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Abstract

Markov regime switching models have been widely used in numerous empirical applications
in economics and finance. However, the asymptotic distribution of the likelihood ratio test
statistic for testing the number of regimes in Markov regime switching models is an unresolved
problem. This paper proposes the likelihood ratio test of the null hypothesis of M, regimes
against the alternative hypothesis of My + 1 regimes for any My > 1 and derives its asymptotic

distribution.

Key words: asymptotic distribution; DQM expansion; likelihood ratio test; loss of identifiability

1 Introduction

Since Hamilton (1989)’s seminal contribution, Markov regime switching models have been widely
used in numerous empirical applications in economics and finance (see, e.g., Hamilton, 1989; Evans
and Wachtel, 1993; Hamilton and Susmel, 1994; Gray, 1996; Sims and Zha, 2006; Inoue and Oki-
moto, 2008; Ang and Bekaert, 2002; Okimoto, 2008; Dai et al., 2007). The number of regimes is an
important parameter in applications of Markov regime switching models. Despite its importance,
testing for the number of regimes in Markov regime switching models has been an unsolved problem
because the standard asymptotic analysis of the likelihood ratio test statistic (LRTS) breaks down
due to problems such as non-identifiable parameters, the true parameter being on the boundary
of the parameter space, and the degeneracy of Fisher information matrix. Testing the number of
regimes for Markov regime switching models with normal density, which are popular in empirical
applications, poses a further difficulty because the normal density has an undesirable mathematical
property that the second-order derivative with respect to the mean parameter is linearly dependent

of the first derivative with respect to the variance parameter, leading to a further singularity.

*This research is support by the Natural Science and Engineering Research Council of Canada, JSPS Grant-in-Aid
for Scientific Research (C) No. 17K03653, and the Institute of Statistical Mathematics Cooperative Use Registration
(2017 ISM CUR-171). The authors thank Marine Carrasco, Liang Hu, and Werner Ploberger for making their code
available.



The issue of non-identifiability under the null hypothesis and the degeneracy in Fisher infor-
mation matrix has been well recognized in the existing literature. In testing the null hypothesis of
no regime switching, Hansen (1992) derives a lower bound on the asymptotic distribution of the
LRTS, and Garcia (1998) also studies this problem. Carrasco et al. (2014) propose an information
matrix-type test for parameter constancy in general dynamic models based on the fourth order
expansion of the likelihood, and show that the contiguous local alternatives are of order n1/4,
where n is the sample size. In a closely related problem of testing the number of components in
finite mixture normal regression models, Kasahara and Shimotsu (2015) show that an eighth-order
Taylor expansion is required to characterize the quadratic-form approximation of the log-likelihood
function and, consequently, the contiguous local alternatives are of order n—1/8 (see also Chen and
Li, 2009; Chen et al., 2012; Ho and Nguyen, 2016). Chesher (1984) and Lee and Chesher (1986)
investigate the related problem of testing for neglected heterogeneity under iid setting.

Cho and White (2007) derive the asymptotic distribution of the quasi-likelihood ratio test
statistic (Q-LRTS) for testing single regime against two regimes by rewriting the model as a two-
component mixture models, thereby ignoring the temporal dependence of the regimes. Qu and
Zhuo (2017) extend the analysis of Cho and White (2007) and derive the asymptotic distribution
of the LRTS that properly takes into account the temporal dependence of the regimes under some
restriction on transition probabilities of latent regimes. Both Cho and White (2007) and Qu and
Zhuo (2017) focus on testing single regime against two regimes. To the best of our knowledge, the
asymptotic distribution of the LRTS for testing the null hypothesis of My regimes with My > 2
remains unknown. Dannemann and Holtzmann (2008) analyze the Q-LRTS for testing the null of
two regimes against three.

This paper proposes a likelihood ratio test of the null hypothesis of My regimes against the
alternative hypothesis of My + 1 regimes for any My > 1. To this end, this paper develops a
version of Le Cam’s differentiable in quadratic mean (DQM) expansion that expands the likelihood
ratio under loss of identifiability while adopting the reparameterization of Kasahara and Shimotsu
(2015). We show that the log-likelihood function is locally approximated by a quadratic function
of polynomials of reparameterized parameters, and derive the asymptotic null distribution of the
LRTS using the results of Andrews (1999, 2001).

The DQM expansion under loss of identifiability was developed by Liu and Shao (2003) in
an iid setting, and their expansion is based on a generalized score function. We extend Liu and
Shao (2003) to accommodate dependent and heterogeneous data and also modify it to fit our
context of parametric regime switching model. Using the DQM-type expansion has advantage over
the “classical” approach based on the Taylor expansion that expands up to the Hessian term in
this context because deriving a higher-order expansion becomes tedious as the order of expansion
increases in a Markov regime switching model.

We consider the conditional likelihood given an arbitrary distribution of the initial unobserved
regime and show that the asymptotic distribution of the LRTS does not depend on the initial
distribution. This approach follows Douc et al. (2004) [DMR, hereafter|, who derive the asymp-



totic distribution of the MLE of regime-switching models Applying Missing Information Principle
(Woodbury, 1971; Louis, 1982) and extending the analysis of DMR, we express the higher-order
derivatives of period density-ratios in terms of the conditional expectation of the derivatives of pe-
riod complete-data log-density. We then show that these derivatives of period density-ratios can be
approximated by a stationary, ergodic and square integrable martingale difference sequence by con-
ditioning on the infinite past, and this approximation is shown to satisfy the regularity conditions
for our DQM expansion.

We first derive the asymptotic null distribution of the LRTS for testing Hy : M = 1 against
Hy : M = 2. When the regime-specific density function is not normal, the log-likelihood function
is locally approximated by a quadratic function of the second-order polynomials of reparameterized
parameters. When the density function is normal, the degree of deficiency of the Fisher informa-
tion matrix and the required order of expansion depends on the value of unidentified parameter;
in particular, when the latent regime variables are serially uncorrelated, the model reduces to a
finite mixture normal model in which the fourth-order DQM expansion is necessary to derive a
quadratic approximation of the log-likelihood function. We expand the log-likelihood with respect
to a judiciously chosen polynomials of reparameterized parameters—which involves the fourth-order
polynomials—to obtain a uniform approximation of the log-likelihood function in quadratic form,
and derive the asymptotic null distribution of LRTS by maximizing the quadratic form under a set
of constraints, each of which is locally approximated by a cone.

To derive the asymptotic null distribution of the LRTS for testing Hy : M = M, against
Hy: M = My —+1 for My > 2, we partition a set of parameters that describes the true null
model in the alternative model into My subsets, each of which corresponds to a specific way of
generating the null model. We show that the asymptotic distribution of the LRTS is characterized
by the maximum of My random variables, each of which represents the LRTS for testing each of
My subsets.

We also derive the asymptotic distribution of our LRT'S under local alternatives. We show that
the value of the unidentified parameter affects the convergence rate of contiguous local alternatives.
When the regime-specific density is normal, some contiguous local alternatives are of the order
n~1/8 and our LRT is shown to have nontrivial power against them. The test of Carrasco et al.
(2014) do not have power against such alternatives, whereas the test of Qu and Zhuo (2017) rules
out such alternatives. Simulations show that our bootstrap LRT has good finite sample properties.

The remainder of this paper is organized as follows. After introducing notation and assumptions
in section 2, we discuss the degeneracy of Fisher information matrix and the loss of identifiability
in regime switching model in section 3. Section 4 establishes the DQM-type expansion. Section
5 presents the uniform convergence for the derivatives of density-ratios. Sections 6 and 7 derives
the asymptotic distribution of the LRTS under Hy. Section 8 derives the asymptotic distribution
under local alternatives. Section 9 establishes the consistency of parametric bootstrap. Section 10
reports the results from simulations and an empirical application using the U.S. GDP per capita

quarterly growth rate data. Section 11 collects the proofs and the auxiliary results.



2 Notation and assumptions

Let := denote “equals by definition.” Let = denote weak convergence of a sequence of stochastic
processes indexed by 7 for some space II. For a matrix B, let Apin(B) and Apax(B) be the smallest
and the largest eigenvalue of B, respectively. For a k-dimensional vector z = (x1,...,z) and a
matrix B, define |z| := v2'z and |B| := \/Amax(B'B). For a k x 1 vector a = (ay,...,a;) and
a function f(a), let Vof(a) := (0f(a)/day,...,df(a)/day), and let Vi f(a) denote a collection of
derivatives of the form (07 /da;, das, . .. Oa;;) f(a). Let I{ A} denote an indicator function that takes
value 1 when A is true and 0 otherwise. C denotes a generic nonnegative finite constant whose
value may change from one expression to another. Let a V b := max{a,b} and a A b := min{a, b}.
Let |z] denote the largest integer less than or equal to z, and define (x); := max{z,0}. Given a
sequence {fi}7_,, let v, (fi) :==n Y237 [fr — Ep(f)]. For a sequence X,,. that is indexed by
n=1,2,... and ¢, we write X,,- = Opc(ay,) if, for any § > 0, there exist ¢ > 0 and M, ng < oo such
that P(| Xye/an| < M) > 1 —6 for all n > ng, and we write X,,c = opc(ay,) if, for any 61,02 > 0,
there exist ¢ > 0 and ng such that P(|X,c/a,| < 1) > 1 — d3 for all n > ny. Loosely speaking,
Xne = Ope(ay) and X,,. = ope(ay,) mean that X, = Oy(ay) and X,,c = op(a,) when ¢ is sufficiently
small, respectively. All limits are taken as n — oo unless stated otherwise. The proof of all the
propositions and lemmas is presented in the appendix.

Consider the Markov regime switching process defined by a discrete-time stochastic process
{(Xk, Yi, Wg) }, where (X, Yi, Wi) takes values in a set Xpy x Y x W with Y C R% and W C R%,
and let B(Xyr x Y x W) denote the associated Borel o-field. For a stochastic process {Zj} and
a < b, define Z° := (Z4, Zos1,...,Zy). Denote Yy_q := (Yi_1,...,Ys_s) for a fixed integer s and
Y = (Yo, Yorss..., Yo).

Assumption 1. (a) {Xp}32, is a first-order Markov chain with the state space Xpr =
{1,2,...,M}. (b) For each k > 1, X}, is independent of (XS_Q,?]S_l,WSO) given Xp_1. (c) For
each k > 1,Y}, is conditionally independent of (Y]:_‘:l, X’gil, ngfl, WP,) given (Y 1, X, Wp).
(d) W5° is conditionally independent of (Yo, Xo) given Wo.b (e) {(Xk, Yi, Wi)}32, is a strictly

stationary ergodic process.

The Markov chain { X} is not observable and is called the regime. The integer M represents the
number of regimes specified in the model. For each ¥y = ( /M,y’ ’Mm)’ , we denote the transition
probability of Xy by gy, , (Tx—1,2k) := P(X}, = 24| Xr_1 = 7x_1) and the conditional density func-
tion of Vi given (Yg—1, X, W) by 9oy, (Uk|F i1, Ths i) = 2 scx,, Hw = 51 Ukl Fe—1, wi; 7, 65)
so that f(yg|¥r_1,wk;7,0;) is the conditional density of yj given (¥,_;,wy) when x; = j. Here,
UM, contains the parameter p;; == gy, (i,j) fori=1,...,Mandj=1,...,M~1, and gy,, (i, M)
is determined by gy,, (i, M) = 1 — Zj]\/izlp,-j. Uy = (01,-..,03,7"), where v is the structural

parameter that does not vary across regimes and ¢; is the regime-specific parameter that varies

! Assumption 1(a)—(d) imply that Wy is conditionally independent of (X§_17?§_1) given Wg_l.



across regimes. Let

Po(Yks Tl - 1> Thm1, Wk) = qo, (Th—1, Tk) 99, (YUk|T k—1, T> W)
= qo, (@e1,2%) > Haw = 51 WrlYio1, w7, 0;)-
JEXM
The parameter 9; belongs to Oy = Oy X Oy, & compact subset of R, We assume O, =

O X -+ X Oy X O,, and the true parameter value is denoted by 3,.
We make the following assumptions that correspond to (A1)—(A3) in DMR.

Assumption 2. (a) 0 < o :=infy,, co, , MiNgaecx,, @y, (2, 2') and

04 1= SUPy,, oy, WXy /eXy @y, (T, 7") < 1 for each M. (b) For all y' € Y,y € V®, and
weW, 0 <infycoy, docx, 9, VT, z,w) and SUPy,, O, Y wery 99ur, (YT, T, w) < oo.
(¢) by := supy,, ce, SUPy, yi w.e I, (Y1|¥0, T, w) < 00 and Eg-( logb,(?é,Wl)\) < oo, where

b— (y(lb wl) = infﬁM,yeG)M,y Z:EEXM 9O 1,y (yl |y07 z, wl) :

As discussed in p. 2260 of DMR, Assumption 2(a) implies that the Markov chain {X}} has a
unique invariant distribution and uniformly ergodic for all 657, € ©)/,.2 For notational brevity,
we drop the subscript M from Xy, dpr, Opr, etc., unless it is important to clarify the specific
value of M. Assumption 1(b)(c) imply that {Z;}32, = {(Xk, Yi)}2, is a Markov chain on
Z = X x Y* given {W}.}22,, and Z, is conditionally independent of (ZS_Q,WS_I, P31) given
(Zk—1, Wy). Consequently, Lemma 1, Corollary 1, and Lemma 9 of DMR go through even in the
presence of {W},}22 . Because {(Zj, W) }32, is stationary, we can and will extend {(Zy, Wy)}72, to

a stationary process {(Zy, Wi)}32 _ ., with doubly infinite time. We denote the probability measure

—00
and the associated expectation of {(Z, Wj)}22_ under stationarity by Py and Ey, respectively.?
Under Assumption 1(a)-(d), the density function of Y7 given Xy = xg, Yo and W{ for the

model with M regimes is given by

n
oy (YTIY0, Wi, z0) = > [ pows Ve 2| Vo1, 1, Wa). (1)

xPEXY, k=1

2 Assumptions 1(c) and 2(a) are also employed in DMR. As discussed in Kasahara and Shimotsu (2017), these
assumptions together rule out models in which the conditional density Y) depends on both current and lagged regimes.
For example, if we specify X = (Xi, Xr—1) with X being a first-order Markov process, then the transition density
of X inevitably has zeros. Kasahara and Shimotsu (2017) show asymptotic normality of the MLE while relaxing
Assumption 2(a) to allow for infy,, ,co,, , MiNg orexy, Goy., (2,2) = 0. It is possible to derive the asymptotic
distribution of the LRT under similar assumptions to Kasahara and Shimotsu (2017), albeit with a tedious derivation.

3SDMR use Py and Ey to denote probability and expectation under stationarity on {Zk} 72 oo, because their Section 7
deals with the case when Zj is drawn from an arbitrary distribution. Because we assume {(Zi, Wi)}72 o, is stationary,
we use notations such as Py and Ey without an overline for simplicity.



Define the conditional log-likelihood function and stationary log-likelihood function as

n
- k-1
Cn (0, 20) = log po(YT[ Yo, Wg, 20) = E log po (Ye| Yo, W, x0),
k=1

NN n - k-1
0n(0) :=1log pg(YT[Y0, W§) = > logps(Yu|Yy , WE),
k=1

where we use the fact that pﬁ(Ykl?lg_l,WgL,xo) = pﬁ(Yk|?§_1,W§,xo) and pg(YM?g_l,Wg) =
Dy (Yk|?§71, W), which follows from Assumptions 1. Note that

<k—1 k-1
po(Ye| Yo  WE, w0) — po(Yi[Yo , W§)

N a k-1 — k-1 _
= > el Ynmen, Wi) ¢ (Poles Yo WE o) = Po(ea Yo WE™)

(Tp—1,7p)EX2

—k—1 _ k-1 — k-1 —

and Py(zp—1[Yy  WE) = 3, cxPolmea1[Yy W ao)Py(2o[Yy WG, Let p:=1-—
o_Jo4 €]0,1). Lemma 10(a) in the appendix shows that, for all probability measures p; and po
on B(X) and all (?gil,ngfl),

k1 _ k1 _ _
sup Z Py(Xp—1 €AY, W, mo)p (o) — Z Po(Xi—1 € A[Yy Wit mo)pa(zo)| < pFL
A\ goex ToEX

(2)

Consequently, pﬁ(Yk‘?gil, ngfl, xo) —pg(YH?]g*l, ngl) goes to zero at an exponential rate as
k — oo. Therefore, as shown in the following proposition, the difference between ¢, (6, xo) and
£,(0) is bounded by a deterministic constant, and the maximum of ¢,,(, z¢) and the maximum of

£, () are asymptotically equivalent.

Proposition 1. Under Assumptions 1-2, for all xg € X,

sup [0 (9, 20) — £n(9)| < 1/(1 — p)?  Pge-a.s.
UIS(S)

As discussed on p. 2263 of DMR, the stationary density pg(YH?Sil,W’g) is not available in
closed form for some models with autoregression. For this reason, we consider the log-likelihood
function when the initial distribution of Xy follows some arbitrary distribution
Em € Enr = {€(20)zpery, : §(x0) 2 0 and 32,y &(x0) =1}

Define the maximum likelihood estimator (MLE, hereafter), ¥ps¢,,, by the maximizer of the
conditional log likelihood

M
En(ﬁM,fM) := log (Z Py (Ym?O? ng JJ())fM(xo)) ) (3)

xo=1



where py,, (Y'Y, Wg, ) is given in (1). We define the number of regimes by the smallest number
M such that the data density admits the representation (3). Our objective is to test

Hy: M =My against Ha:M = My+1.

Define the likelihood ratio test statistic (LRTS, hereafter) for testing Hy as

Q[maXﬁMOHE@MOH En(ﬁMoJrla fMoJrl) - maXﬁMO €O, En(ﬁMongo)]'

3 Degeneracy of Fisher information matrix and non-identifiability

under the null hypothesis

Consider testing Hy : M = 1 against H4 : M = 2 in a two-regime model. The null hypothesis can
be written as Hy : 07 = 0;.4 When 6; = 05, the parameter 9, is not identified because Y}, has the
same distribution across regimes. Furthermore, Section 6 shows that, when 61 = 65, the scores with
respect to 61 and 6 are linearly dependent so that the Fisher information matrix is degenerate.
The log-likelihood function of Markov switching models with normal density has further de-
generacy. For example, in a two-regime model where Y}, in the j-th regime follows N (u;, UJZ), the
model reduces to a heteroscedastic normal mixture model when P(X; = 1| X} = 1) = P(X}, =
1| Xk—1 = 2), i.e., p11 = 1 — pao. Kasahara and Shimotsu (2015) show that, in a heteroscedastic
normal mixture model, the first and second derivatives of the log-likelihood function are linearly
dependent and the score function is a function of the fourth-order derivative. Consequently, one

needs to expand the log-likelihood function four times to derive the score function.

4 Quadratic expansion under loss of identifiability

When testing the number of regimes by the LRT, a part of ¥ is not identified under the null
hypothesis. Let 7 denote the part of ¢ that is not identified under the null, split ¥ as ¢ = (¢', ')/,
and write £, (9,&) = £, (¢, 7, &) and £, (9) = £,(1p, ). For example, in testing Hy : M = 1 against
Hy : M =2, we have ¢ = 03, and m = 92 ;. We also use py and py, interchangeably.

Denote the true parameter value of ¢ by ¢*, and denote the set of (1, 7) corresponding to the
null hypothesis by I'* = {(¢,7) € © : ¢» = ¢*}. Let ty be a continuous function of ¥ such that
ty = 0 if and only if ¢ = ¥*. For ¢ > 0, define a neighborhood of I'* by

Ne:={0€e€O:|ty| <e}.

When the MLE is consistent, the asymptotic distribution of the LRTS is determined by the local
properties of the likelihood functions in N.

4The null hypothesis of Ho : M = 1 also holds when p1; = 1 or pas = 1. We impose Assumption 2(a) to exclude
p11 = 1 or p22 = 1 from the parameter space because the log likelihood function is unbounded as p11 or pa2 tends to
zero (Gassiat and Keribin, 2000).



We establish a general quadratic expansion of the log-likelihood function ¢, (v, 7, &) around
Lo (*, 7, €) that expresses £, (1, m, &) — €p (¥, 7, ) as a quadratic function of ty. Once we derive a
quadratic expansion, the asymptotic distribution of the LRTS can be characterized by taking its
supremum with respect to ty under an appropriate constraint and using the results of Andrews
(1999, 2001).

Denote the conditional density-ratio by

k-1
L pdﬂr(Yk|YO 7W’gax0)

lkao = N (4)
Py (YelYo —, Wi, o)

so that £, (¢, 7, x0) — € (Y, 7, 20) = > p_ 108 Lyks,- We assume that lyg,, can be expanded around
Ly kzy = 1 as follows. With slight abuse of notation, let P, (f) := n~* > py fr and recall vy, (fy) :=

V250 [ — o (fe))-

Assumption 3. For allk=1,...,n, lyry, — 1 admits an expansion
lokaeo — 1 = tySak + Tok + Udkay, (5)

where ty satisfies v — ¢* if ty — Oty="0—f-and—only—f+b==* and (Szk, "ok, Wka,) Sat-
isfy, for some C € (0,00), § > 0, € > 0, and p € (0,1), (a) Ey« supweeﬂ\swkﬁ” < C,

(b) supco. |Pn(Sxkshy) — In| = 0p(1) with 0 < infrce, Amin(Zr) < SUPrco. Amax(Zr) < 00,

(¢) Eg=[supgen. [ron/([tolly — *N)I?] < o0, (d) supyen. [va(ron)/(tolly — ¥*)] = Op(1), (e)
SUPgz,ex SUPyeN, Pn(|u19kxo|/|¢—1/)*|)j = Op(n_l) forj=1,2,3, (f) SUPgz,ex SUPYeN. Pn(lswkHUﬂkxoVW_
W*]) = Op(n™), (9) supgens. [vn(sar)| = Op(1).

In Section 6, we derive an expansion (5) for various regime switching models that involves the
higher order derivatives of density-ratios, V7 lykzy, and derive the asymptotic distribution of the
LRTS.

We first establish an expansion of £, (1, 7, zg) in a neighborhood N, //m for any ¢ > 0.

Proposition 2. Suppose that Assumption 3(a)—(f) holds. Then, for all ¢ > 0,

sup  sup |l (¢, @0) — L (V¥ 7, w0) — ity (sxi) + ntyTaty /2] = op(1).
ToEX ﬂGNc/ﬁ
The next proposition expands £, (1, 7, z0) in Ape(x0) := {9 € Nz : (¢, 7, 20) — b (V*, 70, 20) >
0}. This proposition is useful for deriving the asymptotic distribution of the LRTS because a

consistent MLE is in A,.(z¢) by definition, and it is difficult to find a uniform approximation of
Lo (Y, 7, 20) in Ne. Let Apee(zo) := Ape(xo) UNC/\/g.

Proposition 3. Suppose that Assumption 3 holds.  Then, (a) Sup, cxy SUPyca,.(z0) [tol =



Ope(n™12), and (b) for all ¢ > 0,

sup  sup }En(d},ﬂ, xo) — ln(V*, T, 20) — Vtlyvn(Snk) + ntigI,rtqg/ﬂ = 0pe(1).
20 EX V€ Apec(x0)

The following corollary of Proposition 2 and 3 shows that ¢,(9,£) defined in (3) admits a
similar expansion to £, (¢, xg) for all £&. Consequently, the asymptotic distribution of the LRTS
does not depend on &, and £, (¢, ) may be maximized in ¥ while fixing £ or jointly in ¥ and &. Let
Ane(§) = {9 € Nz : 4 (¥, m,§) — £ (¥*, 7,§) > 0} and Aye,,(§) == Ane,, (§) UN,/ /m, which includes
a consistent MLE with any &.

Corollary 1. (a) Under the assumptions of Proposition 2, we have

SUPgez SUPgeny, - |6, ,€) — L, 7. 6) — Vil (smi) + ntyTots /2] = 0,(1) for all > 0. (b)
Under the assumptions of Proposition 3, supgcz SuPyea,. (¢) lty| = Ope(n_1/2) and, for all ¢ > 0,
SUDgez SUPyea,. (6) [n (1, T, &) — €n (V¥ 7, &) — V/ntyvn(sak) + ntyLaty /2] = 0pe(1).

5 Uniform convergence of the derivatives of the log-density and

the density-ratios

In this section, we establish approximations that enable us to apply Propositions 2 and 3 and
Corollary 1 to the log-likelihood function of regime switching models. Because of the presence
of singularity, the expansion (5) of the density ratio lygs, involves higher-order derivatives of the
density-ratios Vi}lqgkxo with 7 > 2. First, we express Viylﬁkxo in terms of the conditional expectation
of the derivatives of the complete data log-density by extending the Missing Information Principle
(Woodbury, 1971; Louis, 1982) and the analysis of DMR to higher-order derivatives. We then

show that a sequence {Vilﬁkxo}zozo can be approximated by a stationary martingale difference
sequence by conditioning on the infinite past ?ﬁ; in place of ?Ig_l. The leading term satisfies
the assumptions on s, in (5) because it is a stationary martingale difference sequence, and the
resulting approximation error satisfies the assumptions on the remainder terms ry; and wyggz, -
For notational brevity, we assume ¢ is scalar and suppress the subscript ¢ from Vf; in this
section. Adaptations to vector-valued ¢ are straightforward but need more tedious notation. We
first collect notations. Define 2’;_1 = (Xp_1, Yi_1, Wi, X, Y)) and denote the derivative of the

complete data log-density by
@' (0,2, 1) := V'log po(Yi, Xp| Y1, Xp—1, W), i>1 (6)

We use a short-handed notation <bf9k = ¢iw,2§_1). We also suppress the superscript 1 from ¢119k,

so that ¢gr = ¢4, . For random variables Vi,...,V, and a conditioning set F, define the central
9k q g



conditional moment of (V1,...,V}) as
B [Vi,..., Vol F] == Ey [(Vi —Eg[Vi|F]) -+ (Vg — Eo[Vg|F]IF]

For example, E§ [dok, dok, Goks || := By [(Por, — Eoldwk, | F]) (bok, — Eo[dok, | F]) (Poks — Eo|doks| F1)IF].
Let Z(j) = (i1,...,1;) denote a sequence of positive integer with j elements, let o(Z(j)) denote

all the unique permutations of (i1,...,7;), and let |0(Z(j))| denote the number of such unique
permutations. For example, if Z(3) = (2,1,1), then o(Z(3)) = {(2,1,1),(1,2,1),(1,1,2)} and
lo(Z(3))| =3;if Z(3) = (1,1,1), then ¢(Z(3)) = (1,1,1) and |Z(3)| = 1. Let T(j) = (t1,...,t;) for

j=1,...,6. For a conditioning set F, define symmetrized central conditional moments as

(1) _ ONTEINNE c

(I)ﬂT(l)[]:] =Ky |:¢79t1 } ’ (1)197'(2) /1= l0(Z(2)) Z Ey |:¢79t1¢'l9t2 } ’

(€1,62)€0(Z(2))

SN o pE— E

ot Fl = le(Z(3))] Z [%tl%t‘z%ts } ’ (7)
(€1,82,£3)€0(Z(3))

Z(4) . 1 = 01020504

q>197’(4) F] = lo(Z(4)) Z (I)1917'(4) ’

(01,...,L4)Ec(Z(4))

701020304 . Z £
where 204 = ES[05, 63, 64, b5, | FI—E5 ), 642 [ FIES (651, o5, | FI—ES (63, b5 | FIEG (05, S, | F]—
T
ES (65, 05, | FIEG 05,65, | F, and &350 [F] and @3
pendix. Note that these moments are symmetric with respect to (t1,...,t;). Define, for
71=12...,6,k>1,m>0and z € X,

())[]-"] are defined in Section 12.2.1 in ap-

(5) . (5) k _
I ORUTND SN IR
T(G)e{—-m+1,...k} (8)
_ 3 o2V [Y wh1 x :x]
97G) | Y —ms W Xom :

TG)e{—m+1,...k—1}

k
where Z’T(g Ye{—m+1,...k}I denotes Ztl —m+1 Zt2_7m+1 th:ferl? and Z’T(j)e{fmqtl,...,kfl}j

is defined similarly. Define AJISCLI(G) analogously to A] ggznz(ﬁ) by dropping X_,,, = x from the
conditioning variable.
For 1<k <mnand m >0, let
—_ k — —
Po(Yr | Yo, WE )= ) T po(Ye 2 Yior, We, 1) Poe (2 [Y -, W),

x’imeXk+"L+1 t=—m+1
(9)
denote the stationary density of Y* 41 associated with ¥ conditional on {Y_ m,W m}, where
X_p is drawn from its true conditional statlonary distribution IP’ﬁ*(X_m|Y Wk m)-  Let
pﬂ(Yk|Y L wk m) = ﬁﬂ(Y7m+1|Y,m, )/pﬂ(Ykm+1|Y,m,W’iml) denote the associated

—m>
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conditional density of Y given (?Ijnl, Wk .5

Define the density ratio as lj, p, (V) 1= pqg(Yk|?]:n1, Wk X = x)/po- (Yk|Y Wk s X—m =
xz). For j=1,2...,6,1 <k <n,m >0 and z € X, define the derivatives of log densities and
density-ratios by

, . Vipg (Y Y ' wk or X =
Vil () = V7 log oo (V[T 2 W X = 2), Vil (9) = 220 z)

ppﬁ*(Yk‘Y mvwk 7X—m:x)
V]Pw(Yk|Y—m7Wk )

Vil (9) = Vi logp(Yil Y 0l WE ), and Vil (9) == .
Do (Vi Y WE )

—m

The following proposition expresses the derivatives of log densities, V7 U o(V)’s, in terms of the
conditional expectation of the central moments of derivatives of the complete data log-density. The

first two equations are also given in DMR (p. 2272 and pp. 2276-7).

Proposition 4. For all1 <k<n,m>0, andx € X,

V' m e (9) = 1kmx(19)7 V2l w(9) = Alkmx(ﬁ)—’_Akax(ﬁ)

Vhmw(9) = A o (0) 43855 L (9) + Agn, L (9),

VA ima(9) = Al (0) + 48T, (9) +3A57 | (0) + 64T L (9) + Ayt (9),
Vol a(9) = A f o (9) + 5855 o (9) + 10437 (9) + 10A3 1) (9) + 15457, (9)

2,1,1,1 1,1,1,1,1
+ 10A4kmx(19) + A5kmac (19>7

VOl (9) = Alkm(ﬁ)+6A2kmw)+15A (9) + 10A3? (19)+15A§’,1€’}m(19)
+60ATTE (9) + 15AT72 (9) + 20A00 0L (0) + 45ATT 0L (9) + 1542100 0) + Agp bl (0).

5,k,m,x

2, k,m,x 2,k,m,x

Further, the above holds when Vly . .(9) and A () (9) are replaced with VIly ,(9) and

7,k,m,x
i ().

The following assumption corresponds to (A6)—(A8) in DMR and is tailored to our set-
ting where some elements of ¥} are not identified. Note that Assumptions (A6)-(A7) in DMR
pertaining to gy, (x,2’) hold in our case because p;;’s are bounded away from 0 and 1. Let
Gy = kaex 99, (Yi|Yio1, 2k, Wi). Gy satisfies Assumption 4(b) in general when N* is suf-

ficiently small.

Assumption 4. There ezists a positive real § such that on N* := {9 € © : |9, — U;| < d} the
following conditions hold: (a) For all (¥,y',z,w) € Y°* x Y x X x W, gy, (V' |¥,z,w) is siz times
continuously differentiable on N*. (b) Eyg«[supgepr sup ey |V log gy, (Y1|Yo,z, W)|*¥] < oo for
J = 1,2,...,6 and Ey- supgcpr« |Gor/Gox|% < oo with ¢1 = 6qo,q2 = 5qo,-..,q6 = qo, where

®Note that DMR use the same notation @9(~|?]:n1) for a different purpose. On p. 2263 and in some other (but
not all) places, DMR use P, (YH?IS _1) to denote an (ordinary) stationary conditional distribution of Yj.
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g = (1+¢)gy and g3 = (1 +€)qy/c for some ¢ > 0 and g9 > max{3, dim(¥)}. (c) For almost all
(¥, v, w) € Y xYXW, there exists a function fg ., : X — RY such that supge - go, (Y7, 2, w) <
Jyy'w(x) <00 and, for almost all (y,xz,w) € Y* x X xW, for j =1,2,...,6, there exist functions
B v Y = RY in LY such that [V gy, (47, 2,0)| < fy,.,(4) for all 9 € N*.

Lemma 3 in the appendix shows that, for all z € X and 1 <k <n and a suitably defined rz;),
{A]Zgzn »(0)}m>0 is a uniform L"7G) (Py«)-Cauchy sequence that converges uniformly with respect
to ¥ € N* Pys-a.s. and in L"7G) (Py+) to a random variable that does not depend on x. From this
result and Proposition 4, {V7 €y 2(9) }m>0 and {V7lg 1, (9) >0 converge to V74 o (9) uniformly

in ¥ € N* Pys-a.s. and in L (Py«) as the following proposition shows.

Proposition 5. Under Assumptions 1, 2, and 4, for j = 1,...,6, there exist random variables
(K, {M;i}y_y) € L' (Py+) and ps € (0,1) such that, for all1 <k <n and m' >m >0,

(a) sup sup |V mo(9) — VIl m(9)] < Kj(k4+m) pf™= 1 Pye-as.,
zEX JeN*

(b)  sup Sup [Vl pmo(9) — Vil o (9)] < Kk +m)7p5 ™1 Byo-aus,
rEX YEN*

(¢) sup sup sup [V’ mo(9)| + sup sup [Vl n(9)] < Mjp Py--a.s.,
m>0zeX YEN* m>09eN*
where r1 = 6qo, T2 = 3qo, s = 2qo, T4 = 3q0/2, 75 = 6q0/5, and r¢ = qo. (d) Uniformly in ¥ € N*
and x € X, VIly 2 (9) and VIl 1, (9) converge Py« -a.s. and in L™ (Py«) to VIl oo () € L7 (Py+)

as m — O0.

Finally, we prove the uniform convergence of the derivatives of density-ratios by expressing them
as polynomials of the derivatives of log-density and applying Proposition 5 and the Holder’s in-
equality. As shown in the following Proposition 6, {V7lx 1 »(9) }m>0 and {VIly ,, (9) }m>o converge
to V71 o0 () uniformly with respect to x € X and ¥ € N* Pgs-a.s. and in L9 (Py+).

Proposition 6. Under Assumptions 1, 2, and 4, for j = 1,...,6, there exist random variables
{K;r}i_, € LY (Py~) and p, € (0,1) such that, for all1 <k <n and m' >m >0,

(a) sup sup |lek,m,x(19) — Vﬁkﬁm(ﬂ)\ < Kjr(k+ m)7plj+m71 Py« -a.s.,

zeX JeN*

(b)  sup sup [Vl o(9) = Vi 2(0)] < Kjr(k+m) i Pye-as.,
TEX YEN*

(¢) supsup sup |VVig (V)| + sup sup |V m(9)] < Kjj Pye-a.s.
m>0xeX YEN* m>0YeN*

(d) Uniformly in ¢ € N* and x € X, lekm@(ﬂ) and Vﬁkjm(ﬂ) converge Py«-a.s. and in LT (Py«)
to Vil oo () € LP (Py+) as m — 00. (€) supgepnr | Vg o(9) — Vi oo (9)]| < K xh"ph™1 Pys-a.s.

When we apply Propositions 2 and 3 and Corollary 1 to regime switching models, Ix ¢ 5(¢) cor-
responds to Lyy,, on the left hand side of (5), and s, in (5) is a function of V71 o(19)’s. Proposition
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6 and the dominated convergence theorem for conditional expectations (Durrett, 2010, Theorem
5.5.9) imply that Ey- [lek,w(ﬁ)\?ﬁ;] = 0 for all ¥ € N'*. Therefore, {V7i; »(9)}52___ is a sta-
tionary, ergodic, and square integrable martingale difference sequence, and {V7 lk,oo(’ﬁ)}?:l satisfies
Assumption 3(a)(b)(g).

6 Testing homogeneity

Before developing the LRT of My components, we analyze a simpler case of testing the null hy-
pothesis Hy : M = 1 against H4 : M = 2 when the data is from Hy. Assumption 2(a) restricts
p11 and poo away from 0 and 1. We assume that the parameter space for ¥s , = (p11,p22)’ takes
the form [e,1 — €]? for a small € € (0,1/2). This assumption is also necessary because the LRTS
is unbounded under the null hypothesis when p;; or pos tends to 1 (Gassiat and Keribin, 2000).
Denote the true parameter in a one-regime model by ¥7 := ((6*)’, (v*)’)’. The two-regime model
gives rise to the true density py: (Y?|Yo,z0) if the parameter ¥Jo = (61, 02,7, p11,p22) lies in a

subset of the parameter space
.= {(91,02,’}/,])11,]922) €03:0; =0y =0" and v = ’y*} .

Note that (p11,pe2) is not identified under Hy.

Let £,,(¥2,&2) = log <250:1p192 (Y?\?O,Wg,mo)fg(:co)> denote the two-regime log-likelihood
for a given initial distribution &3(zg) € Eg, and let Dy = arg maxy,ce, {n(V2, {2) denote the max-
imum likelihood estimator (MLE) of 2 given &. Because £ does not matter asymptotically, we
treat &, fixed and suppress & from ¥5. Let 97 denote the one-regime MLE that maximizes the
one-regime log-likelihood function £, (91) := Y_p_; log f(Yk|Yk—1, Wk;,6) under the constraint
v = (0,9) € 0.

We introduce the following assumption for consistency of ¥7 and V,. Assumption 5(b) corre-
sponds to Assumption (A4) of DMR. Assumption 5(c) is a standard identification condition for
the one-regime model. Assumption 5(d) implies that the Kullback-Leibler divergence between
p,g»{(Yll?(im, WY ) and py, (Y1|?{1m, WY ) is 0 if and only if J9 € T'*.

Assumption 5. (a) ©1 and ©2 are compact, and Vi is in the interior of ©1. (b) For all
(x,2) € X and all (¥,y,w) € Y* XY X W, f(¥ ¥, w;7,0) is continuous in (v,6). (c) If 1 #
< < <0

07, then Py (f(YV1[Yo, Wi37.0) # f(Y1[Yo, Wi39*,60%)) > 0. (d) Eg;[logpy,(Y1|Y_,,, WL,)] =
Ey+ [log py; (Y1|?(im,wl_m)] for all m >0 if and only if 99 € T*.

The following proposition shows that the MLE of ] and 5 , are consistent under this condition.
Proposition 7. Suppose that Assumptions 1, 2, and 5 hold. Then, under the null hypothesis of
M = 1, 1§1 ﬂ) ﬂT and inf192€r* ’192 — 192| £> 0.

We proceed to derive the asymptotic distribution of the LRTS building on the results in Sections
4 and 5. Following the notation of Section 4, we split Jo as ¥Jo = (¢, 7), where 7 is the part
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of ¥ that is not identified under the null hypothesis, and the elements of i will be delineated
later. In the current setting, U2, = (pi1,p22)" is not identified under the null. Define p :=
corry,  (Xp, Xgy1) = p11 +p22 — 1 and a := Py, (Xp = 1) = (1 — p22)/(2 — p11 — p22). The
parameter spaces for ¢ and o« under restriction pi1, p22 € [€,1—¢] are given by ©, := [—1+42¢,1—2¢]
and O, := [e,1 — €], respectively. Because the mapping from (p11,p22) to (g, a) is one-to-one, we
reparameterize 7 as 7 := (9,a) € O, = O, X O4, and let py,(-|-) := py,(-|). Henceforth, we
suppress W{ for notational brevity and write, for example, py (Y7 Y0, W, 20) as pyr (Y7[Y0, zo)
and plpn(yk,xk\yk_l,xk,l,wk) as pw(yk,xk\yk_l,mk,l) when doing so does not cause confusion.
We apply Corollary 1 to £,(¢,m, &) by finding a representation of (ty, Srk, Tk, Ugka,) in (5) in
terms of ¥, pyr(:|-), and derivatives of py.(-|-) and then showing that (ty, Szk, rok, Ugkz,) satisfy
Assumption 3. Because of the degeneracy of Fisher information matrix, s,j involves higher-order
derivatives, and ty consists of functions of polynomials of (reparameterized) o.

The remainder of this section derives s, as a function of Vjﬁw*ﬂ(YH?g*l) /T)w*ﬂ(YH?lS*l)
with Py, (Y{*[¥() defined in (9). This approximation is valid because Proposition 6 implies that
VIpun(Yi[ Y0 20) /pon(Vil X6 120) — VPyn (Vi[5 ) /By (Yl Y6 ') g0eS to zero at an ex-
ponential rate as k — oo. Section 6.1 analyzes the case when the regime-specific distribution
of yi is not normal distribution with unknown variance. Section 6.2 analyzes the case when the
regime-specific distribution y; is normal distribution with regime-specific and unknown variance,
and Section 6.3 handles normal distribution where the variance is unknown and common across
regimes.

Note that, because ?iooo and X% are independent when 1 = ¢*, we have
Define gy, := I{ X}, = 1} so that a = Ey«r[qs].

6.1 Non-normal distribution

In this section, we derive s;; when the conditional distribution of Y; is not normal with
unknown variance. We find a representation of Vjﬁw*,r(YH?g*l) /ﬁw*ﬂ(Yk\?gfl) in terms of
{VIf(Yy| Xy;v*,0%)} i, via Louis Information Principle (Lemma 1 in the appendix). To this end,
we first derive the derivatives of the complete data conditional density py,(yk, Tk|Yi_1, Tk—1) =
905y (kT -1 T8) Q0o (Tho1, 2k) = 35—y Wk = 51 F(elFh-15705) @0, , (Th—1, 1)

Consider the following reparameterization. Let

A = 01 =65 so that o1 =" T {1=a) (11)
v | aby + (1 — )b ’ 0 v —al\ .

Let n:= (v/,7") and 9, := (7', N')’ € ©,, x ©,. Under the null hypothesis of one regime, the true
value of 1, is given by ¢} := (7*,0*,0)". Henceforth, we suppress the subscript « from 1),. Using
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this definition of ¥, let U5 := (¢/,7")" € O x O. Using reparameterization (11) and noting that
qr = H{zp = 1}, we have pyr(Yr, 26T 1, Th—1) = 9o Ukl Fr_1, Tk )4r (Tr—1, T%) and

96Ukl k-1, 7) = FWrlYe—1:7 v + (@ — @)N). (12)

Henceforth, let f7, Vff, gi, and Vgi denote [f(Yi|Yr_1;7%.0%), VF(Ye|Yr_1;7",6%),
Gy (Y| Yi—1, Xi), and Vgye (Yi|Yi—1, Xi), respectively, and similarly for log f; ,Vlog f}, log gi.
and Vlog g;. Expanding gy (Y| Yj—1, X)) twice with respect to 1) = (7/,+/, X')" and evaluating at
P* gives

Vadk = Vi oy fe, Vage = (@ — )Vafy,

(13)
Ve = (@ — ) Vorronfr,  Vonvgr = (ax — a)* Voo fi.
Recall ¢ := corrys (qk, gr+1). Observe that g, satisfies
Eos(qx — @)’ = a(l —a), Egp(ax —a)® =a(l - a)(1 - 2a), 14

Egs (qr — )t =a(l —a)(3a® — 3a+ 1), corrys (qk, qrve) = ol

where the first three results follow from the property of a Bernoulli random variable, and the last
result holds because g follows an AR(1) process with the autoregressive coefficient ¢ (Hamilton,
1994, p. 684). Then, it follows from (10) and (14) that

Eg-lgr — oY ] =0, Eo[(gn, — a)(a, = a)[Y o] = a(l =)™, >t (15)

From Louis Information Principle (Lemma 1), 1og pyr(Yk, Tk|¥r—1, Zh—1) = 108 gy (Yk|Y i1, Tk) +
10g ¢ (Tk—1,71), and the definition of By, (YY) in (9), we obtain

_ k-1
VyPyr(Ye[ Yo )

_ <k—1
Pw*n(Yk’Yo )

k k—1
=Vy logﬁw*w(YM?g_l) = ZEW [Vw log gf‘?ﬂ - ZEW [V¢ log g/
t=1 t=1

?’5‘1} .

Applying (13), (15), and g; = f; to the right hand side gives

_ k-1
vnpq/;*w(yk ‘YD )

_ —k—1
Pw*ﬂ(Yk ’Yo )

k-1

* V)\T)IZJ*W(Y’C’YO )

- V(,Yljg/)/ log fk’ ﬁ (Y |?k—l) =0. (16)
Yrr\Lkl X0
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Similarly, it follows from Lemma 1, (13), (15), (16), and g; = f; that

_ - k1
V,\n/pw*n(YHYo )/1%* (YelYy ) =0, (17)

_ - k1
VM'%*W(YMYO )/pw (YelYo )

= Van 10g Dy (Y |Y0 )

k k-1
- -
= ZEW [V,\X log g ’YO] - ZEW [V,\,\' log g ‘Yo }

. Z Z . [vxgtl Vi, k] ’“Zl ’“Zl . [vxgtl Vi,

t1=1t2=1 gl gt? t1=1t2=1 gtl gtz

W]

v@@’fk kt(VGft*VG’fi: VGf;VWf:)
*;Q [ R T ] "

=a(l -

Note that —1 + 2¢ < o < 1 — 2¢ in ©,. Because the first-order derivative with respect to A
is identically equal to zero in (16), the unique elements of Vnﬁw*w(yk’|?§71)/T)’L/}*7r(yk|?§71) and
VA,\lﬁw*w(Yk\?]g_l) /ﬁw*ﬂ(Ykl?lg_l) constitute the generalized score s; in Corollary 1. Because
this score is approximated by a stationary martingale difference sequence and the remainder term
satisfies Assumption 3 from Lemma 6, we can apply Corollary 1 to the likelihood ratio to derive
the asymptotic distribution of the LRTS.

We collect some notations. Recall ¢ = (7', N') and n = (7/,/)". For a ¢ x 1 vector A and a
g X q matrix s, define g\ x 1 vectors v(\) and V(s) as

v(\) = (N2, ..., )\q7 MA2, e A A A2, Aoy, - A1) (19)
V(8) := (811/2, -+ Sqq/2: 812, -« - s S1q> 523« -1 52y - - - » Sqg—1) -

Noting that a(1 — a)) > 0 for a € O, define, with t\(A, 7) := a(1 — a)v(A),

A e Vipur Yl Yo ) (Vofi/fr
o, m) = (m(/\,rr)>’ Sok = (agk)’ where sk = Po-(lYe ) \Veli/fi)’ 20)

and Shok = V(S,\)\gk) with

1

_ k- * k-1 * * oy -
V/\)\,pw* (YelYo ) B v€9/fk i ng—t <V9ft Veffk + Vefk Vo fi ) ) (21)

S>\/\Qk¢ = —k—1. * * * * *
a(l = a)pyr(Ya| Yo ) T t=1 fi I fo i

Here, s, in (20) depends on g but not on a and corresponds to sy in Corollary 1. The follow-
ing proposition shows that the log-likelihood function is approximated by a quadratic function of
Vnt(,m). Let No := {2 € Og: [t(¢,7)| < e}. Let Ape(§) := {0 € Nz : b (b, 7, &) — Lp(*, 7, &) >
0} and Apec(§) = Ane(§)UN,, /m, where we suppress the subscript 2 from . We use this definition
of Apec(§) through Sections 6.1-6.3. As shown in Sections 6.2 and 6.3, Assumption 6 does not hold
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for regime switching models with normal distribution.

Assumption 6. 0 < infyeo, Amin(Zy) < sup,co, Amax(Zo) < 00 for Z, = limy o0 By (sgkSy,),

where s, is given in (20).

Proposition 8. Suppose Assumptions 1, 2, 4, 5 and 6 hold. Then, under the null hypothesis of
M =1, (a) supg supyea,.(e) [t m)| = Ope(n=12); and (b) for all ¢ > 0,

sup  sup ‘En(w, 7, &) — b (W, m, &) — Vnt (Y, ™) v (sek) + nt (2, W)/Igt(¢,ﬂ)/2‘ = 0pe(1). (22)

EEE V€ Anec(§)

We proceed to derive the asymptotic distribution of the LRTS. With s, defined in (20), define

Ly :=Eg-(smksyr)s Droren = Jim Ege(sx01k5h00k)s  Dano = 1im By (s20k871),
—1 -1
TIyre = I&ng’ Drnoros = Lroros — IMlmIn Ipross  Ioanmo :=Trnoor Zro = (Ix\.ng) Ganos
(23)
where G, is a gy-vector mean zero Gaussian process indexed by o with cov(Gx o s Gane,) =
Txnoros- Define the set of admissible values of \/na(l — a)v(A) when n — oo by v(R?) := {x €
R : z = v()\) for some X € R?}. Define t,, by

aotrg) = t)\eizr;l(fR‘I) Txo(tA),  Tao(ta) i= (tx = Zng) Inno(ts — Zn,)- (24)

The following proposition establishes the asymptotic null distribution of the LRTS.

Proposition 9. Suppose Assumptions 1, 2, 4, 5 and 6 hold. Then, under the null hypothesis of
N ~ d ~, ~
M = 1, 2[@,,(192,{2) — 50771(191)] — Sllpgegg6 (t’AQIA,th,\Q> .

In proposition 9, the LRTS and its asymptotic distribution depends on the choice of € because
©, = [-1+42¢,1—2¢]. It is possible to develop a version of EM test (Chen and Li, 2009; Chen et al.,
2012; Kasahara and Shimotsu, 2015) in this context which does not impose an explicit restriction

on the parameter space for p;; and psy but we leave such an extension for future research.

6.2 Heteroscedastic normal distribution

Suppose that Y3 € R in the j-th regime follows a normal distribution with regime-specific intercept
pj and variance 0]2-. We split 0; into 6; = ({j, crjz)/ = (15, 85, 0]2.)’, and write the density for the j-th
regime as
_ - Ly = — @ (Fr-157.55)
FMITa1769) = FnlSa 1760 = - (Bt D), @)
J

g agj

for some function w. In many applications, w is a linear function of v and 3;, e.g.,

(Y1, Wks, Bj) = (¥r_1)'Bj + wyy. Consider the following reparameterization introduced in
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Kasahara and Shimotsu (2015) (6 in Kasahara and Shimotsu corresponds to ¢ here):

G ve+ (1= a)X¢
@) Ve — al
) | = e | (26)
o1 Ve + (1 —a)(2Xs + Cl)‘u)
o3 Vo — a(2Xs + CoA?)
where v = (v, v5), Ao = (A, N, O = —(1/3)(1 + ), and Cy = (1/3)(2 — «), so that
¢ v ¢ s B

C1 = Cy — 1. Collect the reparameterized parameters, except for «, into one vector t,. As in

Section 6.1, we suppress the subscript « from v,. Let the reparameterized density be

9o WklVk—1>26) = f (UelVr_13% v + (@ — @)Ae, Vo + (G — @) (A6 + (C2 — qr)A2)) - (27)

Let ¢ = (1, N')’ € ©y = O, x ©), where n := (7',1,15)" and A := (X\;,A;)". Because the
likelihood function of a normal mixture model is unbounded when o; — 0 (Hartigan, 1985), we
impose 0 > €, for a small €, > 0 in ©,. We proceed to derive the derivatives of gy (Yi|Yk—1, Xx)
evaluated at ¥*. Vygi, Vaygi, and Vv gy are the same as those given in (13) except for VAZ 95
and that those with respect to A are multiplied by 27. Higher-order derivatives of gy, (Y| Y1, Xk)
with respect to A, are derived by following Kasahara and Shimotsu (2015). From Lemma 5 and
the fact that the normal density f(u,o?) satisfies

v,uzf(lu’a 02) = 2V02f(,u, 0-2)’ v;ﬁf(:uv 02) = QV,uUQf(M’ 02)7 and

2 2 2 (28)
vu‘lf(ru’v o ) = 2v,u20'2f(lu'v o ) = 4v0202f(:uv o )a

we have
V%g;;:dikvuif,:, i1=1,...,4, (29)

where

dor =1, dip:=qr—, dop:= (g —)(Ca—a), ds:=2(q —)*(1—a—q),
dar = —2(q — ) + 3(qx — @)*(a — Ca)*.

It follows from Eg-[qr|Y " ] = a, (14), and elementary calculation that

~n w1~k .
E g+ [dzk‘Y—oo] =0, Ey- [Vkﬁgk‘Y—oo] =0, 2=1,2,3,
B+ [dar| Y2 o] = a(1 = a)b(a), (30)
®|XF * * o
Ey- [v)\ﬁgk|ono] = Oé(l - a)b(a)vu‘lfk = Oé(l - a)b(a)4va202fk = b(a)Eﬁ* [v)\ggk|ono]7

with b(a) := —(2/3)(a? — a + 1) < 0. Hence, Ey- [V/\ggy?’im] and Ey- [V,\ﬁg;;\?]ioo] are linearly
dependent.
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We proceed to derive Vjﬁw*ﬂ(Yk|?g_1)/ﬁw*ﬂ(Yk|?§_l). Repeating the calculation leading to
(16)—(18) and using (30) gives the following: first, (16) and (17) still hold; second, the elements of
V;V\@WW(Y;C\?lg_l)/ﬁw*ﬂ(Ykl?g_l) except for the (1,1)th element are given by (18) after adjusting
that the derivative with respect to A, must be multiplied by 2 (e.g., Ey« [V,\Ug,ﬂ?ﬁoo] = 2V, f7
and Eg« [V, 1, 051" oo] = 2V 42, f7); third,

—k1
V 2]3 * Yk Y k—1 * v *
S LCLUNNSPYRRING S gracy) (31)
Py (YilYo ) t=1 ek

When o # 0, V)\ﬁﬁw*ﬂ(Yk\?g_l)/ﬁwﬂ(YM?g_l) is a non-degenerate random variable as in the
non-normal case. When ¢ = 0, however, VA;%T’WW(YH?’SA) /ﬁw*ﬂ(YH?gﬂ) becomes identically
equal to 0, and indeed the first non-zero derivative with respect to A, is the fourth derivative.
Because of this degeneracy, we derive the asymptotic distribution of the LRTS by expanding
Lo (), 7, &) — £y (Y*, m, &) four times. It is not correct, however, to simply approximate ¢, (¢, 7, §) —
Ly (Y*, 7€) by a quadratic function of /\i (and other terms) when g # 0 and a quadratic function
of /\ﬁ when ¢ = 0. This results in discontinuity at ¢ = 0 and fails to provide a valid uniform
approximation. We establish a uniform approximation by expanding ¢, (¢, 7, &) four times but

expressing £, (¢, 7, &) in terms of g)\i, /\ﬁ, and other terms.

For m > 0, define (i n(0) := f:_im_ﬂ Qk_t_12vuffvuf:/ft*f,j. Then, we can write (31) as
_ k-1 1 . .
VA%LPTP*W(YMYU ) _ Z k—t 2v#ft vufk — ( ) (32
- — T =) 0 )T oCr0(0)- )
a(l = )Py (Yi| Yo ) 2 ¢ k

Note that (., (0) satisfies Ey- [Ckm(g)|?]i:nl] = 0 and is non-degenerate even when p = 0.
Define v(Ag) as v(A) in (19) but replacing A with Ag. Collect the relevant parameters as

=
t(wvﬂ) T (t}(AﬂT)) ) (33)

where
0N
Mo
A2+ b(a) Ay, /12
Ashy
AsAo
v(Ag)

with b(a) = —(2/3)(@® — a+ 1) < 0. Recall §; = (¢}, 05)" = (u;, 8}, 07). Similarly to (21), define

tA(A, ) = a(l —a)
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the elements of the generalized score by

* S\.p0k  SAucok k-1 N X X X
e ) _ Ve fy vt (Voli Vofi  Vofi Vol
= +)° + (35)
SAﬂka SAﬁﬂQk S/\/irr@k f* 0 f* f* f* f* :
k t=1 t k k t
Sxopok  SAgook  SAso0k
Define the generalized score as
Cko(0)/2
25/\ng
S Vi 2s
soe = "™ |, where s, := i/ and S,k = Asoh (36)
o n %/ Lk 4
SXok Voaofilfi S\p .0k
28255 0k
V(Skﬁﬁgk)

The following proposition establishes a uniform approximation of the log-likelihood ratio.

Assumption 7. (a) 0 < infyeo, Amin(Z,) < SUPyep, Amax(Zp) < 00 for Ty = limy o0 By (sor8)y)
where sg, is given in (36). (b) 07,05 > €.

Proposition 10. Suppose Assumptions 1, 2, 4, 5 and 7 hold, and the density for the j-th regime
is given by (25). Then, under the null hypothesis of M =1, (a) supyea,_(¢e) [t(¥, 7)| = Ope(n=1/2);
and (b) for all ¢ > 0,

sup  sup  |6u (4,7, &) — Lo (¥", 7, &) — Vit (v, ) vn(s0k) + (v, T) Tyt (1, ) /2| = 0pe(1). (37)
£EE 9€Anec(§)

Let Ajpn be the set of possible values of \/nty(A, 7) defined in (34). The asymptotic null
distribution of 2[&(@2,52) — ﬁo,n(ﬁl)] is characterized by the supremum of 2t\G .o — thZ\ ot
where G ), and Z) ,, are defined analogously to those in (23) but with s, defined in (36), and the
supremum is taken with respect to ¢ty and o € ©, under the constraint implied by the limit of A,
asn — oo. This constraint is given by A} and A?\g, where ¢ := dim(8), ¢\ := 34+2¢3+qs(qs+1)/2,
and

Ay = {ta = (tgues tpos to2s Uy U tygs)) € R™
(tou2s tuorto2,t5,) € R X R X R X R¥ t5, = 0,t,5 = 0},

(38)
2 2
A%, = {tx = (twg,tua,tag,tg#,t’ﬁg,t;w))’ ERM 1 ty2 = 0N tue = Ao,

tor = Aoston = AgAus Lo = AgAa, ty(g) = vg(Ag) for some A € R2T45},

Note that Ai 0 depends on g, whereas Ai does not depend on g. Heuristically, A%\ and A?\ , correspond
to the limits of the set of possible values of \/nty(\,7) when liminf, o n'/®|\,| > 0 and \, =
o(n~Y/®), respectively. When liminf, o, n'/8|\,| > 0, we have (5\0,5\5) = 0,(n~/®) because
t>\(5\, ) = Op(n_l/z). Further, the set of possible values of \/ﬁg)\i converges to R because o can
be arbitrary small. Consequently, the limit of \/nty (A, 7) is characterized by Ai.
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Define Zy, and Z) ,, as in (23) but with s defined in (36). Let Z)¢ and ), denote Z), and
T\ .50 evaluated at o = 0. Define t} and fg\g by

m(t) = . 121{1 rA(tA)s TA(tr) = (= Zx0) Tano(ts — Zxo)
ASAN

Tao(Ba,) = . ien/\fz o),  Tao(tn) == (tx — Zxo) Dano(tr — Zxo)-
A Ao

The following proposition establishes the asymptotic null distribution of the LRTS.

Proposition 11. Suppose that assumptions in Proposition 10 hold. Then, under the null hypothesis
~ N d ~ ~ ~
of M = 1, 200 (J2, &2) — lo.n(D1)] 5 supeo, max{I{o = 0}(E) Znnofl, (B,) Trnef2, }-

Remark 1. Qu and Zhuo (2017) derived the asymptotic distribution of the LRTS under the re-
striction that o > € > 0.

Remark 2. [t is possible to extend our analysis to exponential-LR type tests studied by Andrews
and Ploberger (1994) and Carrasco et al. (2014).

6.3 Homoscedastic normal distribution

Suppose that Y; € R in the j-th regime follows a normal distribution with regime specific intercept
f; but with common variance o?. We split v and 6; into v = (¥, 02)" and 0; = (u;, 3;')’, and write
the density for the j-th regime as

_ - L (ye =y — @137, 55)
FOITr-1:7:05) = FklTi-1;7,05,0%) = —¢ ( e (40)
for some function w. Consider the following reparameterization:
91 vy + (1 — CY)A
O | = vy — a , (41)
o? Vo —a(l —a)\?

where vy = (v, 1/23)' and A = (A, /\lﬂ)/ . Collect the reparameterized parameters, except for o, into

one vector 1,. Suppressing « from 1, let the reparameterized density be

9o Wl r—1 k) = f (UelFr_1:7.v0 + (@ — @)X\ vo — a(l — ) A7) . (42)

Let n = (3,v),vs)’, then the first and second derivatives of gy (yk|¥r_1,%r) with respect to n
and A are the same as those given in (13) except for VAI% 9y (Yk|Fr—1, k). We derive higher-order
derivatives of gy (yi|¥x_1, Zx) with respect to A,. From Lemma 5 and (28), we obtain

v/\nig;; = dlkvgniﬁ; fori=0,1,...,

(43)
V/\ng = dikvuif;; fori=0,1,...,4,
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where doj, := 1, dig == g — @, dog := (g — @)® — (1 — @), dai, == (g — @)® = 3(qx — @)a(1 — @),
and dyp, = (qp — @)* — 6(qr — @)?a(1 — @) + 3a%(1 — a)?. Tt follows from Eg-[qx|Y " ] = o, (14),

and elementary calculation that

* I~k <k .
Eg+[Vi gkl Yol =0, Eye[dir[Yo] =0, i=1,2, )
<k <k
By« [dar|Yo] = a(l — a)(1 — 2a), Eg[ds|Yy] = a(l —a)(1 — 6a + 6a2).

Repeating the calculation leading to (16)—(18) and using (44) gives the following: first, (16) and (17)
still hold; second, the elements of V,\,\/ﬁw*ﬂ(Yk]?Ig_l)/@p*ﬂ(YM?g_l) are given by (18) except for
the (1,1)th element; third, v)\iﬁw*w(yk’|?§71)/T)1/)*7r(yk|?§71) is given by (31). Further, Lemma
7 in the Appendix shows that, when ¢ = 0, V)\i]?w*ﬂ(Yk\?lg_l)/ﬁwﬂ(l/k]?g_l) = a(l —a)(1 -
20)V i £/ and Va Py Vel Yo ) /Byen (Ve[ Yo ) = a(l = a)(1—6a+6a%)V 4 ff/ ff. Because
V)\ETQWW(Yk|?§71)/§w*ﬂ(Yk]?§71) = 0 when a = 1/2 and ¢ = 0, we expand £, (¢, 7, &) four times
and express it in terms of g)\i, (1 —204))\2, /\ﬁ, and other terms to establish a uniform approximation.

Collect the relevant parameters as

o,
§ (1—2a)\},
t(y,m) = T and (A7) =a(l—a) | (1-6a+ 6a2)/\ﬁ . (45)
t)\()‘a 7T) )\B>\
m
v(Ag)
Define the generalized score as
Cko(0)/2
8)\3/6/3!
AV S W
Sok 1= Sk ,  where s, = vf]fk/fi and Syok = syap/4! | (46)
S\ok Vefk/fk s a
Aguok
V(8x450k)

where (i, (0) is defined as in (32), Sxik 1= Vi i/ fii for i = 3,4, and sy, ok and sy, 0k are defined
as in (35) but using the density function (40) in place of (25). Define, with ¢z := dim(/) and
=3 +4qs+qplqs +1)/2,
A} =ty = (tWQ,tug,tw,tgwt;(m)’ € RM : (tou2,tys, tya,t,) € RX R X R x R% 5 = 0},
2 _ . _ 2 _ _ _
A)\Q L {t)\ - (tQNQ)tu37tp,47t/ﬁu)t;(ﬂ))/ € Rq)\ . thQ — Q)\“, tﬂ3 - tﬂ4 - O’tﬁﬂ — )\5}\”,
ty(3) = vg(Ag) for some A € RIT4},
(47)
The following two propositions correspond to Proposition 10 and 11, establishing a uniform

approximation of the log-likelihood ratio and the asymptotic distribution of the LRTS.
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Assumption 8. 0 < infyc, Amin(Zp) < SUPyeo, Amax(Z,) < 00 for I, = limg_so0 Eﬂ*(sgks’gk),

where s,y is given in (46).

Proposition 12. Suppose Assumptions 1, 2, 4, 5 and 8 hold, and the density for the j-th regime
is given by (40). Then, statements (a) and (b) of Proposition 10 hold.

Proposition 13. Suppose that assumptions in Proposition 12 hold. Then, under the null hypothesis

A ~ d ~ ~ ~ ~
of M =1, 2[4, (D9, £2) — Lo (91)] = supeq, max{I{o = 0}(#}) Zx ot} (fig)’l)\.ngtig}, where t5 and
fig are defined as in (39) but in terms of (Zxg, Ixnos Zr0, Iano) constructed with s,y defined in (46)
and A} and Aig defined in (47).

7 Testing Hy: M = M, against Hy : M = My + 1 for My > 2

In this section, we derive the asymptotic distribution of the LRTS for testing the null hypothesis
of My regimes against the alternative of My 4+ 1 regimes for general My > 2. We suppress the
covariate W? unless confusion might arise.

Let U3y, = ((Vig,0)'s (Vigy,)") denote the parameter of the Mo-regime model, where 93 .
contains pf; = Qg%’z(i,j) > 0 for i = 1,...,Mp and j = 1,..., Mo — 1, and ¥}, , =
(7). (03g,)s (07)). We assume max; Zy:ol_lpfj < 1, and we assume 0] < ... < 0}, for

identification. The true My-regime conditional density function of Y7 given Y and z is
n
pos, (Yi[Yo,20) = > [ poy, (Ve wrl Vi1, zi), (48)

n n —
x7 GXMO k=1

where pos (Y, klYi—1: Tk-1) = 9oy, (UklTk-1,Tk) 003, (Tr—1,2x) with gor  (y|Yk_1,2%) =

-----

Let the conditional density of Y} of an (Mj + 1)-regime model be

n
PYnry 1 (Yﬂ?@,xo) = Z HpﬁMOH(Yk,$k|?k—17$k—1)7 (49)
XPEXT g k=1

where p191v10+1(yk7xk|yk—l7xk—l) is defined similarly to Po%, (Vi | T i1, Th—1) With Vpro410 =
{pijri=1,..Mo+15=1,..M0 and ngory = (01, 0 11,7")"
some € € (0,1/2).

Write the null hypothesis as Hy = Un]\fozlﬂom with

We assume that min; ; p;; > € for

Hopp, 101 <+ < O0py =01 <+ < Opgyt1-

Define the set of values of ¥ps,41 that yields the true density (48) under Pﬁ}‘uo as T* := {041 €
OMo+1,e : PYrry+1 (Y?|?0,x0) = pﬂ?VIO (Yﬂ?@,l‘g) Pﬁ%—a.s.}. Under Hoy,, the (Mp + 1)-regime
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model (49) generates the true My-regime density (48) if 6, = 0,11 = 6}, and the transition matrix
of X} reduces to that of the true My-regime model.

We reparameterize the transition probability of X}, by writing Y412 88 Omo+1.0 = (Vs Tom)'s
where ¥, is identified under Hy,, while 7, is not point identified under Hy,,. The transition
probability of X, under 9¥z,41,, equals the transition probability of X} under 19}"\/[0@ if and only if
Ugm = U},,. The detailed derivation including the definition of ¥}, is provided in Section 12.2.6

in the appendix. Define the subset of T* that corresponds to Ho,, as

Ty = {19M0+1 € Onyy1 2 0 :9; for 1 <j<m; Op=0pmi1=0;
0]':0;—1 forh+1<j§M0+1; 7:7*; ﬂxm:ﬂ;m}v

then T* =717 U---U T}, holds.

For M = My, My + 1, let £,(Uar, &) = log (2%21 DIy (Yﬂ?@,xo)ﬁM(wo)> denote the M-
regime log-likelihood for a given initial distribution &yr(zg) € Epr. We treat {nr(xo) fixed. Let
&Mo 1= argmaxy,, €0, Ln(Ony,E0t,) and 1§M0+1 1= argmaxy,, €0y, 1 Cn(Ontg+1,EMy+1). The
following proposition shows that the MLE is consistent in the sense that the distance between
) Mo+1 and T tends to 0 in probability. The proof of Proposition 14 is essentially the same as the

proof of Proposition 7 and hence is omitted.

Assumption 9. (a) Oy, and Opgy 41 are compact, and Uy is in the interior of ©pg,. (b) For
all (z,2') € X and all (v,9/,w) € Y* x ¥ x W, [(4/|50,w;7,6) is continuous in (,0). (c)

<0 <0 . .
Eﬂ?wo [log(pgkfo(}ﬁ]Y,m,Wim)} = E,g»% [logplg}ﬁwo 1Y_,,, WL ] for all m > 0 if and only if

. <0 <0
0M0 = rl9M0 : (d) Eﬁ}‘wo [log(p191v10+1 (Yi ’Y7m7 ng)} = Eﬁifo [10gp797\40 (Yl‘Yfmﬂ Wlm)] Jor allm >0

if and only if Opr41 € T

Proposition 14. Suppose Assumptions 1, 2, and 9 hold. Then, under the null hypothesis of
Intor1 = Insoa| 0.

~ P .
M = MO; 19M0 — 197\/[0 and lnfﬁMO_HeT*

We proceed to derive the asymptotic distribution of the LRTS by analyzing the behavior of
LRTS when 957,41 € Y7, for each m. Define J,, := {m,m + 1}. Observe that, if X¥ € Jk_
then X% follows a two-state Markov chain on .J,, whose transition probability is characterized by
Oy, 1= IP"9MO+1(Xk = m|Xy € Jy) and o, = COrrﬁMOH(Xk—LXk:|(Xk—1,Xk) € J2). See The
detailed—derivationis—provided—in Section 12.2.6 in the appendix for the detailed derivation.

Collect reparameterized 7y, into mpm = (0m, Qm, @,,)’, where ¢, does not affect the transition
probability of X% when X% € J¥.
Define qy; := I{X; = j}, then we can write oy, and 9, as o, = EﬁMO+1(qkm]Xk € Jm)

and gn, = corry,, 1 (@e—1,m Qe (X—1, X)) € J2). Because ?iooo provides no information for
distinguishing between Xy = m and X = m + 1 if 6,, = 0,41, we can write a,, and g, as

)

(50)

Oy = E0N10+1(ka’Xk € Jm;?ciooo) and Om = COI‘I'19M0+1 (Qkfl,mv‘Ikm‘(kal,Xk) € ng?
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7.1 Non-normal distribution

For non-normal component distributions, consider the following reparameterization similar to (11):

Om \ _ [Vm+ (1 —am)An
Om+1 Vm — QmAm ‘
Collect the reparameterized identified parameters into one vector ¥y, := (n,,,\,,,)’, where n,, =
(v {65} L, 1’ }?407:_}_2,19;7”) so that the reparameterized (My+1)-regime log-likelihood func-

tion i8 Ly (Vm, Tom, Eng+1)- Let ¥, = (nh,, AE) = ((19}‘\40)’, 0’)" denote the value of v, under Hoy,.

Define the reparameterized conditional density of y; as

G W Fh— 1 28) = L € T - UklF k157 Vim + (o — 0m)Am) + Y @i (UklFi157:65),
J€Tm

where Jp, := {1,..., Mo+ 1} \ Jp,. Let f*, denote f(Yi|Yk—1;7",6;,). It follows from (50) and

the law of iterated expectations that

9*

My -0

H{Xk € Jm}(ka - am)
Gy, Vel Yi—1, Xi)

mk

i

9* [H{th € Jm}H{Xt2 € Jm}(qhh - am)(‘]tzh — Q)
Mg

7 ] (51)

gw;@(nl|?t1—17Xt1)gw7*n(Y%2’?t2 17Xt2) -
:Eﬂ}‘wo |:E19’]‘MO |:(Qt1h_a;n)((it2h ‘th e th t1+1 ?”l :|]I{(Xt1,Xt2 c JQ}‘Y :|
mty1J mito
am (1 — ayy) otz h —
= Gl am)Oi (X X € VL) 22t
mty1J mio 0

where the second equality holds because gy (Y| Yio1, Xp) = [ if Xi € Jp, and last equality
holds because, conditional on {XE c Jz—h+l ¥y 1 Xif is a two-state stationary Markov process
with parameter (m,, Om)-

(Xp—1, X), and py; (Yi[¥5 )

Let Vg, denote the derivative of 91y (Yi, Xi|Yi_1, X_1) evaluated at Uiy - and define Vg,

Let ggx» 4oy, and Py, denote gﬁgfo’y(Yk,Xk\?kq,kal), q

*
ﬂk{g,x

and Vp(, similarly. Repeating a derivation similar to (13)-(18) but using (51) in place of (15), we

obtain
—k—1

_ <k—1, _
vnmp'gb;fnﬂ(yk‘Yo )/pwn (YelYo )

k k—1
N * k|
= ZEW [V”Mo log(g(]tQOt)‘YO] - ZEW [vﬁMo log(g0:40¢)| Yo
t=1

_ -1\ i
= Vou,Poy, YalYo )/Po;, (YelYo ),
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_ ~k—1, _ ~~k—1 _ ~k—1, _ ~~k—1
VoamPyr (Vi Yo ) /Dys »(YelYo ) =0, Vi Py = (YelYo )/Dys (Ve[ Yo ) =0, (53)
—k—1
\Y% / Yi|Y \V4 —
A Pz, 7 l;:| 1o ) (1 — ) L0 Tk fm Ep,, (Xk; c Jm|Y§)
k 1
Vv Ve Vofr, Vo f* —
Fan(1 gyt Sk Ty Tolue Todic Vi, ((x,,x0) € RIVE). 60
t,1 Sk F 0

Define ¢ := (01, - -, 0nm,)’, define t\ (A, ) as ta(A, ) in (20) by replacing (A, ) with (A, Tm ),
and let

1
- k-1 SXoik
N — " ~ Snk ~ vnmpwm (Yk‘YO ) ?1
t(Vm, Tm) = , Sk = _ , where 5, := T Sagk = :
Ex(Ams Tm) SAok Dyx (YelYo ) $Mo
)\QMOk
(55)
and 5)\9 i V(S)\)\g i), where st\gmk is defined similarly to (21) as
Voo fr <k
S\Aomk = f* MkP (Xk € JmlYy)
(56)

\% Ve Vof* Vo f* _
_|_Z f— t< afmt Q.fmk + G{mk 9fmt>P't97wo((Xthk) €J72n|Y(]§)

* *
mt mk fmk mt

Similarly to (23), define

> ~ o~ R T = o e T =~

7, := Eﬁ}‘wo (snksnk)a g6, := klggo Eﬂ}‘wo (S/\g1k3)\§2k)7 I/\ng = klggo Eﬂ7\40 (S)\Qk‘snk;)a

T gt 7 I A SN e B m o m m /

Iprg = Z/\név Irnoras = Iagio Ix\nglzn Torgss I)\.ngm = Eﬁ}‘wo [G)\.ngm( )\.ngm) I, (57)
m .__ (Tm 1

Z/\Qm = ( >\-77L)m) GA nom’

where Gy 5 = ((G%\-nm)/ . (Gﬁ‘\/lgg )') is an Mpgy-vector mean zero Gaussian process with
cov(Gangs Gangs,) = 7:'>\m~,1@2. Note that G5 corresponds to the residuals from projecting 551

on Sy;. Define fg\”gm by

The following proposition gives the asymptotic null distribution of the LRTS for testing Hg : M =
My. Under the stated assumptions, the log-likelihood function permits a quadratic approximation
in the nelghborhood of Y7, similar to the one in Proposition 8. Define A7 .(£) := {Ury+1 € Onmy+1 -
{n(my Tms &) — Cn (Vi T €) 2 OF AP, T)| < €} UNL . Under Hg : M = My, for all ¢ > 0,
for m =1,..., My, and uniformly in £ € = and V41 € AJL.(E),

En(wmaﬂ-mag) - En(wjn,ﬂmaf) - \/ﬁt(djmaﬂ'm),’/n(sgmk) + nt(wm,ﬂ'm),lgmt(wmﬂrm)/2 = Opf-:(l)v
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where s,k = (8. (X, 1)) and Z,,, = limy oo By, (SomkS}, 1) Consequently, the LRTS is
asymptotically distributed as the maximum of My random variables, each of which represents the
asymptotic distribution of the LRTS that tests Hp,,. Denote the parameter space for g,, by 0,,,,
and let ©,:= 0, x ... x O

oMy "

Assumption 10. 0 < inféeég )\min(~@) < supgeq, )\max(~§) < o for fé = limg_ye0 Eﬁ’fwo (§§k§’§k),

where 35, is given in (55).

Proposition 15. Suppose Assumptions 1, 2, 4, 9, and 10 hold. Then, under Hy : M = My,
~ A d ~ ~ ~

2[&1(191\40-!—17 gMo-i-l) - gn(ﬁMm §M0>] — MaXm=1,...,Mo {SupgmGGL" ((t%m)IITngmt%m> }

7.2 Heteroscedastic normal distribution

As in Section 6.2, we assume that Y; € R in the j-th regime follows a normal distribution with
regime-specific intercept and variance of which density is given by (25). Consider the following

reparameterization similar to (26):

Cm Vem + (1- O‘m))‘Cm
Cm-‘rl . Vem — Oém)\g’m
o2, | v+ (1 — am) (2o + Cl)‘im) ’
021 Vom — Qm(2Aem + C2A2,)
where vem = (Vs v5)'s Adcm = (Aumy Agp)'s C1i= —(1/3)(1 + aun), and Co == (1/3)(2 — am). As
in Section 7.1, we collect the reparameterized identified parameters into v, := (1., A,)’, where
Mm = (v, {0; ;”;f,%m,uam,{e;}é‘ﬁﬁz,ﬁ;m)’ and Ap == (Af,,, Aom)'. Similar to (27), define the

reparameterized conditional density of y; as
G kT k-1 2) = Y @i F(WklTr—157,0)
J€Im
+ H{mk S Jm}f (yk‘yk—l; Vs Vem + (ka - am))\CWu Vom + (ka - am)(z)\am + (CQ - ka))\im)) .
Let g:nk’ f’:’Lk’ v-g:nk’ and Vf:%k denote [ (Yk‘?k—la Xk), f(Yk:|?k—1; ¥, 9;;1), chd’:n (Yk‘?l{:—la Xk),

and V£ (Ye|Yr_1;7%,6%,). From (29) and a derivation similar to (51), we obtain the following result

that corresponds to (30) in testing homogeneity:

* * 7]{: .
Eﬂ?\lo [v)‘ﬁmgmk’/gmk‘Y—oo} =0, 1=1,2,3,
* x|k * * <k
Eﬁ}% [VA“ gmk/gmk‘Y—m} = am(l— am)b<am>(vu4 mk/fmk)Pﬁ*MO (Xk € JmlY_) (58)

pum

* * <k
= b(Oém)]Eﬁ*;MO v)\gmgmk/gmk‘Y—oo} .

Repeating the calculation leading to (52)—(54) and using (58) gives the following: first, (52) and
(53) still hold; second, the elements of V)\meﬁWW(Yk|?§_1)/]3¢*W(Yk\?§_l) except for the (1,1)th
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element are given by (54) while adjusting the derivative with respect to A,y by multiplying by 2;
third,

k-1

v/\2mp’lf)* (Yk?|YO ) " . <k
e —k—1 m(l— am ZQ - < ufmt “fmk> Pys. ((Xtan) € JhIYy).
Pyr x(Yal Yo ) 1=1 mt S

For m > 0, define Clg?m(gm) = ffim-l-l Y uf;kntvuf;zk/ffntf;mﬂ%%((Xt,Xk) S
an\vg) Similarly to (35), define the elements of the generalized score as

* s\ s\
Ausomk Apoomk V@@ f i
. "I mk L%
S iomk  SAggomk  Shseemk | = 7 — Py (Xk; € Jm|Yy)
S’S\Zuka S’S\nB omk 87)”\7:70ka (59)
Volmi Vo fre Nofr. Vo fr —k
k—t 0Jmt VO 0 0" Jmt 2
+ Z < Lk f*mk ) oy, (X, Xi) € I Yo)-
mt mk mk mt

Similarly to (36), define Sz as in (55) with redefining s¥, , in (55) as

/
Kot = (GEolem)/2 257 o 250 L (s ) 2 ) VE L)) - (60)
Define 77", .~ and ZY, = as in (57) with s}, , defined in (60). Let Z1j and 7', denote Z%j

and Z7', evaluated at om = 0. Define A} as in (38), and define A%\Qm as in (38) with re-
placing ¢ with g,,. Similar to (39), define ! and th by rA(fl) = inf;, a1 ¥ (tx) and
TAgm(ngm) =i ftAEAigm o (E1), Where r*(ty) = (¢ Z/\O)’If?no(b\ — Z3) and 1Y, (tx) =
(tx = 235, ) I o (X — 23, )

The following proposition establishes the asymptotic null distribution of the LRT statistic. As
in the non-normal case, the LRTS is asymptotically distributed as the maximum of My random

variables.
Assumption 11. Assumption 10 holds when §; 1, is given in (60).

Proposition 16. Suppose Assumptions 1, 2, 4, 9, and 11 hold and the component density for the
j-th regime is given by (25). Then, under Hy : m = My, 2[¢, (éM0+17§M0+1) - en(éMo,gMO)] 4
AKX 1,... 01y {SUD gy, cop max{I{ o = O} T B0, (B2 VI, 02 1.

7.3 Homoscedastic normal distribution

As in Section 6.3, we assume that Y € R in the j-th regime follows a normal distribution with

regime-specific intercept and common variance whose density is given by (40).
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The asymptotic distribution of the LRTS is derived by using a reparameterization

9m Vom + (1 - Oém)Am
Omi1 = Vom — QmAm ?
o? Vom — am (1 — am))\im

similar to (41) and following the derivation in Sections 6.3 and 7.2. For brevity, we omit details in

derivation. Define s}, , as in (56), and denote each element of sV} omk 85
m
o _ * S\upomk
Aomk — m s™m ’
Agpomk  “Aggomk

Similarly to (46), define 3z as in (55) with redefining s¥,, , in (55) as

/
SXomk = (C;To(gm)/Q S%k/?’! S%k/‘“ (S%Hgk), V(S%ﬁgk),) ; (61)
where s’;\%k = }P’ﬁ%(XkeJszg)me(Yk!?kfl;’7*7‘9;1>/f(Yk‘?k—1§’Y*a oy,) for i = 3,4.

The following proposition establishes the asymptotic null distribution of the LRT statistic.
Assumption 12. Assumption 10 holds when §; 1, is given in (61).

Proposition 17. Suppose Assumptions 1, 2, 4, 9, and 12 hold and the component density for the
j-th regime is given by (40). Then, under Hy : m = My, Q[En(?glMoH,fMOH) — En(ﬁMO,EMO)] A
maxm—1,...11,{S1P,,, co,,,. max{l{om = O}E VLT 85 (B VIT,, B2 ) where £ and 757

are defined as in Proposition 16 but in terms of (Z%m,ITnQM,Z%,ITno) constructed with STgmk

given in (61) and A} and A%\Qm defined as in (47) but replacing o with op,.

8 Asymptotic distribution under local alternatives

In this section, we derive the asymptotic distribution of our LRTS under local alternatives. We
focus on the case of testing Hy : M = 1 against H; : M = 2, but it is straightforward to extend
the analysis to the case of testing Hg : M = M against Hy : M = My + 1 for My > 2.

Given m € O, we define a local parameter h := \/nt(1, 7) so that

b ) — (V=)
b \/ﬁt/\(/\,ﬂ') ,
where t\(\, ) differs across different models and is given by (21), (34), and (45). Given h =

(hy,, hy)" and 7 € O, we consider the sequence of contiguous local alternatives ¥,, = (¢, ;)" =

(s Ay m,) € ©p X Oy X O such that

nrn

hy = vVn(nn —n%),  hy=vVnta(Ap, m) +0o(1), and 7, — 7 = o(1). (62)
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Let Pg’xo be the probability measure on {Y}}}_, under ¢ conditional on the value of Y, Xo,
and W7{. Then, the log likelihood ratio is given by

n

dP
log # — gn(qu)n’ T, -TO) — Zn(w*7 T, l‘[)) = log
dPﬂ*,xo

Zx’f HZ:l fk’(nna )\n)qﬂ'n (xk—la .',Uk;)
[Tz fu(n*,0) ’

where fr(n,A) is defined by the right hand side of (12), (27), and (42) for the models of non-
normal distribution, heteroscedastic normal distribution, and homoscedastic normal distribution,
respectively. The following result is useful for deriving the asymptotic distribution of the LRTS

3
under Pﬁn z0°

Proposition 18. Suppose that the assumptions of Propositions 8, 10, and 12 hold for the models of
non-normal, heteroscedastic normal, and homoscedastic normal distributions, respectively. Then,
uniformly in xo € X, (a) Py is mutually contiguous with respect to Py, . and (b) under Py .

we have log(dPy . /dPF. . ) = hvy(se,k) — 5H'Toh + 0p(1) with vn(s,, k) 4 N(Zyh,Z,).

I, 0

This result follows from Le Cam’s first and third lemma. Using the result of Proposition 18, we
construct the asymptotic distribution of LRTS under the sequence of local alternatives from null

asymptotic distribution of LRTS by appropriately shifting the mean of the Gaussian process.

8.1 Non-normal distribution

For non-normal distribution, the sequence of contiguous local alternatives is given by A, = A/ nl/4

because then hy = y/na(l — a)v(\,) = a(l — a)v(A) holds. The following proposition derives
the asymptotic distribution of LRTS for non-normal distribution under Hiy, : (7n,Mn, An) =

(7, ", A/nt/4).

Proposition 19. Suppose that the assumptions of Proposition 9 hold. For © € O, and X\ # 0,
define hy := a(1 — a)v(X). Then, under Hyy : (7p, 0, An) = (7,75, X/n/4), we have 2[, (02, &) —
ﬁojn(ﬁl)] 4 supgegg(fAQh)’I)\.nngQh, where ty,p is defined as in (24) but replacing Zy, in (24) with
(Ix\-ng)_lGA-ng + ha.

8.2 Heteroscedastic normal distribution

For the model with heteroscedastic normal distribution, the sequences of contiguous local alterna-

tives characterized by (62) include the local alternatives of order n~1/8,

Proposition 20. Suppose that the assumptions of Proposition 11 hold for the model (25). For
o€ (=1,1), ac(0,1), and A := (A, Ay, Ny)' # (0,0,0)', let

Hiln : (Qna Qny Mn, /\una )\ona /\,Bn) = (@/n1/4a Q, 77*: j\u/nl/8a j‘a/ng/gv ;\ﬁ/nS/S)v
H{)n : (an Qn,y Mn, /\una )\O'Tlv /\,Bn) = (@a Q, 77*: j‘u/nl/4a j‘a/nl/4v ;\ﬁ/nl/4>v
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and define

hS s =a(l — @) x (0N, AuAa, b(@)X,/12, X5, 0,0)

W ju )
WY o= a(l — @) x (BM%, Audos A2, XAy, MgAo, v(Ag)').

3 3 d
ins we have 2[ln(02,&) — Lon(V1)] — sup,ce, max{l{o =
0}(5}\%)7)\.”0%]}1, (fijgh)’f,\_ngfijgh}, where fijh and f?\Jgh are defined as in (39) but replacing Zy, with
(I/\-ng)ilG/\-ng + h]A'

Then, for j € {a,b}, under HY

In the local alternative HY,, o, converges to 0, and )., converges to 0 at a slower rate than
n~Y4. Our test has non-trivial power against these local alternatives in the neighborhood of ¢ = 0.
In contrast, the test of Carrasco et al. (2014) does not have power against the local alternatives in
the neighborhood of ¢ = 0 as discussed in Section 5 of Carrasco et al. (2014). The test proposed
by Qu and Zhuo (2017) assumes that ¢ is bounded away from zero and hence their test rules out

8.3 Homoscedastic normal distribution

The local alternatives for the model with homoscedastic distribution also include those of order
n~1/8 in the neighborhood of ¢ = 0.

Proposition 21. Suppose that the assumptions of Proposition 12 hold for the model (40). For
o€ (—1,1),ac(0,1), Ay #0, and X := (S\M,S\’ﬁ)’ # (0,0, let

Hizn : (QTH On, 77717 )‘an )‘Bn) = (é/n1/4’ 1/2 + Aa/nl/s’ 77*7 Xﬂ/n1/87 j‘ﬁ/ns/s)v

an : (Qm Qn,y Tn, )\;mv )\Bn) = (@a Q, 77*) j\u/nl/4a 5\,8/77/1/4%
and define h§ := (1/4) ><~(§;\f” Aa}‘i —;\ﬁ/Q, 5\’55\,“ 0)" and hlj\ =a(l—a)x (@5\2, 0,0, 5\/'35\“, p(j\g)’)’.
For j = {a,b}, define tijh and t?\Jgh as in (39) but replacing Zy, with (Z,,) 'Grne + b3, where
Txno and G, are constructed with s,y defined in (46), and A%\ and Aig are defined in (47). Then,

under Hl, , we have 2, (D2, £5) —Lo.n (V1)) LN sup e, max{l{o = O}(f}\%)/IA,nofi%, (fi\lh)/IA,anf\i)h}.

9 Parametric bootstrap

We consider the following parametric bootstrap to obtain the bootstrap critical value ¢, g and the
bootstrap p-value of our LRTS for testing Hy : M = My against Hy : M = My + 1.

1. Using the observed data, estimate 1§M0 and 1§M0+1 as 1§M = argmaxy,,co,, {n(In, &) for
some choice of £y for M = My, Mg+ 1. Compute LR,, = 2[5n(19M0+17 EMo+1) —En(ﬁMO, &)l

2. Given 9 M, and &y, generate B independent samples {Ylb, e ,YTZZ }5:1 under Hy with ¥y, =
U1, conditional on the observed value of Yo and W7.
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3. For each simulated Sfimple v, witI} (Yo, W7), estimate 1911’\40 and 19?\40 41 as in Step 1,
and let LR) = 2[0, (9% 11, Emot1) — n (P, E0ry)] for b=1,..., B.

4. Let cop be the (1 — «) quantile of {LR%}P |, and define the bootstrap p-value as
B~'SP [ I{LRY > LR,}.

The following proposition shows the consistency of the bootstrap critical values ¢, p for testing
Hy : My = 1. We omit the result for testing Hy : My > 2; it is straightforward to extend the

analysis to the case for My > 2 with more tedious notations.

Proposition 22. Suppose that the assumptions of Propositions 8, 10, and 12 hold for the models of
non-normal, heteroscedastic normal, and homoscedastic normal distributions, respectively. Then,
the bootstrap critical values co,p converge to the asymptotic critical values in probability as n and

B go to infinity under Hy and under the local alternatives described in Propositions 19, 20, and 21.

10 Simulations and Empirical Application

10.1 Simulations

We consider the following two models:

Model 1: Yy = px, +BY,—1 +¢ck, €~ N(0,07), (63)
Model 2: Yy = pix, + BYi1 +e, e ~ N(0,0%,), (64)

where X, € {1,..., M} with p;; = p(X}, = i|X—1 = j). Model 1 in (63) is a model with switching
intercept, where variance parameter o does not switch across regimes. In Model 2 in (64), both
intercept and variance parameters switch across regimes.

We investigate the size and power property of our bootstrap LRT and compare the LRT with
the QLR test of Cho and White (2007) and supT'S test of Carrasco et al. (2014), where the critical
values are computed by bootstrap. In the supTS test, we set p € [-0.9.0.9], and in the QLR test,
we set the parameter set ©, = [-2,2]|. Note that this comparison favors the LRT over the supTS
test because the supTS test is designed to detect general parameter variation including Markov
chain.

We first examine the rejection frequency of Hy : M = 1 against Hy : M = 2 when the data
are generated by Ho : M = 1 with (8, pu,0) = (0.5,0,1). Columns (1) and (2) in Table 1 report
the rejection frequency of the bootstrap tests at the nominal 5% level over 3000 replications with
n = 200 and 500. Overall, our bootstrap LRT has good sizes.

Table 2 examines the power of our bootstrap LRT for testing the null hypothesis of M =1 at
nominal level of 5%. We generate 3000 data sets for n = 500 under the alternative hypothesis of
M = 2 by setting p; = 0.2,0.6, and 1.0 and pe = —p; while (p11,p22) = (0.25,0.25), (0.50,0.50),
(0.70,0.70), and (0.90,0.90). We set o = 1 for Model 1 and (0?,03) = (1.1,0.9) for Model 2.
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In Table 2, our LRT performs better than the supTS and QLR tests for Model 1 except for
the case with (p11,p22) = (0.25,0.25), where the supTS performs very well, and the case with
(p11, p22) = (0.5,0.5), where the QLRT test outperforms LRT, because the true dgp is finite mixture
in this case.

The last three columns of Table 2 reports the power of the LRT to detect alternative models
with switching variances (i.e., Model 2 with M = 2).

We also examine the power of our LRT for testing the null hypothesis of M = 2 in Table 3. We
generate 1000 data sets for n = 500 under the alternative hypothesis of M = 3 across different values
of (p1, po, u3) and (pi1, pa2, p33) with p;; = (1 — py)/2 for j # i, where we set (f,0) = (0.5,1.0)
for Model 1 and (8, 01,02) = (0.5,0.9,1.2) for Model 2, and compute the rejection frequencies for
testing the null hypothesis of M = 2 at nominal level of 5%. In Table 3, the powers of our LRT for
testing Hy : M = 2 against Hy : M = 3 increase when the alternative is further away from Hy or

when latent regimes become more persistent.

11 Empirical example

Using the U.S. GDP per capita quarterly growth rate data from 1960Q1 to 2014Q4, we estimate the
regime switching models with common variance (i.e., Model 1 in (63)) and with switching variances
(i.e., Model 2 in (64)) for M =1, 2, 3, and 4 and sequentially test the null hypothesis of M = M
against the alternative hypothesis M = Mg+ 1 for My = 1, 2, 3, and 4.5 We also report the Akaike
Information Criteria (AIC) and the Bayesian Information Criteria (BIC) as a reference although,
to our best knowledge, the consistency of AIC and BIC for selecting the number of regimes has not
been established in the existing literature.

Table 5 reports the result of the selected number of regimes by AIC, BIC, and our LRT. For the
model (63) with common variance, our LRT selects M = 4 while AIC and BIC select M = 3 and
M = 1, respectively. For the model (64) with switching variance, both our LRT and AIC select
M = 3 while BIC selects M = 2.

Panel A of Table 4 and Figure 1 report the estimated parameter values and the posterior
probabilities of being each regime for the model with common variance for M = 2, 3, and 4. Across
different specifications in M, the estimated values of p1, o, ..., pas are well separated in the common
variance model, indicating that each regime represents booming or thorough period with different
degrees. In Figure 1, when the number of regimes is specified as M = 2, the posterior probability
of “recession” regime (Regime 1) against that of “booming” regime (Regime 2) sharply rises during
the collapse of Lehman Brothers in 2008 and then declines after 2009. When the number of regimes
is specified as M = 3, in addition to “recession” and “booming” regimes corresponding to Regime 1
and 2, respectively, the regime with a rapid change in the growth rates from low to high is captured

by Regime 3; for the model with M = 3 in Figure 1, the posterior probability of Regime 3 rises in

5For both models, we restrict the parameter values for transition probabilities by setting e = 0.05 to prevent the
issue of unbounded likelihood.
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late 2009 when the U.S. economy started to recover from the Lehman shock. When the number
of regimes is specified as M = 4, Regime 1 now captures a rapid change in the growth rates from
high to low, where the posterior probability of Regime 1 becomes high when the growth rate of
the U.S. economy rapidly declined in the middle of the Lehman shock. Our LRT selects the model
with four regimes, which capture rapid changes in growth rates of the U.S. GDP per capita during
the Lehman shock period.

The estimated parameter values and the posterior probabilities of being each regime for the
model with switching variance are reported in Panel B of Table 4 and Figure 2, respectively. When
the number of regimes is specified as M = 2 in the switching variance model, the estimated values
of variance parameter are very different between two regimes while the estimated intercept values
are similar, indicating that Regime 1 is “low volatility” regime while Regime 2 is “high volatility”
regime.” When the number of regimes is specified as M = 3, different regimes capture different
states of the U.S. economy in terms of both growth rates and volatilities. Regime 1 is characterized
by the negative value of intercept with high volatility, capturing a recession period. Regime 2
is characterized by the positive value of intercept with low volatility, capturing booming/stable
economy. Regime 3 is characterized by high value of intercept and high value of variance, capturing
both a rapid recovery in the growth rates and high volatility in the aftermath of the Lehman shock
in 2009. Our LRT selects the model with three regimes when the model is specified with switching

variance.

12 Appendix

Henceforth, for notational brevity, we suppress W from the conditioning variables and conditional

densities when doing so does not cause confusion.

12.1 Proof of Propositions and Corollaries

Proof of Proposition 1. The proof is essentially identical to the proof of Lemma 2 in DMR. There-
fore, the details are omitted. The only difference from DMR is (i) we do not impose Assumption
(A2) of DMR, but this does not affect the proof because Assumption (A2) is not used in the proof
of Lemma 2 in DMR, and (ii) we have W7, but our Lemma 10(a) extends Corollary 1 of DMR to
accommodate Wy’s. Consequently, the argument of the proof of DMR goes through. 0

Proof of Proposition 2. Define hyjy, = +/lgkz, — 1. Using the Taylor expansion of 2log(l + x) =

"We may test the null hypothesis of o1 = o2 in the model with switching variance given M = 2 by standard
LRT with the critical value obtained from the chi-square distribution with 2 degrees of freedom. With LRT =
2 x (—307.99 + 321.27) = 26.56, the null hypothesis of o1 = o2 is rejected at 1 percent significance level, suggesting
that the model with switching variance is more appropriate than the model with common variance when we specified
the number of regimes as M = 2.
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22 — 2%(1 + o(1)) for small x, we have, uniformly in xp € X and 9 € Ny

(Y, m,20) — L (V™ 7, m0) = 2 Z log(1 + hykay) = NP (2hgkz, — [1 + op(l)]h?%xo). (65)
k=1

The stated result holds if we show that

sup  sup ‘nP hﬁkxo) ntigl'ﬂt,g/4| =o0,(1) and (66)
ToEX 19€N

Sup  Sup |nPn(h19ka:o) - \/ﬁtéyn(swk)/2 + ntﬂzﬂ't%/& = Op(l)v (67)
TgEX ﬂeNc/f

because then the right hand side of (65) is equal to /ntlvy(sxk) — tyZrtly/2 + op(1) uniformly in
zo € X and ¥ € N/ fr.
We first show (66). Let myy 1= tlysqi + ryg, so that lyge, — 1 = myk + Ugkz,. Observe that

= t, =op(1 68
1rg?§nﬂeilfll/3f|mﬁk| 1r<n,3<xw€ilflr/>ﬁl 5wk + ok = 0p(1), (68)

from Assumption 3(a)(c) and Lemma 9. Write 4Pn(h129kxo) as

—1)2 loka 3
4P (W) = Py [ AWokn =" ) g 12y ({1 — 1P 2 T3 )
¢ (\/ li?k:xo + 1)2 \/ lﬂkxo + 1

It follows from Assumption 3(a)(b)(c)(e)(f) and (E|XY|)? < E|X[?E|Y|? that, uniformly in 9 €
Ne,

Py (lokwy—1)? = tly Pr(Snk Sk ) to+2t5 Po Sk (Tok+uokeg )]+ P (rok+uoke ) = th Pr(SakShr ) to+Cono s
(70)

where (gng, satisfies sup, e [Conao| = Op([to*[¥ — ¢*[) + Op(n ™ [ta 1) — 9*) + Op(n =1 — * ).
Then, (66) holds because sup,ce_ |Pn(srksy;) — Ix| = 0p(1) and the second term on the right of
(69) is bounded by, from (68), P, (m2,) =t Tty + 0p(|ts]?), and Assumption 3(e),

Csup sup P, Umqgk\ +3m19k\u19kr0\+3\mﬂk|uﬂkx0] +Csup sup P, (\Uﬁkm’g)
ro€X VEN, ) /m ro€X VEN, ) /m

<op(1) sup sup P [m3y + ufpy,| +Csup  sup  Ppl|ugka,|) = op(n7h).
ToEX 196./\/6/\/* TgEX ﬂGNc/f

We proceed to show (67). Consider the following expansion of hgjy,:

hokao = (Lokso — 1)/2 = hippe/2 = (tySak + Tk + Wokag) /2 — Mgy /2- (71)

Then, (67) follows from (66), (71), and Assumption 3(d)(e), and the stated result follows. O
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Proof of Proposition 3. For part (a), it follows from log(l + x) < x and hyrz, = (lokz, — 1)/2 —
h%}kxo/2 (see (71)) that

b (Y, m,20) — Lo (Y™, T, 20) =2 210g<1 + hokao) < 2nPo(hokag) = Vv (loke, — 1) — nPﬂ(ht%kxo)'

k=1
(72)
Observe that h%kmo (Lokze — 12/ (\/Tokzo + 1) > Wlokao < £} (loka, —1)?/(/E+1)? for any k£ > 0.
Therefore,
Pu(hirey) = (Ve + 1) Po (Hlokay < 5} (loka, — 1)7) - (73)
Substituting (70) into the right hand side of (73) gives
Pn(hl%kxo) > (\/E + 1)_2% [Pn(swksgrk) - PH(H{lﬁkxo > H}Sﬂksgrkﬂ ty + Conao- (74)

From Hélder’s inequality, we have P, (I{lyrzy > #}H$mkl?) < [Po(M{lorze > K1) CTO [Py (|55 2H0)]2/ 2F9),
The right hand side is no larger than %/ (2+5)Op(1) uniformly in zp € X and

¥ € N; because (i) it follows from rk{lype, > K} < loga, that Pp(I{lygs, >

k}) < K Pu(loke,) and  sup, ey subgen. [Po(lora,) — 1| = o0p(1) from Assumption
3(d)(e)(f)(g), and (ii) Pu(supyeo. |sxk*T°) = O,(1) from Assumption 3(a). Consequently,
P(sup,,cx subgen. Po(M{lokey > £}Hsrkl?) = Amin/4) — 0 as & — oo, and hence we can write

(74) a5 Pa(Ry,) > 01 + 0p(1)t ety + Op(ltal2ls — 9°]) + Opln) for 0 = (/& +1)72/2 > 0

by taking  sufficiently large. Because /nvy(lygz, — 1) = v/ntlyvn(sqi) + Op(1) from Assumption
3(d)(e), it follows from (72) that, uniformly in zy € X and ¥ € N,

0 < L (9, m,20) = Lu (¥, m,20) < Vibyvp(sek) — (L + 0p(1))ntyIaty + Op(nlts| 1) — ¢*[) + Op(1).

(75)
Let T, := I%-/Z\/ﬁtﬂ. From (75), Assumption 3(b)(g), and the fact ¢y —¢* — 0 if £y — 0, we obtain
the following result: For any § > 0, there exist € > 0 and M, ng < oo such that

P < 1an191nf (|70 |M — (n/2)|T,* + M) > O> >1-46, forall n>ng. (76)
o€

Rearranging the terms inside P(-) gives sup,,cy supgen. (|Tn| — (M/n))* < 2M /n+ (M /n)?. Taking

its square root gives P(sup,, ey supyenr. [Tn| < M1) > 16 for a constant M7, and part (a) follows.

Part (b) follows from part (a) and Proposition 2. O

Proof of Corollary 1. Because logarithm is monotone, we have inf, ex n (¢, 7, 20) < £y (¢, 7, &) <
sup,,ex fn(1, 7 x0). Part (a) then follows from Proposition 2. For part (b), note that we have
¥ € Ap(€) only if ¥ € Ay (xg) for some zg. Consequently, part (b) follows from Proposition 3. [J

Proof of Proposition 4. The stated result follows from writing V74, ,, »(9) = V7 log pﬁ(YEerl Y i, X =
r) — VI logpg(Y_m+1\Y_m, X_m = z), applying Lemma 1 to the right hand side, and not-
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o et
ing that V7 logpy(Y*, 1, X5 Yo Xom) = Sp et #(9,Z4_y) (see (1) and (6)). The
result for VIl .(9) with j = 1,2 is also given in DMR (p. 2272 and pp. 2276-7).
For j = 3, the term Agllg 1(19) follows from Zflz_mﬂ ZZ:_mH E§[¢§t1¢}9t2|?lim,X,m =
x] = Zflzfmﬂ Zf;:fmﬂ 191tm[?,m,X_m = z|. For j = 4, note that when we apply
Lemma 1 to V* logpg(Ykm+1|Y myX—m = x), the last two terms on the right hand side

of Lemma 1 can be written as > 7y k}4 cI>1111[Y ,X_m = z]. The result for

m+1,..., T(4)
j = 5 follows from a similar argument. For j = 6, note that when we apply Lemma 1 to
VS log py (Y* 1\?_m,X_ = x), the last four terms on the right hand side of Lemma 1 can
be written as ZT 6)€{—mt1,... k} <I>Z(6() )[Y_m,X,m = z]. O

Proof of Proposition 5. First, parts (a) and (b) hold when the right hand side is replaced with
Kj(k + m)Tpl+m=0/724] and K;(k + m)7pltk+m=1/1340] by ysing Proposition 4 and Lemma 3
and noting that ¢ = 6qo,q2 = 590,93 = 4qo,-..,96 = qo. For example, when j = 2, we can
bound sup,cx SUpgepr- |V ma(9) = VI2Up 00 (0)| from V20 mo(9) = A2, (0) + Ay (9),
Sunmxﬁupmmﬁ’Aigkﬁﬁﬂ Afgm ()| < Kz (k+m)Tplktm=D/241 " g7 o e L7600 (Pye), r(g) =
q2 = 5qo, and 7(11) = q1/2 = 3qo- Second, letting p. = p/ 13401 p > 0} and redefining K; gives
parts (a) and (b). Parts (¢) and (d) follow Proposition 4 and Lemma 3. O

Proof of Proposition 6. First, we prove part (a). The proof of part (b) is essentially the same as
that of part (a) and hence omitted. Observe that

Vil (9) — B,

~~k—1 _ k-1
B = () (mmv Xom=2) Bl Yom) )
T T km, _ <k—1
T e Y X =) B (GIY )

Dy (Ye|Y ; —
PltilY o) (e = Ta(9))
Py~ (Yk‘Yfm)

—m

where - -
, AV Y?‘ X o = — Vi (Y| Y_
‘IJJ (19) .= pﬂ( k| LL’)? W‘I]{;7m(/l9) — pﬂ( k| 7m)‘

_ —k—1
po(Ve[ Y X = ) Po(YelY_,,)

In view of Lemma 4 and the Holder’s inequality, part (a) holds if, for j = 1,...,6, there exist
random variables ({4;r}}_;, B;j) € L%(Py~) and p. € (0,1) such that, for all 1 < k < n and
m > 0,

(A) supsup sup |\Ifkmx( W< Ak, (B) sup sup ]\Pkmx(ﬁ)—@i ()| < Bj(k+m)7pltm=1,
m>0zeX JEN™ TEX YEN* "
(77)
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We show (A) and (B). From (96) we have, suppressing (9) and superscript 1 from V14, .,

Vime=Vlmz: Yeme = Vlma + (Vlma)?,
U e = Volma + 3V o Vima + (Vima)®,
U mne = Vima + 4V 000 Vme + 3(V lome)? + 6V im0 (Vlkma)® + (Vlme)
U e = Volma + 5V %% o Vil mw + 10V 1 oV o + 10V (Vi g )
+15(V hm2)* Ve + 10V 0 (Vlm ) + (Vi)
WS e = Vol + 6Vl oVl + 15V o VP s + 15V (Vi )
+10(V U e)® + 60V ki e V2l 2V e + 20V (Vi )?
+15(V? lem,a)® +45(V2lkne) (Vekan,a)® + 15V ke (Vi) + (Veme),

and @im is written analogously with V7/j ,, replacing V?{ , .. Therefore, (A) of (77) follows
from Proposition 5(c) and the Holder’s inequality. (B) of (77) follows from Proposition 5(a)(c), the
relation ab—cd = a(b—c) —c(a—d), a™ —b" = (a—b) Z?:_ol (@™ 17%"), and the Holder’s inequality.

For part (c), the bound on Vli,m,m(ﬁ) follows from writing Vli:’mx(z?) = [T)g(YM?’le,X_m =
x) /D= (YH?’:;,X,m = :E)]‘If?gmx(ﬂ) and using (77) and Lemma 4. ﬁjlkvm(ﬂ) is bounded by a
similar argument. Part (d) follows from parts (a)(b)(c), the completeness of LI(Py«), Markov’s
inequality, and Borel-Cantelli Lemma. Part (e) follows from combining parts (a) and (b) and

letting m’ — oo in part (b). O

Proof of Proposition 7. Consistency of U1 follows from Theorem 2.1 of Newey and McFad-
den (1994) because (i) 9§ uniquely maximizes Eyg: log f(Y1[Yo, Wi;7,6) from Assumption 5(c),
and (i) supy,ce, [n"on(91) — Egr log f(Yi[Yo, Wi57,0)] & 0 and Eg: log f(V1[Yo, Wi;7,6)
is continuous because (Yy, Wj) is strictly stationary and ergodic from Assumption 1(e) and
Eyg: supy, co, |1og f(Y1[Yo, Wi;7,6)| < co from Assumption 2(c).

We proceed to prove the consistency of ¥5.  Define, similarly to pp. 2265-2266 in
DMR, Appmo(@2) = logpe, (YVi[¥ 0  WE X = @), Dpm(Ps) = logpg, (Yi[Y¥ ol WE ),
Ao (V2) = limyy 00 Ag n (V2), and £(P2) 1= Egr[Ag oo(¥)]. Observe that Lemmas 3, 4 and Propo-
sition 2 of DMR hold for our {A . 2(92), Akm(U2), Ak oo (V2), €n (Y2, x0), £(¥2) } under our assump-
tions because (i) their Assumption (A2), which we do not assume, is not used in the proof of their
Lemmas 3 and 4 and Proposition 2, and (ii) our Lemma 10(a) extends Corollary 1 of DMR to
accommodate Wy’s. It follows that (i) ¢(¢2) is maximized if and only if ¥9 € I'* from Assump-
tion 5(d) because Eyx [10gp192(Yi|?(im,
Lemma 3 of DMR and the dominated convergence theorem, (ii) £(¢92) is continuous from Lemma 4
of DMR, and (iii) supg, supy,ce, [n= 1, (92, £2) — £(92)| 2 0 holds from Proposition 2 of DMR. and
ln(02,&2) € [ming, £, (Y2, xp), maxy, €y (V2, x0)]. Consequently, infy,cp- ]192 — Y| 20 follows from
Theorem 2.1 of Newey and McFadden (1994) with an adjustment for the fact that the maximizer
of £(¥2) is a set, not a singleton. O

WL ] converges to £(¥2) uniformly in 95 as m — oo from
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Proof of Proposition 8. We prove the stated result by applying Corollary 1 to lygz, — 1 with lyig,
defined in (4). Because the first and second derivatives of lyxz, — 1 play the role of the score, we
expand lykz, — 1 with respect to ¢ up to the third order. Let ¢ = dim(¢)). For a k x 1 vector a,
define a®*? :=a®a®---®a (p times) and V,op := V, @V, ®---®@ V, (p times). Recall that the
(p + 1)-th order Taylor expansion of f(z) with z € R? around x = z* is given by

1 *
mv(mmn),f(f)(m —x )®(p+1)’

P
fl@)=f(=)+) ﬁv(x®j)’f($ )(z — ") +
=17
where T lies between x and z*, and T may differ from element to element of V g1 f(T).
Choose € > 0 sufficiently small so that A, is a subset of N* in Assumption 4. For m > 0 and
j=1,2,... let

k-1
L vw®jp¢ﬂ(yk|Yfm7x—m) J
) L k—1 ) k,m(¢7
X

k-1
S ey
3P n (VY 2m)

A (1,
ka sl—m ’ . 719—1 )
" pgen (Ve[ Y00)

and At := 1 —¢*. With this notation, expanding lyx,, — 1 three times around ¢* while fixing 7
gives, with ¥ € [1, %],

Loy = 1= D .2y (07, 1) A+ AR g4y (U7, 1) (A) S + AT 4y (1, ) (A1)
= Mo (", 1) A + AR o (7, 1) (A) P2 + AL (8, ) (D) + gy (3, 7), (78)

where 1) may differ from element to element of A%}OJO (P, ), and Uy, (¥, 7) = Z?Zl [Ai,o,xo (Y*,m)—
Ao (07, ) (AV) 4 [N g 4 (0 7) = Ao (&, )] (A0) .
Noting that Vpy-r(Vi|Y¥s 1) = 0 and VP (Vi Y5 ') = 0 from (16), we may rewrite (78)
as
Loz — 1 = t(, m) S ok + 7.0 (W, T) + Ukary (¥, ), (79)

where s, is defined in (20), 740 (1, 7) := Ao (W)’(An)®2+Az7o($, ) (AY)®3, where Ay, o(7) denotes
the part of Ai,o(dfﬁ ) corresponding to (An)®2.

For m > 0, define vy, (¥) = (A}C’m(@b,w)’,A%’m(w,w)’,Ai}m(z/},w)’)’, and define vj o (¥) =
limyy, 00 Uk, m (). In order to apply Corollary 1 to lygy, — 1, we first show

ﬂsél/\}; ‘Pn[vkyg(ﬁ)vk,o(ﬁ)'] — Ey= [vk,oo(ﬁ)vkpo(ﬁ)'” = 0p(1), (80)
vn(Vg,0(0)) = W (D), (81)

where W(9) is a mean-zero continuous Gaussian process with Eyg«[W (91)W (d2)] =
Eg+ [V, 00 (V1) Vk,00 (¥2)]. (80) holds because supyep,, Pn[vk,0(9)0k,0(9)" — Uk 00 (9) V00 (V)] = 0p(1)
from Proposition 6, and vy oo (9)vg 00 (¥)" satisfies a uniform law of large numbers (Lemma 2.4 and

footnote 18 of Newey and McFadden (1994)) because vy oo(¢) is continuous in ¢ from the conti-
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nuity of V71, »(9) and Proposition 6, and Eg« supyep. |vk,00(9)]? < oo from Proposition 6. (81)
holds because supye . Vn(Vk,0(9) — Vk,00(¥)) = 0p(1) from Proposition 6 and v, (vg,o0(0)) = W (9)
from Theorem 10.2 of Pollard (1990) because (i) the space of 9 is totally bounded, (ii) the finite
dimensional distributions of v, (vk o (+)) converge to those of W (-) from a martingale CLT because
Uk 0o (V) is a stationary L?(Pyg+) martingale difference sequence for all ¥ € A; from Proposition 6,
and (iii) {vn(vk,0(+)) : n > 1} is stochastically equicontinuous from Theorem 2 of Hansen (1996)
because vy oo (¢) is Lipschitz continuous in ¥ and both v o (¥) and the Lipschitz coefficient are in
L4(Py~) with ¢ > dim(¥) from Proposition 6.

We proceed to show that the terms on the right hand side of (79) satisfies Assumption 3(a)—
(g). Observe that t(¢o,7) = 0 if and only if ¢y = ¢*. First, s, satisfies Assumption 3(a)(b)(g)
by Proposition 6, (80), (81), and Assumption 6. Second, r40(¢, 7) satisfies Assumption 3(c)(d)
from Proposition 6 and (81). Third, ug,, (¢, 7) satisfies Assumption 3(e)(f) from Proposition 6(c).
Therefore, the stated result follows from Corollary 1(b). O

Proof of Proposition 9. The proof is similar to that of Proposition 3 of Kasahara and Shimotsu
(2015). Let t; := n —n* and t) = a(l — a)v(A), so that t(y,7) = (,t))". Let Up =
arg maxyeeo,, In(1, T,§) denote the MLE of ¢, and split ¢(¢r, 7) as t(¢q,m) = (f’n,f’)\)’, where

we suppress the dependence of fn and £, on 7. Define Gon = Un(Sok). Let

- -1 71
G — Gnn G)\.ngn = G)\gn - I)\ngzn G?TVL? Z)\.ngn = IA.nQG/\-nQ”’
on =
G
on

9

—1
t77~/\.9 = t77 +I’7 In)\gt)\-

Then, we can write (22) as

sup  sup ‘2 [En(wa Wa‘f) - Kn(l/}*?mf)] - An(\/ﬁtn)\g) - Bgm(\/ﬁtA)‘ = Op(l)a (82)

€2 € Anec(§)

where

oyl /
An(tn)\g) = Qtn.Aann - tn.)\gIntﬂ-)\w (83)

BQn(t/\) = Qtl/\Gk-ngn - tl/\IA-n@t/\ = Z&in}\-’ﬂ@z)\@n —(tr— Z/\gn)lzx\-ng(tA - Z/\gn)~

Observe that 2[&)”('@0) — Lon(95)] = maxy, [2\/ﬁt;7G,m —nty Tty] + 0p(1) = maxy, ,, An(v/ntyr,) +
0p(1) from applying Corollary 1 to £y, (J9) and noting that the set of possible values of both \/nt,
and /nty », approaches RA™™M)  n conjunction with (82), we obtain, uniformly in 7 € O,

2[671(1[}7” T, €> - gOn(1§0)] = BQn(\/ﬁtA)\) + Op(l)' (84)

Define £\ by By, (v/nty) = MaXy, ca(1-a)v(©y) Bon(v/ntr). Then, we have

2[€n('&ﬂ'7 ™, f) - E()n(@(])] = BQ”(\/EE)\) + Op(1)7
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uniformly in 7 € O, because (i) Bon(v/niy) > 2[n (U, 7, &) — Lon(90)] 4 0,(1) from the definition
of iy and (84), and (i) 2[fn(¢r, 7, &) — Lon(D0)] > Byn(v/niy) + 0,(1) from the definition of 1, (82),
and £y, = O,(n~1/?).

Finally, the asymptotic distribution of sup, By (y/nty) follows from applying Theorem 1(c)
of Andrews (2001) to B,(y/nty). First, Assumption 2 of Andrews (2001) holds trivially for
Bgn(v/nty). Second, Assumption 3 of Andrews (2001) is satisfied by (81) and Assumption 6. As-
sumption 4 of Andrews (2001) is satisfied by Proposition 8. Assumption 5* of Andrews (2001) holds
with By = n!/2 because a(1 — a)v(6)) is locally equal to the cone v(R?) given that a(l —a) > 0
for all v € ©q. Therefore, sup,cq, Bon(v/nty) KN SUPyeo, (tN’AgIA,Wf,\g) follows from Theorem 1(c)
of Andrews (2001). O

Proof of Proposition 10. The proof is similar to that of Proposition 8. Define Agc,m,x,m(w’ m) and

Aim (1, ) as in the proof of Proposition 8. Expanding lxy,, — 1 five times around ¢* similarly to
(78) while fixing 7 gives, with ¢ € [1b,9*],

4
lkﬁa}o —-1= Z Aéo(w*a T[-),(Aw)@J + Az,o(% W),(A¢)®5 + Ukxg (17[}7 77)7 (85)
j=1

where Uz (¢7 77) = E?:l [Ai,(],ggo (U)*, ﬂ-) - Aéo (77[)*7 W)]/(AU))@] + [A%O,xo (a7 ﬂ-) - AEI;O (a7 W)],(A1/J)®5~
Define Dy 0 = @M(Yﬂ?g_l). Observe that s, defined in (36) satisfies

ViPy 0/ P k0
Ck0(0)/2
Vauro Py rke,0/ (1 — @) Py rico
Sok 1= Va2 Py rke,0/20(1 — @)Dy ri 0
Vasru Py ak,0/ (1 — @)Pyero
VrsAe Py rk,0/ (1 — )Py rieo
V(VasasPyrk0) /(1 = @)Pyerro

Noting that V)\T)Wﬂ(Yk]?g_l) =0 and V,\n/ﬁw*w(Yk\?]g_l) =0 from (16) and (17), we may rewrite
(85) as, with t(¢,7) and sp defined in (33) and (36),

Lokao — 1 = t(0, ™) S ok + T,0(7) + Wparo (¥, ), (86)

where ry.0(m) = Ago(m)'T(1) + AL o, ) (AY)E + Xy [VaaBynro — b(a)v)\gﬁ¢*ﬂk,0]/4!ii¢*ﬂk,07
7(1)) is the vector that collects the elements of {(A@b)@j}?:Q that are not in t(¢, ), and Ay ()
denotes the vector of the corresponding elements of {A?ﬁ0 (*,m) ;4-:2.

The stated result follows from Corollary 1 if the terms on the right hand side of
(86) satisfy Assumption 3.  Similarly to the proof of Proposition 9, define vy, (9) =
(Ckym(g),A}C’m(’(ﬂ,ﬂ')/,...,Az’m(¢,7r)/)/. Note that (i (o) satisfies Proposition 6 because the
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mean value theorem and V/\gﬁw*m(yk‘?ﬁ;nl) = 0 gives (pm(0) = [V,\Zﬁwga(Yﬂ?g_l) -

_ <k—1 _ <k—1 _ —k—1 _ k-1
V)\ﬁpw*Oa(Yk|YO )]/[Qa(l_a)p1/;*ga(yk|Y0 )| = ng,\‘ﬁpw*a@(YHY—m)/[a(l—a)Pw*ga(YHY—mﬂ

for o € [0, o]. Therefore, vj oo (V) = limy,—s00 Vg m (V) is well-defined, and vy o () and v, o (9) satisfy
(80)—(81) from repeating the argument in the proof of Proposition 9.

We proceed to show that the terms on the right hand side of (86) satisfy Assumption 3. Ob-
serve that t(¢,7) = 0 if and only if ¥ = ¥*. s, and wugg, (¢, 7) satisfy Assumption 3 by not-
ing that s, is a linear function of vy o(¥) and using the argument in the proof of Proposition
8 with replacing Assumption 6 with Assumption 7. We show that each component of rj ()
satisfies Assumption 3(c)(d). First, AZ,O(E’ )/ (A)®® satisfies Assumption 3(c)(d) from Proposi-
tion 6, (81) and X5 = (12X,/b(c))[A2 + b()A},/12] — 12(As/b(a)) \uXo = O([¢][t(1h, 7)]). Second,
)\ﬁ[vjzfawﬂho — b()V a2 Py rk 0 /Pypm0 satisfies Assumption 3(c)(d) from Lemma 6(b). Third,
for Ago(m)'7(1), observe that Vy,ipysrro = 0 for any j > 1 in view of (27)-(30). Therefore,
Apo(m)'T(v) is written as, with An :=n —n*,

Apo(m) 7(4) = V 22y Bype w0 A1) 2 2B ype e 0 + Rao + Rako, (87)
where Rapy = V(Qp@syﬁw*wkyo(A¢)®3/3!79w*7rk70 and
Rago = [V gty Dyrnr,o( D)% = Vs By 0Aul /4D 0- (88)

The first term in (87) clearly satisfies Assumption 3(c)(d). The terms in Rsky belong to one of the
following three groups: (i) the term associated with A3, (ii) the term associated with /\f;, (iii) the
other terms. These terms satisfy Assumption 3(c)(d) because the term (i) is bounded by |v||t(¢), )|
because A3 = \,[\2 +b(04)/\i/12] - ()\ib(a)))\u)\o/m, the term (ii) is bounded by g)\z from Lemma
6(a), and the terms in (iii) are bounded by |¢||t(1, 7)| because they either contain An or a term of
the form )\L)\f;/\g with ¢ +j 4+ k = 3 and 4, j # 3. Similarly, the terms in R4y satisfy Assumption
3(c)(d) because they either contain An or a term of the form )\L/\f,/\g with ¢4+ j+k =4 and @ # 4.
This proves that ry o(7) satisfies Assumption 3(c)(d), and the stated result is proven. O

Proof of Proposition 11. The proof is similar to the proof of Proposition 3(c) of Kasahara and
Shimotsu (2015). Let (Y, da) = arg max(y p\co,, x0,n (¥, 0, &) denote the MLE of (¢, 0) for
a given a. Consider the sets ©} = {\ € O, : |\, > n"/8(logn)~!} and 62 = {\ €
Oy : M\ < nY%(logn)7'}, so that ©y = ©L U O2. For j = 1,2, define (2, 00) =

arg max(w,g)e®¢x®g,Ae6§£”(w’ 0,a,§). Then, uniformly in «,

bn(tas B 0,€) = max { £a (D4, 04, 0, ), a2, 82,0, €)

Henceforth, we suppress the dependence of &a, O, €tc. on a.
Define By, (tA(A, 0, ) as in (83) in the proof of Proposition 9 but using ¢(1, 7) and s, defined in
(33) and (36) and replacing ¢y in (83) with ¢)(A, o, &). Observe that the proof of Proposition 9 goes
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through up to (84) with the current notation and that G, and Z, are continuous in g. Further, ¢! =
O,(n~"*(logn)?) because ?1(;\})2 = 0,(n~1/?) froAm Proposition 10(a) and ]XH > n~/8(logn)~t.
Consequently, By, (v/ntx(A, 0", ) = Bon(v/nta(AL, 8%, @) + 0p(1), and, uniformly in «,

26 (1, 6,0, €) — Lon(Do)] = max{Bon (Vita(\', 8", a)), By (VA (X%, 8%, )} + 0p(1).  (89)

We proceed to construct parameter spaces /N\ia and ]\?\a 0 that are locally equal to the cones
A} and Aig defined in (38). Define ¢(e) := a(1 — a), and denote the elements of ty(M, ¢/, )
corresponding to (34) by

A]gzﬂ @](5‘@2

o Ao
00— | 5 | ot | O B

Bu BTk

e W

fugs) v(Xg)

Note that AL = O,(n=3/8logn) and 5\% = 0,(n"3/8logn) because (fha,%#) = 0,(n~1/?) from
Proposition 10(a) and ];\}L| > n~'/8(logn)~'. Furthermore, 2, = c(a)(A2)% + o,(n~1/?) because

|5\,%| < n~Y¥(logn)~!. Consequently,

%’g = Op(n_l/Z), 1?11}(/3) = Op(n—l/Z)7 52}2 _ C(a)b(@)(;\b)4/12 + Op(n_l/Q),

A (90)
£22 = c(a)(A5)? + op(n~1/?).

In view of this, let t\(A, 0, @) := (42, o, tgz,t/’Bu, t’ﬂa, t;(ﬂ))’ € R%, and consider the following sets:

A}\a ={ta(\, 0, ) : tou2 = c(oz)g)\i,tw = c(a) A\ Ao, ty2 = c(a)b(a))\ﬁ/u,
tgu = c(@)AgAu, tgo = 0,t,(g) = 0 for some (A, 0) € O\ x O,},
/E\ag ={ta(N 0,a) 1ty = C(a)g)\i,tw = c(a) A\, ty2 = c(a))\g,
taun = c(a)Ag Ay, tge = (@) A, ty(p) = c(a)v(Ag) for some \ € O, }.

A}, is indexed by a but does not depend on g because B, (-) in (89) does not depend on p,
whereas ]\?\QQ is indexed by both a and o because Byz,(-) in (89) depends on ¢?. Define (AL, L)
and A2, by Bon(v/ntr(A, 05, a)) = maXtA(A,g,a)efxiaBOn(\/Htko‘? 0,)) and By (v/ntr(X2,, 0,a)) =
maXﬁA(N@:@)Ei\inQ"(\/ﬁt)\()V 0, O‘))

Define W, (a) := max{Bo,(v/ntr(AL, 8L, a)), SUpP,co, BQn(\/ﬁt,\(:\zg, 0,))}, then we have

20 (1), 6, ,€) = bon(D0)] = Wa () + 0 (1), (91)
uniformly in o € ©,, because (i) Wi, (a) > 2[ln (¥, 6, v, ) — Lon(U0)] + 0,(1) in view of the definition
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of (AL, 3L, 32,), (89), and (90), and (i) 2[6u () 6, @, €) — lon(J0)] >
max{2[max, {n (1, M Bh @, €), SUP e e, maxy (1), )\o@ 0,,6)} = 2£on (Do) + op(1) = Wh(a)+op(1)
from the definition of (1&, 0).

The asymptotic distribution of the LRTS follows from applying Theorem 1(c) of Andrews
(2001) to (BOH(\/ﬁt,\(S\é,@é,a)),BQn(\/ﬁtA(S\ig,Q, «))). First, Assumption 2 of Andrews (2001)
holds trivially for By, (v/nt(A, 0,a)). Second, Assumption 3 of Andrews (2001) is satisfied by (81)
and Assumption 7. Assumption 4 of Andrews (2001) is satisfied by Proposition 10. Assumption 5*
of Andrews (2001) holds with By = n'/2 because A}, is locally (in a neighborhood of ¢ = 0, A = 0)

equal to the cone A%\ and A2 s locally equal to the cone Ai , uniformly in ¢ € ©,c. Consequently,

Ao
Wh(a@) A sup,ep, max{l{o = 0HEY) Tanoths (fig)’I,\.ngf?\g} uniformly in « from Theorem 1(c) of
Andrews (2001), and the stated result follows from (91). O

Proof of Proposition 12. The proof is similar to that of Proposition 10. Expanding lxg,, — 1 five

times around * and proceeding as in the proof of Proposition 10 gives

lﬁkmo -1= t(1/}7 7T>/Sgk + rk,O(ﬂ-) + Ukxq (wv 77)7 (92)

where t(1, 7) is defined in (45), s, is defined in (46) and satisfies

VoD rk,0/ Py k0
Ck0(0)/2
me,j/S!f,j
Vu4fl;k/4!fl;k
Y)\BA”T%p*nk,O/a(l — )Py k0
Vaors)Pyrrk,0/ (1 — @)Pyerio

Sok =

and

Teo(m) @ = Kk,o(W)IT(W + Ai,o@, ™) (Ay)®?
+ Ai[vxgm*nk,o/ﬁwm,o —a(l—a)(1 —-2a)V s fr/ fr]/3!
+ )‘i[v)\ﬁﬁw*wk,O/T)w*wk,O —a(l—a)(1—6a+60*)V . fr/fil/4,

where Uke, (¥, ), Pyrk.m, and the terms in the definition of 74 o(7) are defined similarly to those
in the proof of Proposition 10.

The stated result is proven if the terms on the right hand side of (92) satisfy Assumption
3. t(yp,m) = 0 if and only if ¢ = ¢*. sy and wupg, (1, m) satisfy Assumption 3 by the same
argument as the proof of Proposition 10. For 7 (), first, szo(@, 7)'(A)®5 satisfies Assump-
tion 3(c)(d) from a similar argument to the proof of Proposition 10; /\z is dominated by )\i or
Ay, because infoca<i max{|l — 2al,|1 — 6 + 6a|} > 0. Second, similar to (87) in the proof
of Proposition 10, write Apo(m)'7(¢) = V(ue2)Dyrnro(A1) /2Dy rr o + Rspy + Ry, where
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Rspy = [V (p@3) Pt 0 (A1) &3 — szﬁw*wk,w\i]/3!ﬁw*wk,o’ and Ryxy is defined as Rypy in (88).
The term V(n@,z)/ﬁw*ﬂkp(An)®2/2!i)w*ﬂk70 clearly satisfies Assumption 3(c)(d). The terms in Rzpy
satisfy Assumption 3(c)(d) because they contain either An or )\i)\g or )‘u)‘% or )\%. The terms in
Ry satisfy Assumption 3(c)(d) because they either contain An or a term of the form )\L)\é_i with
1 <i < 3. The last two terms in ry o(7) satisfy Assumption 3(c)(d) from Lemma 7. Therefore,
r,0(m) satisfies Assumption 3(c)(d), and the stated result is proven. O

Proof of Proposition 13. The proof is similar to the proof of Proposition 11. Let (1[1,@, Q) =
arg MaX(y, o a)cO, xO,x0, In(¥; 0, @, §) denote the MLE of (¢,0,). Consider the sets el =
A€ Oy 1 [\ > nH%ogn)7!} and ©2 = {\ € Oy : [\, < n”Y%(logn)"'}, so that
O, = ©l U 3. For j = 1,2, define (1&7,@7,&3') = argmax
so that £, (1), 6, &, €) = maxjeq1 0y b (¥7, 97, 69, ).

Define By, (tA(A, 0, )) as in (83) in the proof of Proposition 9 but using ¢(1, 7) and s, defined in
(45) and (46) and replacing ¢, in (83) with y()\, 0, @). Observe that ¢! = O,(n~"/%(logn)?) because
@1(5\‘1‘)2 = Op(n~'/?) from Proposition 12(a) and |5\}L| > n~1/%(logn)~'. Using the argument of the
proof of Proposition 11 leading to (89), we obtain

w,g,a)e%xegx@a,xe@ifn(wv 0 ),

2000 (¥, 8, &, €) — Lon(9p)] = max{Bon (vVntr(A, 81, aY)), By, (Vita(A2, 6%,6%)} + op(1).

We proceed to construct parameter spaces that are locally equal to the cones Ai and Ai 0 defined
in (47). Define ¢() := a(1 — ), and denote the elements of t5(\, 47, &) corresponding to (45) by

t]gyz (X2 .
I | =2a)0°
BN, & a7) = | By | =e@) | (1647 +6(a7)) (M)
2j AV
Ty s
Py J
tf)(ﬁ) v()\ﬂ)

Note that 5\}3 = Op(n~1/3 logzz) because t}v’u = 0,(n~"?) from Proposition 12(a) and \XH >
n~1/6(logn)~'. Furthermore, AZ] < n~1/6(logn)~'. Therefore,

t}f(ﬂ) = OP(”_l/Z)a tN;Zﬁ’ = Op(n_l/Q)v 7%4 = Op(n_l/z).

In view of this, let t\(X, 0, @) 1= (t,,2,t,8,t,1, tlﬁu’ t;(ﬁ))’ € R?\, and consider the following sets:

tau = c(@) Ay, tyg) = 0 for some (A, 0, a) € Oy x O, X B4},
]\iag = {0\ 0,0) ity = c(a)gx\i,tua =t =0,
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Define (X!, 5!, a') and :\?XQ by Bon(vntx(AL, 64, at)) = maxm(/\7&&)6;\&30”(\/515)\()\, 0,a)) and
Bon(v/ntr(A2,, 0,)) = maxtk()\@a)e/iinQn(\/ﬁt)\(/\,g, @)). A} is locally (in a neighborhood of
0 =0, A =0) equal to the cone A} because, when |1 —2a| > 1/2, we have tya/tys — 0as Ay — 0,
and when |1 —2a| < 1/2, we have 1 —6a+ 602 < 0. Aiag is locally equal to the cone Aig uniformly
in p € O,.

Define W, := max{Bon(v/ntr(A, 5, 61)),5Up (4 p)co. x0, Ben(VItr(A2,, 0,0))}.  Proceed-
ing as in the proof of Proposition 11 gives 2[¢, (v, 0, &, &) — lon(Y0)] = Wy + 0p(1), and the
asymptotic distribution of the LRTS follows from applying Theorem 1(c) of Andrews (2001) to

(BOH(\/ﬁtA(S‘laéladl))aBQn(\/ﬁtA(S‘g¢mQ> Oé)) 0

Proof of Propositions 15, 16 and 17. Let N}, denote an arbitrary small neighborhood of Y7,, and
let 1[1m denote a local MLE that maximizes £, (¢, Tm,En+1) subject to ¥y, € N5. Proposi-
tion 14 and Y* = UM 1% imply that £,(Ons 11, Ene 1) = MaXyne1.... Mo fn(Yrms T, Entg 1) With
probability approaching 1. Because ¢; ¢ N for any £ # m, it follows from Proposition 14 that
TZJm - ¢:n = Op(l)'

Next, £n(Vm, TmsEng+1) — (W), Tm, Enp+1) admits the same expansion as £, (¢, 7, &) —
Lo (Y*, 7€) in (22) or (37). Therefore, the stated result follows from applying the proof of Propo-
sitions 9, 11, and 13 to Kn(qﬁm, Ty EMo+1) — Kn(ﬁMo,fMo) for each m and combining the results to
derive the joint asymptotic distribution of {En(@@m, Ty EMo+1) — En(éMO, Ey) Mo O

m=1"

Proof of Proposition 18. Observe that Proposition 2 holds under Py. .
Proposition 8, 10, and 12. Because ¥, = (n},, Ay, 7,)" € N/ by choosing ¢ > |h, it follows from

nr'n

under the assumptions of

Proposition 2 that
d]P)'&nny /! 1 / _
sup |log P h'vn(Sgnk) + ih o h| = opy, (1), (93)

where s, is given by (20), (36), and (46) for the models of non-normal distribution, het-
eroscedastic normal distribution, and homoscedastic normal distribution, respectively. Further-

more, vy (Sp,k) = Go under Pj. . where G, is a mean zero Gaussian process with cov(G,, Go,) =

n
On,xo

to exp (N(u,0?)) with p = —(1/2)W'I,h and 0% = WI,h so that E(exp (N(u,0?))) = 1. Con-
sequently, part (a) follows from Le Cam’s first lemma (see, e.g., Corollary 12.3.1 of Lehmann
and Romano (2005)). Part (b) follows from Le Cam’s third lemma (see, e.g., Corollary 12.3.2 of
Lehmann and Romano (2005)) because part (a) and (93) imply that

Vn(s nk) T Z,h
dIP%n v 4N L 0/ , /g ,Q under Py, .
log Syl ~wzn ) \WI, WI,h ’

Tor0o := limp_so0 Eg+(sp, ks’g ,x)- Therefore, dP / dPy. ., converges in distribution under Pj.
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Proof of Proposition 19. The proof follows the argument in the proof of Proposition 9. Observe
that h, = 0 and hy = /nt\(A\y, m,) hold under Hy,. Therefore, Proposition 18 holds under ]P’gmgc0
implied by Hi,, and, in conjunction with Theorem 12.3.2(a) of Lehmann and Romano (2005),
Propositions 6 and 8 hold under Pgnm. Consequently, the proof of Proposition 9 goes through if
we replace Gy pnon = Ginp With G pon = Gane + (Zrge — I)\Wln_llmg)h)\ = Gxno + Irnoh, and

the stated result follows. O

Proof of Propositions 20 and 21. The proof is similar to the proof of Proposition 19. Observe that,
for j € {a,b}, h% = 0 and hi = /ntx(An, ™) + o(1) hold under H{n Therefore, Proposition 18
holds under jj , ~implied by H fn, and the stated result follows from repeating the argument of

proof of Proposition 19. 0

Proof of Proposition 22. We only provide the proof for the models of non-normal distribution with
My = 1 because the proof for the other models is similar. The proof follows the argument in
the proof of Theorem 15.4.2 in Lehmann and Romano (2005). Define C, as the set of sequences
{nn} satisfying \/n(n, —n*) — hy, for some finite h,. Denote the MLE of the one-regime model
parameter by 7j,. For the MLE under Hy, v/n(7, —n*) converges in distribution to a Py«-a.s. finite
random variable by the standard argument. Then, by the Almost Sure Representation Theorem
(e.g., Theorem 11.2.19 of Lehmann and Romano (2005)), there exists random variables 7, and
Bn defined on a common probability space such that 7, and 7, have the same distribution and
V(i —n*) — iln almost surely. Therefore, {7, } € C, with probability one, and the stated result
under Hy follows from Lemma 8 because 7, and 7, have the same distribution.

For the MLE under Hj,, note that the proof of Proposition 19 goes through when h,, is finite
even if h, # 0. Therefore, \/n(7, —n*) converges in distribution to a Py, -a.s. finite random variable
under Hi,. Hence, the stated result follows from Lemma 8 and repeating the argument in the case
of Hy. O
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12.2 Auxiliary results

12.2.1 Definition of ®-\°) [F] and @g(G) [F]

9T (5) T(6)
Define
Z(5) o 1 c [0 o 03 04 0
Cyrs) ] = 10 (Z(5))] > ( 9 {%iﬁe@%ﬁ,%@%@ F ]
(€1,...,5)€0(Z(5))
Cc la {4 le C {4 Ce
D A AR A B
({a,b,c},{d,e})€0s
(I)ﬁg%) [F] == E [or, Poto Pors Doty Pots Porg | F) — Z ES [dot, Pot, Por. Por, | F| Eg [¢9te Dot ‘ ]-"]
({a,b,c,d},{e,f})€Eos1
B Z ES [¢0ta¢9tb¢9t6’f ] Ej [¢9td¢9t6¢0tf|]: ]
({a’bvc}v{dvezf})€0'62
+2 > S [dot, dor, | F ES [Por. dora FIEG [dor. dot, | F]
({avb}v{crd}v{evf})GUGB
(94)
where

= 10 partitions of {1,2,3,4,5} of the form {a,b, c}, {d, e},

= 15 partitions of {1,2,3,4,5,6} of the form {a,b,c,d},{e, f},

/2 = 10 partitions of {1,2,3,4,5,6} of the form {a,b,c},{d,e, f},

(3) /6 = 15 partitions of {1,2,3,4,5,6} of the form {a,b},{c,d}, {e, f}.

o5 := the set of
o061 := the set of
o2 1= the set of

063 := the set of

12.2.2 Missing information principle

The following lemma extends equations (3.1)-(3.2) in Louis (1982), expressing the higher order
derivatives of the log-likelihood function in terms of the conditional expectation of the derivatives
of the complete data log-likelihood function. For notational brevity, assume 9 is scalar. Let
VIUY) := Vi log P(Y;9) and VIU(Y, X) := VJlog P(Y,X;¥). For random variables Vi,...,V,
and Y, define the central conditional moment of (V{*---V;) as E¢[V]*--- VY] := E[(V1 —
E[Vi[Y])" -~ (Vy — E[V, Y ][V
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Lemma 1. For any random variables X and Y with density P(Y,X;6) and P(Y;0),

VUY) =E[VUY,X)[Y], V2(Y)=E[VY,X)|Y]+E[(VLY, X))?|Y],
V(YY) =E [V(Y, X)|Y] + 3E° [V2(Y, X)V(Y, X)|Y] + E° [(Ve(Y, X))?|Y],
V(YY) =E [VH(Y, X)|Y] +4E° [V3(Y, X)VE(Y, X)|Y] + 3E° [(V2U(Y, X))?|Y]
+ 6ES [V20(Y, X)(VA(Y, X))2|Y] +E° [(Ve(Y, X)) Y] = 3{E°[(VL(Y, X))?|Y]}",
VoY) =E [V2UY, X)|Y] 4 5E° [VH(Y, X)VL(Y, X)|[Y] + 10E° [V2((Y, X)V2U(Y, X)|Y]
+ 10E° [V30(Y, X)(VE(Y, X))?|Y] + 15E° [(V2(Y, X))2VL(Y, X)|Y]
+ 10E° [V2€(Y, X)(¢(Y, X))*|Y] — 30E° [V24(Y, X)VE(Y, X) \Y] E° [(VU(Y, X))?|Y]
+E° [(VU(Y, X))?|Y] — 10E° [(VL(Y, X))*|Y] E° [(Ve(Y, X))*|Y],
VoY) =E VoY, X)|Y]
+6E° [V2U(Y, X)VU(Y, X)|Y] + 15E° [V*(Y, X)V2(Y, X)|Y]
+ 15E° [VA(Y, X)(VL(Y, X))?|Y] + 60E° [V3e(Y, X)V2U(Y, X)VL(Y, X)|Y]
+ 10E° [(V2£(Y, X)) yY] + 15E° [(V2£(Y, X))?|Y]
+ 20E° [V2L(Y, X)(VU(Y, X))?|Y] — 60E° [V3e(Y, X)VE(Y, X)|Y ]| E [(VE(Y, X))?|Y]
+ 45E° | v% Y, X))2(VA(Y, X))2|Y] =90 {E [V24(Y, X)Ve(Y, X)|v] )
[ X))
v

o~~~

— 45E° [(V2(Y, X)) |Y] EC [(Ve(Y, X))?|Y]

+ 15E° [V2U(Y, X)(VL(Y, X))*Y] — 90E® [V2e(Y, X)(VE(Y, X))?|Y] EC [(Ve(Y, X))?|Y]
— 60E° [V2(Y, X)VE(Y, X)|[Y] E° [(VE(Y, X))*|Y]

+E° [(VUY, X))®|Y] — 15E° [(VL(Y, X)) Y] E° [(VL(Y, X))*|Y]

— 10 {E° [(VA(Y, X))?|Y]}” + 30 {E° [(Ve(Y, X))?|Y]}°.

A/_\

provided that the conditional expectation on the right hand side exists. When P(Y;0) in the left
hand side is replaced with P(Y'|Z;0), the stated result holds with P(Y, X;60) and E[-|Y] on the right
hand side replaced with P(Y, X|Z;0) and E[|Y, Z].

Proof of Lemma 1. The stated result follows from a direct calculation and relations such as
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VL P(Y;9)/P(Y;9) = E[V),P(Y, X;9)/P(Y, X;9)|Y] and

Vieg f=Vf/f, Vlogf=V*f/f—(Vlogf)?
Vilog f=V2f/f =3V2fVI/f2+2(Vf/ ),
Viog f =V f/f =4V V)2 =3(V [/ )2+ 12V f(Vf)*/ > = 6(V [/ ),
Volog f =V f/f =5V V[ 2 =10V fV2F/ 2+ 20V° F(V )/ £
+30(V2F)PVF 2= 60V2F(V )P/ £+ 24(V £/ 1),
Volog f =VOf/f —6V° [V [/ f* =15V V2 f/ 2+ 30V F(Vf)?/ 2 = 10(V° f)?/ £
+ 120V3 fV2FV /2 — 120V F(V )2/ f4 + 30(V2f)3 ) 3
—270(V2f)*(V )/ f* +360V° F(V £)*/ f° = 120(V £)°/ £, (96)
V3f/f =V3log f +3V2log fVlog f + (Vieg f)?,
VAif/f = Vilog f +4V3log fV1og f + 3(VZ1og f)?2 4+ 6V21og f(Viog f)? + (Viog f)3,
Vof/f=V’log f+5Vtlog fVlog f + 10V log fV?log f + 10V3 log f(V log f)?
4+ 15(V2log f)*Vlog f + 10V21log f(Vlog £)3 + (Vlog f)°,
VOf/f=VClog f+6V°log fVlog f + 15V*1log fV?log f + 15V log f(V log f)?
+10(V31log f)* 4+ 60V3log fV2log fV log f + 20V3 log f(V log f)?
+15(V21og f)® 4 45(V?log f)*(Vlog )% + 15V2log f(V log f)* + (Vlog f)S.

For example, V3/(Y) is derived by writing V3¢(Y") as, with suppressing 4,

V3(Y)

_VPP(Y) VPP(Y)VP(Y) P(Y)

T PY)  TPY) POY) 2( P<Y>>

-2 M -0 [T P [T M e e )

=E [V3(Y, X) + 3V2U(Y, X)VU(Y, X) + (V{(Y, X))?|Y]
—3E [V2(Y, X) + (VU(Y, X))2|Y] E[VEY, X) Y] + 2 {E[VL(Y, X)[Y]}°,

and collecting terms. V*4(Y), V?¢(Y), and V®/(Y) are derived similarly. O

12.2.3 Auxiliary Lemmas

Henceforth, we suppress the conditioning variable W from the conditioning sets and conditional
densities unless confusions might arise. The following Lemma provides bounds on @ggj-gj)[]—"] de-
fined in (7) and (94) and is used in the proof of Lemma 3. For j = 2,...,6, define |¢!|s :=

SUPye A+ SUDg o/ 19" (9, Y, 2, Yi—1,2')| and H¢ ) Hoo = Z(@l £;)e0(Z(4)) H¢ti”oo e H¢t5 loo-

.....

Lemma 2. Under Assumptions 1, 2, and 4, there exists a finite nonstochastic constant C that does
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not depend on p such that, for allm’ > m >0, all —=m <t; <ty <--- <t; <n, all) € N* and
allz e X, and j =2,...,6,

(a) @5 (Y20l < Cpltztim Dt mtam vty =ty =D 70N )

() |¢I(jgj [?ﬁm,X—mZQCH <Cp(t2 t1—1)4V(ts—ta—1) 4 VoV (t—tj—1— 1+”¢’Ir((§))”°0’

(0) @G Y s X = 2] = O YT )| < Cplmtt=De 670

(d) |Og) Y X = ) = @GP Y, X = ]| < Cpmt =D 6700
(&) 12350 (Y7 ] = @50y Y1l < Cpt 710 670 o

(F) @5 Y s X = 2] = O YT X = a]| < Cpln 1) o) o

Proof of Lemma 2. Recall supge p sup, . |0°(9, Yy, 2, Y1, 3") — Ey[¢' (9, Y, 2, Y1, ') | F]|

< 2SUpyeprs SUP, 4 |6 (9, Yy, 2, Yy_1,2")| for the conditioning sets F that appear in the
lemma. Define ¢}, := ¢Z‘(19,Z§_1) - Eﬁ[gbi(ﬂ,zz_lﬂ?im], so that ]Efg[gbf;ﬁflqb?tﬁ?ﬁm] =
Ey [¢ﬁt1 q}ﬁ@j \?ﬁm] Henceforth, we suppress the subscript ¥ from qbf% and q%t.

Recall that d)i(z?,Zi,l) depends on X; and X;_;. Parts (c) and (d) follow from Lemma 10(a)
and the fact that, for any two probability measures 1 and 2, SUD ¢(3):max, |f(z))<1 | | f(2)dpa(z) —
[ f(@)dpa(z)| = 2||p1 — pellrv (see, e.g., Levin et al. (2009, Proposition 4.5)). Similarly, parts
(e) and (f) for t; < n — 1 follow from Lemma 10(b), and parts (e) and (f) for ¢; = n follow from
@50 1 < 201650) [

We proceed to show parts (a) and (b). The results for j = 2 and j = 3 follow from Lemma
10(c) and

E(th - Eth) tee (th - Eth) = COV[th, (th - EXtQ) s (Xt]. - EXt])]
= OV[(th — Eth) s (Xt — Eth—1)7 th].

Jj—1

(97)

Before proving the results for j > 4, we collect some results. For a conditioning set F = ?ﬁm or
{Y", X =z}, Lemma 10(c) and (97) imply that

—m>

c 0 e S :
|Eﬁ[¢fi“'¢t;|ﬂ| < Cplta—ti—D+V(ti—t; 1)+||¢§_((Jj))||oo’ (98)
c 4 c Y cr b 4
E§[6i; - 60| F] = Egle; - duf | FIEG [0y} -+ ) |7
7 0 05 it — j .
= [covy[gf! -+ opk, Gyt G| FI| < Cplen =D g7 forany 2 <k <j—2. (99)
9T 74)Hoo from (98)
and we have <I> () )[.7:] < Cp(;3 t; ) +||g1>7_2 4)||£C>Q from ertznged)f#%fg& ;ieﬁened in (7) as @f#%%e‘* =
covylr &2, Sradril F] — E5len o | FIE (042 0t | F] — B (¢! 612 FIEG[6,2¢1:| F] and applying (99).
Parts (a)-(b) for j = 5 follows from a similar argument.

For j = 6, first, @ﬁgﬁj()@ [F] is bounded by Cp<t2_t1_1)+v(t6_t5_1)+qufIr((%))Hoo from (98). Second,

Parts (a)—(b) hold for j = 4 because @ ) [F] < Cpltz—ta=D+V{ta—ta— 1)+||9252(4)
Z(
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write @000 [F] = A1+ Ay, where Ay = E§ (b1, b1, b1, Gr, b5 G16 | F) —ES (b1, b1 01| F EG [0, 015815 | F]

and A denotes all the terms on the right hand side of @§$26)[f] in (94) except

for A;. Ay is bounded by Cplta—ts— 1)+||¢I(6)Hoo from (99), and A is bounded by

Cplta=ta=l) +||¢T(6)||oo from (98). Therefore, <I>Z(6() )[]-'] is bounded by Cp(t4_t3_1)+H¢fIr((%))|\oo.

Third, write @77 [F] = Bi + By + Bs, where Bi = E[oyb1,01,01,00 01| F] —
B0t 0ts 015 06| FIEG (01, 01| F1, Ba = = 212,00} {e.f}) e Xo1 B[ P1020 Oty | FIEG (D1, be, [ F] +

22" (fabhfedh fe, 1) e Xos BoOta Oty | FIEG (D101, | FIEG [dr. bt | F], where Xy is the set of (;") = 6 par-
titions of {1,2,3,4,5,6} of the form of {1,2,¢c,d},{e, f} and

Xe3 := {({1,2},{3,4},{5,6}), ({1,2},{3,5},{4,6}), ({1,2},{3,6},{4,5})}, and B3 denotes all the
terms on the right hand side of @%@?6) [F] except for B;+Bs. By is bounded by Cp(ts—t2=1D+ ||¢§_((%)) oo
from (99).  We can write By as Y119 cdy fe.fh)exe t B9 00 Pradr. Oty FIEG (D1 0, | F] +
B[, b1 | FIEG [, bt | FIEG (D1, 0t | F1} = = 3 (12,0 (e exXon EG [Pt Bty | Flecovs bor, Pots» Por. Doty | F,
then this is bounded by Cplts=2=D+|¢7 ()|, from (99).  Finally, By is bounded by
Cplts=t2—1) +||qb7_(6)||C>O from (98). Therefore, (I)ﬂg’()e) [F] is bounded by Cp(t3_t2_1)+”¢§—((%))|]oo. From

a similar argument, @ 79,(7,()6) [F] is also bounded by Cp(t5_t4_1)+|]¢§.((%))|loo, and parts (a) and (b)
follow. O

We next present the result that extends Lemmas 13 and 17 of DMR. Let 77(1) = qi,; 77(2) = ¢i, /2
if i1 = g and (g, A qiy)/2 if i1 # io; TI3) = gi, /3 if i1 = i9 = i3, (¢i, /2 N qiy/4) if i1 # 12 = i3,
(@i A Giy N is)/3 if 41, d2, i3 are distinct; rryy = g, /4 if i1 = i2 = i3 = i4, (g A qi5)/4 if
i1 # d2 = i3 = Q4 OV i1 = dg # i3 = i4; T7(5) = ¢i, /D if i1 = ia = i3 = s = i5; (¢iy /3 N @, /6) if
i1 # 1g = i3 = ig = i5; T7(6) = q1/6.

Lemma 3. Under Assumptions 1, 2, and 4, for j = 1,...,6, there exist random wvariables
K10y, AMz(j) 1}y € L0 (Py«) such that, for all 1 <k <n and m’ >m >0,

—I(j .
(o) e |Am h9) = By ()] < By O+ ) pl D2 s
reX veN™
(b) sup sup |A m(ﬁ) - Afgzn/ ()| < Kz (k + m) T pllktm=1/1340] p g s
:L‘EX 196./\/‘* Yy I’

(C) SUPy, >0 SUPzex SUPyeN* |AJ gcj)mm( )’ +Supm>0 SUPyeN* ‘A_] k m( )’ < MI (9).k Py«-a.s., (d) Uni-
formly in 9 € N* and x € X, A} gznz(vﬂ) and A]Igzn(ﬁ) converge Py«-a.s. and in LG (Py«) to

ATD) () € L' (Pg+) as m — oo.

Proof of Lemma 3. First, we prove parts (a) and (b). Recall T(j) = (t1,...,t;). For part (a),
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define, suppressing the dependence of A7 ;) on ¥ and 7 (7),

HLU) ?’jm X, =z — oY) ?Ijnl,X—m _ ‘
e B R e
P ﬁEFg ) [Y X _m = a;} — 797.( [Y } otherwise,

ATGek) = Atytyt;_y kek , Where TG, k) :=(T(G—40),k,-- k).

£ times £ times

Then, we can write A} gj)m L(0) — Z]Igzn(ﬁ) = 2 7()efomt1,..kp A7) = Da + Ay + Ac, where

7j—1 .
j
A, = > A7y, Dpi=) <£> > ATk Bei= A, k),

T()e{-m+1,....k—1}J =1 T(i—0)e{—m+1,.. .k—1}—*

and Ay := 0 when j = 1. From Lemma 2 and the symmetry of Az, A, is bounded by

CBj7k7mMZ( 7 where

i)

,k,m>
Bjgm = Z (m+t1—1)+ A p(t2—t1—1)+ A A p(tj—tj—1—1)+ A p(k—l—tj—1)+>
—m+1<t; <ta<--<t;<k—1
— Z <p(t1—1)+ A p(tz—t1—1)+ A A p(tj—tj—1—1)+ A p(k+m—1—tj—1)+> ,
1<t1<to<---<tj<k+m-—1
() .
My = max 6 eoll9 e - 07 llc

—m+1<ty,...,t; <k—-1

From (t — 1)} > |¢/2] and Lemma 12, Bj 4 ,, is bounded by Cja(p)pl-+m—1/4],
We proceed to derive a bound on M ( ) . Define [|¢%]|% == Y2 (|t| V1) 72| ¢i]|%. When i =

iy =+ =i, it follows from Lemma 13 that M) < (k+m)T ¢ [, and 675 € L0 (Bye)
from Assumption 4. In the other cases, observe that, if ,y,2 > 0, we have zy < 22 + 92,

zyz < x84+ 37 + 2%, zy < 2t + y*/3, and zy < 2® + y?/2 from Young’s inequality. Using this result

and Lemma 13, we can bound M 10) by

g.km
j=2and iy #iy: (k+m)2([lo" 1%, + ¢ ]1%),
j=3and iy # iy = i3 (k+m)* (o™ 1% + 92115,

j =3 and iy, i, i3 are distinct = (k +m)?([|o" |3, + 19”15 + 9712,
j=4and iy #iy =13 =1i4: (k+m)* (9" 15 + 62115,
j=4and iy =iy #iz=iy: (k+m)3([lo" 15 + 6" 115),

j=>5and iy # iy =i3 =14 =15 (k+m)* (o™ 1% + 9115

Therefore, from Assumption 4, A, is bounded by the right hand side of part (a). From
Lemmas 2 and 12, Ay is bounded by Czj_lz m+1<tl<_,_§tj4§k71(p(m“l*l“ A plta=ti=D+ A

A p(k_tﬂ'*l_l)Jr)MjZJgng < Cpltm=1)/4G-1] pr: ,gllm Similarly, A, is bounded by
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Cplltm=1/4G=D] pp 12]421 ., and part (a) of the lemma follows.

For part (b), deﬁne, for —m' +1<ty,...,t; <k,

5 @I(j()])[?k X gy =] — @gg()j)[?ﬁ:nll, X_p =a|, if max{ti,....t;} <k,
T3G),m z = _
v @I(J()])[Ylim X o = 1), otherwise,

and define D) , similarly. Then, we can write ATV (0) = ZT (efomt1,...kp PTG)ma and

]7k7m7z .....

(i
Ajﬁi)m/’x(e) = ZT(j)e{im/J’»l’.“’k}j D’T(j),m/,m = Ad + Ae, where Ad = ZT(j)G{ferl,...,k}j DT(j),m’,x

and ' i i
j . —-m —m
_ ; (2) S oY Y Y D

ti=—m/+1 tp=—m/4+1tpy1=—m+1 tj=—m+1

By the same argument as part (a), ATY) (0) — Ay is bounded by the right hand of part (a). For

Jik,m,x
A, observe that, with M; := maxi</<; (‘é),

k

7 —m —m —m k
A <MD > D> o X > > DT

{=1t1=—m'+1to=—m'+1 tp=—m/+1tpr1=—m+1 tj=—m+1
k

—-m k
<jiM; Y Yoo > Prome

ti=—m/+1to=—m'+1 tj=—m/+1

—m

<Mt N Yo DGl

t1=—m/+1t1<ta<--<t;<k

From Lemma 2, if t; < --- < t;, we have |D7-(j ymr ol < CIHE; < k}(p (t2—=t1=1)+ A plti=ti-1=Ds A
S A pR IO L Tt = kY (plzh e AL A pli - )]||¢ ||OO Hence, part (b) follows
from Lemma 14.

For part (c), observe that sup,,-qSup,ey Supyep~ |4 16) (9)] < A+ B, where A :=

J,k,m,x
z 73 .
SUDy 50 SUP e v SUPgen- [AT ), (9) — ALY (9)] and B = sup,cysupgen |ATY) (9] A is
bounded by Kz(; )k7pwf D/1340) from part (b). B does not depend on m and is distributionally

(9)

equivalent to sup,cy SUPyepr+ ]A] 15 1.(¥)]- This is bounded by sup,ex Supye - |A]Z.(1j?€71 L) —

AJI(lj())x( )| + SUpLcx SUPgen= \Ajl())m(ﬁ)]. The first term is in L"ZG) (Py+«) from part (b), and
the second term is in L"7@)(Py«) from the definition of A} %Zn o(9).  Therefore, there exists
Mz(jyp € L@ (Py+) such that A+ B < Mz(j)x, and part (c) holds in view of part ( ) Part (d)
follows from parts (a)—(c) because parts (a)—(c) imply that {AJ kmx( ) }m>0 and {AJ X m( ) tm>0
are uniform L"Z0)(Pys)-Cauchy sequences with respect to 9 € N* that converge to the same limit

and L(Py«) is complete. O

Lemma 4. Under Assumptions 1, 2, and 4, there exist random wariables {Kjy}p_, €
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L(HE)W/E(]P’W) and p € (0,1) such that, for all1 <k <n and m’ >m >0,

k1
Po(YelY )
- —1
Po- (YY)

~k—1 _ ~~k—1
pﬁ(Yk|Y 7X—m = ':U) . (Yk’Y ) < Kkkarmil.

—hil | S
pﬂ*(Yk|Y vam:l‘) Po (YY)

sup
JeN*

< Ky, sup sup
rEX YEN*

Furthermore, these bounds hold uniformly in x € X when ﬁﬂ(Yk\?]:nl) and Dy« (YHY’:,LI) are
replaced with pﬁ(Yk‘Y_m/ X_ v =1z) and pﬂ*(Yk|Y_m X o =1T).

Proof of Lemma /. The first result follows from noting that ﬁﬁ(Yk’?ﬁ:nl) = D (o108 EX2 99(Yi|Yr_1,zr)
X qg, (Tr—1, k) Py (T 1|?k_1) € [o_Gys, 0'+G79k] and using Assumption 4(b). For the second result,
observe that \pg(Yk\Y X_m =) — pﬂ(Yk|Y )] < Z (51 2) EX2 99 (Y| Yr_1,78)q9, (Tr_1, T1)

% [Py (ar-1[Y,

follows from Lemma 10(a). The second result then follows from writing the left hand side as

X_m =1x) — Py(zp— 1\Y ] < pM*m=lo, Gyp/o_, where the second inequality

—m

S A k1 k1
po(YilY X = 90) Po(YalYZ,,) N Po(YelYZ,)) Do (Y| Y ) — Pﬁ*(Yk|Y X o =1x)
- p——
o (Y00 X = ) Py (YY) o (Y0 X = )

i

noting that pg(YH?li:nl,X,m = z) > 0_Gyg, and using the derived bounds. The results with
pg(Yk\?]:,}/, X_py = x) and py- (Yk]?]:nl,,X_m/ = x) are proven similarly. O

The following result originally appeared in equations (59)—(60) of Kasahara and Shimotsu

(2015). We state this as a lemma for ease of reference.

Lemma 5. Let f(u,0?) denote the density of N(u,0?). Then

a1V, f(0,0) if k=1,
2V ,2f(0,0) 4 2¢2V 2 f(0,0) if k =2,
V)\k f(Cl/\u, CQ)\Z) = 2
! Au=0 clv 5 f(0,0) + 6c1¢2V 52 £(0,0) if k=3,
4 f(0,0) +12c22V 2 £ (0,0) V2 £(0,0) + 1263V 54 £(0,0)  if k = 4.

Proof of Lemma 5. Observe that a composite function f(\,, h(),)) satisfies V)\;ﬁf()\ﬂ,h()\u)) =
(V. + V) FF(Au, b(w))u=n, = Z?:o (?)V/\ﬁ—jujf()\u, h(u))]u=»,- Further, because V,,;u?|,—0 = 0
except for j = 2, it follows from Faa di Bruno’s formula that V,;f (cl)\u,c2u2)| Ap=u=0 18 0 if
j=1,3,is 2¢aV £(0,h(0)) if j = 2, and is 12¢3V2£(0, h(0)) if j = 4. Therefore, the stated result
follows. O

Lemma 6. Suppose the assumptions of Proposition 10 hold. Then, there ezist g1, 02,03 € (0, o)
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such that, for all k > 1,

_ ~~k—1 k—1
V)\ipw*ﬂ-(YHYo ) \Y VA3p1/J*91a(Yk|YO )

(a - — =0
Pyr (YelYo ) Pw*gla(YMYo )
o VP MY D, oy VePur (Yo )
Dy (VY5 ) Buer (Yl Y5 )
Vo VaBraaVilYe ) VVaePpepaVilY5 )
T PeaaVilYs ) PugaYil Yo )
Proof of Lemma 6. Part (a) holds if
VrrBp0a Vil Yo )/Bye0a (il Yo 1) =0, (100)

k-1

because (i) V,\spw*ga(Yk\Yo Yo

_ k-1 _
)= VsgPiaali¥5 ) = VTsgporga OGlTs e for 2 € (0,0) rom
the mean value theorem and (ii) Py« Qa(Yk|YO ) does not depend on the value of p.

We proceed to show (100). Note thatV xs Py« (Yk|?0 )/pw* (Yk\YIS 1) Vi log@p*w(Ylﬂ?g)—
) = 0. Let Vi = Vi, logg; with

Vs log By (YE 1Y) from (96) and Vapy..(Yil Yo '

Vi = V5. Observe that

Vs 108 Py+0a (YY) = ZEw*Oa [V b

Yo +3 Z Z Eyeoa V26, V1,

t1=1ta=1

?’g]
+ Z Z Z Ey+0a [

t1=1ta=11t3=1

. (101)
=3 Eyeoa [Vi’w: 3V 4 VOV
t=1

?’g}

k
* * |7k
= ZEw*Oa [VAﬁgt /9 ‘Yo} ’

t=1

where the first equality follows from Lemma 1, the second equality holds because (i) X is serially
independent when ¢ = 0 and (ii) V¢ = dy, V. f;/f; and V2{; = dgtVth [fF—(du N ff ) f)?, and
(iii) Eyxoa [dlt\?lg] = Ey+0a [dgﬂ?ﬁ] = 0 from (30), and the third equality follows from (96) The
right hand side is 0 from (30), and hence part (a) is proven.

For part (b), from a similar argument to part (a), the stated result holds if

k-1

_ - k-1
V,\ﬁpw*Oa(YHYo )/pw*()a(YHYo

)—b(a)V,\gﬁWOQ(YH?O )/Pw*Oa(YHYo )- (102)

_ ~ k-1
Observe that V)\4pw*0a(Yk|Y0 )/pw*oa(Yk|Y0

from (96), Vpyer(Yil Yo '

) = V1 108 D0 (Y[ Y0) = Vs 10g D00 (Y5 ' Y0)

) =0, and V; log pw*OQ(YHYS Y = 0. A similar derivation to (101)
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gives

k
_ < R ——
Vs 10g D0 (Y[ Y0) = 51 Ey+0a [v)\ﬁgt /9t ‘Yo] : (103)
=

(102) follows from (103) because (i) V)\gﬁw*OQ(Yk|?§_1)/]3¢*0a(Yk\?§_1) = Ey~ [VAggﬂ?g] from a

similar argument to (18) and (ii) Ey«oq [VAﬁg;‘/gﬂ?g] = b(a)Ey~ [V/\gg;ﬂ?]g] from (30). Therefore,
part (b) is proven. O

Lemma 7. Suppose the assumptions of Proposition 12 hold. Then, there exist 1,02 € (0, 0) such
that, for all k > 1,

—k-1 —k-1
Vs Dyern (Y| Yo ) Vafi  VoVasPyrgaYelYy )
(@) —F —— = a(l—a)(l—2a) ’}* Bpo—rt 2t
Pw*w(Yk\Yo ) k p¢*§1a(Yk|Yo )
—k-1 —k-1
V 4]3 *ﬂ.(Yk|Y ) v * V V 4]3 * > (Yk- Y )
B T8 L~ a1 - a)(1 - 6a + 6a?) wfi |, e Py e 7!710 .
Py (YelYo ) fr Pyrgsa Yl Yo )

Proof of Lemma 7. The proof is similar to the proof of Lemma 6(a). From an argument similar to
the proof of Lemma 6, the stated results hold if

_ k-1, _ —k—1
(A) VagByoaYi ¥ )/ ByoaVil X5 )

_ k-1, ,_ k-1
(B) V,\gpw(Ja(Yk‘Yo )/P¢*0a(Yk‘Yo )

ol —a)(1=2a)V s fi/ fii,
a(l —a)(1 —6a +60°)V . fi/ fr.

Observe that equalities (101) and (103) in the proof of Lemma 6 still hold under the assumptions
of Proposition 12 if we use (44) in place of (30). Consequently, (A) and (B) follow from (43), (44),

and the argument of the proof of Lemma 6, and the stated result follows. O

Lemma 8. Suppose that the assumptions of Propositions 9 hold. Let C,, be a set of sequences {n, }
satisfying /n(nn, —n*) — hy for some finite hy. Let Py = [];_; fx(nn,0) denote the probability
measure under 1, with A, = 0. Then, for every sequence {n,} € Cy, the LRTS under {P} }

converges in distribution SUPyeo, (f’)\gI,\.nngO given in Propositions 9.

Proof of Lemma 8. Observe that ¥, := (7, Mn, An) = (7,7" 4+ hyy//n, 0) satisfies the assumptions
of Proposition 18. Therefore, Proposition 18 holds under ¥, with vy, (Senk) —a N(Zoh,Z,) with
h = (h},0)" under P} . Furthermore, the log-likelihood function of the one-regime model admits

a similar expansion, and log(dPy /dPp.) = hyvn(sgx) — (1/2)hTyhy + 0p(1) holds under P} .

Therefore, the proof of Proposition 9 goes through by replacing G,, with ng = {G,f" ] =

Gon + Zoh. In view of Gzn = Gyn + I,h, and Gﬁgn = Gxon + Lryohy, we have Gf{mm = G&Qn
IAngIn_lG?m = Gon — IMQIn_lG,m = G)on- Therefore, the asymptotic distribution of the LRTS
under PJ, is the same as that under ., and the stated result follows. ]
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12.2.4 Bounds on difference in state probabilities and conditional moments

Lemma 9. Suppose X1, ..., X, are random variables with maxi<;<n E|X;|9 < C for some ¢ > 0
and C € (0,00). Then, maxi<i<n | X;| = 0,(n'/?).

Proof of Lemma 9. For any & > 0, we have P(max;<;<y, | X;| > en'/?) < Y 1<i<n PUXG| > enl/9)
<g ipl > 1<i<n E(IXGL{] X > en'/9}) by a version of Markov inequality. As n — oo, the right
hand side tends to 0 by the Dominated Convergence Theorem. O

The following Lemma extends Corollary 1 and (39) of DMR and an equation on p. 2298 of DMR,;
DMR derive these results when t; = t5 and t3 = t4 and W”"

", is not present. For two probability

measures p; and pg, the total variation distance between p; and pg is defined as ||u1 — pol|7v =

sup g |1 (A) = p2(A)]. |-z satisfies sup o< sy<i | [ f(@)dpa (@) = [ f(x)dpa(2)] = [lpa—pallzv-
In the following, we define V" := (Y, ,W", ), and we let #m@_p, denote “X_,, = z_,,.”

Lemma 10. Suppose Assumptions 1-2 hold and ¥, € ©,. Then,
(a) For all —m < t; < to with —m < n and all probability measures 1 and ps on B(X),

Z Py, (Xﬁ € [, V)i (2-m) — Z Py, (Xﬁ € |, V) (2 —m) < phtm.
T_mEX T_m€EX TV

(b) For all —=m <t; <ty <n-—1,

< ’n*l*tQ .
TV P

— -1
o, (XE2 € V7 0om) = P, (XE2 €V )|
The same bound holds when x_,, is dropped from the conditioning variables.
(c) For all —m < t; <ty <tz <tg with —m < n,

HPﬁx(Xg € WX% € '|vim’x—m) _Pﬁm(xif € ’Vﬁmvx—m)Pﬂm(X% € "Vﬁmvx—m)HTV < ptS_t2‘

The same bound holds when x_,, is dropped from the conditioning variables.

Proof of Lemma 10. We prove part (a) first. We assume ¢; > —m because the stated result holds
trivially when ¢; = —m. Observe that Lemma 1 of DMR still holds when W?”  is added to
the conditioning variable because Assumption 1 implies that {(Xk,?k)}zozo is a Markov chain
given {W;}?2,. Therefore, {X;};>_, is a Markov chain when conditioned on {Y",,, W", 1 and
hence Py, (X2 € AIVL,,2-m) = 3, cx Po, (X2 € Xy, = 20y, V,)po, (€0, [V,, 2-m) holds.
From applying this result and the property of the total variation distance, we can bound the
left hand side of the lemma by ||}, 3 po,(Xy, € AV ) () — Yoe . cx Do (Xt €
V", 2 —m)p2(z_m)||7v. This is bounded by p1+™ from Corollary 1 of DMR, which holds when
W is added to the conditioning variable. Therefore, part (a) is proven.

We proceed to prove part (b). Observe that the time-reversed process {Z,_i}o<k<ntm 18
and that Wj, is independent of (X’Sil,?]gil) given ngl.

Markov when conditioned on W7
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Consequently, for k = n,n — 1, we have Py, (X;? € A|V’im,x_m) = th2ex Py, (X}2 € AlXy, =
xtz,thm, )P, (azt2|Vlim, Z_p,). Therefore, from the property of the total variation distance, the
left hand side of the lemma is bounded by [Py, (X, € [V, T—m) — Py, (X4, € - \V,m ) ||V -
This is bounded by p"~!~%2 because equation (39) of DMR p. 2294 holds when W", is added to the
conditioning variables, and the stated result follows. When x_,, is dropped from the conditioning
variables, part (b) follows from a similar argument with using Lemma 9 and an analogue of Corollary
1 of DMR in place of equation (39) of DMR.

Part (c) follows immediately from writing the left hand side of lemma as sup, g [Py, (Xt ¢

1
AV" L a )Py, (X}: € BIV",,, X2 € A) =Py, (X}! € B|V",,,2_m)]| and applying part (a). [

—m> T —m>

12.2.5 The sums of powers of p

Lemma 11. For allp € (0,1),¢c>1,q>1, and b > a,

= _ - ¢ 1+ 1)pl—a)/(c+1)q]
S (pl=ev/eal p ple=nral) a )fi_p

t=—o00

— u e (e + 1)pl=a)/(c+1)a]
Sl p plo-t/ea)) ( )fi_p .

t=—00

IN

)

IA

Proof of Lemma 11. The first result holds because the left hand side is bounded by

L(a+be)/(c+1)] 0
Z pL(b—t)/qJ + Z pL(t—a)/ch
t=—o00 t=|(a+bc)/(c+1)|+1

< gpltb—latbo)/(etDItal /(1 — py 4 cqplillatbe)/(etD]+1=al/ea] yq _ )
< q(1 + ¢)pt-a/letDal yp — ).

[(act+b)/(c+1)] p L(b—1)/cq]

=—00

The second result is proven by bounding the left hand side by Zt
+ Zt:[(ac+b)/(c+1)J+l pL( @)/4) and proceeding similarly.

The following lemma generalizes the result in the last inequality on p. 2299 of DMR.

Lemma 12. Forallpe (0,1),k>1,g>1, and n >0,

Z ( ti/a) p plltz=t)/al g o A plte—ti-1)/a) o pun—tk)/qJ) < Ciq(p)p\"/?H4),

where Ciq(p) == ¢"k(k + 1)!(1 — p)~*.

Proof of Lemma 12. When k = 1, the stated result follows from Lemma 11 with ¢ = 1. We first
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show that the following holds for k£ > 2:

k—1 n— k
3 <put27n>/qj Ao A plte—ti-1)/al /\pun—tk)/qJ) <4 (k + 1)tpltn—t/ qJ. (100

— k-1
t1<to<--<tp<n (1-p)

We prove (104) by induction. When k = 2, it follows from Lemma 11 with ¢ =1 that

Dbty (pllta=t)/al A pln=t2)/aly < 9qpl(n=t1)/24] /(1 — p) giving (104). Suppose (104) holds when
k =¢. Then (104) holds when k = ¢ + 1 because, from Lemma 11,

3 <pL(tz—t1)/qJ A plts=te)/al n o p pllteri—to/al o pun—tm)/qj)
t1<ta<-<ty<ty11<n
<3 [ pltmialn S <pL(t3*t2)/QJ Ao A pllesi=tafal pun—tm)/qJ)
to=t1 t2§~~~§t5+1§n

-1 n

¢ 0 (ta=t1)/a] 5 pl(n—t2)/1q]
< 2—t1)/q 2)/€q
T (=p)t (p h >

to=t1

IN

q“(¢+ 1)!pL(n—t1)/(z+1)qJ
(1—-p)* ’

and hence (104) holds for all k£ > 2. We proceed to show the stated result. Observe that

3 ( ta/a) p plta=t)/a) o . A plite—ti-1)/a) A pun—tm/qJ)
0<t1<to<--<tx<n
n/2 n—t1
<2y 3 3 < Lt/a) p plltz=ti)/al g .o p pllte=te-1)/a) pun—tk)/qJ)

t1=0t; <to<---<tp_1<ty tp=t1

n/2 n—t1

=2%" 3 3 ( (t=t)/a) A ... p plts—ti-1)/a) 5 pun—m/qJ)

t1=0t; <to<---<tp_ 1<ty tp=01
n/2

<2y 3 <pL(t27t1)/qJ Ao A plls—tizn)/a) o punftk)/qJ) ,

t1=011<ta < <tp_ 1<t <n

where the first inequality holds by symmetry, and the subsequent equality follows from n —t; > t;.
From (104), the right hand side is no larger than ¢*~1(k + 1)!(1 — p)(1=R) ZZ/jopL(”_tl)/k‘U <
¢"k(k + D)1 — p)~Fpln/2kd]  giving the stated result. O

The next lemma generalizes equation (46) and p. 2294 of DMR, who derive a similar bound
when £ =1, 2.

Lemma 13. Let aj > 0 for all j. For all positive integer £ > 1 and all k > 1 and m > 0, we have
MAX 1<ty ty<k Gty - A, < (K +m)F1Ay, where A :=>7° _ (|t| v 1) 2af

Proof of Lemma 13. When ¢ = 1, the stated result follows from max_,,11<¢<i a: < Zfzfmﬂ ar =
Ef:_mﬂ(]ﬂ VDR VD) 2a < (k4+m)2 Y2 (It| v 1)"%2a;. When ¢ > 2, from the Hélder’s
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inequality, we have max_,, 1<t <..<t,<k Qt, Aty - - G, < (Ef:_mﬂ ar)t = [Ef:_mﬂ(\t\ V 1)2/K(]t| vV
1))’ < [ (e DY DD (Y 1) ] < [+ m) DA = (k4
m)E_HAg. =

The following lemma generalizes the bound derived on p. 2301 of DMR.

Lemma 14. For o >0, ¢ > 0, and ¢y > 0, define c3g(p®) := > .2 _opteltliales,. For all p € (0,1),
E>1, and 0 <m <m/,

—m

Z Z <pl(k—1—t6)/QJ /\pL(tﬁ—tS)/QJ /\pL(ts—t4)/QJ /\pL(t4—t3)/QJ/\
777777 (105)

pllts=t2)/al p pllt2—ta /qJ) ﬁ | (k—1+m)/2qaz] 00 ( 1/2(17) ﬁ ( 1/4aj>’

where (a;,b;) are defined recursively with (as,bz) = (1,1) and, for j > 3, aj41 = 4a;j(aj+b;)/(2a;—
1) and bjy1 = a;(4b; —1)/(2a; — 1). a; and b; satisfy aj,b; > 3/2 for all j. Direct calculations
using Matlab produce a7 = 334.5406.

Proof of Lemma 1. First, observe that the following result holds for a,b > 1/4, t; < 0, and
tj,ti+1 =t

ti t t da + 1)t; 2a — 1)t
(a)lftjgw? then ’ |<CL(CL—|— )g+1+(a )1—tj,
a+b 4a 4a(a + b) (106
) it t; > atjrittn Gl 7t Ca(db— Dt + 2a+ 40+ Dty
= a+b da ~ a da(a +b)

(a) holds because (i) when ¢; < 0, we have t; < (atjy1 + t1)/(a +b) = (4a — 1)t;/4a < [a(4a —
Dtjt1 + (da — 1)tq]/4a(a + b) = —t;/4a < [a(4a — 1)tj11 + (4a — 1)t1]/4a(a + b) — t; and a(4a —
Dtjr1+(“da—1)t; <a(da—1)tj+ (da— 1)t +2a(tjr1 —t1) = a(4a+1)tj41 4+ (2a—1)ty; (i) when
tj >0, we have t; < (atj;1+1t1)/(a+b) = (da+1)t;/4a < [a(da+1)tj11+ (da+1)t1]/4a(a+b) =
tj/4a < [a(4a + 1)tj1 + (da + 1)t1]/4a(a + b) — t; and (4da + 1)t; < (2a — 1)t;.

(b) holds because (i) when ¢; < 0, we have t; > (atjq1 + t1)/(a +b) = (4b+ 1)t;/4a >
[a(4b+ 1)tj41 + (4b+ 1)t1]/4a(a+b) = —t;/4a < btj/a — [a(4b+ 1)tj41 + (4b+ 1)t1]/4a(a + b) and
a(4b+1)tj 11+ (4b+1)t1 > a(4b+1)tj 1+ (4b+1)t1 —2a(tj41—t1) = a(4b—1)tj41+ (2a+4b+1)ty; (ii)
when t; > 0, we have t; > (atjy1+t1)/(a+b) = (4b—1)t;/4a > [a(4b—1)t; 11+ (4b—1)t1]/4a(a+
b) = tj/4a < btj/a — [a(4b — 1)tj41 + (4b — 1)t1]/4a(a + b) and a(4b — 1)tj41 + (4b — 1)t; >
a(4b — 1)tj1 + (20 + 4b + 1)ty.

We proceed to derive the stated bound. It follows from (a) and (b) and |z +y| > |z] + |y]
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that, with &; = (ajtj41 + t1)/(a; + b)),

k
3 <pu 1=t)/a) p plbst; 1)/%) o,
t]-:—m’-l—l
aj(4bj—1)t; 11— (2a,;—1)t aj(daj+1)tj 1 +(2aj -ty t; it‘7aj(4bj71)tj+1+(2aj+4bj+1)t1
S pL 4aj(aj+bj)q J Z pL 4aj(aj+bj)q qJ + Z pLu.jq J 4aj(n,j+bj)q J
tj<t; t;>1;
a;(4b;—1)t; 11— (2a;—1)t1
J J J J
bi+1tj+1—t
= pL a1 JC;?Z <p1/4aj> . (107)

Observe that aj11 > 2a; > 2 and bj1 > 2b; — (1/2) > 3/2 for all j > 2. Therefore, we can apply
(106) and (107) to the left hand side of (105) sequentially for j = 2,3,...,6. Consequently, the left
hand side of (105) is no larger than

—m

b7(k 1)—tq
Z PL @74 JCm H (P1/4aj)~

t1=—m/+1

Observe that |t1| < k—1—2t; —m because t; < —m = —t1; < =2t —m < k—1—2t; — m. From
b7(k—1) >k —1and |t1] <k —1— 2t; —m, the sum is bounded by

—m

k—1—t k—14m —m k—1-2t1—m k—14+m
Z plom J01151 pl zera ) Z pl e qul < pl 7o Jc‘f‘; (/)1/2“7),
t1=—m/+1 t1=—m'/+1
and the stated result follows. O

12.2.6 Derivation of 9,11, = (9, 70) and Tpm = (0m, Om, ¢),)

Define Jyo := {1,..., Mo} \ Jm, and let p; and p; denote PﬂMOH(Xk = j) and ]P)ﬁj‘wo (X = 79),
respectively.

We parameterize the transition probability of X} in terms of its stationary distribution and the
first to the (m — 1)th rows and the (m + 1)th to the (Mg + 1)th rows of its transition matrix.®
For i € J,, we reparameterize (Dim,Pim+1) t0 DiJ = Dim + Pim+1 = PﬁMOH(Xk € Jm|Xk—1 = 1)
and pypjis = Pim/(Pim + Pim+1). Furthermore, we reparameterize (pm,pm+1) in the stationary
distribution to p;y = Py + Pmt1 = I%M()H(Xk € Jm) and py; = P/ (Pm + Pmt1) = PgM()H(Xk =
m|Xy € Jp). Therefore, with A and V denoting “and” and “or,” the transition probability of X}

. . M
is summarized by 0M0+1,1‘ = ({pij}iejm/\jejmov {pijapim|iJ}i€7m7 {pm-I—l,j }j:017 {p] }jejmo ’ pJ7pm|J)'

8Suppose a Markov process has a transition probability P and stationary distribution 7 whose elements are strictly
positive. If m and all the rows of P except for one are identified, then the remaining row of P is identified from the
relation 7P = 7.
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Split Varg41,2 88 Intgt1,0 = (Vs Thpn)', Where

Tm’ " xm

Vam = ({Pij}ieT,njcTmor WPiTYic T, 1Pi}jed g P7)  and

Tam = ({pim|iJ}z‘67m7 {pm-‘rl,j};'wzopme)‘

When the mth and (m + 1)th regimes are combined into one regime, the transition probability

of X}, equals the transition probability of X} under 93,

*
0,%

if and only if Uy = V%, == {pij =
p;; for i EJm A1 <j<m—1);piy =Dpii1 fori € Jpu A(m+2<j < My);piy =p, forice
Jmipj =pj for 1 <j <m—1;p; =pi_ | form+2 < j < Mo;ps=pj,} Tam is the part of az, 410
that is not identified under Hy,.

We proceed to derive the reparameterization of some elements of 7, in terms of (o, o). First,
map Prt1,m a0 Pmt1mt1 t0 Pms1,J 1= Pmtim + Pmtim+1 = Poy, o (Xp € J| X1 =m+1) and
Pt lmlg = Pmtlm/Pmi1,) = ]P)ﬂMOH(Xk =m|Xy € J,Xp_1 = m+1). Let P; and 7y denote
the transition matrix and stationary distribution of Xj restricted to lie in J,. The second row
of Py is given by (pm1,m|ss 1 = Pm+1,m|s), and 7 is given by (pps, 1 — pp|s). From the relation
my = my Py, we can obtain the first row of P; as a function of py, 11 ;s and py, ;. Finally, the

elements of Py are mapped to (0m,, am,) as in Section 6.
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Table 1: Rejection frequencies under the null hypothesis

H() M=1 H() M =2
v @ | ® @
Test Statistic | Model 1 Model 2 | Model 1  Model 2
n =200 LRT 5.83 6.50 4.50 3.73
supTS 5.10 4.67 —
QLRT 4.97 — —
n =500 LRT 4.37 5.33 4.00 3.80
supTS 4.57 5.07 —
QLRT 4.43 — —

Notes: Nominal level of 5%. We use 199 bootstrap samples and 3000 replications for Hy : M =1,
and 1000 replications for Hy : M = 2. For testing Hy : M = 2 using Models 1 and 2, we generate
the data under (5, 1, po2, 0, p11,p22) = (0.5,—1,1,1,0.7,0.7) and

(B, 1, p2, 01,092, p11,p22) = (0.5,—1,1,0.9,1.2,0.7,0.7), respectively.

Table 2: Rejection frequencies for testing Hy : M = 1 under the alternative hypothesis

Model 1 Model 2
(p11, p22) Test Statistic | p1 =0.20 w3 =0.6 w3 =1.0| g1 =020 3 =06 w3 =1.0
(0.25,0.25) | LRT 4.87 46.90 99.63 9.63 955.90 99.60
supTS 6.23 56.43 95.90 16.37 70.97 95.37
QLRT 5.10 8.00 55.27 — — —
(0.50,0.50) | LRT 3.80 7.03 67.87 8.77 22.30 75.13
supT'S 4.07 4.40 4.60 14.70 35.77 35.30
QLRT 4.90 9.40 82.50 — — —
(0.70,0.70) | LRT 4.10 10.23 91.07 9.13 27.37 92.10
supTS 4.57 7.40 26.37 14.90 36.20 43.43
QLRT 5.13 8.53 58.73 — — —
(0.90,0.90) | LRT 5.33 46.87 99.97 10.23 58.37 99.97
supTS 6.77 13.90 4.40 19.10 41.17 35.30
QLRT 4.83 5.63 5.97 — — —

Notes: Nominal level of 5% and n = 500. We use 199 bootstrap samples and 3000 replications.
We set g = —pq for both models, (5,0) = (0.5,1.0) for Model 1 and (8, 01,02) = (0.5,1.1,0.9)

for Model 2.
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Table 3: Rejection frequencies for testing Hy : M = 2 under the alternative hypothesis

Model 1 Model 2
(1, py ps) | (s p2, p3) | (pas 2, pr3) | (1, e, 3)
=(1,0,—-1) | =(2,0,-2) | =(1,0,-1) | = (2,0,—2)
(pll,pgg,pgg) = (0.5, 0.5, 0.5) 5.7 31.2 7.2 39.5
(pll,pgz,pgg) = (0.7, 0.7, 0.7) 7.5 91.3 8.1 98.1

Notes: Nominal level of 5% and n = 500. We set B = 199, 1000 replications. We set

(8,0) = (0.5,1.0) for Model 1 and (5, 01,02,03) = (0.5,0.6,0.9,1.2) for Model 2. For both Model

1 and 2, we set p;; = (1 — p;;)/2 for j # i so that, for example, (p12,p13) = (0.15,0.15) when

p11 =0.7.

67



Table 4: Estimated parameters: the U.S. GDP per capita growth, 1960Q1-2014Q4

Panel A: Model 1 with common variance

M =2 M =3 M =4

Coeff. S.E. | Coeff. S.E. | Coeff. S.E.
p1 | -0.634  0.200 | -0.823 0.151 | -2.348 0.649
wo | 0.951 0.176 | 0.692 0.172 | -0.330 0.179
3 - - 2.023 0.236 | 0.532 0.161
4 - - - - 2.025 0.184
o | 0913 0.053 | 0.752 0.052 | 0.832 0.040
B | 0.787 0.041 | 0.773 0.046 | 0.639 0.053

Panel B: Model 2 with switching variance

M =2 M =3 M=41

Coeff. S.E. | Coeff. S.E. | Coeff. S.E.
w1 | 0377 0.121 | -0.629 0.298 | -0.693 0.287
pe | 0.428 0.175 | 0.624 0.167 | 0.614 0.179
"3 - - 1.838 0.301 | 1.454 0.223
m — - - - 2.244  0.369
o1 | 0.634 0.058 | 1.085 0.163 | 1.008 0.176
oy | 1.495 0.135 | 0.579 0.053 | 0.466 0.077
o3 - - 0.867 0.140 | 0.384 0.070
04 - - - - 0.874 0.156
B | 0.865 0.035| 0.780 0.047 | 0.687 0.051

Table 5: Selection of the number of regimes: the U.S. GDP per capita growth, 1960Q1-2014Q4

Model 1 with common variance Model 2 with switching variance
LRT LRT
My | log-like. AIC BIC LR,  p-val. | log-like. AIC BIC LR, p-val.
1 | -33L.70 669.39 679.58 | 20.86 0.000 | -331.70 669.39 679.58 | 47.41  0.000
2 | -321.27 656.54 680.29 | 27.77 0.000 | -307.99 631.99 659.14 | 22.29  0.010
3 | -307.39 640.77 684.89 | 15.23 0.020 | -296.85 623.70 674.61 | 11.528 0.477
4 | -299.77 641.54 712.81 | 6.57 0.523 | -291.09 630.17 711.62 | 15.02  0.296
5 | -296.49 65497  760.17 - - -283.58  637.15  755.93 -
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Figure 1: The posterior probabilities of each regime (Model 1 with common variance): the U.S.
GDP per capita growth, 1960Q1-2014Q4
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Figure 2: The posterior probabilities of each regime (Model 2 with switching variance): the U.S.
GDP per capita growth, 1960Q1-2014Q4

1,001 mﬂ

I

D

Regime
—1
—2

posterior.probs.smoothed
o
3

—

1960 1980 2000

M=3

ug»Mﬂ

1980 2000

M=4

i 1

m”

| —~
I

2000

Regime
—1
—2
—3

posterior.probs.smoothed
o
3

¢ 3

ST

o
~
o
R —
3
—
—

0.50

0.00

posterior.probs.smoothed

1960

70



	Introduction
	Notation and assumptions
	Degeneracy of Fisher information matrix and non-identifiability under the null hypothesis
	Quadratic expansion under loss of identifiability
	Uniform convergence of the derivatives of the log-density and the density-ratios
	Testing homogeneity
	Non-normal distribution
	Heteroscedastic normal distribution
	Homoscedastic normal distribution

	Testing H0:M=M0 against HA:M=M0+1 for M0 2
	Non-normal distribution
	Heteroscedastic normal distribution
	Homoscedastic normal distribution

	Asymptotic distribution under local alternatives
	Non-normal distribution
	Heteroscedastic normal distribution
	Homoscedastic normal distribution

	Parametric bootstrap
	Simulations and Empirical Application
	Simulations

	Empirical example
	Appendix
	Proof of Propositions and Corollaries
	Auxiliary results
	Definition of I(5)T(5)[F] and I(6)T(6)[F]
	Missing information principle
	Auxiliary Lemmas
	Bounds on difference in state probabilities and conditional moments
	The sums of powers of 
	Derivation of M0+1,x = (xm',xm')' and xm=(m,m,m')'



