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Background

• “Statistical Treatment Rules for Heterogeneous Populations,” Econometrica 72, 2004, 221-
246.

• “Sufficient Trial Size to Inform Clinical Practice,” Proceedings of the National Academy of
Sciences 113, 2016, 10518-10523.

• “Trial Size for Near-Optimal Choice Between Surveillance and Aggressive Treatment:
Reconsidering MSLT-II,” The American Statistician 73:sup1, 2019, 305-311.



Example of current practice

• Cao et al., “A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-
19,” NEJM, 18 March 2020.

• RCT
• 99 patients assigned to receive lopinavir–ritonavir + ”standard care”
• 100 patients assigned to “standard care” alone
• Measured outcomes up to 28 days after randomization



Reported trial outcomes

• Primary Finding: “In a modified intention-to-treat analysis, lopinavir–ritonavir led
to a median time to clinical improvement that was shorter by 1 day than that
observed with standard care (hazard ratio, 1.39; 95% CI, 1.00 to 1.91).”

• Secondary Finding: “Mortality at 28 days was similar in the lopinavir–ritonavir
group and the standard-care group (19.2% vs. 25.0%; difference, −5.8 percentage
points; 95% CI, −17.3 to 5.7).”



Conclusions from the trial

• Cao et al. “no benefit was observed with lopinavir–ritonavir treatment beyond
standard care.”

• U.S. NIH panel guidelines then recommended against the use
of lopinavir/ritonavir writing: “lopinavir/ritonavir was studied in a small
randomized controlled trial in patients with COVID-19 with negative results.”

• This trial was the main piece of evidence, summarized as: “No difference in
primary outcome (time to clinical improvement) was observed, and 28-day
mortality was similar between groups.”



Questions

• How should we measure precision of an RCT?
• Maximum expected loss in patient welfare for treatment chosen based on an

RCT relative to the unknown best treatment. (maximum regret)
• This depends on how the trial results are translated into clinical decisions.

(statistical treatment rule)

• How should we use the results of clinical trials to decide which treatment to use?
• Prevailing practice is to use a two-sided 5% hypothesis test to reach a binary

conclusion: Standard care if the null isn’t rejected; innovation if the null is
rejected with a significant positive estimate of average treatment effect.

• We argue for the Empirical Success rule: choose the treatment with better
average outcome and measure the outcome that patients want to maximize!



What happens in a trial with 100:99 patients using 28-day
mortality as the outcome?
• Let mortality rate with standard care = 0.25 and use the standard t-test rule:

• Maximum expected loss occurs when the new treatment has mortality rate 0.548 and standard 
care has rate 0.661. Then expected loss is (0.661 − 0.548) x error probability 0.624 = 0.071. 

Mortality rate with new treatment

0.35 0.30 0.25 0.20 0.15

% of trials after which standard care will 
be prescribed:

99.98% 99.7% 97.5% 86.76% 57.36%

Loss from choosing standard care: 0 0 0 0.05 0.10

% of trials after which new treatment 
will be prescribed:

0.02% 0.3% 2.5% 13.24% 42.64%

Loss from choosing treatment: 0.10 0.05 0 0 0

Expected loss: 0.0000 0.0002 0 0.0434 0.0574



• Same scenarios, using the empirical success rule

• Maximum expected loss occurs when the new treatment has mortality rate 0.527 and standard
care has rate 0.473. Then expected loss is (0.527 − 0.473) x error probability 0.226 = 0.012. The
same expected loss occurs when standard care has mortality 0.527 and the new treatment 0.473.

Mortality rate with new treatment

0.35 0.30 0.25 0.20 0.15

% of trials after which standard care will 
be prescribed:

94.28% 79.61% 51.64% 21.18% 4.22%

Loss from choosing standard care: 0 0 0 0.05 0.10

% of trials after which treatment will be 
prescribed:

5.72% 20.39% 48.36% 78.82% 95.78%

Loss from choosing treatment: 0.10 0.05 0 0 0

Expected loss: 0.0057 0.0102 0 0.0106 0.0042



Why use the empirical success rule?

• Theoretical study proves that it exactly or approximately minimizes maximum
expected loss

• Exactly optimal in balanced trials with binary outcomes (Stoye, JoE, 2009)
• Asymptotically optimal in other two-arm trials (Hirano & Porter, ECMA, 2009)

• Treats Type I and Type II errors symmetrically
• Hypothesis testing treats the two errors asymmetrically. Maximum loss when the

innovation is better is 250 times greater than maximum loss when it is worse.



Why we shouldn’t treat the two options asymmetrically

• “Standard care” for COVID-19 has been postulated without evidence than it is
better than other options.

• If we were to start with a different definition of standard care, we would be stuck
with it for a long time.

• Clinical equipoise
• EMA: “There should be equipoise (“genuine uncertainty within the expert

medical community [...] about the preferred treatment”) at the beginning of a
randomised trial.”

• One might motivate asymmetric decision-making after trials by having
asymmetric Bayesian priors,

• but interpreting ethical guidelines for starting trials through a Bayesian lens
suggests that experts must

1. Have disagreeing priors
2. Some priors must favor one treatment, some the other



Multiple outcomes (side effects)

• Hypothesis testing does not protect against side effects outweighing benefits in
primary outcome:

• In sufficiently large trials, even small differences in “primary outcomes” will
be detected, leading to headline conclusions that a new therapy is “effective”

• Researcher definitions of primary outcomes often differ from patient-relevant
outcomes (e.g., mortality)

• Empirical success rule can be applied to weighted averages of all patient-relevant
outcomes observed in the trial

• provided that patient-relevant outcomes are reported.



What sample sizes are sufficient?

• For two-armed trials with binary outcomes, using the empirical success rule 
yields these maximum expected losses:

Sample sizes Near-optimality
20:20 0.0269
50:50 0.017
100:100 0.012
200:200 0.0085
500:500 0.0054
1000:1000 0.0038
4000:4000 0.0019
15000:15000 0.001



Downside of large sample sizes required by conventional
testing rules

• Delay: It takes longer to recruit patients; hence, longer to reach conclusions.
• Crowds out trials of other treatments.
• Statistical significance requirement impedes subgroup analyses

• There may be substantial heterogeneity in treatment effectiveness and the
prevalence of side effects (e.g., by age)

• The welfare weights attached to different outcome measures may vary with
patient attributes.



Clinical trial landscape

• There are many alternative treatments in trials now
• Each trial has a different set of inclusion criteria, a different PI, and only tests

1 innovation against its own definition of standard care.
• Study populations differ across trials.

• It will be difficult to compare alternative treatments across trials.



Mutli-arm trials for Covid-19

• UK nationwide ”Recovery” trial started with 5 arms
• Standard care
• Lopinavir-Ritonavir
• Low dose corticosteroids (dexamethasone)
• Hydroxychloroquine
• Azithromycin

• Patients were assigned to treatments in a 2:1:1:1:1 ratio

• WHO organized an international “Solidarity” trial with 5 arms
• Standard care
• Remdesivir
• Lopinavir-Ritonavir
• Lopinavir-Ritonavir plus Interferon beta-1a
• Chloroquine or hydroxychloroquine

• These trials allow comparisons of multiple treatments on same population.



Evaluating multi-arm trials such as Recovery

• The Recovery protocol calls for results to be analyzed using Dunnett’s test. This is a
multiple t-test procedure, with 0.05 Type I error probability that at least one test yields a
positive statistically significant ATE. Presumably, the innovation with highest average
outcome will be selected among those that pass the significance test. Otherwise,
standard care will be selected.

• We contrast this with the empirical success rule, which selects the treatment with the
highest average outcome, regardless of statistical significance.

• In practice, 3 treatment arms were stopped at different times. The results for each
treatment were analyzed separately as if coming from a two-arm trial.



Standard care A B C D

Sample size in each arm 500 250 250 250 250
Mortality rate of each treatment 0.25 0.15 0.20 0.30 0.35
Panel A: What happens if treatment decisions are made using two-sided Dunnett's test at 5% significance

% of trials after which new treatment will be 
prescribed 25.65% 70.60% 3.75% 0 0
Loss from prescribing each treatment 0.1 0 0.05 0.15 0.2
Probability of error times the magnitude of loss 0.0257 0 0.0019 0 0
Expected loss given these mortality rates 0.0275
Panel B: What happens if treatment decisions are made using the empirical success rule

% of trials after which new treatment will be 
prescribed 0.02% 92.95% 7.03% 0 0
Loss from prescribing each treatment 0.1 0 0.05 0.15 0.2
Probability of error times the magnitude of loss 0 0 0.0035 0 0
Expected loss given these mortality rates 0.0035



What sample sizes are sufficient?

• For five-armed trials with binary outcomes and 2:1:1:1:1 sample ratio, choosing 
the treatment using the empirical success rule and Dunnett’s test rule imply the 
following maximum expected losses:

• It is slightly better to divide the sample into equal-sized arms for the ES rule.

Sample sizes per arm
Near-optimality using 
Empirical Success rule

Near-optimality using 
Dunnett’s test rule

100:50:50:50:50 0.0362 0.1224
200:100:100:100:100 0.0256 0.0855
500:250:250:250:250 0.0160 0.0532
1000:500:500:500:500 0.0112 0.0380
2000:1000:1000:1000:1000 0.0080 0.0274



Near-optimality of empirical success rule with patient-specific 
treatment and multiple outcomes

• The above calculations concern settings where patients are observationally
identical and trial outcomes are binary.

• In clinical practice, trial outcomes may take multiple values. Trials of COVID-19
drugs may report mortality outcomes and time to recovery for patients who
survive. Patients may vary in treatment response by age, gender, and
comorbidities.

• Methodological research has shown how to compute or bound the near-
optimality of the empirical success rule when applied in a broad range of settings.



Near-optimality with binary primary and secondary outcomes

• Manski and Tetenov (2019) study near-optimality of the empirical success rule
when there are two treatments and patient welfare is a weighted sum of binary
primary and secondary outcomes. The primary outcome is survival. The secondary
one denotes whether the patient suffers a specified side effect.

• When a patient does not suffer the side effect, we let welfare equal 1 if a patient
survives and equal 0 if he does not survive. When a patient experiences the side
effect, welfare is lowered by a specified fraction h. Thus, a patient with the side
effect has welfare 1 − h if he survives and –h if he does not survive.

• We develop an algorithm to compute the near-optimality of the empirical success
rule.



Near-optimality with bounded outcomes

• Exact computation of near-optimality becomes onerous when outcomes can take many discrete
values or are continuous.

• When outcomes are bounded, large-deviations inequalities yield upper bounds on the near-
optimality of the empirical success rule. These bounds are simple to compute and are sufficiently
informative to provide useful guidance to clinicians.

• Manski (2004) used the Hoeffding inequality for sample averages to derive an upper bound on
near-optimality when there are two treatments.

• Manski and Tetenov (2016) extended the analysis to multi-arm trials. Let L be the number of
treatments and V be the range of the outcome. When the trial has a balanced design, with n
subjects per arm, the upper bounds on near-optimality are (2e) –½V(L − 1)n–½ and V(ln L)½n–½. The
former is tighter than the latter for two or three treatments. The latter is tighter for four or more
treatments.



Near-optimality with heterogeneous patients

• Patient response to treatments may vary with observed covariates. A clinician can
assess the near-optimality of a decision criterion when applied to patients with
similar covariates.

• In principle, a clinician may view each group of patients with similar covariates as
a separate population and may apply the empirical success rule separately to each
group.

• In practice, the ability to differentially treat patients with different covariates is
limited by the failure of medical researchers to report how trial findings vary with
covariates. Research articles often report only subgroup findings that are
statistically significant.

• Information is lost when reporting research findings is tied to statistical
significance. The analysis of this paper makes clear that estimates of treatment
effects need not be statistically significant to be clinically useful.



Topics for future research
• We have considered treatment choice using data from one trial with full validity.

• Internal validity may be compromised by non-compliance and loss to follow up. External validity
may be compromised by measurement of surrogate outcomes and study of patients who differ from
those that clinicians treat in practice. The concept of near-optimality is applicable when analyzing
data from trials with limited validity, but the calculations made in this paper require modification.

• A clinician may learn the findings of multiple trials and may be informed by observational data.
Near-optimality is well-defined in these settings, but methods for application are yet to be
developed.

• A further issue concerns dynamic treatment choice when new trials and observational data may
emerge in the future. The concept of near-optimality should be extendable, but methodology is yet
to be developed.

• Dynamic analysis of treatment choice made with hypothesis tests may be especially difficult, because
testing views standard care and new treatments asymmetrically. As new data accumulate, the designation
of standard care may change, leading to a change in the null hypothesis when new trials are evaluated.



Technical Appendix
We use concepts and notation in Manski (2004) and Manski and Tetenov (2016, 2019).

The clinician must assign one of L treatments studied in the trial to each member of treatment
population J.

Denote treatments by T = {1, 2, …, L}, with t = 1 being standard care.

Each j ∈ J has a response function yj(⋅): T → Y mapping treatments t ∈ T into patient-relevant
outcomes yj(t) ∈ Y. Outcomes can be multi-valued and multi-dimensional. Treatment response is
individualistic.

The distribution P[y(⋅)] of the random function y(⋅): T → Y describes treatment response across the
population. The set of feasible distributions is {Ps, s ∈ S}, S indexing feasible states of nature.

In Tables 2 and 4, we include in S all logically possible outcome distributions.



Patient welfare is a known function u: Y → R of individual outcomes.

For binary outcomes Y = {0, 1}, with 1 denoting success, and u(y) = y. For two-
dimensional outcomes y = (yp, yse), where yp denotes the primary outcome and yse a
side effect, Manski and Tetenov (2019) considered welfare function u(y) = yp − hyse.

Consider data generation. Ψ denotes the sample space. Qs denotes the sampling
distribution on Ψ in state of nature s. Qs is the distribution of trial outcomes.

We consider trials that randomize a predetermined number of subjects nt to each
treatment t. The set nT ≡ [nt, t ∈ T] of sample sizes defines the design. The total
number of subjects is 𝑁𝑁 ≡ ∑𝑡𝑡∈𝑇𝑇 𝑛𝑛𝑡𝑡. The data ψ are the N pairs of individual
treatment assignments ti and outcomes yi: ψ = [(ti, yi), i = 1, 2, …, N].

Qs is determined by the distribution of treatment response Ps and the trial design,
with Qs(yi|ti) = Ps(y(ti)).



A statistical treatment rule maps sample data into a treatment allocation. A feasible rule is a function that
randomly allocates persons across the different treatments. Let Δ denote the space of functions that map
T into the unit interval and that satisfy the adding-up condition: δ ∈ Δ ⇒ ∑ t ∈ T δ(t, ψ) = 1, ∀ ψ ∈ Ψ. Each
function δ ∈ Δ defines a statistical treatment rule.

The mean welfare of treatment t in state of nature s is denoted by μst ≡ Es[u(y(t))]. The maximum mean welfare
achievable in state s is max

𝑡𝑡∈𝑇𝑇
𝜇𝜇𝑠𝑠𝑡𝑡.

After data ψ are observed, the fraction δ(t, ψ) of patients will be treated with treatment t, resulting in mean
patient welfare ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝛿𝛿 𝑡𝑡,𝜓𝜓 . The mean welfare of patients across repeated realizations of the trial is

∫Ψ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝛿𝛿 𝑡𝑡,𝜓𝜓 𝑑𝑑𝑄𝑄𝑠𝑠 𝜓𝜓 = ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠 𝛿𝛿 𝑡𝑡,𝜓𝜓 ,

where 𝐸𝐸𝑠𝑠 𝛿𝛿 𝑡𝑡,𝜓𝜓 = ∫Ψ𝛿𝛿 𝑡𝑡,𝜓𝜓 𝑑𝑑𝑄𝑄𝑠𝑠 𝜓𝜓 is the expected (across samples) fraction of persons assigned to t.

Application of rule δ in state of nature s yields expected loss (regret)

(A1) max
𝑡𝑡∈𝑇𝑇

𝜇𝜇𝑠𝑠𝑡𝑡 − ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠 𝛿𝛿 𝑡𝑡,𝜓𝜓 .

The near-optimality (maximum regret) of rule δ is the maximum of (A1) over all feasible states of nature:
(A2) max

𝑠𝑠 𝑆𝑆
max
𝑡𝑡∈𝑇𝑇

𝜇𝜇𝑠𝑠𝑡𝑡 − ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠 𝛿𝛿 𝑡𝑡,𝜓𝜓 .



Hypothesis Testing Rules
First consider rules based on hypothesis tests for univariate outcomes y. Denote the sample mean of y
observed in arm t of the trial by �𝑦𝑦𝑡𝑡 = 1

𝑛𝑛𝑡𝑡
∑𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡 𝑦𝑦𝑖𝑖 . To test the null hypothesis that all treatments have the same

outcome distribution, use �𝜎𝜎2 = 1
𝑁𝑁−𝐿𝐿

∑𝑡𝑡∈𝑇𝑇 ∑𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑡𝑡 2 as the estimator of common variance. The t-
statistic for comparing the mean outcome of treatment t = 2,…,L with that of standard care equals 𝜏𝜏𝑡𝑡 =

�𝑦𝑦𝑡𝑡−�𝑦𝑦1
�𝜎𝜎 1/𝑛𝑛𝑡𝑡+1/𝑛𝑛1

. Let c be the critical value adjusted for multiplicity. We use the t-distribution for two-arm trials and

the Dunnett’s test critical value for multiple comparisons for multi-arm trials.

The test rule prescribes treatment 1 (standard care) to everyone if all t-statistics are below the critical value.:
𝛿𝛿𝐻𝐻 1,𝜓𝜓 ≡ 1 max

𝑡𝑡∈ 2,…,𝐿𝐿
𝜏𝜏𝑡𝑡 ≤ 𝑐𝑐 .

If some t-statistics comparing treatments 2,…,L to standard care exceed the critical value, these treatments are
considered statistically significantly better than standard care. We assume that among these treatments the
one with the largest mean outcome in the trial will be prescribed (with equal probability if there is a tie).

𝛿𝛿𝐻𝐻 𝑡𝑡,𝜓𝜓 ≡
1 𝜏𝜏𝑡𝑡>𝑐𝑐, �𝑦𝑦𝑡𝑡= max

𝑡𝑡′∈ 2,…,𝐿𝐿
�𝑦𝑦𝑡𝑡′

∑𝑡𝑡′∈ 2,…,𝐿𝐿 1 𝜏𝜏𝑡𝑡>𝑐𝑐, �𝑦𝑦𝑡𝑡= max
𝑡𝑡′∈ 2,…,𝐿𝐿

�𝑦𝑦𝑡𝑡′
.



The Empirical Success Rule

Let �𝑢𝑢𝑡𝑡 = 1
𝑛𝑛𝑡𝑡
∑𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡 𝑢𝑢 𝑦𝑦𝑖𝑖 denote the average welfare observed in treatment arm t =

1, 2, …, L.

The empirical success rule prescribes the treatment with the largest observed
average patient welfare. If there is a tie, all treatments with the largest observed
average patient welfare are prescribed with equal probability.

𝛿𝛿𝐸𝐸𝑆𝑆 𝑡𝑡,𝜓𝜓 ≡
1 �𝑢𝑢𝑡𝑡= max

𝑡𝑡′∈ 1,…,𝐿𝐿
�𝑢𝑢𝑡𝑡′

∑𝑡𝑡′∈ 1,…,𝐿𝐿 1 �𝑢𝑢𝑡𝑡= max
𝑡𝑡′∈ 1,…,𝐿𝐿

�𝑢𝑢𝑡𝑡′
.



Computing near-optimality for two-arm trials with binary 
outcomes

When computing the results in Table 2, S is the set of all distributions of binary
outcomes with means p1 ≡ E[y(1)], p2 ≡ E[y(2)], (p1, p2) ∈ [0, 1]2.

Let m1 and m2 denote the number of positive outcomes in each arm of the trial. ψ
= (m1, m2) is a sufficient statistic for the sample. Hence, it is sufficient to consider
the sample space Ψ = {0, 1, …, n1}×{0, 1, …, n2}. The probability density function of
ψ is a product of two binomial density functions.

The function (A1) is continuous in (p1, p2) but may have multiple global and local
maxima. We approximate the maximum in (A2) by grid search using 1000 possible
values for each parameter equally spaced on [0,1]: {0.0005, 0.0015, …, 0.9995}.



Computing near-optimality for multi-arm trials with binary 
outcomes
In Table 4, S is the set of all distributions of binary outcomes with means pt ≡ E[y(t)], t = 1, …, L, (p1, …, pL) ∈ [0, 1]L. Let mt

denote the number of positive outcomes in arm t of the trial. ψ = (m1, …, mL) is a sufficient statistic for the sample. Hence, we
consider the sample space Ψ = {0, 1, …, n1}×…×{0, 1, …, nL}.

The large size of the sample space makes it impractical to evaluate (A1) exactly. Given each value of (p1, …, pL) we simulate a
large number of trial outcomes to approximate Qs. Our computations of the maximum of (A2) proceed in three steps.

(1) We conduct a grid search using 51 possible values for each parameter pt∈[0, 0.02, …, 1]. For each combination of
parameters, we approximate the sampling distribution Qs by simulating 100,000 trial outcomes. The results of this grid search
suggest that the largest expected loss for the empirical success rule occurs when the parameters have the form p1 = a, p2 = p3

= p4 = p5 = b, a > b. The largest expected loss for the Dunnett’s test rule occurs when p1 = a, p2 = b, p3 = p4 = p5 = c, b > a, b > c.

(2) We conduct a grid search over these two lower-dimensional parameter spaces using 101 possible parameter values from
[0, 0.01, …, 1] for a, b, and c. In this step we approximate Qs by simulating 1,000,000 trial outcomes.

(3) We take 10 parameter combinations yielding the largest estimated expected loss for each decision rule in step 2 and re-
compute expected loss by simulating 100,000,000 trial outcomes. We do this to verify that our results are not affected by
bias resulting from approximating Qs by simulation.
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