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Abstract

Markov regime switching models have been widely used in numerous empirical applications

in economics and finance. However, the asymptotic distribution of the likelihood ratio test

statistic for testing the number of regimes in Markov regime switching models is an unresolved

problem. This paper proposes the likelihood ratio test of the null hypothesis of M0 regimes

against the alternative hypothesis of M0 + 1 regimes for any M0 ≥ 1 and derives its asymptotic

distribution.
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1 Introduction

Since Hamilton (1989)’s seminal contribution, Markov regime switching models have been widely

used in numerous empirical applications in economics and finance (see, e.g., Hamilton, 1989; Evans

and Wachtel, 1993; Hamilton and Susmel, 1994; Gray, 1996; Sims and Zha, 2006; Inoue and Oki-

moto, 2008; Ang and Bekaert, 2002; Okimoto, 2008; Dai et al., 2007). The number of regimes is an

important parameter in applications of Markov regime switching models. Despite its importance,

testing for the number of regimes in Markov regime switching models has been an unsolved problem

because the standard asymptotic analysis of the likelihood ratio test statistic (LRTS) breaks down

due to problems such as non-identifiable parameters, the true parameter being on the boundary

of the parameter space, and the degeneracy of Fisher information matrix. Testing the number of

regimes for Markov regime switching models with normal density, which are popular in empirical

applications, poses a further difficulty because the normal density has an undesirable mathematical

property that the second-order derivative with respect to the mean parameter is linearly dependent

of the first derivative with respect to the variance parameter, leading to a further singularity.

∗This research is support by the Natural Science and Engineering Research Council of Canada, JSPS Grant-in-Aid
for Scientific Research (C) No. 17K03653, and the Institute of Statistical Mathematics Cooperative Use Registration
(2017 ISM CUR-171). The authors thank Marine Carrasco, Liang Hu, and Werner Ploberger for making their code
available.
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The issue of non-identifiability under the null hypothesis and the degeneracy in Fisher infor-

mation matrix has been well recognized in the existing literature. In testing the null hypothesis of

no regime switching, Hansen (1992) derives a lower bound on the asymptotic distribution of the

LRTS, and Garcia (1998) also studies this problem. Carrasco et al. (2014) propose an information

matrix-type test for parameter constancy in general dynamic models based on the fourth order

expansion of the likelihood, and show that the contiguous local alternatives are of order n−1/4,

where n is the sample size. In a closely related problem of testing the number of components in

finite mixture normal regression models, Kasahara and Shimotsu (2015) show that an eighth-order

Taylor expansion is required to characterize the quadratic-form approximation of the log-likelihood

function and, consequently, the contiguous local alternatives are of order n−1/8 (see also Chen and

Li, 2009; Chen et al., 2012; Ho and Nguyen, 2016). Chesher (1984) and Lee and Chesher (1986)

investigate the related problem of testing for neglected heterogeneity under iid setting.

Cho and White (2007) derive the asymptotic distribution of the quasi-likelihood ratio test

statistic (Q-LRTS) for testing single regime against two regimes by rewriting the model as a two-

component mixture models, thereby ignoring the temporal dependence of the regimes. Qu and

Zhuo (2017) extend the analysis of Cho and White (2007) and derive the asymptotic distribution

of the LRTS that properly takes into account the temporal dependence of the regimes under some

restriction on transition probabilities of latent regimes. Both Cho and White (2007) and Qu and

Zhuo (2017) focus on testing single regime against two regimes. To the best of our knowledge, the

asymptotic distribution of the LRTS for testing the null hypothesis of M0 regimes with M0 ≥ 2

remains unknown. Dannemann and Holtzmann (2008) analyze the Q-LRTS for testing the null of

two regimes against three.

This paper proposes a likelihood ratio test of the null hypothesis of M0 regimes against the

alternative hypothesis of M0 + 1 regimes for any M0 ≥ 1. To this end, this paper develops a

version of Le Cam’s differentiable in quadratic mean (DQM) expansion that expands the likelihood

ratio under loss of identifiability while adopting the reparameterization of Kasahara and Shimotsu

(2015). We show that the log-likelihood function is locally approximated by a quadratic function

of polynomials of reparameterized parameters, and derive the asymptotic null distribution of the

LRTS using the results of Andrews (1999, 2001).

The DQM expansion under loss of identifiability was developed by Liu and Shao (2003) in

an iid setting, and their expansion is based on a generalized score function. We extend Liu and

Shao (2003) to accommodate dependent and heterogeneous data and also modify it to fit our

context of parametric regime switching model. Using the DQM-type expansion has advantage over

the “classical” approach based on the Taylor expansion that expands up to the Hessian term in

this context because deriving a higher-order expansion becomes tedious as the order of expansion

increases in a Markov regime switching model.

We consider the conditional likelihood given an arbitrary distribution of the initial unobserved

regime and show that the asymptotic distribution of the LRTS does not depend on the initial

distribution. This approach follows Douc et al. (2004) [DMR, hereafter], who derive the asymp-
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totic distribution of the MLE of regime-switching models Applying Missing Information Principle

(Woodbury, 1971; Louis, 1982) and extending the analysis of DMR, we express the higher-order

derivatives of period density-ratios in terms of the conditional expectation of the derivatives of pe-

riod complete-data log-density. We then show that these derivatives of period density-ratios can be

approximated by a stationary, ergodic and square integrable martingale difference sequence by con-

ditioning on the infinite past, and this approximation is shown to satisfy the regularity conditions

for our DQM expansion.

We first derive the asymptotic null distribution of the LRTS for testing H0 : M = 1 against

HA : M = 2. When the regime-specific density function is not normal, the log-likelihood function

is locally approximated by a quadratic function of the second-order polynomials of reparameterized

parameters. When the density function is normal, the degree of deficiency of the Fisher informa-

tion matrix and the required order of expansion depends on the value of unidentified parameter;

in particular, when the latent regime variables are serially uncorrelated, the model reduces to a

finite mixture normal model in which the fourth-order DQM expansion is necessary to derive a

quadratic approximation of the log-likelihood function. We expand the log-likelihood with respect

to a judiciously chosen polynomials of reparameterized parameters—which involves the fourth-order

polynomials—to obtain a uniform approximation of the log-likelihood function in quadratic form,

and derive the asymptotic null distribution of LRTS by maximizing the quadratic form under a set

of constraints, each of which is locally approximated by a cone.

To derive the asymptotic null distribution of the LRTS for testing H0 : M = M0 against

HA : M = M0 + 1 for M0 ≥ 2, we partition a set of parameters that describes the true null

model in the alternative model into M0 subsets, each of which corresponds to a specific way of

generating the null model. We show that the asymptotic distribution of the LRTS is characterized

by the maximum of M0 random variables, each of which represents the LRTS for testing each of

M0 subsets.

We also derive the asymptotic distribution of our LRTS under local alternatives. We show that

the value of the unidentified parameter affects the convergence rate of contiguous local alternatives.

When the regime-specific density is normal, some contiguous local alternatives are of the order

n−1/8, and our LRT is shown to have nontrivial power against them. The test of Carrasco et al.

(2014) do not have power against such alternatives, whereas the test of Qu and Zhuo (2017) rules

out such alternatives. Simulations show that our bootstrap LRT has good finite sample properties.

The remainder of this paper is organized as follows. After introducing notation and assumptions

in section 2, we discuss the degeneracy of Fisher information matrix and the loss of identifiability

in regime switching model in section 3. Section 4 establishes the DQM-type expansion. Section

5 presents the uniform convergence for the derivatives of density-ratios. Sections 6 and 7 derives

the asymptotic distribution of the LRTS under H0. Section 8 derives the asymptotic distribution

under local alternatives. Section 9 establishes the consistency of parametric bootstrap. Section 10

reports the results from simulations and an empirical application using the U.S. GDP per capita

quarterly growth rate data. Section 11 collects the proofs and the auxiliary results.
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2 Notation and assumptions

Let := denote “equals by definition.” Let ⇒ denote weak convergence of a sequence of stochastic

processes indexed by π for some space Π. For a matrix B, let λmin(B) and λmax(B) be the smallest

and the largest eigenvalue of B, respectively. For a k-dimensional vector x = (x1, . . . , xk)
′ and a

matrix B, define |x| :=
√
x′x and |B| :=

√
λmax(B′B). For a k × 1 vector a = (a1, . . . , ak)

′ and

a function f(a), let ∇af(a) := (∂f(a)/∂a1, . . . , ∂f(a)/∂ak)
′, and let ∇jaf(a) denote a collection of

derivatives of the form (∂j/∂ai1∂ai2 . . . ∂aij )f(a). Let I{A} denote an indicator function that takes

value 1 when A is true and 0 otherwise. C denotes a generic nonnegative finite constant whose

value may change from one expression to another. Let a ∨ b := max{a, b} and a ∧ b := min{a, b}.
Let bxc denote the largest integer less than or equal to x, and define (x)+ := max{x, 0}. Given a

sequence {fk}nk=1, let νn(fk) := n−1/2
∑n

k=1[fk − Eϑ∗(fk)]. For a sequence Xnε that is indexed by

n = 1, 2, . . . and ε, we write Xnε = Opε(an) if, for any δ > 0, there exist ε > 0 and M,n0 <∞ such

that P(|Xnε/an| ≤ M) ≥ 1 − δ for all n > n0, and we write Xnε = opε(an) if, for any δ1, δ2 > 0,

there exist ε > 0 and n0 such that P(|Xnε/an| ≤ δ1) ≥ 1 − δ2 for all n > n0. Loosely speaking,

Xnε = Opε(an) and Xnε = opε(an) mean that Xnε = Op(an) and Xnε = op(an) when ε is sufficiently

small, respectively. All limits are taken as n → ∞ unless stated otherwise. The proof of all the

propositions and lemmas is presented in the appendix.

Consider the Markov regime switching process defined by a discrete-time stochastic process

{(Xk, Yk,Wk)}, where (Xk, Yk,Wk) takes values in a set XM ×Y ×W with Y ⊂ Rqy and W ⊂ Rqw ,

and let B(XM × Y × W) denote the associated Borel σ-field. For a stochastic process {Zk} and

a < b, define Zba := (Za, Za+1, . . . , Zb). Denote Yk−1 := (Yk−1, . . . , Yk−s) for a fixed integer s and

Y
b
a := (Ya,Ya+1, . . . ,Yb).

Assumption 1. (a) {Xk}∞k=0 is a first-order Markov chain with the state space XM :=

{1, 2, . . . ,M}. (b) For each k ≥ 1, Xk is independent of (Xk−2
0 ,Y

k−1
0 ,W∞

0 ) given Xk−1. (c) For

each k ≥ 1, Yk is conditionally independent of (Yk−s−1
−s+1 ,Xk−1

0 ,Wk−1
0 ,W∞

k+1) given (Yk−1, Xk,Wk).

(d) W∞
1 is conditionally independent of (Y0, X0) given W0.1 (e) {(Xk, Yk,Wk)}∞k=0 is a strictly

stationary ergodic process.

The Markov chain {Xk} is not observable and is called the regime. The integer M represents the

number of regimes specified in the model. For each ϑM = (ϑ′M,y, ϑ
′
M,x)′, we denote the transition

probability of Xk by qϑM,x(xk−1, xk) := P(Xk = xk|Xk−1 = xk−1) and the conditional density func-

tion of Yk given (Yk−1, Xk,Wk) by gϑM,y(yk|yk−1, xk, wk) =
∑

j∈XM I{xk = j}f(yk|yk−1, wk; γ, θj)

so that f(yk|yk−1, wk; γ, θj) is the conditional density of yk given (yk−1, wk) when xk = j. Here,

ϑM,x contains the parameter pij := qϑM,x(i, j) for i = 1, . . . ,M and j = 1, . . . ,M−1, and qϑM,x(i,M)

is determined by qϑM,x(i,M) = 1 −
∑M−1

j=1 pij . ϑM,y = (θ′1, . . . , θ
′
M , γ

′)′, where γ is the structural

parameter that does not vary across regimes and θj is the regime-specific parameter that varies

1 Assumption 1(a)–(d) imply that Wk is conditionally independent of (Xk−1
0 ,Y

k−1
0 ) given Wk−1

0 .
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across regimes. Let

pϑ(yk, xk|yk−1, xk−1, wk) := qϑx(xk−1, xk)gϑy(yk|yk−1, xk, wk)

= qϑx(xk−1, xk)
∑
j∈XM

I{xk = j}f(yk|yk−1, wk; γ, θj).

The parameter ϑM belongs to ΘM = ΘM,y ×ΘM,x, a compact subset of RqM . We assume ΘM,y =

Θθ × · · · ×Θθ ×Θγ , and the true parameter value is denoted by ϑ∗M .

We make the following assumptions that correspond to (A1)–(A3) in DMR.

Assumption 2. (a) 0 < σ− := infϑM,x∈ΘM,x minx,x′∈XM qϑM,x(x, x′) and

σ+ := supϑM,x∈ΘM,x maxx,x′∈XM qϑM,x(x, x′) < 1 for each M . (b) For all y′ ∈ Y, y ∈ Ys, and

w ∈ W, 0 < infϑy∈ΘM,y

∑
x∈XM gϑM,y(y

′|y, x, w) and supϑM,y∈ΘM,y

∑
x∈XM gϑM,y(y

′|y, x, w) < ∞.

(c) b+ := supϑM,y∈Θy supy0,y1,w,x gϑM,y(y1|y0, x, w) < ∞ and Eϑ∗(| log b−(Y
1
0,W1)|) < ∞, where

b−(y1
0, w1) := infϑM,y∈ΘM,y

∑
x∈XM gϑM,y(y1|y0, x, w1).

As discussed in p. 2260 of DMR, Assumption 2(a) implies that the Markov chain {Xk} has a

unique invariant distribution and uniformly ergodic for all θM,x ∈ ΘM,x.2 For notational brevity,

we drop the subscript M from XM , ϑM , ΘM , etc., unless it is important to clarify the specific

value of M . Assumption 1(b)(c) imply that {Zk}∞k=0 := {(Xk,Yk)}∞k=0 is a Markov chain on

Z := X × Ys given {Wk}∞k=0, and Zk is conditionally independent of (Zk−2
0 ,Wk−1

0 ,W∞
k+1) given

(Zk−1,Wk). Consequently, Lemma 1, Corollary 1, and Lemma 9 of DMR go through even in the

presence of {Wk}∞k=0. Because {(Zk,Wk)}∞k=0 is stationary, we can and will extend {(Zk,Wk)}∞k=0 to

a stationary process {(Zk,Wk)}∞k=−∞ with doubly infinite time. We denote the probability measure

and the associated expectation of {(Zk,Wk)}∞k=∞ under stationarity by Pϑ and Eϑ, respectively.3

Under Assumption 1(a)-(d), the density function of Yn
1 given X0 = x0, Y0 and Wn

0 for the

model with M regimes is given by

pϑM (Yn
1 |Y0,W

n
0 , x0) =

∑
xn1∈XnM

n∏
k=1

pϑM (Yk, xk|Yk−1, xk−1,Wk). (1)

2Assumptions 1(c) and 2(a) are also employed in DMR. As discussed in Kasahara and Shimotsu (2017), these
assumptions together rule out models in which the conditional density Yk depends on both current and lagged regimes.
For example, if we specify Xk = (X̃k, X̃k−1) with X̃k being a first-order Markov process, then the transition density
of Xk inevitably has zeros. Kasahara and Shimotsu (2017) show asymptotic normality of the MLE while relaxing
Assumption 2(a) to allow for infϑM,x∈ΘM,x minx,x′∈XM

qϑM,x(x, x′) = 0. It is possible to derive the asymptotic
distribution of the LRT under similar assumptions to Kasahara and Shimotsu (2017), albeit with a tedious derivation.

3DMR use Pϑ and Eϑ to denote probability and expectation under stationarity on {Zk}∞k=∞, because their Section 7
deals with the case when Z0 is drawn from an arbitrary distribution. Because we assume {(Zk,Wk)}∞k=∞ is stationary,
we use notations such as Pϑ and Eϑ without an overline for simplicity.

5



Define the conditional log-likelihood function and stationary log-likelihood function as

`n(ϑ, x0) := log pϑ(Yn
1 |Y0,W

n
0 , x0) =

n∑
k=1

log pϑ(Yk|Y
k−1
0 ,Wk

0 , x0),

`n(ϑ) := log pϑ(Yn
1 |Y0,W

n
0 ) =

n∑
k=1

log pϑ(Yk|Y
k−1
0 ,Wk

0),

where we use the fact that pϑ(Yk|Y
k−1
0 ,Wn

0 , x0) = pϑ(Yk|Y
k−1
0 ,Wk

0 , x0) and pϑ(Yk|Y
k−1
0 ,Wn

0 ) =

pϑ(Yk|Y
k−1
0 ,Wk

0), which follows from Assumptions 1. Note that

pϑ(Yk|Y
k−1
0 ,Wk

0 , x0)− pϑ(Yk|Y
k−1
0 ,Wk

0)

=
∑

(xk−1,xk)∈X 2

pϑ(Yk, xk|Yk−1, xk−1,Wk)×
(
Pϑ(xk−1|Y

k−1
0 ,Wk−1

0 , x0)− Pϑ(xk−1|Y
k−1
0 ,Wk−1

0 )
)
,

and Pϑ(xk−1|Y
k−1
0 ,Wk−1

0 ) =
∑

x0∈X Pϑ(xk−1|Y
k−1
0 ,Wk−1

0 , x0)Pϑ(x0|Y
k−1
0 ,Wk−1

0 ). Let ρ := 1 −
σ−/σ+ ∈ [0, 1). Lemma 10(a) in the appendix shows that, for all probability measures µ1 and µ2

on B(X ) and all (Y
k−1
0 ,Wk−1

0 ),

sup
A

∣∣∣∣∣∣
∑
x0∈X

Pϑ(Xk−1 ∈ A|Y
k−1
0 ,Wk−1

0 , x0)µ1(x0)−
∑
x0∈X

Pϑ(Xk−1 ∈ A|Y
k−1
0 ,Wk−1

0 , x0)µ2(x0)

∣∣∣∣∣∣ ≤ ρk−1.

(2)

Consequently, pϑ(Yk|Y
k−1
0 ,Wk−1

0 , x0)− pϑ(Yk|Y
k−1
0 ,Wk−1

0 ) goes to zero at an exponential rate as

k → ∞. Therefore, as shown in the following proposition, the difference between `n(θ, x0) and

`n(θ) is bounded by a deterministic constant, and the maximum of `n(ϑ, x0) and the maximum of

`n(ϑ) are asymptotically equivalent.

Proposition 1. Under Assumptions 1-2, for all x0 ∈ X ,

sup
ϑ∈Θ
|`n(ϑ, x0)− `n(ϑ)| ≤ 1/(1− ρ)2 Pθ∗-a.s.

As discussed on p. 2263 of DMR, the stationary density pϑ(Yk|Y
k−1
0 ,Wk

0) is not available in

closed form for some models with autoregression. For this reason, we consider the log-likelihood

function when the initial distribution of X0 follows some arbitrary distribution

ξM ∈ ΞM := {ξ(x0)x0∈XM : ξ(x0) ≥ 0 and
∑

x0∈XM ξ(x0) = 1}.
Define the maximum likelihood estimator (MLE, hereafter), ϑ̂M,ξM , by the maximizer of the

conditional log likelihood

`n(ϑM , ξM ) := log

(
M∑
x0=1

pϑM (Yn
1 |Y0,W

n
0 , x0)ξM (x0)

)
, (3)
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where pϑM (Yn
1 |Y0,W

n
0 , x0) is given in (1). We define the number of regimes by the smallest number

M such that the data density admits the representation (3). Our objective is to test

H0 : M = M0 against HA : M = M0 + 1.

Define the likelihood ratio test statistic (LRTS, hereafter) for testing H0 as

2[maxϑM0+1∈ΘM0+1
`n(ϑM0+1, ξM0+1)−maxϑM0

∈ΘM0
`n(ϑM0 , ξM0)].

3 Degeneracy of Fisher information matrix and non-identifiability

under the null hypothesis

Consider testing H0 : M = 1 against HA : M = 2 in a two-regime model. The null hypothesis can

be written as H0 : θ∗1 = θ∗2.4 When θ1 = θ2, the parameter ϑ2,x is not identified because Yk has the

same distribution across regimes. Furthermore, Section 6 shows that, when θ1 = θ2, the scores with

respect to θ1 and θ2 are linearly dependent so that the Fisher information matrix is degenerate.

The log-likelihood function of Markov switching models with normal density has further de-

generacy. For example, in a two-regime model where Yk in the j-th regime follows N(µj , σ
2
j ), the

model reduces to a heteroscedastic normal mixture model when P(Xk = 1|Xk−1 = 1) = P(Xk =

1|Xk−1 = 2), i.e., p11 = 1 − p22. Kasahara and Shimotsu (2015) show that, in a heteroscedastic

normal mixture model, the first and second derivatives of the log-likelihood function are linearly

dependent and the score function is a function of the fourth-order derivative. Consequently, one

needs to expand the log-likelihood function four times to derive the score function.

4 Quadratic expansion under loss of identifiability

When testing the number of regimes by the LRT, a part of ϑ is not identified under the null

hypothesis. Let π denote the part of ϑ that is not identified under the null, split ϑ as ϑ = (ψ′, π′)′,

and write `n(ϑ, ξ) = `n(ψ, π, ξ) and `n(ϑ) = `n(ψ, π). For example, in testing H0 : M = 1 against

HA : M = 2, we have ψ = ϑ2,y and π = ϑ2,x. We also use pϑ and pψπ interchangeably.

Denote the true parameter value of ψ by ψ∗, and denote the set of (ψ, π) corresponding to the

null hypothesis by Γ∗ = {(ψ, π) ∈ Θ : ψ = ψ∗}. Let tϑ be a continuous function of ϑ such that

tϑ = 0 if and only if ψ = ψ∗. For ε > 0, define a neighborhood of Γ∗ by

Nε := {ϑ ∈ Θ : |tϑ| < ε}.

When the MLE is consistent, the asymptotic distribution of the LRTS is determined by the local

properties of the likelihood functions in Nε.
4The null hypothesis of H0 : M = 1 also holds when p11 = 1 or p22 = 1. We impose Assumption 2(a) to exclude

p11 = 1 or p22 = 1 from the parameter space because the log likelihood function is unbounded as p11 or p22 tends to
zero (Gassiat and Keribin, 2000).
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We establish a general quadratic expansion of the log-likelihood function `n(ψ, π, ξ) around

`n(ψ∗, π, ξ) that expresses `n(ψ, π, ξ)− `n(ψ∗, π, ξ) as a quadratic function of tϑ. Once we derive a

quadratic expansion, the asymptotic distribution of the LRTS can be characterized by taking its

supremum with respect to tϑ under an appropriate constraint and using the results of Andrews

(1999, 2001).

Denote the conditional density-ratio by

lϑkx0 :=
pψπ(Yk|Y

k−1
0 ,Wk

0 , x0)

pψ∗π(Yk|Y
k−1
0 ,Wk

0 , x0)
, (4)

so that `n(ψ, π, x0)−`n(ψ∗, π, x0) =
∑n

k=1 log lϑkx0 . We assume that lϑkx0 can be expanded around

lϑ∗kx0 = 1 as follows. With slight abuse of notation, let Pn(fk) := n−1
∑n

k=1 fk and recall νn(fk) :=

n−1/2
∑n

k=1[fk − Eϑ∗(fk)].

Assumption 3. For all k = 1, . . . , n, lϑkx0 − 1 admits an expansion

lϑkx0 − 1 = t′ϑsπk + rϑk + uϑkx0 , (5)

where tϑ satisfies ψ → ψ∗ if tϑ → 0tϑ = 0 if and only if ψ = ψ∗ and (sπk, rϑk, uϑkx0) sat-

isfy, for some C ∈ (0,∞), δ > 0, ε > 0, and ρ ∈ (0, 1), (a) Eϑ∗ supπ∈Θπ |sπk|
2+δ < C,

(b) supπ∈Θπ |Pn(sπks
′
πk) − Iπ| = op(1) with 0 < infπ∈Θπ λmin(Iπ) ≤ supπ∈Θπ λmax(Iπ) < ∞,

(c) Eϑ∗ [supϑ∈Nε |rϑk/(|tϑ||ψ − ψ∗|)|2] < ∞, (d) supϑ∈Nε [νn(rϑk)/(|tϑ||ψ − ψ∗|)] = Op(1), (e)

supx0∈X supϑ∈Nε Pn(|uϑkx0 |/|ψ−ψ∗|)j = Op(n
−1) for j = 1, 2, 3, (f) supx0∈X supϑ∈Nε Pn(|sπk||uϑkx0 |/|ψ−

ψ∗|) = Op(n
−1), (g) supϑ∈Nε |νn(sπk)| = Op(1).

In Section 6, we derive an expansion (5) for various regime switching models that involves the

higher order derivatives of density-ratios, ∇jlϑkx0 , and derive the asymptotic distribution of the

LRTS.

We first establish an expansion of `n(ψ, π, x0) in a neighborhood Nc/√n for any c > 0.

Proposition 2. Suppose that Assumption 3(a)–(f) holds. Then, for all c > 0,

sup
x0∈X

sup
ϑ∈Nc/√n

∣∣`n(ψ, π, x0)− `n(ψ∗, π, x0)−
√
nt′ϑνn(sπk) + nt′ϑIπtϑ/2

∣∣ = op(1).

The next proposition expands `n(ψ, π, x0) in Anε(x0) := {ϑ ∈ Nε : `n(ψ, π, x0)− `n(ψ∗, π, x0) ≥
0}. This proposition is useful for deriving the asymptotic distribution of the LRTS because a

consistent MLE is in Anε(x0) by definition, and it is difficult to find a uniform approximation of

`n(ψ, π, x0) in Nε. Let Anεc(x0) := Anε(x0) ∪Nc/√n.

Proposition 3. Suppose that Assumption 3 holds. Then, (a) supx0∈X supϑ∈Anε(x0) |tϑ| =

8



Opε(n
−1/2), and (b) for all c > 0,

sup
x0∈X

sup
ϑ∈Anεc(x0)

∣∣`n(ψ, π, x0)− `n(ψ∗, π, x0)−
√
nt′ϑνn(sπk) + nt′ϑIπtϑ/2

∣∣ = opε(1).

The following corollary of Proposition 2 and 3 shows that `n(ϑ, ξ) defined in (3) admits a

similar expansion to `n(ϑ, x0) for all ξ. Consequently, the asymptotic distribution of the LRTS

does not depend on ξ, and `n(ϑ, ξ) may be maximized in ϑ while fixing ξ or jointly in ϑ and ξ. Let

Anε(ξ) := {ϑ ∈ Nε : `n(ψ, π, ξ)− `n(ψ∗, π, ξ) ≥ 0} and Anεnc(ξ) := Anεn(ξ)∪Nc/√n, which includes

a consistent MLE with any ξ.

Corollary 1. (a) Under the assumptions of Proposition 2, we have

supξ∈Ξ supϑ∈Nc/√n |`n(ψ, π, ξ)− `n(ψ∗, π, ξ)−
√
nt′ϑνn(sπk) + nt′ϑIπtϑ/2| = op(1) for all c > 0. (b)

Under the assumptions of Proposition 3, supξ∈Ξ supϑ∈Anε(ξ) |tϑ| = Opε(n
−1/2) and, for all c > 0,

supξ∈Ξ supϑ∈Anεc(ξ) |`n(ψ, π, ξ)− `n(ψ∗, π, ξ)−
√
nt′ϑνn(sπk) + nt′ϑIπtϑ/2| = opε(1).

5 Uniform convergence of the derivatives of the log-density and

the density-ratios

In this section, we establish approximations that enable us to apply Propositions 2 and 3 and

Corollary 1 to the log-likelihood function of regime switching models. Because of the presence

of singularity, the expansion (5) of the density ratio lϑkx0 involves higher-order derivatives of the

density-ratios ∇jψlϑkx0 with j ≥ 2. First, we express ∇jψlϑkx0 in terms of the conditional expectation

of the derivatives of the complete data log-density by extending the Missing Information Principle

(Woodbury, 1971; Louis, 1982) and the analysis of DMR to higher-order derivatives. We then

show that a sequence {∇jψlϑkx0}∞k=0 can be approximated by a stationary martingale difference

sequence by conditioning on the infinite past Y
k−1
−∞ in place of Y

k−1
0 . The leading term satisfies

the assumptions on sπk in (5) because it is a stationary martingale difference sequence, and the

resulting approximation error satisfies the assumptions on the remainder terms rϑk and uϑkx0 .

For notational brevity, we assume ϑ is scalar and suppress the subscript ϑ from ∇jϑ in this

section. Adaptations to vector-valued ϑ are straightforward but need more tedious notation. We

first collect notations. Define Z
k
k−1 := (Xk−1,Yk−1,Wk, Xk, Yk) and denote the derivative of the

complete data log-density by

φi(ϑ,Z
k
k−1) := ∇i log pϑ(Yk, Xk|Yk−1, Xk−1,Wk), i ≥ 1. (6)

We use a short-handed notation φiϑk := φi(ϑ,Z
k
k−1). We also suppress the superscript 1 from φ1

ϑk,

so that φϑk = φ1
ϑk. For random variables V1, . . . , Vq and a conditioning set F , define the central

9



conditional moment of (V1, . . . , Vq) as

Ecϑ [V1, . . . , Vq|F ] := Eϑ [(V1 − Eϑ[V1|F ]) · · · (Vq − Eϑ[Vq|F ])|F ] .,

For example, Ecϑ [φϑk1φϑk2φϑk3 |F ] := Eϑ [(φϑk1 − Eϑ[φϑk1 |F ]) (φϑk2 − Eϑ[φϑk2 |F ]) (φϑk3 − Eϑ[φϑk3 |F ])|F ].

Let I(j) = (i1, . . . , ij) denote a sequence of positive integer with j elements, let σ(I(j)) denote

all the unique permutations of (i1, . . . , ij), and let |σ(I(j))| denote the number of such unique

permutations. For example, if I(3) = (2, 1, 1), then σ(I(3)) = {(2, 1, 1), (1, 2, 1), (1, 1, 2)} and

|σ(I(3))| = 3; if I(3) = (1, 1, 1), then σ(I(3)) = (1, 1, 1) and |I(3)| = 1. Let T (j) = (t1, . . . , tj) for

j = 1, . . . , 6. For a conditioning set F , define symmetrized central conditional moments as

Φ
I(1)
ϑT (1)[F ] := Eϑ

[
φi1ϑt1

∣∣∣F] , Φ
I(2)
ϑT (2)[F ] :=

1

|σ(I(2))|
∑

(`1,`2)∈σ(I(2))

Ecϑ
[
φ`1ϑt1φ

`2
ϑt2

∣∣∣F] ,
Φ
I(3)
ϑT (3)[F ] :=

1

|σ(I(3))|
∑

(`1,`2,`3)∈σ(I(3))

Ecϑ
[
φ`1ϑt1φ

`2
ϑt2
φ`3ϑt3

∣∣∣F] ,
Φ
I(4)
ϑT (4)[F ] :=

1

|σ(I(4))|
∑

(`1,...,`4)∈σ(I(4))

Φ̃`1`2`3`4
ϑT (4) ,

(7)

where Φ̃`1`2`3`4
ϑT (4) := Ecϑ[φ`1ϑt1φ

`2
ϑt2
φ`3ϑt3φ

`4
ϑt4
|F ]−Ecϑ[φ`1ϑt1φ

`2
ϑt2
|F ]Ecϑ[φ`3ϑt3φ

`4
ϑt4
|F ]−Ecϑ[φ`1ϑt1φ

`3
ϑt3
|F ]Ecϑ[φ`2ϑt2φ

`4
ϑt4
|F ]−

Ecϑ[φ`1ϑt1φ
`4
ϑt4
|F ]Ecϑ[φ`2ϑt2φ

`3
ϑt3
|F ], and Φ

I(5)
ϑT (5)[F ] and Φ

I(6)
ϑT (6)[F ] are defined in Section 12.2.1 in ap-

pendix. Note that these moments are symmetric with respect to (t1, . . . , tj). Define, for

j = 1, 2, . . . , 6, k ≥ 1, m ≥ 0 and x ∈ X ,

∆
I(j)
j,k,m,x(ϑ) :=

∑
T (j)∈{−m+1,...,k}j

Φ
I(j)
ϑT (j)

[
Y
k
−m,W

k
−m, X−m = x

]
−

∑
T (j)∈{−m+1,...,k−1}j

Φ
I(j)
ϑT (j)

[
Y
k−1
−m ,W

k−1
−m , X−m = x

]
,

(8)

where
∑
T (j)∈{−m+1,...,k}j denotes

∑k
t1=−m+1

∑k
t2=−m+1 · · ·

∑k
tj=−m+1, and

∑
T (j)∈{−m+1,...,k−1}j

is defined similarly. Define ∆
I(j)
j,k,m(θ) analogously to ∆

I(j)
j,k,m,x(ϑ) by dropping X−m = x from the

conditioning variable.

For 1 ≤ k ≤ n and m ≥ 0, let

pϑ(Yk
−m+1|Y−m,Wk

−m) :=
∑

xk−m∈Xk+m+1

k∏
t=−m+1

pϑ(Yt, xt|Yt−1,Wt, xt−1)Pϑ∗(x−m|Y−m,Wk
−m),

(9)

denote the stationary density of Yk
−m+1 associated with ϑ conditional on {Y−m,Wk

−m}, where

X−m is drawn from its true conditional stationary distribution Pϑ∗(X−m|Y
k−1
−m ,W

k
−m). Let

pϑ(Yk|Y
k−1
−m ,W

k
−m) := pϑ(Yk

−m+1|Y−m,Wk
−m)/pϑ(Yk−1

−m+1|Y−m,W
k−1
−m ) denote the associated
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conditional density of Yk given (Y
k−1
−m ,W

k
−m).5

Define the density ratio as lk,m,x(ϑ) := pϑ(Yk|Y
k−1
−m ,W

k
−m, X−m = x)/pϑ∗(Yk|Y

k−1
−m ,W

k
−m, X−m =

x). For j = 1, 2 . . . , 6, 1 ≤ k ≤ n, m ≥ 0 and x ∈ X , define the derivatives of log densities and

density-ratios by

∇j`k,m,x(ϑ) := ∇j log pϑ(Yk|Y
k−1
−m ,W

k
−m, X−m = x), ∇jlk,m,x(ϑ) :=

∇jpϑ(Yk|Y
k−1
−m ,W

k
−m, X−m = x)

ppϑ∗(Yk|Y
k−1
−m ,W

k
−m, X−m = x)

,

∇j`k,m(ϑ) := ∇j log pϑ(Yk|Y
k−1
−m ,W

k
−m), and ∇jlk,m(ϑ) :=

∇jpϑ(Yk|Y
k−1
−m ,W

k
−m)

pϑ∗(Yk|Y
k−1
−m ,W

k
−m)

.

The following proposition expresses the derivatives of log densities, ∇j`k,m,x(ϑ)’s, in terms of the

conditional expectation of the central moments of derivatives of the complete data log-density. The

first two equations are also given in DMR (p. 2272 and pp. 2276-7).

Proposition 4. For all 1 ≤ k ≤ n, m ≥ 0, and x ∈ X ,

∇1`k,m,x(ϑ) = ∆1
1,k,m,x(ϑ), ∇2`k,m,x(ϑ) = ∆2

1,k,m,x(ϑ) + ∆1,1
2,k,m,x(ϑ),

∇3`k,m,x(ϑ) = ∆3
1,k,m,x(ϑ) + 3∆2,1

2,k,m,x(ϑ) + ∆1,1,1
3,k,m,x(ϑ),

∇4`k,m,x(ϑ) = ∆4
1,k,m,x(ϑ) + 4∆3,1

2,k,m,x(ϑ) + 3∆2,2
2,k,m,x(ϑ) + 6∆2,1,1

3,k,m,x(ϑ) + ∆1,1,1,1
4,k,m,x(ϑ),

∇5`k,m,x(ϑ) = ∆5
1,k,m,x(ϑ) + 5∆4,1

2,k,m,x(ϑ) + 10∆3,2
2,k,m,x(ϑ) + 10∆3,1,1

3,k,m,x(ϑ) + 15∆2,2,1
3,k,m,x(ϑ)

+ 10∆2,1,1,1
4,k,m,x(ϑ) + ∆1,1,1,1,1

5,k,m,x (ϑ),

∇6`k,m,x(ϑ) = ∆6
1,k,m,x(ϑ) + 6∆5,1

2,k,m,x(ϑ) + 15∆4,2
2,k,m,x(ϑ) + 10∆3,3

2,k,m,x(ϑ) + 15∆4,1,1
3,k,m,x(ϑ)

+ 60∆3,2,1
3,k,m,x(ϑ) + 15∆2,2,2

3,k,m,x(ϑ) + 20∆3,1,1,1
4,k,m,x(ϑ) + 45∆2,2,1,1

4,k,m,x(ϑ) + 15∆2,1,1,1,1
5,k,m,x (ϑ) + ∆1,1,1,1,1

6,k,m,x (ϑ).

Further, the above holds when ∇j`k,m,x(ϑ) and ∆
I(j)
j,k,m,x(ϑ) are replaced with ∇j`k,m(ϑ) and

∆
I(j)
j,k,m(ϑ).

The following assumption corresponds to (A6)–(A8) in DMR and is tailored to our set-

ting where some elements of ϑ∗x are not identified. Note that Assumptions (A6)–(A7) in DMR

pertaining to qϑx(x, x′) hold in our case because pij ’s are bounded away from 0 and 1. Let

Gϑk :=
∑

xk∈X gϑy(Yk|Yk−1, xk,Wk). Gϑk satisfies Assumption 4(b) in general when N ∗ is suf-

ficiently small.

Assumption 4. There exists a positive real δ such that on N ∗ := {ϑ ∈ Θ : |ϑy − ϑ∗y| < δ} the

following conditions hold: (a) For all (y, y′, x, w) ∈ Ys × Y × X ×W, gϑy(y
′|y, x, w) is six times

continuously differentiable on N ∗. (b) Eϑ∗ [supϑ∈N ∗ supx∈X |∇j log gϑy(Y1|Y0, x,W )|2qj ] < ∞ for

j = 1, 2, . . . , 6 and Eϑ∗ supϑ∈N ∗ |Gϑk/Gϑ∗k|qg < ∞ with q1 = 6q0, q2 = 5q0, . . . , q6 = q0, where

5Note that DMR use the same notation pϑ(·|Yk−1
−m ) for a different purpose. On p. 2263 and in some other (but

not all) places, DMR use pϑ(Yk|Y
k−1
0 ) to denote an (ordinary) stationary conditional distribution of Yk.
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q0 = (1 + ε)qϑ and qg = (1 + ε)qϑ/ε for some ε > 0 and qϑ > max{3, dim(ϑ)}. (c) For almost all

(y, y′, w) ∈ Ys×Y×W, there exists a function fy,y′,w : X → R+ such that supϑ∈N ∗ gϑy(y
′|y, x, w) ≤

fy,y′,w(x) <∞ and, for almost all (y, x, w) ∈ Ys×X ×W, for j = 1, 2, . . . , 6, there exist functions

f jy,w,x : Y → R+ in L1 such that |∇jgϑy(y′|y, x, w)| ≤ f jy,x,w(y′) for all ϑ ∈ N ∗.

Lemma 3 in the appendix shows that, for all x ∈ X and 1 ≤ k ≤ n and a suitably defined rI(j),

{∆I(j)
j,k,m,x(ϑ)}m≥0 is a uniform LrI(j)(Pϑ∗)-Cauchy sequence that converges uniformly with respect

to ϑ ∈ N ∗ Pϑ∗-a.s. and in LrI(j)(Pϑ∗) to a random variable that does not depend on x. From this

result and Proposition 4, {∇j`k,m,x(ϑ)}m≥0 and {∇j`k,m(ϑ)}m≥0 converge to ∇j`k,∞(ϑ) uniformly

in ϑ ∈ N ∗ Pϑ∗-a.s. and in Lrj (Pϑ∗) as the following proposition shows.

Proposition 5. Under Assumptions 1, 2, and 4, for j = 1, . . . , 6, there exist random variables

(Kj , {Mj,k}nk=1) ∈ Lrj (Pϑ∗) and ρ∗ ∈ (0, 1) such that, for all 1 ≤ k ≤ n and m′ ≥ m ≥ 0,

(a) sup
x∈X

sup
ϑ∈N ∗

|∇j`k,m,x(ϑ)−∇j`k,m(ϑ)| ≤ Kj(k +m)7ρk+m−1
∗ Pϑ∗-a.s.,

(b) sup
x∈X

sup
ϑ∈N ∗

|∇j`k,m,x(ϑ)−∇j`k,m′,x(ϑ)| ≤ Kj(k +m)7ρk+m−1
∗ Pϑ∗-a.s.,

(c) sup
m≥0

sup
x∈X

sup
ϑ∈N ∗

|∇j`k,m,x(ϑ)|+ sup
m≥0

sup
ϑ∈N ∗

|∇j`k,m(ϑ)| ≤Mj,k Pϑ∗-a.s.,

where r1 = 6q0, r2 = 3q0, r3 = 2q0, r4 = 3q0/2, r5 = 6q0/5, and r6 = q0. (d) Uniformly in ϑ ∈ N ∗

and x ∈ X , ∇j`k,m,x(ϑ) and ∇j`k,m(ϑ) converge Pϑ∗-a.s. and in Lrj (Pϑ∗) to ∇j`k,∞(ϑ) ∈ Lrj (Pϑ∗)
as m→∞.

Finally, we prove the uniform convergence of the derivatives of density-ratios by expressing them

as polynomials of the derivatives of log-density and applying Proposition 5 and the Hölder’s in-

equality. As shown in the following Proposition 6, {∇jlk,m,x(ϑ)}m≥0 and {∇jlk,m(ϑ)}m≥0 converge

to ∇jlk,∞(ϑ) uniformly with respect to x ∈ X and ϑ ∈ N ∗ Pϑ∗-a.s. and in Lqϑ(Pϑ∗).

Proposition 6. Under Assumptions 1, 2, and 4, for j = 1, . . . , 6, there exist random variables

{Kj,k}nk=1 ∈ Lqϑ(Pϑ∗) and ρ∗ ∈ (0, 1) such that, for all 1 ≤ k ≤ n and m′ ≥ m ≥ 0,

(a) sup
x∈X

sup
ϑ∈N ∗

|∇jlk,m,x(ϑ)−∇jlk,m(ϑ)| ≤ Kj,k(k +m)7ρk+m−1
∗ Pϑ∗-a.s.,

(b) sup
x∈X

sup
ϑ∈N ∗

|∇jlk,m,x(ϑ)−∇jlk,m′,x(ϑ)| ≤ Kj,k(k +m)7ρk+m−1
∗ Pϑ∗-a.s.,

(c) sup
m≥0

sup
x∈X

sup
ϑ∈N ∗

|∇jlk,m,x(ϑ)|+ sup
m≥0

sup
ϑ∈N ∗

|∇jlk,m(ϑ)| ≤ Kj,k Pϑ∗-a.s.

(d) Uniformly in ϑ ∈ N ∗ and x ∈ X , ∇jlk,m,x(ϑ) and ∇jlk,m(ϑ) converge Pϑ∗-a.s. and in Lqϑ(Pϑ∗)
to ∇jlk,∞(ϑ) ∈ Lqϑ(Pϑ∗) as m→∞. (e) supϑ∈N ∗ |∇jlk,0(ϑ)−∇jlk,∞(ϑ)| ≤ Kj,kk

7ρk−1
∗ Pϑ∗-a.s.

When we apply Propositions 2 and 3 and Corollary 1 to regime switching models, lk,0,x(ϑ) cor-

responds to lϑkx0 on the left hand side of (5), and sπk in (5) is a function of ∇jlk,0(ϑ)’s. Proposition

12



6 and the dominated convergence theorem for conditional expectations (Durrett, 2010, Theorem

5.5.9) imply that Eϑ∗ [∇jlk,∞(ϑ)|Yk−1
−∞] = 0 for all ϑ ∈ N ∗. Therefore, {∇jlk,∞(ϑ)}∞k=−∞ is a sta-

tionary, ergodic, and square integrable martingale difference sequence, and {∇jlk,∞(ϑ)}5j=1 satisfies

Assumption 3(a)(b)(g).

6 Testing homogeneity

Before developing the LRT of M0 components, we analyze a simpler case of testing the null hy-

pothesis H0 : M = 1 against HA : M = 2 when the data is from H0. Assumption 2(a) restricts

p11 and p22 away from 0 and 1. We assume that the parameter space for ϑ2,x = (p11, p22)′ takes

the form [ε, 1 − ε]2 for a small ε ∈ (0, 1/2). This assumption is also necessary because the LRTS

is unbounded under the null hypothesis when p11 or p22 tends to 1 (Gassiat and Keribin, 2000).

Denote the true parameter in a one-regime model by ϑ∗1 := ((θ∗)′, (γ∗)′)′. The two-regime model

gives rise to the true density pϑ∗1(Yn
1 |Y0, x0) if the parameter ϑ2 = (θ1, θ2, γ, p11, p22)′ lies in a

subset of the parameter space

Γ∗ := {(θ1, θ2, γ, p11, p22) ∈ Θ2 : θ1 = θ2 = θ∗ and γ = γ∗} .

Note that (p11, p22) is not identified under H0.

Let `n(ϑ2, ξ2) := log
(∑2

x0=1 pϑ2(Yn
1 |Y0,W

n
0 , x0)ξ2(x0)

)
denote the two-regime log-likelihood

for a given initial distribution ξ2(x0) ∈ Ξ2, and let ϑ̂2 := arg maxϑ2∈Θ2 `n(ϑ2, ξ2) denote the max-

imum likelihood estimator (MLE) of ϑ2 given ξ2. Because ξ2 does not matter asymptotically, we

treat ξ2 fixed and suppress ξ2 from ϑ̂2. Let ϑ̂1 denote the one-regime MLE that maximizes the

one-regime log-likelihood function `0,n(ϑ1) :=
∑n

k=1 log f(Yk|Yk−1,Wk; γ, θ) under the constraint

ϑ1 = (θ′, γ′)′ ∈ Θ1.

We introduce the following assumption for consistency of ϑ̂1 and ϑ̂2. Assumption 5(b) corre-

sponds to Assumption (A4) of DMR. Assumption 5(c) is a standard identification condition for

the one-regime model. Assumption 5(d) implies that the Kullback-Leibler divergence between

pϑ∗1(Y1|Y
0
−m,W

0
−m) and pϑ2(Y1|Y

0
−m,W

0
−m) is 0 if and only if ϑ2 ∈ Γ∗.

Assumption 5. (a) Θ1 and Θ2 are compact, and ϑ∗1 is in the interior of Θ1. (b) For all

(x, x′) ∈ X and all (y, y′, w) ∈ Ys × Y ×W, f(y′|y0, w; γ, θ) is continuous in (γ, θ). (c) If ϑ1 6=
ϑ∗1, then Pϑ∗1

(
f(Y1|Y0,W1; γ, θ) 6= f(Y1|Y0,W1; γ∗, θ∗)

)
> 0. (d) Eϑ∗1 [log pϑ2(Y1|Y

0
−m,W

1
−m)] =

Eϑ∗1 [log pϑ∗1(Y1|Y
0
−m,W

1
−m)] for all m ≥ 0 if and only if ϑ2 ∈ Γ∗.

The following proposition shows that the MLE of ϑ∗1 and ϑ∗2,y are consistent under this condition.

Proposition 7. Suppose that Assumptions 1, 2, and 5 hold. Then, under the null hypothesis of

M = 1, ϑ̂1
p→ ϑ∗1 and infϑ2∈Γ∗ |ϑ̂2 − ϑ2|

p→ 0.

We proceed to derive the asymptotic distribution of the LRTS building on the results in Sections

4 and 5. Following the notation of Section 4, we split ϑ2 as ϑ2 = (ψ, π), where π is the part
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of ϑ that is not identified under the null hypothesis, and the elements of ψ will be delineated

later. In the current setting, ϑ2,x = (p11, p22)′ is not identified under the null. Define % :=

corrϑ2,x(Xk, Xk+1) = p11 + p22 − 1 and α := Pϑ2,x(Xk = 1) = (1 − p22)/(2 − p11 − p22). The

parameter spaces for % and α under restriction p11, p22 ∈ [ε, 1−ε] are given by Θ% := [−1+2ε, 1−2ε]

and Θα := [ε, 1 − ε], respectively. Because the mapping from (p11, p22) to (%, α) is one-to-one, we

reparameterize π as π := (%, α)′ ∈ Θπ := Θ% × Θα, and let pψπ(·|·) := pϑ2(·|·). Henceforth, we

suppress Wn
0 for notational brevity and write, for example, pψπ(Yn

1 |Y0,W
n
0 , x0) as pψπ(Yn

1 |Y0, x0)

and pψπ(yk, xk|yk−1, xk−1, wk) as pψπ(yk, xk|yk−1, xk−1) when doing so does not cause confusion.

We apply Corollary 1 to `n(ψ, π, ξ2) by finding a representation of (tϑ, sπk, rϑk, uϑkx0) in (5) in

terms of ϑ, pψπ(·|·), and derivatives of pψπ(·|·) and then showing that (tϑ, sπk, rϑk, uϑkx0) satisfy

Assumption 3. Because of the degeneracy of Fisher information matrix, sπk involves higher-order

derivatives, and tϑ consists of functions of polynomials of (reparameterized) ϑ.

The remainder of this section derives sπk as a function of ∇jpψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 )

with pψπ(Y k
1 |Y0) defined in (9). This approximation is valid because Proposition 6 implies that

∇jpψπ(Yk|Y
k−1
0 , x0)/pψ∗π(Yk|Y

k−1
0 , x0) − ∇jpψπ(Yk|Y

k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) goes to zero at an ex-

ponential rate as k → ∞. Section 6.1 analyzes the case when the regime-specific distribution

of yk is not normal distribution with unknown variance. Section 6.2 analyzes the case when the

regime-specific distribution yk is normal distribution with regime-specific and unknown variance,

and Section 6.3 handles normal distribution where the variance is unknown and common across

regimes.

Note that, because Y
∞
−∞ and X∞−∞ are independent when ψ = ψ∗, we have

Pψ∗π(X∞−∞|Y
∞
−∞) = Pψ∗π(X∞−∞). (10)

Define qk := I{Xk = 1} so that α = Eψ∗π[qk].

6.1 Non-normal distribution

In this section, we derive sπk when the conditional distribution of Yk is not normal with

unknown variance. We find a representation of ∇jpψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) in terms of

{∇jf(Yt|Xt; γ
∗, θ∗)}kt=1 via Louis Information Principle (Lemma 1 in the appendix). To this end,

we first derive the derivatives of the complete data conditional density pϑ2(yk, xk|yk−1, xk−1) =

gϑ2,y(yk|yk−1, xk)qϑ2,x(xk−1, xk) =
∑2

j=1 I{xk = j}f(yk|yk−1; γ, θj)qϑ2,x(xk−1, xk).

Consider the following reparameterization. Let(
λ

ν

)
:=

(
θ1 − θ2

αθ1 + (1− α)θ2

)
, so that

(
θ1

θ2

)
=

(
ν + (1− α)λ

ν − αλ

)
. (11)

Let η := (γ′, ν ′)′ and ψα := (η′, λ′)′ ∈ Θη ×Θλ. Under the null hypothesis of one regime, the true

value of ψα is given by ψ∗α := (γ∗, θ∗, 0)′. Henceforth, we suppress the subscript α from ψα. Using
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this definition of ψ, let ϑ2 := (ψ′, π′)′ ∈ Θψ × Θπ. Using reparameterization (11) and noting that

qk = I{xk = 1}, we have pψπ(yk, xk|yk−1, xk−1) = gψ(yk|yk−1, xk)qπ(xk−1, xk) and

gψ(yk|yk−1, xk) = f(yk|yk−1; γ, ν + (qk − α)λ). (12)

Henceforth, let f∗k , ∇f∗k , g∗k, and ∇g∗k denote f(Yk|Yk−1; γ∗, θ∗), ∇f(Yk|Yk−1; γ∗, θ∗),

gψ∗(Yk|Yk−1, Xk), and ∇gψ∗(Yk|Yk−1, Xk), respectively, and similarly for log f∗k ,∇ log f∗k , log g∗k,

and ∇ log g∗k. Expanding gψ(Yk|Yk−1, Xk) twice with respect to ψ = (γ′, ν ′, λ′)′ and evaluating at

ψ∗ gives

∇ηg∗k = ∇(γ′,θ′)′f
∗
k , ∇λg∗k = (qk − α)∇θf∗k ,

∇λη′g∗k = (qk − α)∇θ(γ′,θ′)f∗k , ∇λλ′g∗k = (qk − α)2∇θθ′f∗k .
(13)

Recall % := corrϑ∗2(qk, qk+1). Observe that qk satisfies

Eϑ∗2(qk − α)2 = α(1− α), Eϑ∗2(qk − α)3 = α(1− α)(1− 2α),

Eϑ∗2(qk − α)4 = α(1− α)(3α2 − 3α+ 1), corrϑ∗2(qk, qk+`) = %|`|,
(14)

where the first three results follow from the property of a Bernoulli random variable, and the last

result holds because qk follows an AR(1) process with the autoregressive coefficient % (Hamilton,

1994, p. 684). Then, it follows from (10) and (14) that

Eϑ∗ [qk − α|Y
n
−∞] = 0, Eϑ∗ [(qt1 − α)(qt2 − α)|Yn

−∞] = α(1− α)%t2−t1 , t2 ≥ t1. (15)

From Louis Information Principle (Lemma 1), log pψπ(yk, xk|yk−1, xk−1) = log gψ(yk|yk−1, xk) +

log qπ(xk−1, xk), and the definition of pψπ(Y k
1 |Y0) in (9), we obtain

∇ψpψ∗π(Yk|Y
k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

= ∇ψ log pψ∗π(Yk|Y
k−1
0 ) =

k∑
t=1

Eϑ∗
[
∇ψ log g∗t

∣∣∣Yk
0

]
−
k−1∑
t=1

Eϑ∗
[
∇ψ log g∗t

∣∣∣Yk−1
0

]
.

Applying (13), (15), and g∗k = f∗k to the right hand side gives

∇ηpψ∗π(Yk|Y
k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

= ∇(γ′,θ′)′ log f∗k ,
∇λpψ∗π(Yk|Y

k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

= 0. (16)
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Similarly, it follows from Lemma 1, (13), (15), (16), and g∗k = f∗k that

∇λη′pψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) = 0, (17)

∇λλ′pψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 )

= ∇λλ′ log pψ∗π(Yk|Y
k−1
0 )

=

k∑
t=1

Eϑ∗
[
∇λλ′ log g∗t

∣∣∣Yk
0

]
−
k−1∑
t=1

Eϑ∗
[
∇λλ′ log g∗t

∣∣∣Yk−1
0

]
+

k∑
t1=1

k∑
t2=1

Eϑ∗
[∇λg∗t1

g∗t1

∇λ′g∗t2
g∗t2

∣∣∣∣Yk
0

]
−

k−1∑
t1=1

k−1∑
t2=1

Eϑ∗
[∇λg∗t1

g∗t1

∇λ′g∗t2
g∗t2

∣∣∣∣Yk−1
0

]

= α(1− α)

[
∇θθ′f∗k
f∗k

+

k−1∑
t=1

%k−t
(
∇θf∗t
f∗t

∇θ′f∗k
f∗k

+
∇θf∗k
f∗k

∇θ′f∗t
f∗t

)]
. (18)

Note that −1 + 2ε ≤ % ≤ 1 − 2ε in Θ%. Because the first-order derivative with respect to λ

is identically equal to zero in (16), the unique elements of ∇ηpψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) and

∇λλ′pψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) constitute the generalized score sπk in Corollary 1. Because

this score is approximated by a stationary martingale difference sequence and the remainder term

satisfies Assumption 3 from Lemma 6, we can apply Corollary 1 to the likelihood ratio to derive

the asymptotic distribution of the LRTS.

We collect some notations. Recall ψ = (η′, λ′)′ and η = (γ′, ν ′)′. For a q × 1 vector λ and a

q × q matrix s, define qλ × 1 vectors v(λ) and V (s) as

v(λ) := (λ2
1, . . . , λ

2
q , λ1λ2, . . . , λ1λq, λ2λ3, . . . , λ2λq, . . . , λq−1λq)

′,

V (s) := (s11/2, . . . , sqq/2, s12, . . . , s1q, s23, . . . , s2q, . . . , sq,q−1)′.
(19)

Noting that α(1− α) > 0 for α ∈ Θα, define, with tλ(λ, π) := α(1− α)v(λ),

t(ψ, π) :=

(
η − η∗

tλ(λ, π)

)
, s%k :=

(
sηk

sλ%k

)
, where sηk :=

∇ηpψ∗π(Yk|Y
k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

=

(
∇γf∗k/f∗k
∇θf∗k/f∗k

)
, (20)

and sλ%k := V (sλλ%k) with

sλλ%k :=
∇λλ′pψ∗π(Yk|Y

k−1
0 )

α(1− α)pψ∗π(Yk|Y
k−1
0 )

=
∇θθ′f∗k
f∗k

+
k−1∑
t=1

%k−t
(
∇θf∗t
f∗t

∇θ′f∗k
f∗k

+
∇θf∗k
f∗k

∇θ′f∗t
f∗t

)
. (21)

Here, s%k in (20) depends on % but not on α and corresponds to sπk in Corollary 1. The follow-

ing proposition shows that the log-likelihood function is approximated by a quadratic function of
√
nt(ψ, π). Let Nε := {ϑ2 ∈ Θ2 : |t(ψ, π)| < ε}. Let Anε(ξ) := {ϑ ∈ Nε : `n(ψ, π, ξ)− `n(ψ∗, π, ξ) ≥

0} and Anεc(ξ) := Anε(ξ)∪Nc/√n, where we suppress the subscript 2 from ξ2. We use this definition

of Anεc(ξ) through Sections 6.1-6.3. As shown in Sections 6.2 and 6.3, Assumption 6 does not hold
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for regime switching models with normal distribution.

Assumption 6. 0 < inf%∈Θ% λmin(I%) ≤ sup%∈Θ% λmax(I%) < ∞ for I% = limk→∞ Eϑ∗(s%ks′%k),
where s%k is given in (20).

Proposition 8. Suppose Assumptions 1, 2, 4, 5 and 6 hold. Then, under the null hypothesis of

M = 1, (a) supξ supϑ∈Anε(ξ) |t(ψ, π)| = Opε(n
−1/2); and (b) for all c > 0,

sup
ξ∈Ξ

sup
ϑ∈Anεc(ξ)

∣∣`n(ψ, π, ξ)− `n(ψ∗, π, ξ)−
√
nt(ψ, π)′νn(s%k) + nt(ψ, π)′I%t(ψ, π)/2

∣∣ = opε(1). (22)

We proceed to derive the asymptotic distribution of the LRTS. With s%k defined in (20), define

Iη := Eϑ∗(sηks′ηk), Iλ%1%2 := lim
k→∞

Eϑ∗(sλ%1ks
′
λ%2k), Iλη% := lim

k→∞
Eϑ∗(sλ%ks′ηk),

Iηλ% := I ′λη%, Iλ.η%1%2 := Iλ%1%2 − Iλη%1I−1
η Iηλ%2 , Iλ.η% := Iλ.η%%, Zλ% := (Iλ.η%)−1Gλ.η%,

(23)

where Gλ.η% is a qλ-vector mean zero Gaussian process indexed by % with cov(Gλ.η%1 , Gλ.η%2) =

Iλ.η%1%2 . Define the set of admissible values of
√
nα(1 − α)v(λ) when n → ∞ by v(Rq) := {x ∈

Rqλ : x = v(λ) for some λ ∈ Rq}. Define t̃λ% by

rλ%(t̃λ%) = inf
tλ∈v(Rq)

rλ%(tλ), rλ%(tλ) := (tλ − Zλ%)′Iλ.η%(tλ − Zλ%). (24)

The following proposition establishes the asymptotic null distribution of the LRTS.

Proposition 9. Suppose Assumptions 1, 2, 4, 5 and 6 hold. Then, under the null hypothesis of

M = 1, 2[`n(ϑ̂2, ξ2)− `0,n(ϑ̂1)]
d→ sup%∈Θ%ε

(
t̃′λ%Iλ.η%t̃λ%

)
.

In proposition 9, the LRTS and its asymptotic distribution depends on the choice of ε because

Θ% = [−1+2ε, 1−2ε]. It is possible to develop a version of EM test (Chen and Li, 2009; Chen et al.,

2012; Kasahara and Shimotsu, 2015) in this context which does not impose an explicit restriction

on the parameter space for p11 and p22 but we leave such an extension for future research.

6.2 Heteroscedastic normal distribution

Suppose that Yk ∈ R in the j-th regime follows a normal distribution with regime-specific intercept

µj and variance σ2
j . We split θj into θj = (ζj , σ

2
j )
′ = (µj , β

′
j , σ

2
j )
′, and write the density for the j-th

regime as

f(yk|yk−1; γ, θj) = f(yk|yk−1; γ, ζj , σ
2
j ) =

1

σj
φ

(
yk − µj −$(yk−1; γ, βj)

σj

)
, (25)

for some function $. In many applications, $ is a linear function of γ and βj , e.g.,

$(yk−1, wk; γ, βj) = (yk−1)′βj + w′kγ. Consider the following reparameterization introduced in
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Kasahara and Shimotsu (2015) (θ in Kasahara and Shimotsu corresponds to ζ here):
ζ1

ζ2

σ2
1

σ2
2

 =


νζ + (1− α)λζ

νζ − αλζ
νσ + (1− α)(2λσ + C1λ

2
µ)

νσ − α(2λσ + C2λ
2
µ)

 , (26)

where νζ = (νµ, ν
′
β)′, λζ = (λµ, λ

′
β)′, C1 := −(1/3)(1 + α), and C2 := (1/3)(2 − α), so that

C1 = C2 − 1. Collect the reparameterized parameters, except for α, into one vector ψα. As in

Section 6.1, we suppress the subscript α from ψα. Let the reparameterized density be

gψ(yk|yk−1, xk) = f
(
yk|yk−1; γ, νζ + (qk − α)λζ , νσ + (qk − α)(2λσ + (C2 − qk)λ2

µ)
)
. (27)

Let ψ := (η′, λ′)′ ∈ Θψ = Θη × Θλ, where η := (γ′, ν ′ζ , νσ)′ and λ := (λ′ζ , λσ)′. Because the

likelihood function of a normal mixture model is unbounded when σj → 0 (Hartigan, 1985), we

impose σj ≥ εσ for a small εσ > 0 in Θψ. We proceed to derive the derivatives of gψ(Yk|Yk−1, Xk)

evaluated at ψ∗. ∇ψg∗k, ∇λη′g∗k, and ∇λλ′g∗k are the same as those given in (13) except for ∇λ2
µ
g∗k

and that those with respect to λjσ are multiplied by 2j . Higher-order derivatives of gψ(Yk|Yk−1, Xk)

with respect to λµ are derived by following Kasahara and Shimotsu (2015). From Lemma 5 and

the fact that the normal density f(µ, σ2) satisfies

∇µ2f(µ, σ2) = 2∇σ2f(µ, σ2), ∇µ3f(µ, σ2) = 2∇µσ2f(µ, σ2), and

∇µ4f(µ, σ2) = 2∇µ2σ2f(µ, σ2) = 4∇σ2σ2f(µ, σ2),
(28)

we have

∇λiµg
∗
k = dik∇µif∗k , i = 1, . . . , 4, (29)

where

d0k := 1, d1k := qk − α, d2k := (qk − α)(C2 − α), d3k := 2(qk − α)2(1− α− qk),

d4k := −2(qk − α)4 + 3(qk − α)2(α− C2)2.

It follows from Eϑ∗ [qk|Y
n
−∞] = α, (14), and elementary calculation that

Eϑ∗ [dik|Y
n
−∞] = 0, Eϑ∗ [∇λiµg

∗
k|Y

k
−∞] = 0, i = 1, 2, 3,

Eϑ∗ [d4k|Y
n
−∞] = α(1− α)b(α),

Eϑ∗ [∇λ4
µ
g∗k|Y

k
−∞] = α(1− α)b(α)∇µ4f∗k = α(1− α)b(α)4∇σ2σ2f∗k = b(α)Eϑ∗ [∇λ2

σ
g∗k|Y

k
−∞],

(30)

with b(α) := −(2/3)(α2 − α + 1) < 0. Hence, Eϑ∗ [∇λ2
σ
g∗k|Y

k
−∞] and Eϑ∗ [∇λ4

µ
g∗k|Y

k
−∞] are linearly

dependent.
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We proceed to derive ∇jpψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 ). Repeating the calculation leading to

(16)–(18) and using (30) gives the following: first, (16) and (17) still hold; second, the elements of

∇λλ′pψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) except for the (1, 1)th element are given by (18) after adjusting

that the derivative with respect to λσ must be multiplied by 2 (e.g., Eϑ∗ [∇λσg∗k|Y
n
−∞] = 2∇σ2f∗k

and Eϑ∗ [∇λσλµg∗k|Y
n
−∞] = 2∇σ2µf

∗
k ); third,

∇λ2
µ
pψ∗π(Yk|Y

k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

= α(1− α)
k−1∑
t=1

%k−t
(

2
∇µf∗t
f∗t

∇µf∗k
f∗k

)
. (31)

When % 6= 0, ∇λ2
µ
pψ∗π(Yk|Y

k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) is a non-degenerate random variable as in the

non-normal case. When % = 0, however, ∇λ2
µ
pψ∗π(Yk|Y

k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) becomes identically

equal to 0, and indeed the first non-zero derivative with respect to λµ is the fourth derivative.

Because of this degeneracy, we derive the asymptotic distribution of the LRTS by expanding

`n(ψ, π, ξ)− `n(ψ∗, π, ξ) four times. It is not correct, however, to simply approximate `n(ψ, π, ξ)−
`n(ψ∗, π, ξ) by a quadratic function of λ2

µ (and other terms) when % 6= 0 and a quadratic function

of λ4
µ when % = 0. This results in discontinuity at % = 0 and fails to provide a valid uniform

approximation. We establish a uniform approximation by expanding `n(ψ, π, ξ) four times but

expressing `n(ψ, π, ξ) in terms of %λ2
µ, λ4

µ, and other terms.

For m ≥ 0, define ζk,m(%) :=
∑k−1

t=−m+1 %
k−t−12∇µf∗t ∇µf∗k/f∗t f∗k . Then, we can write (31) as

∇λ2
µ
pψ∗π(Yk|Y

k−1
0 )

α(1− α)pψ∗π(Yk|Y
k−1
0 )

=

k−1∑
t=1

%k−t
(

2
∇µf∗t
f∗t

∇µf∗k
f∗k

)
= %ζk,0(%). (32)

Note that ζk,m(%) satisfies Eϑ∗ [ζk,m(%)|Yk−1
−m ] = 0 and is non-degenerate even when % = 0.

Define v(λβ) as v(λ) in (19) but replacing λ with λβ. Collect the relevant parameters as

t(ψ, π) :=

(
η − η∗

tλ(λ, π)

)
, (33)

where

tλ(λ, π) := α(1− α)



%λ2
µ

λµλσ

λ2
σ + b(α)λ4

µ/12

λβλµ

λβλσ

v(λβ)


, (34)

with b(α) = −(2/3)(α2 − α + 1) < 0. Recall θj = (ζ ′j , σ
2
j )
′ = (µj , β

′
j , σ

2
j )
′. Similarly to (21), define
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the elements of the generalized score by ∗ sλµβ%k sλµσ%k

sλβµ%k sλββ%k sλβσ%k

sλσµ%k sλβσ%k sλσσ%k

 =
∇θθ′f∗k
f∗k

+

k−1∑
t=1

%k−t
(
∇θf∗t
f∗t

∇θ′f∗k
f∗k

+
∇θf∗k
f∗k

∇θ′f∗t
f∗t

)
. (35)

Define the generalized score as

s%k :=

(
sηk

sλ%k

)
, where sηk :=

(
∇γf∗k/f∗k
∇θf∗k/f∗k

)
and sλ%k :=



ζk,0(%)/2

2sλµσ%k

2sλσσ%k

sλβµ%k

2sλβσ%k

V (sλββ%k)


. (36)

The following proposition establishes a uniform approximation of the log-likelihood ratio.

Assumption 7. (a) 0 < inf%∈Θ% λmin(I%) ≤ sup%∈Θ% λmax(I%) < ∞ for I% = limk→∞ Eϑ∗(s%ks′%k),
where s%k is given in (36). (b) σ∗1, σ

∗
2 > εσ.

Proposition 10. Suppose Assumptions 1, 2, 4, 5 and 7 hold, and the density for the j-th regime

is given by (25). Then, under the null hypothesis of M = 1, (a) supϑ∈Anε(ξ) |t(ψ, π)| = Opε(n
−1/2);

and (b) for all c > 0,

sup
ξ∈Ξ

sup
ϑ∈Anεc(ξ)

∣∣`n(ψ, π, ξ)− `n(ψ∗, π, ξ)−
√
nt(ψ, π)′νn(s%k) + nt(ψ, π)′I%t(ψ, π)/2

∣∣ = opε(1). (37)

Let Λλ%n be the set of possible values of
√
ntλ(λ, π) defined in (34). The asymptotic null

distribution of 2[`n(ϑ̂2, ξ2) − `0,n(ϑ̂1)] is characterized by the supremum of 2t′λGλ.η% − t′λIλ.η%tλ,

where Gλ.η% and Iλ.η% are defined analogously to those in (23) but with s%k defined in (36), and the

supremum is taken with respect to tλ and % ∈ Θ% under the constraint implied by the limit of Λλ%n

as n→∞. This constraint is given by Λ1
λ and Λ2

λ%, where qβ := dim(β), qλ := 3+2qβ+qβ(qβ+1)/2,

and
Λ1
λ := {tλ = (t%µ2 , tµσ, tσ2 , t′βµ, t

′
βσ, t

′
v(β))

′ ∈ Rqλ :

(t%µ2 , tµσ, tσ2 , t′βµ)′ ∈ R× R× R− × Rqβ , tβσ = 0, tv(β) = 0},

Λ2
λ% := {tλ = (t%µ2 , tµσ, tσ2 , t′βµ, t

′
βσ, t

′
v(β))

′ ∈ Rqλ : t%µ2 = %λ2
µ, tµσ = λµλσ,

tσ2 = λ2
σ, tβµ = λβλµ, tβσ = λβλσ, tv(β) = vβ(λβ) for some λ ∈ R2+qβ}.

(38)

Note that Λ2
λ% depends on %, whereas Λ1

λ does not depend on %. Heuristically, Λ1
λ and Λ2

λ% correspond

to the limits of the set of possible values of
√
ntλ(λ, π) when lim infn→∞ n

1/8|λµ| > 0 and λµ =

o(n−1/8), respectively. When lim infn→∞ n
1/8|λµ| > 0, we have (λ̂σ, λ̂β) = Op(n

−3/8) because

tλ(λ̂, π) = Op(n
−1/2). Further, the set of possible values of

√
n%λ2

µ converges to R because % can

be arbitrary small. Consequently, the limit of
√
ntλ(λ, π) is characterized by Λ1

λ.
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Define Zλ% and Iλ.η% as in (23) but with sπk defined in (36). Let Zλ0 and Iλ.η0 denote Zλ% and

Iλ.η% evaluated at % = 0. Define t̃1λ and t̃2λ% by

rλ(t̃1λ) = inf
tλ∈Λ1

λ

rλ(tλ), rλ(tλ) := (tλ − Zλ0)′Iλ.η0(tλ − Zλ0)

rλ%(t̃
2
λ%) = inf

tλ∈Λ2
λ%

rλ%(tλ), rλ%(tλ) := (tλ − Zλ%)′Iλ.η%(tλ − Zλ%).
(39)

The following proposition establishes the asymptotic null distribution of the LRTS.

Proposition 11. Suppose that assumptions in Proposition 10 hold. Then, under the null hypothesis

of M = 1, 2[`n(ϑ̂2, ξ2)− `0,n(ϑ̂1)]
d→ sup%∈Θ% max{I{% = 0}(t̃1λ)′Iλ.η0t̃

1
λ, (t̃

2
λ%)
′Iλ.η%t̃2λ%}.

Remark 1. Qu and Zhuo (2017) derived the asymptotic distribution of the LRTS under the re-

striction that % ≥ ε > 0.

Remark 2. It is possible to extend our analysis to exponential-LR type tests studied by Andrews

and Ploberger (1994) and Carrasco et al. (2014).

6.3 Homoscedastic normal distribution

Suppose that Yk ∈ R in the j-th regime follows a normal distribution with regime specific intercept

µj but with common variance σ2. We split γ and θj into γ = (γ̃′, σ2)′ and θj = (µj , βj
′)′, and write

the density for the j-th regime as

f(yk|yk−1; γ, θj) = f(yk|yk−1; γ̃, θj , σ
2) =

1

σ
φ

(
yk − µj −$(yk−1; γ̃, βj)

σ

)
. (40)

for some function $. Consider the following reparameterization: θ1

θ2

σ2

 =

 νθ + (1− α)λ

νθ − αλ
νσ − α(1− α)λ2

µ

 , (41)

where νθ = (νµ, ν
′
β)′ and λ = (λµ, λ

′
β)′. Collect the reparameterized parameters, except for α, into

one vector ψα. Suppressing α from ψα, let the reparameterized density be

gψ(yk|yk−1, xk) = f
(
yk|yk−1; γ̃, νθ + (qk − α)λ, νσ − α(1− α)λ2

µ

)
. (42)

Let η = (γ̃′, ν ′θ, νσ)′, then the first and second derivatives of gψ(yk|yk−1, xk) with respect to η

and λ are the same as those given in (13) except for ∇λ2
µ
gψ(yk|yk−1, xk). We derive higher-order

derivatives of gψ(yk|yk−1, xk) with respect to λµ. From Lemma 5 and (28), we obtain

∇ληig∗k = d1k∇θηif∗k for i = 0, 1, . . . ,

∇λiµg
∗
k = dik∇µif∗k for i = 0, 1, . . . , 4,

(43)

21



where d0k := 1, d1k := qk − α, d2k := (qk − α)2 − α(1 − α), d3k := (qk − α)3 − 3(qk − α)α(1 − α),

and d4k := (qk − α)4 − 6(qk − α)2α(1− α) + 3α2(1− α)2. It follows from Eϑ∗ [qk|Y
n
−∞] = α, (14),

and elementary calculation that

Eϑ∗ [∇λiµg
∗
k|Y

k
0] = 0, Eϑ∗ [dik|Y

k
0] = 0, i = 1, 2,

Eϑ∗ [d3k|Y
k
0] = α(1− α)(1− 2α), Eϑ∗ [d4k|Y

k
0] = α(1− α)(1− 6α+ 6α2).

(44)

Repeating the calculation leading to (16)–(18) and using (44) gives the following: first, (16) and (17)

still hold; second, the elements of ∇λλ′pψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) are given by (18) except for

the (1, 1)th element; third, ∇λ2
µ
pψ∗π(Yk|Y

k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) is given by (31). Further, Lemma

7 in the Appendix shows that, when % = 0, ∇λ3
µ
pψ∗π(Yk|Y

k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) = α(1 − α)(1 −

2α)∇µ3f∗k/f
∗
k and ∇λ4

µ
pψ∗π(Yk|Y

k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) = α(1−α)(1− 6α+ 6α2)∇µ4f∗k/f

∗
k . Because

∇λ3
µ
pψ∗π(Yk|Y

k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) = 0 when α = 1/2 and % = 0, we expand `n(ψ, π, ξ) four times

and express it in terms of %λ2
µ, (1−2α)λ3

µ, λ4
µ, and other terms to establish a uniform approximation.

Collect the relevant parameters as

t(ψ, π) :=

(
η − η∗

tλ(λ, π)

)
and tλ(λ, π) := α(1− α)


%λ2

µ

(1− 2α)λ3
µ

(1− 6α+ 6α2)λ4
µ

λβλµ

v(λβ)

 . (45)

Define the generalized score as

s%k :=

(
sηk

sλ%k

)
, where sηk :=

(
∇γf∗k/f∗k
∇θf∗k/f∗k

)
and sλ%k :=


ζk,0(%)/2

sλ3
µk
/3!

sλ4
µk
/4!

sλβµ%k

V (sλββ%k)

 , (46)

where ζk,m(%) is defined as in (32), sλiµk := ∇µif∗k/f∗k for i = 3, 4, and sλβµ%k and sλββ%k are defined

as in (35) but using the density function (40) in place of (25). Define, with qβ := dim(β) and

qλ := 3 + qβ + qβ(qβ + 1)/2,

Λ1
λ := {tλ = (t%µ2 , tµ3 , tµ4 , t′βµ, t

′
v(β))

′ ∈ Rqλ : (t%µ2 , tµ3 , tµ4 , t′βµ)′ ∈ R× R× R− × Rqβ , tv(β) = 0},

Λ2
λ% := {tλ = (t%µ2 , tµ3 , tµ4 , t′βµ, t

′
v(β))

′ ∈ Rqλ : t%µ2 = %λ2
µ, tµ3 = tµ4 = 0, tβµ = λβλµ,

tv(β) = vβ(λβ) for some λ ∈ R1+qβ}.
(47)

The following two propositions correspond to Proposition 10 and 11, establishing a uniform

approximation of the log-likelihood ratio and the asymptotic distribution of the LRTS.
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Assumption 8. 0 < inf%∈Θ% λmin(I%) ≤ sup%∈Θ% λmax(I%) < ∞ for I% = limk→∞ Eϑ∗(s%ks′%k),
where s%k is given in (46).

Proposition 12. Suppose Assumptions 1, 2, 4, 5 and 8 hold, and the density for the j-th regime

is given by (40). Then, statements (a) and (b) of Proposition 10 hold.

Proposition 13. Suppose that assumptions in Proposition 12 hold. Then, under the null hypothesis

of M = 1, 2[`n(ϑ̂2, ξ2)−`0,n(ϑ̂1)]
d→ sup%∈Θ% max{I{% = 0}(t̃1λ)′Iλ.η0t̃

1
λ, (t̃

2
λ%)
′Iλ.η%t̃2λ%}, where t̃1λ and

t̃2λ% are defined as in (39) but in terms of (Zλ%, Iλ.η%, Zλ0, Iλ.η0) constructed with s%k defined in (46)

and Λ1
λ and Λ2

λ% defined in (47).

7 Testing H0 : M = M0 against HA : M = M0 + 1 for M0 ≥ 2

In this section, we derive the asymptotic distribution of the LRTS for testing the null hypothesis

of M0 regimes against the alternative of M0 + 1 regimes for general M0 ≥ 2. We suppress the

covariate Wb
a unless confusion might arise.

Let ϑ∗M0
= ((ϑ∗M0,x

)′, (ϑ∗M0,y
)′)′ denote the parameter of the M0-regime model, where ϑ∗M0,x

contains p∗ij = qϑ∗M0,x
(i, j) > 0 for i = 1, . . . ,M0 and j = 1, . . . ,M0 − 1, and ϑ∗M0,y

=

((θ∗1)′, . . . , (θ∗M0
)′, (γ∗)′)′. We assume maxi

∑M0−1
j=1 p∗ij < 1, and we assume θ∗1 < . . . < θ∗M0

for

identification. The true M0-regime conditional density function of Yn
1 given Y0 and x0 is

pϑ∗M0
(Yn

1 |Y0, x0) =
∑

xn1∈XnM0

n∏
k=1

pϑ∗M0
(Yk, xk|Yk−1, xk−1), (48)

where pϑ∗M0
(yk, xk|yk−1, xk−1) = gϑ∗M0,y

(yk|yk−1, xk)qϑ∗M0,x
(xk−1, xk) with gϑ∗M0,y

(yk|yk−1, xk) =∑
j=1,...,M0

I{xk = j}f(yk|yk−1; γ, θ∗j ).

Let the conditional density of Yn
1 of an (M0 + 1)-regime model be

pϑM0+1
(Yn

1 |Y0, x0) :=
∑

xn1∈XnM0+1

n∏
k=1

pϑM0+1
(Yk, xk|Yk−1, xk−1), (49)

where pϑM0+1
(yk, xk|yk−1, xk−1) is defined similarly to pϑ∗M0

(yk, xk|yk−1, xk−1) with ϑM0+1,x :=

{pij}i=1,...,M0+1,j=1,...,M0 and ϑM0+1,y := (θ′1, . . . , θ
′
M0+1, γ

′)′. We assume that mini,j pij ≥ ε for

some ε ∈ (0, 1/2).

Write the null hypothesis as H0 = ∪M0
m=1H0m with

H0m : θ1 < · · · < θm = θm+1 < · · · < θM0+1.

Define the set of values of ϑM0+1 that yields the true density (48) under Pϑ∗M0
as Υ∗ := {ϑM0+1 ∈

ΘM0+1,ε : pϑM0+1
(Yn

1 |Y0, x0) = pϑ∗M0
(Yn

1 |Y0, x0) Pϑ∗M0
-a.s.}. Under H0m, the (M0 + 1)-regime
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model (49) generates the true M0-regime density (48) if θm = θm+1 = θ∗m and the transition matrix

of Xk reduces to that of the true M0-regime model.

We reparameterize the transition probability ofXk by writing ϑM0+1,x as ϑM0+1,x = (ϑ′xm, π
′
xm)′,

where ϑxm is identified under H0m while πxm is not point identified under H0m. The transition

probability of Xk under ϑM0+1,x equals the transition probability of Xk under ϑ∗M0,x
if and only if

ϑxm = ϑ∗xm. The detailed derivation including the definition of ϑ∗xm is provided in Section 12.2.6

in the appendix. Define the subset of Υ∗ that corresponds to H0m as

Υ∗m :=
{
ϑM0+1 ∈ ΘM0+1 : θj = θ∗j for 1 ≤ j < m; θm = θm+1 = θ∗m;

θj = θ∗j−1 for h+ 1 < j ≤M0 + 1; γ = γ∗; ϑxm = ϑ∗xm
}
,

then Υ∗ = Υ∗1 ∪ · · · ∪Υ∗M0
holds.

For M = M0,M0 + 1, let `n(ϑM , ξM ) := log
(∑M

x0=1 pϑM (Yn
1 |Y0, x0)ξM (x0)

)
denote the M -

regime log-likelihood for a given initial distribution ξM (x0) ∈ ΞM . We treat ξM (x0) fixed. Let

ϑ̂M0 := arg maxϑM0
∈ΘM0

`n(ϑM0 , ξM0) and ϑ̂M0+1 := arg maxϑM0+1∈ΘM0+1
`n(ϑM0+1, ξM0+1). The

following proposition shows that the MLE is consistent in the sense that the distance between

ϑ̂M0+1 and Υ∗ tends to 0 in probability. The proof of Proposition 14 is essentially the same as the

proof of Proposition 7 and hence is omitted.

Assumption 9. (a) ΘM0 and ΘM0+1 are compact, and ϑ∗M0
is in the interior of ΘM0. (b) For

all (x, x′) ∈ X and all (y, y′, w) ∈ Ys × Y × W, f(y′|y0, w; γ, θ) is continuous in (γ, θ). (c)

Eϑ∗M0
[log(pϑM0

(Y1|Y
0
−m,W

1
−m)] = Eϑ∗M0

[log pϑ∗M0
(Y1|Y

0
−m,W

1
−m)] for all m ≥ 0 if and only if

ϑM0 = ϑ∗M0
. (d) Eϑ∗M0

[log(pϑM0+1
(Y1|Y

0
−m,W

0
−m)] = Eϑ∗M0

[log pϑ∗M0
(Y1|Y

0
−m,W

1
−m)] for all m ≥ 0

if and only if ϑM0+1 ∈ Υ∗.

Proposition 14. Suppose Assumptions 1, 2, and 9 hold. Then, under the null hypothesis of

M = M0, ϑ̂M0

p→ ϑ∗M0
and infϑM0+1∈Υ∗ |ϑ̂M0+1 − ϑM0+1|

p→ 0.

We proceed to derive the asymptotic distribution of the LRTS by analyzing the behavior of

LRTS when ϑM0+1 ∈ Υ∗m for each m. Define Jm := {m,m + 1}. Observe that, if Xk
1 ∈ Jkm,

then Xk
1 follows a two-state Markov chain on Jm whose transition probability is characterized by

αm := PϑM0+1
(Xk = m|Xk ∈ Jm) and %m := corrϑM0+1

(Xk−1, Xk|(Xk−1, Xk) ∈ J2
m). See The

detailed derivation is provided in Section 12.2.6 in the appendix for the detailed derivation.

Collect reparameterized πxm into πxm := (%m, αm, φ
′
m)′, where φm does not affect the transition

probability of Xk
1 when Xk

1 ∈ Jkm.

Define qkj := I{Xk = j}, then we can write αm and %m as αm = EϑM0+1
(qkm|Xk ∈ Jm)

and %m = corrϑM0+1
(qk−1,m, qkm|(Xk−1, Xk) ∈ J2

m). Because Y
∞
−∞ provides no information for

distinguishing between Xk = m and Xk = m+ 1 if θm = θm+1, we can write αm and %m as

αm = EϑM0+1
(qkm|Xk ∈ Jm,Y

∞
−∞) and %m = corrϑM0+1

(qk−1,m, qkm|(Xk−1, Xk) ∈ J2
m,Y

∞
−∞).

(50)
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7.1 Non-normal distribution

For non-normal component distributions, consider the following reparameterization similar to (11):(
θm

θm+1

)
=

(
νm + (1− αm)λm

νm − αmλm

)
.

Collect the reparameterized identified parameters into one vector ψm := (η′m, λ
′
m)′, where ηm =

(γ′, {θ′j}
m−1
j=1 , ν

′
m, {θ′j}

M0+1
j=m+2, ϑ

′
xm)′, so that the reparameterized (M0+1)-regime log-likelihood func-

tion is `n(ψm, πxm, ξM0+1). Let ψ∗m = (η∗m, λ
∗
m) = ((ϑ∗M0

)′, 0′)′ denote the value of ψm under H0m.

Define the reparameterized conditional density of yk as

gψm(yk|yk−1, xk) := I{xk ∈ Jm}f(yk|yk−1; γ, νm + (qkm − αm)λm) +
∑
j∈Jm

qkjf(yk|yk−1; γ, θj),

where Jm := {1, . . . ,M0 + 1} \ Jm. Let f∗mk denote f(Yk|Yk−1; γ∗, θ∗m). It follows from (50) and

the law of iterated expectations that

Eϑ∗M0

[
I{Xk ∈ Jm}(qkm − αm)

gψ∗m(Yk|Yk−1, Xk)

∣∣∣∣∣Yn
−∞

]

= Eϑ∗M0

[
Eϑ∗M0

[
qkm − αm
f∗mk

∣∣∣∣Xk ∈ Jm,Y
n
−∞

]
I{Xk ∈ Jm}

∣∣∣∣Yn
−∞

]
= 0,

Eϑ∗M0

[
I{Xt1 ∈ Jm}I{Xt2 ∈ Jm}(qt1h − αm)(qt2h − αm)

gψ∗m(Yt1 |Yt1−1, Xt1)gψ∗m(Yt2 |Yt2−1, Xt2)

∣∣∣∣∣Yn
−∞

]

= Eϑ∗M0

[
Eϑ∗M0

[
(qt1h − αm)(qt2h − αm)

f∗mt1f
∗
mt2

∣∣∣∣Xt2
t1
∈ J t2−t1+1

m ,Y
n
−∞

]
I{(Xt1 , Xt2) ∈ J2

m}
∣∣∣∣Yn
−∞

]
=
αm(1− αm)%t2−t1m

f∗mt1f
∗
mt2

Pϑ∗M0
((Xt1 , Xt2) ∈ J2

m|Y
n
−∞), t2 ≥ t1,

(51)

where the second equality holds because gψ∗m(Yk|Yk−1, Xk) = f∗mk if Xk ∈ Jm, and last equality

holds because, conditional on {Xt2
t1
∈ J t2−t1+1

m ,Y
n
−∞}, Xt2

t1
is a two-state stationary Markov process

with parameter (αm, %m).

Let g∗0k, q
∗
0k, and p∗0k denote gϑ∗M0,y

(Yk, Xk|Yk−1, Xk−1), qϑ∗M0,x
(Xk−1, Xk), and pϑ∗M0

(Yk|Y
k−1
0 ).

Let ∇g∗0k denote the derivative of gϑM0,y
(Yk, Xk|Yk−1, Xk−1) evaluated at ϑ∗M0,y

, and define ∇q∗0k
and ∇p∗0k similarly. Repeating a derivation similar to (13)–(18) but using (51) in place of (15), we

obtain
∇ηmpψ∗mπ(Yk|Y

k−1
0 )/pψ∗mπ(Yk|Y

k−1
0 )

=
k∑
t=1

Eϑ∗
[
∇ϑM0

log(g∗0tq
∗
0t)
∣∣∣Yk

0

]
−
k−1∑
t=1

Eϑ∗
[
∇ϑM0

log(g∗0tq
∗
0t)
∣∣∣Yk−1

0

]
= ∇ϑM0

pϑ∗M0
(Yk|Y

k−1
0 )/pϑ∗M0

(Yk|Y
k−1
0 ),

(52)
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∇λmpψ∗mπ(Yk|Y
k−1
0 )/pψ∗mπ(Yk|Y

k−1
0 ) = 0, ∇λmη′mpψ∗mπ(Yk|Y

k−1
0 )/pψ∗mπ(Yk|Y

k−1
0 ) = 0, (53)

∇λmλm′pψ∗mπ(Yk|Y
k−1
0 )

pψ∗mπ(Yk|Y
k−1
0 )

= αm(1− αm)
∇θθ′f∗mk
f∗mk

Pϑ∗M0
(Xk ∈ Jm|Y

k
0)

+ αm(1− αm)
k−1∑
t=1

%k−tm

(
∇θf∗mt
f∗mt

∇θ′f∗mk
f∗mk

+
∇θf∗mk
f∗mk

∇θ′f∗mt
f∗mt

)
Pϑ∗M0

((Xt, Xk) ∈ J2
m|Y

k
0). (54)

Define %̃ := (%1, . . . , %M0)′, define tλ(λm, πm) as tλ(λ, π) in (20) by replacing (λ, π) with (λm, πm),

and let

t(ψm, πm) :=

(
ηm − η∗

tλ(λm, πm)

)
, s̃%̃k :=

(
s̃ηk

s̃λ%̃k

)
, where s̃ηk :=

∇ηmpψ∗mπ(Yk|Y
k−1
0 )

pψ∗mπ(Yk|Y
k−1
0 )

, s̃λ%̃k :=


s1
λ%1k
...

sM0
λ%M0

k

 ,

(55)

and smλ%mk := V (smλλ%mk), where smλλ%mk is defined similarly to (21) as

smλλ%mk :=
∇θθ′f∗mk
f∗mk

Pϑ∗M0
(Xk ∈ Jm|Y

k
0)

+

k−1∑
t=1

%k−tm

(
∇θf∗mt
f∗mt

∇θ′f∗mk
f∗mk

+
∇θf∗mk
f∗mk

∇θ′f∗mt
f∗mt

)
Pϑ∗M0

((Xt, Xk) ∈ J2
m|Y

k
0).

(56)

Similarly to (23), define

Ĩη := Eϑ∗M0
(s̃ηks̃

′
ηk), Ĩλ%̃1%̃2 := lim

k→∞
Eϑ∗M0

(s̃λ%̃1ks̃
′
λ%̃2k), Ĩλη%̃ := lim

k→∞
Eϑ∗M0

(s̃λ%̃ks̃
′
ηk),

Ĩηλ%̃ := Ĩ ′λη%̃, Ĩλ.η%̃1%̃2 := Ĩλ%̃1%̃2 − Ĩλη%̃1 Ĩ−1
η Ĩηλ%̃2 , Ĩmλ.η%m := Eϑ∗M0

[Gmλ.η%m(Gmλ.η%m)′],

Zmλ%m := (Ĩmλ.η%m)−1Gmλ.η%m ,

(57)

where Gλ.η%̃ = ((G1
λ.η%1

)′, . . . , (GM0
λ.η%M0

)′)′ is an M0qλ-vector mean zero Gaussian process with

cov(Gλ.η%̃1 , Gλ.η%̃2) = Ĩλ.η%̃1%̃2 . Note that Gλ.η%̃ corresponds to the residuals from projecting s̃λ%̃k

on s̃ηk. Define t̃mλ%m by

gmλ%m(t̃mλ%m) = inf
tλ∈v(Rq)

gmλ%m(tλ), gmλ%m(tλ) := (tλ − Zmλ%m)′Ĩmλ.η%m(tλ − Zmλ%m).

The following proposition gives the asymptotic null distribution of the LRTS for testing H0 : M =

M0. Under the stated assumptions, the log-likelihood function permits a quadratic approximation

in the neighborhood of Υ∗m similar to the one in Proposition 8. Define Amnεc(ξ) := {ϑM0+1 ∈ ΘM0+1 :

{`n(ψm, πm, ξ)− `n(ψ∗m, πm, ξ) ≥ 0}∧ |t(ψm, πm)| < ε}∪Nc/√n. Under H0 : M = M0, for all c > 0,

for m = 1, . . . ,M0, and uniformly in ξ ∈ Ξ and ϑM0+1 ∈ Amnεc(ξ),

`n(ψm, πm, ξ)− `n(ψ∗m, πm, ξ) −
√
nt(ψm, πm)′νn(s%mk) + nt(ψm, πm)′I%mt(ψm, πm)/2 = opε(1),
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where s%mk := (s̃′ηk, (s
m
λ%mk

)′)′ and I%m = limk→∞ Eϑ∗M0
(s%mks

′
%mk

). Consequently, the LRTS is

asymptotically distributed as the maximum of M0 random variables, each of which represents the

asymptotic distribution of the LRTS that tests H0m. Denote the parameter space for %m by Θ%m ,

and let Θ̃% := Θ%1 × . . .×Θ%M0
.

Assumption 10. 0 < inf %̃∈Θ̃%
λmin(Ĩ%̃) ≤ sup%̃∈Θ̃%

λmax(Ĩ%̃) < ∞ for Ĩ%̃ := limk→∞ Eϑ∗M0
(s̃%̃ks̃

′
%̃k),

where s̃%̃k is given in (55).

Proposition 15. Suppose Assumptions 1, 2, 4, 9, and 10 hold. Then, under H0 : M = M0,

2[`n(ϑ̂M0+1, ξM0+1)− `n(ϑ̂M0 , ξM0)]
d→ maxm=1,...,M0

{
sup%m∈Θm%

(
(t̃mλ%m)′Ĩmλ.η%m t̃

m
λ%m

)}
.

7.2 Heteroscedastic normal distribution

As in Section 6.2, we assume that Yk ∈ R in the j-th regime follows a normal distribution with

regime-specific intercept and variance of which density is given by (25). Consider the following

reparameterization similar to (26):
ζm

ζm+1

σ2
m

σ2
m+1

 =


νζm + (1− αm)λζm

νζm − αmλζm
νσm + (1− αm)(2λσm + C1λ

2
µm)

νσm − αm(2λσm + C2λ
2
µm)

 ,

where νζm = (νµ, ν
′
β)′, λζm = (λµm, λ

′
βm)′, C1 := −(1/3)(1 + αm), and C2 := (1/3)(2 − αm). As

in Section 7.1, we collect the reparameterized identified parameters into ψm := (η′m, λ
′
m)′, where

ηm = (γ′, {θ′j}
m−1
j=1 , ν

′
ζm, νσm, {θ′j}

M0+1
j=m+2, ϑ

′
xm)′ and λm := (λ′ζm, λσm)′. Similar to (27), define the

reparameterized conditional density of yk as

gψm(yk|yk−1, xk) =
∑
j∈Jm

qkjf(yk|yk−1; γ, θj)

+ I{xk ∈ Jm}f
(
yk|yk−1; γ, νζm + (qkm − αm)λζm, νσm + (qkm − αm)(2λσm + (C2 − qkm)λ2

µm)
)
.

Let g∗mk, f
∗
mk, ∇g∗mk, and∇f∗mk denote gψ∗m(Yk|Yk−1, Xk), f(Yk|Yk−1; γ∗, θ∗m), ∇gψ∗m(Yk|Yk−1, Xk),

and ∇f(Yk|Yk−1; γ∗, θ∗m). From (29) and a derivation similar to (51), we obtain the following result

that corresponds to (30) in testing homogeneity:

Eϑ∗M0

[
∇λiµmg

∗
mk/g

∗
mk

∣∣∣Yk
−∞

]
= 0, i = 1, 2, 3,

Eϑ∗M0

[
∇λ4

µm
g∗mk/g

∗
mk

∣∣∣Yk
−∞

]
= αm(1− αm)b(αm)(∇µ4f∗mk/f

∗
mk)Pϑ∗M0

(Xk ∈ Jm|Y
k
−∞)

= b(αm)Eϑ∗M0

[
∇λ2

σm
g∗mk/g

∗
mk

∣∣∣Yk
−∞

]
.

(58)

Repeating the calculation leading to (52)–(54) and using (58) gives the following: first, (52) and

(53) still hold; second, the elements of ∇λmλ′mpψ∗π(Yk|Y
k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) except for the (1, 1)th

27



element are given by (54) while adjusting the derivative with respect to λσm by multiplying by 2;

third,

∇λ2
µm
pψ∗mπ(Yk|Y

k−1
0 )

pψ∗mπ(Yk|Y
k−1
0 )

= αm(1− αm)

k−1∑
t=1

%k−tm

(
2
∇µf∗mt
f∗mt

∇µf∗mk
f∗mk

)
Pϑ∗M0

((Xt, Xk) ∈ J2
m|Y

k
0).

For m ≥ 0, define ζmk,m(%m) :=
∑k−1

t=−m+1 %
k−t−1
m 2(∇µf∗mt∇µf∗mk/f∗mtf∗mk)Pϑ∗M0

((Xt, Xk) ∈

J2
m|Y

k
0). Similarly to (35), define the elements of the generalized score as

∗ smλµβ%mk smλµσ%mk

smλβµ%mk smλββ%mk smλβσ%mk

smλσµ%mk smλβσ%mk smλσσ%mk

 :=
∇θθ′f∗mk
f∗mk

Pϑ∗M0
(Xk ∈ Jm|Y

k
0)

+

k−1∑
t=1

%k−tm

(
∇θf∗mt
f∗mt

∇θ′f∗mk
f∗mk

+
∇θf∗mk
f∗mk

∇θ′f∗mt
f∗mt

)
Pϑ∗M0

((Xt, Xk) ∈ J2
m|Y

k
0).

(59)

Similarly to (36), define s̃%̃k as in (55) with redefining smλ%mk in (55) as

smλ%mk :=
(
ζmk,0(%m)/2 2smλµσ%mk 2smλσσ%mk (smλβµ%mk)

′ 2(smλβσ%mk)
′ V (smλββ%hk)

′
)′
. (60)

Define Imλ.η%m and Zmλ%m as in (57) with smλ%mk defined in (60). Let Zmλ0 and Imλ.η0 denote Zmλ%m
and Imλ.η%m evaluated at %m = 0. Define Λ1

λ as in (38), and define Λ2
λ%m

as in (38) with re-

placing % with %m. Similar to (39), define t̃m1
λ and t̃m2

λ%m
by rλ(t̃m1

λ ) = inftλ∈Λ1
λ
rmλ (tλ) and

rλ%m(t̃m2
λ%m

) = inftλ∈Λ2
λ%m

rmλ%m(tλ), where rmλ (tλ) := (tλ − Zmλ0)′Imλ.η0(tλ − Zmλ0) and rmλ%m(tλ) :=

(tλ − Zmλ%m)′Imλ.η%m(tλ − Zmλ%m).

The following proposition establishes the asymptotic null distribution of the LRT statistic. As

in the non-normal case, the LRTS is asymptotically distributed as the maximum of M0 random

variables.

Assumption 11. Assumption 10 holds when s̃%̃mk is given in (60).

Proposition 16. Suppose Assumptions 1, 2, 4, 9, and 11 hold and the component density for the

j-th regime is given by (25). Then, under H0 : m = M0, 2[`n(ϑ̂M0+1, ξM0+1) − `n(ϑ̂M0 , ξM0)]
d→

maxm=1,...,M0{sup%m∈Θm%
max{I{%m = 0}(t̃m1

λ )′Imλ.η0t̃
m1
λ , (t̃m2

λ%m
)′Imλ.η%m t̃

m2
λ%m
}}.

7.3 Homoscedastic normal distribution

As in Section 6.3, we assume that Yk ∈ R in the j-th regime follows a normal distribution with

regime-specific intercept and common variance whose density is given by (40).
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The asymptotic distribution of the LRTS is derived by using a reparameterization θm

θm+1

σ2

 =

 νθm + (1− αm)λm

νθm − αmλm
νσm − αm(1− αm)λ2

µm

 ,

similar to (41) and following the derivation in Sections 6.3 and 7.2. For brevity, we omit details in

derivation. Define smλλ%mk as in (56), and denote each element of smλλ%mk as

smλλ%mk =

(
∗ smλµβ%mk

smλβµ%mk smλββ%mk

)
.

Similarly to (46), define s̃%̃k as in (55) with redefining smλ%mk in (55) as

smλ%mk :=
(
ζmk,0(%m)/2 smλ3

µk
/3! smλ4

µk
/4! (smλβµ%k)

′ V (smλββ%k)
′
)′
, (61)

where sm
λiµk

:= P
ϑ∗M0

(Xk∈Jm|Y
k
0)
∇µif(Yk|Yk−1; γ∗, θ∗m)/f(Yk|Yk−1; γ∗, θ∗m) for i = 3, 4.

The following proposition establishes the asymptotic null distribution of the LRT statistic.

Assumption 12. Assumption 10 holds when s̃%̃mk is given in (61).

Proposition 17. Suppose Assumptions 1, 2, 4, 9, and 12 hold and the component density for the

j-th regime is given by (40). Then, under H0 : m = M0, 2[`n(ϑ̂M0+1, ξM0+1) − `n(ϑ̂M0 , ξM0)]
d→

maxm=1,...,M0{sup%m∈Θ%mε
max{I{%m = 0}(t̃m1

λ )′Imλ.η0t̃
m1
λ , (t̃m2

λ%m
)′Imλ.η%m t̃

m2
λ%m
}}, where t̃m1

λ and t̃m2
λ%m

are defined as in Proposition 16 but in terms of (Zmλ%m , I
m
λ.η%m

, Zmλ0, Imλ.η0) constructed with smλ%mk
given in (61) and Λ1

λ and Λ2
λ%m

defined as in (47) but replacing % with %m.

8 Asymptotic distribution under local alternatives

In this section, we derive the asymptotic distribution of our LRTS under local alternatives. We

focus on the case of testing H0 : M = 1 against H1 : M = 2, but it is straightforward to extend

the analysis to the case of testing H0 : M = M0 against H1 : M = M0 + 1 for M0 ≥ 2.

Given π ∈ Θπ, we define a local parameter h :=
√
nt(ψ, π) so that

h =

(
hη

hλ

)
=

(√
n(η − η∗)
√
ntλ(λ, π)

)
,

where tλ(λ, π) differs across different models and is given by (21), (34), and (45). Given h =

(h′η, h
′
λ)′ and π ∈ Θπ, we consider the sequence of contiguous local alternatives ϑn = (ψ′n, π

′
n)′ =

(η′n, λ
′
n, π

′
n)′ ∈ Θη ×Θλ ×Θπ such that

hη =
√
n(ηn − η∗), hλ =

√
ntλ(λn, πn) + o(1), and πn − π = o(1). (62)
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Let Pnϑ,x0
be the probability measure on {Yk}nk=1 under ϑ conditional on the value of Y0, X0,

and Wn
1 . Then, the log likelihood ratio is given by

log
dPnϑn,x0

dPnϑ∗,x0

= `n(ψn, πn, x0)− `n(ψ∗, π, x0) = log

(∑
xn1

∏n
k=1 fk(ηn, λn)qπn(xk−1, xk)∏n

k=1 fk(η
∗, 0)

)
,

where fk(η, λ) is defined by the right hand side of (12), (27), and (42) for the models of non-

normal distribution, heteroscedastic normal distribution, and homoscedastic normal distribution,

respectively. The following result is useful for deriving the asymptotic distribution of the LRTS

under Pnϑn,x0
.

Proposition 18. Suppose that the assumptions of Propositions 8, 10, and 12 hold for the models of

non-normal, heteroscedastic normal, and homoscedastic normal distributions, respectively. Then,

uniformly in x0 ∈ X , (a) Pnϑn,x0
is mutually contiguous with respect to Pnϑ∗,x0

, and (b) under Pnϑn,x0
,

we have log(dPnϑn,x0
/dPnϑ∗,x0

) = h′νn(s%nk)− 1
2h
′I%h+ op(1) with νn(s%nk)

d→ N(I%h, I%).

This result follows from Le Cam’s first and third lemma. Using the result of Proposition 18, we

construct the asymptotic distribution of LRTS under the sequence of local alternatives from null

asymptotic distribution of LRTS by appropriately shifting the mean of the Gaussian process.

8.1 Non-normal distribution

For non-normal distribution, the sequence of contiguous local alternatives is given by λn = λ̄/n1/4

because then hλ =
√
nα(1 − α)v(λn) = α(1 − α)v(λ̄) holds. The following proposition derives

the asymptotic distribution of LRTS for non-normal distribution under H1n : (πn, ηn, λn) =

(π̄, η∗, λ̄/n1/4).

Proposition 19. Suppose that the assumptions of Proposition 9 hold. For π̄ ∈ Θπ and λ̄ 6= 0,

define hλ := ᾱ(1− ᾱ)v(λ̄). Then, under H1n : (πn, ηn, λn) = (π̄, η∗, λ̄/n1/4), we have 2[`n(ϑ̂2, ξ2)−
`0,n(ϑ̂1)]

d→ sup%∈Θ%(t̃λ%h)′Iλ.η%t̃λ%h, where t̃λ%h is defined as in (24) but replacing Zλ% in (24) with

(Iλ.η%)−1Gλ.η% + hλ.

8.2 Heteroscedastic normal distribution

For the model with heteroscedastic normal distribution, the sequences of contiguous local alterna-

tives characterized by (62) include the local alternatives of order n−1/8.

Proposition 20. Suppose that the assumptions of Proposition 11 hold for the model (25). For

%̄ ∈ (−1, 1), ᾱ ∈ (0, 1), and λ̄ := (λ̄µ, λ̄σ, λ̄
′
β)′ 6= (0, 0, 0)′, let

Ha
1n : (%n, αn, ηn, λµn, λσn, λβn) = (%̄/n1/4, ᾱ, η∗, λ̄µ/n

1/8, λ̄σ/n
3/8, λ̄β/n

3/8),

Hb
1n : (%n, αn, ηn, λµn, λσn, λβn) = (%̄, ᾱ, η∗, λ̄µ/n

1/4, λ̄σ/n
1/4, λ̄β/n

1/4),
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and define

haλ : = ᾱ(1− ᾱ)× (%̄λ̄2
µ, λ̄µλ̄σ, b(ᾱ)λ̄4

µ/12, λ̄′βλ̄µ, 0, 0)′,

hbλ : = ᾱ(1− ᾱ)× (%̄λ̄2
µ, λ̄µλ̄σ, λ̄

2
σ, λ̄
′
βλ̄µ, λ̄

′
βλ̄σ, v(λ̄β)′)′.

Then, for j ∈ {a, b}, under Hj
1n, we have 2[`n(ϑ̂2, ξ2) − `0,n(ϑ̂1)]

d→ sup%∈Θ% max{I{% =

0}(t̃1jλh)′Iλ.η0t̃
1j
λh, (t̃

2j
λ%h)′Iλ.η%t̃2jλ%h}, where t̃1jλh and t̃2jλ%h are defined as in (39) but replacing Zλ% with

(Iλ.η%)−1Gλ.η% + hjλ.

In the local alternative Ha
1n, %n converges to 0, and λµn converges to 0 at a slower rate than

n−1/4. Our test has non-trivial power against these local alternatives in the neighborhood of % = 0.

In contrast, the test of Carrasco et al. (2014) does not have power against the local alternatives in

the neighborhood of % = 0 as discussed in Section 5 of Carrasco et al. (2014). The test proposed

by Qu and Zhuo (2017) assumes that % is bounded away from zero and hence their test rules out

Ha
1n.

8.3 Homoscedastic normal distribution

The local alternatives for the model with homoscedastic distribution also include those of order

n−1/8 in the neighborhood of % = 0.

Proposition 21. Suppose that the assumptions of Proposition 12 hold for the model (40). For

%̄ ∈ (−1, 1), ᾱ ∈ (0, 1), ∆α 6= 0, and λ̄ := (λ̄µ, λ̄
′
β)′ 6= (0, 0)′, let

Ha
1n : (%n, αn, ηn, λµn, λβn) = (%̄/n1/4, 1/2 + ∆α/n

1/8, η∗, λ̄µ/n
1/8, λ̄β/n

3/8),

Hb
1n : (%n, αn, ηn, λµn, λβn) = (%̄, ᾱ, η∗, λ̄µ/n

1/4, λ̄β/n
1/4),

and define haλ := (1/4)×(%̄λ̄2
µ,∆αλ̄

3
µ,−λ̄4

µ/2, λ̄
′
βλ̄µ, 0)′ and hbλ := ᾱ(1−ᾱ)×(%̄λ̄2

µ, 0, 0, λ̄
′
βλ̄µ, v(λ̄β)′)′.

For j = {a, b}, define t̃1jλh and t̃2jλ%h as in (39) but replacing Zλ% with (Iλ.η%)−1Gλ.η% + hjλ, where

Iλ.η% and Gλ.η% are constructed with s%k defined in (46), and Λ1
λ and Λ2

λ% are defined in (47). Then,

under Hj
1n, we have 2[`n(ϑ̂2, ξ2)−`0,n(ϑ̂1)]

d→ sup%∈Θ% max{I{% = 0}(t̃1jλh)′Iλ.η0t̃
1j
λh, (t̃

2j
λ%h)′Iλ.η%t̃2jλ%h}.

9 Parametric bootstrap

We consider the following parametric bootstrap to obtain the bootstrap critical value cα,B and the

bootstrap p-value of our LRTS for testing H0 : M = M0 against H1 : M = M0 + 1.

1. Using the observed data, estimate ϑ̂M0 and ϑ̂M0+1 as ϑ̂M := arg maxϑM∈ΘM `n(ϑM , ξM ) for

some choice of ξM for M = M0,M0 +1. Compute LRn = 2[`n(ϑ̂M0+1, ξM0+1)−`n(ϑ̂M0 , ξM0)].

2. Given ϑ̂M0 and ξM0 , generate B independent samples {Y b
1 , . . . , Y

b
n}Bb=1 under H0 with ϑM0 =

ϑ̂M0 conditional on the observed value of Y0 and Wn
1 .
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3. For each simulated sample {Y b
k }nk=1 with (Y0,W

n
1 ), estimate ϑ̂bM0

and ϑ̂bM0+1 as in Step 1,

and let LRbn = 2[`n(ϑ̂bM0+1, ξM0+1)− `n(ϑ̂bM0
, ξM0)] for b = 1, . . . , B.

4. Let cα,B be the (1 − α) quantile of {LRbn}Bb=1, and define the bootstrap p-value as

B−1
∑B

b=1 I{LRbn > LRn}.

The following proposition shows the consistency of the bootstrap critical values cα,B for testing

H0 : M0 = 1. We omit the result for testing H0 : M0 ≥ 2; it is straightforward to extend the

analysis to the case for M0 ≥ 2 with more tedious notations.

Proposition 22. Suppose that the assumptions of Propositions 8, 10, and 12 hold for the models of

non-normal, heteroscedastic normal, and homoscedastic normal distributions, respectively. Then,

the bootstrap critical values cα,B converge to the asymptotic critical values in probability as n and

B go to infinity under H0 and under the local alternatives described in Propositions 19, 20, and 21.

10 Simulations and Empirical Application

10.1 Simulations

We consider the following two models:

Model 1 : Yk = µXk + βYk−1 + εk, εk ∼ N(0, σ2), (63)

Model 2 : Yk = µXk + βYk−1 + εk, εk ∼ N(0, σ2
Xk

), (64)

where Xk ∈ {1, . . . ,M} with pij = p(Xk = i|Xk−1 = j). Model 1 in (63) is a model with switching

intercept, where variance parameter σ2 does not switch across regimes. In Model 2 in (64), both

intercept and variance parameters switch across regimes.

We investigate the size and power property of our bootstrap LRT and compare the LRT with

the QLR test of Cho and White (2007) and supTS test of Carrasco et al. (2014), where the critical

values are computed by bootstrap. In the supTS test, we set ρ ∈ [−0.9.0.9], and in the QLR test,

we set the parameter set Θµ = [−2, 2]. Note that this comparison favors the LRT over the supTS

test because the supTS test is designed to detect general parameter variation including Markov

chain.

We first examine the rejection frequency of H0 : M = 1 against H1 : M = 2 when the data

are generated by H0 : M = 1 with (β, µ, σ) = (0.5, 0, 1). Columns (1) and (2) in Table 1 report

the rejection frequency of the bootstrap tests at the nominal 5% level over 3000 replications with

n = 200 and 500. Overall, our bootstrap LRT has good sizes.

Table 2 examines the power of our bootstrap LRT for testing the null hypothesis of M = 1 at

nominal level of 5%. We generate 3000 data sets for n = 500 under the alternative hypothesis of

M = 2 by setting µ1 = 0.2, 0.6, and 1.0 and µ2 = −µ1 while (p11, p22) = (0.25, 0.25), (0.50, 0.50),

(0.70, 0.70), and (0.90, 0.90). We set σ = 1 for Model 1 and (σ2
1, σ

2
2) = (1.1, 0.9) for Model 2.
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In Table 2, our LRT performs better than the supTS and QLR tests for Model 1 except for

the case with (p11, p22) = (0.25, 0.25), where the supTS performs very well, and the case with

(p11, p22) = (0.5, 0.5), where the QLRT test outperforms LRT, because the true dgp is finite mixture

in this case.

The last three columns of Table 2 reports the power of the LRT to detect alternative models

with switching variances (i.e., Model 2 with M = 2).

We also examine the power of our LRT for testing the null hypothesis of M = 2 in Table 3. We

generate 1000 data sets for n = 500 under the alternative hypothesis of M = 3 across different values

of (µ1, µ2, µ3) and (p11, p22, p33) with pij = (1 − pii)/2 for j 6= i, where we set (β, σ) = (0.5, 1.0)

for Model 1 and (β, σ1, σ2) = (0.5, 0.9, 1.2) for Model 2, and compute the rejection frequencies for

testing the null hypothesis of M = 2 at nominal level of 5%. In Table 3, the powers of our LRT for

testing H0 : M = 2 against H1 : M = 3 increase when the alternative is further away from H0 or

when latent regimes become more persistent.

11 Empirical example

Using the U.S. GDP per capita quarterly growth rate data from 1960Q1 to 2014Q4, we estimate the

regime switching models with common variance (i.e., Model 1 in (63)) and with switching variances

(i.e., Model 2 in (64)) for M = 1, 2, 3, and 4 and sequentially test the null hypothesis of M = M0

against the alternative hypothesis M = M0 + 1 for M0 = 1, 2, 3, and 4.6 We also report the Akaike

Information Criteria (AIC) and the Bayesian Information Criteria (BIC) as a reference although,

to our best knowledge, the consistency of AIC and BIC for selecting the number of regimes has not

been established in the existing literature.

Table 5 reports the result of the selected number of regimes by AIC, BIC, and our LRT. For the

model (63) with common variance, our LRT selects M = 4 while AIC and BIC select M = 3 and

M = 1, respectively. For the model (64) with switching variance, both our LRT and AIC select

M = 3 while BIC selects M = 2.

Panel A of Table 4 and Figure 1 report the estimated parameter values and the posterior

probabilities of being each regime for the model with common variance for M = 2, 3, and 4. Across

different specifications inM , the estimated values of µ1, µ2, ..., µM are well separated in the common

variance model, indicating that each regime represents booming or thorough period with different

degrees. In Figure 1, when the number of regimes is specified as M = 2, the posterior probability

of “recession” regime (Regime 1) against that of “booming” regime (Regime 2) sharply rises during

the collapse of Lehman Brothers in 2008 and then declines after 2009. When the number of regimes

is specified as M = 3, in addition to “recession” and “booming” regimes corresponding to Regime 1

and 2, respectively, the regime with a rapid change in the growth rates from low to high is captured

by Regime 3; for the model with M = 3 in Figure 1, the posterior probability of Regime 3 rises in

6For both models, we restrict the parameter values for transition probabilities by setting ε = 0.05 to prevent the
issue of unbounded likelihood.
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late 2009 when the U.S. economy started to recover from the Lehman shock. When the number

of regimes is specified as M = 4, Regime 1 now captures a rapid change in the growth rates from

high to low, where the posterior probability of Regime 1 becomes high when the growth rate of

the U.S. economy rapidly declined in the middle of the Lehman shock. Our LRT selects the model

with four regimes, which capture rapid changes in growth rates of the U.S. GDP per capita during

the Lehman shock period.

The estimated parameter values and the posterior probabilities of being each regime for the

model with switching variance are reported in Panel B of Table 4 and Figure 2, respectively. When

the number of regimes is specified as M = 2 in the switching variance model, the estimated values

of variance parameter are very different between two regimes while the estimated intercept values

are similar, indicating that Regime 1 is “low volatility” regime while Regime 2 is “high volatility”

regime.7 When the number of regimes is specified as M = 3, different regimes capture different

states of the U.S. economy in terms of both growth rates and volatilities. Regime 1 is characterized

by the negative value of intercept with high volatility, capturing a recession period. Regime 2

is characterized by the positive value of intercept with low volatility, capturing booming/stable

economy. Regime 3 is characterized by high value of intercept and high value of variance, capturing

both a rapid recovery in the growth rates and high volatility in the aftermath of the Lehman shock

in 2009. Our LRT selects the model with three regimes when the model is specified with switching

variance.

12 Appendix

Henceforth, for notational brevity, we suppress Wb
a from the conditioning variables and conditional

densities when doing so does not cause confusion.

12.1 Proof of Propositions and Corollaries

Proof of Proposition 1. The proof is essentially identical to the proof of Lemma 2 in DMR. There-

fore, the details are omitted. The only difference from DMR is (i) we do not impose Assumption

(A2) of DMR, but this does not affect the proof because Assumption (A2) is not used in the proof

of Lemma 2 in DMR, and (ii) we have Wn
1 , but our Lemma 10(a) extends Corollary 1 of DMR to

accommodate Wk’s. Consequently, the argument of the proof of DMR goes through.

Proof of Proposition 2. Define hϑkx0 :=
√
lϑkx0 − 1. Using the Taylor expansion of 2 log(1 + x) =

7We may test the null hypothesis of σ1 = σ2 in the model with switching variance given M = 2 by standard
LRT with the critical value obtained from the chi-square distribution with 2 degrees of freedom. With LRT =
2× (−307.99 + 321.27) = 26.56, the null hypothesis of σ1 = σ2 is rejected at 1 percent significance level, suggesting
that the model with switching variance is more appropriate than the model with common variance when we specified
the number of regimes as M = 2.
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2x− x2(1 + o(1)) for small x, we have, uniformly in x0 ∈ X and ϑ ∈ Nc/√n,

`n(ψ, π, x0)− `n(ψ∗, π, x0) = 2
n∑
k=1

log(1 + hϑkx0) = nPn(2hϑkx0 − [1 + op(1)]h2
ϑkx0

). (65)

The stated result holds if we show that

sup
x0∈X

sup
ϑ∈Nc/√n

∣∣nPn(h2
ϑkx0

)− nt′ϑIπtϑ/4
∣∣ = op(1) and (66)

sup
x0∈X

sup
ϑ∈Nc/√n

|nPn(hϑkx0)−
√
nt′ϑνn(sπk)/2 + ntϑIπt′ϑ/8| = op(1), (67)

because then the right hand side of (65) is equal to
√
nt′ϑνn(sπk) − tϑIπt′ϑ/2 + op(1) uniformly in

x0 ∈ X and ϑ ∈ Nc/√n.

We first show (66). Let mϑk := t′ϑsπk + rϑk, so that lϑkx0 − 1 = mϑk + uϑkx0 . Observe that

max
1≤k≤n

sup
ϑ∈Nc/√n

|mϑk| = max
1≤k≤n

sup
ϑ∈Nc/√n

|t′ϑsπk + rϑk| = op(1), (68)

from Assumption 3(a)(c) and Lemma 9. Write 4Pn(h2
ϑkx0

) as

4Pn(h2
ϑkx0

) = Pn

(
4(lϑkx0 − 1)2

(
√
lϑkx0 + 1)2

)
= Pn(lϑkx0 − 1)2 − Pn

(
(lϑkx0 − 1)3 (

√
lϑkx0 + 3)

(
√
lϑkx0 + 1)3

)
. (69)

It follows from Assumption 3(a)(b)(c)(e)(f) and (E|XY |)2 ≤ E|X|2E|Y |2 that, uniformly in ϑ ∈
Nε,

Pn(lϑkx0−1)2 = t′ϑPn(sπks
′
πk)tϑ+2t′ϑPn[sπk(rϑk+uϑkx0)]+Pn(rϑk+uϑkx0)2 = t′ϑPn(sπks

′
πk)tϑ+ζϑnx0 ,

(70)

where ζϑnx0 satisfies supx0∈X |ζϑnx0 | = Op(|tϑ|2|ψ−ψ∗|) +Op(n
−1|tϑ||ψ−ψ∗|) +Op(n

−1|ψ−ψ∗|2).

Then, (66) holds because supπ∈Θπ |Pn(sπks
′
πk) − Iπ| = op(1) and the second term on the right of

(69) is bounded by, from (68), Pn(m2
ϑk) = t′ϑIπtϑ + op(|tϑ|2), and Assumption 3(e),

C sup
x0∈X

sup
ϑ∈Nc/√n

Pn
[
|mϑk|3 + 3m2

ϑk|uϑkx0 |+ 3|mϑk|u2
ϑkx0

]
+ C sup

x0∈X
sup

ϑ∈Nc/√n
Pn(|uϑkx0 |3)

≤ op(1) sup
x0∈X

sup
ϑ∈Nc/√n

Pn
[
m2
ϑk + u2

ϑkx0

]
+ C sup

x0∈X
sup

ϑ∈Nc/√n
Pn(|uϑkx0 |3) = op(n

−1).

We proceed to show (67). Consider the following expansion of hϑkx0 :

hϑkx0 = (lϑkx0 − 1)/2− h2
ϑkx0

/2 = (t′ϑsπk + rϑk + uϑkx0)/2− h2
ϑkx0

/2. (71)

Then, (67) follows from (66), (71), and Assumption 3(d)(e), and the stated result follows.
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Proof of Proposition 3. For part (a), it follows from log(1 + x) ≤ x and hϑkx0 = (lϑkx0 − 1)/2 −
h2
ϑkx0

/2 (see (71)) that

`n(ψ, π, x0)− `n(ψ∗, π, x0) = 2
n∑
k=1

log(1 + hϑkx0) ≤ 2nPn(hϑkx0) =
√
nνn(lϑkx0 − 1)− nPn(h2

ϑkx0
).

(72)

Observe that h2
ϑkx0

= (lϑkx0−1)2/(
√
lϑkx0 +1)2 ≥ I{lϑkx0 ≤ κ}(lϑkx0−1)2/(

√
κ+1)2 for any κ > 0.

Therefore,

Pn(h2
ϑkx0

) ≥ (
√
κ+ 1)−2Pn

(
I{lϑkx0 ≤ κ}(lϑkx0 − 1)2

)
. (73)

Substituting (70) into the right hand side of (73) gives

Pn(h2
ϑkx0

) ≥ (
√
κ+ 1)−2t′ϑ

[
Pn(sπks

′
πk)− Pn(I{lϑkx0 > κ}sπks′πk)

]
tϑ + ζϑnx0 . (74)

From Hölder’s inequality, we have Pn(I{lϑkx0 > κ}|sπk|2) ≤ [Pn(I{lϑkx0 > κ})]δ/(2+δ)[Pn(|sπk|2+δ)]2/(2+δ).

The right hand side is no larger than κ−δ/(2+δ)Op(1) uniformly in x0 ∈ X and

ϑ ∈ Nε because (i) it follows from κI{lϑkx0 > κ} ≤ lϑkx0 that Pn(I{lϑkx0 >

κ}) ≤ κ−1Pn(lϑkx0) and supx0∈X supϑ∈Nε |Pn(lϑkx0) − 1| = op(1) from Assumption

3(d)(e)(f)(g), and (ii) Pn(supπ∈Θπ |sπk|
2+δ) = Op(1) from Assumption 3(a). Consequently,

P(supx0∈X supϑ∈Nε Pn(I{lϑkx0 > κ}|sπk|2) ≥ λmin/4) → 0 as κ → ∞, and hence we can write

(74) as Pn(h2
ϑkx0

) ≥ η(1 + op(1))t′ϑIπtϑ + Op(|tϑ|2|ψ − ψ∗|) + Op(n
−1) for η = (

√
κ + 1)−2/2 > 0

by taking κ sufficiently large. Because
√
nνn(lϑkx0 − 1) =

√
nt′ϑνn(sπk) + Op(1) from Assumption

3(d)(e), it follows from (72) that, uniformly in x0 ∈ X and ϑ ∈ Nε,

0 ≤ `n(ψ, π, x0)− `n(ψ∗, π, x0) ≤
√
nt′ϑνn(sπk)− η(1 + op(1))nt′ϑIπtϑ +Op(n|tϑ|2|ψ− ψ∗|) +Op(1).

(75)

Let Tn := I1/2
π
√
ntϑ. From (75), Assumption 3(b)(g), and the fact ψ−ψ∗ → 0 if tϑ → 0, we obtain

the following result: For any δ > 0, there exist ε > 0 and M,n0 <∞ such that

P
(

inf
x0∈X

inf
ϑ∈Nε

(
|Tn|M − (η/2)|Tn|2 +M

)
≥ 0

)
≥ 1− δ, for all n > n0. (76)

Rearranging the terms inside P(·) gives supx0∈X supϑ∈Nε(|Tn|−(M/η))2 ≤ 2M/η+(M/η)2. Taking

its square root gives P(supx0∈X supϑ∈Nε |Tn| ≤M1) ≥ 1− δ for a constant M1, and part (a) follows.

Part (b) follows from part (a) and Proposition 2.

Proof of Corollary 1. Because logarithm is monotone, we have infx0∈X `n(ψ, π, x0) ≤ `n(ψ, π, ξ) ≤
supx0∈X `n(ψ, π, x0). Part (a) then follows from Proposition 2. For part (b), note that we have

ϑ ∈ Anε(ξ) only if ϑ ∈ Anε(x0) for some x0. Consequently, part (b) follows from Proposition 3.

Proof of Proposition 4. The stated result follows from writing∇j`k,m,x(ϑ) = ∇j log pϑ(Yk
−m+1|Y−m, X−m =

x) − ∇j log pϑ(Yk−1
−m+1|Y−m, X−m = x), applying Lemma 1 to the right hand side, and not-
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ing that ∇j log pϑ(Yk
−m+1,X

k
−m+1|Y−m, X−m) =

∑k
t=−m+1 φ

j(ϑ,Z
t
t−1) (see (1) and (6)). The

result for ∇j`k,m,x(ϑ) with j = 1, 2 is also given in DMR (p. 2272 and pp. 2276-7).

For j = 3, the term ∆2,1
2,k,m,x(ϑ) follows from

∑k
t1=−m+1

∑k
t2=−m+1 Ecϑ[φ2

ϑt1
φ1
ϑt2
|Yk
−m, X−m =

x] =
∑k

t1=−m+1

∑k
t2=−m+1 Φ2,1

ϑt1t2
[Y

k
−m, X−m = x]. For j = 4, note that when we apply

Lemma 1 to ∇4 log pϑ(Yk
−m+1|Y−m, X−m = x), the last two terms on the right hand side

of Lemma 1 can be written as
∑
T (4)∈{−m+1,...,k}4 Φ1,1,1,1

ϑT (4) [Y
k
−m, X−m = x]. The result for

j = 5 follows from a similar argument. For j = 6, note that when we apply Lemma 1 to

∇6 log pϑ(Yk
−m+1|Y−m, X−m = x), the last four terms on the right hand side of Lemma 1 can

be written as
∑
T (6)∈{−m+1,...,k}6 Φ

I(6)
ϑT (6)[Y

k
−m, X−m = x].

Proof of Proposition 5. First, parts (a) and (b) hold when the right hand side is replaced with

Kj(k + m)7ρb(k+m−1)/24c and Kj(k + m)7ρb(k+m−1)/1340c by using Proposition 4 and Lemma 3

and noting that q1 = 6q0, q2 = 5q0, q3 = 4q0, . . . , q6 = q0. For example, when j = 2, we can

bound supx∈X supϑ∈N ∗ |∇2`k,m,x(ϑ) − ∇j2`k,m(ϑ)| from ∇2`k,m,x(ϑ) = ∆2
1,k,m,x(ϑ) + ∆1,1

2,k,m,x(ϑ),

supx∈X supϑ∈N ∗ |∆
I(j)
j,k,m,x(ϑ)−∆

I(j)
j,k,m(ϑ)| ≤ KI(j)(k+m)7ρb(k+m−1)/24c, KI(j) ∈ LrI(j)(Pϑ∗), r(2) =

q2 = 5q0, and r(1,1) = q1/2 = 3q0. Second, letting ρ∗ = ρ1/1340I{ρ > 0} and redefining Kj gives

parts (a) and (b). Parts (c) and (d) follow Proposition 4 and Lemma 3.

Proof of Proposition 6. First, we prove part (a). The proof of part (b) is essentially the same as

that of part (a) and hence omitted. Observe that

∇ljk,m,x(ϑ)−∇ljk,m(ϑ) = Ψj
k,m,x(ϑ)

(
pϑ(Yk|Y

k−1
−m , X−m = x)

pϑ∗(Yk|Y
k−1
−m , X−m = x)

−
pϑ(Yk|Y

k−1
−m )

pϑ∗(Yk|Y
k−1
−m )

)

+
pϑ(Yk|Y

k−1
−m )

pϑ∗(Yk|Y
k−1
−m )

(
Ψj
k,m,x(ϑ)−Ψ

j
k,m(ϑ)

)
,

where

Ψj
k,m,x(ϑ) :=

∇jpϑ(Yk|Y
k−1
−m , X−m = x)

pϑ(Yk|Y
k−1
−m , X−m = x)

, Ψ
j
k,m(ϑ) :=

∇jpϑ(Yk|Y
k−1
−m )

pϑ(Yk|Y
k−1
−m )

.

In view of Lemma 4 and the Hölder’s inequality, part (a) holds if, for j = 1, . . . , 6, there exist

random variables ({Aj,k}nk=1, Bj) ∈ Lq0(Pϑ∗) and ρ∗ ∈ (0, 1) such that, for all 1 ≤ k ≤ n and

m ≥ 0,

(A) sup
m≥0

sup
x∈X

sup
ϑ∈N ∗

|Ψj
k,m,x(ϑ)| ≤ Aj,k, (B) sup

x∈X
sup
ϑ∈N ∗

|Ψj
k,m,x(ϑ)−Ψ

j
k,m(ϑ)| ≤ Bj(k+m)7ρk+m−1

∗ .

(77)
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We show (A) and (B). From (96) we have, suppressing (ϑ) and superscript 1 from ∇1`k,m,x,

Ψ1
k,m,x = ∇`k,m,x, Ψ2

k,m,x = ∇2`k,m,x + (∇`k,m,x)2,

Ψ3
k,m,x = ∇3`k,m,x + 3∇2`k,m,x∇`k,m,x + (∇`k,m,x)3,

Ψ4
k,m,x = ∇4`k,m,x + 4∇3`k,m,x∇`k,m,x + 3(∇2`k,m,x)2 + 6∇2`k,m,x(∇`k,m,x)2 + (∇`k,m,x)4,

Ψ5
k,m,x = ∇5`k,m,x + 5∇4`k,m,x∇`k,m,x + 10∇3`k,m,x∇2`k,m,x + 10∇3`k,m,x(∇`k,m,x)2

+ 15(∇2`k,m,x)2∇`k,m,x + 10∇2`k,m,x(∇`k,m,x)3 + (∇`k,m,x)5,

Ψ6
k,m,x = ∇6`k,m,x + 6∇5`k,m,x∇`k,m,x + 15∇4`k,m,x∇2`k,m,x + 15∇4`k,m,x(∇`k,m,x)2

+ 10(∇3`k,m,x)2 + 60∇3`k,m,x∇2`k,m,x∇`k,m,x + 20∇3`k,m,x(∇`k,m,x)3

+ 15(∇2`k,m,x)3 + 45(∇2`k,m,x)2(∇`k,m,x)2 + 15∇2`k,m,x(∇`k,m,x)4 + (∇`k,m,x)6,

and Ψ
j
k,m is written analogously with ∇j`k,m replacing ∇j`k,m,x. Therefore, (A) of (77) follows

from Proposition 5(c) and the Hölder’s inequality. (B) of (77) follows from Proposition 5(a)(c), the

relation ab− cd = a(b− c)− c(a−d), an− bn = (a− b)
∑n−1

i=0 (an−1−ibi), and the Hölder’s inequality.

For part (c), the bound on ∇ljk,m,x(ϑ) follows from writing ∇ljk,m,x(ϑ) = [pϑ(Yk|Y
k−1
−m , X−m =

x)/pϑ∗(Yk|Y
k−1
−m , X−m = x)]Ψj

k,m,x(ϑ) and using (77) and Lemma 4. ∇jlk,m(ϑ) is bounded by a

similar argument. Part (d) follows from parts (a)(b)(c), the completeness of Lq(Pϑ∗), Markov’s

inequality, and Borel-Cantelli Lemma. Part (e) follows from combining parts (a) and (b) and

letting m′ →∞ in part (b).

Proof of Proposition 7. Consistency of ϑ̂1 follows from Theorem 2.1 of Newey and McFad-

den (1994) because (i) ϑ∗1 uniquely maximizes Eϑ∗1 log f(Y1|Y0,W1; γ, θ) from Assumption 5(c),

and (ii) supϑ1∈Θ1
|n−1`0,n(ϑ1) − Eϑ∗1 log f(Y1|Y0,W1; γ, θ)| p→ 0 and Eϑ∗1 log f(Y1|Y0,W1; γ, θ)

is continuous because (Yk,Wk) is strictly stationary and ergodic from Assumption 1(e) and

Eϑ∗1 supϑ1∈Θ1
| log f(Y1|Y0,W1; γ, θ)| <∞ from Assumption 2(c).

We proceed to prove the consistency of ϑ̂2. Define, similarly to pp. 2265–2266 in

DMR, ∆k,m,x(ϑ2) := log pϑ2(Yk|Y
k−1
−m ,W

k
−m, X−m = x), ∆k,m(ϑ2) := log pϑ2(Yk|Y

k−1
−m ,W

k
−m),

∆k,∞(ϑ2) := limm→∞∆k,m(ϑ2), and `(ϑ2) := Eϑ∗1 [∆0,∞(ϑ)]. Observe that Lemmas 3, 4 and Propo-

sition 2 of DMR hold for our {∆k,m,x(ϑ2),∆k,m(ϑ2),∆k,∞(ϑ2), `n(ϑ2, x0), `(ϑ2)} under our assump-

tions because (i) their Assumption (A2), which we do not assume, is not used in the proof of their

Lemmas 3 and 4 and Proposition 2, and (ii) our Lemma 10(a) extends Corollary 1 of DMR to

accommodate Wk’s. It follows that (i) `(ϑ2) is maximized if and only if ϑ2 ∈ Γ∗ from Assump-

tion 5(d) because Eϑ∗1 [log pϑ2(Y1|Y
0
−m,W

1
−m)] converges to `(ϑ2) uniformly in ϑ2 as m→∞ from

Lemma 3 of DMR and the dominated convergence theorem, (ii) `(ϑ2) is continuous from Lemma 4

of DMR, and (iii) supξ2 supϑ2∈Θ2
|n−1`n(ϑ2, ξ2)− `(ϑ2)| p→ 0 holds from Proposition 2 of DMR and

`n(ϑ2, ξ2) ∈ [minx0 `n(ϑ2, x0),maxx0 `n(ϑ2, x0)]. Consequently, infϑ2∈Γ∗ |ϑ̂2 − ϑ2|
p→ 0 follows from

Theorem 2.1 of Newey and McFadden (1994) with an adjustment for the fact that the maximizer

of `(ϑ2) is a set, not a singleton.

38



Proof of Proposition 8. We prove the stated result by applying Corollary 1 to lϑkx0 − 1 with lϑkx0

defined in (4). Because the first and second derivatives of lϑkx0 − 1 play the role of the score, we

expand lϑkx0 − 1 with respect to ψ up to the third order. Let q = dim(ψ). For a k × 1 vector a,

define a⊗p := a⊗ a⊗ · · · ⊗ a (p times) and ∇a⊗p := ∇a ⊗∇a ⊗ · · · ⊗∇a (p times). Recall that the

(p+ 1)-th order Taylor expansion of f(x) with x ∈ Rq around x = x∗ is given by

f(x) = f(x∗) +

p∑
j=1

1

j!
∇(x⊗j)′f(x∗)(x− x∗)⊗j +

1

(p+ 1)!
∇(x⊗(p+1))′f(x)(x− x∗)⊗(p+1),

where x lies between x and x∗, and x may differ from element to element of ∇x⊗(p+1)f(x).

Choose ε > 0 sufficiently small so that Nε is a subset of N ∗ in Assumption 4. For m ≥ 0 and

j = 1, 2, . . ., let

Λjk,m,x−m(ψ, π) :=
∇ψ⊗jpψπ(Yk|Y

k−1
−m , x−m)

j!pψ∗π(Yk|Y
k−1
−m , x−m)

, Λjk,m(ψ, π) :=
∇ψ⊗jpψπ(Yk|Y

k−1
−m )

j!pψ∗π(Yk|Y
k−1
−m )

,

and ∆ψ := ψ − ψ∗. With this notation, expanding lϑkx0 − 1 three times around ψ∗ while fixing π

gives, with ψ ∈ [ψ,ψ∗],

lϑkx0 − 1 = Λ1
k,0,x0

(ψ∗, π)′∆ψ + Λ2
k,0,x0

(ψ∗, π)′(∆ψ)⊗2 + Λ3
k,0,x0

(ψ, π)′(∆ψ)⊗3

= Λ1
k,0(ψ∗, π)′∆ψ + Λ2

k,0(ψ∗, π)′(∆ψ)⊗2 + Λ3
k,0(ψ, π)′(∆ψ)⊗3 + ukx0(ψ, π), (78)

where ψ may differ from element to element of Λ3
k,0,x0

(ψ, π), and ukx0(ψ, π) :=
∑2

j=1[Λjk,0,x0
(ψ∗, π)−

Λjk,0(ψ∗, π)]′(∆ψ)⊗j + [Λ3
k,0,x0

(ψ, π)− Λ3
k,0(ψ, π)]′(∆ψ)⊗3.

Noting that ∇λpψ∗π(Yk|Y
k−1
0 ) = 0 and ∇λη′pψ∗π(Yk|Y

k−1
0 ) = 0 from (16), we may rewrite (78)

as

lkϑx0 − 1 = t(ψ, π)′s%k + rk,0(ψ, π) + ukx0(ψ, π), (79)

where s%k is defined in (20), rk,0(ψ, π) := Λ̃k,0(π)′(∆η)⊗2+Λ3
k,0(ψ, π)′(∆ψ)⊗3, where Λ̃k,0(π) denotes

the part of Λ2
k,0(ψ∗, π) corresponding to (∆η)⊗2.

For m ≥ 0, define vk,m(ϑ) := (Λ1
k,m(ψ, π)′,Λ2

k,m(ψ, π)′,Λ3
k,m(ψ, π)′)′, and define vk,∞(ϑ) :=

limm→∞ vk,m(ϑ). In order to apply Corollary 1 to lϑkx0 − 1, we first show

sup
ϑ∈Nε

∣∣Pn[vk,0(ϑ)vk,0(ϑ)′]− Eϑ∗ [vk,∞(ϑ)vk,∞(ϑ)′]
∣∣ = op(1), (80)

νn(vk,0(ϑ))⇒W (ϑ), (81)

where W (ϑ) is a mean-zero continuous Gaussian process with Eϑ∗ [W (ϑ1)W (ϑ2)′] =

Eϑ∗ [vk,∞(ϑ1)vk,∞(ϑ2)′]. (80) holds because supϑ∈Nε Pn[vk,0(ϑ)vk,0(ϑ)′ − vk,∞(ϑ)vk,∞(ϑ)′] = op(1)

from Proposition 6, and vk,∞(ϑ)vk,∞(ϑ)′ satisfies a uniform law of large numbers (Lemma 2.4 and

footnote 18 of Newey and McFadden (1994)) because vk,∞(ϑ) is continuous in ϑ from the conti-
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nuity of ∇jlk,m,x(ϑ) and Proposition 6, and Eϑ∗ supϑ∈Nε |vk,∞(ϑ)|2 < ∞ from Proposition 6. (81)

holds because supϑ∈Nε νn(vk,0(ϑ)− vk,∞(ϑ)) = op(1) from Proposition 6 and νn(vk,∞(ϑ))⇒ W (ϑ)

from Theorem 10.2 of Pollard (1990) because (i) the space of ϑ is totally bounded, (ii) the finite

dimensional distributions of νn(vk,∞(·)) converge to those of W (·) from a martingale CLT because

vk,∞(ϑ) is a stationary L2(Pϑ∗) martingale difference sequence for all ϑ ∈ Nε from Proposition 6,

and (iii) {νn(vk,∞(·)) : n ≥ 1} is stochastically equicontinuous from Theorem 2 of Hansen (1996)

because vk,∞(ϑ) is Lipschitz continuous in ϑ and both vk,∞(ϑ) and the Lipschitz coefficient are in

Lq(Pϑ∗) with q > dim(ϑ) from Proposition 6.

We proceed to show that the terms on the right hand side of (79) satisfies Assumption 3(a)–

(g). Observe that t(ψ, π) = 0 if and only if ψ = ψ∗. First, s%k satisfies Assumption 3(a)(b)(g)

by Proposition 6, (80), (81), and Assumption 6. Second, rk,0(ψ, π) satisfies Assumption 3(c)(d)

from Proposition 6 and (81). Third, ukx0(ψ, π) satisfies Assumption 3(e)(f) from Proposition 6(c).

Therefore, the stated result follows from Corollary 1(b).

Proof of Proposition 9. The proof is similar to that of Proposition 3 of Kasahara and Shimotsu

(2015). Let tη := η − η∗ and tλ := α(1 − α)v(λ), so that t(ψ, π) = (t′η, t
′
λ)′. Let ψ̂π :=

arg maxψ∈Θψ `n(ψ, π, ξ) denote the MLE of ψ, and split t(ψ̂π, π) as t(ψ̂π, π) = (t̂′η, t̂
′
λ)′, where

we suppress the dependence of t̂η and t̂λ on π. Define G%n := νn(s%k). Let

G%n =

[
Gηn

Gλ%n

]
,

Gλ.η%n := Gλ%n − Iλη%I−1
η Gηn, Zλ.η%n := I−1

λ.η%Gλ.η%n,

tη.λ% := tη + I−1
η Iηλ%tλ.

Then, we can write (22) as

sup
ξ∈Ξ

sup
ϑ∈Anεc(ξ)

∣∣2 [`n(ψ, π, ξ)− `n(ψ∗, π, ξ)]−An(
√
ntη.λ%)−B%n(

√
ntλ)

∣∣ = op(1), (82)

where

An(tη.λ%) = 2t′η.λ%Gηn − t′η.λ%Iηtη.λ%,

B%n(tλ) = 2t′λGλ.η%n − t′λIλ.η%tλ = Z ′λ%nIλ.η%Zλ%n − (tλ − Zλ%n)′Iλ.η%(tλ − Zλ%n).
(83)

Observe that 2[`0n(ϑ̂0)− `0n(ϑ∗0)] = maxtη [2
√
nt′ηGηn − nt′ηIηtη] + op(1) = maxtη.λ% An(

√
ntη.λ%) +

op(1) from applying Corollary 1 to `0n(ϑ0) and noting that the set of possible values of both
√
ntη

and
√
ntη.λ% approaches Rdim(η). In conjunction with (82), we obtain, uniformly in π ∈ Θπ,

2[`n(ψ̂π, π, ξ)− `0n(ϑ̂0)] = B%n(
√
nt̂λ) + op(1). (84)

Define t̃λ by B%n(
√
nt̃λ) = maxtλ∈α(1−α)v(Θλ)B%n(

√
ntλ). Then, we have

2[`n(ψ̂π, π, ξ)− `0n(ϑ̂0)] = B%n(
√
nt̃λ) + op(1),
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uniformly in π ∈ Θπ because (i) B%n(
√
nt̃λ) ≥ 2[`n(ψ̂π, π, ξ) − `0n(ϑ̂0)] + op(1) from the definition

of t̃λ and (84), and (ii) 2[`n(ψ̂π, π, ξ)− `0n(ϑ̂0)] ≥ B%n(
√
nt̃λ) + op(1) from the definition of ψ̂, (82),

and t̃λ = Op(n
−1/2).

Finally, the asymptotic distribution of sup%B%n(
√
nt̃λ) follows from applying Theorem 1(c)

of Andrews (2001) to B%n(
√
nt̃λ). First, Assumption 2 of Andrews (2001) holds trivially for

B%n(
√
nt̃λ). Second, Assumption 3 of Andrews (2001) is satisfied by (81) and Assumption 6. As-

sumption 4 of Andrews (2001) is satisfied by Proposition 8. Assumption 5∗ of Andrews (2001) holds

with BT = n1/2 because α(1− α)v(Θλ) is locally equal to the cone v(Rq) given that α(1− α) > 0

for all α ∈ Θα. Therefore, sup%∈Θ% B%n(
√
nt̃λ)

d→ sup%∈Θ%(t̃
′
λ%Iλ.η%t̃λ%) follows from Theorem 1(c)

of Andrews (2001).

Proof of Proposition 10. The proof is similar to that of Proposition 8. Define Λjk,m,x−m(ψ, π) and

Λjk,m(ψ, π) as in the proof of Proposition 8. Expanding lkϑx0 − 1 five times around ψ∗ similarly to

(78) while fixing π gives, with ψ ∈ [ψ,ψ∗],

lkϑx0 − 1 =
4∑
j=1

Λjk,0(ψ∗, π)′(∆ψ)⊗j + Λ5
k,0(ψ, π)′(∆ψ)⊗5 + ukx0(ψ, π), (85)

where ukx0(ψ, π) :=
∑4

j=1[Λjk,0,x0
(ψ∗, π)−Λjk,0(ψ∗, π)]′(∆ψ)⊗j +[Λ5

k,0,x0
(ψ, π)−Λ5

k,0(ψ, π)]′(∆ψ)⊗5.

Define pψπk,0 := pψπ(Yk|Y
k−1
0 ). Observe that s%k defined in (36) satisfies

s%k :=



∇ηpψ∗πk,0/pψ∗πk,0
ζk,0(%)/2

∇λµλσpψ∗πk,0/α(1− α)pψ∗πk,0

∇λ2
σ
pψ∗πk,0/2α(1− α)pψ∗πk,0

∇λβλµpψ∗πk,0/α(1− α)pψ∗πk,0

∇λβλσpψ∗πk,0/α(1− α)pψ∗πk,0

V (∇λβλβpψ∗πk,0)/α(1− α)pψ∗πk,0


.

Noting that ∇λpψ∗π(Yk|Y
k−1
0 ) = 0 and ∇λη′pψ∗π(Yk|Y

k−1
0 ) = 0 from (16) and (17), we may rewrite

(85) as, with t(ψ, π) and s%k defined in (33) and (36),

lϑkx0 − 1 = t(ψ, π)′s%k + rk,0(π) + ukx0(ψ, π), (86)

where rk,0(π) := Λ̃k,0(π)′τ(ψ) + Λ5
k,0(ψ, π)′(∆ψ)⊗5 + λ4

µ[∇λ4
µ
pψ∗πk,0 − b(α)∇λ2

σ
pψ∗πk,0]/4!pψ∗πk,0,

τ(ψ) is the vector that collects the elements of {(∆ψ)⊗j}4j=2 that are not in t(ψ, π), and Λ̃k,0(π)

denotes the vector of the corresponding elements of {Λjk,0(ψ∗, π)}4j=2.

The stated result follows from Corollary 1 if the terms on the right hand side of

(86) satisfy Assumption 3. Similarly to the proof of Proposition 9, define vk,m(ϑ) :=

(ζk,m(%),Λ1
k,m(ψ, π)′, . . . ,Λ5

k,m(ψ, π)′)′. Note that ζk,m(%) satisfies Proposition 6 because the
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mean value theorem and ∇λ2
µ
pψ∗0α(Yk|Y

k−1
−m ) = 0 gives ζk,m(%) = [∇λ2

µ
pψ∗%α(Yk|Y

k−1
0 ) −

∇λ2
µ
pψ∗0α(Yk|Y

k−1
0 )]/[%α(1−α)pψ∗%α(Yk|Y

k−1
0 )] = ∇%∇λ2

µ
pψ∗α%̄(Yk|Y

k−1
−m )/[α(1−α)pψ∗%̄α(Yk|Y

k−1
−m )]

for %̄ ∈ [0, %]. Therefore, vk,∞(ϑ) := limm→∞ vk,m(ϑ) is well-defined, and vk,0(ϑ) and vk,∞(ϑ) satisfy

(80)–(81) from repeating the argument in the proof of Proposition 9.

We proceed to show that the terms on the right hand side of (86) satisfy Assumption 3. Ob-

serve that t(ψ, π) = 0 if and only if ψ = ψ∗. s%k and ukx0(ψ, π) satisfy Assumption 3 by not-

ing that s%k is a linear function of vk,0(ϑ) and using the argument in the proof of Proposition

8 with replacing Assumption 6 with Assumption 7. We show that each component of rk,0(π)

satisfies Assumption 3(c)(d). First, Λ5
k,0(ψ, π)′(∆ψ)⊗5 satisfies Assumption 3(c)(d) from Proposi-

tion 6, (81) and λ5
µ = (12λµ/b(α))[λ2

σ + b(α)λ4
µ/12] − 12(λσ/b(α))λµλσ = O(|ψ||t(ψ, π)|). Second,

λ4
µ[∇λ4

µ
pψ∗πk,0 − b(α)∇λ2

σ
pψ∗πk,0]/pψ∗πk,0 satisfies Assumption 3(c)(d) from Lemma 6(b). Third,

for ∆̃k,0(π)′τ(ψ), observe that ∇ληjpψ∗πk,0 = 0 for any j ≥ 1 in view of (27)–(30). Therefore,

∆̃k,0(π)′τ(ψ) is written as, with ∆η := η − η∗,

∆̃k,0(π)′τ(ψ) = ∇(η⊗2)′pψ∗πk,0(∆η)⊗2/2!pψ∗πk,0 +R3kϑ +R4kϑ, (87)

where R3kϑ := ∇(ψ⊗3)′pψ∗πk,0(∆ψ)⊗3/3!pψ∗πk,0 and

R4kϑ := [∇(ψ⊗4)′pψ∗πk,0(∆ψ)⊗4 −∇λ4
µ
pψ∗πk,0λ

4
µ]/4!pψ∗πk,0. (88)

The first term in (87) clearly satisfies Assumption 3(c)(d). The terms in R3kϑ belong to one of the

following three groups: (i) the term associated with λ3
σ, (ii) the term associated with λ3

µ, (iii) the

other terms. These terms satisfy Assumption 3(c)(d) because the term (i) is bounded by |ψ||t(ψ, π)|
because λ3

σ = λσ[λ2
σ + b(α)λ4

µ/12]− (λ3
µb(α))λµλσ/12, the term (ii) is bounded by %λ3

µ from Lemma

6(a), and the terms in (iii) are bounded by |ψ||t(ψ, π)| because they either contain ∆η or a term of

the form λiµλ
j
σλkβ with i+ j + k = 3 and i, j 6= 3. Similarly, the terms in R4kϑ satisfy Assumption

3(c)(d) because they either contain ∆η or a term of the form λiµλ
j
σλkβ with i+ j + k = 4 and i 6= 4.

This proves that rk,0(π) satisfies Assumption 3(c)(d), and the stated result is proven.

Proof of Proposition 11. The proof is similar to the proof of Proposition 3(c) of Kasahara and

Shimotsu (2015). Let (ψ̂α, %̂α) := arg max(ψ,%)∈Θψ×Θ%`n(ψ, %, α, ξ) denote the MLE of (ψ, %) for

a given α. Consider the sets Θ1
λ := {λ ∈ Θλ : |λµ| ≥ n−1/8(log n)−1} and Θ2

λ := {λ ∈
Θλ : |λµ| < n−1/8(log n)−1}, so that Θλ = Θ1

λ ∪ Θ2
λ. For j = 1, 2, define (ψ̂jα, %̂

j
α) :=

arg max
(ψ,%)∈Θψ×Θ%,λ∈Θjλ

`n(ψ, %, α, ξ). Then, uniformly in α,

`n(ψ̂α, %̂α, α, ξ) = max
{
`n(ψ̂1

α, %̂
1
α, α, ξ), `n(ψ̂2

α, %̂
2
α, α, ξ)

}
.

Henceforth, we suppress the dependence of ψ̂α, %̂α, etc. on α.

Define B%n(tλ(λ, %, α)) as in (83) in the proof of Proposition 9 but using t(ψ, π) and s%k defined in

(33) and (36) and replacing tλ in (83) with tλ(λ, %, α). Observe that the proof of Proposition 9 goes
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through up to (84) with the current notation and that G%n and I% are continuous in %. Further, %̂1 =

Op(n
−1/4(log n)2) because %̂1(λ̂1

µ)2 = Op(n
−1/2) from Proposition 10(a) and |λ̂1

µ| ≥ n−1/8(log n)−1.

Consequently, B%̂1n(
√
ntλ(λ̂1, %̂1, α)) = B0n(

√
ntλ(λ̂1, %̂1, α)) + op(1), and, uniformly in α,

2[`n(ψ̂, %̂, α, ξ)− `0n(ϑ̂0)] = max{B0n(
√
ntλ(λ̂1, %̂1, α)), B%̂2n(

√
ntλ(λ̂2, %̂2, α))}+ op(1). (89)

We proceed to construct parameter spaces Λ̃1
λα and Λ̃2

λα% that are locally equal to the cones

Λ1
λ and Λ2

λ% defined in (38). Define c(α) := α(1 − α), and denote the elements of tλ(λ̂j , %̂j , α)

corresponding to (34) by

tλ(λ̂j , %̂j , α) =



t̂j
%µ2

t̂jµσ

t̂j
σ2

t̂jβµ
t̂jβσ
t̂jv(β)


:= c(α)



%̂j(λ̂jµ)2

λ̂µλ̂σ

(λ̂jσ)2 + b(α)(λ̂jµ)4/12

λ̂jβλ̂
j
µ

λ̂jβλ̂
j
σ

v(λ̂jβ)


.

Note that λ̂1
σ = Op(n

−3/8 log n) and λ̂1
β = Op(n

−3/8 log n) because (t̂1µσ, t̂
1
βµ) = Op(n

−1/2) from

Proposition 10(a) and |λ̂1
µ| ≥ n−1/8(log n)−1. Furthermore, t̂2σ2 = c(α)(λ̂2

σ)2 + op(n
−1/2) because

|λ̂2
µ| < n−1/8(log n)−1. Consequently,

t̂1βσ = op(n
−1/2), t̂1v(β) = op(n

−1/2), t̂1σ2 = c(α)b(α)(λ̂1
µ)4/12 + op(n

−1/2),

t̂2σ2 = c(α)(λ̂2
σ)2 + op(n

−1/2).
(90)

In view of this, let tλ(λ, %, α) := (t%µ2 , tµσ, tσ2 , t′βµ, t
′
βσ, t

′
v(β))

′ ∈ Rqλ , and consider the following sets:

Λ̃1
λα := {tλ(λ, %, α) : t%µ2 = c(α)%λ2

µ, tµσ = c(α)λµλσ, tσ2 = c(α)b(α)λ4
µ/12,

tβµ = c(α)λβλµ, tβσ = 0, tv(β) = 0 for some (λ, %) ∈ Θλ ×Θ%},

Λ̃2
λα% := {tλ(λ, %, α) : t%µ2 = c(α)%λ2

µ, tµσ = c(α)λµλσ, tσ2 = c(α)λ2
σ,

tβµ = c(α)λβλµ, tβσ = c(α)λβλσ, tv(β) = c(α)v(λβ) for some λ ∈ Θλ}.

Λ̃1
λα is indexed by α but does not depend on % because B0n(·) in (89) does not depend on %,

whereas Λ̃2
λα% is indexed by both α and % because B%̂2n(·) in (89) depends on %̂2. Define (λ̃1

α, %̃
1
α)

and λ̃2
α% by B0n(

√
ntλ(λ̃1

α, %̃
1
α, α)) = maxtλ(λ,%,α)∈Λ̃1

λα
B0n(

√
ntλ(λ, %, α)) and B%n(

√
ntλ(λ̃2

α%, %, α)) =

maxtλ(λ,%,α)∈Λ̃2
λα%
B%n(

√
ntλ(λ, %, α)).

Define Wn(α) := max{B0n(
√
ntλ(λ̃1

α, %̃
1
α, α)), sup%∈Θ% B%n(

√
ntλ(λ̃2

α%, %, α))}, then we have

2[`n(ψ̂, %̂, α, ξ)− `0n(ϑ̂0)] = Wn(α) + op(1), (91)

uniformly in α ∈ Θα because (i) Wn(α) ≥ 2[`n(ψ̂, %̂, α, ξ)− `0n(ϑ̂0)] + op(1) in view of the definition
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of (λ̃1
α, %̃

1
α, λ̃

2
α%), (89), and (90), and (ii) 2[`n(ψ̂, %̂, α, ξ)− `0n(ϑ̂0)] ≥

max{2[maxη `n(η, λ̃1
α, %̃

1
α, α, ξ), sup%∈Θ% maxη `n(η, λ̃2

α%, %, α, ξ)}− 2`0n(ϑ̂0) + op(1) = Wn(α) + op(1)

from the definition of (ψ̂, %̂).

The asymptotic distribution of the LRTS follows from applying Theorem 1(c) of Andrews

(2001) to (B0n(
√
ntλ(λ̃1

α, %̃
1
α, α)), B%n(

√
ntλ(λ̃2

α%, %, α))). First, Assumption 2 of Andrews (2001)

holds trivially for B%n(
√
nt(λ, %, α)). Second, Assumption 3 of Andrews (2001) is satisfied by (81)

and Assumption 7. Assumption 4 of Andrews (2001) is satisfied by Proposition 10. Assumption 5∗

of Andrews (2001) holds with BT = n1/2 because Λ̃1
λα is locally (in a neighborhood of % = 0, λ = 0)

equal to the cone Λ1
λ and Λ̃2

λα% is locally equal to the cone Λ2
λ% uniformly in % ∈ Θ%ε. Consequently,

Wn(α)
d→ sup%∈Θ% max{I{% = 0}(t̃1λ)′Iλ.η0t̃

1
λ, (t̃

2
λ%)
′Iλ.η%t̃2λ%} uniformly in α from Theorem 1(c) of

Andrews (2001), and the stated result follows from (91).

Proof of Proposition 12. The proof is similar to that of Proposition 10. Expanding lkϑx0 − 1 five

times around ψ∗ and proceeding as in the proof of Proposition 10 gives

lϑkx0 − 1 = t(ψ, π)′s%k + rk,0(π) + ukx0(ψ, π), (92)

where t(ψ, π) is defined in (45), s%k is defined in (46) and satisfies

s%k :=



∇ηpψ∗πk,0/pψ∗πk,0
ζk,0(%)/2

∇µ3f∗k/3!f∗k
∇µ4f∗k/4!f∗k

∇λβλµpψ∗πk,0/α(1− α)pψ∗πk,0

∇̃v(λβ)pψ∗πk,0/α(1− α)pψ∗πk,0


,

and

rk,0(π) : = Λ̃k,0(π)′τ(ψ) + Λ5
k,0(ψ, π)′(∆ψ)⊗5

+ λ3
µ[∇λ3

µ
pψ∗πk,0/pψ∗πk,0 − α(1− α)(1− 2α)∇µ3f∗k/f

∗
k ]/3!

+ λ4
µ[∇λ4

µ
pψ∗πk,0/pψ∗πk,0 − α(1− α)(1− 6α+ 6α2)∇µ4f∗k/f

∗
k ]/4!,

where ukx0(ψ, π), pψπk,m, and the terms in the definition of rk,0(π) are defined similarly to those

in the proof of Proposition 10.

The stated result is proven if the terms on the right hand side of (92) satisfy Assumption

3. t(ψ, π) = 0 if and only if ψ = ψ∗. s%k and ukx0(ψ, π) satisfy Assumption 3 by the same

argument as the proof of Proposition 10. For rk,0(π), first, Λ5
k,0(ψ, π)′(∆ψ)⊗5 satisfies Assump-

tion 3(c)(d) from a similar argument to the proof of Proposition 10; λ5
µ is dominated by λ3

µ or

λ4
µ because inf0≤α≤1 max{|1 − 2α|, |1 − 6α + 6α2|} > 0. Second, similar to (87) in the proof

of Proposition 10, write Λ̃k,0(π)′τ(ψ) = ∇(η⊗2)′pψ∗πk,0(∆η)⊗2/2!pψ∗πk,0 + R̃3kϑ + R4kϑ, where
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R̃3kϑ := [∇(ψ⊗3)′pψ∗πk,0(∆ψ)⊗3 − ∇λ3
µ
pψ∗πk,0λ

3
µ]/3!pψ∗πk,0, and R4kϑ is defined as R4kϑ in (88).

The term ∇(η⊗2)′pψ∗πk,0(∆η)⊗2/2!pψ∗πk,0 clearly satisfies Assumption 3(c)(d). The terms in R̃3kϑ

satisfy Assumption 3(c)(d) because they contain either ∆η or λ2
µλβ or λµλ

2
β or λ3

β. The terms in

R4kϑ satisfy Assumption 3(c)(d) because they either contain ∆η or a term of the form λiµλ
4−i
β with

1 ≤ i ≤ 3. The last two terms in rk,0(π) satisfy Assumption 3(c)(d) from Lemma 7. Therefore,

rk,0(π) satisfies Assumption 3(c)(d), and the stated result is proven.

Proof of Proposition 13. The proof is similar to the proof of Proposition 11. Let (ψ̂, %̂, α̂) :=

arg max(ψ,%,α)∈Θψ×Θ%×Θα`n(ψ, %, α, ξ) denote the MLE of (ψ, %, α). Consider the sets Θ1
λ :=

{λ ∈ Θλ : |λµ| ≥ n−1/6(log n)−1} and Θ2
λ := {λ ∈ Θλ : |λµ| < n−1/6(log n)−1}, so that

Θλ = Θ1
λ ∪ Θ2

λ. For j = 1, 2, define (ψ̂j , %̂j , α̂j) := arg max
(ψ,%,α)∈Θψ×Θ%×Θα,λ∈Θjλ

`n(ψ, %, α, ξ),

so that `n(ψ̂, %̂, α̂, ξ) = maxj∈{1,2} `n(ψ̂j , %̂j , α̂j , ξ).

Define B%n(tλ(λ, %, α)) as in (83) in the proof of Proposition 9 but using t(ψ, π) and s%k defined in

(45) and (46) and replacing tλ in (83) with tλ(λ, %, α). Observe that %̂1 = Op(n
−1/6(log n)2) because

%̂1(λ̂1
µ)2 = Op(n

−1/2) from Proposition 12(a) and |λ̂1
µ| ≥ n−1/6(log n)−1. Using the argument of the

proof of Proposition 11 leading to (89), we obtain

2[`n(ψ̂, %̂, α̂, ξ)− `0n(ϑ̂0)] = max{B0n(
√
ntλ(λ̂1, %̂1, α̂1)), B%̂2n(

√
ntλ(λ̂2, %̂2, α̂2))}+ op(1).

We proceed to construct parameter spaces that are locally equal to the cones Λ1
λ and Λ2

λ% defined

in (47). Define c(α) := α(1−α), and denote the elements of tλ(λ̂j , %̂j , α̂j) corresponding to (45) by

tλ(λ̂j , %̂j , α̂j) =



t̂j
%µ2

t̂j
µ3

t̂j
µ4

t̂jβµ
t̂jv(β)


:= c(α̂j)


%̂j(λ̂jµ)2

(1− 2α̂j)(λ̂jµ)3

(1− 6α̂j + 6(α̂j)2)(λ̂jµ)4

λ̂jβλ̂
j
µ

v(λ̂jβ)

 .

Note that λ̂1
β = Op(n

−1/3 log n) because t̂1βµ = Op(n
−1/2) from Proposition 12(a) and |λ̂1

µ| ≥
n−1/6(log n)−1. Furthermore, |λ̂2

µ| < n−1/6(log n)−1. Therefore,

t̂1v(β) = op(n
−1/2), t̂2µ3 = op(n

−1/2), t̂2µ4 = op(n
−1/2).

In view of this, let tλ(λ, %, α) := (t%µ2 , tµ3 , tµ4 , t′βµ, t
′
v(β))

′ ∈ Rqλ , and consider the following sets:

Λ̃1
λ := {tλ(λ, %, α) : t%µ2 = c(α)%λ2

µ, tµ3 = c(α)(1− 2α)λ3
µ, tµ4 = c(α)(1− 6α+ 6α2)λ4

µ,

tβµ = c(α)λβλµ, tv(β) = 0 for some (λ, %, α) ∈ Θλ ×Θ% ×Θα},

Λ̃2
λα% := {tλ(λ, %, α) : t%µ2 = c(α)%λ2

µ, tµ3 = tµ4 = 0,

tβµ = c(α)λβλµ, tv(β) = c(α)v(λβ) for some λ ∈ Θλ}.
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Define (λ̃1, %̃1, α̃1) and λ̃2
α% by B0n(

√
ntλ(λ̃1, %̃1, α̃1)) = maxtλ(λ,%,α)∈Λ̃1

λ
B0n(

√
ntλ(λ, %, α)) and

B%n(
√
ntλ(λ̃2

α%, %, α)) = maxtλ(λ,%,α)∈Λ̃2
λα%
B%n(

√
ntλ(λ, %, α)). Λ̃1

λ is locally (in a neighborhood of

% = 0, λ = 0) equal to the cone Λ1
λ because, when |1− 2α| ≥ 1/2, we have tµ4/tµ3 → 0 as λµ → 0,

and when |1−2α| ≤ 1/2, we have 1−6α+6α2 < 0. Λ̃2
λα% is locally equal to the cone Λ2

λ% uniformly

in % ∈ Θ%.

Define Wn := max{B0n(
√
ntλ(λ̃1, %̃1, α̃1)), sup(α,%)∈Θα×Θ% B%n(

√
ntλ(λ̃2

α%, %, α))}. Proceed-

ing as in the proof of Proposition 11 gives 2[`n(ψ̂, %̂, α̂, ξ) − `0n(ϑ̂0)] = Wn + op(1), and the

asymptotic distribution of the LRTS follows from applying Theorem 1(c) of Andrews (2001) to

(B0n(
√
ntλ(λ̃1, %̃1, α̃1)), B%n(

√
ntλ(λ̃2

α%, %, α)).

Proof of Propositions 15, 16 and 17. Let N ∗m denote an arbitrary small neighborhood of Υ∗m, and

let ψ̂m denote a local MLE that maximizes `n(ψm, πm, ξM0+1) subject to ψm ∈ N ∗m. Proposi-

tion 14 and Υ∗ = ∪M0
m=1Υ∗m imply that `n(ϑ̂M0+1, ξM0+1) = maxm=1,...,M0 `n(ψ̂m, πm, ξM0+1) with

probability approaching 1. Because ψ∗` /∈ N ∗m for any ` 6= m, it follows from Proposition 14 that

ψ̂m − ψ∗m = op(1).

Next, `n(ψm, πm, ξM0+1) − `n(ψ∗m, πm, ξM0+1) admits the same expansion as `n(ψ, π, ξ) −
`n(ψ∗, π, ξ) in (22) or (37). Therefore, the stated result follows from applying the proof of Propo-

sitions 9, 11, and 13 to `n(ψ̂m, πm, ξM0+1)− `n(ϑ̂M0 , ξM0) for each m and combining the results to

derive the joint asymptotic distribution of {`n(ψ̂m, πm, ξM0+1)− `n(ϑ̂M0 , ξM0)}M0
m=1.

Proof of Proposition 18. Observe that Proposition 2 holds under Pnϑ∗,x0
under the assumptions of

Proposition 8, 10, and 12. Because ϑn = (η′n, λ
′
n, π

′
n)′ ∈ Nc/√n by choosing c > |h|, it follows from

Proposition 2 that

sup
x0∈X

∣∣∣∣∣log
dPnϑn,x0

dPnϑ∗,x0

− h′νn(s%nk) +
1

2
h′I%nh

∣∣∣∣∣ = oPn
ϑ∗,x0

(1), (93)

where s%k is given by (20), (36), and (46) for the models of non-normal distribution, het-

eroscedastic normal distribution, and homoscedastic normal distribution, respectively. Further-

more, νn(s%nk)⇒ G% under Pnϑ∗,x0
, where G% is a mean zero Gaussian process with cov(G%1 , G%2) =

I%1%2 := limk→∞ Eϑ∗(s%1ks
′
%2k

). Therefore, dPnϑn,x0
/dPnϑ∗,x0

converges in distribution under Pnϑ∗,x0

to exp
(
N(µ, σ2)

)
with µ = −(1/2)h′I%h and σ2 = h′I%h so that E(exp

(
N(µ, σ2)

)
) = 1. Con-

sequently, part (a) follows from Le Cam’s first lemma (see, e.g., Corollary 12.3.1 of Lehmann

and Romano (2005)). Part (b) follows from Le Cam’s third lemma (see, e.g., Corollary 12.3.2 of

Lehmann and Romano (2005)) because part (a) and (93) imply that νn(s%nk)

log
dPnϑn,x0
dPn
ϑ∗,x0

 d→ N

((
0

−1
2h
′I%h

)
,

(
I% I%h
h′I% h′I%h

))
under Pnϑ∗,x0

.
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Proof of Proposition 19. The proof follows the argument in the proof of Proposition 9. Observe

that hη = 0 and hλ =
√
ntλ(λn, πn) hold under H1n. Therefore, Proposition 18 holds under Pnϑn,x0

implied by H1n, and, in conjunction with Theorem 12.3.2(a) of Lehmann and Romano (2005),

Propositions 6 and 8 hold under Pnϑn,x0
. Consequently, the proof of Proposition 9 goes through if

we replace Gλ.η%n ⇒ Gλ.η% with Gλ.η%n ⇒ Gλ.η% + (Iλ%% − Iλη%I−1
η Iηλ%)hλ = Gλ.η% + Iλ.η%hλ, and

the stated result follows.

Proof of Propositions 20 and 21. The proof is similar to the proof of Proposition 19. Observe that,

for j ∈ {a, b}, hjη = 0 and hjλ =
√
ntλ(λn, πn) + o(1) hold under Hj

1n. Therefore, Proposition 18

holds under Pnϑn,x0
implied by Hj

1n, and the stated result follows from repeating the argument of

proof of Proposition 19.

Proof of Proposition 22. We only provide the proof for the models of non-normal distribution with

M0 = 1 because the proof for the other models is similar. The proof follows the argument in

the proof of Theorem 15.4.2 in Lehmann and Romano (2005). Define Cη as the set of sequences

{ηn} satisfying
√
n(ηn − η∗) → hη for some finite hη. Denote the MLE of the one-regime model

parameter by η̂n. For the MLE under H0,
√
n(η̂n−η∗) converges in distribution to a Pϑ∗-a.s. finite

random variable by the standard argument. Then, by the Almost Sure Representation Theorem

(e.g., Theorem 11.2.19 of Lehmann and Romano (2005)), there exists random variables η̃n and

h̃η defined on a common probability space such that η̂n and η̃n have the same distribution and
√
n(η̃n− η∗)→ h̃η almost surely. Therefore, {η̃n} ∈ Cη with probability one, and the stated result

under H0 follows from Lemma 8 because η̂n and η̃n have the same distribution.

For the MLE under H1n, note that the proof of Proposition 19 goes through when hη is finite

even if hη 6= 0. Therefore,
√
n(η̂n−η∗) converges in distribution to a Pϑn-a.s. finite random variable

under H1n. Hence, the stated result follows from Lemma 8 and repeating the argument in the case

of H0.

47



12.2 Auxiliary results

12.2.1 Definition of Φ
I(5)
ϑT (5)[F ] and Φ

I(6)
ϑT (6)[F ]

Define

Φ
I(5)
ϑT (5)[F ] :=

1

|σ(I(5))|
∑

(`1,...,`5)∈σ(I(5))

(
Ecϑ
[
φ`1θt1φ

`2
θt2
φ`3θt3φ

`4
θt4
φ`5θt5

∣∣∣F]

−
∑

({a,b,c},{d,e})∈σ5

Ecϑ
[
φ`aθtaφ

`b
θtb
φ`cθtc

∣∣∣F]Ecϑ [φ`dθtdφ`eθte∣∣∣F]
 ,

Φ
I(6)
ϑT (6)[F ] := Ecϑ [φθt1φθt2φθt3φθt4φθt5φθt6 |F ]−

∑
({a,b,c,d},{e,f})∈σ61

Ecϑ [φθtaφθtbφθtcφθtd |F ]Ecϑ
[
φθteφθtf

∣∣F]
−

∑
({a,b,c},{d,e,f})∈σ62

Ecϑ [φθtaφθtbφθtc |F ]Ecϑ
[
φθtdφθteφθtf

∣∣F]
+ 2

∑
({a,b},{c,d},{e,f})∈σ63

Ecϑ [φθtaφθtb |F ]Ecϑ [φθtcφθtd |F ]Ecϑ
[
φθteφθtf

∣∣F] ,
(94)

where

σ5 := the set of
(

5
3

)
= 10 partitions of {1, 2, 3, 4, 5} of the form {a, b, c}, {d, e},

σ61 := the set of
(

6
4

)
= 15 partitions of {1, 2, 3, 4, 5, 6} of the form {a, b, c, d}, {e, f},

σ62 := the set of
(

6
3

)
/2 = 10 partitions of {1, 2, 3, 4, 5, 6} of the form {a, b, c}, {d, e, f},

σ63 := the set of
(

6
2

)(
4
2

)
/6 = 15 partitions of {1, 2, 3, 4, 5, 6} of the form {a, b}, {c, d}, {e, f}.

(95)

12.2.2 Missing information principle

The following lemma extends equations (3.1)-(3.2) in Louis (1982), expressing the higher order

derivatives of the log-likelihood function in terms of the conditional expectation of the derivatives

of the complete data log-likelihood function. For notational brevity, assume ϑ is scalar. Let

∇j`(Y ) := ∇jϑ logP (Y ;ϑ) and ∇j`(Y,X) := ∇jϑ logP (Y,X;ϑ). For random variables V1, . . . , Vq

and Y , define the central conditional moment of (V r1
1 · · ·V

rq
q ) as Ec[V r1

1 · · ·V
rq
q |Y ] := E[(V1 −

E[V1|Y ])r1 · · · (Vq − E[Vq|Y ])rq |Y ].
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Lemma 1. For any random variables X and Y with density P (Y,X; θ) and P (Y ; θ),

∇`(Y ) = E [∇`(Y,X)|Y ] , ∇2`(Y ) = E
[
∇2`(Y,X)

∣∣Y ]+ Ec
[
(∇`(Y,X))2

∣∣Y ] ,
∇3`(Y ) = E

[
∇3`(Y,X)

∣∣Y ]+ 3Ec
[
∇2`(Y,X)∇`(Y,X)

∣∣Y ]+ Ec
[
(∇`(Y,X))3

∣∣Y ] ,
∇4`(Y ) = E

[
∇4`(Y,X)

∣∣Y ]+ 4Ec
[
∇3`(Y,X)∇`(Y,X)

∣∣Y ]+ 3Ec
[
(∇2`(Y,X))2

∣∣Y ]
+ 6Ec

[
∇2`(Y,X)(∇`(Y,X))2

∣∣Y ]+ Ec
[
(∇`(Y,X))4

∣∣Y ]− 3
{
Ec
[
(∇`(Y,X))2

∣∣Y ]}2
,

∇5`(Y ) = E
[
∇5`(Y,X)

∣∣Y ]+ 5Ec
[
∇4`(Y,X)∇`(Y,X)

∣∣Y ]+ 10Ec
[
∇3`(Y,X)∇2`(Y,X)

∣∣Y ]
+ 10Ec

[
∇3`(Y,X)(∇`(Y,X))2

∣∣Y ]+ 15Ec
[
(∇2`(Y,X))2∇`(Y,X)

∣∣Y ]
+ 10Ec

[
∇2`(Y,X)(`(Y,X))3

∣∣Y ]− 30Ec
[
∇2`(Y,X)∇`(Y,X)

∣∣Y ]Ec [(∇`(Y,X))2
∣∣Y ]

+ Ec
[
(∇`(Y,X))5

∣∣Y ]− 10Ec
[
(∇`(Y,X))3

∣∣Y ]Ec [(∇`(Y,X))2
∣∣Y ] ,

∇6`(Y ) = E
[
∇6`(Y,X)

∣∣Y ]
+ 6Ec

[
∇5`(Y,X)∇`(Y,X)

∣∣Y ]+ 15Ec
[
∇4`(Y,X)∇2`(Y,X)

∣∣Y ]
+ 15Ec

[
∇4`(Y,X)(∇`(Y,X))2

∣∣Y ]+ 60Ec
[
∇3`(Y,X)∇2`(Y,X)∇`(Y,X)

∣∣Y ]
+ 10Ec

[
(∇3`(Y,X))2

∣∣Y ]+ 15Ec
[
(∇2`(Y,X))3

∣∣Y ]
+ 20Ec

[
∇3`(Y,X)(∇`(Y,X))3

∣∣Y ]− 60Ec
[
∇3`(Y,X)∇`(Y,X)

∣∣Y ]E [(∇`(Y,X))2
∣∣Y ]

+ 45Ec
[
(∇2`(Y,X))2(∇`(Y,X))2

∣∣Y ]− 90
{
Ec
[
∇2`(Y,X)∇`(Y,X)

∣∣Y ]}2

− 45Ec
[
(∇2`(Y,X))2

∣∣Y ]Ec [(∇`(Y,X))2
∣∣Y ]

+ 15Ec
[
∇2`(Y,X)(∇`(Y,X))4

∣∣Y ]− 90Ec
[
∇2`(Y,X)(∇`(Y,X))2

∣∣Y ]Ec [(∇`(Y,X))2
∣∣Y ]

− 60Ec
[
∇2`(Y,X)∇`(Y,X)

∣∣Y ]Ec [(∇`(Y,X))3
∣∣Y ]

+ Ec
[
(∇`(Y,X))6

∣∣Y ]− 15Ec
[
(∇`(Y,X))4

∣∣Y ]Ec [(∇`(Y,X))2
∣∣Y ]

− 10
{
Ec
[
(∇`(Y,X))3

∣∣Y ]}2
+ 30

{
Ec
[
(∇`(Y,X))2

∣∣Y ]}3
.

provided that the conditional expectation on the right hand side exists. When P (Y ; θ) in the left

hand side is replaced with P (Y |Z; θ), the stated result holds with P (Y,X; θ) and E[·|Y ] on the right

hand side replaced with P (Y,X|Z; θ) and E[·|Y,Z].

Proof of Lemma 1. The stated result follows from a direct calculation and relations such as
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∇jϑP (Y ;ϑ)/P (Y ;ϑ) = E[∇jϑP (Y,X;ϑ)/P (Y,X;ϑ)|Y ] and

∇ log f = ∇f/f, ∇2 log f = ∇2f/f − (∇ log f)2,

∇3 log f = ∇3f/f − 3∇2f∇f/f2 + 2(∇f/f)3,

∇4 log f = ∇4f/f − 4∇3f∇f/f2 − 3(∇2f/f)2 + 12∇2f(∇f)2/f3 − 6(∇f/f)4,

∇5 log f = ∇5f/f − 5∇4f∇f/f2 − 10∇3f∇2f/f2 + 20∇3f(∇f)2/f3

+ 30(∇2f)2∇f/f3 − 60∇2f(∇f)3/f4 + 24(∇f/f)5,

∇6 log f = ∇6f/f − 6∇5f∇f/f2 − 15∇4f∇2f/f2 + 30∇4f(∇f)2/f3 − 10(∇3f)2/f2

+ 120∇3f∇2f∇f/f3 − 120∇3f(∇f)3/f4 + 30(∇2f)3/f3

− 270(∇2f)2(∇f)2/f4 + 360∇2f(∇f)4/f5 − 120(∇f)6/f6,

∇3f/f = ∇3 log f + 3∇2 log f∇ log f + (∇ log f)3 ,

∇4f/f = ∇4 log f + 4∇3 log f∇ log f + 3(∇2 log f)2 + 6∇2 log f(∇ log f)2 + (∇ log f)4,

∇5f/f = ∇5 log f + 5∇4 log f∇ log f + 10∇3 log f∇2 log f + 10∇3 log f(∇ log f)2

+ 15(∇2 log f)2∇ log f + 10∇2 log f(∇ log f)3 + (∇ log f)5,

∇6f/f = ∇6 log f + 6∇5 log f∇ log f + 15∇4 log f∇2 log f + 15∇4 log f(∇ log f)2

+ 10(∇3 log f)2 + 60∇3 log f∇2 log f∇ log f + 20∇3 log f(∇ log f)3

+ 15(∇2 log f)3 + 45(∇2 log f)2(∇ log f)2 + 15∇2 log f(∇ log f)4 + (∇ log f)6.

(96)

For example, ∇3`(Y ) is derived by writing ∇3`(Y ) as, with suppressing ϑ,

∇3`(Y )

=
∇3P (Y )

P (Y )
− 3
∇2P (Y )

P (Y )

∇P (Y )

P (Y )
+ 2

(
∇P (Y )

P (Y )

)3

= E
[
∇3P (Y,X)

P (Y,X)

∣∣∣∣Y ]− 3E
[
∇2P (Y,X)

P (Y,X)

∣∣∣∣Y ]E [∇P (Y,X)

P (Y,X)

∣∣∣∣Y ]+ 2

{
E
[
∇P (Y,X)

P (Y,X)

∣∣∣∣Y ]}3

= E
[
∇3`(Y,X) + 3∇2`(Y,X)∇`(Y,X) + (∇`(Y,X))3

∣∣Y ]
− 3E

[
∇2`(Y,X) + (∇`(Y,X))2

∣∣Y ]E [∇`(Y,X)|Y ] + 2 {E [∇`(Y,X)|Y ]}3 ,

and collecting terms. ∇4`(Y ), ∇5`(Y ), and ∇6`(Y ) are derived similarly.

12.2.3 Auxiliary Lemmas

Henceforth, we suppress the conditioning variable Wn
−m from the conditioning sets and conditional

densities unless confusions might arise. The following Lemma provides bounds on Φ
I(j)
ϑT (j)[F ] de-

fined in (7) and (94) and is used in the proof of Lemma 3. For j = 2, . . . , 6, define ‖φit‖∞ :=

supϑ∈N ∗ supx,x′ |φi(ϑ, Yt, x,Yt−1, x
′)| and ‖φI(j)

T (j)‖∞ :=
∑

(`1,...,`j)∈σ(I(j)) ‖φ
`1
t1
‖∞ · · · ‖φ

`j
tj
‖∞.

Lemma 2. Under Assumptions 1, 2, and 4, there exists a finite nonstochastic constant C that does
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not depend on ρ such that, for all m′ ≥ m ≥ 0, all −m < t1 ≤ t2 ≤ · · · ≤ tj ≤ n, all ϑ ∈ N ∗ and

all x ∈ X , and j = 2, . . . , 6,

(a) |ΦI(j)
ϑT (j)[Y

n
−m]| ≤ Cρ(t2−t1−1)+∨(t3−t2−1)+∨···∨(tj−tj−1−1)+‖φI(j)

T (j)‖∞,

(b) |ΦI(j)
ϑT (j)[Y

n
−m, X−m = x]| ≤ Cρ(t2−t1−1)+∨(t3−t2−1)+∨···∨(tj−tj−1−1)+‖φI(j)

T (j)‖∞,

(c) |ΦI(j)
ϑT (j)[Y

n
−m, X−m = x]− Φ

I(j)
ϑT (j)[Y

n
−m]| ≤ Cρ(m+t1−1)+‖φI(j)

T (j)‖∞,

(d) |ΦI(j)
ϑT (j)[Y

n
−m, X−m = x]− Φ

I(j)
ϑT (j)[Y

n
−m′ , X−m′ = x]| ≤ Cρ(m+t1−1)+‖φI(j)

T (j)‖∞,

(e) |ΦI(j)
ϑT (j)[Y

n
−m]− Φ

I(j)
ϑT (j)[Y

n−1
−m ]| ≤ Cρ(n−1−tj)+‖φI(j)

T (j)‖∞,

(f) |ΦI(j)
ϑT (j)[Y

n
−m, X−m = x]− Φ

I(j)
ϑT (j)[Y

n−1
−m , X−m = x]| ≤ Cρ(n−1−tj)+‖φI(j)

T (j)‖∞.

Proof of Lemma 2. Recall supϑ∈N ∗ supx,x′ |φi(ϑ, Yt, x,Yt−1, x
′)− Eϑ[φi(ϑ, Yt, x,Yt−1, x

′)|F ]|
≤ 2 supϑ∈N ∗ supx,x′ |φi(ϑ, Yt, x,Yt−1, x

′)| for the conditioning sets F that appear in the

lemma. Define φ̃iϑt := φi(ϑ,Z
t
t−1) − Eϑ[φi(ϑ,Z

t
t−1)|Yn

−m], so that Ecϑ[φ`1ϑt1 · · ·φ
`j
ϑtj
|Yn
−m] =

Eϑ[φ̃`1ϑt1 · · · φ̃
`j
ϑtj
|Yn
−m]. Henceforth, we suppress the subscript ϑ from φiϑt and φ̃iϑt.

Recall that φi(ϑ,Z
t
t−1) depends on Xt and Xt−1. Parts (c) and (d) follow from Lemma 10(a)

and the fact that, for any two probability measures µ1 and µ2, supf(x):maxx |f(x)|≤1 |
∫
f(x)dµ1(x)−∫

f(x)dµ2(x)| = 2‖µ1 − µ2‖TV (see, e.g., Levin et al. (2009, Proposition 4.5)). Similarly, parts

(e) and (f) for tj ≤ n − 1 follow from Lemma 10(b), and parts (e) and (f) for tj = n follow from

|ΦI(j)
ϑT (j)[·]| ≤ 2j‖φI(j)

T (j)‖∞.

We proceed to show parts (a) and (b). The results for j = 2 and j = 3 follow from Lemma

10(c) and

E(Xt1 − EXt1) · · · (Xtj − EXtj ) = cov[Xt1 , (Xt2 − EXt2) · · · (Xtj − EXtj )]

= cov[(Xt1 − EXt1) · · · (Xtj−1 − EXtj−1), Xtj ].
(97)

Before proving the results for j ≥ 4, we collect some results. For a conditioning set F = Y
n
−m or

{Yn
−m, Xm = x}, Lemma 10(c) and (97) imply that

|Ecϑ[φ`1t1 · · ·φ
`j
tj
|F ]| ≤ Cρ(t2−t1−1)+∨(tj−tj−1−1)+‖φI(j)

T (j)‖∞, (98)

|Ecϑ[φ`1t1 · · ·φ
`j
tj
|F ]− Ecϑ[φ`1t1 · · ·φ

`k
tk
|F ]Ecϑ[φ

`k+1

tk+1
· · ·φ`jtj |F ]|

= |covϑ[φ̃`1t1 · · · φ̃
`k
tk
, φ̃

`k+1

tk+1
· · · φ̃`jtj |F ]| ≤ Cρ(tk+1−tk−1)+‖φI(j)

T (j)‖∞ for any 2 ≤ k ≤ j − 2. (99)

Parts (a)–(b) hold for j = 4 because Φ
I(4)
ϑT (4)[F ] ≤ Cρ(t2−t1−1)+∨(t4−t3−1)+‖φI(4)

T (4)‖∞ from (98)

and we have Φ
I(4)
ϑT (4)[F ] ≤ Cρ(t3−t2−1)+‖φI(4)

T (4)‖∞ from writing Φ̃`1`2`3`4
ϑT (4) defined in (7) as Φ̃`1`2`3`4

ϑT (4) =

covϑ[φ̃`1t1 φ̃
`2
t2
, φ̃`3t3 φ̃

`4
t4
|F ] − Ecϑ[φ`1t1φ

`3
t3
|F ]Ecϑ[φ`2t2φ

`4
t4
|F ] − Ecϑ[φ`1t1φ

`4
t4
|F ]Ecϑ[φ`2t2φ

`3
t3
|F ] and applying (99).

Parts (a)–(b) for j = 5 follows from a similar argument.

For j = 6, first, Φ
I(6)
ϑT (6)[F ] is bounded by Cρ(t2−t1−1)+∨(t6−t5−1)+‖φI(6)

T (6)‖∞ from (98). Second,
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write Φ
I(6)
ϑT (6)[F ] = A1+A2, where A1 = Ecϑ [φt1φt2φt3φt4φt5φt6 |F ]−Ecϑ [φt1φt2φt3 |F ]Ecϑ [φt4φt5φt6 |F ]

and A2 denotes all the terms on the right hand side of Φ
I(6)
ϑT (6)[F ] in (94) except

for A1. A1 is bounded by Cρ(t4−t3−1)+‖φI(6)
T (6)‖∞ from (99), and A2 is bounded by

Cρ(t4−t3−1)+‖φI(6)
T (6)‖∞ from (98). Therefore, Φ

I(6)
ϑT (6)[F ] is bounded by Cρ(t4−t3−1)+‖φI(6)

T (6)‖∞.

Third, write Φ
I(6)
ϑT (6)[F ] = B1 + B2 + B3, where B1 = Ecϑ[φt1φt2φt3φt4φt5φt6 |F ] −

Ecϑ[φt3φt4φt5φt6 |F ]Ecϑ[φt1φt2 |F ], B2 = −
∑

({1,2,c,d},{e,f})∈X61
Ecϑ[φ1φ2φtcφtd |F ]Ecϑ[φteφtf |F ] +

2
∑

({a,b},{c,d},{e,f})∈X63
Ecϑ[φtaφtb |F ]Ecϑ[φtcφtd |F ]Ecϑ[φteφtf |F ], where X61 is the set of

(
4
2

)
= 6 par-

titions of {1, 2, 3, 4, 5, 6} of the form of {1, 2, c, d}, {e, f} and

X63 := {({1, 2}, {3, 4}, {5, 6}), ({1, 2}, {3, 5}, {4, 6}), ({1, 2}, {3, 6}, {4, 5})}, and B3 denotes all the

terms on the right hand side of Φ
I(6)
ϑT (6)[F ] except forB1+B2. B1 is bounded by Cρ(t3−t2−1)+‖φI(6)

T (6)‖∞
from (99). We can write B2 as

∑
({1,2,c,d},{e,f})∈X61

{−Ecϑ[φt1φt2φtcφtd |F ]Ecϑ[φteφtf |F ] +

Ecϑ[φt1φt2 |F ]Ecϑ[φtcφtd |F ]Ecϑ[φteφtf |F ]} = −
∑

({1,2,c,d},{e,f})∈X61
Ecϑ[φteφtf |F ]covϑ[φ̃θt1 φ̃θt2 , φ̃θtc φ̃θtd |F ],

then this is bounded by Cρ(t3−t2−1)+‖φI(6)
T (6)‖∞ from (99). Finally, B3 is bounded by

Cρ(t3−t2−1)+‖φI(6)
T (6)‖∞ from (98). Therefore, Φ

I(6)
ϑT (6)[F ] is bounded by Cρ(t3−t2−1)+‖φI(6)

T (6)‖∞. From

a similar argument, Φ
I(6)
ϑT (6)[F ] is also bounded by Cρ(t5−t4−1)+‖φI(6)

T (6)‖∞, and parts (a) and (b)

follow.

We next present the result that extends Lemmas 13 and 17 of DMR. Let rI(1) = qi1 ; rI(2) = qi1/2

if i1 = i2 and (qi1 ∧ qi2)/2 if i1 6= i2; rI(3) = qi1/3 if i1 = i2 = i3, (qi1/2 ∧ qi2/4) if i1 6= i2 = i3,

(qi1 ∧ qi2 ∧ qi3)/3 if i1, i2, i3 are distinct; rI(4) = qi1/4 if i1 = i2 = i3 = i4, (qi1 ∧ qi3)/4 if

i1 6= i2 = i3 = i4 or i1 = i2 6= i3 = i4; rI(5) = qi1/5 if i1 = i2 = i3 = i4 = i5; (qi1/3 ∧ qi2/6) if

i1 6= i2 = i3 = i4 = i5; rI(6) = q1/6.

Lemma 3. Under Assumptions 1, 2, and 4, for j = 1, . . . , 6, there exist random variables

KI(j), {MI(j),k}nk=1 ∈ L
rI(j)(Pϑ∗) such that, for all 1 ≤ k ≤ n and m′ ≥ m ≥ 0,

(a) sup
x∈X

sup
ϑ∈N ∗

|∆I(j)
j,k,m,x(ϑ)−∆

I(j)
j,k,m(ϑ)| ≤ KI(j)(k +m)7ρb(k+m−1)/24c Pϑ∗-a.s.,

(b) sup
x∈X

sup
ϑ∈N ∗

|∆I(j)
j,k,m,x(ϑ)−∆

I(j)
j,k,m′,x(ϑ)| ≤ KI(j)(k +m)7ρb(k+m−1)/1340c Pϑ∗-a.s.,

(c) supm≥0 supx∈X supϑ∈N ∗ |∆
I(j)
j,k,m,x(ϑ)|+ supm≥0 supϑ∈N ∗ |∆

I(j)
j,k,m(ϑ)| ≤MI(j),k Pϑ∗-a.s., (d) Uni-

formly in ϑ ∈ N ∗ and x ∈ X , ∆
I(j)
j,k,m,x(ϑ) and ∆

I(j)
j,k,m(ϑ) converge Pϑ∗-a.s. and in LrI(j)(Pϑ∗) to

∆
I(j)
j,k,∞(ϑ) ∈ LrI(j)(Pϑ∗) as m→∞.

Proof of Lemma 3. First, we prove parts (a) and (b). Recall T (j) = (t1, . . . , tj). For part (a),
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define, suppressing the dependence of AT (j) on ϑ and I(j),

AT (j) :=


Φ
I(j)
ϑT (j)

[
Y
k
−m, X−m = x

]
− Φ

I(j)
ϑT (j)

[
Y
k−1
−m , X−m = x

]
− Φ

I(j)
ϑT (j)

[
Y
k
−m

]
+ Φ

I(j)
ϑT (j)

[
Y
k−1
−m

]
,

if max{t1, . . . , tj} < k,

Φ
I(j)
ϑT (j)

[
Y
k
−m, X−m = x

]
− Φ

I(j)
ϑT (j)

[
Y
k
−m

]
, otherwise,

AT (j,`,k) := At1t2···tj−` k···k︸︷︷︸
` times

, where T (j, `, k) := (T (j − `), k, · · · , k︸ ︷︷ ︸
` times

).

Then, we can write ∆
I(j)
j,k,m,x(ϑ)−∆

I(j)
j,k,m(ϑ) =

∑
T (j)∈{−m+1,...,k}j AT (j) = ∆a + ∆b + ∆c, where

∆a :=
∑

T (j)∈{−m+1,...,k−1}j
AT (j), ∆b :=

j−1∑
`=1

(
j

`

) ∑
T (j−`)∈{−m+1,...,k−1}j−`

AT (j,`,k), ∆c := A(k,...,k),

and ∆b := 0 when j = 1. From Lemma 2 and the symmetry of AT (j), ∆a is bounded by

CBj,k,mM
I(j)
j,k,m, where

Bj,k,m :=
∑

−m+1≤t1≤t2≤···≤tj≤k−1

(
ρ(m+t1−1)+ ∧ ρ(t2−t1−1)+ ∧ · · · ∧ ρ(tj−tj−1−1)+ ∧ ρ(k−1−tj−1)+

)
=

∑
1≤t1≤t2≤···≤tj≤k+m−1

(
ρ(t1−1)+ ∧ ρ(t2−t1−1)+ ∧ · · · ∧ ρ(tj−tj−1−1)+ ∧ ρ(k+m−1−tj−1)+

)
,

M
I(j)
j,k,m := max

−m+1≤t1,...,tj≤k−1
‖φi1t1‖∞‖φ

i2
t2
‖∞ · · · ‖φ

ij
tj
‖∞.

From (t− 1)+ ≥ bt/2c and Lemma 12, Bj,k,m is bounded by Cj2(ρ)ρb(k+m−1)/4jc.

We proceed to derive a bound on M
I(j)
j,k,m. Define ‖φi‖`∞ :=

∑∞
t=−∞(|t| ∨1)−2‖φit‖`∞. When i1 =

i2 = · · · = ij , it follows from Lemma 13 that M
I(j)
j,k,m ≤ (k+m)j+1‖φi1‖j∞, and ‖φi1‖j∞ ∈ LrI(j)(Pϑ∗)

from Assumption 4. In the other cases, observe that, if x, y, z ≥ 0, we have xy ≤ x2 + y2,

xyz ≤ x3 + y3 + z3, xy ≤ x4 + y4/3, and xy ≤ x3 + y3/2 from Young’s inequality. Using this result

and Lemma 13, we can bound M
I(j)
j,k,m by

j = 2 and i1 6= i2 : (k +m)2(‖φi1‖2∞ + ‖φi2‖2∞),

j = 3 and i1 6= i2 = i3 : (k +m)3(‖φi1‖2∞ + ‖φi2‖4∞),

j = 3 and i1, i2, i3 are distinct : (k +m)2(‖φi1‖3∞ + ‖φi2‖3∞ + ‖φi3‖3∞),

j = 4 and i1 6= i2 = i3 = i4 : (k +m)3(‖φi1‖4∞ + ‖φi2‖4∞),

j = 4 and i1 = i2 6= i3 = i4 : (k +m)3(‖φi1‖4∞ + ‖φi3‖4∞),

j = 5 and i1 6= i2 = i3 = i4 = i5 : (k +m)3(‖φi1‖3∞ + ‖φi2‖6∞).

Therefore, from Assumption 4, ∆a is bounded by the right hand side of part (a). From

Lemmas 2 and 12, ∆b is bounded by C
∑j−1

`=1

∑
−m+1≤t1≤···≤tj−`≤k−1(ρ(m+t1−1)+ ∧ ρ(t2−t1−1)+ ∧

· · · ∧ ρ(k−tj−`−1)+)M
I(j)
j,k+1,m ≤ Cρb(k+m−1)/4(j−1)cM

I(j)
j,k+1,m. Similarly, ∆c is bounded by
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Cρb(k+m−1)/4(j−1)cM
I(j)
j,k+1,m, and part (a) of the lemma follows.

For part (b), define, for −m′ + 1 ≤ t1, . . . , tj ≤ k,

DT (j),m′,x :=

Φ
I(j)
θT (j)[Y

k
−m′ , X−m′ = x]− Φ

I(j)
θT (j)[Y

k−1
−m′ , X−m′ = x], if max{t1, . . . , tj} < k,

Φ
I(j)
θT (j)[Y

k
−m′ , X−m′ = x], otherwise,

and define DT (j),m,x similarly. Then, we can write ∆
I(j)
j,k,m,x(θ) =

∑
T (j)∈{−m+1,...,k}j DT (j),m,x and

∆
I(j)
j,k,m′,x(θ) =

∑
T (j)∈{−m′+1,...,k}j DT (j),m′,x = ∆d + ∆e, where ∆d :=

∑
T (j)∈{−m+1,...,k}j DT (j),m′,x

and

∆e :=

j∑
`=1

(
j

`

) −m∑
t1=−m′+1

· · ·
−m∑

t`=−m′+1

k∑
t`+1=−m+1

· · ·
k∑

tj=−m+1

DT (j),m′,x.

By the same argument as part (a), ∆
I(j)
j,k,m,x(θ)−∆d is bounded by the right hand of part (a). For

∆e, observe that, with Mj := max1≤`≤j
(
j
`

)
,

|∆e| ≤Mj

j∑
`=1

−m∑
t1=−m′+1

−m∑
t2=−m′+1

· · ·
−m∑

t`=−m′+1

k∑
t`+1=−m+1

· · ·
k∑

tj=−m+1

∣∣DT (j),m′,x

∣∣
≤ jMj

−m∑
t1=−m′+1

k∑
t2=−m′+1

· · ·
k∑

tj=−m′+1

∣∣DT (j),m′,x

∣∣
≤ jMjj!

−m∑
t1=−m′+1

∑
t1≤t2≤···≤tj≤k

∣∣DT (j),m′,x

∣∣ .
From Lemma 2, if t1 ≤ · · · ≤ tj , we have |DT (j),m′,x| ≤ C[I{tj < k}(ρ(t2−t1−1)+ ∧ ρ(tj−tj−1−1)+ ∧
· · · ∧ ρ(k−1−tj−1)+) + I{tj = k}(ρ(t2−t1−1)+ ∧ · · · ∧ ρ(tj−tj−1−1)+)]‖φI(j)

T (j)‖∞. Hence, part (b) follows

from Lemma 14.

For part (c), observe that supm≥0 supx∈X supϑ∈N ∗ |∆
I(j)
j,k,m,x(ϑ)| ≤ A + B, where A :=

supm≥0 supx∈X supϑ∈N ∗ |∆
I(j)
j,k,m,x(ϑ) − ∆

I(j)
j,k,0,x(ϑ)| and B := supx∈X supϑ∈N ∗ |∆

I(j)
j,k,0,x(ϑ)|. A is

bounded by KI(j)k
7ρb(k−1)/1340c from part (b). B does not depend on m and is distributionally

equivalent to supx∈X supϑ∈N ∗ |∆
I(j)
j,1,k−1,x(ϑ)|. This is bounded by supx∈X supϑ∈N ∗ |∆

I(j)
j,1,k−1,x(ϑ) −

∆
I(j)
j,1,0,x(ϑ)| + supx∈X supϑ∈N ∗ |∆

I(j)
j,1,0,x(ϑ)|. The first term is in LrI(j)(Pϑ∗) from part (b), and

the second term is in LrI(j)(Pϑ∗) from the definition of ∆
I(j)
j,k,m,x(ϑ). Therefore, there exists

MI(j),k ∈ LrI(j)(Pϑ∗) such that A + B ≤ MI(j),k, and part (c) holds in view of part (a). Part (d)

follows from parts (a)–(c) because parts (a)–(c) imply that {∆I(j)
j,k,m,x(ϑ)}m≥0 and {∆I(j)

j,k,m(ϑ)}m≥0

are uniform LrI(j)(Pϑ∗)-Cauchy sequences with respect to ϑ ∈ N ∗ that converge to the same limit

and Lq(Pϑ∗) is complete.

Lemma 4. Under Assumptions 1, 2, and 4, there exist random variables {Kk}nk=1 ∈
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L(1+ε)qϑ/ε(Pϑ∗) and ρ ∈ (0, 1) such that, for all 1 ≤ k ≤ n and m′ ≥ m ≥ 0,

sup
ϑ∈N ∗

∣∣∣∣∣ pϑ(Yk|Y
k−1
−m )

pϑ∗(Yk|Y
k−1
−m )

∣∣∣∣∣ ≤ Kk, sup
x∈X

sup
ϑ∈N ∗

∣∣∣∣∣ pϑ(Yk|Y
k−1
−m , X−m = x)

pϑ∗(Yk|Y
k−1
−m , X−m = x)

−
pϑ(Yk|Y

k−1
−m )

pϑ∗(Yk|Y
k−1
−m )

∣∣∣∣∣ ≤ Kkρ
k+m−1.

Furthermore, these bounds hold uniformly in x ∈ X when pϑ(Yk|Y
k−1
−m ) and pϑ∗(Yk|Y

k−1
−m ) are

replaced with pϑ(Yk|Y
k−1
−m′ , X−m′ = x) and pϑ∗(Yk|Y

k−1
−m′ , X−m′ = x).

Proof of Lemma 4. The first result follows from noting that pϑ(Yk|Y
k−1
−m ) =

∑
(xk−1,xk)∈X 2 gϑ(Yk|Yk−1, xk)

×qϑx(xk−1, xk)Pϑ(xk−1|Y
k−1
−m ) ∈ [σ−Gϑk, σ+Gϑk] and using Assumption 4(b). For the second result,

observe that |pϑ(Yk|Y
k−1
−m , X−m = x)−pϑ(Yk|Y

k−1
−m )| ≤

∑
(xk−1,xk)∈X 2 gϑ(Yk|Yk−1, xk)qϑx(xk−1, xk)

× |Pϑ(xk−1|Y
k−1
−m , X−m = x) − Pϑ(xk−1|Y

k−1
−m )| ≤ ρk+m−1σ+Gϑk/σ−, where the second inequality

follows from Lemma 10(a). The second result then follows from writing the left hand side as

pϑ(Yk|Y
k−1
−m , X−m = x)− pϑ(Yk|Y

k−1
−m )

pϑ∗(Yk|Y
k−1
−m , X−m = x)

+
pϑ(Yk|Y

k−1
−m )

pϑ∗(Yk|Y
k−1
−m )

pϑ∗(Yk|Y
k−1
−m )− pϑ∗(Yk|Y

k−1
−m , X−m = x)

pϑ∗(Yk|Y
k−1
−m , X−m = x)

,

noting that pϑ(Yk|Y
k−1
−m , X−m = x) ≥ σ−Gϑk, and using the derived bounds. The results with

pϑ(Yk|Y
k−1
−m′ , X−m′ = x) and pϑ∗(Yk|Y

k−1
−m′ , X−m′ = x) are proven similarly.

The following result originally appeared in equations (59)–(60) of Kasahara and Shimotsu

(2015). We state this as a lemma for ease of reference.

Lemma 5. Let f(µ, σ2) denote the density of N(µ, σ2). Then

∇λkµf(c1λµ, c2λ
2
µ)
∣∣∣
λµ=0

=



c1∇µf(0, 0) if k = 1,

c2
1∇µ2f(0, 0) + 2c2∇σ2f(0, 0) if k = 2,

c3
1∇µ3f(0, 0) + 6c1c2∇µσ2f(0, 0) if k = 3,

c4
1∇µ4f(0, 0) + 12c2

1c2∇µ2f(0, 0)∇σ2f(0, 0) + 12c2
2∇σ4f(0, 0) if k = 4.

Proof of Lemma 5. Observe that a composite function f(λµ, h(λµ)) satisfies ∇λkµf(λµ, h(λµ)) =

(∇λµ +∇u)kf(λµ, h(u))|u=λµ =
∑k

j=0

(
k
j

)
∇
λk−jµ uj

f(λµ, h(u))|u=λµ . Further, because ∇uju2|u=0 = 0

except for j = 2, it follows from Faà di Bruno’s formula that ∇ujf(c1λµ, c2u
2)|λµ=u=0 is 0 if

j = 1, 3, is 2c2∇hf(0, h(0)) if j = 2, and is 12c2
2∇h2f(0, h(0)) if j = 4. Therefore, the stated result

follows.

Lemma 6. Suppose the assumptions of Proposition 10 hold. Then, there exist %̄1, %̄2, %̄3 ∈ (0, %)
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such that, for all k ≥ 1,

(a)
∇λ3

µ
pψ∗π(Yk|Y

k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

= %
∇%∇λ3

µ
pψ∗%̄1α(Yk|Y

k−1
0 )

pψ∗%̄1α(Yk|Y
k−1
0 )

,

(b)
∇λ4

µ
pψ∗π(Yk|Y

k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

− b(α)
∇λ2

σ
pψ∗π(Yk|Y

k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

= %
∇%∇λ4

µ
pψ∗%̄2α(Yk|Y

k−1
0 )

pψ∗%̄2α(Yk|Y
k−1
0 )

− %
∇%∇λ2

σ
pψ∗%̄3α(Yk|Y

k−1
0 )

pψ∗%̄3α(Yk|Y
k−1
0 )

.

Proof of Lemma 6. Part (a) holds if

∇λ3
µ
pψ∗0α(Yk|Y

k−1
0 )/pψ∗0α(Yk|Y

k−1
0 ) = 0, (100)

because (i) ∇λ3
µ
pψ∗%α(Yk|Y

k−1
0 )−∇λ3

µ
pψ∗0α(Yk|Y

k−1
0 ) = ∇%∇λ3

µ
pψ∗%̄α(Yk|Y

k−1
0 )% for %̄ ∈ (0, %) from

the mean value theorem and (ii) pψ∗%α(Yk|Y
k−1
0 ) does not depend on the value of %.

We proceed to show (100). Note that∇λ3
µ
pψ∗π(Yk|Y

k−1
0 )/pψ∗π(Yk|Y

k−1
0 ) = ∇λ3

µ
log pψ∗π(Yk

1 |Y0)−
∇λ3

µ
log pψ∗π(Yk−1

1 |Y0) from (96) and ∇λpψ∗π(Yk|Y
k−1
0 ) = 0. Let ∇i`∗t := ∇λiµ log g∗t with

∇`∗t = ∇1`∗t . Observe that

∇λ3
µ

log pψ∗0α(Yk
1 |Y0) =

k∑
t=1

Eψ∗0α
[
∇3`∗t

∣∣∣Yk
0

]
+ 3

k∑
t1=1

k∑
t2=1

Eψ∗0α
[
∇2`∗t1∇`

∗
t2

∣∣∣Yk
0

]

+

k∑
t1=1

k∑
t2=1

k∑
t3=1

Eψ∗0α
[
∇`∗t1∇`

∗
t2∇`

∗
t3

∣∣∣Yk
0

]

=
k∑
t=1

Eψ∗0α
[
∇3`∗t + 3∇2`∗t∇`∗t +∇`∗t∇`∗t∇`∗t

∣∣∣Yk
0

]
=

k∑
t=1

Eψ∗0α
[
∇λ3

µ
g∗t /g

∗
t

∣∣∣Yk
0

]
,

(101)

where the first equality follows from Lemma 1, the second equality holds because (i) Xt is serially

independent when % = 0 and (ii) ∇`∗t = d1t∇µf∗t /f∗t and ∇2`∗t = d2t∇2
µf
∗
t /f

∗
t − (d1t∇µf∗t /f∗t )2, and

(iii) Eψ∗0α[d1t|Y
k
0] = Eψ∗0α[d2t|Y

k
0] = 0 from (30), and the third equality follows from (96) The

right hand side is 0 from (30), and hence part (a) is proven.

For part (b), from a similar argument to part (a), the stated result holds if

∇λ4
µ
pψ∗0α(Yk|Y

k−1
0 )/pψ∗0α(Yk|Y

k−1
0 ) = b(α)∇λ2

σ
pψ∗0α(Yk|Y

k−1
0 )/pψ∗0α(Yk|Y

k−1
0 ). (102)

Observe that∇λ4
µ
pψ∗0α(Yk|Y

k−1
0 )/pψ∗0α(Yk|Y

k−1
0 ) = ∇λ4

µ
log pψ∗0α(Yk

0 |Y0)−∇λ4
µ

log pψ∗0α(Yk−1
0 |Y0)

from (96), ∇λpψ∗π(Yk|Y
k−1
0 ) = 0, and ∇λ2

µ
log pψ∗0α(Yk|Y

k−1
0 ) = 0. A similar derivation to (101)

56



gives

∇λ4
µ

log pψ∗0α(Yk
0 |Y0) =

k∑
t=1

Eψ∗0α
[
∇λ4

µ
g∗t /g

∗
t

∣∣∣Yk
0

]
. (103)

(102) follows from (103) because (i) ∇λ2
σ
pψ∗0α(Yk|Y

k−1
0 )/pψ∗0α(Yk|Y

k−1
0 ) = Eϑ∗ [∇λ2

σ
g∗k|Y

k
0] from a

similar argument to (18) and (ii) Eψ∗0α[∇λ4
µ
g∗t /g

∗
t |Y

k
0] = b(α)Eϑ∗ [∇λ2

σ
g∗k|Y

k
0] from (30). Therefore,

part (b) is proven.

Lemma 7. Suppose the assumptions of Proposition 12 hold. Then, there exist %̄1, %̄2 ∈ (0, %) such

that, for all k ≥ 1,

(a)
∇λ3

µ
pψ∗π(Yk|Y

k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

= α(1− α)(1− 2α)
∇µ3f∗k
f∗k

+ %
∇%∇λ3

µ
pψ∗%̄1α(Yk|Y

k−1
0 )

pψ∗%̄1α(Yk|Y
k−1
0 )

,

(b)
∇λ4

µ
pψ∗π(Yk|Y

k−1
0 )

pψ∗π(Yk|Y
k−1
0 )

= α(1− α)(1− 6α+ 6α2)
∇µ4f∗k
f∗k

+ %
∇%∇λ4

µ
pψ∗%̄2α(Yk|Y

k−1
0 )

pψ∗%̄2α(Yk|Y
k−1
0 )

.

Proof of Lemma 7. The proof is similar to the proof of Lemma 6(a). From an argument similar to

the proof of Lemma 6, the stated results hold if

(A) ∇λ3
µ
pψ∗0α(Yk|Y

k−1
0 )/pψ∗0α(Yk|Y

k−1
0 ) = α(1− α)(1− 2α)∇µ3f∗k/f

∗
k ,

(B) ∇λ4
µ
pψ∗0α(Yk|Y

k−1
0 )/pψ∗0α(Yk|Y

k−1
0 ) = α(1− α)(1− 6α+ 6α2)∇µ4f∗k/f

∗
k .

Observe that equalities (101) and (103) in the proof of Lemma 6 still hold under the assumptions

of Proposition 12 if we use (44) in place of (30). Consequently, (A) and (B) follow from (43), (44),

and the argument of the proof of Lemma 6, and the stated result follows.

Lemma 8. Suppose that the assumptions of Propositions 9 hold. Let Cη be a set of sequences {ηn}
satisfying

√
n(ηn − η∗) → hη for some finite hη. Let Pnηn :=

∏n
k=1 fk(ηn, 0) denote the probability

measure under ηn with λn = 0. Then, for every sequence {ηn} ∈ Cη, the LRTS under {Pnηn}
converges in distribution sup%∈Θ%

(
t̃′λ%Iλ.η%t̃λ%

)
given in Propositions 9.

Proof of Lemma 8. Observe that ϑn := (πn, ηn, λn) = (π, η∗ + hη/
√
n, 0) satisfies the assumptions

of Proposition 18. Therefore, Proposition 18 holds under ϑn with νn(s%nk) →d N(I%h, I%) with

h = (h′η, 0)′ under Pnϑn . Furthermore, the log-likelihood function of the one-regime model admits

a similar expansion, and log(dPnηn/dP
n
η∗) = h′ηνn(sηk) − (1/2)h′ηIηhη + op(1) holds under Pnηn .

Therefore, the proof of Proposition 9 goes through by replacing G%n with Gh%n =

[
Ghηn
Ghλ%n

]
:=

G%n + I%h. In view of Ghηn = Gηn + Iηhη and Ghλ%n = Gλ%n + Iλη%hη, we have Ghλ.η%n := Ghλ%n −
Iλη%I−1

η Ghηn = Gλ%n − Iλη%I−1
η Gηn = Gλ%n. Therefore, the asymptotic distribution of the LRTS

under Pnηn is the same as that under Pnη∗ , and the stated result follows.
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12.2.4 Bounds on difference in state probabilities and conditional moments

Lemma 9. Suppose X1, . . . , Xn are random variables with max1≤i≤n E|Xi|q < C for some q > 0

and C ∈ (0,∞). Then, max1≤i≤n |Xi| = op(n
1/q).

Proof of Lemma 9. For any ε > 0, we have P(max1≤i≤n |Xi| > εn1/q) ≤
∑

1≤i≤n P(|Xi| > εn1/q)

≤ ε−qn−1
∑

1≤i≤n E(|Xi|qI{|Xi| > εn1/q}) by a version of Markov inequality. As n→∞, the right

hand side tends to 0 by the Dominated Convergence Theorem.

The following Lemma extends Corollary 1 and (39) of DMR and an equation on p. 2298 of DMR;

DMR derive these results when t1 = t2 and t3 = t4 and Wn
−m is not present. For two probability

measures µ1 and µ2, the total variation distance between µ1 and µ2 is defined as ‖µ1 − µ2‖TV :=

supA |µ1(A)−µ2(A)|. ‖·‖TV satisfies supf(x):0≤f(x)≤1 |
∫
f(x)dµ1(x)−

∫
f(x)dµ2(x)| = ‖µ1−µ2‖TV .

In the following, we define V
n
−m := (Y

n
−m,W

n
−m), and we let xmx−m denote “X−m = x−m.”

Lemma 10. Suppose Assumptions 1-2 hold and ϑx ∈ Θx. Then,

(a) For all −m ≤ t1 ≤ t2 with −m < n and all probability measures µ1 and µ2 on B(X ),∥∥∥∥∥∥
∑

x−m∈X
Pϑx(Xt2

t1
∈ ·|x−m,V

n
−m)µ1(x−m)−

∑
x−m∈X

Pϑx(Xt2
t1
∈ ·|x−m,V

n
−m)µ2(x−m)

∥∥∥∥∥∥
TV

≤ ρt1+m.

(b) For all −m ≤ t1 ≤ t2 ≤ n− 1,∥∥∥Pϑx(Xt2
t1
∈ ·|Vn

−m, x−m)− Pϑx(Xt2
t1
∈ ·|Vn−1

−m , x−m)
∥∥∥
TV
≤ ρn−1−t2 .

The same bound holds when x−m is dropped from the conditioning variables.

(c) For all −m ≤ t1 ≤ t2 < t3 ≤ t4 with −m < n,

∥∥Pϑx(Xt2
t1
∈ ·,Xt4

t3
∈ ·|Vn

−m, x−m)− Pϑx(Xt2
t1
∈ ·|Vn

−m, x−m)Pϑx(Xt4
t3
∈ ·|Vn

−m, x−m)
∥∥
TV
≤ ρt3−t2 .

The same bound holds when x−m is dropped from the conditioning variables.

Proof of Lemma 10. We prove part (a) first. We assume t1 > −m because the stated result holds

trivially when t1 = −m. Observe that Lemma 1 of DMR still holds when Wn
−m is added to

the conditioning variable because Assumption 1 implies that {(Xk,Yk)}∞k=0 is a Markov chain

given {Wk}∞k=0. Therefore, {Xt}t≥−m is a Markov chain when conditioned on {Yn
−m,W

n
−m}, and

hence Pϑx(Xt2
t1
∈ A|Vn

−m, x−m) =
∑

xt1∈X
Pϑx(Xt2

t1
∈ A|Xt1 = xt1 ,V

n
−m)pϑx(xt1 |V

n
−m, x−m) holds.

From applying this result and the property of the total variation distance, we can bound the

left hand side of the lemma by ‖
∑

x−m∈X pϑx(Xt1 ∈ ·|V
n
−m, x−m)µ1(x−m) −

∑
x−m∈X pϑx(Xt1 ∈

·|Vn
−m, x−m)µ2(x−m)‖TV . This is bounded by ρt1+m from Corollary 1 of DMR, which holds when

Wn
−m is added to the conditioning variable. Therefore, part (a) is proven.

We proceed to prove part (b). Observe that the time-reversed process {Zn−k}0≤k≤n+m is

Markov when conditioned on Wn
−m and that Wk is independent of (Xk−1

0 ,Y
k−1
0 ) given Wk−1

0 .
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Consequently, for k = n, n − 1, we have Pϑx(Xt2
t1
∈ A|Vk

−m, x−m) =
∑

xt2∈X
Pϑx(Xt2

t1
∈ A|Xt2 =

xt2 ,V
t2
−m, x−m)pϑx(xt2 |V

k
−m, x−m). Therefore, from the property of the total variation distance, the

left hand side of the lemma is bounded by ‖Pϑx(Xt2 ∈ ·|V
n
−m, x−m)−Pϑx(Xt2 ∈ ·|V

n−1
−m , x−m)‖TV .

This is bounded by ρn−1−t2 because equation (39) of DMR p. 2294 holds when Wn
−m is added to the

conditioning variables, and the stated result follows. When x−m is dropped from the conditioning

variables, part (b) follows from a similar argument with using Lemma 9 and an analogue of Corollary

1 of DMR in place of equation (39) of DMR.

Part (c) follows immediately from writing the left hand side of lemma as supA,B |Pϑx(Xt2
t1
∈

A|Vn
−m, x−m)[Pϑx(Xt4

t3
∈ B|Vn

−m,X
t2
t1
∈ A)−Pϑx(Xt4

t3
∈ B|Vn

−m, x−m)]| and applying part (a).

12.2.5 The sums of powers of ρ

Lemma 11. For all ρ ∈ (0, 1), c ≥ 1, q ≥ 1, and b > a,

∞∑
t=−∞

(
ρb(t−a)/cqc ∧ ρb(b−t)/qc

)
≤ q(c+ 1)ρb(b−a)/(c+1)qc

1− ρ
,

∞∑
t=−∞

(
ρb(t−a)/qc ∧ ρb(b−t)/cqc

)
≤ q(c+ 1)ρb(b−a)/(c+1)qc

1− ρ
.

Proof of Lemma 11. The first result holds because the left hand side is bounded by

b(a+bc)/(c+1)c∑
t=−∞

ρb(b−t)/qc +

∞∑
t=b(a+bc)/(c+1)c+1

ρb(t−a)/cqc

≤ qρb{b−b(a+bc)/(c+1)c}/qc/(1− ρ) + cqρb{b(a+bc)/(c+1)c+1−a}/cqc/(1− ρ)

≤ q(1 + c)ρb(b−a)/(c+1)qc/(1− ρ).

The second result is proven by bounding the left hand side by
∑b(ac+b)/(c+1)c

t=−∞ ρb(b−t)/cqc

+
∑∞

t=b(ac+b)/(c+1)c+1 ρ
b(t−a)/qc and proceeding similarly.

The following lemma generalizes the result in the last inequality on p. 2299 of DMR.

Lemma 12. For all ρ ∈ (0, 1), k ≥ 1, q ≥ 1, and n ≥ 0,∑
0≤t1≤t2≤···≤tk≤n

(
ρbt1/qc ∧ ρb(t2−t1)/qc ∧ · · · ∧ ρb(tk−tk−1)/qc ∧ ρb(n−tk)/qc

)
≤ Ckq(ρ)ρbn/2kqc,

where Ckq(ρ) := qkk(k + 1)!(1− ρ)−k.

Proof of Lemma 12. When k = 1, the stated result follows from Lemma 11 with c = 1. We first
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show that the following holds for k ≥ 2:

∑
t1≤t2≤···≤tk≤n

(
ρb(t2−t1)/qc ∧ · · · ∧ ρb(tk−tk−1)/qc ∧ ρb(n−tk)/qc

)
≤ qk−1(k + 1)!ρb(n−t1)/kqc

(1− ρ)k−1
. (104)

We prove (104) by induction. When k = 2, it follows from Lemma 11 with c = 1 that∑n
t2=t1

(ρb(t2−t1)/qc ∧ ρb(n−t2)/qc) ≤ 2qρb(n−t1)/2qc/(1 − ρ), giving (104). Suppose (104) holds when

k = `. Then (104) holds when k = `+ 1 because, from Lemma 11,∑
t1≤t2≤···≤t`≤t`+1≤n

(
ρb(t2−t1)/qc ∧ ρb(t3−t2)/qc ∧ · · · ∧ ρb(t`+1−t`)/qc ∧ ρb(n−t`+1)/qc

)

≤
n∑

t2=t1

ρb(t2−t1)/qc ∧
∑

t2≤···≤t`+1≤n

(
ρb(t3−t2)/qc ∧ · · · ∧ ρb(t`+1−t`)/qc ∧ ρb(n−t`+1)/qc

)
≤ q`−1`!

(1− ρ)`−1

n∑
t2=t1

(
ρb(t2−t1)/qc ∧ ρb(n−t2)/`qc

)
≤ q`(`+ 1)!

(1− ρ)`
ρb(n−t1)/(`+1)qc,

and hence (104) holds for all k ≥ 2. We proceed to show the stated result. Observe that∑
0≤t1≤t2≤···≤tk≤n

(
ρbt1/qc ∧ ρb(t2−t1)/qc ∧ · · · ∧ ρb(tk−tk−1)/qc ∧ ρb(n−tk)/qc

)

≤ 2

n/2∑
t1=0

∑
t1≤t2≤···≤tk−1≤tk

n−t1∑
tk=t1

(
ρbt1/qc ∧ ρb(t2−t1)/qc ∧ · · · ∧ ρb(tk−tk−1)/qc ∧ ρb(n−tk)/qc

)

= 2

n/2∑
t1=0

∑
t1≤t2≤···≤tk−1≤tk

n−t1∑
tk=t1

(
ρb(t2−t1)/qc ∧ · · · ∧ ρb(tk−tk−1)/qc ∧ ρb(n−tk)/qc

)

≤ 2

n/2∑
t1=0

∑
t1≤t2≤···≤tk−1≤tk≤n

(
ρb(t2−t1)/qc ∧ · · · ∧ ρb(tk−tk−1)/qc ∧ ρb(n−tk)/qc

)
,

where the first inequality holds by symmetry, and the subsequent equality follows from n− tk ≥ t1.

From (104), the right hand side is no larger than qk−1(k + 1)!(1 − ρ)(1−k)
∑n/2

t1=0 ρ
b(n−t1)/kqc ≤

qkk(k + 1)!(1− ρ)−kρbn/2kqc, giving the stated result.

The next lemma generalizes equation (46) and p. 2294 of DMR, who derive a similar bound

when ` = 1, 2.

Lemma 13. Let aj > 0 for all j. For all positive integer ` ≥ 1 and all k ≥ 1 and m ≥ 0, we have

max−m+1≤t1,...,t`≤k at1 · · · at` ≤ (k +m)`+1A`, where A` :=
∑∞

t=−∞(|t| ∨ 1)−2a`t.

Proof of Lemma 13. When ` = 1, the stated result follows from max−m+1≤t≤k at ≤
∑k

t=−m+1 at =∑k
t=−m+1(|t| ∨ 1)2(|t| ∨ 1)−2at ≤ (k + m)2

∑∞
t=−∞(|t| ∨ 1)−2at. When ` ≥ 2, from the Hölder’s
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inequality, we have max−m+1≤t1≤...≤t`≤k at1at2 · · · at` ≤ (
∑k

t=−m+1 at)
` = [

∑k
t=−m+1(|t| ∨ 1)2/`(|t| ∨

1)−2/`at]
` ≤ [

∑k
t=−m+1(|t| ∨ 1)2/(`−1)](`−1)

∑k
t=−m+1(|t| ∨ 1)−2a`t ≤ [(k +m)1+2/(`−1)]`−1A` = (k +

m)`+1A`.

The following lemma generalizes the bound derived on p. 2301 of DMR.

Lemma 14. For α > 0, q > 0, and cjt ≥ 0, define c∞jq (ρ
α) :=

∑∞
t=−∞ ρ

bα|t|/qccjt. For all ρ ∈ (0, 1),

k ≥ 1, and 0 ≤ m ≤ m′,

−m∑
t1=−m′+1

∑
t1≤t2≤t3≤t4≤t5≤t6≤k

(
ρb(k−1−t6)/qc ∧ ρb(t6−t5)/qc ∧ ρb(t5−t4)/qc ∧ ρb(t4−t3)/qc∧

ρb(t3−t2)/qc ∧ ρb(t2−t1)/qc
) 6∏
j=1

cjtj ≤ ρb(k−1+m)/2qa7cc∞1q

(
ρ1/2a7

) 6∏
j=2

c∞jq

(
ρ1/4aj

)
,

(105)

where (aj , bj) are defined recursively with (a2, b2) = (1, 1) and, for j ≥ 3, aj+1 = 4aj(aj+bj)/(2aj−
1) and bj+1 = aj(4bj − 1)/(2aj − 1). aj and bj satisfy aj , bj ≥ 3/2 for all j. Direct calculations

using Matlab produce a7
.
= 334.5406.

Proof of Lemma 14. First, observe that the following result holds for a, b > 1/4, t1 ≤ 0, and

tj , tj+1 ≥ t1:

(a) if tj ≤
atj+1 + t1
a+ b

, then
|tj |
4a
≤ a(4a+ 1)tj+1 + (2a− 1)t1

4a(a+ b)
− tj ,

(b) if tj ≥
atj+1 + t1
a+ b

, then
|tj |
4a
≤ b

a
tj −

a(4b− 1)tj+1 + (2a+ 4b+ 1)t1
4a(a+ b)

.

(106)

(a) holds because (i) when tj ≤ 0, we have tj ≤ (atj+1 + t1)/(a + b) ⇒ (4a − 1)tj/4a ≤ [a(4a −
1)tj+1 + (4a − 1)t1]/4a(a + b) ⇒ −tj/4a ≤ [a(4a − 1)tj+1 + (4a − 1)t1]/4a(a + b) − tj and a(4a −
1)tj+1 +(4a−1)t1 ≤ a(4a−1)tj+1 +(4a−1)t1 +2a(tj+1− t1) = a(4a+1)tj+1 +(2a−1)t1; (ii) when

tj ≥ 0, we have tj ≤ (atj+1 + t1)/(a+ b)⇒ (4a+ 1)tj/4a ≤ [a(4a+ 1)tj+1 + (4a+ 1)t1]/4a(a+ b)⇒
tj/4a ≤ [a(4a+ 1)tj+1 + (4a+ 1)t1]/4a(a+ b)− tj and (4a+ 1)t1 ≤ (2a− 1)t1.

(b) holds because (i) when tj ≤ 0, we have tj ≥ (atj+1 + t1)/(a + b) ⇒ (4b + 1)tj/4a ≥
[a(4b+ 1)tj+1 + (4b+ 1)t1]/4a(a+ b)⇒ −tj/4a ≤ btj/a− [a(4b+ 1)tj+1 + (4b+ 1)t1]/4a(a+ b) and

a(4b+1)tj+1+(4b+1)t1 ≥ a(4b+1)tj+1+(4b+1)t1−2a(tj+1−t1) = a(4b−1)tj+1+(2a+4b+1)t1; (ii)

when tj ≥ 0, we have tj ≥ (atj+1 + t1)/(a+ b)⇒ (4b−1)tj/4a ≥ [a(4b−1)tj+1 + (4b−1)t1]/4a(a+

b) ⇒ tj/4a ≤ btj/a − [a(4b − 1)tj+1 + (4b − 1)t1]/4a(a + b) and a(4b − 1)tj+1 + (4b − 1)t1 ≥
a(4b− 1)tj+1 + (2a+ 4b+ 1)t1.

We proceed to derive the stated bound. It follows from (a) and (b) and bx + yc ≥ bxc + byc
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that, with tj = (ajtj+1 + t1)/(aj + bj),

k∑
tj=−m′+1

(
ρb(tj+1−tj)/qc ∧ ρb(bjtj−t1)/ajqc

)
cjtj

≤ ρb
aj(4bj−1)tj+1−(2aj−1)t1

4aj(aj+bj)q
c

∑
tj≤tj

ρ
b
aj(4aj+1)tj+1+(2aj−1)t1

4aj(aj+bj)q
−
tj
q
c

+
∑
tj≥tj

ρ
b
bj
ajq

tj−
aj(4bj−1)tj+1+(2aj+4bj+1)t1

4aj(aj+bj)q
c

 cjtj

≤ ρb
aj(4bj−1)tj+1−(2aj−1)t1

4aj(aj+bj)q
c
c∞jq

(
ρ1/4aj

)
= ρ

b
bj+1tj+1−t1

aj+1
c
c∞jq

(
ρ1/4aj

)
. (107)

Observe that aj+1 ≥ 2aj ≥ 2 and bj+1 ≥ 2bj − (1/2) ≥ 3/2 for all j ≥ 2. Therefore, we can apply

(106) and (107) to the left hand side of (105) sequentially for j = 2, 3, . . . , 6. Consequently, the left

hand side of (105) is no larger than

−m∑
t1=−m′+1

ρ
b b7(k−1)−t1

a7q
c
c1t1

6∏
j=2

c∞jq

(
ρ1/4aj

)
.

Observe that |t1| ≤ k− 1− 2t1 −m because t1 ≤ −m⇒ −t1 ≤ −2t1 −m ≤ k− 1− 2t1 −m. From

b7(k − 1) ≥ k − 1 and |t1| ≤ k − 1− 2t1 −m, the sum is bounded by

−m∑
t1=−m′+1

ρ
b k−1−t1

a7q
c
c1t1 = ρ

b k−1+m
2a7q

c
−m∑

t1=−m′+1

ρ
b k−1−2t1−m

2a7q
c
c1t1 ≤ ρ

b k−1+m
2a7q

c
c∞1q

(
ρ1/2a7

)
,

and the stated result follows.

12.2.6 Derivation of ϑM0+1,x = (ϑ′xm, π
′
xm)′ and πxm = (%m, αm, φ

′
m)′

Define Jm0 := {1, . . . ,M0} \ Jm, and let pj and p∗j denote PϑM0+1
(Xk = j) and Pϑ∗M0

(Xk = j),

respectively.

We parameterize the transition probability of Xk in terms of its stationary distribution and the

first to the (m − 1)th rows and the (m + 1)th to the (M0 + 1)th rows of its transition matrix.8

For i ∈ Jm, we reparameterize (pim, pi,m+1) to piJ = pim + pi,m+1 = PϑM0+1
(Xk ∈ Jm|Xk−1 = i)

and pim|iJ = pim/(pim + pi,m+1). Furthermore, we reparameterize (pm, pm+1) in the stationary

distribution to pJ = pm + pm+1 = PϑM0+1
(Xk ∈ Jm) and pm|J = pm/(pm + pm+1) = PϑM0+1

(Xk =

m|Xk ∈ Jm). Therefore, with ∧ and ∨ denoting “and” and “or,” the transition probability of Xk

is summarized by ϑM0+1,x := ({pij}i∈Jm∧j∈Jm0
, {piJ , pim|iJ}i∈Jm , {pm+1,j}M0

j=1, {pj}j∈Jm0
, pJ , pm|J).

8Suppose a Markov process has a transition probability P and stationary distribution π whose elements are strictly
positive. If π and all the rows of P except for one are identified, then the remaining row of P is identified from the
relation πP = π.
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Split ϑM0+1,x as ϑM0+1,x = (ϑ′xm, π
′
xm)′, where

ϑxm := ({pij}i∈Jm∧j∈Jm0
, {piJ}i∈Jm , {pj}j∈Jm0

, pJ) and

πxm := ({pim|iJ}i∈Jm , {pm+1,j}M0
j=1, pm|J).

When the mth and (m + 1)th regimes are combined into one regime, the transition probability

of Xk equals the transition probability of Xk under ϑ∗M0,x
if and only if ϑxm = ϑ∗xm := {pij =

p∗ij for i ∈ Jm ∧ (1 ≤ j ≤ m − 1); pij = p∗i,j−1 for i ∈ Jm ∧ (m + 2 ≤ j ≤ M0); piJ = p∗im for i ∈
J̄m; pj = p∗j for 1 ≤ j ≤ m− 1; pj = p∗j−1 for m+ 2 ≤ j ≤M0; pJ = p∗m}. πxm is the part of ϑM0+1,x

that is not identified under H0m.

We proceed to derive the reparameterization of some elements of πxm in terms of (αm, %m). First,

map pm+1,m and pm+1,m+1 to pm+1,J := pm+1,m + pm+1,m+1 = PϑM0+1
(Xk ∈ J |Xk−1 = m+ 1) and

pm+1,m|J := pm+1,m/pm+1,J = PϑM0+1
(Xk = m|Xk ∈ J,Xk−1 = m + 1). Let PJ and πJ denote

the transition matrix and stationary distribution of Xk restricted to lie in Jm. The second row

of PJ is given by (pm+1,m|J , 1 − pm+1,m|J), and πJ is given by (pm|J , 1 − pm|J). From the relation

πJ = πJPJ , we can obtain the first row of PJ as a function of pm+1,m|J and pm|J . Finally, the

elements of PJ are mapped to (%m, αm) as in Section 6.
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Table 1: Rejection frequencies under the null hypothesis

H0 : M = 1 H0 : M = 2

(1) (2) (3) (4)
Test Statistic Model 1 Model 2 Model 1 Model 2

n = 200 LRT 5.83 6.50 4.50 3.73
supTS 5.10 4.67 — —
QLRT 4.97 — — —

n = 500 LRT 4.37 5.33 4.00 3.80
supTS 4.57 5.07 — —
QLRT 4.43 — — —

Notes: Nominal level of 5%. We use 199 bootstrap samples and 3000 replications for H0 : M = 1,
and 1000 replications for H0 : M = 2. For testing H0 : M = 2 using Models 1 and 2, we generate
the data under (β, µ1, µ2, σ, p11, p22) = (0.5,−1, 1, 1, 0.7, 0.7) and
(β, µ1, µ2, σ1, σ2, p11, p22) = (0.5,−1, 1, 0.9, 1.2, 0.7, 0.7), respectively.

Table 2: Rejection frequencies for testing H0 : M = 1 under the alternative hypothesis

Model 1 Model 2
(p11, p22) Test Statistic µ1 = 0.20 µ1 = 0.6 µ1 = 1.0 µ1 = 0.20 µ1 = 0.6 µ1 = 1.0

(0.25, 0.25) LRT 4.87 46.90 99.63 9.63 55.90 99.60
supTS 6.23 56.43 95.90 16.37 70.97 95.37
QLRT 5.10 8.00 55.27 — — —

(0.50, 0.50) LRT 3.80 7.03 67.87 8.77 22.30 75.13
supTS 4.07 4.40 4.60 14.70 35.77 35.30
QLRT 4.90 9.40 82.50 — — —

(0.70, 0.70) LRT 4.10 10.23 91.07 9.13 27.37 92.10
supTS 4.57 7.40 26.37 14.90 36.20 43.43
QLRT 5.13 8.53 58.73 — — —

(0.90, 0.90) LRT 5.33 46.87 99.97 10.23 58.37 99.97
supTS 6.77 13.90 4.40 19.10 41.17 35.30
QLRT 4.83 5.63 5.97 — — —

Notes: Nominal level of 5% and n = 500. We use 199 bootstrap samples and 3000 replications.
We set µ2 = −µ1 for both models, (β, σ) = (0.5, 1.0) for Model 1 and (β, σ1, σ2) = (0.5, 1.1, 0.9)
for Model 2.
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Table 3: Rejection frequencies for testing H0 : M = 2 under the alternative hypothesis

Model 1 Model 2
(µ1, µ2, µ3) (µ1, µ2, µ3) (µ1, µ2, µ3) (µ1, µ2, µ3)
= (1, 0,−1) = (2, 0,−2) = (1, 0,−1) = (2, 0,−2)

(p11, p22, p33) = (0.5, 0.5, 0.5) 5.7 31.2 7.2 39.5

(p11, p22, p33) = (0.7, 0.7, 0.7) 7.5 91.3 8.1 98.1

Notes: Nominal level of 5% and n = 500. We set B = 199, 1000 replications. We set
(β, σ) = (0.5, 1.0) for Model 1 and (β, σ1, σ2, σ3) = (0.5, 0.6, 0.9, 1.2) for Model 2. For both Model
1 and 2, we set pij = (1− pii)/2 for j 6= i so that, for example, (p12, p13) = (0.15, 0.15) when
p11 = 0.7.
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Table 4: Estimated parameters: the U.S. GDP per capita growth, 1960Q1-2014Q4

Panel A: Model 1 with common variance

M = 2 M = 3 M = 4
Coeff. S.E. Coeff. S.E. Coeff. S.E.

µ1 -0.634 0.200 -0.823 0.151 -2.348 0.649
µ2 0.951 0.176 0.692 0.172 -0.330 0.179
µ3 – – 2.023 0.236 0.532 0.161
µ4 – – – – 2.025 0.184
σ 0.913 0.053 0.752 0.052 0.832 0.040
β 0.787 0.041 0.773 0.046 0.639 0.053

Panel B: Model 2 with switching variance

M = 2 M = 3 M = 4
Coeff. S.E. Coeff. S.E. Coeff. S.E.

µ1 0.377 0.121 -0.629 0.298 -0.693 0.287
µ2 0.428 0.175 0.624 0.167 0.614 0.179
µ3 – – 1.838 0.301 1.454 0.223
µ4 – – – – 2.244 0.369
σ1 0.634 0.058 1.085 0.163 1.008 0.176
σ2 1.495 0.135 0.579 0.053 0.466 0.077
σ3 – – 0.867 0.140 0.384 0.070
σ4 – – – – 0.874 0.156
β 0.865 0.035 0.780 0.047 0.687 0.051

Table 5: Selection of the number of regimes: the U.S. GDP per capita growth, 1960Q1-2014Q4

Model 1 with common variance Model 2 with switching variance

LRT LRT
M0 log-like. AIC BIC LRn p-val. log-like. AIC BIC LRn p-val.

1 -331.70 669.39 679.58 20.86 0.000 -331.70 669.39 679.58 47.41 0.000
2 -321.27 656.54 680.29 27.77 0.000 -307.99 631.99 659.14 22.29 0.010
3 -307.39 640.77 684.89 15.23 0.020 -296.85 623.70 674.61 11.528 0.477
4 -299.77 641.54 712.81 6.57 0.523 -291.09 630.17 711.62 15.02 0.296
5 -296.49 654.97 760.17 – – -283.58 637.15 755.93 – –
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Figure 1: The posterior probabilities of each regime (Model 1 with common variance): the U.S.
GDP per capita growth, 1960Q1–2014Q4

M=2

M=3

M=4
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Figure 2: The posterior probabilities of each regime (Model 2 with switching variance): the U.S.
GDP per capita growth, 1960Q1–2014Q4
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