

=
1(
n
2

)
rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K1/2

(
δ2ij
h2n

)
+K ′1/2

(
δ2ij
h2n

)(
δ̂2ij − δ2ij
h2n

)

+K ′′1/2

(
ιij
h2n

)(
δ̂2ij − δ2ij
h2n

)2


where ιij is the intermediate value between δ̂2ij and δ2ij suggested by the mean value theorem

and Taylor’s theorem. I consider each of the summands individually. I first show that

1(
n
2

)
rn

∑
i

∑
j>i

(xi − xj)′ (ui − uj)K ′′1/2
(
ιij
h2n

)(
δ̂2ij − δ2ij
h2n

)2
 = op

(
n−1/2

)

Let sn = n−1/2h4nrn. Since δij ≤ C|wi − wj|α by the first part of Lemma 2 and Assumption

6, rn ≥ KC−1/αh
1/α
n for K = lim infh→0E

[
K
(
δij
h

)
|δij ≤ h

]
> 0 by Lemma A2. Since

n1/2−γh
4+1/α
n →∞ for some γ > 0 by Assumption 9, n1−γsn →∞, and so Lemma 1 implies

that supi 6=j

(
δ̂2ij−δ2ij√

s

)2

= oa.s.(1) or supi 6=j

(
δ̂2ij−δ2ij
h2n
√
rn

)2

= oa.s.
(
n−1/2

)
. It follows that

1(
n
2

)
rn

∑
i

∑
j>i

(xi − xj)′ (ui − uj)K ′′1/2
(
ιij
hn

)(
δ̂2ij − δ2ij
h2n

)2


≤
K̄ ′′1/2(
n
2

) ∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

)
× oa.s.

(
n−1/2

)
where K̄ ′′1/2 = supu∈[0,1]K

′′
1/2(u) and the last line is op

(
n−1/2

)
because xi and ui are
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assumed to have finite fourth moments by Assumption 2. Thus

Un =
1(
n
2

)
rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K1/2

(
δ2ij
h2n

)
+K ′1/2

(
δ2ij
h2n

)(
δ̂2ij − δ2ij
h2n

)])
+ op

(
n−1/2

)
Now let

δ̃ij = δ̃(wi, wj)
2 =

1

n

n∑
t=1

(
1

n

n∑
s1=1

f(wt, ws1) (f(wi, ws1)− f(wj, ws1))

)

×

(
1

n

n∑
s2=1

f(wt, ws2) (f(wi, ws2)− f(wj, ws2))

)

and rewrite the numerator as

Un =
1(
n
2

)
rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K1/2

(
δ2ij
h2n

)
+K ′1/2

(
δ2ij
h2n

)(
δ̃2ij − δ2ij
h2n

)])

+
1(
n
2

)
rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K ′1/2

(
δ2ij
h2n

)(
δ̂2ij − δ̃2ij
h2n

)])
+ op

(
n−1/2

)
In the remainder of this proof, I show that the second summand is op(n

−1/2), while the first

part is a fifth-order U-statistic. First,

1(
n
2

)
rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K ′1/2

(
δ2ij
h2n

)(
δ̂2ij − δ̃2ij
h2n

)])
= op

(
n−1/2

)

by Chebyshev’s inequality, since E

[(
δ̂2ij−δ̃2ij
h2

)
|xi, xj, ui, uj, wi, wj

]
= 0 implies
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1

(n2)rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K ′1/2

(
δ2ij
h2n

)(
δ̂2ij−δ̃2ij
h2n

)])
is mean zero and

E

( 1(
n
2

)
rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K ′1/2

(
δ2ij
h2n

)(
δ̂2ij − δ̃2ij
h2n

)]))2


=
1(

n
2

)2
n6r2nh

4
n

E

[∑
i1

∑
i2

∑
j1

∑
j2

∑
t1

∑
t2

∑
s11

∑
s12

∑
s21

∑
s22

(xi1 − xj1)′(xi2 − xj2)(ui1 − uj1)(ui2 − uj2)K ′1/2
(
δ2i1j1
h2n

)
K ′1/2

(
δ2i2j2
h2n

)
× [Dt1s11Dt1s12(Di1s11 −Dj1s11)(Di1s12 −Dj1s12)− ft1s11ft1s12(fi1s11 − fj1s11)(fi1s12 − fj1s12)]

× [Dt2s21Dt2s22(Di2s21 −Dj2s21)(Di2s22 −Dj2s22)− ft2s21ft2s22(fi2s21 − fj2s21)(fi2s22 − fj2s22)]

]

is o (n−1). To see this, note that unless two elements from the set {i1, j1, t1, s11, s12} equal

two in {i2, j2, t2, s21, s22}, {ηt1s11 , ηt1s12 , ηi1s11 , ηj1s11 , ηi1s12 , ηj1s12} is independent of

{ηt2s21 , ηt2s22 , ηi2s21 , ηj2s21 , ηi2s22 , ηj2s22} and so

E

[
[Dt1s11Dt1s12(Di1s11 −Dj1s11)(Di1s12 −Dj1s12)− ft1s11ft1s12(fi1s11 − fj1s11)(fi1s12 − fj1s12)]

× [Dt2s21Dt2s22(Di2s21 −Dj2s21)(Di2s22 −Dj2s22)− ft2s21ft2s22(fi2s21 − fj2s21)(fi2s22 − fj2s22)]

|Zi1 , Zi2 , Zj1 , Zj2 , Zt1 , Zt2 , Zs11 , Zs12 , Zs21 , Zs22

]
= 0

where Zi = {xi, wi, νi}. Since K ′1/2

(
δ2i1j1
h2

)
is Op(rn) by Assumption 8 (see the proof of

Theorem 2 for the formal argument), the desired term is o (n−1) since nh4n →∞.
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It follows that

Un =
1(
n
2

)
rn

∑
i

∑
j>i

(
(xi − xj)′ (ui − uj)

[
K1/2

(
δ2ij
h2

)
+K ′1/2

(
δ2ij
h2n

)(
δ̃2ij − δ2ij
h2n

)])
+ op

(
n−1/2

)
=

1(
n
5

)2
rn

∑
i

∑
j>i

∑
t>j

∑
s1>t

∑
s2>s1

(xi − xj)′ (ui − uj)
[
K1/2

(
δ2ij
h2n

)

+h−2n K ′1/2

(
δ2ij
h2n

)(
fts1fts2(fis1 − fjs1)(fis2 − fjs2)− δ2ij

)]
+ op

(
n−1/2

)
so that Un is equivalent to a 5th order U-statistic up to a op(1/

√
n) error. As in Theorem

3, I apply Lemma 3.2 from Powell et al. (1989) to rewrite this statistic as the sum of first

order projections.

Un = E[Un] +
2

nrn

n∑
τ=1

(
E

[
(xτ − xj)′(uτ − uj)K1/2

(
δ2τj
h2n

)
|Zτ
]
− E[Un]

)
+

1

nrnh2n

n∑
τ=1

E

[
(xi − xj)′ (ui − uj)K ′1/2

(
δ2ij
h2n

)(
fτs1fτs2(fis1 − fjs1)(fis2 − fjs2)− δ2ij

)
|Zτ
]

+
2

nrnh2n

n∑
τ=1

E

[
(xi − xj)′ (ui − uj)K ′1/2

(
δ2ij
h2n

)(
ftτfts2(fiτ − fjτ )(fis2 − fjs2)− δ2ij

)
|Zτ
]

+ op
(
n−1/2

)
where E[Un] = E

[
(xi − xj)′(ui − uj)K1/2

(
δ2ij
h2n

)]
and Zτ = {xτ , wτ , ντ}.

When α× ζ > 1/2 the second and third terms are both op
(
n−1/2

)
. For the second term, I

show this by fixing some ε > 0 and writing

P

(
E

[
(xi − xj)′ (ui − uj)K ′1/2

(
δ2ij
h2n

)(
fτs1fτs2(fis1 − fjs1)(fis2 − fjs2)− δ2ij

)
|Zτ
]
≥ rnh

2
nε

)
= P

(
E

[
(xi − xj)′ (ui − uj)K ′1/2

(
δ2ij
h2n

)(
E[fτs(fis − fjs)|Zi, Zj, Zτ ]2 − δ2ij

)
|Zτ
]
≥ rnh

2
nε

)
≤ E

[∣∣∣∣E [(xi − xj)′ (ui − uj)K ′1/2(δ2ijh2n
)
|Zτ
]∣∣∣∣× (E[fτs(fis − fjs)|Zi, Zj, Zτ ]2 + δ2ij

)
|Zτ
]
/rnh

2
nε

with the last line by Markov’s inequality and the triangle inequality. Since∣∣∣E [(xi − xj)′ (ui − uj)K ′1/2 ( δ2ijh2n) |Zτ]∣∣∣ = op(rn) and both E[fτs(fis − fjs)|Zi, Zj, Zτ ]2 and
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δ2ij are Op(h
2
n), the term is op(1). So the second summand

1

nrnh2n

n∑
τ=1

E

[
(xi − xj)′ (ui − uj)K ′1/2

(
δ2ij
h2n

)(
fτs1fτs2(fis1 − fjs1)(fis2 − fjs2)− δ2ij

)
|Zτ
]

is an average of n independent random variables with finite third moments (since xi and ui

have finite sixth moments) that are each op(1), and so must be op
(
n−1/2

)
by the

Lindeberg-Levy central limit theorem.

Bounding the third term is a bit more complicated. Again fix some ε > 0 and write

P

(
E

[
(xi − xj)′ (ui − uj)K ′1/2

(
δ2ij
h2n

)(
ftτfts2(fiτ − fjτ )(fis2 − fjs2)− δ2ij

)
|Zτ
]
≥ rnh

2
nε

)

However, this time Markov’s inequality only provides the upper bound

E

[∣∣∣∣E [(xi − xj)′ (ui − uj)K ′1/2(δ2ijh2n
)
|Zτ
]∣∣∣∣

×
(
E[ftτ (fiτ − fjτ )|Zi, Zj, Zτ ]E[fts(fis − fjs)|Zi, Zj] + δ2ij

)
|Zτ
]
/rnh

2
nε

Here δ2ij is Op(h
2
n) and E[fts(fis − fjs)|Zi, Zj] is Op(hn) by Jensen’s inequality, but it is only

possible to demonstrate that E[ftτ (fiτ − fjτ )|Zi, Zj, Zτ ] ≤ ||fwi − fwj ||2 = Op(h
2α/(1+2α)
n ) by

Lemma 3. This is where I use the ζ × α > 1/2 condition so that∣∣∣E [(xi − xj)′ (ui − uj)K ′1/2 ( δ2ijh2n) |Zτ]∣∣∣ is not just op(rn) but op(h
2αζ/(1+2α)
n rn). Together,

these rates imply that the term is op(1), and that the third summand

1

nrnh2n

n∑
τ=1

E

[
(xi − xj)′ (ui − uj)K ′1/2

(
δ2ij
h2n

)(
ftτfts2(fiτ − fjτ )(fis2 − fjs2)− δ2ij

)
|Zτ
]

is op
(
n−1/2

)
by previous arguments.

It follows from these two arguments that

Un = E[Un] +
2

nrn

n∑
τ=1

(
E

[
(xτ − xj)′(uτ − uj)K1/2

(
δ2τj
h2n

)
|Zτ
]
− E[Un]

)
+ op

(
n−1/2

)
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Un is simply an iid sum of random variables with bounded third moments, so by the

Lindeberg-Levy central limit theorem

V ′′−1/2n (Un − E[Un])→d N (0, Ik)

where

V ′′n = E

[(
4

r2n

(
E

[
(xτ − xj)′(uτ − uj)K1/2

(
δ2τj
h2n

)
|Zτ
]
− E[Un]

))
×
(
E

[
(xτ − xj)(uτ − uj)K1/2

(
δ2τj
h2n

)
|Zτ
]
− E[Un]

)]
=

4

r2n
E

[
(xτ − xj)′(xτ − xk)(uτ − uj)(uτ − uk)K1/2

(
δ2τj
h2n

)
K1/2

(
δ2τk
h2n

)]

because E[Un]→p 0 by Theorem 2. It follows from Slutsky’s Theorem that

V
−1/2
4,n

(
β̂ − β − (2Γ0)

−1E [Un]
)
→d N (0, Ik)

where E[Un] = r−1n E
[
(xi − xj)′(ui − uj)K

(
δ(wi,wj)

hn

)]
as claimed. �

A.4 Theorems in Sections 3.3.3 and 3.3.4

Theorem 5: Suppose Assumptions 1-4 and 6-9 hold, and L > ((1 + 2α)θ − α)/α. Then

V
−1/2
5,n

(
β̄L − β

)
→d N (0, Ik)

where V5,n =
∑L

l1=1

∑L
l2=1 al1al2Γ

−1
0 Ωn,l1l2Γ

−1
0 /n, Γ0 is as defined in Assumption 3, rn is as

defined in Assumption 5, Ik is the k × k identity matrix, and

Ωn,l1l2 = E

[
(xi − xj)′(xi − xk)(ui − uj)(ui − uk)K

(
||pi − pj||2

hn

)
K

(
||pi − pk||2

hn

)]
/
(
r2n
)
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Proof of Theorem 5: Since β̄L =
∑L

l=1 alβ̂Clhn , the logic of Theorem 4 and the

continuous mapping theorem imply

√
n
(
β̄L − β̄L,hn

)
=

L∑
l=1

al
√
n
(
β̂Clhn − βClhn

)
→d N

(
0,

n∑
l1=1

n∑
l2=1

Γ−10 Ωl1l2,hnΓ−10 σl1,l2,hn

)

where β̄L,h =
∑L

l=1 alβClh and

Ωn,l1l2 = E
[
(xi − xj)′(xi − xk)(ui − uj)(ui − uk)K

(
||pi−pj ||2

hn

)
K
(
||pi−pk||2

hn

)]
/ (r2n). By

Assumption 9 and the definition of {a1, ..., aL}, β̄L,h can be written as

β̄L,h = β +
L∑

l1=1

L∑
l2=1

al1 (2Γ0)
−1Cl2 (cl1h)l2/θ + op

(
n−1/2

)
= β + (2Γ0)

−1
∑
l2

Cl2

[∑
l1

al1c
l2/θ
l1

]
hl2/θ + op

(
n−1/2

)
since

∑
l2
al2 = 1 by choice of {a1, ..., aL}. Furthermore, {a1, ..., aL} also satisfies[∑

l1
al1c

l2/θ
l1

]
= 0 for all l2 ∈ {1, ..., L}, so the second summand is 0 and

β̄L,h = β + op
(
n−1/2

)
. The claim follows. �

Theorem 6: Suppose Assumptions 1-5 hold. Then Γ̂−1hn Ω̂hn,hnΓ̂−1h /
√
n→p V4,n and∑L

l1=1

∑L
l2=1 Γ̂−1cl1hn

Ω̂cl1hn,cl2hn
Γ̂−1cl2hn

/
√
n→p V5,n

Proof of Theorem 6 It is sufficient to prove the second result, which nests the first as a

special case. In the proof of Theorem 2 I demonstrate that Assumptions 1-5 are sufficient

for
(
E
[
K
(
δ(wi,wj)

chn

)])−1
Γ̂chn = 2Γ0 + op(1) for any constant c > 0. It remains to be shown

that
(
E
[
K
(
δ(wi,wj)

c1hn

)])−1 (
E
[
K
(
δ(wi,wj)

c2hn

)])−1
Ω̂c1hn,c2hn converges to Ωnc1c2 .

I first fix agent i and Zi = {xi, wi, νi} and study the average(
E
[
K
(
δ(wi,wj)

chn

)])−1
(n− 2)−1

∑
j>i(xi − xj)′(ûi − ûj)K

(
δ̂ij
chn

)
for some fixed c > 0. Since
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ûi = ui + xi(β̂ − β) this average can be rewritten

(
E

[
K

(
δ(wi, wj)

chn

)])−1
(n− 2)−1

∑
j>i

(xi − xj)′
[
(ui − uj)− (xi − xj)(β̂ − β)

]
K

(
δ̂ij
chn

)

=

(
E

[
K

(
δ(wi, wj)

chn

)])−1
(n− 2)−1

∑
j>i

(xi − xj)′(ui − uj)K

(
δ̂ij
chn

)

−
(
E

[
K

(
δ(wi, wj)

chn

)])−1
(n− 2)−1

∑
j>i

(xi − xj)′(xi − xj)K

(
δ̂ij
chn

)
(β̂ − β)

The first summand converges to(
E
[
K
(
δ(wi,wj)

chn

)])−1
E
[
(xi − xj)′(ui − uj)K

(
δ(wi,wj)

chn

)
|Zi
]

following from arguments

made in Theorem 3. The first part of the second summand(
E
[
K
(
δ(wi,wj)

chn

)])−1
(n− 2)−1

∑
j>i(xi − xj)′(xi − xj)K

(
δ(wi,wj)

chn

)
is bounded following

arguments made in Theorem 2, and so the second summand converges to 0 in probability

since (β̂ − β) = op(1) by Theorem 2. As a result,(
E
[
K
(
δ(wi,wj)

c1hn

)])−1 (
E
[
K
(
δ(wi,wj)

c2hn

)])−1
Ω̂c1hn,c2hn can be written as

(n− 2)−14
n−1∑
i=1

E

[
(xi − xj)′(ui − uj)K

(
δ(wi, wj)

c1hn

)
|Zi
]
E

[
(xi − xj)(ui − uj)K

(
δ(wi, wj)

c2hn

)
|Zi
]

×
(
E

[
K

(
δ(wi, wj)

c1hn

)]
E

[
K

(
δ(wi, wj)

c2hn

)])−1
= (n− 2)−14

n−1∑
i=1

E

[
(xi − xj)′(xi − xk)(ui − uj)(ui − uk)K

(
δ(wi, wj)

c1hn

)
K

(
δ(wi, wk)

c2hn

)
|Zi
]

×
(
E

[
K

(
δ(wi, wj)

c1hn

)]
E

[
K

(
δ(wi, wj)

c2hn

)])−1

Together, the two results imply that Γ̂−1cl1hn
Ω̂cl1hn,cl2hn

Γ̂−1cl2hn
→p Γ−10 Ωc1hn,c2hnΓ−10 , and the

claim follows from the continuous mapping theorem. �
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