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Abstract

A principal wishes to screen an agent along several dimensions of private infor-

mation simultaneously. The agent has quasilinear preferences that are additively

separable across the various components. We consider a robust version of the prin-

cipal’s problem, in which she knows the marginal distribution of each component

of the agent’s type, but does not know the joint distribution. Any mechanism is

evaluated by its worst-case expected profit, over all joint distributions consistent

with the known marginals. We show that the optimum for the principal is sim-

ply to screen along each component separately. This result does not require any

assumptions (such as single-crossing) on the structure of preferences within each

component. The proof technique involves a generalization of the concept of vir-

tual values to arbitrary screening problems. Sample applications include monopoly

pricing and dynamic taxation.
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1 Introduction

Multidimensional screening stands out among current topics in economic theory as a

source of problems that are simple to write down, yet analytically intractable. Whereas

the canonical one-dimensional screening model is well-understood, its natural multidi-

mensional analogue appears drastically more complex and unruly.

Consider, for example, the simplest (and most widely studied) version of the problem:

A monopolist has two goods, 1 and 2, to sell to a buyer. Marginal costs are zero; the

buyer’s preferences are quasi-linear and additively separable in the two goods. The mo-

nopolist has a prior belief about the joint distribution of the buyer’s values for the two

goods, (θ1, θ2). She wants to find a mechanism for selling the goods so as to maximize

expected revenue. She may simply post a price for each good separately; she may also

wish to set a price for the bundle of both goods, which may be greater or less than the

sum of the two separate prices. But she can also offer probabilistic combinations of goods,

say, a 2/3 chance of getting good 1 and also a 3/4 chance of good 2, for yet another price.

The single-good version of the problem is simple: even if probabilistic mechanisms

are allowed, the optimum is simply to post a single, take-it-or-leave-it price [33]. Not

so in the two-good problem. In the natural case where the values for each good are

independent uniform on [0, 1], the optimal mechanism is relatively simple (prices for each

good plus a price for the bundle), but known proofs of optimality are involved [29].

In other cases, the optimum may involve probabilistic bundling, and may even require a

menu of infinitely many such bundles [43, 17]. Moreover, revenue can be non-monotone —

moving the distribution of buyer’s types upwards (in the stochastic dominance sense) may

decrease optimal revenue [26]. And these phenomena are not artifacts of the possibilities

for correlation in the multidimensional problem, since there are examples even when

the values for the two goods are independently distributed. Furthermore, if the values

are allowed to be correlated, then it can happen that restricting the seller to any fixed

number k of bundles can lead to an arbitrarily small fraction of the optimal revenue [25],

and finding the optimal mechanism is computationally intractable [16, 18]. With these

challenges arising even for the simple monopoly problem, the prospects for more complex

multidimensional screening problems are even more daunting.

This paper puts forward an alternative framework for writing models that may escape

some of these complexities, and thereby offer new traction. We consider a principal

screening an agent with quasi-linear preferences, who has several components of private

information. For each component g = 1, . . . , G, the agent will be assigned a (possibly
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random) allocation xg, from which he derives a value that depends on his corresponding

type θg. His total payoff is additively separable across components,
∑

g u
g(xg, θg). Unlike

the traditional model, in which the principal maximizes her expected profit according to

a prior distribution over the full type θ = (θ1, . . . , θG), here we assume that the principal

only has beliefs about the marginal distribution of each component θg, but does not know

how the various components are correlated with each other. She wishes for a guarantee

on her average profit that is robust to this uncertainty. More precisely, she evaluates any

possible mechanism according to the worst-case expected profit, over all possible joint

distributions that are consistent with the known marginals.

Our main result says that the optimal mechanism separates: for each component g, the

principal simply offers the optimal mechanism for that marginal distribution. In the simple

monopolist example above, this means that the optimal mechanism is to post a price for

each good separately, without any bundling. But the result also allows, for example, that

each component g represents a Mussa-Rosen-style price discrimination problem in which

different qualities of product may be offered at different prices [31]. In fact, our result is

much more general: In the above examples, each component g represents a standard one-

dimensional screening problem, satisfying (for example) single-crossing conditions, but we

do not actually require this. Ours is a general separability result, in which the structure

of preferences within each component can be totally arbitrary. Further applications will

be discussed ahead.

Much of the literature on multidimensional mechanism design has emphasized the

advantages of bundling (to use the monopolist terminology) — or, more generally, of

creating interactions between the different dimensions of private information. In this

context, our result expresses the following simple counterpoint: If you don’t know enough

to be confident you can benefit from bundling, then don’t.

Indeed, a simple intuition behind the result is as follows: The solution to a maxmin

problem (such as the principal’s problem that we set up here) often involves equalizing

payoffs across many possible environments. In this case, the separate mechanism does ex-

actly that; since the principal knows the marginal distribution of each θg, she can calculate

her expected profit, without needing to know anything about how the different compo-

nents are correlated. However, this intuition is incomplete; hypothetically, there could be

some bundling mechanism whose exact profit depends on the correlation structure yet is

always better than separate screening.

Our method of proof here works instead by explicitly constructing a joint distribution

for which no mechanism performs better than separate screening. The approach first
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develops a generalization of the concept of virtual values, applicable to any screening

problem; as in traditional one-dimensional problems, a type’s virtual value for an alloca-

tion represents the actual value, minus the shadow costs from the incentives of other types

to imitate it, and the optimal mechanism assigns each type the allocation for which its

virtual value is the highest. Our joint distribution in the multidimensional type space is

then chosen so that the (generalized) virtual value of an allocation equals the sum of the

virtual values of its components. This condition is expressed as a system of linear equa-

tions that the distribution should satisfy. We show that the system indeed has a solution,

and we can give this solution at least a mathematical interpretation, if not an economic

one; we derive it as the stationary distribution of a particular Markov process over types.

A by-product of this proof strategy is our definition of generalized virtual values, which

appears to be new to the literature, even though it falls out straightforwardly from the

Lagrangian of the principal’s maximization problem.

The main purpose of this of this paper is as a methodological contribution in an area

where new tools seem to be called for. Screening problems are now pervasive in many

areas of economic theory, and in many applications, agents have private information that

cannot be conveniently expressed along a single dimension: In a Mirrlees-style tax model,

workers may have multiple dimensions of ability, e.g. ability in different kinds of jobs

[35, 36]. In regulation of a monopolist with unknown cost structure [6], it is natural for

the costs to be described by more than one parameter, e.g. fixed and marginal costs. In a

model of insurance with adverse selection [37], consumers may have different probabilities

of facing different kinds of adverse events. In addition, there is a recent growth of interest

in dynamic mechanism design, in which information arrives in each period; even if each

period’s information is single-dimensional, this field presents some of the same analytical

challenges as static multidimensional mechanism design [7]. Rochet and Stole, in their

survey [34] (which also describes more applications), put the point more forcefully: “In

most cases that we can think of, a multidimensional preference parameterization seems

critical to capturing the basic economics of the environment” (p. 150).

This range of applications highlights the need for tractable models for multidimen-

sional screening, to make it easier to gain insight into the economics of these problems.

Now, in many applications, the ultimate interest is in interaction across the dimensions

of private information, which is exactly what our model here rules out. But this paper

offers a very general way of writing down a model where no interactions in the problem

formulation lead to no interactions in the solution. This model can then serve as a clean

baseline for future explorations where such interactions are systematically added.
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Aside from this methodological contribution, our result may also have some value as

a positive description of the world. When a buyer walks into a store that sells a thousand

different items, she sees separate posted prices for each item (and perhaps special deals for

a few combinations of items that are naturally grouped together, or overall bulk discounts).

Why has the storekeeper not solved the high-dimensional problem of optimally selling all

items simultaneously? One natural answer is that the storekeeper has simply chosen to

price items separately as a self-imposed simplicity constraint, to keep her own problem

manageable. Our result suggests an alternative take: applying bounded rationality to the

structure of the manager’s information instead of the space of mechanisms — perhaps

the manager can easily measure the distribution of values for each item separately, but

thinking about joint distributions quickly becomes unwieldy, or unreliable due to the curse

of dimensionality. Separate pricing then emerges as a natural solution without a priori

restricting the space of mechanisms.

This work connects with several branches of literature. It is part of a growing body

of work in robust mechanism design, seeking to explain intuitively simple mechanisms as

providing guaranteed performance in uncertain environments, and formalizing this intu-

ition by showing how to obtain simple mechanisms as solutions to worst-case optimization

problems. This includes earlier work by this author on moral hazard problems in uncer-

tain environments [12, 11], as well as several others, for example [8, 9, 14, 21, 22]. It also

relates to a recent spurt of interest in multidimensional screening, particularly in the algo-

rithmic game theory world. Several recent papers in this area have given conditions under

which simple mechanisms can be shown to be optimal [23, 45]; most relevantly, the paper

[23] introduces a generalized notion of virtual values that is very similar to ours.1 Others

[24, 27, 3, 38] have argued that simple mechanisms for selling multiple goods are approx-

imately optimal under broad conditions. Finally, there is a longstanding, more applied

literature on bundling in industrial organization [41, 1, 30, 13], to which we shall return

periodically. In contrast to these approximate-optimality and applied strands of litera-

ture, the present paper focuses on exact optimality among all possible (deterministic or

probabilistic) mechanisms. Still, all of these branches share an interest in understanding

or justifying the use of relatively simple mechanisms.

1The work [10] also defines an object called “virtual types” in the context of a multiple-good, multi-
buyer auction, but their virtual types are less close to ours. They play a role in the algorithmic description
of the optimal auction, but they do not directly reflect the costs of incentives to other types.
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2 Model and result

We shall first lay out the model, and then describe a number of applications.

We will notate the metric on an arbitrary metric space by d; no confusion should

result. For a compact metric space X, we write ∆(X) with the space of Borel probability

distributions on X, with the weak topology.

2.1 Screening problems

We first formally define a screening problem, the building block of our model. We assume

throughout that there is a single agent with quasi-linear utility.

A screening environment (Θ, X, u) is defined by a type space Θ and an allocation space

X, both assumed to be compact metric spaces endowed with the Borel σ-algebra; and a

utility function u : X×Θ → R, which is assumed to be (jointly) Lipschitz continuous. We

define Eu : ∆(X)×Θ → R as the extension of u by taking expectations over allocations.

We will use the variable x to denote either an element of X or of ∆(X); sometimes we

will also use a for elements of X to avoid ambiguity.

In such an environment, the agent may be screened by a mechanism. We allow for

arbitrary probabilistic mechanisms; thus, a mechanism is a pair M = (x, t), with x : Θ →

∆(X) and t : Θ → R, with t measurable, and satisfying the usual incentive-compatibility

(IC) and individual rationality (IR) conditions:2

Eu(x(θ), θ)− t(θ) ≥ Eu(x(θ̂), θ)− t(θ̂) for all θ, θ̂ ∈ Θ; (2.1)

Eu(x(θ), θ)− t(θ) ≥ 0 for all θ ∈ Θ. (2.2)

As usual, we are using the revelation principle to justify this formulation of mechanisms

as functions of the agent’s type; we will generally stick to this formalism, although the

verbal descriptions of mechanisms may use other, equivalent formulations.

Note that the formulation here of the IR constraints has assumed each type’s outside

option is zero. This is essentially without loss of generality, by an additive renormalization

of the utility function.

We write M for the space of all mechanisms.

A screening problem consists of a screening environment as above, together with one

more ingredient, a given probability distribution over types, π ∈ ∆(Θ). Then, the princi-

2Thus we further abuse notation by letting x denote either an allocation or the allocation-rule com-
ponent of a mechanism; this should not cause confusion in practice.
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pal evaluates any mechanism by the resulting expected payment, Eπ[t(θ)]. We will refer

to this objective interchangeably as revenue or profit.

It is known from the literature (e.g. [5, Theorem 2.2]) that there exists a mechanism

maximizing expected payment. Indeed, if Θ is finite then this is easy to see by compactness

arguments. The proof for general Θ is much more difficult and will not be presented here.

However, for the sake of self-containedness, we may point out that we will not actually need

to use the general existence result or its proof in what follows: the statement and proof

of our main result, Theorem 2.1, will still be valid using the supremum over mechanisms

(without needing to know whether it is attained).

2.2 Joint screening

In our main model, the agent is to be screened according toG pieces of private information,

g = 1, . . . , G, that enter separately into his utility function. Thus, we assume given a

screening problem (Θg, Xg, ug, πg) for each g. We will refer to these as the component

screening problems.

These G component screening problems give rise to a joint screening environment

(Θ, X, u), where the type space is Θ = ×G
g=1 Θ

g and the allocation space is X = ×G
g=1 X

g,

with representative elements θ = (θ1, . . . , θG) and x = (x1, . . . , xG); and the utility func-

tion u : X ×Θ → R is given by

u(x, θ) =
G∑

g=1

ug(xg, θg).

(Admittedly, there is potential for confusion with the use of these same variables (Θ, X, u)

to refer to an arbitrary screening environment in the previous subsection. From now on,

they will refer specifically to this product environment except when stated otherwise.)

We will use standard notation such as Θ−g = ×h 6=g Θ
h; θ−g for a representative element

of Θ−g; and (θg, θ−g) for an element of Θ with one component singled out.

The combined utility function u can be extended to probability distributions over X

as before. Note however that if ρ is a probability distribution over X, then the expected

utility of the agent of type θ is

∑

g

Eρ[u
g(xg, θg)] =

∑

g

EmargXg (ρ)[u
g(xg, θg)],

that is, it depends only on the marginal distribution over Xg for each g. Then, we will
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think of a random allocation as an element of ×g ∆(Xg), and define the expected utility

Eu : ×g ∆(Xg) → R accordingly. A mechanism in this environment then can be defined

as a pair of functions (x, t), with x : Θ → ×g ∆(Xg) and t : Θ → R measurable, satisfying

conditions (2.1) and (2.2) as before.

In the joint problem, unlike in Subsection 2.1, we assume that the principal does not

know the distribution of the agent’s full type θ. Instead, she knows only the marginal

distributions of each component, π1, . . . , πG, but not how these components are correlated

with each other. Our principal possesses non-Bayesian uncertainty about the correlation

structure; she evaluates any mechanism (x, t) by its worst-case expected profit over all

possible joint distributions. Formally, let Π be the set of all distributions π ∈ ∆(Θ) that

have marginal πg on Θg for each g. Then, a mechanism (x, t) is evaluated by

inf
π∈Π

Eπ[t(θ)]. (2.3)

This describes the joint screening problem. The class of mechanisms we have allowed

is fully general: each component xg of the allocation can depend on the agent’s entire

type θ. (For example, in selling goods as a bundle, whether the agent receives good 1

depends on his values for the other goods.)

But one thing the principal can always do is to screen each component separately. In

particular, let us write R∗g for the optimal profit in screening problem (Θg, Xg, ug, πg),

and (x∗g, t∗g) for the corresponding optimal mechanism. Then define R∗ =
∑

g R
∗g. (As

mentioned in Subsection 2.1 above, the optimum for each g exists. Even if it did not,

we could still take R∗g to be the corresponding supremum, and our statement and proof

of Theorem 2.1 below would go through essentially unchanged.) The separate-screening

mechanism (x∗, t∗) corresponding to these component mechanisms is given by

x∗(θ) = (x∗1(θ1), . . . , x∗G(θG));

t∗(θ) = t∗1(θ1) + · · ·+ t∗G(θG)

for each θ = (θ1, . . . , θG) ∈ Θ. It is immediate that this mechanism satisfies (2.1) and

(2.2). And its expected profit is predictable despite the principal’s uncertainty: for any

possible π ∈ Π, we always have

Eπ[t
∗(θ)] =

∑

g

Eπ[t
∗g(θg)] =

∑

g

Eπg [t∗g(θg)] =
∑

g

R∗g = R∗.
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Out main result says that, with the robust objective, separate screening is optimal:

Theorem 2.1. For any mechanism, the value of the objective (2.3) is at most R∗.

We show this by constructing a specific distribution π on which the value is at most

R∗. More precisely, for most of the proof we work with a discrete approximation (both Θ

and X finite), and in that setting we construct a specific π; we then extend to the con-

tinuous case by an approximation argument. Some discussion about possible approaches

to constructing π appears in Section 3, followed by the actual proof in Section 4. (A

reader eager for the proof can skip ahead to Section 4 without serious loss of continuity.)

In addition, a natural follow-up question is how sensitive the result is to the exact joint

distribution; we explore this question in Section 5.

2.3 Examples

Here we describe several applications.

Linear monopoly. In the monopoly sales setting described in the introduction,

the principal is a seller with G goods available for sale, and the buyer’s preferences are

additively separable across goods. In this case, θg is the buyer’s value for getting good

g, so Θg is an interval in R
+, say Θg = [0, θ

g
]; and Xg = {0, 1}, with 1 corresponding to

receiving the good g and 0 corresponding to not receiving the good. (Remember however

that we allow for probabilistic mechanisms, which can give the good with probability

between 0 and 1.) The utility function is ug(xg, θg) = θgxg.

For each g, πg is the prior distribution over the buyer’s value for good g. In this

model, it is well-known (e.g. [33]) that the optimal selling mechanism for a single good is

a single posted price p∗g: that is (xg(θg), tg(θg)) = (1, p∗g) if θg ≥ p∗g and (0, 0) otherwise.

Consequently, Theorem 2.1 says that, in our model where the seller knows the marginal

distribution of values for each good but not the joint distribution of values, the worst-

case-optimal mechanism simply consists of posting price p∗g for each good g separately.

We shall refer to this example as the benchmark application, and shall return to it

periodically in discussion.

We have written this application with a single buyer, but note that it works equally

well with a continuum population of buyers, in which πg denotes the cross-sectional dis-

tribution of buyers’ values for good g. In this case, our restriction to direct mechanisms

is not immediately without loss: since the seller does not know the joint distribution π,

she could in principle do better by adaptively learning the distribution as in [39], or by

9



asking each buyer for beliefs about the distribution as in [9, 14]. However, since we actu-

ally construct a specific joint distribution that holds the seller down to R∗, this learning

would not help her do better in the worst case.

Nonlinear monopoly. More generally, we can consider a multi-good sales model

in which each good g can be allocated continuously: Xg = [0, 1]. Then we can regard

each good g as divisible, and interpret xg as a quantity; or, alternatively, xg may be a

measure of quality, as in a Mussa-Rosen model [31]. Now θg is some parameter describing

preferences, and the payoff function ug(xg, θg) may be an arbitrary Lipschitz function in

our model. Usually in the literature, one imposes structural assumptions on this function

— most importantly, an increasing differences condition — that make it possible to solve

explicitly for the component-g optimal mechanism using standard techniques. But no

such assumptions are needed for our separation result to hold.

In general, the optimal mechanism for component g will now be a menu of various

bundles of (possibly probabilistic) quantities and prices (xg, tg), from which each type

gets its favorite. Our result then says that, from the point of view of the principal who

is uncertain about the joint distribution of the θg, the worst-case-optimal joint screening

mechanism consists of a separate such menu for each component g.

Although we have implicitly assumed no costs for the principal of producing the good,

the model can also easily accommodate costs of production: Suppose that in the compo-

nent screening problem, the agent’s payoff is given by ug(xg, θg), and producing quantity

xg costs cg(xg) for the principal; the principal thus wishes to find a mechanism that max-

imizes Eπg [tg(θg) − cg(xg(θg))]. This fits into our original model after a renormalization,

by defining allocation xg to be “receiving quantity xg and paying the production cost”

instead of just “receiving quantity xg.” Explicitly, we apply the original model with payoff

function ũg(xg, θg) = ug(xg, θg)− cg(xg).

Note also that, while we have insisted on allowing probabilistic mechanisms, there are

some sufficient conditions under which the optimal mechanism is actually deterministic.

For example, suppose preferences are linear, ug(xg, θg) = θgxg, but there is a convex cost

function cg. Then any probabilistic mechanism can be improved on by replacing each

type θg’s random allocation by its mean, since this reduces the principal’s cost and has

no effect on the IC and IR constraints. Strausz [42] also gives sufficient conditions for

deterministic mechanisms to be optimal, although his conditions fall under the “easy case”

of our theorem (discussed near the end of Section 3 below), namely when the component

problems are standard one-dimensional screening problems in which the monotonicity

constraint does not bind.
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Optimal taxation. A less obvious application of our model is to a Mirrlees-style

taxation problem, in which preferences are quasi-linear and the planner has a Rawlsian

objective, to maximize the payoff of the worst-off type. This setup is highly stylized, but

it indicates that our framework can help to think about separation in a taxation context.

To illustrate the connection, let us first ignore the joint screening apparatus and return

to the general screening language of Subsection 2.1. The taxation problem would be

formulated as follows. There is a population of heterogeneous agents, of unit mass, with

types indexed by θ ∈ Θ following a known population distribution π. There is a single

consumption good. Each agent θ can produce any amount x ∈ X = [0, x] of the good, at

a disutility cost h(x, θ), which we extend linearly to random x (and notate the extension

by Eh). We need not make any structural assumptions (e.g. Θ single-dimensional, single-

crossing preferences). A mechanism then consists of an allocation rule x : Θ → ∆(X),

and consumption function c : Θ → R, satisfying the incentive constraint

c(θ)− Eh(x(θ), θ) ≥ c(θ̂)− Eh(x(θ̂), θ) for all θ, θ̂

and the resource constraint

∫
c(θ) dπ ≤

∫
E[x(θ)] dπ. (2.4)

There is no individual rationality constraint, since everyone can be forced to participate.

The planner’s problem is to find a mechanism to maximize the payoff of the worst-off

type, minθ∈Θ(c(θ)− Eh(x(θ), θ)).

To see how this is equivalent to our formulation, we take the primitive u(x, θ) to

represent the utility an agent would get from producing and consuming x, and the transfer

as the net amount redistributed away. Thus, we write u(x, θ) = x−h(x, θ). Notice that an

allocation rule and consumption rule (x(θ), c(θ)) then satisfy IC in the taxation problem if

and only if the allocation-transfer rule pair (x(θ), E[x(θ)]−c(θ)) satisfies IC in the original

screening-problem language. Moreover, for any mechanism (x(θ), c(θ)), adjusting every

type’s consumption to c(θ) + ∆ for constant ∆ preserves IC, and changes the planner’s

objective by ∆; the optimal ∆ is the one for which the resource constraint just binds,

namely
∫
(E[x(θ)] − c(θ)) dπ. Thus, in the taxation model, the planner’s problem is

equivalent to maximizing

min
θ
(c(θ)− Eh(x(θ), θ)) +

∫
(E[x(θ)]− c(θ)) dπ
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over all mechanisms satisfying the IC constraint only. Likewise, in the screening formula-

tion, every type’s transfer can be adjusted by a constant ∆, and the optimal ∆ is the one

that makes IR just bind, namely minθ(c(θ)− Eh(x(θ), θ)); then, the principal’s problem

is equivalent to maximizing

∫
(E[x(θ)]− c(θ)) dπ +min

θ
(c(θ)− Eh(x(θ), θ))

over all mechanisms satisfying IC only. So the two problems are equivalent.

Now we move to the joint screening model. Suppose there are multiple income-

producing activities g = 1, . . . , G; each agent is parameterized by a type for each activity,

so the overall type and allocation spaces are Θ = ×gΘ
g, X = ×gX

g with Xg = [0, xg],

and payoffs are given by c−
∑

g h
g(xg, θg). The planner knows the marginal distribution

πg of each θg in the population, but not the joint distribution π.

How do we define mechanisms in this model? A mechanism should specify a (prob-

abilistic) level of production in each activity g, and a consumption level, for each type

θ ∈ Θ, satisfying incentive-compatibility. However it is not clear how the resource con-

straint should be written when π is unknown. One possible modeling choice would be to

allow each agent’s allocation and consumption to depend on the entire realized distribu-

tion π. Another, much more restrictive, possibility would be to have them depend only

on the agent’s own type, and require that the resource constraint be satisfied for every π,

with any surplus resources to be redistributed lump-sum, say.

In any case, one mechanism that will always work is to separate across the activities

g: if the optimal tax schedule for activity g is (x∗g, c∗g), then each agent θ is assigned

to produce x∗g(θg) in each activity g, and receive consumption equal to
∑

g c
∗g(θg). This

always satisfies the aggregate resource constraint, for any joint type distribution π. Then,

Theorem 2.1 implies that this mechanism is worst-case optimal: no better value of the

Rawlsian objective can be guaranteed across all joint distributions (regardless of how we

formulate the resource constraint).

If we interpret each g as a time period, then this application of our model connects

with a recent literature in dynamic public finance, in which agents’ income-producing

abilities evolve over time. A prediction of such models is that, in the optimal mechanism,

each agent’s tax will typically depend on the entire history of his past income. This litera-

ture has tacitly acknowledged such history-dependent taxation schemes as unrealistically

complicated, and responded by quantitatively comparing with the optima obtained using

more restrictive tax instruments, such as ones depending only on age and current income
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[19, 40, 20]. However, the theoretical foundations for this approach, or more generally for

delineating which kinds of tax systems are or are not “simple,” are yet to be established.

Our model gives one avenue for such foundations. In our model, if the planner knows the

distribution of ability within each period but not the correlation structure across periods

nor the information each agent has about his own future ability, then the optimally robust

tax policy will tax and redistribute within each period separately.

3 Unsuccessful proof approaches

As indicated above, we will prove Theorem 2.1 by constructing a particular joint distri-

bution on Θ for which no mechanism can generate profit greater than R∗. In order to

better understand the content of the result, we consider some straightforward ways one

might try to construct such a joint distribution.

3.1 Independent distributions

One natural first try would be to have the different components θg be independently

distributed, π = ×gπ
g. A priori, an independent model seems to remove all interac-

tions across components in the setup of the screening problem, so one might expect no

interactions in the solution.

However, this approach is a nonstarter even in the benchmark monopoly problem, as

is well known from the bundling literature. For example, with a large number of goods

with i.i.d. values, the value for the bundle of all goods is approximately pinned down by

the law of large numbers; hence, the seller can extract almost all surplus by bundling,

which she could not do with separately posted prices [2, 4]. Hart and Nisan [24] show

that independence also fails in a minimal example: two goods, where the buyer’s value

for each good is either 1 or 2 with probability 1/2 each. The seller can then extract profit

1 for each good, by setting either price 1 or price 2; so her optimal profit from selling the

two goods separately is 2. But if the values are independent, she can instead charge a

price 3 for the bundle of both goods, which she then sells probability 3/4 and so earns

expected profit 9/4 > 2.

In fact, McAfee, McMillan and Whinston [30] show that with continuous distributions,

separate pricing is never optimal under independence. This follows from considering the

first-order condition for charging a price for the bundle that is just slightly less than the

sum of separate prices.
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3.2 Maximal positive correlation

Another approach comes from considering the case where the G separate screening prob-

lems (Θg, Xg, ug, πg) are all identical. In this case, one possible joint distribution π is

that all components of the agent’s type are identical: π is distributed along the diagonal

{θ ∈ Θ | θ1 = · · · = θG}. For this distribution, the multidimensional joint mechanism de-

sign problem is equivalent to the component problem, scaled up by a factor of G; it is not

hard to see that indeed no mechanism can earn expected profit greater than G ·R∗1 = R∗,

as needed.

How might one generalize this construction when the component problems are not

identical? One possibility to try is to have all G components of the type be “as positively

correlated as possible,” so as to again reduce the mechanism design problem to a single-

dimensional type. For example, in the benchmark monopoly application where θg ∈ Θg ⊆

R is the value for good g, let qg : [0, 1] → Θg be the inverse quantile function, defined by

qg(z) = min{θg | Prπg(θ ≤ θg) ≥ z},

and then define the joint distribution by randomly drawing z ∼ U [0, 1] and taking θg =

qg(z) for each g. We refer to this as the comonotonic joint distribution.

A problem with this approach is that it is unclear how it would work in general, when

each Θg is not necessarily single-dimensional. But even in the benchmark application it

does not always succeed. For a counterexample, consider two goods. Suppose the possible

values for the first good are 1, 2, with probability 1/2 each; and the possible values for

the second good are 2, 3, 4, with probabilities 1/3, 1/6, 1/2 respectively. The seller can

earn an expected profit of 1 from the first good alone (either by setting price 1 or price

2), and 2 from the second good alone (either by price 2, 3 or 4), so the maximum profit

from separate pricing is 3.

In the comonotonic joint distribution π, there are three possible types, (1, 2), (1, 3),

(2, 4), occurring with probabilities 1/3, 1/6, 1/2 respectively (as shown in Figure 1(a)). If

this is the joint distribution, then we propose the following mechanism: the buyer can

either

• receive good 1 at a price of 1;

• receive good 2 at a price of 3;

• receive both goods at a price of 5; or
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• receive nothing and pay nothing.

Figure 1(b) shows the regions of buyer space in which each option is chosen; in particular,

it is incentive-compatible for the (1, 2)-buyer to buy only good 1, the (1, 3)-buyer to buy

only good 2, and the (2, 4)-buyer to buy the bundle, leading to revenue

1

3
· 1 +

1

6
· 3 +

1

2
· 5 =

10

3
> 3.

1/3

1/6

1/2

1 2

2

3

4

θ
1

θ
2

(a)

(1,0)

1

(0,1)

3

(1,1)

5

θ1

θ2

(b)

1 2

2

3

4

θ
1

θ
2

3/20

1/10

1/4

7/20

1/15

1/12

(c)

Figure 1: Counterexample with maximal positive correlation. (a) The candidate joint
distribution. (b) A mechanism that outperforms separate sales. (c) A joint distribution
for which no mechanism outperforms separate sales.

This shows that the comonotonic distribution cannot be used to prove Theorem 2.1

in general.

Why does the optimal mechanism design problem for this π not decompose into sepa-

rate problems for each component? One way to think about what goes wrong, expressed

in terms of the usual approach to one-dimensional screening problems, is that the mono-

tonicity constraint that arises with multidimensional allocation is weaker than requiring

monotonicity good-by-good. This can be seen in the example above: the low and high

types both receive good 1, but the middle type does not. This allows the seller to charge

a different marginal price for good 1 to the low type than the high type.

Indeed, when the standard solution to the one-dimensional problem has the mono-

tonicity constraint not binding, the maximal-positive-correlation approach does succeed.

This is formalized in the following proposition, which for convenience is expressed in terms

15



of continuous distributions. (The counterexample above is discrete, but this difference is

immaterial; it can be made continuous by perturbation.)

Proposition 3.1. Consider the benchmark monopoly application. Suppose each marginal

distribution πg is represented by a continuous, positive density f g, and write F g for the

cumulative distribution. Suppose that for each g, there is a type θ∗g such that the virtual

value

vg = θg −
1− F g(θg)

f g(θg)
(3.1)

is negative for θg < θ∗g and positive for θg > θ∗g. Let π be the comonotonic joint

distribution. For this π, no mechanism yields higher expected profit than R∗.

This can be shown by the usual method of ignoring the monotonicity constraint, using

the infinitesimal downward IC constraints to rewrite profit in terms of virtual surplus,

and then maximizing virtual surplus pointwise. The details are in Appendix A. (In fact,

Proposition 3.1 extends beyond the benchmark application, to any single-dimensional

screening problems with single-crossing in which the monotonicity constraint does not

bind; we omit the details but they are straightforward.)

In the light of Proposition 3.1, our Theorem 2.1 can be seen as a result about the

relationship between multidimensional ironing and single-dimensional ironing. Indeed, a

key object in our proof will be the concept of a generalized virtual value, which extends the

concept of an ironed virtual value in the benchmark case. After developing this concept,

we will show how to use it to directly construct our joint distribution π. In the special

case where the component problems involve no ironing, our construction actually recovers

the comonotonic distribution (as discussed at the end of Subsection 4.3 below), but in

general it is subtler. For the above example, the π we construct is as shown in Figure

1(c).

In this example, there are other joint distributions that also pin down profit to at most

R∗; all of them place positive probability on at least five of the six possible types. However,

for the distribution shown, a subset of the constraints — namely, the IC constraints for

reporting as the next lower value for one good (and truthful reporting for the other good),

plus the IR constraint for the lowest type — are enough to pin down revenue to R∗; and

it is the unique distribution with this property.

We turn now to the general proof.
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4 The actual proof

We start with a verbal overview of the ideas. The bulk of the proof consists of the case

where Θg andXg are finite; afterwards, we extend to the general case by an approximation

argument.

For the proof in the finite case, it helps to first develop some basics about the mathe-

matics of screening problems in general. A finite screening problem can be thought of as

a linear programming problem, with the components of the mechanism (the probability

of each allocation at each type, and the payments) as variables. This allows us to use the

language of LP duality, and talk about the dual variables on the IC and IR constraints

(also known as Lagrange multipliers).

We first show how, in any finite screening problem, the Lagrangian can be interpreted

as a kind of generalized virtual surplus: For each type θ of the agent and each possible

allocation x, one can define a generalized virtual value u(x, θ), which represents the effect

on revenue from a marginal increase in the probability assigned to allocation x; it equals

the value of type θ for that allocation, minus the shadow cost from binding incentive

constraints of other types that would like to imitate type θ. In the familiar case of

one-dimensional screening problems, these generalized virtual values are just the usual

ironed virtual values; but in fact they can be defined for any finite screening problem. An

optimal mechanism then must maximize the virtual surplus for each type separately. Our

strategy for proving Theorem 2.1 is to construct the distribution π for the joint problem

so that, for each joint type θ, the virtual value for any outcome x is simply the sum

of the virtual values ug(xg, θg) from the component problems. If we can do this, it will

immediately follow that the separate-screening mechanism maximizes the virtual surplus

and so maximizes revenue.

One complication in this argument is that the generalized virtual values for a screening

problem are functions not only of the probability of each type but also of the dual variables.

In general, the dual LP may have many optimal solutions, and we need to choose one in

order to define the generalized virtual values. (The traditional definition of ironed virtual

values implicitly corresponds to one particular choice of dual solution.) Hence, rather

than construct a joint distribution π by itself, we will simultaneously construct π and the

dual variables for the joint screening problem, using dual variables from the component

problems as inputs to the construction.

We can simplify the task of choosing dual variables by using only a subset of the IC

constraints — namely, the ones for misreporting a single component of the type; that is,

17



type θ = (θg, θ−g) imitating a type (θ̂g, θ−g), for some g and θ̂g. We are thus studying a

relaxed problem, and showing that with this subset of constraints, already no mechanism

earns more than R∗.

Once we have decided to focus on this set of constraints, it quickly becomes appa-

raent that the generalized virtual values will separate in the desired way if the following

relationship holds between the dual variables on the IC’s in the joint problem and the

corresponding dual variables from the component problems:

λ[(θg, θ−g) → (θ̂g, θ−g)] =
π(θg, θ−g)

πg(θg)
× λg[θg → θ̂g]. (4.1)

This formula, in effect, tells us how we should construct the IC dual variables in terms

of the joint distribution π (the dual variables on the IR’s will be constructed separately).

Of course, we cannot simply choose any old π and define the λ’s by (4.1); we need to

ensure that they are indeed a solution to the dual LP.

Here is an alternative perspective on what this requirement means. In any screening

problem, the dual variables (λ, κ) need to be related to the type probabilities via a certain

set of linear equations, which we call flow equations. These equations are the constraints

dual to the t variables. They also ensure that the principal’s profit from any mechanism

(the primal objective) is bounded by its generalized virtual surplus.

Our strategy in the joint screening problem, then, is to choose π and the multipliers

(λ, κ) so that two conditions hold:

(i) the flow equations are satisfied;

(ii) the virtual surplus, when maximized type-by-type, comes out to R∗.

If we can achieve both of these, then together they imply that the profit from any mech-

anism is at most R∗, which is what we need.

We will choose π, and then determine the multipliers via (4.1) above; this will ensure

that virtual values in the joint problem separate into the component virtual values, which

will give (ii). It remains to ensure (i). That is, we must show that π ∈ Π can be chosen

so that the resulting multipliers satisfy the flow equations in the joint screening problem.

We will use a connection between the flow equations in the joint problem and the flow

equations in the component screening problems to show that this can be done — and to

obtain at least something of an interpretation for π in the process.

With this outline to guide us, it’s time to begin the details.
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4.1 Preliminary tools

We first gather several general-purpose facts about screening problems. For this subsec-

tion, we use the variables (Θ, X, u, π) to refer to an arbitrary screening problem as in

Subsection 2.1, not the product environment of our main model.

We start with the discussion of generalized virtual values, introduced in the outline

above. Suppose that (Θ, X, u, π) is a screening problem in which Θ and X are finite, and

every type has positive probability: π(θ) > 0 for each θ ∈ Θ. (This latter assumption is

not without loss of generality: probability-zero types cannot simply be deleted from the

type space, because their IR constraints may affect the set of possible mechanisms.)

Let us refer to pure allocations (elements of X) by the variable a. A mechanism then

consists of |Θ| · (|X|+1) numbers, namely the allocation probabilities xa(θ) and payment

t(θ) for each type θ and each a ∈ X, satisfying the IC and IR constraints, as well as the

requirement that each x(θ) form a valid probability distribution:

∑

a∈X

u(a, θ)xa(θ)− t(θ) ≥
∑

a∈X

u(a, θ)xa(θ̂)− t(θ̂) for all distinct θ, θ̂ ∈ Θ; (4.2)

∑

a∈X

u(a, θ)xa(θ)− t(θ) ≥ 0 for all θ ∈ Θ; (4.3)

xa(θ) ≥ 0 for all θ ∈ Θ, a ∈ X; (4.4)
∑

a∈X

xa(θ) = 1 for all θ ∈ Θ. (4.5)

The maximum expected profit over all such mechanisms is given by

max
(x,t)

∑

θ

π(θ)t(θ).

Maximizing this profit, subject to constraints (4.2)–(4.5), is a linear programming prob-

lem.

Let R∗ denote the maximal profit. Then, the value of the dual problem is also R∗.

Consider an optimal solution to this dual problem. It consists of dual variables for each

constraint (these dual variables are indexed by types, which we indicate in square brack-
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ets):

λ[θ → θ̂] ≥ 0 for each θ 6= θ̂;

κ[θ] ≥ 0 for each θ;

µa[θ] ≥ 0 for each θ, a;

ν[θ] for each θ.

It will be useful for notational simplicity to also define λ[θ → θ] = 0 for each θ.

Writing out explicitly the dual constraints, we have

∑

θ̂

λ[θ̂ → θ]u(a, θ̂)−
∑

θ̂

λ[θ → θ̂]u(a, θ)− κ[θ]u(a, θ)− µa[θ]− ν[θ] = 0 (4.6)

for each θ and a, as the constraint corresponding to primal variable xa(θ); and

∑

θ̂

λ[θ → θ̂]−
∑

θ̂

λ[θ̂ → θ] + κ[θ] = π(θ), (4.7)

as the constraint corresponding to t(θ). We will refer to these latter as flow equations, for

reasons that will become explicit later. We also have

−
∑

θ

ν[θ] = R∗, (4.8)

the optimal value of the objective in the dual.

Now, for each θ, define the generalized virtual value for each allocation a ∈ X:

u(a, θ) = u(a, θ)−
∑

θ̂∈Θ

λ[θ̂ → θ]

π(θ)

(
u(a, θ̂)− u(a, θ)

)
, (4.9)

and extend this function to randomized allocations, Eu : ∆(X) × Θ → R, by linearity.

Also define the maximum generalized virtual value for each type:

umax(θ) = max
a∈X

u(a, θ).

As we shall momentarily show, these generalized virtual values extend two features

of virtual values that are familiar from the traditional setting (e.g. [32]). First, we can

use them to eliminate the payments from the principal’s maximization problem: for any
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mechanism, its profit is at most the (expected) generalized virtual value generated by

its allocation rule. (As usual in discrete-type settings, this relation is only a bound,

not an equality.) Consequently, we obtain an immediate upper bound on the profit of

any mechanism by simply taking the maximum generalized virtual value for each type

separately, umax(θ). Second, any optimal mechanism attains this bound with equality.

In particular, for each θ, the optimal mechanism chooses the allocation a ∈ X with the

highest generalized virtual value. (If the optimal mechanism is not deterministic, there

must be multiple a’s tied for highest virtual value, and only such a’s can receive any

probability weight. Note that this is not reversible: there may exist allocation rules

x that put weight only on virtual-value-maximizing outcomes, yet are not part of any

optimal mechanism (x, t).)

To be precise, we will show the following chain of inequalities: for any mechanism

(x, t), ∑

θ

π(θ)t(θ) ≤
∑

θ

π(θ)Eu(x(θ), θ) ≤
∑

θ

π(θ)umax(θ) ≤ R∗. (4.10)

It will then follow immediately that any optimal mechanism (x∗, t∗) satisfies these relations

with equality. (In particular, the last inequality is always an equality since it does not

depend on the mechanism (x, t).)

In fact, all of these inequalities are straightforward rearrangements of the duality

conditions. For the first inequality in the chain: for any mechanism (x, t), the IC and IR

constraints give

∑

θ

π(θ)t(θ) ≤
∑

θ

(
π(θ)t(θ) +

∑

θ̂

λ[θ → θ̂]
(
(Eu(x(θ), θ)− t(θ))− (Eu(x(θ̂), θ)− t(θ̂))

)

+κ[θ](Eu(x(θ), θ)− t(θ))
)
. (4.11)

The right-side terms can be reorganized as “x terms” and “t terms.” For each θ, the

terms containing x(θ) are

∑

θ̂

λ[θ → θ̂]Eu(x(θ), θ)−
∑

θ̂

λ[θ̂ → θ]Eu(x(θ), θ̂) + κ[θ]Eu(x(θ), θ).

Using (4.7) to plug in for
∑

θ̂
λ[θ → θ̂] + κ[θ], we see that this equals


∑

θ̂

λ[θ̂ → θ] + π(θ)


Eu(x(θ), θ)−

∑

θ̂

λ[θ̂ → θ]Eu(x(θ), θ̂) = π(θ)Eu(x(θ), θ).
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And as for the t terms, we have t(θ) appearing on the right side of (4.11) with coefficient

π(θ)−
∑

θ̂

λ[θ → θ̂] +
∑

θ̂

λ[θ̂ → θ]− κ[θ],

which is zero by (4.7). This verifies the first inequality in (4.10).

The second inequality is immediate, from the definition of umax.

For the third inequality in (4.10), it suffices to show that any function x : Θ → ∆(X)

(without imposing any IC or IR constraints) must satisfy
∑

θ π(θ)Eu(x(θ), θ) ≤ R∗. For

this, we reverse the “x term” calculations above to obtain

∑

θ

π(θ)Eu(x(θ), θ) =
∑

θ




κ[θ] +

∑

θ̂

λ[θ → θ̂]


Eu(x(θ), θ)−

∑

θ̂

λ[θ̂ → θ]Eu(x(θ), θ̂)




=
∑

θ

∑

a




κ[θ] +

∑

θ̂

λ[θ → θ̂]


u(a, θ)−

∑

θ̂

λ[θ̂ → θ]u(a, θ̂)


 xa(θ)

=
∑

θ

∑

a

−(µa[θ] + ν[θ])xa(θ)

by (4.6)

≤ −
∑

θ

∑

a

ν[θ]xa(θ) = −
∑

θ

ν[θ] = R∗

by (4.8). This completes the argument for (4.10).

At this point, we summarize as a lemma the essential conclusions from the above

discussion:

Lemma 4.1. Consider a screening problem (Θ, X, u, π) in which Θ and X are finite, and

π(θ) > 0 for each θ ∈ Θ. Let R∗ be the optimal profit. Then, there exist nonnegative

numbers λ[θ → θ̂], for all θ, θ̂ ∈ Θ (with λ[θ → θ] = 0), and κ[θ] for all θ ∈ Θ, such that

• the flow equation (4.7) holds for each θ, and

• with generalized virtual values u(a, θ) defined as in (4.9), every possible mechanism

(x, t) satisfies the chain of inequalities (4.10), and any optimal mechanism (x∗, t∗)

satisfies them with equality.

As indicated earlier, the generalized virtual values we have defined extend the tradi-

tional notion of ironed virtual values from the one-dimensional case. Appendix B works
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through this correspondence in detail for the benchmark monopoly problem, showing how

the two coincide in this case, so that our definition is a bona fide generalization.

We close this subsection by stating a couple of additional technical results about

screening problems that will be useful later. First is a simple continuity result, again for

finite screening environments:

Lemma 4.2. Consider a screening environment (Θ, X, u), with Θ, X finite. Then, the

maximum expected profit is continuous as a function of the distribution π.

The proof is straightforward, so we leave it to Appendix A.

Second is an approximation lemma due to Madarász and Prat [28] that applies to

continuous type spaces. It shows that when each type in a given screening problem is

moved by a small amount, the principal’s optimal profit does not degrade significantly,

even though the optimal mechanism may be discontinuous. The idea is that any given

mechanism can be made robust to slight changes in the type distribution by refunding a

small fraction of the payment to the agent: doing so pads the incentive constraints in such

a way that, if the agent is induced to change his chosen allocation, he does so in favor

of more expensive allocations; and this effect outweighs any small change in the agent’s

location in type space.

Formally, say that two distributions π, π′ ∈ ∆(Θ) are δ-close if Θ can be partitioned

into disjoint measurable sets S1, . . . , Sr such that d(θ, θ′) < δ for any θ, θ′ in the same cell

Sk, and π(Sk) = π′(Sk) for each Sk.

Lemma 4.3. [28] Take the environment (X,Θ, u) as fixed. For any ǫ > 0, there exists

a number δ > 0 with the following property: For any mechanism (x, t), there exists a

mechanism (x̃, t̃) such that

(a) for any two types θ, θ′ with d(θ, θ′) < δ, then t̃(θ′) > t(θ)− ǫ;

(b) for any two distributions π, π′ that are δ-close,

Eπ′ [t̃(θ)] > Eπ[t(θ)]− ǫ.

Again, we include the proof in Appendix A for completeness.

4.2 Main proof: The finite case

Now we start the proof of the theorem proper. We return to the notation (Θg, Xg, ug, πg)

for the component screening problems, and use (Θ, X, u) to refer to the joint environment.
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Assume for now that the Θg and Xg are all finite.

Also assume that πg(θg) > 0 for each g and each type θg; this assumption will be

dispensed with at the end of this subsection.

Let λg[θg → θ̂g] and κg[θg] be dual variables for the component-g problem, given by

Lemma 4.1. Thus, they satisfy the flow equations

∑

θ̂g

λg[θg → θ̂g]−
∑

θ̂g

λg[θ̂g → θg] + κg[θg] = πg(θg) (4.12)

for each θg ∈ Θg, and with the virtual values defined by

ug(xg, θg) = ug(xg, θg)−
∑

θ̂g

λg[θ̂g → θg]

πg(θg)

(
ug(xg, θ̂g)− ug(xg, θg)

)
,

we have from the equality case of (4.10) that

∑

θg

πg(θg)ug
max(θ

g) = R∗g, where ug
max(θ

g) = max
xg

ug(xg, θg).

Also note for future reference that, for each fixed g, if we sum up (4.12) over all θg,

the λg[· · · ] terms cancel, and we are left with

∑

θg

κg[θg] =
∑

θg

πg(θg) = 1. (4.13)

We now begin to construct our joint distribution π and dual variables λ[θ → θ̂], κ[θ]

for the joint problem. We first define the κ’s, by putting

κ[θ] =
∏

g

κg[θg].

If we multiply (4.13) across all g, we see that

∑

θ∈Θ

κ[θ] = 1. (4.14)

And if we fix any g and θg, and multiply (4.13) only for all other components h 6= g, we

likewise get ∑

θ−g∈Θ−g

κ[θg, θ−g] = κg[θg] (4.15)
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which will also be useful later.

Next we will define π as the solution to a system of linear equations analogous to

(4.12). This system is given by (4.18) below. To briefly motivate it, consider the formula

for the generalized virtual value in the joint screening problem: for any θ = (θ1, . . . , θG)

and x = (x1, . . . , xG),

u(x, θ) = u(x, θ)−
∑

θ̂∈Θ

λ[θ̂ → θ]

π(θ)

(
u(x, θ̂)− u(x, θ)

)

=
∑

g


ug(xg, θg)−

∑

θ̂∈Θ

λ[θ̂ → θ]

π(θ)

(
ug(xg, θ̂g)− ug(xg, θg)

)



by additive separability of u. Our plan is to put positive weight only on IC constraints

θ̂ → θ for which θ̂, θ differ in just one coordinate. Then, for each g, the difference terms(
ug(xg, θ̂g)− ug(xg, θg)

)
for which θ̂ and θ differ in a coordinate h 6= g cancel, and we

are only left with the terms where they differ in coordinate g; thus our virtual value will

become

∑

g


ug(xg, θg)−

∑

θ̂g∈Θg

λ[(θ̂g, θ−g) → (θg, θ−g)]

π(θ)

(
ug(xg, θ̂g)− ug(xg, θg)

)

 .

We wish to choose the π’s and λ’s so that the separate-screening mechanism maximizes

generalized virtual value. This will be accomplished if the generalized virtual value of each

type θ is the sum of the component virtual values; and for this it is sufficient that, given

π, the λ’s should be defined by

λ[(θ̂g, θ−g) → (θg, θ−g)] =
π(θ)

πg(θg)
× λg[θ̂g → θg]. (4.16)

We will also need the joint distribution π and the dual variables λ[θ → θ̂], κ[θ] to

satisfy the flow equations

∑

g

∑

θ̂g

λ[(θg, θ−g) → (θ̂g, θ−g)]−
∑

g

∑

θ̂g

λ[(θ̂g, θ−g) → (θg, θ−g)] + κ[θ] = π(θ) (4.17)
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for each θ ∈ Θ. Substituting for the λ’s from (4.16), this is equivalent to

∑

g

∑

θ̂g

π(θ̂g, θ−g)

πg(θ̂g)
× λg[θg → θ̂g]−

∑

g

∑

θ̂g

π(θ)

πg(θg)
× λg[θ̂g → θg] + κ[θ] = π(θ) (4.18)

for each θ ∈ Θ.

System (4.18) consists of |Θ| linear equations in |Θ| unknowns (the probabilities π(θ)),

whose coefficients come from the component-g problems. The crucial step in our proof

is showing that this system indeed has a solution π, which moreover is a probability

distribution with the correct marginals.

Lemma 4.4. Under the assumptions of this subsection (Θg finite and πg(θg) > 0), there

exists a distribution π ∈ Π satisfying the flow equations (4.18).

Proof. First, for each g, we consider a continuous-time Markov process whose state space

is Θg. (This should not be thought of as an agent’s type changing over time; it is simply

an abstract process that happens to have this state space.) The process works as follows.

There are two types of state changes, both triggered by Poisson arrivals:

• To each type θ̂g ∈ Θg is associated a Poisson clock; when the clock ticks, the

state changes to θ̂g. The intensity of this clock depends on the current state: it is

λg[θ̂g → θg]/πg(θg) when the current state is θg. (The Poisson clocks corresponding

to different θ̂g run independently conditional on the current state θg.)

• In addition, there is an independent “reset” clock at constant Poisson rate 1. When

a reset arrives, the type changes to each θg with probability κg[θg]. ((4.13) ensures

this makes sense — the probabilities add up to 1.)

Let ρg(θg) denote the stationary distribution of this Markov process. Because there is

a single recurrent set, the stationary distribution is uniquely determined as the solution

to the system of linear equations

∑

θ̂g

ρg(θ̂g)
λg[θg → θ̂g]

πg(θ̂g)
+ κg[θg] = ρg(θg)


∑

θ̂g

λg[θ̂g → θg]

πg(θg)
+ 1


 (4.19)

for all θg ∈ Θg. The left-hand side represents the steady-state frequency of changes into

state θg, and the right-hand side the frequency of changes out of state θg. However,

from (4.12), we see that distribution πg is a solution to this system, so it must actually
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be the stationary distribution, ρg(θg) = πg(θg). (This explains our terminology “flow

equations.”)

Now consider a new Markov process whose state space is the joint type space Θ, and

which is governed by Poisson state changes as follows:

• For each component g, and each θ̂g ∈ Θg, there is a Poisson clock. When it ticks,

component g of the state changes to θ̂g, i.e. if the current state is θ then it changes

to (θ̂g, θ−g). This clock has an intensity of λg[θ̂g → θg]/πg(θg) when the current

state is θ.

• In addition, there is a “reset” clock with rate 1; when a reset arrives, the entire

state is redrawn, with probabilities κ[θ] for each θ. (This makes sense, by (4.14).)

These clocks are independent across g and θ̂g, conditional on the current state.

Let π denote the stationary distribution of this Markov process. This stationary

distribution must satisfy the equations

∑

g

∑

θ̂g

π(θ̂g, θ−g)
λg[θg → θ̂g]

πg(θ̂g)
+ κ[θ] = π(θ)


∑

g

∑

θ̂g

λg[θ̂g → θg]

πg(θg)
+ 1




for all θ — which is exactly (4.18) above.

Finally, we can see that for each component g of the state, the arrival rate of each type

of event that affects component g (either component changes or resets) depends only on

the current component g and is otherwise independent of other components. Hence, the

evolution of component g of the state is described exactly by our earlier Markov process

with state space Θg. (This conclusion makes use of (4.15), which ensures that when a

reset event occurs, the new θg is indeed drawn from distribution κg.) Consequently, the

stationary distribution π has g-marginal equal to πg. Thus, π ∈ Π.

Now, armed with this joint distribution π, define the IC multipliers λ[(θ̂g, θ−g) →

(θg, θ−g)] by (4.16) — and write λ[θ̂ → θ] = 0 whenever θ̂, θ differ in more than one

component. This ensures (4.17) is satisfied, since it follows from (4.18).

We can use these multipliers to show that no mechanism earns total profit more than

R∗ against distribution π. The calculation is quite similar to that used for (4.10).

Consider any mechanism (x, t) in the joint screening problem. Because it must satisfy
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the IC and IR constraints, we have

∑

θ∈Θ

π(θ)t(θ) ≤
∑

θ∈Θ


π(θ)t(θ) +

∑

θ̂∈Θ

λ[θ → θ̂]
(
(Eu(x(θ), θ)− t(θ))− (Eu(x(θ̂), θ)− t(θ̂))

)

+κ[θ](Eu(x(θ), θ)− t(θ))

)

=
∑

θ


∑

θ̂

λ[θ → θ̂]Eu(x(θ), θ)−
∑

θ̂

λ[θ̂ → θ]Eu(x(θ), θ̂) + κ[θ]Eu(x(θ), θ)




+
∑

θ


π(θ)−

∑

θ̂

λ[θ → θ̂] +
∑

θ̂

λ[θ̂ → θ]− κ[θ]


 t(θ) (4.20)

just as in (4.10).

Consider the first parenthesized expression on the right, for any given θ (the “x(θ)

term”). By additive separability of the utility function u, this becomes

∑

g


∑

θ̂

λ[θ → θ̂]Eug(xg(θ), θg)−
∑

θ̂

λ[θ̂ → θ]Eug(xg(θ), θ̂g) + κ[θ]Eug(xg(θ), θg)


 .

(And all λ terms are nonzero only when θ, θ̂ differ only in one coordinate.) Note that

although the payoff separates, we still write xg(θ) and not xg(θg) for the allocation, since

xg can potentially depend on every component of θ. Now using (4.17), this expression

rewrites as

∑

g




π(θ) +

∑

θ̂

λ[θ̂ → θ]


Eug(xg(θ), θg)−

∑

θ̂

λ[θ̂ → θ]Eug(xg(θ), θ̂g)




=
∑

g


π(θ)Eug(xg(θ), θg)−

∑

θ̂

λ[θ̂ → θ]
(
Eug(xg(θ), θ̂g)− Eug(xg(θ), θg)

)

 .

For each θ̂ such that θ̂g = θg, we have Eug(xg(θ), θg) = Eug(xg(θ), θ̂g) and the dif-

ference term cancels. So the λ[θ̂ → θ] terms survive only when θ̂ differs from θ in the
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g-coordinate, and we can rewrite our expression as

∑

g


π(θ)Eug(xg(θ), θg)−

∑

θ̂g

λ[(θ̂g, θ−g) → (θg, θ−g)]
(
Eug(xg(θ), θ̂g)− Eug(xg(θ), θg)

)

 .

From the definition of the λ’s, (4.16), this equals

∑

g

π(θ)

πg(θg)


πg(θg)Eug(xg(θ), θg)−

∑

θ̂g

λg[θ̂g → θg]
(
Eug(xg(θ), θ̂g)− Eug(xg(θ), θg)

)



=
∑

g

π(θ)

πg(θg)
× πg(θg)Eug(xg(θ), θg)

=
∑

g

π(θ)Eug(xg(θ), θg).

Meanwhile, our second parenthesized expression on the right side of (4.20) (the “t(θ)

term”) equals zero, by (4.17). Therefore, the right side of (4.20) reduces to

∑

θ

∑

g

π(θ)Eug(xg(θ), θg)

and now we can complete the chain:

∑

θ

π(θ)t(θ) ≤
∑

θ

∑

g

π(θ)Eug(xg(θ), θg)

=
∑

g

(
∑

θ

π(θ)Eug(xg(θ), θg)

)

≤
∑

g

(
∑

θ

π(θ)ug
max(θ

g)

)

=
∑

g

(
∑

θg

(
∑

θ−g

π(θg, θ−g)

)
ug
max(θ

g)

)

=
∑

g

(
∑

θg

πg(θg)ug
max(θ

g)

)

=
∑

g

R∗g = R∗.

So any joint screening mechanism gives expected profit at most R∗ with respect to the
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type distribution π, which is what we wanted to show.

This finishes the case where each πg has full support. To allow for probability-zero

types, we use our earlier continuity result, Lemma 4.2.

For each g, suppose πg is an arbitrary distribution on Θg, with R∗g the corresponding

maximum expected profit. Let πg
1 , π

g
2 , . . . be a sequence of full-support distributions on

Θg that converges to πg. Then, if we let R∗g
1, R

∗g
2, . . . be the corresponding values of the

maximum expected profit, Lemma 4.2 says that R∗g
n → R∗g as n → ∞.

For each n, the proof we have just completed shows that there exists a joint distribution

πn on Θ, with marginals πg
n, such that no mechanism earns an expected profit of more than

R∗
n =

∑
g R

∗g
n with respect to πn. By compactness, we can assume (taking a subsequence

if necessary) that πn converges to some distribution π on Θ. Then π has marginal πg

on each Θg. And for any mechanism (x, t), we have Eπn
[t(θ)] ≤ R∗

n; taking limits as

n → ∞, we have Eπ[t(θ)] ≤ R∗. Thus, no mechanism earns expected profit more than R∗

on distribution π.

4.3 Main proof: The general case

Now we can prove Theorem 2.1 in general, with potentially infinite type and allocation

spaces.

First, extending to general allocation spaces, but keeping type spaces finite, is com-

pletely straightforward. Indeed, suppose each Θg is finite, and let R∗g be the optimal

revenue in component g, and R∗ =
∑

g R
∗g. Suppose there exists a mechanism (x′, t′)

that achieves revenue at least R∗+ ǫ with respect to every joint distribution π ∈ Π, where

ǫ > 0.

For each component g, define an auxiliary screening problem (Θ̃g, X̃g, ũg, π̃g) as follows:

Θ̃g = Θg and π̃g = πg; X̃g = {x′g(θ) | θ ∈ Θ}; ũg(xg, θg) = Eug(xg, θg). That is, we

consider only the component-g allocations which were actually assigned to some type in

the mechanism (x′, t′); such an allocation may have been a lottery, but we treat it as a

pure allocation in the new screening problem. It is evident that any mechanism for this

new screening problem translates to a mechanism for the original component-g screening

problem, with the same expected profit; hence, the optimal profit for the new component-

g screening problem is R̃∗g ≤ R∗g. Because Θ̃g and X̃g are finite, we can apply the case

of the previous subsection to see that there is a joint distribution π̃ for which no joint

screening mechanism can give expected profit more than R∗. But (x′, t′) evidently gives us

a joint screening mechanism for the new problem, which produces expected profit ≥ R∗+ǫ
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for every possible joint distribution — a contradiction.

Finally, we can remove the restriction to finite type spaces. Here is where we will apply

Lemma 4.3, the approximation result for continuous types. Consider the general setting

of Subsection 2.2. Let R∗ be defined as in that section, and suppose, for contradiction,

that there exists a mechanism (x′, t′) that achieves profit at least R∗ + ǫ against every

possible joint distribution π, where ǫ > 0.

For each component g, let δg be as given by Lemma 4.3 with ǫ/(2G+1) as the allowable

profit loss. By making δg smaller if necessary, we may also assume that any two types

at distance at most δg have their utility for every xg ∈ Xg differ by at most ǫ/(2G + 1).

Also, consider the joint screening environment, with the metric on Θ given by the sum of

componentwise distances, and let δ be as given by Lemma 4.3 with ǫ/(2G+1) as allowable

loss again. Now let δ = min{δ1, . . . , δG, δ/G}.

For each g, we form an approximate distribution on Θg with finite support, as follows:

Let Θ̃g be a finite subset of Θg, with the property that every element of Θg is within

distance δ of some element of Θ̃g (this can be done by compactness). Arbitrarily partition

Θg into disjoint measurable subsets Sg
θg , for θ

g ∈ Θ̃g, such that each element of any Sg
θg

is within distance δ of θg, and θg itself is in Sg
θg . Then define a distribution π̃g ∈ ∆(Θg),

supported on Θ̃g, by π̃g(θg) = πg(Sg
θg).

Evidently, π̃g is δ-close to πg. Therefore, the maximum profit attainable in the screen-

ing problem (Θg, Xg, ug, π̃g) is at most R∗g + ǫ/(2G+1): otherwise, Lemma 4.3 would be

violated in going from π̃g from πg.

In turn, we can view π̃g as a distribution just on Θ̃g, and any mechanism for screening

problem (Θ̃g, Xg, ug, π̃g) can be converted to a mechanism on the whole type space Θg,

by assigning each type its preferred outcome from the set {(xg(θg), tg(θg)) | θg ∈ Θ̃g},

and subtracting ǫ/(2G + 1) from all payments (in order to make sure that IR is still

satisfied for types outside of Θ̃g). This conversion causes a profit loss of ǫ/(2G + 1). We

conclude that the maximum profit attainable in screening problem (Θ̃g, Xg, ug, π̃g) is at

most R∗g + 2ǫ/(2G+ 1).

Since this is true for each g, we can apply the finite-type-space version of our result

to conclude the following: there is a distribution π̃ on Θ̃ = ×g Θ̃
g, with marginals π̃g, for

which any mechanism earns expected profit at most R∗ + 2Gǫ/(2G+ 1).

Now we will construct a measure on Θ based on our discretization, but with marginals

given by the original πg. For each θ = (θ1, . . . , θG) ∈ Θ̃, let Sθ ⊆ Θ be the product set

×g S
g
θg ; notice that as θ varies over Θ̃, the sets Sθ form a partition of Θ.

For each such θ, we define a measure πθ on Sθ as follows. If π̃
g(θg) = 0 for some g, let
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πθ be the zero measure. Otherwise, consider the conditional probability measure πg|Sg
θg

for each component g (which is well-defined since πg assigns positive probability to Sg
θg).

Define πθ to be the product of these conditional measures, multiplied by the scalar π̃(θ).

We can extend πθ to a measure on all of Θ (by taking it to be zero outside Sθ). Now

simply define a measure π on Θ as the sum of πθ, over all θ ∈ Θ̃.

Note that π is indeed a probability measure; this follows from the fact that the measure

assigned to any Sθ equals π̃(θ), and hence the total measure of Θ is

π(Θ) =
∑

θ∈Θ̃

π(Sθ) =
∑

θ∈Θ̃

π̃(θ) = 1.

In fact, the marginal of π along component g must equal πg, for each g. This follows from

two facts: first, the probability assigned to any cell Sg
θg under this marginal is equal to

∑

θ−g∈Θ̃−g

π(S(θg ,θ−g)) =
∑

θ−g∈Θ̃−g

π̃(θg, θ−g) = π̃g(θg) = πg(Sg
θg);

and second, conditional on cell Sg
θg , the distribution along the g-component follows πg|Sg

θg

(because this is true for each of the cells S(θg ,θ−g)).

Consequently, our mechanism (x′, t′) satisfies Eπ[t
′(θ)] ≥ R∗ + ǫ, by assumption.

In addition, the fact that π(Sθ) = π̃(θ) for every θ ∈ Θ̃ implies that π̃ is δ-close to

π, since every element of Sg
θg is within distance δ ≤ δ/G of θg, for each component g.

Consequently, Lemma 4.3 assures us the existence of a mechanism whose expected profit

with respect to π̃ is greater than (R∗ + ǫ)− ǫ/(2G+ 1) = R∗ + 2Gǫ/(2G+ 1).

But we already showed it is impossible to earn profit greater than R∗ + 2Gǫ/(2G+ 1)

against π̃. Contradiction.

�

At this point, having completed the proof of the theorem, we can briefly remark

on the construction of π embedded in Lemma 4.4, and informally relate it back to the

attempts in Section 3. Consider the benchmark monopoly application, and suppose the

marginal distributions πg have increasing virtual values. Take a fine discretization of the

type space. For each good g separately, the standard solution to the dual problem puts

positive weight only on the adjacent downward incentive constraints and the IR constraint

of the lowest type. (This dual solution is constructed explicitly in Appendix B.) Thus,

the component-g Markov process in the proof of Lemma 4.4 runs as follows: the state θg

gradually increases from one type to the next higher type according to a Poisson clock,
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interrupted by resets at which the state moves back to the lowest type. In the continuous-

type limit, the state drifts deterministically upward in the type space, until a reset occurs,

when the process returns to the lowest type. Accordingly, the corresponding joint type

process runs as follows: in between resets, the state θ drifts deterministically upward in

every component; when a reset occurs, all components jump back to their lowest possible

value. Consequently the movements of all components are perfectly synchronized, so the

stationary distribution must be the comonotonic distribution that we saw in Section 3.

(However, for any finite approximation of the type space, the components are not perfectly

synchronized, and the resulting joint distribution π has full support.)

5 Sensitivity analysis

A natural response to Theorem 2.1 is to ask how sensitive the result is to the assumption

of extreme uncertainty about the joint distribution π. In particular, our proof approach

constructs a very specific π — and one that does not necessarily have an obvious economic

meaning palatable for applications (unlike, say, the independent distribution). If there

were some other mechanism that performed better than separate screening as long as

the joint distribution is not this specific π, that would lessen the appeal of the result

— both its methodological appeal (since it would be a strike against the reasonableness

of the worst-case formulation), and its literal appeal as an explanation of, say, separate

posted prices in the real world. Accordingly, this section will briefly attempt to investigate

whether separate screening ceases to be optimal once the designer has a little information

about the joint distribution. For concreteness, we focus on the benchmark monopoly

application throughout this section.

One immediate difficulty is that it is not clear exactly what it means to have “a little

information” about π. One might impose some one-dimensional moment restriction, of

the form

Eπ[z(θ)] = 0 (5.1)

or

Eπ[z(θ)] ≥ 0 (5.2)

for some function z : Θ → R, and let Π′ be the set of all π ∈ Π satisfying the restriction,

and then evaluate a mechanism (x, t) according to infπ∈Π′ Eπ[t(θ)] instead of the original

objective (2.3), and ask whether separate sales is still optimal. However, it is clear that the

answer will sometimes be negative. For example, we know that some other mechanisms
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(x′, t′) will sometimes give higher profit than R∗, so if our moment restriction is of the

form Eπ[t
′(θ)] ≥ R′ for R′ > R∗, clearly our result fails. The question then seems to be,

what are the interesting restrictions to consider?

We explore two approaches here. First, we consider one particular moment restriction

suggested by the literature, namely negative correlation in values between two goods, and

explore its consequences numerically. Second, we show that in the finite-type version of

the model, in general there is an open set of distributions π for which separate pricing is

optimal; this gives some assurance that Theorem 2.1 is not a knife-edge result, without

needing to take a stand on specific moment restrictions.

5.1 Negative correlation

One of the main intuitions from the early bundling literature is that bundling is profitable

when values for goods are negatively correlated. This argument has been passed down

as received wisdom (see e.g. the undergraduate text by Church and Ware [15, pp. 169–

170]), although it comes chiefly from examples rather than any general theorem [41, 1]:

for example, in the extreme case where the total value for all goods is deterministic, the

seller can extract the full surplus by selling the bundle of all goods. It is also in some

sense opposite to the positively-correlated case of Subsection 3.2. For both these reasons,

negative correlation seems like a natural place to look for restrictions that might overturn

the separation result.

Accordingly, let us take the restriction of negative correlation literally, and test it by

considering G = 2 goods and imposing the moment restriction

Eπ[θ
1θ2] ≤ Eπ1 [θ1]× Eπ2 [θ2]

on the possible joint distributions π ∈ Π′. It turns out that with this restriction, it may or

may not happen that the worst-case-optimal revenue is still the R∗ from selling separately.

To get some sense of whether one case or the other is common, random numerical

experiments were run in Matlab, using finite type spaces Θ. Note that for any one-

dimensional moment restriction of the form Eπ[z(θ)] ≥ 0, the worst-case-optimization

problem

max
(x,t)∈M

(
min
π∈Π′

Eπ[t(θ)]

)
(5.3)

can be computationally implemented as follows: Since the inner minimization is a linear

program (with the probabilities π(θ) as the choice variables), by LP duality, it can also
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be expressed as a maximization problem, namely

max
αg [θg ],β

∑

g

∑

θg

πg(θg)αg[θg]

over all choices of real numbers αg[θg] (for each g = 1, . . . , G and θg ∈ Θg) and β ≥ 0

satisfying ∑

g

αg[θg] + βz(θ) ≤ t(θ) for all θ = (θ1, . . . , θG) ∈ Θ. (5.4)

Therefore, the problem in (5.3) can be expressed as a single maximization — over all

choices of the mechanism (x, t), and all αg[θg] and β satisfying (5.4) — that can be solved

as a standard LP.

In the simulations, we randomly generated 1000 choices for the marginal distributions

(π1, π2), calculated the mechanism that maximizes the worst-case revenue over negatively

correlated distributions as just described, and checked whether the worst-case revenue

was strictly higher than obtained by selling the two goods separately. The set of possible

values for each good was Θ1 = Θ2 = {1, 2, 3, 4, 5}, and the marginals π1, π2 were generated

by drawing a probability uniformly from [0, 1] for each value, then rescaling to make the

probabilities sum to 1.

The result was that in 975 of the 1000 trials, the worst-case revenue was still the

R∗ from selling separately. That is, based on the simulation results, the optimality of

separate sales is usually robust to assuming that the values are known to be negatively

correlated.

One might protest that this sensitivity test is too weak, because it is inappropriate

to take negative correlation so literally; it is no surprise that one misspecified inequality

restriction often fails to rule out some worst-case distributions. It is not clear what

an appropriate sharper test would be, but one possible test would be to impose negative

affiliation on π — that is, negative correlation conditional on θ ∈ Θ̃1×Θ̃2, for all nonempty

measurable subsets Θ̃1 ⊆ Θ1, Θ̃2 ⊆ Θ2. This limits the possible π to a much smaller set,

so one would expect separate sales to be worst-case optimal much less often.

It is not immediately clear how to repeat the above computational exercise with the

restriction of negative affiliation, since it is not a linear constraint on π, so the worst-case

optimization cannot readily be expressed as a linear program. However, if we move to the

continuous-type setting, we can obtain a negative result: separate sales is (essentially)

always dominated by bundling. The dominance is weak for a given bundle price, but can

be made strict by randomizing the bundle price.
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Proposition 5.1. Consider the benchmark monopoly application, with G = 2. Suppose

each set of values Θg is an interval in R
++, and each marginal distribution πg is repre-

sented by a continuous, positive density f g. Assume that for each g, the optimal separate

price p∗g is strictly in the interior of Θg. Then there exist ǫ, ǫ > 0, q ∈ (0, 1), and R′ > R∗

such that the following hold:

(a) The mechanism that lets the buyer choose either good g with price p∗g, or the bundle

of both goods at price p∗1+p∗2−ǫ, earns expected profit at least R∗ for any negatively

affiliated joint distribution π ∈ Π.

(b) Consider the following mechanism: first randomly choose ǫ = ǫ with probability q or

ǫ = ǫ with probability q = 1− q; then offer each good g with price p∗g, or the bundle

of both goods at price p∗1 + p∗2 − ǫ. This mechanism earns expected profit at least

R′, for any negatively affiliated joint distribution π ∈ Π.

The argument is a straightforward extension of that given by McAfee, McMillan, and

Whinston [30] for the independent case, obtained by looking at the first-order condition

for ǫ. The proof is in Appendix A.

5.2 Open sets of distributions

Another approach to sensitivity analysis, which avoids making any particular choices of

moment restrictions, is to look at the set of distributions π for which separate pricing

is optimal, and ask how small this set is. If it contained only the specific distribution

constructed in Section 4, then our result would indeed be a knife-edge result. However,

we will show here that the situation is not so extreme: in particular, when the type space

is finite, there exists an open set of such worst-case π’s (in the natural topology on Π).

We could also simply try to show that there is an open set of possible moment re-

strictions z in (5.1) for which the worst-case optimal revenue is R∗. Note however that

this is a much weaker statement than existence of an open set of π’s as above. In fact,

as long as there is more than one π — say π1 and π2 — for which optimal revenue is R∗,

then for any z in the open set satisfying Eπ1
[z(θ)] < 0 and Eπ2

[z(θ)] > 0, there is some

convex combination of π1 and π2 for which E[z(θ)] = 0, and so the worst-case objective

(5.3) equals R∗.

To get to our non-knife-edge result, the important step is the following:

Lemma 5.2. Consider the benchmark monopoly application. Suppose each set of values

Θg is finite, that each πg has full support, and also suppose that for each single-good
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problem πg, the optimal price is unique. Then, there exists a joint distribution π ∈ Π for

which selling each good separately constitutes the unique optimal mechanism.

The proof involves a more careful retracing of the generalized-virtual-value maximiza-

tion arguments in Section 4. We leave the details to Appendix A.

Now we infer the result:

Corollary 5.3. In the setting of Lemma 5.2, there exists a set of joint distributions

Π̂ ⊆ Π, which is open (in the relative topology on Π, as a subset of R|Θ|), and such that

for any π ∈ Π̂, no joint screening mechanism earns an expected profit higher than R∗.

Proof. As argued in the proof of Lemma 4.3 in the appendix, when looking for optimal

mechanisms, we can restrict to ones whose payments are all in [−t, t] for some sufficiently

high constant t. Then, the effective space of mechanisms M′ becomes a convex polytope,

since it is a compact set of |Θ| · (G + 1)-dimensional vectors defined by certain linear

constraints. Therefore, it is the convex hull of its vertices (see e.g. [46, Theorem 1.1]), i.e.

there exist some mechanisms M1, . . . ,MK such that every mechanism in M′ equals some

convex combination of them.

By Lemma 5.2, there exists some particular π∗ ∈ Π for which the separate-sales mech-

anism earns strictly higher expected profit than any other mechanism. Since expected

profit is a linear function on M′, it is maximized at one of the corners, so the separate-

sales mechanism must be one of these corners, say M1. By continuity, for any sufficiently

nearby π, M1 still gives strictly higher expected profit than M2, . . . ,MK , and so remains

higher than any convex combination, i.e. no mechanism attains higher profit than R∗.

We note that this result does not extend to the continuous-type case. If, for example,

each Θg is an interval in R
+, with a unique optimal price p∗g that is in the interior, then

for any joint distribution such that the optimal profit is R∗, it can be perturbed by an

arbitrarily small amount so that offering the bundle of goods 1 and 2 at a price p∗1+p∗2−ǫ

(in addition to offering each good g separately at price p∗g) earns strictly higher profit for

small ǫ. As in [30], this can be seen by looking at the first-order condition with respect

to ǫ.

However, we do still have an open set of moment restrictions z for which the worst-

case optimum remains R∗, as long as there is more than one joint distribution π that pins

profit down to R∗ (which will be true in general).
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6 Concluding comments

We conclude by briefly discussing some aspirations for future work. As described in

the introduction, the main purpose of this paper has been to advance a possible new

modeling approach to attack multidimensional screening problems, where the traditional

approach has often given intractable, or at least complicated, models. Specifically, we have

formulated a model in which assuming no interactions between the components leads to

no interactions in the solution.

This is a first step. There are two natural goals for further work to build on this model

and proof:

• First, to connect formally with the simple intuition sketched back in the introduc-

tion: the profit from screening separately on each component g is known indepen-

dently of the joint distribution, whereas any mechanism in which the components

interact seems sensitive to the joint distribution. Can our proof (or perhaps some

completely different proof technique) be expressed in a way that centers on this

idea?

This might seem an obvious approach, but there is some subtlety. This proof tech-

nique would consist of two basic steps: the profit from separate screening does not

depend on the joint distribution; and, this independence makes it a solution to the

maxmin problem. It is clear that the first of these steps depends on the assump-

tion of additively separable preferences. But in fact, the second step depends on

this assumption as well. That is: one can construct simple examples of multidi-

mensional screening problems with the same objective (maxmin profit over joint

distributions consistent with known marginals), but non-additively-separable pref-

erences, in which there is a unique optimal mechanism, and its profit does vary

depending on the joint distribution. (We omit the details here.) In view of this, it

is unclear how one would go about proving the second step, without constructing

an explicit distribution as we have done here.

• Second, to have fruitful applications of the method to new economic questions. More

specifically, this would mean identifying some applied-theory question involving mul-

tidimensional screening, where a traditional model would be intractable, and where

using the robust approach to obtain a clean formal solution turns out to be helpful

in thinking through the economics of the problem. As noted before, the important

insights in multidimensional screening are likely to arise when there are systematic
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interactions between the different dimensions, which is exactly what the model in

this paper has ruled out. However, this paper may provide a useful starting point

by showing how to first eliminate interactions besides the one that is of interest.

Earlier work by this author followed this course of development in a moral hazard

setting, taking a simple robust approach to principal-agent contracting [12] and ap-

plying it to gain traction on the more complex problem of incentivizing information

acquisition [11]. To do the same in a multidimensional screening context is still a

task that lies ahead.

A Omitted proofs

Proof of Proposition 3.1. For notational convenience, let us parameterize types directly

by z, and write θg(z) for the corresponding value for good g. Thus, for any mechanism

(x, t), x(z) ∈ [0, 1]G indicates type z’s probability of receiving each good, and t(z) ∈ R

indicates z’s payment; incentive-compatibility (2.1) becomes

∑

g

θg(z)xg(z)− t(z) ≥
∑

g

θg(z)xg(ẑ)− t(ẑ) for all z, ẑ ∈ [0, 1], (A.1)

and individual rationality (2.2) becomes

∑

g

θgxg(z)− t(z) ≥ 0. (A.2)

The claim is that for any such mechanism, expected revenue satisfies

∫ 1

0

t(z) dz ≤ R∗.

Following the standard method, let U(z) =
∑

g θ
g(z)xg(z)− t(z) denote the payoff of

type z. So for z′ ≥ z, (A.1) gives

U(z′) ≥ U(z) +
∑

g

(θg(z′)− θg(z))xg(z) ≥ U(z). (A.3)

Thus, U is weakly increasing, hence differentiable almost everywhere, and equal to the

integral of its derivative. Moreover, at each point of differentiability, the envelope theorem
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applied to (A.3) gives us

dU

dz
=
∑

g

dθg(z)

dz
xg(z) =

∑

g

1

f g(θg(z))
xg(z).

Therefore,

U(z) = U(0) +

∫ z

0

dU(z̃)

dz̃
dz̃ = U(0) +

∑

g

∫ z

0

xg(z̃)

f g(θg(z̃))
dz̃.

Consequently, profit is

∫ 1

0

t(z) dz =

∫ 1

0

(
∑

g

θg(z)xg(z)− U(z)

)
dz

=

∫ 1

0

(
∑

g

θg(z)xg(z)− U(0)−
∑

g

∫ z

0

xg(z̃)

f g(θg(z̃))
dz̃

)
dz

≤
∑

g

[∫ 1

0

θg(z)xg(z) dz −

∫ 1

0

(∫ z

0

xg(z̃)

f g(θg(z̃))
dz̃

)
dz

]

where the last inequality holds because U(0) ≥ 0 by (A.2). Switching the variables in the

second integral and changing the order of integration gives

=
∑

g

[∫ 1

0

(
θg(z)−

1− z

f g(θg(z))

)
xg(z) dz

]
. (A.4)

Now, for each g, we can see that the expression in parentheses is exactly the virtual value

vg corresponding to marginal type θg(z). Hence, by assumption, this quantity is negative

for θg(z) < θ∗g and positive for θg(z) > θ∗g — which correspond to z < F g(θ∗g) and

z > F g(θ∗g), respectively. In particular, an upper bound for the value of (A.4) is found

by taking xg(z) to be as small as possible, namely 0, when z < F g(θ∗g), and as large as

possible, namely 1, when z > F g(θ∗g). Thus, we see that the principal’s profit is at most

∑

g

[∫ 1

θ∗g

(
θg(z)−

1− z

f g(θg(z))

)
dz

]
=

∑

g

[∫ 1

θ∗g

d

dz
(−θg(z)(1− z)) dz

]

=
∑

g

θ∗g(1− F g(θ∗g)).

This is exactly the profit attained by the mechanism that sells the goods separately, with
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a price of θ∗g for good g; therefore it cannot exceed R∗. This establishes that the profit

from any mechanism is at most R∗, as claimed.

Proof of Lemma 4.2. Let ∆ = maxx,θ u(x, θ) − minx,θ u(x, θ), and notice that for any

mechanism satisfying IC, any two types’ payments can differ by at most ∆. Consequently,

when looking for optimal mechanisms, we can restrict attention to mechanisms whose

payments are in [−t, t], for a sufficiently high value of t (which is independent of the

distribution π): each type’s payment is bounded below, because a sufficiently low payment

for one type would imply low payments for all types, and then the mechanism would not

be optimal (it could be improved by increasing all types’ payments by a small constant

without violating IR); and each type’s payment is bounded above, simply by IR.

Then, the maximum expected profit, as a function of π, is the upper envelope of a

uniformly bounded family of linear functions (one such function for each possible mech-

anism M ∈ M satisfying the bounds on payments). It readily follows that this upper

envelope is Lipschitz in π, and in particular is continuous.

Proof of Lemma 4.3. (Adapted from [28])

It is easy to see that statement (b) of the lemma follows from (a), by integrating over

each Sk in the partition; so it suffices to prove (a).

As in the proof of Lemma 4.2, we can take ∆ = maxx,θ u(x, θ) − minx,θ u(x, θ), and

then in any mechanism, any two types’ payments can differ by at most ∆. Also, put

τ = min{ǫ/6∆, 1}.

By Lipschitz continuity, there exists δ such that, whenever θ, θ′ are two types with

d(θ, θ′) < δ, then |u(x, θ) − u(x, θ′)| < τǫ/6 for all x. We show this δ has the desired

property.

Let (x, t) be any given mechanism. Let t = minθ t(θ). Let S ⊆ ∆(X) × R be the set

of values (x(θ), τ t + (1 − τ)t(θ)) for θ ∈ Θ, and let S be its closure, which is compact

(by the above observation on payments). Then define (x̃, t̃) by simply assigning to each

type θ ∈ Θ the outcome in S that maximizes its payoff, Eu(x, θ) − t. This exists by

compactness. This (x̃, t̃) is a mechanism: IC is satisfied by definition, and IR is satisfied

since the payments have only been reduced relative to those in (x, t), so each type θ has the

option of getting allocation x(θ) for a payment of less than t(θ), which gives nonnegative

payoff.
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Now, let d(θ, θ′) < δ. We know that the outcome chosen by θ′ in the new mechanism

can be approximated arbitrarily closely by an element of S corresponding to some type

θ′′; in particular, there exists θ′′ such that

|Eu(x̃(θ′), θ)− Eu(x(θ′′), θ)| <
τǫ

6
and

∣∣t̃(θ′)− [τt+ (1− τ)t(θ′′)]
∣∣ < τǫ

6
. (A.5)

Now, we know from IC for the original mechanism

Eu(x(θ), θ)− t(θ) ≥ Eu(x(θ′′), θ)− t(θ′′), (A.6)

and by the definition of the new mechanism (x̃, t̃),

Eu(x̃(θ′), θ′)− t̃(θ′) ≥ Eu(x(θ), θ′)− [τt+ (1− τ)t(θ)].

Using (twice) the fact that d(θ, θ′) < δ, the latter inequality turns into

Eu(x̃(θ′), θ)− t̃(θ′) ≥ Eu(x(θ), θ)− [τt+ (1− τ)t(θ)]−
τǫ

3
.

Now combining with (A.5) we get

Eu(x(θ′′), θ)− [τt+ (1− τ)t(θ′′)] > Eu(x(θ), θ)− [τt+ (1− τ)t(θ)]−
2τǫ

3
. (A.7)

Adding (A.6) and (A.7), and canceling common terms, we get

τt(θ′′) > τt(θ)−
2τǫ

3

or

t(θ′′) > t(θ)−
2ǫ

3
.

Hence, from (A.5),

t̃(θ′) > t(θ′′)− τ(t(θ′′)− t)−
τǫ

6

>

(
t(θ)−

2ǫ

3

)
− τ∆−

τǫ

6

≥ t(θ)−
2ǫ

3
−

ǫ

6
−

ǫ

6

which is the desired statement (a).
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Proof of Proposition 5.1. Write θg = min(Θg) and θ
g
= max(Θg).

Consider first the pricing problem in each component separately. The profit from

setting price pg is pg(1−F g(pg)), where F g is the cumulative distribution function for θg.

Since the optimal price p∗g is in the interior of Θg, the first-order condition must hold

there:

1− F g(p∗g)− p∗gf g(p∗g) = 0.

Now, for sufficiently small ǫ > 0, we must have

−ǫ(1− F 1(p∗1))(1− F 2(p∗2)) + (A.8)

(p∗1 − ǫ)(F 1(p∗1)− F 1(p∗1 − ǫ))(1− F 2(p∗2)) +

(p∗2 − ǫ)(F 2(p∗2)− F 2(p∗2 − ǫ))(1− F 1(p∗1)) > 0.

Indeed, when ǫ = 0, this expression equals 0, and its derivative with respect to ǫ is

−(1− F 1(p∗1))(1− F 2(p∗2)) + p∗1f 1(p∗1)(1− F 2(p∗2)) + p∗2f 2(p∗2)(1− F ∗(p∗1))

= (1− F 1(p∗1))(1− F 2(p∗2))

−(1− F 2(p∗2))
[
1− F 1(p∗1)− p∗1f 1(p∗1)

]

−(1− F 1(p∗1))
[
1− F 2(p∗2)− p∗2f 2(p∗2)

]

= (1− F 1(p∗1))(1− F 2(p∗2))

> 0.

(Here the second equality comes from the first-order condition for each p∗g.) Write ∆ for

the left-hand side of (A.8) (which depends on ǫ). Let ǫ be a small value for which (A.8)

holds.

Consider the behavior of various buyer types under the separate-price mechanism,

illustrated in Figure 2. Buyer types in region A buy both goods; those in regions B and

D buy only good 2, while those in regions C and E buy only good 1.

Now consider the change in expected profit when the mechanism is changed to offering

either separate prices (p∗1, p∗2) or p∗1 + p∗2 − ǫ for the bundle. Buyers whose value for

both goods g is above p∗g (region A in the figure) now buy the bundle, paying ǫ less

than before. Buyers with θ1 ∈ [p∗1 − ǫ, p∗1) and θ2 ≥ p∗2 (region B) formerly bought

only good 2 but now buy the bundle, paying p∗1 − ǫ more than before. And buyers with
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Figure 2: Buyer behavior under separate sales and bundling.

θ2 ∈ [p∗2 − ǫ, p∗2) and θ1 ≥ p∗1 (region C) switch to buying the bundle, paying p∗2 − ǫ

more than before. These changes constitute a lower bound on the net change in profit.

(In addition, some types who formerly bought nothing now buy the bundle; we ignore

them.)

Thus, writing π(A), π(B), π(C) for the measures of these regions under joint distribu-

tion π, our change in profit is at least

−ǫπ(A) + (p∗1 − ǫ)π(B) + (p∗2 − ǫ)π(C). (A.9)

Now, for any negatively affiliated π, we have

π(B) ≥
π([p∗1 − ǫ, p∗1]×Θ2)

π([p∗1, θ
2
]×Θ2)

× π(A)

=
F 1(p∗1)− F 1(p∗1 − ǫ)

1− F 1(p∗1)
× π(A)

and similarly

π(C) ≥
F 2(p∗2)− F 2(p∗2 − ǫ)

1− F 2(p∗2)
× π(A).

Plugging in to (A.9), our change in profit in going to the bundled mechanism is at
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least

π(A)×

[
−ǫ+ (p∗1 − ǫ)

F 1(p∗1)− F 1(p∗1 − ǫ)

1− F 1(p∗1)
+ (p∗2 − ǫ)

F 2(p∗2)− F 2(p∗2 − ǫ)

1− F 2(p∗2)

]

= π(A)×
∆

(1− F 1(p∗1))(1− F 2(p∗2))
,

with ∆ given by the left-hand side of (A.8).

Take ǫ = ǫ in the bundled mechanism. Recall that in this case, the corresponding

value of ∆ was positive; call this value ∆. This shows that the bundling mechanism, with

price p∗1 + p∗2 − ǫ for the bundle, earns expected profit at least as high as the R∗ from

separate sales, proving part (a).

All of this basically follows [30] (who considered the independent case). In our case,

we obtain only a weak improvement from this bundling, because with negative affiliation,

π(A) may be zero, or arbitrarily close. This is why we must randomize the bundle price

to obtain a strict improvement; we now detail this adjustment.

Take ǫ = min{p∗1 − θ1, p∗2 − θ2}; without loss of generality, ǫ = p∗2 − θ2. Then, in the

mechanism with bundle price p∗1 + p∗2 − ǫ, region E in Figure 2 disappears, and regions

A and C constitute all of the area to the right of the line θ1 = p∗1, implying

π(C) = (1− F 1(p∗1))− π(A).

Therefore, expression (A.9) is at least

−ǫπ(A) + (p∗2 − ǫ)[(1− F 1(p∗1))− π(A)]

= θ2(1− F 1(p∗1))− p∗2π(A).

Consequently, if ǫ is chosen to equal ǫ with probability q and ǫ with probability 1− q, the

expected gain in profit relative to separate prices is at least

q
∆

(1− F 1(p∗1))(1− F 2(p∗2))
π(A) + (1− q)

(
θ2(1− F 1(p∗1))− p∗2π(A)

)

= (1− q)θ2(1− F 1(p∗1)) + π(A)

[
q

∆

(1− F 1(p∗1))(1− F 2(p∗2))
− (1− q)p∗2

]
.

Evidently, if q is chosen close enough to 1, the expression in brackets on the right will be

positive. Then, for any negatively affiliated distribution π, the profit from the randomized

bundling mechanism will be at least R∗ + (1− q)θ2(1− F 1(p∗1)), which is strictly above

45



R∗, proving part (b).

Proof of Lemma 5.2. We first prove the lemma in the special case where each Θg consists

of at most two values. Write them as Θg = {θg1, θ
g
2} with θg1 < θg2 (or {θg1} if there is just

one value), and write (x∗, t∗) for the optimal mechanism that sells each good separately.

In the standard analysis of the one-good problem (as detailed in Appendix B), the

virtual values associated to these two types are

θg1 −
πg(θg2)

πg(θg1)
× (θg2 − θg1) and θg2.

If the former virtual value is negative, then the optimal price for the single good g is θg2;

if it is positive, the optimal price is θg1. The virtual value cannot be zero, because there

would then not be a unique optimal price, contrary to assumption. In either case, the

constraints that receive positive weight in the dual problem are the IR constraint for θg1

and the IC constraint for θg2 to imitate θg1. (If there is just one type θg1, then its virtual

value is the positive number θg1, and its IR constraint is binding.)

The distribution π constructed in the proof of Lemma 4.4 has full support on Θ. To see

this, we look explicitly at the Markov process by which π is defined. This process consists

of Poisson transitions from the low value θg1 to the high value θg2, occurring independently

across g, punctuated by Poisson resets to θg1 for all g simultaneously. (Again, this is for

g with |Θg| = 2; of course if |Θg| = 1 then θg never moves.) It is easy to see that the

stationary distribution, π, has full support. This also implies that all of the multipliers

on the adjacent downward constraints constructed in the proof of Theorem 2.1, that is

to say all of the λ[(θg2, θ
−g) → (θg1, θ

−g)], are strictly positive, in view of their definition

(4.16). Likewise, the lowest type θ1 = (θ11, . . . , θ
G
1 ) has a strictly positive weight on its IR

constraint (namely κ[θ1] = 1).

Now, we saw in the proof of Theorem 2.1 that any mechanism (x, t) must satisfy

∑

θ

π(θ)t(θ) ≤
∑

θ

∑

g

π(θ)Eug(xg(θ), θg) ≤
∑

θ

∑

g

π(θ)ug
max(θ

g) = R∗ (A.10)

with equality for the mechanism (x∗, t∗). Since the π(θ) are all strictly positive, a mech-

anism can be optimal only if it satisfies Eug(xg(θ), θg) = ug
max(θ

g) for every θ and every

g, i.e. it maximizes the virtual value in every component for every type. Since the virtual

value from allocating good g is always positive or negative, never 0 (while the virtual
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value from not allocating is 0), the virtual value maximizer is unique. Thus we must have

x(θ) = x∗(θ) for every θ. Moreover, we can see from (4.20) that the first inequality in

(A.10) can be an equality only if all the IC and IR constraints that have positive multi-

pliers hold with equality. Given that x and x∗ coincide, this equality uniquely determines

the payment of the lowest type t(θ1), by its IR, and then uniquely determines the payment

of each other type, by upward induction using the IC’s. Hence we have t(θ) = t∗(θ) for

every θ as well.

This shows that the only possible optimal mechanism is (x, t) = (x∗, t∗), proving the

lemma in the case where each Θg has at most two elements.

Now we can prove the lemma in general. For each good g, write Θg = {θg1, . . . , θ
g
Jg},

with the values listed in increasing order, θg1 < · · · < θgJg . By assumption, the optimal

price to sell good g is unique, and clearly it must equal one of the values θgj ; write j
∗g for

the index, so that the optimal price is θgj∗g . Write (x∗, t∗) for the mechanism that sells

each good g separately at price θgj∗g .

Let Sg be the collection of all subsets of Θg that contain θgj∗g . For each such subset

Θ̃g ∈ Sg, let πg[Θ̃g] be some distribution in the corresponding one-good problem whose

support is Θ̃g, and for which the unique optimal mechanism is a posted price of θgj∗g . (This

can be constructed, for example, by placing large enough probability mass on θgj∗g .) Now,

by choosing a sufficiently small positive weight ηg[Θ̃g] for each Θ̃g ∈ Sg, we can write πg

as a convex combination of distributions

πg =
∑

Θ̃g∈Sg

ηg[Θ̃g]πg[Θ̃g] + ηg[∅]πg (A.11)

where πg is some distribution that still has full support on Θg, and still has the property

that the unique optimal price is θgj∗g . For convenience, write S
g
= Sg∪{∅} and πg[∅] = πg;

this allows us to write more simply

πg =
∑

Θ̃g∈S
g

ηg[Θ̃g]πg[Θ̃g]. (A.12)

Let S = ×g S
g
. Consider any choice of Θ̃ = (Θ̃1, . . . , Θ̃G) ∈ S. We know that

for each separate good g, setting a price of θgj∗g for each item is optimal against each

marginal distribution πg[Θ̃g]. Accordingly, let π[Θ̃] be the joint distribution constructed

in Subsection 4.2, so that its marginals are the distributions πg[Θ̃g] and such that (x∗, t∗)

is an optimal mechanism for distribution π[Θ̃].
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Then, we can define a joint distribution π on Θ by

π =
∑

Θ̃∈S

(
G∏

g=1

ηg[Θ̃g]

)
π[Θ̃].

It is straightforward to check, using (A.12), that π is a distribution on Θ whose marginal

on each Θg equals πg; and (x∗, t∗) is an optimal mechanism for distribution π. We claim

that in fact (x∗, t∗) is the unique optimal mechanism for π.

So let (x, t) be any optimal mechanism for π; we wish to show that it fully coincides

with (x∗, t∗). Since Eπ[Θ̃][t(θ)] ≤ Eπ[Θ̃][t
∗(θ)] for each π[Θ̃], the only way t can obtain the

same expected profit as t∗ against π is to have equality for every π[Θ̃], i.e. (x, t) must be

an optimal mechanism for every distribution π[Θ̃].

Consider in particular any Θ̃ where each Θ̃g consists of θgj∗g and at most one other

type. For these sets, the special case of the lemma we have already proven shows that we

must have (x(θ), t(θ)) = (x∗(θ), t∗(θ)) for each θ ∈ ×gΘ̃
g.

But every type θ ∈ Θ belongs to some such subspace of types, for appropriate Θ̃.

Therefore, the optimal mechanism (x, t) must coincide with (x∗, t∗) everywhere.

B Generalized virtual values in the monopoly prob-

lem

In this appendix we demonstrate in detail how the generalized virtual values we have de-

fined in Subsection 4.1 reduce to the traditional ironed virtual value in the one-dimensional

case. We focus on the benchmark monopoly problem with a single good (and a finite set

of types). We could allow for a convex cost of production and the calculations would be

virtually identical, but for simplicity we do not do so here.

Suppose that the set of possible values for the good is {θ1, . . . , θJ}, with 0 ≤ θ1 <

θ2 < · · · < θJ , and π is the distribution. Recall the notation for allocations: X = {0, 1},

and u(x, θ) = xθ. Also write Rj = θj ×
∑J

j′=j π(θj′), the profit from setting a price of θj;

write R∗ = maxj Rj, with j∗ as the index attaining the maximum (if there are several,

pick the lowest). It will also be convenient to put RJ+1 = 0.

The traditional analysis of the problem begins by defining the virtual value of type θj
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as

θ̃j = θj −

∑
j′>j π(θj′)

π(θj)
(θj+1 − θj), or θ̃j = θj if j = J.

(This is the discrete-type analogue of the classical formula from [32]; see e.g. [44, p. 118].)

Consider first the no-ironing case, where θ̃1 ≤ · · · ≤ θ̃J . In this case, the traditional

solution uses just the IR constraint of the lowest type θ1 and the adjacent downward

IC constraints θj → θj−1 to show that no mechanism can earn more than R∗, which is

achieved by allocating the goods to the types θj with nonnegative virtual value.

This method corresponds to a solution to the dual problem that puts positive weights

only on these constraints. To fully illustrate the connection, we will explicitly write out

what this dual solution is, and then check that our generalized virtual values defined by

(4.9) correspond to the virtual values θ̃j. Recall that in a typical screening problem, there

may be many possible generalized virtual values, depending on the choice of dual solution.

However, once we have decided to use a dual solution that puts weight only on the lowest

IR and the adjacent downward IC constraints, an easy induction using (4.7) shows that

these weights are uniquely determined. Thus it makes sense to talk about the generalized

virtual values representing this approach to the screening problem.

In our proposed dual solution, the IR and IC multipliers are as follows:

κ[θ1] = 1, λ[θj → θj−1] =
J∑

j′=j

π(θj′),

and all other λ, κ variables are zero. Also, for each θj, we define

µ0[θj] = max{π(θj)θ̃j, 0}, µ1[θj ] = max{0,−π(θj)θ̃j}, ν[θj] = −max{π(θj)θ̃j, 0}.

Let us check that this is indeed an optimal solution. It is immediate that all the

λ, κ, µ variables are nonnegative. It is also immediate that (4.6) holds with a = 0 (this

means not allocating the good) since all the u(a, θ) terms are zero. For a = 1 (allocating

the good), the first three terms in (4.6) add up to −π(θj)θ̃j, while the last two add

up to −(max{0,−π(θj)θ̃j} − max{π(θj)θ̃j, 0}) = π(θj)θ̃j. So (4.6) is satisfied. It is

straightforward to check that (4.7) is satisfied as well.

And for (4.8), note that

π(θj)θ̃j = Rj −Rj+1

for each j = 1, . . . , J . Since j∗ is the (lowest) index for which Rj attains the maximum,
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this implies θ̃j∗−1 < 0 (if j∗ > 1) and θ̃j∗ ≥ 0. So, since the θ̃j are increasing, we have

θ̃j ≥ 0 precisely when j ≥ j∗. Consequently, we have

J∑

j=1

ν[θj] = −
∑

j≥j∗

π(θj)θ̃j = −
∑

j≥j∗

(Rj −Rj+1) = −R∗.

So (4.8) is satisfied, and we do indeed have an optimal solution to the dual program.

Now consider the generalized virtual value of type θj as defined in (4.9) with these

dual variables. Certainly u(a, θj) = 0 when a = 0 (all the u(a, θ) terms are zero); the

relevant case is a = 1. For each θ = θj we only have one nonzero term λ[θ̂ → θ], namely

θ̂ = θj+1 (if j = J there are no such terms), and then it is clear that u(1, θj) is indeed

equal to the traditional virtual value θ̃j.

Now we turn to the general case, where the θ̃j are not necessarily increasing so there

will be ironing. We follow the ironing procedure in [32] (with adjustments for discrete

types). Consider the set of points in the plane,

S =

{(
∑

j′<j

π(θj′), Rj

) ∣∣∣∣∣ j = 1, . . . , J + 1

}

and define the function G : [0, 1] → R to be the upper boundary of the convex hull of this

S, i.e. the lowest concave function such that G(x) ≥ y for each point (x, y) ∈ S. Then

define the ironed revenue

Rj = G

(
∑

j′<j

π(θj′)

)

for each j = 1, . . . , J + 1. We immediately have Rj ≤ Rj ≤ max(x,y)∈S y = R∗, for all j,

with equality for j = j∗. Define also

θ̃j =
Rj −Rj+1

π(θj)

for each j = 1, . . . , J . These are the ironed virtual values. Concavity of G implies they

are increasing, θ̃1 ≤ · · · ≤ θ̃J .

Also, as in the no-ironing case, Rj∗ = maxj Rj implies that θ̃j∗−1 ≤ 0 (if j∗ > 1) and

θ̃j∗ ≥ 0.

Now we describe how to translate the ironing approach into a solution to the dual

problem. The usual colloquial description of ironing is that it maximizes revenue sub-
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ject only to the adjacent downward IC constraints (and IR of the lowest type) plus a

monotonicity constraint, x(θj) increasing in j. However, monotonicity is itself obtained

as a consequence of the adjacent downward and upward IC constraints. So in fact the

corresponding dual solution will put weight on both the downward and upward adjacent

IC’s.

For the IR constraints, we put κ[θ1] = 1 and κ[θj] = 0 otherwise, as before. For the

IC constraints, we put the following weights on the adjacent incentive constraints:

λ[θj → θj−1] =
J∑

j′=j

π(θj′) +
Rj −Rj

θj − θj−1

,

λ[θj−1 → θj] =
Rj −Rj

θj − θj−1

(and all other λ[· · · ] multipliers equal to zero). Notice that these weights are nonnegative,

since Rj ≥ Rj. Put also

µ0[θj ] = max{π(θj)θ̃j, 0}, µ1[θj ] = max{0,−π(θj)θ̃j}, ν[θj] = −max{π(θj)θ̃j, 0}.

In particular, the µ’s are nonnegative as well.

Let’s check that this is an optimal dual solution. First let’s check (4.6) (in the case

a = 1, since a = 0 is easy). We’ll do the case 1 < j < J here. Then, the first three terms

on the left side of (4.6) are

λ[θj+1 → θj] θj+1 + λ[θj−1 → θj] θj−1 − (λ[θj → θj+1] + λ[θj → θj−1]) θj

=
J∑

j′=j+1

π(θj′)θj+1 −
J∑

j′=j

π(θj′)θj +
Rj+1 −Rj+1

θj+1 − θj
θj+1 +

Rj −Rj

θj − θj−1

θj−1

−
Rj+1 −Rj+1

θj+1 − θj
θj −

Rj −Rj

θj − θj−1

θj

= (Rj+1 −Rj) +
Rj+1 −Rj+1

θj+1 − θj
(θj+1 − θj)−

Rj −Rj

θj − θj−1

(θj − θj−1)

= (Rj+1 −Rj) + (Rj+1 −Rj+1)− (Rj −Rj)

= Rj+1 −Rj

= −π(θj)θ̃j.

The other two terms on the left side of (4.6) equal −(µ1[θj]+ν[θj]) = π(θj)θ̃j. Thus, (4.6)

is satisfied. (This is the case 1 < j < J , but the remaining cases are similar, using the
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identities R1 = R1, RJ+1 = RJ+1 to account for the missing terms.)

It is straightforward to see that (4.7) is satisfied as well: the only difference from the

no-ironing case is the addition of the (Rj+1 −Rj+1)/(θj+1 − θj) and (Rj −Rj)/(θj − θj−1)

terms, which each appear once with a + sign and once with a − sign on the left side, and

so they cancel out.

And because θ̃1 ≤ · · · ≤ θ̃j∗−1 ≤ 0 ≤ θ̃j∗ ≤ · · · ≤ θ̃J , we have ν[θj] = 0 for j < j∗ and

= −π(θj)θ̃j for j ≥ j∗. Therefore,

J∑

j=1

ν[θj] = −
∑

j≥j∗

π(θj)θ̃j = −
∑

j≥j∗

(Rj −Rj+1) = −Rj∗ = −R∗.

Thus (4.8) holds as well, and we indeed have an optimal solution to the dual problem.

With this choice of dual variables, the generalized virtual value for allocating the

object to type θj, as defined in (4.9), equals

u(1, θj) = θj −

(
λ[θj+1 → θj]

π(θj)
(θj+1 − θj) +

λ[θj−1 → θj]

π(θj)
(θj−1 − θj)

)

= θj −

∑J

j′=j+1 π(θj′)

π(θj)
(θj+1 − θj)−

Rj+1−Rj+1

θj+1−θj

π(θj)
(θj+1 − θj)−

Rj−Rj

θj−θj−1

π(θj)
(θj−1 − θj)

= θ̃j −
Rj+1 −Rj+1

π(θj)
+

Rj −Rj

π(θj)

=
(Rj −Rj+1)− (Rj+1 −Rj+1) + (Rj −Rj)

π(θj)

=
Rj −Rj+1

π(θj)

= θ̃j.

(Again, this is for 1 < j < J but the calculation for j = 1, J is almost identical.)

Thus, as promised, the generalized virtual values are equal to the ironed virtual values

as traditionally defined.
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