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Abstract

A sender seeks hard evidence to persuade a receiver to take a certain action. There

is uncertainty about whether the sender obtains evidence. If she does, she can choose

to disclose it or pretend to not have obtained it. When the probability of obtaining in-

formation is low, we show that the optimal evidence structure is a binary certification:

all it reveals is whether the (continuous) state of the world is above or below a certain

threshold. Moreover, the set of low states that are concealed is non-monotone in the

probability of obtaining evidence. When binary structures are optimal, higher uncer-

tainty leads to less pooling at the bottom because the sender uses binary certification

to commit to disclose evidence more often.
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1 Introduction

Hard evidence is often sought and disclosed by one party (sender) to persuade an-

other (receiver) to take a certain action. For example, pharmaceutical companies test

new drugs to get the approval from the US Food and Drug Administration, startups

build and test prototypes to secure financing, sellers apply for quality certification to

persuade consumers to buy products, etc. However, in many cases the receiver may

be uncertain about whether the sender has obtained the evidence. In the above ex-

amples, medical test results may have been inconclusive, a prototype may have been

prohibitively costly to experiment with, and quality certification may have been de-

layed. In many such cases, even if the sender has evidence, she may be able to pretend

to be uninformed. In other words, she can conceal unfavorable evidence by claiming

ignorance. This creates a trade-off for acquisition of evidence. Before evidence is ob-

tained, the sender may prefer the receiver to learn something about the state. But after

she obtains it, it might be in her best interest not to disclose it.

Consider the following example. An entrepreneur has a project of unknown quality.

She can seek verifiable information on its quality to persuade an investor to provide

financing. Before obtaining the evidence, she may prefer detailed information about

the quality to be released to the investor, regardless of its contents. This is the case if,

for example, evidence about moderately low quality allows the entrepreneur to secure

at least partial funding. But suppose that the disclosure is voluntary and the investor

is uncertain about whether the entrepreneur is informed. Then, if the entrepreneur

learns that the quality is low, she may prefer not to disclose the information and pre-

tend to be uninformed. This prevents the investor from learning details about low-

quality projects. Therefore, the entrepreneur must decide what information to seek

taking into account her future disclosure incentives. We show that this substantially

affects which information is sought in the first place.

In principle, when the state of the world is rich and the set of messages that can

be sent is large, one might expect to see complex communication between the agents.

In reality, however, senders often rely on verifiable information that is very coarse. In

many cases, it is as simple as a binary certification: a signal that reveals only whether

the state of the world is sufficiently good. For example, often sellers apply for certifi-

cations that test whether their products have high enough quality, job candidates take
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professional exams with pass or fail grades, etc. This paper shows that the mere oppor-

tunity to conceal information as described above can lead in equilibrium to acquisition

of simple information structures such as binary certification.

To study these interactions, we consider a communication game between a sender

(she) and a receiver (he). The state of the world is continuous and unknown to both

players. The sender wants the receiver to take a certain action, but the receiver takes

the action only if his expectation of the state exceeds his privately known cutoff. The

sender publicly chooses what information to acquire, but there is an exogenous uncer-

tainty about whether she will obtain any evidence from this inquiry. If she obtains

the evidence, then she can voluntarily disclose it or pretend to not have obtained it.

Otherwise, she cannot prove that she is uninformed.

Result 1: High uncertainty leads to binary certification. Our first main result (The-

orem 1) shows that when there is a large enough probability that no evidence is ob-

tained, the optimal evidence structure acquired by the sender is a binary certification:

it reveals only whether the state is above or below a certain threshold. Otherwise, the

optimum is a two-sided censorship, which is similar to binary certification, but also

reveals intermediate states. Figure 1 illustrates these two types of optimal evidence

structures.

0 1set of states Θ

fail pass

(a) Binary certification

0 1set of states Θ

fail passreveal θ

(b) Two-sided censorship

Figure 1: Two forms of optimal evidence structures.

To get some intuition why binary certification is optimal, note that it is an infor-

mation structure that assigns a single message (pass) to the states above a threshold

and a single message (fail) to those below. In other words, the states are pooled at the

top and at the bottom of the distribution. We identify two distinct forces that drive

pooling of high and low states, and show that binary certification is optimal when the

interaction between them is non-trivial. First, pooling at the bottom happens because

the disclosure is voluntary. In our example because the entrepreneur cannot commit
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to always disclose, if she learns that that the project’s quality is sufficiently low, she

will pretend pretend to not have obtained evidence. Second, pooling at the top arises

because of the sender’s uncertainty about the receiver’s cutoff for action. If the distri-

bution of cutoffs is single-peaked, there are increasing returns to disclosing more (less)

information about low (high) states. Therefore, in the absence of disclosure concerns,

the sender ex-ante prefers to reveal low states and pool high states.

To illustrate how these two forces can interact in a non-trivial way, consider the op-

timal evidence structure for various values of the probability q of obtaining evidence.

First, suppose q is close to 1. In this case, the optimal evidence structure is a two-sided

censorship: it reveals whether the state is above an upper threshold and below a lower

threshold via pass and fail messages, respectively, and perfectly reveals the interme-

diate states. The two forces driving pooling at the top and bottom in this case do not

interact. To see this, suppose that probability q slightly decreases. Then the receiver

becomes less skeptical when the sender claims ignorance. This, in turn, incentivizes

the sender to conceal more, and the lower pooling region becomes larger. But the

incentive to pool the states at the top is unaffected by that. In particular, the upper

threshold stays constant at the level the sender would choose absent the voluntary dis-

closure problem. In other words, there is “separability” between the two forces in the

case of two-sided censorship.

But now suppose that the probability q of obtaining evidence is low. In this case,

the two forces interact in a non-trivial way, and we show that this leads to binary

certification. Why does the sender choose to acquire so little information? Suppose

that the sender instead chose fully revealing evidence structure. Then if q is low, she

would often claim to be uninformed because the receiver is not too skeptical when

there is no disclosure. Overall, this leads to a large concealment at the bottom, which

hurts the sender’s ex-ante expected payoff. To mitigate this problem, she designs the

signal so that she then discloses more often. This is exactly what binary certification

achieves: when the threshold is relatively low, the passmessage is assigned to the states

that would otherwise be concealed. So the sender end up disclosing more often, albeit

only a single message.

Figure 2 illustrates the evidence structure acquired by the sender in equilibrium.

For each value of q on the vertical axes, it shows the optimal partition of the state

space. If the probability of obtaining evidence is low (q < q), there is a binary certi-
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fication threshold, such that states are pooled above and below this threshold. If the

probability of obtaining evidence is high (q > q), the states are pooled above the upper

threshold, pooled below the lower threshold, and fully revealed otherwise. As dis-

cussed above, the interaction between the two forces driving pooling at the top and

bottom is trivial under two-sided censorship: upper threshold stays constant as the

size of lower pooling region changes. But at q = q the interaction becomes non-trivial

and the sender switches to binary certification. Since she uses binary certification to

commit to disclose more often, the threshold for upper pooling region may drop dis-

continuously as q declines below q.
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Figure 2: Optimal evidence structure for various levels of uncertainty.

Result 2: Pooling at the bottom is non-monotone. The second main result (Theo-

rem 2) shows that when there is binary certification, the certification standards de-

grade as uncertainty increases. That is, the lower the probability q, the lower is the

threshold. This implies that the sender facing less skeptical receiver will choose a

signal with less pooling at the bottom. At first, it might sound surprising as, for a

fixed evidence structure, lower skepticism incentivizes the sender to conceal more. In-

deed, due to a trivial interaction between the design and disclosure forces, it leads

to more pooling at the bottom. In contrast, when binary certification is optimal, this

effect is reversed. This further highlights the interaction between the design and dis-
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closure forces. The intuition is the following. The sender switches to a relatively low

binary certification threshold because it allows the sender to commit to disclose more

often. This allows to mitigate the problem of limited commitment due to voluntary

disclosure. As uncertainty increases, this problem becomes more severe and lower

thresholds become more effective. The non-monotonicity of the pooling at the bottom

is evident in Figure 2: as q decreases, the pooling at the bottom grows, but then begins

to shrink once q declines below q.

Welfare. We also study the implications for players’ welfare. Notice that the higher

q is, the more skeptical the receiver is when the sender claims ignorance. This disci-

plines the sender to disclose more and, therefore, the conflict between the sender’s ex-

ante and interim preferences for disclosure is lower. Unsurprisingly, this implies that

the sender’s equilibrium value is increasing in her probability q of obtaining evidence.

As for the receiver, it follows from our equilibrium characterization that the informa-

tiveness of two-sided censorship is increasing in q in the Blackwell sense. However,

optimal binary-certification signals are not Blackwell-comparable for different values

of q, since higher q makes pass more informative and fail less informative. But as

higher q means there is a smaller chance the sender is uninformed, we show that the

overall disclosed signal is Blackwell more informative. Thus, the receiver also benefits

from a higher probability that evidence is obtained.

The above analyses compare environments with different upper bounds on the in-

formation that the receiver can get. If q is very small, then the receiver learns very

little, regardless of the sender’s strategy. Therefore, the players’ payoffs are increasing

in q partly because higher q allows the sender to communicate more often. To isolate

this effect, we normalize the players’ payoffs by q and show that the normalized equi-

librium payoffs are also increasing. This means that there are two channels through

which the equilibrium payoffs are affected: higher probability of obtaining evidence

allows the sender to communicate not only more often, but also more efficiently.

Related literature. This paper is related to the literature on disclosure of verifiable

information (for a survey, seeMilgrom, 2008).1 The seminal works of Grossman (1981),

1Coarseness of information is also a common feature in cheap-talk models (Crawford and Sobel,

1982) which study a different environment: the information is soft, it is given to the sender exogenously,
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Milgrom (1981), and Milgrom and Roberts (1986) study disclosure under complete

provability, that is when the sender can prove any true claim. The key insight of those

papers is that complete provability implies “unraveling”, which leads to full informa-

tion revelation in equilibrium (for a recent generalization, see Hagenbach, Koessler,

and Perez-Richet, 2014).2

Our model is based on the approach of Dye (1985) and Jung and Kwon (1988), in

which evidence is obtained with some probability and there is partial provability: if

the sender is uninformed, she cannot prove it.3 The main innovation compared to this

literature is that the evidence the sender obtains is chosen endogenously. Some recent

papers (Kartik, Lee, and Suen, 2017; Bertomeu, Cheynel, and Cianciaruso, 2018; De-

Marzo, Kremer, and Skrzypacz, 2019) endogenize the sender’s endowment of evidence

in Dye (1985) framework.4 Kartik, Lee, and Suen (2017) study a multi-sender disclo-

sure game, where senders can invest in higher probability of obtaining evidence, while

taking the evidence structure as given.

Bertomeu, Cheynel, and Cianciaruso (2018) study a closely related problem, in

which the firm is maximizing its expected valuation by choosing an asset measure-

ment system, subject to strategic withholding and disclosure costs. The firm makes an

additional interim investment decision with a convex cost, which leads to its objective

being convex in the market’s posterior mean. Their model with zero disclosure costs

can be mapped into a special case of our model, where the PDF of the receiver’s type is

and the coarseness follows from partially aligned preferences of the players. In our model, information

is hard, acquired endogenously, and the sender has state-independent preferences. See Pei (2015) and

Argenziano, Severinov, and Squintani (2016) on information acquisition in a cheap-talk model.
2Another common point of inquiry in this literature is informational efficiency of voluntary disclo-

sure compared to the receiver’s commitment outcome, see e.g. Glazer and Rubinstein (2004, 2006); Sher

(2011); Hart, Kremer, and Perry (2017); Ben-Porath, Dekel, and Lipman (2019).
3Other approaches in which unraveling fails include costly disclosure models of Jovanovic (1982)

and Verrecchia (1983) and multidimensional disclosure models of Shin (1994) and Dziuda (2011).

Okuno-Fujiwara, Postlewaite, and Suzumura (1990) provide sufficient conditions for unraveling in two-

stage games, where in the first stage players can disclose private information, and give examples in

which unraveling does not happen.
4In Matthews and Postlewaite (1985), the sender makes a binary evidence acquisition decision be-

fore playing a voluntary disclosure game under complete provability. Gentzkow and Kamenica (2017)

study overt costly acquisition of evidence in a disclosure model where each type can perfectly self-

certify and show that one or more sender(s) disclose everything they acquire. Escudé (2019) provides

an analogous result in a single-sender setting with covert costless acquisition and partial verifiability.
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increasing. In this case, it is optimal to acquire a fully-informative evidence structure

for any probability of obtaining evidence, and, therefore, the interaction between the

design and disclosure incentives plays no role.

In DeMarzo, Kremer, and Skrzypacz (2019), evidence acquisition is covert, that is,

the sender’s signal choice is observed only if she discloses its realization.5 They charac-

terize the ex-ante incentive compatibility with a “minimum principle” and show that

it is sufficient for the sender to choose simple tests, equivalent to binary certification.

Interestingly, their result is driven by forces that are very different from ours. More

precisely, as their sender’s objective is linear, she is ex-ante indifferent between all

information structures and might as well choose a simple test that satisfies a “min-

imum principle”. In contrast, we provide conditions for binary certification to be

the unique optimum (up to outcome equivalence) in environments with the convex-

concave sender’s objective and acquisition is overt. Although some of our results will

continue to hold even if the choice of a signal was unobserved, in general, it is not

clear what would happen in the case of covert acquisition and non-trivial incentives

for evidence design.

This paper also contributes to the literature on Bayesian persuasion and informa-

tion design (for a survey, see Kamenica, 2019). In the special case of our model when

the sender is known to possess the evidence (q = 1), the unraveling argument ap-

plies, and the optimal evidence acquisition problem becomes equivalent to the one of

Bayesian persuasion (Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011).

This problem in similar environments was studied by Alonso and Câmara (2016),

Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017), Kolotilin (2018), and Dworczak

and Martini (2019). In particular, it follows from their analyses that upper censor-

ship is optimal if the receiver’s type distribution is unimodal. Information structures

equivalent to our binary certification and two-sided censorship also appear in Kolotilin

(2018) in cases when the distribution of the receiver’s type is not unimodal. There, bi-

nary certification can be optimal because of a particular shape of the the receiver’s

type distribution (e.g. bimodal), rather than the interaction between the design and

disclosure incentives.

5Ben-Porath, Dekel, and Lipman (2018) study a related voluntary disclosure problem, in which

there is an ex-ante covert choice between risky projects, which, in our setting, corresponds to a choice

between priors.
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A standard assumption in this literature is that the sender commits to a signal,

whose realization is directly observed by the receiver, while in our model it is volun-

tarily disclosed by S. Some recent works (Felgenhauer, 2019; Nguyen and Tan, 2019)

also relax the assumption that the receiver observes signal realizations. In Felgenhauer

(2019), the sender designs experiments sequentially at a cost and can choose when to

stop experimenting and which outcomes to disclose. Nguyen and Tan (2019) study a

model of Bayesian persuasion with costly messages, where a special case of the cost

function corresponds to verifiable disclosure of hard evidence studied in this paper.

The difference is that their sender can choose not only a signal about the state, but also

the probability of obtaining evidence. In contrast, q is exogenous in our model. If it

could be chosen by the sender, she would set q = 1 and obtain her full commitment

payoff.

2 Model

Setup. There are two players: a sender (S, she) and a receiver (R, he). The state of the

world is θ ∈ Θ = [0,1], unknown by both players, who share a prior µ0 ∈ ∆Θ, which

admits a full-support density and has a mean θ0 := Eµ0.6 R has a private payoff type

ω ∈ Ω = [0,1], which is independent of θ and distributed according to a continuous

distribution with CDF H and strictly quasi-concave PDF h with a peak at ω̂ ⩾ θ0.7 R

either acts (a = 1) or not (a = 0) and has a utility uR(a,θ,ω) = a(θ−ω). That is, R prefers

to act if and only if his expectation of the state is at least as high as his type. The sender

always wants R to act and has a utility uS(a,θ,ω) = a.

The timing of the game is as follows. First, S publicly chooses what evidence to

acquire at no cost. Formally, she commits to a signal π : Θ → ∆M, where M is a rich

enough set of messages.8 Then, the nature draws the state θ from µ0, the message m

from π(θ), and the set of available messages M̂ as follows. With probability q ∈ (0,1],

6Throughout the paper, ∆Θ denotes the set of all Borel probability measures on Θ and, for any

µ ∈ ∆Θ, Eµ denotes the expectation
∫
θdµ(θ).

7The assumption ω̂ ⩾ θ0 can be interpreted as the conflict between the players’ preferences being

moderately large for a given H . If conflict is small (ω̂ ⩽ θ0) and H is close enough to be degenerate at ω̂,

then the uninformative signal is optimal. For a fixed H , if the conflict is small, the uninformative signal

may not necessarily optimal.
8In particular, the cardinality of M is assumed to be at least that of suppµ0 = [0,1].
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M̂ = {m,∅}, which means S obtains a proof that the realized message is m and chooses

a message m̂ ∈ M̂, i.e. whether to disclose it or claim to not have obtained it. With

probability 1− q, M̂ = {∅}, which means that she has not obtained any proof and must

send m = ∅.9 Finally, R’s type ω realizes, he observes m̂ and π, updates his belief, and

chooses an action.

There exist a number of interpretations of this setting. First, as described above, ω

can be interpreted as R’s private type. Second, the set of R’s private types Ω can be

viewed as a population of receivers. In this interpretation, S persuades the public to

maximize the mass of those who choose to act. Third, one can consider a setting, in

which R does not have a private type, but the action space is continuous. For example,

suppose that R is matching the state (uR(a,θ) = −(a−θ)2) by taking a continuous action

(A = [0,1]), and S has a state-independent utility function that is convex-concave in the

action (uS(a,θ) = H(a)).10 Then such a model is strategically equivalent to the one we

study.

We analyze Perfect Bayesian Equilibria of the game. Without loss of generality,

messages can be labeled so that they represent the corresponding posterior means. For

example, in equilibrium, a message m ∈ [0,1] induces a posterior mean that equals m.

Belief-based approach. Below we describe a framework that will be convenient for

analyzing the equilibria of the game. It relies on the representation of information

structures with convex functions, which has proven to be useful in information design

literature (Gentzkow and Kamenica, 2016; Kolotilin, 2018). Although it might not

seem as the most intuitive way of representing information, the investment into this

framework will pay off. In particular, we will show that the voluntary disclosure game

can be analyzed using the same approach. A unified treatment of all aspects of the

model will then allow to solve the optimal evidence acquisition problem.

To characterize the equilibria of the game, we adopt the so-called belief-based ap-

proach. First, we solve for R’s best response for a given posterior belief; then, we write

S’s payoff as an indirect utility function of R’s posterior. This allows to treat R as a

passive player who forms beliefs and express equilibrium conditions in terms of S’s

9The restriction to a single ‘cheap-talk’ (i.e. always available) message m̂ = ∅ is without loss of

generality here.
10Dworczak and Martini (2019) provide an example of a continuous-action game in which the

sender’s objective is convex-concave.
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indirect utility function.

Moreover, R’s best response depends on a posterior belief β ∈ ∆Θ only through the

mean Eβ: 11

a∗(β) := I(Eβ ⩾ω).

Therefore, it suffices to look at the posterior mean Eβ ∈Θ.

We can now express S’s interim payoff as an indirect utility function of the induced

posterior mean. If S induces a posterior belief β with mean θ := Eβ, her interim (ex-

pected) payoff is∫ 1

0
uS(a

∗(β),θ,ω)dH(ω) =
∫ 1

0
I(Eβ ⩾ω)dH(ω) =H(Eβ) =H(θ).

So S’s indirect utility function is exactlyH , whichmeasures the mass of R’s types below

the induced posterior mean.

Information structures as integral CDFs. Because only the posterior mean matters,

each signal π can be associated with the corresponding distribution over posterior

means µπ ∈ ∆Θ. We will identify a distribution over posterior means µ ∈ ∆Θ with

its integral CDF (ICDF), which is an increasing convex function Iµ defined as the an-

tiderivate of the CDF Fµ
12

Iµ :R+→R+,

θ 7→
∫ θ

0
Fµ.

Clearly, knowing Iµ, one can recover the CDF as the right derivative (Iµ)′+ = Fµ.

To illustrate the approach, consider two extreme information structures: full in-

formation π and no information π. Since π fully reveals the state, all posteriors are

degenerate at the corresponding states, and the distribution over posterior means then

coincides with the prior

µπ = µ0.

Since π reveals no information, there is a unique posterior that is equal to the prior µ0.

This means that the corresponding distribution over posterior means is degenerate at

11The tie-breaking rule here is without loss of generality.
12We omit the variable of integration whenever it is unambiguous, adopting the following notation:∫ b

a
f :=

∫ b

a
f (x)dx,

∫ b

a
f dh :=

∫ b

a
f (x)dh(x).
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the prior mean θ0 = Eµ0

µπ = δθ0 .

Denote the integral CDFs of µπ and µπ as I and I , respectively.

Figure 3 below illustrates I and I for µ0 ∼ U [0,1]. Since µπ = δ 1
2
is degenerate at θ0,

the ICDF is piece-wise linear Iµπ(θ) = (θ− 1
2 )

+ := max(θ− 1
2 ,0), where the kink at θ0 =

1
2

with slope 1 corresponds to the point mass. The ICDF of µπ = U [0,1] is the integral of
a piece-wise linear function and is, therefore, quadratic: IU [0,1](θ) =

θ2

2 on [0,1].

10

1−θ0

Eµ0 = θ0

I
I I

Figure 3: Integral CDFs of evidence structures, corresponding to full information I , no

information I , and partial information I , for µ0 ∼ U [0,1].

To describe the space of all information structures using this approach, define the

informativeness order as follows. As is well known,13 Blackwell informativeness order

over information structures translates into mean-preserving spreads over distribu-

tions of posterior means. Formally, the partial order ≽MPS is defined as

µ′ ≽MPS µ′′ ⇐⇒
(
Iµ′ ⩾ Iµ′′ and Eµ′ = Eµ′′

)
.

Now since any information structure π is more informative than π and less infor-

mative than π, it follows that I ⩾ Iµπ ⩾ I.Gentzkow and Kamenica (2016) and Kolotilin

(2018) show that the converse also holds: for any convex function I , such that I ⩾ I ⩾ I ,

13Rothschild and Stiglitz (1970) prove equivalence in the context of a risk averter’s preferences over

monetary lotteries and Leshno, Levy, and Spector (1997) provide a corrected proof of their result. Black-

well and Girshick (1954) prove a decision-theoretic equivalence result in the finite case.
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there exists an information structure π and a unique distribution over posterior means

µ such that I = Iµ,µ = µπ. Define the set of ICDFs of all distributions over posterior

means bounded between I and I as

I := {I :R+→R+ | I convex and I ⩾ I ⩾ I}.

Note that the requirement that the mean must be preserved is satisfied for any I ∈ I ,
since I(1) = I(1) and for any µ ∈ ∆Θ

Eµ =
∫ 1

0
θdFµ(θ) = 1−

∫ 1

0
Fµ(θ)dθ = 1− Iµ(1).

Therefore, the informativeness ranking in I is represented with a simple point-wise

inequality, i.e. partial order ⩾.

This approach allows us to treat all information structures in a unified way. In

particular, the signal chosen ex-ante by S and the distribution of R’s posterior means

(equivalently, evidence that is disclosed by S) can be both viewed as information struc-

tures and, therefore, can be represented with elements of I . The approach of repre-

senting distributions over posterior means allows us to treat all information structures

in a unified way. First, S’s ex-ante choice of a signal corresponds to some distribution

over posterior means and, therefore, can be represented with an element of I . Sec-

ond, what S’s discloses, in equilibrium, corresponds exactly to the distribution of R’s

posteriors, which is then also an element I .

3 Analysis

We analyze the model by backward induction. First, we fix an arbitrary evidence struc-

ture and solve the voluntary disclosure subgame. Next, we compute S’s subgame equi-

librium value for a given evidence structure. Finally, we solve the optimal evidence

acquisition problem and discuss properties of the optima.

3.1 Voluntary disclosure

In this section, we characterize equilibria of the voluntary disclosure subgame. That

is, we derive the equilibrium disclosure strategy and the distribution of R’s posteriors

for an arbitrary evidence structure I .
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Recall that S’s indirect utility function coincides with the CDF H of R’s cutoffs dis-

tribution and is, therefore, strictly increasing. It then follows that the equilibrium

disclosure strategy is a threshold rule: S discloses the evidence if and only if it is suffi-

ciently good.14

Lemma 1. For any acquired evidence structure I , in subgame equilibrium, evidence is (not)

disclosed if it induces a posterior mean above (below) the disclosure threshold θq,I , which

is defined from

qI(θq,I ) = (1− q)(θ0 −θq,I ),

and is unique if and only if q , 1 or I(θ) > 0 for θ > 0.

In addition, θq,I is decreasing in q and I (with respect to the informativeness order ⩾).

Lemma 1 tells us that whatever evidence structure S chooses ex-ante, she discloses

only realizations that are “good enough”. Intuitively, if q = 1, then R is certain that S

has evidence and the standard unraveling argument of Grossman (1981) and Milgrom

(1981) applies. Since R knows S has evidence, R’s skepticism makes the highest type

want to separate from all types, and so on for lower types. This means that θ0,I = 0 for

any I .

But when q < 1, R’s skepticism is ‘muted’, which allows S to credibly conceal ev-

idence. To understand how the threshold θq,I is constructed, suppose, first, that S

discloses any evidence she obtains. Then R’s posterior mean after seeing message ∅

is θ0. If I is not uninformative, then the worst evidence S might obtain is below θ0,

which means S prefers to conceal it. By iterating this argument, we arrive at a fixed

point: if S uses the threshold strategy with θq,I , then the corresponding distribution

of R’s posteriors is such that the evidence inducing θq,I makes S indifferent between

disclosure and concealment. Note that θq,I is decreasing in q, which means that as

uncertainty grows, R’s skepticism weakens and leads to less disclosure, for a fixed I .

Transformation of Information. It will be useful to think about S’s strategic disclo-

sure of information as a garbling of the acquired information structure. In particular,

14An equivalent model of voluntary disclosure was analyzed in Dye (1985) and Jung and Kwon (1988)

for continuous distributions. Lemma 1 provides a unified treatment of general distributions, including

distributions with atoms, e.g. discrete. Such a generalization will be useful in our context, since I is

chosen endogenously at the ex-ante stage. Indeed, as can be seen from the equilibrium characterization

below (Theorem 1), the optimal evidence structure might be discrete.
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one can represent this garbling in terms of a mapping from S’s chosen evidence struc-

ture into the induced R’s distribution over posterior means. Since we identify evidence

structures with distributions over posterior means, both objects can be represented as

ICDFs. The following corollary characterizes the transformation of evidence structure

due to voluntary disclosure.

Corollary 1. For any acquired evidence structure I , there exists a unique subgame equi-

librium disclosed evidence structure. Moreover, it is given by the following voluntary

disclosure transformation

D V
q : I → I ,

I 7→
[
qI + (1− q)(id−θ0)

]+
,

where (·)+ := max(·,0) and id denotes the identity function θ 7→ θ.

Notice that the subgame equilibrium disclosed evidenceD V
q I is unique, even though

the subgame equilibrium disclosure strategy may be non-unique. This is true for any

I ∈ I , even if there is an atom at θq,I , the point of indifference between disclosure and

concealment. The reason is that when S obtains evidence θq,I , both disclosure and

non-disclosure lead to the same posterior mean and, consequently, the sameD V
q I .

Benchmark: Mandatory disclosure. To understand the logic behind the voluntary

disclosure transformation, it will be useful to compare it to the case of mandatory

disclosure. That is, when S must reveal any evidence she obtains. In this case, with

probability q, she obtains and discloses evidence and, with the remaining probability,

she is uninformed and sends message ∅. Thus, the ICDF of R’s posterior means is a

convex combination of the chosen evidence structure I and the uninformative struc-

ture I , given by

DM
q : I → I ,

I 7→ qI + (1− q)I

= qI + (1− q)(id−θ0)
+.

Figure 4 illustrates the difference between the two transformations for a fixed I .

First, notice thatD V
q I lies belowDM

q I . Since ⩾ represents the Blackwell order on I , it
means that DM

q I is more informative than D V
q I . This is because DM

q I represents the

most information S can possibly disclose.
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1−θ0

θ0

I id−θ0DM
q I

DV
q I θq,I

1− q
q

(θ0 − id)

I

DV
q I = [qI + (1− q)(id−θ0)]+

DM
q I = qI + (1− q)(id−θ0)+

Figure 4: Construction of the disclosure threshold θq,I and the voluntary and mandatory

disclosure transformationsDV
q I andDM

q I .

Moreover, the transformation of information from the acquired evidence I into the

disclosed evidence D V
q I can be seen as a two-stage garbling. First, the acquired ev-

idence structure I is exogenously garbled into the available evidence structure DM
q I

because S obtains evidence only with probability q. Second, it is garbled again into

the disclosed evidence structureD V
q I , due to the strategic concealment of unfavorable

evidence.

Note that for q < 1 the mandatory disclosure transformation DM
q I has a kink at θ0,

corresponding to the mass 1 − q of uninformed sender types. This kink is due to the

fact that none of the informed type pools with the uninformed type under mandatory

disclosure. Compare this to the voluntary disclosure transformation D V
q . All types

with evidence above θ0 disclose it, which is why D V
q coincides with DM

q on [θ0,1].

In contrast to mandatory disclosure, there is no mass point at θ0 anymore, since the

uninformed will be pooled with the low types and the corresponding posterior mean

will be lower. This implies that D V
q I continues below DM

q I as a convex combination

of I and id−θ0. This convex combination reaches zero exactly at θq,I , which is where

D V
q I has a kink, corresponding to the combined mass of uninformed and low evidence

types.
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3.2 Value of Evidence

Before turning to the optimal evidence acquisition problem, we characterize S’s value

from evidence structures.

Suppose that S induces an ICDF of R’s posterior means I . Given S’s interim value

function H , her S’s ex-ante payoff simply the expectation of H with respect to the

distribution corresponding to I . Equivalently, it can be written as
∫ 1
0
H dI ′+, since the

right derivative I ′+ corresponds to the CDF of R’s posterior means. It will be convenient

to normalize the S’s payoff from no information to zero and define the value as

v : I →R,

I 7→
∫ 1

0
H d(I ′+ − I ′+).

Integrating by parts twice, one can rewrite it as15

v(I) =
∫ 1

0
(I − I)dh.

Such a (RiemannStieltjes) integral representation implies that the S’s value can be vi-

sualized as the “area” between I and I weighted by the measure induced by h. Figure 5

illustrates this idea. Since h is increasing (decreasing) on [0, ω̂] ([ω̂,1]), it induces a pos-

itive (negative) measure on the corresponding interval. Thus, S’s value is composed of

the positive part
∫ ω̂

0
(I − I)dh and the negative part

∫ 1
ω̂
(I − I)dh. This implies, in partic-

ular, that S benefits from more information at the bottom and less information at the

top.

We can now characterize S’s expected payoff for any acquired evidence structure I .

Lemma 2. The sender’s value from acquisition of evidence structure I under mandatory

disclosure is given by

v(DM
q I) = qv(I),

and that under voluntary disclosure is given by

v(D V
q I) = q(v(I)−Lq(I)),

15All integrals are RiemannStieltjes. For any continuous g, we define
∫ 1
0 g dh as the difference

∫ ω̂

0 g dh−∫ 1
ω̂
g d(−h) of two RiemannStieltjes integrals with respect to strictly increasing functions.
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Figure 5: v(I) as a sum of a positive and a negative part.

where Lq is the concealment loss defined as

Lq(I) :=
∫ θq,I

0
I dh+

∫ θ0

θq,I

1− q
q

(θ0 − id)dh.

This result highlights the difference between voluntary and mandatory disclosure

in terms of the effect of uncertainty on the value from acquisition of evidence. For a

fixed I , higher uncertainty shifts the available evidence DM
q I down towards the unin-

formative structure I . Since the value from I is normalized to zero and all available

evidence is disclosed under mandatory disclosure, q enters as a multiplier in the ex-

pression for v(DM
q I).

The same effect is retained under voluntary disclosure, but there is an additional

term Lq due to strategic disclosure, which we call the concealment loss. As the uncer-

tainty increases, the disclosure threshold θq,I increases as well. Since ex-ante S dislikes

less information at the bottom, she incurs the loss.

Figure 6 illustrates the decomposition of S’s acquisition value. As Lemma 2 shows,

the shaded “area” v(D V
q I) in Figure 6a must be equal to q times the shaded “area”

v(I)−Lq(I) in Figure 6b.

3.3 Optimal Evidence Acquisition

In this section, we endogenize the evidence structure as S’s ex-ante choice. She designs

the evidence structure strategically to mitigate the effect of voluntary disclosure.
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Figure 6: Decomposition of the value of evidence

Before we characterize the equilibrium evidence structure, it will be instructive to

look at the extreme case q = 1, in which S always obtains evidence. Recall that under

q = 1 there is unraveling: the receiver’s skepticism makes the sender always disclose.

In this case, the voluntary disclosure transformation leaves I unchanged, the acqui-

sition problem becomes equivalent to the problem of Bayesian persuasion. Kolotilin,

Mylovanov, Zapechelnyuk, and Li (2017) and Kolotilin (2018) study a similar model of

Bayesian persuasion with R’s private payoff type and show, in particular, that if the dis-

tribution of R types is unimodal, the optimal signal is an upper censorship: it perfectly

reveals all states below and pools all states above some threshold.16 The intuition be-

hind this result is the following. As discussed in the previous section, when the state is

low (high), more information benefits (hurts) S because S’s indirect utility function H

is convex-concave. It turns out that the optimal signal simply reveals (pools) all states

below (above) some threshold θ∗1 ∈ [0, ω̂].

Now consider the case of q < 1. It will be useful to define the following class of

information structures.17

Definition 1. An evidence structure I ∈ I is a (θl ,θh) two-sided censorship if and

16Optimality of upper censorship in slightly different settings also appears in Alonso and Câmara

(2016) and Dworczak and Martini (2019).
17Kolotilin (2018) introduces an equivalent class of information structures called interval revelation

mechanisms.
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only if there exist 0 ⩽ θl ⩽ θh ⩽ 1, such that

I(θ) =


max(I(θl) + I

′
(θl)(θ −θl), I), θ < θl ,

I(θ), θ ∈ [θl ,θh],

max(I(θh) + I
′
(θh)(θ −θh), I), θ > θh.

In addition, call I

· a θh upper censorship, if θl = 0,

· a θl lower censorship, if θh = 1, and

· a θ binary certification, if θl = θh = θ ∈ (0,1).

1
0

1−θ0

θl θh

I
I

lower pooling separation upper pooling

Figure 7: Two-sided censorship.

In words, an evidence structure I is a two-sided censorship if it perfectly reveals all

states in [θl ,θh], pools states above θh and pools states below θl . It can be interpreted

as a grading system that assigns the pass grade to the states above the upper cutoff,

the fail grade to the states below the lower cutoff, and has a number of intermediate

grades.

Consider some special cases. First, note that if θl = 0 and θh = 1, both pooling

intervals are empty. This corresponds to the case of the fully informative structure I .

Second, if θl = θh ∈ {0,1}, then all states are pooled, which corresponds to the uninfor-

mative structure I . Next, if the lower pooling intervals is empty (θl = 0), then all states

below θh are revealed, which corresponds to an upper censorship. Finally, if θl = θh,

then the evidence structure reveals only whether the state is above or below θl = θh
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and produces exactly two messages (with probability 1). We call such an evidence

structure binary certification.

Before stating the main result, we discuss the multiplicity of equilibria that arises

in the model. Call two evidence structures disclosure-equivalent if they induce the

same disclosed evidence structure. Clearly, the corresponding equivalence classes are

given by pre-images of D V
q . Figure 8 illustrates the set of all evidence structures that

induce a given disclosed evidence J . Note that the set
(
D V

q

)−1
J is an “interval” [I∗, I ∗] :=

{I ∈ I , I∗ ⩽ I ⩽ I ∗} of evidence structures that coincide on [θq,I ,1] and have the same

disclosure threshold. As the S’s value depends only on D V
q I , it follows that the set

of equilibrium evidence structures consists of such “intervals”. In other words, the

sender can always acquire more or less evidence about states below the disclosure

threshold θq,I , without changing the outcome of the game.

10

1−θ0

θ0

I

I ∗
J I

I∗

1− q
q

(θ0 − id)

θq,I∗

Figure 8: An interval
(
DV

q

)−1
J = [I∗, I ∗] of disclosure-equivalent evidence structures

corresponding to a disclosed evidence J .

Note that this implies the following “revelation principle”: for every equilibrium of

the game, there exists a “canonical” outcome-equivalent equilibrium, in which there

is a unique realization of a signal that is concealed by S. To ease the exposition of the

results, we will focus on equilibria of the latter type and define the notion of optimal

evidence structures as follows.
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Definition 2. An evidence structure I ∗ is called optimal, if it solves

v∗q := max
I∈I

v(D V
q I), (*)

and there is no Ĩ ∈ I , such that I ∗ ⩾ Ĩ , I ∗ , Ĩ andD V
q I ∗ =D V

q Ĩ .

The following theorem provides characterization of optimal evidence structures.

Theorem 1. An optimal evidence structure exists. There exists q ∈ [0,1), such that if q < q,

then any optimum is a binary certification. Moreover, if q > q, then the unique optimum is

the (θq,I ,θ
∗
1) two-sided censorship.

This result shows that the optimal evidence structure depends on the probability

that evidence is obtained. Moreover, it shows that the interaction between the forces

that drive pooling at the top and bottom of the state distribution can take different

forms. When the uncertainty is low (q > q), the interaction between the two forces is

trivial and optimal evidence structure is a two-sided censorship of the state. The lower

threshold θq,I is not affected by the design of the evidence structure and coincides with

the disclosure threshold under fully-revealing evidence structure. Moreover, the up-

per threshold θ∗1 is unaffected by voluntary disclosure: it stays constant and coincides

with the optimal upper threshold that the sender would use under q = 1.

However, when uncertainty is high (q < q), the interaction between the two forces

becomes non-trivial and the sender adopts binary certification. Notice that voluntary

disclosure leads to pooling of low states. From the ex-ante perspective, this hurts

the sender because her interim payoff function is convex at the bottom. Therefore,

she would commit to reveal low states, but cannot because disclosure is voluntary.

When the q drops below q, it becomes optimal to design evidence structure in order to

reduce the ex-ante loss from non-disclosure of low states. This is achieved by binary

certification, as it allows to reduce the lower pooling interval by enlarging the upper

pooling interval.

The proof is given in Appendix A and based on constructing a one-dimensional

optimization problem that is equivalent to (*). We present the main idea below. First,

Lemma 2 implies that the sender’s ex-ante problem can be written as

max
I∈I

v(D V
q I) = qmax

I∈I

(
v(I)−Lq(I)

)
.

Second, we show that any maximizer of v − Lq must coincide with some upper cen-

sorship on [θq,I ,1], generalizing a standard argument used in the extreme case of q = 1.
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Intuitively, if q < 1, there is pooling at the bottom due to strategic disclosure. Even

though the pooling interval is determined endogenously, it follows from the geomet-

rical characterization of S’s value that any upper censorship that is an improvement

under q = 1 will still be an improvement under q < 1. This allows to formulate the

evidence acquisition problem as a one-dimensional optimization problem

max
θ∈[0,1]

v(Iθ)−Lq(Iθ), (**)

where Iθ is the θ upper censorship. Then, the definition of an optimum implies that it

must be the θq,I lower censorship of Iθ. If θ > θq,I , it is the (θq,I ,θ) two-sided censor-

ship, otherwise, it is the θ binary certification.

Next, we show that θ 7→ v(Iθ) has a unique maximum and that θ 7→ Lq(Iθ) is con-

stant on [θq,I ,1]. The threshold q is identified as the lowest value of q, such that the

loss Lq(Iθ) does not affect the maximizer and thereby obtain the second part of the

result. Finally, we show that the marginal concealment loss is decreasing in q. This

implies that, for q < q, we have θ < θq,I , which implies that the optimum, given by the

θq,I lower censorship of Iθ is a binary certification.

3.4 Degradation of Certification Standards

In this section, we study how optimal binary certification threshold depends on the

probability of obtaining evidence q. The role of a binary certification threshold is

twofold. First, it serves as a certification standard because only the states above it get a

passing grade. Second, it bounds the lower pooling region, determining the states that

are going to be concealed. This is in contrast to a two-sided censorship, when the two

pooling regions are controlled by different thresholds.

Note that when the optimum is a two-sided censorship, the lower pooling threshold

coincides with the disclosure threshold of the fully-revealing information structure I .

This, together with Lemma 1, implies that as q decreases, the pooling interval becomes

larger. As follows from a standard argument, as uncertainty increases, R becomes less

skeptical when S claims to not have obtained any evidence. This incentivizes S to

conceal evidence, and, in equilibrium, leads to more pooling at the bottom.

But this argument valid for a fixed evidence structure no longer applies in the case

of binary certification because the two forces shaping the optimal evidence structure
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have non-trivial interaction. This leads to the reversal of the effect of higher uncer-

tainty. S is strategically choosing a binary threshold that is below the disclosure thresh-

old to mitigate the effect of voluntary disclosure problem. With lower q this problem

becomes more severe and lower thresholds become more effective. Note that our de-

composition of S’s value implies that q affects the optimal choice of information only

through the concealment loss. But lower thresholds reduce the concealment loss more

when uncertainty is higher. This implies that the optimal binary certification threshold

will is increasing in q, as summarized by the following result.

Theorem 2. Let θ∗q1 and θ
∗
q2 be optimal binary certification thresholds for q1 and q2, respec-

tively. Then q1 < q2 implies θ∗q1 < θ∗q2 .

Theorem 2 highlights that the interaction of the two forces that lead to pooling at

the top and bottom of state distribution becomes non-trivial when q drops below q.

Because S reduces the lower pooling interval to be able to credibly disclose more good

states, the effect of uncertainty on the lower pooling interval is reversed, compared to

the case of two-sided censorship. As can be seen in Figure 2, the lower threshold is

non-monotone in q.

The main idea of the proof is the following. Recall that the sender’s objective func-

tion is the difference between the value function v and the concealment loss Lq, where

only Lq depends on q. Since S’s problem can be represented as a one-dimensional pro-

gram (**), it is sufficient to show that the concealment loss satisfies strictly decreasing

marginal differences property (Edlin and Shannon, 1998). That is, we show that the

marginal increase in the concealment loss from an increasing the threshold is decreas-

ing in q by using the integral representation of Lq given in Lemma 2. As the uncer-

tainty decreases, the sender discloses more evidence at the bottom, so the marginal

concealment loss is lower.

Uniqueness. Note that neither of the above results establishes the uniqueness of the

optimum for q ∈ (0,q). However, the strict comparative statics of Theorem 2 implies

uniqueness for almost all q. To see this, note that any selection from the optimal bi-

nary certification threshold correspondence must be strictly decreasing on q ∈ (0, q).

But then this selection can have at most a countable set of points of discontinuity.

Therefore, the optima correspondence is single-valued almost everywhere. One can

interpret this result as establishing that uniqueness of the solution holds generically
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across q.

Corollary 2. The optimal evidence structure is unique for almost all q ∈ (0,1].

More precisely, there exists a subset Q ⊆ (0,1] with a countable complement, such

that Q ⊃ (q,1] and for any q ∈ Q there is a unique optimal evidence structure. Hence-

forth, denote the unique optimum as I ∗q for q ∈ Q and the unique optimal binary certi-

fication threshold as θ∗q for q ∈ Q ∩ (0,q]. Note that Theorem 2 then implies that θ∗q is

strictly increasing in q on Q ∩ (0,q].

3.5 Voluntary vs Mandatory Disclosure

In this section, we compare optimal evidence acquisition under voluntary and manda-

tory disclosure. How does inability of S to commit to full disclosure affect optimal

evidence acquisition?

To answer this question, consider S’s problem undermandatory disclosure. Lemma 2

allows to write it as

max
I∈I

v(DM
q I) = max

I∈I
qv(I) = qv∗1.

But this implies that the optimum under mandatory disclosure is the same as under

no uncertainty, equivalently, when q = 1. Thus, the following proposition holds.

Proposition 1. For any q, the optimum under mandatory disclosure coincides with the

optimum under voluntary disclosure with q = 1.

The intuition is the following. Under mandatory disclosure, S does not always ob-

tain evidence. But when she does, it is necessarily fully revealed. Therefore, she can

simply maximize her value conditional on obtaining evidence, which is equivalent to

solving the evidence acquisition problem under q = 1.

Note that Proposition 1 implies that (i) any optimal binary certification threshold is

strictly lower than the optimal upper censorship certification under mandatory disclo-

sure and (ii) the mandatory disclosure optimum is strictly more informative than any

voluntary disclosure optimum under q < 1. To see this, note that Theorem 1 implies

that the optimum under mandatory disclosure is the θ∗1 upper censorship I ∗1. Now con-

sider any optimal θ-binary certification Iθ. First, by Corollary 2, θ must necessarily

be below θ∗1. To see why Iθ is a garbling of I ∗1, consider the θ upper censorship Jθ and

note that I ∗1 > Jθ ⩾ Iθ. In other words, Jθ provides less information than I ∗1 because it
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pools more states at the top, and more information than Iθ because it doesn’t pool the

states below θ. Finally, any optimal two-sided censorship is a garbling of I ∗1 because it

has the same upper threshold, but also has pooling at the bottom.

3.6 Welfare

How does the level of uncertainty affect the players welfare? In this section we show

that both players’ ex-ante expected equilibrium payoffs are strictly increasing in q.

This comparative statics result holds for the two players for distinct reasons. The

monotonicity of S’s payoff follows directly from the properties of the objective function

in her optimal acquisition problem. However, the monotonicity of R’s payoff follows

from the characterization of the optimal evidence structures.

Such welfare analyses compare environments with different probabilities of obtain-

ing evidence. This means that, for example, S’s equilibrium value increases in q partly

because she gets an opportunity to persuade R more often. Therefore, a sensible way

to compare welfare under different levels of uncertainty in the model is to compare

payoffs normalized by the probability of obtaining evidence, which we call normalized

value. We then strengthen the result by showing that the normalized payoffs of both

players are also strictly increasing in q. In other words, there are two channels through

which higher q improves players’ welfare: communication happens more often and

more efficiently.

The normalized value can also be interpreted as the fraction of the value that is

achieved under mandatory disclosure. To see this, recall that S’s equilibrium value

under mandatory disclosure is given by qv∗1. Therefore, the normalized value is pro-

portional to the ratio
v∗q
qv∗1

=
maxI∈I v(D V

q I)

maxI∈I v(D
M
q I)

.

Next we provide detailed analysis of both players’ welfare.

Sender. First, consider S’s value v∗q. An immediate observation is that whatever dis-

tribution of posterior beliefs S can induce in equilibrium under lower q, she can also

implement under higher q. Equivalently, the set D V
q I = {D V

q I : I ∈ I} of all evidence
structures that can be voluntary disclosed is monotone in q with respect to set inclu-

sion. Thus, S’s equilibrium value v∗q is increasing in q.
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The following proposition shows that not only S’s ex-ante value, but also S’s nor-

malized value is strictly increasing in q.

Proposition 2. Both S’s value v∗q and normalized value
v∗q
q are strictly increasing in q.

The proof is by inspection of the derivative. We apply Lemma 2 to rewrite S’s

normalized value as
v∗q
q

=max
I∈I

v(I)−Lq(I).

The Envelope Theorem implies that the sign of the derivative of the normalized

value is determined by the sign of the derivative of the concealment loss Lq. To see

why Lq is decreasing in q, note that, as q increases, R becomes more skeptical if S

claims to be uninformed as he is more certain that S obtains evidence. In equilibrium,

this leads to a lower disclosure θq,I . But this benefits S in expectation, since ex-ante

she prefers to disclose more information at the bottom.

Receiver. To define R’s ex-ante value function, note that the payoff of type ω with

posterior mean θ is given by (θ −ω)+. Therefore, the aggregate interim payoff is
∫
(θ −

ω)+dH(ω). Now define R’s ex-ante value function of induced distributions of posterior

means as

w : I →R,

I : I 7→
∫
Θ

∫
Ω

(θ −ω)+dH(ω)d(I ′+ − I ′+)(θ).

Note that the derivative of the inner integral with respect to θ is given by∫
d
dθ

(θ −ω)+dH(ω) =
∫

I(θ ⩾ω)dH(ω) =
∫ θ

0
dH(ω) =H(θ).

Integrating by parts twice, rewrite R’s value function as

w(I) =
∫

(I − I)dH.

Clearly, Blackwell Theorem implies that w is weakly increasing in I with respect to ⩾.

But notice that w is also strictly increasing with respect to our strict informativeness

order >. Applying Lemma 2 to w, we obtain the following representation of R’s value

from an acquired evidence structure I :

w(D V
q I) = q(w(I)−Lq(I)).
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Finally, define R’s equilibrium value as

w∗q = w(D V
q I ∗q) = q(w(I ∗q)−Lq(I ∗q)),

for q ∈ Q , so that it is uniquely defined (by Corollary 2).

How does q affect w∗q and
w∗q
q ? In contrast to the S’s value v∗q, the properties of w∗q

do not follow from properties of the objective function in an optimization problem.

We, therefore, need to analyze how the solutionD V
q I ∗q depends on q. What is, perhaps,

surprising is that the comparative statics of R’s welfare is similar to that of S, as the

following proposition shows.

Proposition 3. Both R’s value w∗q and conditional value
w∗q
q are strictly increasing in q.

To get some intuition, consider, first, the case of low uncertainty (q > q). As we

know from Theorem 1, the unique optimal evidence structure I ∗q is the (θq,I ,θ
∗
1) two-

sided censorship. As q increases, less states are pooled at the bottom, which means

that I ∗q is ⩾-increasing in q. In addition, notice that D V
q is ⩾-increasing in q and in I

(with respect to ⩾). That is more acquired evidence and less uncertainty leads to more

disclosed evidence. Thus, D V
q I ∗q is ⩾-increasing in q, and, therefore, so is w∗q on (q,1].

Moreover, it is straightforward to check thatD V
q I ∗q is in fact strictly >-increasing in q.

Now consider the case of high uncertainty (q ∈ Q ∩ (0, q]). Theorem 2 implies that

the optimal binary certification threshold θ∗q strictly increases in q. Note that any

two different binary certification evidence structures are incomparable in the sense

of Blackwell, since a lower threshold provides more information about low states and

less information about high states. Moreover, if we consider two binary certifications

with relatively high thresholds, then even their disclosure transformations will be in-

comparable. However, on Q∩(0,q], the disclosure transformation of the optimal binary

certifications is >-increasing in q, as can be clearly seen from Figure 9a. This is for any

binary certification I ∗q, there is a disclosure-equivalent θ∗q upper censorship J∗q that is

>-increasing in q.

As we discussed above, ex-ante value increases in q in part because lower uncer-

tainty provides more means for mutually beneficial information transmission between

S and R. Thus, one can be interested in the relative efficiency of information transmis-

sion, which we quantify with the conditional value
w∗q
q . Figure 9b illustrates the effect

on R’s conditional value from as uncertainty increases (q2 → q1). First, the middle

straight part of I ∗q∗ rotates, which might potentially provide more value for the receiver
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(a) The construction of a

disclosure-equivalent upper censorship J∗q for

a given I ∗q.
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1− q1
q1

(θ0 − id)

θ∗q1

I

(b) The effect of higher uncertainty on R’s

conditional value.

Figure 9: Decomposition of the value of evidence.

about low states. But since those states among those the sender conceals, the receiver

suffers from higher concealment loss, which erases all potential benefits.

4 Conclusion

This paper endogenizes evidence structures in a game of voluntary disclosure. The

main contribution is twofold. First, we show that a combination of design and dis-

closure incentives can lead to verifiable information taking a simple form of binary

certification. Second, we show that the non-trivial interaction between these two in-

centives leads to a reversal of the effect of uncertainty on the set of concealed states.

We also show that higher probability of obtaining evidence benefits both players, not

just because it allows the sender to communicate more often, but also because she does

so more efficiently.
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A Appendix: Proofs

Proof of Lemma 1 on page 14: Suppose that µ is such that Iµ = I .

The threshold type must be indifferent between disclosing and not disclosing evi-

dence, which implies

θq,I =
(1− q)Eµ+ qFµ(θq,I )Eµ(θ|θ ⩽ θq,I )

1− q+ qFµ(θq,I )
.

By rearranging and integrating by parts in Eµ(θ|θ ⩽ θq,I ) =
1

Fµ(θq,I )

∫ θq,I

0
θdFµ(θ) = θq,I −

Iµ(θq,I )

Fµ(θq,I )
, we obtain

(1− q+ qFµ(θq,I ))θq,I = (1− q)Eµ+ qFµ(θq,I )θq,I − qIµ(θq,I )

qIµ(θq,I ) = (1− q)(Eµ−θq,I ).

Note that ξq,I := I − 1−q
q (θ0 − id) is a continuous, differentiable, strictly increasing func-

tion. Moreover, ξq,I (0) ⩾ 0 and ξq,I (θ0) ⩽ 0, with both inequalities strict if and only if

q , 1 or infsuppµ = 0.

In addition, since ξq,I is strictly increasing in q and increasing in I (with respect to

⩾), it follows that θq,I is also strictly increasing in q and increasing in I .
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Proof of Lemma 2 on page 17:

v(D V
q I) =

∫ 1

0
(D V

q I − I)dh

=
∫ θq,I

0
(D V

q I − I)dh+
∫ θ0

θq,I

(D V
q I − I)dh+

∫ 1

θ0

(D V
q I − I)dh

=
∫ θ0

θq,I

(qI + (1− q)(id−θ0))dh+
∫ 1

θ0

(
qI + (1− q)(id−θ0)− (id−θ0)

)
dh

= q

∫ θ0

θq,I

(
I −

1− q
q

(θ0 − id)
)
dh+ q

∫ 1

θ0

(I − I)dh

= q

−∫ θ0

θq,I

1− q
q

(θ0 − id)dh+
∫ 1

θq,I

I dh−
∫ 1

0
I dh


= q

−∫ θ0

θq,I

1− q
q

(θ0 − id)dh−
∫ θq,I

0
I dh+

∫ 1

0
(I − I)dh


= q

(
v(I)−Lq(I)

)

We now establish the following lemma, which will be useful in proving the main

results.

Lemma 3. Fix any q. For each optimal I ∗, there exists θ, such that I ∗ coincides with θ upper

censorship Iθ on [θq,I ∗ ,1]. Moreover, I ∗ is disclosure-equivalent to Iθ: D V
q I ∗ =D V

q Iθ.

Proof. Take any optimal I ∗. Consider two cases:

Case 1: θq,I ⩾ ω̂. For any I ∈ I , we have

v(D V
q I) = q

∫ 1

θq,I

(
I −

1− q
q

(θ0 − id)+ − I
)
dh

⩽ 0 = q

∫ 1

θ0

(I − 0− I)dh

= q

∫ 1

θq,I

(
I −

1− q
q

(θ0 − id)+ − I
)
dh

= v(D V
q I)

Note that since I is continuous and h is strictly negative on (θq,I ,1], it follows

that the inequality strict if I , I . Letting θ = 0, yields I ∗ = I = I0.
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Case 2: θq,I < ω̂. Apply Lemma 4 from Lipnowski, Ravid, and Shishkin (2019) to

I ∗ to construct θ, such that Iθ − I ∗ is nonnegative on [0,ω] and nonpositive on

[ω,1]. Note that this implies that v(D V
q Iθ) ⩾ v(D V

q I ∗). Suppose, by contradiction,

that Iθ , I ∗ on (θq,I ,1]. Then since h is strictly increasing on [0,ω] and strictly

decreasing on [ω,1], which implies v(D V
q Iθ) > v(D V

q I ∗), a violation optimality of

I ∗.

Note that the image of D V
q does not depend on values of an evidence structure below

the disclosure threshold, which gives the second part.

Proof of Theorem 1 on page 22: First, note that an optimum exists since I is compact

and both v andD V
q are continuous.

Fix some q and suppose I ∗ is an optimum for q. By Lemma 3, there exists θ, such

that I ∗ is disclosure-equivalent to the θ upper censorship Iθ. Therefore, one can reduce

the sender’s problem to finding optimal values of θ, which allows to recover I ∗ as the

θq,Iθ
lower censorship of Iθ.

Formally, we have the following one-dimensional problem

max
θ∈[0,1]

ṽq(θ), (***)

where we define function

ṽ : [0,1]× [0,1)→R+,

(θ,p) 7→ ṽq(θ) = v(Iθ)−Lq(Iθ).

Note that ṽq is continuous and, therefore, attains maximum on [0,1].

The following lemmata establish useful properties of the objective function vq.

Lemma 4. There exists θ∗1 ∈ (0, ω̂], such that ṽ1 is strictly increasing (decreasing) below

(above) θ∗1.

Proof. We have

ṽ1(θ) = v(Iθ)

=
∫ 1

0
(Iθ − I)dh

=
∫ 1

0
H d(Iθ)

′
+ −H(θ0)

=
∫ θ

0
H dI

′
+ (1− I ′(θ))H (y(θ))−H(θ0),
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where y(θ) = E(µ0|[θ,1]) =
θ0+I(θ)−θI ′(θ)

1−I ′(θ)
. The derivative of ṽ1 is given by

ṽ′1(θ) = I
′′
(θ) (H(θ)−H(y(θ))− h(y(θ))(y(θ)−θ)) .

Consider equation H(θ) −H(x) − h(x)(x − θ) = 0. Since H is strictly convex over [0, ω̂]

and strictly concave over [ω̂,1], this equation has the unique solution in [ω̂,1], denote it

x(θ). Thus, we have two continuous functions x and y, such that x is strictly decreasing

and y is strictly increasing. Let θ∗1 := max{θ ∈ [0,1] : x(θ) > y(θ)} and note that since

sign(x−y) = sign(ṽ′1), ṽ1 is strictly increasing on [0,θ∗1] and strictly decreasing on [θ∗,1].

Notice that θ∗1 ∈ (0, ω̂], since θ0 = y0 < x0 ∈ [ω̂,1] and ω̂ = x(ω̂) ⩽ y(ω̂) = E(µ0|[ω̂,1]) ⩾

ω̂.

Lemma 5. ṽ has increasing marginal differences property in (θ,q): ∂2ṽ
∂q∂θ ⩾ 0. Moreover, it

is strict on (0,θq,I )× (0,q] for any q ∈ (0,1].

Proof. Let ℓIq := min
(
I, 1−qq (θ0 − id)

)
. For any 1 ⩾ q1 ⩾ q2 > 0, we have

ṽ′q1 − ṽ
′
q2 =

d
dθ

(
Lq2(Iθ)−Lq1(Iθ)

)
=

d
dθ

∫ θ0

θq1,Iθ

(
ℓ
Iθ
q2 −

q1
q1

(θ0 − id)+
)
dh

=
∫ θq2,Iθ

θq1,Iθ

dIθ
dθ

dh

=
∫ θq2,Iθ

θq1,Iθ

I
′′
(θ)(id−θ)+dh

⩾ 0

Note that if θ ∈ (0,θq1,I
), then the integrand is strictly positive, which gives the

strict condition.

△

We can establish the proof of Theorem 1. For any q ∈ (0,1] denote the set of solu-

tions to the one-dimensional program (***) as

Θ∗q := argmax
θ∈[0,1]

ṽq(θ).
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Note that, by Berge’s Maximum Theorem, q 7→Θ∗q is upper hemi-continuous. Lemma 5

allows to invoke Theorem 2.8.1 from Topkis (1998). This implies that q 7→ Θ∗q is non-

decreasing with respect to the strong set order (Veinott order).

Note that the implication of Lemma 4 is twofold. First, it implies thatΘ∗1 = {θ
∗
1}. Sec-

ond, since Lq(Iθ) is constant in θ on [θq,I ,1], Lemma 4 also implies that Θ∗q ∩ [θq,I ,1] ⊆
{θ∗1} for any q ∈ (0,1]. In words, if there is a solution above the disclosure threshold,

then it must be θ∗1. Now define the threshold q as the the greatest lower bound on the

values of q at which θ∗1 is the unique solution

q := inf{q ∈ [0,1] :Θ∗q = {θ∗1}}.

Note that if q = 0, we are done, so assume q > 0.

Next, we show that q must be strictly below 1. Suppose, by contradiction, that

q = 1. Take any sequence {qn}, limn→∞ qn = 1,qn ∈ (0,1). Since Θ∗q ∩ [θq,Iθ ,1] ⊆ {θ
∗
1} for

any q and limn→∞θqn,Iθ = 0 for any θ ∈ [0,1], it follows that limsupΘ∗qn < θq,Iθ , which

violates upper hemi-continuity of q 7→Θ∗q.

It is left to show that, for every q < q, any optimum is a binary certification. By

upper hemi-continuity of q 7→Θ∗q, the set Θ
∗
q must contain some θ∗q < θ∗1.

The derivations in the proof of Lemma 5 imply that

∂
∂q−

Lq(θ
∗
q) <

∂
∂q

Lq(θ
∗
1).

Thus, both θ∗1 and θq are optimal at q and the marginal reduction in the concealment

loss is strictly higher for θ∗q than for θ∗1 if q decreases. Therefore, there exists ε > 0,

such that θ∗1 cannot be optimal for any q ∈ (q − ε,q]. But then because q 7→ Θ∗q is non-

decreasing in the strong set order, it means that θ∗1 is never optimal for q < q.

Finally, since Θ∗q ⊆ [0,θq,I ] for any q < q, the optimal I is a lower censorship of the

upper censorship with a threshold below θq,I , which is a binary certification.

Proof of Theorem 2 on page 24: The result follows from the following lemma, which

that any selection from q 7→ Θ∗q is strictly increasing on [0,q]. Since there exist θ∗q ∈
Θ∗q ∩ [0,θq,I ] and q 7→ θq,I is strictly decreasing, the lemma then implies that for any

q < q, supΘ∗q ⩽ θq,I , which means that the optimum is a binary certification.

Lemma 6. Any selection from q 7→Θ∗q is strictly increasing on [q,1).
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Proof. Notice that sinceΘ∗q\{θ∗1} ⊆ [0,θq,I ] for q ⩾ q, if one makes the objective function

smaller on (θq,I ,1], it will not change the set of maximizers. Define

v̂q(θ) =

ṽq(θ), θ ⩽ θq,I

ṽq(θ)− q
(
θ −θq,I

)2
, θ > θq,I ,

so that for q > q,

[0,θq,I ]∩ argmax
θ∈[0,1]

v̂q(θ) = [0,θq,I ]∩ argmax
θ∈[0,1]

ṽq(θ).

Using Lemma 5 and strict monotonicity of q 7→ θq,I , we conclude that w̃ satisfies

strictly increasing marginal differences property in (θ,q) and, therefore, Strict Mono-

tonicity Theorem 1 from Edlin and Shannon (1998) applies. Since 0 is never optimal

for any q > 0, it implies that any selection from q 7→ Θ∗q is strictly increasing on (0,q],

which gives the desired result.

△

Proof of Proposition 2 on page 27: We will show that
v∗q
q is strictly increasing in q, which

implies that v∗q is strictly increasing in q.

By Lemma 2, we have

v∗q
q

=max
I∈I

v(I)−Lq(I).

Invoking the Envelope Theorem, we obtain

d
dq

v∗q
q

= −
dLq(I)

dq

∣∣∣∣∣
I=I∗q

= −
∫ θ0

0

dℓIq
dq

dh

∣∣∣∣∣∣
I=I∗q

=
∫ θ0

θq,I

1
q2

(θ0 − id)dh
∣∣∣∣∣∣
I=I∗q

> 0,

where the inequality holds for any optimal I ∗q.

Proof of Proposition 3 on page 28: Wewill show that
w∗q
q is strictly increasing in q, which

implies that w∗q is strictly increasing in q.

It follows from the sender’s one-dimensional problem (***), given in the proof of

Theorem 1, that is is enough to show that
w(DV

q Iθ∗q )

q is strictly increasing in q, where Iθ
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denotes the θ upper censorship. We have

w(D V
q Iθ∗q)

q
= w(Iθ∗q)−Lq(Iθ∗q)

=
∫ 1

θq,Iθ∗q

(Iθ∗q − I)dH

=
∫ θq,I

0
(Iθ∗q − I)dH +

∫ θ0

θq,I

(Iθ∗q − I)dH +
∫ 1

θ0

(Iθ∗q − I)dH,

where all three terms are increasing in q. Then
w(DV

q Iθ∗q )

q is strictly increasing, since

Iθ∗q |[θq,I ,θ0]
is≫-increasing in q and [θq,I ,θ0] ⊆ [θq,Iθ∗q

,1].
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