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class of safe tests exploiting a weakened version of equilibrium conditions, and show
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1 Introduction

One of the key functions of antitrust authorities is to detect and punish collusion. While the

number of cartels that are actually prosecuted is relatively small, detection and punishment of

cartels are nonetheless important for deterrence. The ability of antitrust agencies to identify

and prosecute cartels can also incentivize members of existing cartels to apply for leniency

programs. Hence, successful detection and punshiment of cartels deter cartel formation and

complement leniency programs.

In the absence of concrete leads, screening devices that flag suspicious firm conduct

may be useful for regulators as a first step in identifying collusion. In this paper, we first

document a bidding pattern from procurement auctions in Japan in which the density of

the bid distribution just above the winning bid is very low. The pattern that we document

implies that winning bids tend to be isolated, an observation that has already been made

elsewhere, and even been used as part of screening programs in some countries.1 We show

that these missing bids indicate non-competitive behavior under a general class of asymmetric

information models. Indeed, this missing mass of bids makes it a profitable stage-game

deviation for bidders to increase their bids.

We expand on this observation and propose a theory of robust data-driven regulation

based on “safe tests,” i.e. tests that are passed with probability one by competitive bidders,

but not necessarily by non-competitive ones. We provide a general class of such tests ex-

ploiting weakened equilibrium conditions, and show that safe tests cannot help cartels: they

necessarily constrain the set of continuation values bidders can use to support collusion.

We illustrate the implications of various safe tests in our data, as well as propose several

explanations for why missing bids may arise as a by-product of collusion.

Our data comes from multiple datasets of public works procurement auctions taking place

in Japan. One dataset, analyzed by Kawai and Nakabayashi (2018), reports data from 90,000

1See Imhof et al. (2016) and Tóth et al. (2014).
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national-level auctions between 2001 and 2006. A second dataset, studied by Chassang and

Ortner (forthcoming), assembles data for 1,500 city-level auctions between 2007 and 2014.

We are interested in the distribution bidders’ margins of victory/defeat. In other terms,

for every (bidder, auction) pair, we are interested in the difference ∆ between the bidder’s

own bid and the most competitive bid among this bidder’s opponents, normalized by the

reserve price. When ∆ < 0, the bidder won the auction. When ∆ > 0 the bidder lost. The

finding motivating this paper is summarized by Figure 1, which plots the distribution of

bid-differences ∆ in the sample of national-level auctions. There is a striking missing mass

around ∆ = 0. Our first goal is to clarify the sense in which this gap — and other patterns

that could be found in data — are suspicious. Our second goal is to formulate a theory of

regulatory response to such data.

Figure 1: Distribution of bid-differences ∆ ≡ own bid−min(other bids)
reserve

over (bidder, auction) pairs.

We analyze our data within a fairly general model of repeated play in first-price procure-

ment auctions. A group of firms repeatedly participates in first-price procurement auctions.
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We assume private values, and rule out intertemporal linkages between actions and payoffs.2

We allow players to observe arbitrary signals about one another, under the private value

assumption. We allow bidders’ costs and types to be arbitrarily correlated within and across

periods. We say that behavior is competitive, if it is stage-game optimal under the players’

information structure.

Our first set of results establishes that the pattern of missing bids illustrated in Figure

1 is not consistent with competitive behavior under any information structure. There is

no stochastic process for costs and types (ergodic or not) that would rationalize observed

bids in equilibrium. We exploit the fact that in any competitive equilibrium, firms must

not find it profitable in expectation to increase their bids. This incentive constraint implies

that with high probability the elasticity of firms’ sample counterfactual demand (i.e., the

empirical probability of winning an auction at any given bid) must bounded above by -1.

This condition is not satisfied in our data: because winning bids are isolated, the elasticity

of sample counterfactual demand is close to zero. In addition we are able to derive bounds

on the minimum number of histories at which non-competitive bidding must happen.

This empirical finding begs the question: what should a regulator do about it? If the

regulator investigates industries on the basis of such empirical evidence, won’t cartels adapt?

Could the regulator make collusion worse by reducing the welfare of competitive players?

Our second set of results formulates a theory of regulation based on safe tests. Like the

elasticity test described above, safe tests can be passed with probability one provided firms

are competitive under some information structure. We show how to exploit equilibrium

conditions to derive a large class of safe tests. Finally, we show that regulatory policy

based on safe tests is a robust improvement over laissez-faire: regulation based on safe tests

cannot hurt competitive bidders, and can only reduce the set of enforceable collusive schemes

available to cartels.

Our third set of results takes safe tests to the data. We delineate how different moment

2We discuss this assumption at length. [XXX sense in which our results extend]
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conditions (i.e. different deviations) uncover different non-competitive patterns. In addition,

we show that the outcomes of our tests are consistent with other proxy evidence for com-

petitiveness and collusion. High bid-to-reserve histories are more likely to fail our tests than

low bid-to-reserve histories. Bidding histories before an industry is investigated for collusion

are more likely to fail our tests than bidding histories after being investigated for collusion.

Altogether this suggests that although safe tests are robust to incomplete information, they

still have bite in practice: they seem to detect collusive industries with positive probability.

Our paper relates primarily to the literature on cartel detection.3 Porter and Zona

(1993, 1999) show that suspected cartel members and non-cartel members bid in statistically

different ways. Bajari and Ye (2003) design a test of collusion based on excess correlation

across bids. Porter (1983) and Ellison (1994) exploit dynamic patterns of play predicted by

the theory of repeated games (Green and Porter, 1984, Rotemberg and Saloner, 1986) to

detect collusion. Conley and Decarolis (2016) propose a test of collusion in average-price

auctions exploiting cartel members’ incentives to coordinate bids. Chassang and Ortner

(forthcoming) propose a test of collusion based on changes in behavior around changes in

the auction design. Kawai and Nakabayashi (2018) analyze auctions with re-bidding, and

exploit correlation patterns in bids across stages to detect collusion. We propose a class of

robust, systematic tests of non-competitive behavior that are guaranteed to improve over

laissez-faire in equilibrium.

A small set of papers study the equilibrium impact of data driven regulation. Cyrenne

(1999) and Harrington (2004) study repeated oligopoly models in which colluding firms might

get investigated and fined whenever prices exhibit large and rapid fluctuations.4 A common

observation from these papers is that data driven regulation may backfire, allowing a cartel

to sustain higher equilibrium prices. We add to these papers by introducing safe tests, and

by showing that regulation based on such tests necessarily restricts the set of equilibrium

3See Harrington (2008) for a recent survey.
4Other papers, like Besanko and Spulber (1989) and LaCasse (1995), study static models of equilibrium

regulation.
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values a cartel can sustain.

Our emphasis on safe tests connects our work to a branch of the microeconomic literature

that seeks to identify predictions that can be made for all underlying economic environment.

The work of Bergemann and Morris (2013) is particularly relevant: they study the range of

behavior in games that can be sustained by some incomplete information structure. A similar

exercise is at the heart of our analysis.5 Our work is also related to a branch of the mecha-

nism design literature that considers endogenous responses to collusion (Abdulkadiroglu and

Chung, 2003, Che and Kim, 2006, Che et al., 2010).

The tests that we propose, which seek to quantify violations of competitive behavior,

are similar in spirit to the tests used in revealed preference theory.6 Afriat (1967), Varian

(1990) and Echenique et al. (2011) propose tests to quantify the extent to which a given

consumption data set violates GARP. More closely related, Carvajal et al. (2013) propose

revealed preference tests of the Cournot model. We add to this literature by proposing tests

aimed at detecting non-competitive behavior in auctions which are robust to a wide range

of informational environments.

Finally, our paper makes an indirect contribution to the literature on the internal organi-

zation of cartels. Asker (2010) studies stamp auctions, and analyses the effect of a particular

collusive scheme on non-cartel bidders and sellers. Pesendorfer (2000) studies the bidding

patterns for school milk contracts and compares the collusive schemes used by strong cartels

and weak cartels (i.e., cartels that used transfers and cartels that didn’t). Clark and Houde

(2013) document the collusive strategies used by the retail gasoline cartel in Quebec. We

add to this literature by documenting a puzzling bidding pattern that is poorly accounted for

by existing theories. We establish that this bidding pattern is non-competitive, and propose

some potential explanations.

The paper is structured as follows. Section 2 describes our data and documents missing

5Also closely related is Bergemann et al. (2017) which studies properties of the first price auction under
arbitrary incomplete information.

6See Chambers and Echenique (2016) to a recent review of the literature on revealed preference.
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bids. Section 3 introduces our theoretical framework. Section 4 shows that missing bids

cannot be rationalized under any competitive model. Section 5 generalizes this analysis, and

provides safe tests that systematically exploit optimality conditions from a weakened version

of equilibrium. Section 6 proposes normative foundations for safe tests. Section 7 delineates

the mechanics of safe tests in real data, and shows that their implications are consistent

with other proxies of collusion. Section 8 concludes with an open ended discussion of why

missing bids may arise in the context of collusion. Proofs are collected in Appendix A unless

mentioned otherwise.

2 Motivating Facts

Our first dataset, described in Kawai and Nakabayashi (2018), consists of roughly 90,000

auctions held between 2001 and 2006 by the Ministry of Land, Infrastructure, Transport

and Tourism in Japan (the Ministry). The auctions are first-price auctions with secret

reserve price, and re-bidding in case there is no successful winner. The auctions invlove

construction projects, the median winning bid is USD 600K, and the median participation

is 10. The bids of all participants are publicly revealed after the auctions.

For any given firm i participating in auction a with reserve price r, we denote by bi,a

the bid of firm i in auction a, and by b−i,a the profile of bids by bidders other than i. We

investigate the distribution of

∆i,a =
bi,a −min b−i,a

r

aggregated over firms i, and auctions a. The value ∆i,a represents the margin by which

bidder i wins or loses auction a. If ∆i,a < 0 the bidder won, if ∆i,a > 0 he lost.

The left panel of Figure 2 plots the distribution of bid differences ∆ aggregating over

all firms and auctions in our sample.7 The mass of missing bids around a difference of 0 is

7Note that the distribution of normalized bid-differences is skewed to the right since the most competitive
alternative bid is a minimum over other bidders’ bids.
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starkly visible. This pattern can be traced to individual firms as well. The right panel of

Figure 2 reports the distribution of bid difference for a single large firm frequently active in

our sample of auctions.

(a) all firms (b) single large firm

Figure 2: Distribution of bid-difference ∆ – national data.

Our second dataset, analyzed in Chassang and Ortner (forthcoming), consists of roughly

1,500 auctions held between 2007 and 2014 by the city of Tsuchiura in the Ibaraki prefecture.

Projects are allocated using a standard first-price auction with public reserve price. The

median winning bid is USD 130K, and the median participation is 4. Figure 3 presents plots

the distribution of ∆ for auctions held in Tsuchiura. Again, we see a significant mass of

missing bids around zero.8

One key goal of the paper is to show that the bidding patterns in Figures 2 and 3

are inconsistent with competitive behavior under any information structure. While this is

different from saying that these patterns are reflective of collusion, we now present some

reduced form evidence relating missing bids to different proxies of collusion.

Figure 4 breaks down the national-level data in Figure 2 by bid levels: it plots the

8Imhof et al. (2016) document a similar bidding pattern in procurement auctions in Switzerland: bidding
patterns by several cartels uncovered by the Swiss competition authority presented large differences between
the winning bid and the second lowest bid in auctions. See also Tóth et al. (2014).
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Figure 3: Distribution of bid-difference ∆ – city data.

distribution of ∆i,a =
bi,a−min b−i,a

r
for bids normalized bids

bi,a
r

below 0.8 and above 0.8. The

missing bids mass of bids in Figure 2 all but disappears when we look at bids that are low

as a fraction of the reserve price.

Figure 5 presents four cases of firms participating in auctions in our national data that

were implicated by the Japanese Fair Trade Commission (JFTC). The four collusion cases

are: (i) firms installing traffic signs; (ii) builders of bridge upper structures; (iii) prestressed

concrete providers; and (iv) floodgate builders.9 The left panels in Figure 5 plot the distribu-

tion of ∆ before the JFTC started its investigation, and the right panels plot the distribution

in the after period. In all cases except (iii), the pattern of missing bids disappears after the

JFTC launched its investigation. Interestingly, court documents show that firms in case (iii)

initially denied the cases against them, and continued colluding for some time during the

after period.

9See JFTC Recommendation and Ruling #5-8 (2005) for case (i); JFTC Recommendation and Ruling
#12 (2005) for case (ii); JFTC Recommendation #27-28 (2004) and Ruling #26-27 (2010) for case (iii); and
JFTC Cease and Desist Order #2-5 (2007) for case (iv).
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(a) Below 80% (b) Above 80%

Figure 4: Distribution of bid-difference ∆ by bid levels – national data. Left panel plots the
distribution of ∆ for bids that were below 80% of reserve price, and right panel plots the
distribution of ∆ for bids that were above 80% of reserve price.

This pattern is not explained by the granularity of bids. One potential explanation

to the missing bids in Figures 2 and 3 is that they reflect roundness in bid increments. Figure

4 rules this explanation out: if missing bids were a consequence of the granularity of bids,

we should see similar patterns across all bid levels.

This pattern is not explained by renegotiation. Another potential explanation is

renegotiation. Indeed, with renegotiation, some firms might have an incentive to bid very

aggressively to later renegotiate prices up.

Our national dataset contains data on renegotiated prices, and allows us to rule out this

explanation. First, Figure XXX shows that the bidding patterns persist even if we focus

on auctions whose prices were not renegotiated up. Second, the way renegotiation works in

these auctions greatly reduces firms’ incentives to bid aggressively with the hope of getting

a higher price: when renegotiation does occur, renegotiated prices depend on the level of the

initial bid.10

10Indeed, if the project is estimated to cost more than initially thought, the renegotiated price is given
by initial bid

reserve price × (new cost estimate).
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Figure 5: Distribution of bid-difference ∆ – cartel cases in national data, before and after
JFTC investigation.
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Our objectives in this paper are: 1) formalize why this pattern is suspicious; 2) delineate

what it implies about bidding behavior and the competitiveness of auctions in our sample;

3) formulate a theory of regulation based on safe tests; and 4) propose possible explanations

for why this behavior may arise under collusive bidding. To do so we use a model of repeated

auctions.

3 Framework

3.1 The Stage Game

We consider a dynamic setting in which, at each period t ∈ N, a buyer needs to procure

a single project. The auction format is a first-price auction with reserve price r, which we

normalize to r = 1.

In each period t ∈ N, a set N̂t ⊂ N of bidders is able to participate in the auction, where

N is the overall set of bidders. We think of this set of participating firms as those eligible

to produce in the current period.11 The sets of eligible bidders can vary over time.

Realized costs of production for eligible bidders i ∈ N̂t are denoted by ct = (ci,t)i∈N̂t
.

Each bidder i ∈ N̂t submits a bid bi,t. Profiles of bids are denoted by bt = (bi,t)i∈N̂t
. We let

b−i,t ≡ (bj,t)j 6=i denote bids from firms other than firm i, and define ∧b−i,t ≡ minj 6=i bj,t to

be the lowest bid among i’s opponents at time t. The procurement contract is allocated to

the bidder submitting the lowest bid at a price equal to her bid.

In the case of ties, we follow Athey and Bagwell (2001) and let the bidders jointly de-

termine the allocation. This simplifies the analysis but requires some formalism (which can

be skipped at moderate cost to understanding). We allow bidders to simultaneously pick

numbers γt = (γi,t)i∈N̂t
with γi,t ∈ [0, 1] for all i, t. When lowest bids are tied, the allocation

11See Chassang and Ortner (forthcoming) for a treatment of endogenous participation by cartel members.
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to a lowest bidder i is

xi,t =
γi,t∑

{j∈N̂t s.t. bj,t=mink bk,t} γj,t
.

Participants discount future payoffs using common discount factor δ < 1. Bids are

publicly revealed at the end of each period.

Costs. We allow for costs that are serially correlated over time, and that may be correlated

across firms within each auction. Denoting by 〈., .〉 the usual dot-product we assume that

costs take the form

ci,t = 〈αi, θt〉+ εi,t > 0 (1)

where

• parameters αi ∈ Rk are fixed over time;

• θt ∈ Rk may be unknown to the bidders at the time of bidding, but is revealed to

bidders at the end of period t; we assume that θt follows a Markov chain;

• εi,t is i.i.d. with mean zero conditional on θt.

In period t, bidder i obtains profits

πi,t = xi,t × (bi,t − ci,t).

Note that costs include both the direct costs of production and the opportunity cost of

backlog.

The sets N̂t of bidders are independent across time conditional on θt, i.e.

N̂t|θt−1, N̂t−1, N̂t−2 . . . ∼ N̂t|θt−1.

Information. In each period t, bidder i gets a signal zi,t that is conditionally i.i.d. given

(θt, (cj,t)j∈N̂t
). This allows our model to nest many informational environments, including

13



asymmetric information private value auctions, common value auctions, as well as complete

information. Bids bt are observable at the end of the auction.

We denote by λ ≡ prob((ci,t, θt, zi,t)i∈N,t≥0) the underlying economic environment, and by

Λ the set of possible environments λ.

3.2 Repeated Interaction and Solution Concept

Transfers. Bidders are able to make positive transfers from one to the other at the end of

each period. A transfer from i to j is denoted by Ti→j,t ≥ 0. Transfers are costly, and we

denote by K
(∑

j 6=i Ti→j,t

)
the cost to player i of the transfers she makes. We assume that

K is positive, increasing and convex. Altogether, flow realized payoffs to player i in period

t take the form

ui,t = πi,t +
∑
j 6=i

Tj→i,t −K

(∑
j 6=i

Ti→j,t

)
.

Solution Concepts. The public history ht at period t takes the form

ht = (θs−1,bs−1,Ts−1)s≤t,

where Ts are the transfers made in period s. Our solution concept is perfect public Bayesian

equilibrium (Athey and Bagwell, 2008). Because state θt is revealed at the end of each

period, past play conveys no information about the private types of other players, as a result

we do not need to specify out-of-equilibrium beliefs. A perfect public Bayesian equilibrium

consists only of a strategy profile σ, such that for all i ∈ N ,

σi : ht 7→ (bi,t(zi,t), (Ti→j,t(zi,t,bt))j 6=i),
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where bids bi,t(zi,t) ∈ ∆([0, r]) and transfers (Ti→j,t(zi,t,bt))j 6=i ∈ ∆(Rn−1) depend on the

public history and on the information available at the time of decision making. We let H

denote the set of all public histories.

We emphasize the class of competitive equilibria, or in this case Markov perfect equilibria

(Maskin and Tirole, 2001). In a competitive equilibrium, players condition their play only

on payoff relevant parameters.

Definition 1 (competitive strategy). We say that (σ, µ) is competitive (or Markov perfect)

if and only if ∀i ∈ N and ∀ht ∈ H, σi(ht, zi,t) depends only on (θt−1, zi,t).

We say that a strategy profile (σ, µ) is a competitive equilibrium if it is a perfect public

Bayesian equilibrium in competitive strategies.

We note that in a competitive equilibrium, firms must be playing a stage-game Nash

equilibrium at every period; that is, firms must play a static best-reply to the actions of

their opponents.

Competitive histories. Generally, an equilibrium may include periods in which (a subset

of) firms collude and periods in which firms compete. This leads us to define competitive

histories.

Definition 2 (competitive histories). Fix a common knowledge profile of play σ and a history

hi,t = (ht, zi,t) of player i. We say that player i is competitive at history hi,t if play at hi,t is

stage-game optimal for firm i given the behavior of other firms σ−i.

We say that a firm is competitive if it plays competitively at all histories on the equilibrium

path.

3.3 Safe Tests

Let H∞ denote the set of coherent full public histories (hi,t)i∈N,t≥0. A test τ is a mapping

from H∞ to {0, 1}.
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Definition 3 (safe tests). We say that τi is safe for firm i if and only if for all λ ∈ Λ, and

all profiles σ such that firm i is competitive, then λ-a.s. τi(h) = 0 for all h ∈ H∞.

We say that τ is jointly safe if and only if for all λ ∈ Λ, and all profiles σ such that all

players i ∈ N are competitive, then λ-a.s. τ(h) = 0 for all h ∈ H∞.

[XXX: connection with expert testing literature Foster and Vohra (1998, 1999), Olszewski

and Sandroni (2008) — even though the cartel would pass the test in equilibrium, it reduces

the profits from running a cartel]

4 Missing Bids are Inconsistent with Competition

In this section, we show how to exploit equilibrium conditions at different histories to obtain

bounds on the share of competitive histories. The first step is to obtain aggregates of

counterfactual demand that can be estimated from data, even though the players’ residual

demands can vary with the history.

[XXX include elements of intuitive discussion with Jeff Ely]

[XXX Foreshadow empirical results in Section 7]

4.1 Counterfactual demand

Fix a perfect public Bayesian equilibrium (σ, µ). For all public histories hi,t = (ht, zi,t) and

all bids b′ ∈ [0, r], player i’s counterfactual demand at hi,t is

Di(b
′|hi,t) ≡ probσ,µ(∧b−i,t > b′|hi,t).

For any finite set of histories H = {(ht, zi,t)} = {hi,t}, and any scalar ρ ∈ (−1,∞), define

D(ρ|H) ≡
∑
hi,t∈H

1

|H|
Di((1 + ρ)bi,t|hi,t)
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to be the average counterfactual demand for histories in H, and

D̂(ρ|H) ≡
∑
hi,t∈H

1

|H|
1∧b−i,t>(1+ρ)bi,t .

Definition 4. We say that set H is adapted to the players’ information if and only if the

event hi,t ∈ H is measurable with respect to player i’s information at time t prior to bidding.

For instance, the set of auctions for a specific industry with reserve prices above a certain

threshold is adapted. In contrast, the set of auctions in which the margin of victory is below

a certain level is not.

Lemma 1. Consider a sequence of adapted sets (Hn)n∈N such that limn→∞|Hn| =∞. Under

any perfect public Bayesian equilibrium (σ, µ), with probability 1, D̂(ρ|Hn)−D(ρ|Hn)→ 0.

[XXX discuss non asymptotic results, and practical implementation as test]

In other words, in equilibrium, the sample residual demand conditional on an adapted

set of histories converges to the true subjective aggregate conditional demand. This result

can be viewed as a weakening of the equilibrium requirement that beliefs be correct. It may

fail in settings with sufficiently strong non-common priors.

The ability to legitimately vary the conditioning set H lets us explore the competitiveness

of auctions in particular subsettings of interest.

4.2 A Test of Non-Competitive Behavior

The pattern of bids illustrated in Figures 1, 2 and 3 is striking. Our first main result shows

that its more extreme forms are inconsistent with competitive behavior.
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Proposition 1. Let (σ, µ) be a competitive equilibrium. Then,

∀hi,
∂ logDi(b

′|hi)
∂ log b′

∣∣b′=b+i (hi)

≤ −1, (2)

∀H, ∂ logD(ρ|H)

∂ρ
∣∣ρ=0+

≤ −1. (3)

In other terms, under any non-collusive equilibrium, the elasticity of counterfactual de-

mand must be less than -1 at every history. The data presented in the left panel of Figure

2 contradicts the results in Proposition 1. Note that for every i ∈ N and every hi,

Di(b
′|hi) = probσ(b′ − ∧b−i < 0|hi)

= probσ(b′ − bi + ∆i < 0|hi),

where we used ∆i = bi−∧b−i

r
= bi − ∧b−i (since we normalized r = 1). Since the density

of ∆i at 0 is essentially 0 for some sets of histories in our data, the elasticity of demand is

approximately zero as well in these histories.

Proof. Consider a competitive equilibrium (σ, µ). Let ui denote the flow payoff of player i,

and let V (hi,t) ≡ Eσ,µ
(∑

s≥t δ
s−tui,s

∣∣hi,t) denote her discounted expected payoff at history

hi,t = (ht, zi,t).

Let bi,t = b be the bid that bidder i places at history hi,t. Since bi,t = b is an equilibrium

bid, it must be that for all bids b′ > b,

Eσ,µ
[
(b− ci,t)1∧b−i,t>b + δV (hi,t+1)

∣∣hi,t, bi,t = b
]

≥ Eσ,µ
[
(b′ − ci,t)1∧b−i,t>b′ + δV (hi,t+1)

∣∣hi,t, bi,t = b′
]

Since (σ, µ) is competitive, Eσ,µ[V (hi,t+1)|hi,t, bi,t = b] = Eσ,µ[V (hi,t+1)|hi,t, bi,t = b′]. Hence,
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we must have

bDi(b|hi,t)− b′Di(b
′|hi,t) = Eσ,µ

[
b1∧b−i,t>b − b′1∧b−i,t>b′

∣∣hi,t]
≥ Eσ,µ

[
ci,t(1∧b−i,t>b − 1∧b−i,t>b′)

∣∣hi,t] ≥ 0, (4)

where the last inequality follows since ci,t ≥ 0. Inequality (4) implies that, for all b′ > b,

logDi(b
′|hi)− logDi(b|hi)

log b′ − log b
≤ −1.

Inequality (2) follows from taking the limit as b′ → b. Inequality (3) follows from summing

(4) over histories in H, and performing the same computations. �

As the proof highlights, this result exploits the fact that in procurement auctions, zero is

a natural lower bound for costs (see inequality (4)). In contrast, for auctions where bidders

have a positive value for the good, there is no obvious upper bound to valuations to play

that role. One would need to impose an ad hoc upper bound on values to establish similar

results.

An implication of Proposition 1 is that, in our data, bidders have a short-term incentive

to increase their bids. To keep participants from bidding higher, for every ε > 0 small, there

exists ν > 0 and a positive mass of histories hi,t = (ht, zi,t) such that,

δEσ,µ
[
V (hi,t+1)

∣∣hi,t, bi(hi,t)]− δEσ,µ[V (hi,t+1)
∣∣hi,t, bi(hi,t)(1 + ε)

]
> ν. (5)

In other terms, equilibrium (σ, µ) must give bidders a dynamic incentive not to overcut the

winning bid.

Proposition 1 proposes a simple test of whether a dataset H can be generated by a

competitive equilibrium or not. We now refine this test to obtain bounds on the minimum

share of non-competitive histories needed to rationalize the data. We begin with a simple
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loose bound and then propose a more sophisticated program resulting in tighter bounds.

4.3 Estimating the share of competitive histories

[XXX: emphasize the point that many histories makes it more difficult to explain the pattern

through mistakes alone]

[XXX: Should we kill this section?]

Fix a perfect public Bayesian equilibrium (σ, µ) and a finite set of histories H. Let

Hcomp ⊂ H be the set of competitive histories in H, and let Hcoll = H\Hcomp. Define

scomp ≡ |Hcomp|
|H| to be the fraction of competitive histories in H.

For all histories hi,t = (ht, zi,t) and all bids b′ ≥ 0, player i’s counterfactual revenue at

hi,t is

Ri(b
′|hi,t) ≡ b′Di(b

′|hi,t).

For any finite set of histories H and scalar ρ ∈ (−1,∞), define

R(ρ|H) ≡
∑
hi,t∈H

1

|H|
(1 + ρ)bi,tDi((1 + ρ)bi,t|hi,t)

to be the average counterfactual revenue for histories in H. Our next result builds on

Proposition 1 to derive a bound on scomp.

Proposition 2. The share scomp of competitive auctions is such that

scomp ≤ 1− sup
ρ>0

R(ρ|H)−R(0|H)

ρ
.
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Proof. For any ρ > 0,

1

ρ
[R(ρ|H)−R(0|H)] = scomp

1

ρ

[
R(ρ|Hcomp)−R(0|Hcomp)

]
+ (1− scomp)

1

ρ

[
R(ρ|Hcoll)−R(0|Hcoll)

]
≤ 1− scomp.

The last inequality follows from two observations. First, since the elasticity of counterfactual

demand is bounded above by −1 for all competitive histories (Proposition 1), it follows that

R(ρ|Hcomp)−R(0|Hcomp) ≤ 0. Second,

1

ρ
[R(ρ|Hcoll)−R(0|Hcoll)] ≤ 1

ρ
((1 + ρ)R(0|Hcoll)−R(0|Hcoll)) = R(0|Hcoll) ≤ r = 1.

This concludes the proof. �

In words, if total revenue in histories H increases by more than κ × ρ when bids are

uniformly increased by (1 + ρ), the share of competitive auctions in H is bounded above by

1− κ.

For each ρ ∈ (−1,∞), define

R̂(ρ|H) ≡
∑
hi,t∈H

1

|H|
(1 + ρ)bi,t1∧b−i,t>(1+ρ)bi,t .

Note that R̂(ρ|H) is the sample analog of counterfactual revenue. A result identical to

Theorem 1 establishes that R̂(ρ|H) is an unbiased estimate of R(ρ|H), whenever set H is

adapted. We have the following corollary to Proposition 2.

Corollary 1. Fix a set of histories H and a scalar ρ∗ > 0, and suppose that scomp ≥ 1− κ

for some κ > 0. Then, there exists constants α > 0 and β > 0 such that, with probability at
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least 1− β exp(−α|H|),

∀ρ ≥ ρ∗,
R̂(ρ|H)− R̂(0|H)

ρ
≤ 2κ.

Corollary 1 gives the following statistical test with significance level 1 − β exp(−α|H|).

Let the null hypothesis be H0 = scomp ≥ 1 − κ for some κ > 0, and let the alternative

hypothesis be H1 = scomp < 1− κ. We reject the null hypothesis if we can find ρ ≥ ρ∗ such

that 1
ρ
[R̂(ρ|H)− R̂(0|H)] > 2κ.

[TODO DATA: maybe add an example]

5 A General Class of Safe Tests

Take as given an adapted set of histories H corresponding to a set of auctions A. Take

as given scalars (ρn)n∈N , with ρn ∈ (−1,∞) for all n ∈ N = {−N, · · · , N}, ρ0 = 0 and

ρn < ρn′ for all n′ > n. For each history hi,t ∈ H, let dhi,t,n = Di((1 + ρn)bhi,t |hi,t). That

is, (dhi,t,n)n∈N is firm i’s subjective counterfactual demand at history hi,t. For any auction a

and associated histories h ∈ a, we denote by ωa = (dn,h, ch, sa) an environment at a, where

sa is a public signal observed by all firms; i.e, a candidate payoff and belief structure at a.

We let ωA = (ωa)a∈A.

Definition 5. A set of histories H ⊂ H is adapted conditional on ωA if and only if for all

firms i and auction a, the event hi ∈ H is measurable with respect to the information of firm

i at hi implied by environment ωA.

For each deviation n, environment ωA = (ωa)a∈A and adapted set of histories Ĥ ⊂ H

define

Dn(ωA, Ĥ) ≡ 1

|Ĥ|

∑
hi,t∈Ĥ

dhi,t,n and D̂n(Ĥ) ≡ 1

|Ĥ|

∑
hi,t∈Ĥ

1(1+ρn)bhi,t<∧b−i,hi,t
.
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We encode our inference problem as a constrained minimization problem. Specifically, given

an objective function u : ωa 7→ U(ωa) ∈ R, and environments ωA = (ωa)a∈A ∈ Ω let

U(ωA) =
∑
a∈A

u(ωa).

For each environment ωA, we let H(ωA) ⊂ H be the adapted set of histories of interest

under environment ωA. For instance, H(ωA) could be the set of competitive histories under

environment ωA.

For any function T : N → R+, let Û denote the solution to the following constrained

optimization problem:

Û = max
ωA

U(ωA) (6)

s.t. ∀n, Dn(ωA, H(ωA)) ∈
[
D̂n(ωA, H(ωA))− T (|H(ωA)|), D̂n(ωA, H(ωA)) + T (|H(ωA)|)

]
.

Proposition 3. Suppose the true environment is ωA ∈ Ω. Then, with probability at least

1− 2|N | exp
(
−1

2
T (|H(ωA)|)2|H(ωA)|

)
, Û ≥ U(ωA).

By using different objective functions, we can solve a variety of inference objectives.

5.1 Maximum Share of Non-Competitive Histories and Auctions

We now use the results in Proposition 3 to provide estimates on the share of competitive

histories in H and the share of competitive auctions in A; i.e., the set of auctions with the

property that is common knowledge among bidders that play is competitive.

At every competitive history h ∈ H, there must exist costs ch and subjective demands

dh = (dh,n)n=∈N satisfying the following conditions:

Feasibility. Costs and beliefs must be feasible, satisfying

ch ∈ [0, bh]; ∀n, dh,n ∈ [0, 1]; ∀n, n′ > n, dh,n ≥ dh,n′ . (7)
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Individual optimality. Bidding bh must be optimal, given cost and subjective believes:

∀n, [(1 + ρn)bh − ch] dh,n ≤ [(1 + ρ0)bh − ch]dh,0 (8)

Economic plausibility. In addition to feasibility and incentive compatibility, one may be

able to impose plausible ad hoc constraints on the bidder’s economic environment at

each history h. We focus on two intuitive constraints on the bidder’s costs ch and

interim beliefs dh = (dh,n):

bh
ch
≤ 1 +m (9)

and

∀n,
∣∣∣∣log

dh,n
1− dh,n

− log
Dn

1−Dn

∣∣∣∣ ≤ k (10)

where m ∈ [0,+∞] is a maximum markup, and k ∈ [0,+∞) provides an upper bound

to the information contained in any signal.12

Correspondingly, given an environment ωa at auction a, we can define the objective

function

u(ωa) =
1

|H|
∑
h∈H

1(dh,ch) satisfy (7), (8), (9), (10)

For each ωA, let

H(ωA) = arg max
Hcomp⊂H

|Hcomp|

s.t. ∀h ∈ Hcomp ∃(dh, ch) satisfying (7), (8), (9), (10).

12To see why, that that log
dh,n

1−dh,n
= log prob(Z|h)

prob(¬Z|h) for Z the event that ∧b−i > (1 + ρn)bh. Hence, k is a

bound on the log-likelihood ratio of signals that bidders get. One focal case in which k = 0 is that of i.i.d.
types.
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be the largest number of histories in H that can be rationalized as competitive. Program

(6) then becomes

Û = max
ωA

|H(ωA)|
|H|

s.t. ∀n, Dn(ωA, H(ωA)) ∈
[
D̂n(ωA, H(ωA))− T (|H(ωA)|), D̂n(ωA, H(ωA)) + T (|H(ωA)|)

]
.

Û provides an upper bound to the share of competitive histories in H.

Alternatively, we can define the objective function to be

u(ωa) =
1

|A|
1∀h∈a, dh,ch satisfy (7), (8), (9), (10).

For each Ĥ ⊂ H, let AĤ ⊂ A the set of auctions corresponding to histories in Ĥ. For each

ωA, let

H(ωA) = arg max
Hcomp⊂H

|AHcomp|

s.t. ∀a ∈ AHcomp , ∀h ∈ a, ∃(dh, ch) satisfying (7), (8), (9), (10).

Program (6) then becomes

Û = max
ωA

|AH(ωA)|
|A|

s.t. ∀n, Dn(ωA, H(ωA)) ∈
[
D̂n(ωA, H(ωA))− T (|H(ωA)|), D̂n(ωA, H(ωA)) + T (|H(ωA)|)

]
.

Û provides an upper bound to the fraction of competitive auctions corresponding to histories

in H.

We have the following Corollary to Proposition 3.

Corollary 2. Suppose that the true environment ωA satisfies (9) and (10), and that the true

share of competitive histories (true share of competitive auctions) is scomp ∈ (0, 1]. Then,
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with probability at least 1− 2|N | exp(−1
2
T (|H(ωA)|)2|H(ωA)|), Û ≥ scomp.

Fix s0 ∈ (0, 1]. The null hypothesis is that the fraction scomp of competitive histories (or

competitive auctions) satisfies scomp ≥ s0, and the alternative hypothesis is scomp < s0. Let

τ safe be a test such that τ safe(H) = 0 if Û ≥ s0 and τ safe(H) = 1 otherwise. We have:

Corollary 3. [safe tests] Suppose function T (·) satisfies exp(−1
2
T (|H|)2|H|)→ 0 as |H| →

∞. Then, τ safe is a safe test.

We make two observations. First, by varying the set H of adapted histories, we can make

test τ safe be safe for a given firm, or for a given industry. Indeed, by taking H to be the

set of histories corresponding to all the bids placed by a given firm i, test τ safe is safe for

firm i. Similarly, we can make τ safe be safe for a given industry by taking H to be the set of

histories corresponding to all the bids placed by firms in that industry.

Second, for finite data, we can choose T (·) to determine the significance level of test τ safe.

For instance, for the test to have a robust significance level of α ∈ (0, 1), we set T (|H|) such

that 2|N | exp(−1
2
T (|H|)2|H|) = α.

5.2 Maximum Lost Surplus

[XXX needs to be revisited]

Assume cartel members allocate contracts efficiently, and use reversion to competitive

Nash as a threat.13 When this is the case, any deviation temptation must be compensated

by reducing the prices faced by the auctioneer. As a result, the sum of deviation temptation

provides a measure of the welfare loss to the auction.

Given an environment ωa, and constraint set C for environments ωa, let

u(ωa) ≡ −
1

|A|
∑
h∈a

[
max
n∈N

[(1 + ρn)bh − ch]dh,n − (bh − ch)dh,0
]
− κ1ωa∈C

13Nash-reversion repeated-game equilibria figure prominently in the applied theory literature (e.g. Bull,
1987, Aoyagi, 2003, Baker et al., 1994, 2002).
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with κ large enough.

U(ωA) provides an estimate of surplus lost by the auctioneer. [XXX this needs more

work]

6 Normative Foundations for Safe Tests

A game of regulatory oversight. We study the equilibrium impact of data driven reg-

ulation within the following framework. From t = 0 to t =∞, firms in N play the infinitely

repeated game in Section 3 – for simplicity, we assume no transfers. At t = ∞, after firms

played the game, a regulator runs a safe test on firms in N based on the realized history

h∞ ∈ H∞. We consider two different settings:

(i) the regulator runs a safe test τi on each firm i ∈ N ;

(ii) the regulator runs a jointly safe test τ on all firms in N .

In case (i), a firm i incurs an un-discounted penalty of K ≥ 0 if and only if τi(h∞) = 1 (i.e.,

if and only if firm i fails the test). In case (ii), all firms in N incur a penalty of K ≥ 0 if

and only if τ(h∞) = 1.14 When K = 0, under either form of testing the game collapses to

the model in Section 3.

For each public strategy profile σ and each public history ht, let Vi(σ, ht) denote firm

i’s expected continuation payoff under σ at ht. For any K ≥ 0, let Σ(K) denote the set of

perfect public Bayesian equilibria of the game with firm specific testing and with penalty K.

Define V(K) to be the set of perfect public Bayesian equilibrium values.

Proposition 4. [safe tests do not create new repeated game equilibria] Suppose the regulator

runs firm specific safe tests. Then, there exists K > 0 such that, for all K > K, Σ(K) ⊂

Σ(0), and hence V(K) ⊂ V(0).

14Since the penalty K is undiscounted, the game is not continuous at infinity whenever K > 0.
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We now give an intuition as to why Proposition 4 holds. Note first that when the penalty

K is large enough (i.e., K > K), any equilibrium of the regulatory game has the property

that, at all histories (both on and off path), all firms expect to pass the test with probability

1. Indeed, at every history, each firm can guarantee to pass the test by playing a stage-game

best reply at all future periods.

Suppose K > K and fix σ ∈ Σ(K). Consider a public history ht, and let β = (βi)i∈N be

the bidding profile that firms use at ht under σ: for all i ∈ N , βi : zi 7→ R describes firm

i’s bid as a function of her signal. Let V = (Vi)i∈N be firms continuation payoffs excluding

penalties after history ht under σ, with Vi : b 7→ R|N | mapping bids b = (bj)j∈N to a

continuation value for firm i. Bidding profile β must be such that, for all i ∈ N and all

possible signal realizations zi,

βi(zi) ∈ arg max
b

Eβ[(b− ci)1b<∧b−i
+ δVi(b,b−i)|zi]− Eσ[τi|ht, b]K

=⇒βi(zi) ∈ arg max
b

Eβ[(b− ci)1b<∧b−i
+ δVi(b,b−i)|zi],

where the second line follows since all firms pass the test with probability 1 after all histories.

In words, strategy profile σ is such that, at each history ht, no firm i has a profitable one

shot deviation in a game without testing. The one-shot deviation principle then implies that

σ ∈ Σ(0).

Let ΣP (0) ⊂ Σ(0) denote the set of equilibria of the game without a regulator with the

property that, for all σ ∈ ΣP (0), all firms expect to pass the test with probability 1 at

every history. The arguments above imply that Σ(K) ⊂ ΣP (0) for all K > K. In fact, the

following stronger result holds:

Corollary 4. For all K > K, Σ(K) = ΣP (0).

We highlight that testing at the individual firm level is crucial for Proposition 4. Indeed,

as Cyrenne (1999) and Harrington (2004) show, regulation based on industry level tests may
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backfire, allowing cartels to achieve higher equilibrium payoffs. Intuitively, when testing is at

the industry level, cartel members can punish deviators by playing a continuation strategy

that fails the test. This relaxes incentive constraints along the equilibrium path, and may

lead to more collusive outcomes.

We now show that, in some settings, data-driven regulation based on safe-tests may not

have such unintended consequences. In particular, we show that running safe-tests at the

industry level does not generate new collusive equilibria if we restrict attention to equilibria

in which deviations are punished by Nash reversion.

Consider the game with joint testing. For each i ∈ N and each value θt−1 of the Markov

state at the previous period, let V NE
i (θt−1) denote the expected discounted payoff firm i

obtains from playing stage-game Nash at every future period.15 For each K, let ΣJ(K)

denote the set of public perfect equilibria Bayesian equilibria of the game with joint testing

and penalty K. Define

ΣRP
J (K) ≡

{
σ ∈ ΣJ(K) : for all histories ht and all i ∈ N, Vi(σ, ht) ≥ V NE

i (θt−1)
}
,

to be the set of public perfect equilibria with the property that firms’ continuation values

are always above competitive payoffs. One reason to focus on equilibria in ΣRP
J (K) is that

such equilibria satisfy a mild form of renegotiation proofness.

Let VRPJ (K) ≡ {(Vi(σ, h0))i∈N : σ ∈ ΣRP
J (K)} denote the set of values supported by

equilibria in ΣRP
J (K). We then have:

Proposition 5. Suppose the regulator runs a joint safe test. Then, there exists K̂ > 0 such

that, for all K > K̂, VRPJ (K) ⊂ VRPJ (0).

Beyond safe tests.

15If the stage game admits multiple stage-game Nash for some value θ, we take the one that minimizes
firm i’s payoff.
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7 Empirical Evaluation

7.1 A Case Study

We start by illustrating our method with the data from the city of Tsuchiura.16 In particular,

we show how different deviations ρ ∈ (−1,∞) affect our estimates of the share of competitive

histories. Throughout the Section, we fix an adapted set of histories H. We focus here on

estimating the share of competitive histories. In Appendix [XXX] we present our estimates

on the share of competitive auctions.

An upward deviation. Fix an adapted set of histories H, and assume for now that

all histories in H are competitive. Consider a first a setting with only one single upward

deviation ρ1 > 0. By incentive compatibility, beliefs (dh,0, dh,1) and costs ch at each history

h ∈ H satisfy:

[(1 + ρ1)bh − ch] dh,n ≤ [bh − ch]dh,0 ⇐⇒
bh
ch

[dh,0 − (1 + ρ1)dh,1] ≥ dh,0 − dh,1. (11)

Using bh
ch
≤ 1 +m, we get that at each history, beliefs (dh,0, dh,1) satisfy

dh,0 ≥
(ρ1
m

+ 1 + ρ1

)
dh,1.

Summing this inequality across all histories and using D0(ωA, H) = 1
H

∑
h∈H

dh,n yields

D0(ωA, H) ≥
(ρ1
m

+ 1 + ρ1

)
D1(ωA, H)

16The city of Tsuchiura changed its auction format on October 29th 2009, introducing minimum prices;
see Chassang and Ortner (forthcoming) for details. Here we focus on auctions that happened before that
date.

30



Since Dn(ωA, H) ∈ [D̂n(H)− T (|H|), D̂n(H) + T (|H|)] for all n, it must be that

D̂0(H) + T (|H|) ≥
(ρ1
m

+ 1 + ρ1

)
(D̂1(H)− T (|H|)). (12)

That is, if all histories in H are competitive, sample counterfactual demand (D̂0(H), D̂1(H))

must fall sufficiently fast when one moves from ρ = 0 to ρ1 > 0.

When (12) is not satisfied, our estimate of competitive histories will be strictly less than

1. Let H1(H) = {h ∈ H : (1 + ρ1)bhi,t < ∧b−i,hi,t} be the set of histories in H such that (i)

the bidder associated with that history won the auction; and (ii) this bidder would have still

won the auction if she had placed bid (1 + ρ1)bhi,t instead of bid bhi,t . Note that the missing

bids in Figure 1 imply that H1(H) is large whenever ρ1 is small. Note further that, for any

Ĥ, D̂1(Ĥ) = |H1(Ĥ)|
|Ĥ| .

Let n1 be the minimum number of histories in H1(H) that need to be dropped so that

(12) after these histories are dropped; if (12) holds, set n1 = 0. Then, our estimated number

of competitive histories using a single upward deviation ρ > 0 is Ûup = 1− n1

|H| .

Adding a small downward deviation. Consider next adding a small downward devia-

tion, ρ−1 = −ε ≈ 0. If all the histories in H are competitive, then for all h ∈ H

[(1 + ρ−1)bh − ch] dh,−1 ≤ [bh − ch]dh,0.

Let dh,0− be the limit of dh,−1 as ρ−1 → 0. Incentive compatibility implies dh,0 ≥ dh,0−.

Summing across all histories in H, we get D0(ωA, H) ≥ D0−(ωA, H) = limρ−1→0D−1(ωA, H).

SinceDn(ωA, H) ∈ [D̂n(H)−T (|H|), D̂n(H)+T (|H|)] for all n, we get that, for ρ−1 = −ε ≈ 0,

D̂0(H) + T (|H|) ≥ D̂−1(H)− T (|H|)⇐⇒ D̂−1(H)− D̂0(H) ≤ 2T (|H|). (13)
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Note that, when ρ−1 = −ε ≈ 0, D̂−1(H) − D̂0(H) is equal to the fraction of histories at

which at least two firms tied in the first place.

Let nties be the minimum number of histories with tied winning bids that need to be

dropped so that (13) holds; if (13) holds, set nties = 0. Then, our estimated share of com-

petitive histories using one single upward deviation ρ > 0 and a small downward deviation

ρ−1 = ε ≈ 0 is Ûup/ties = 1− n1

|H| −
nties

|H| .

Adding a medium-sized downward deviation. We now show that, under certain con-

ditions, adding a medium sized downward deviation ρ−2 < 0 can give us a tighter bound on

the share of competitive histories. By incentive compatibility, at all competitive histories

there must exist beliefs and cost satisfying

[(1 + ρ−2)bh − ch] dh,−2 ≤ [bh − ch]dh,0 ⇐⇒ dh,−2 − dh,0 ≥
bh
ch

[(1 + ρ−2)dh,−2 − dh,0]. (14)

Our estimate on the share of non-competitive histories can be computed by finding the

largest subset Hcomp ⊂ H such that, for all h ∈ Hcomp, there exists beliefs (dh,n)n and

costs ch satisfying all the relevant constraints (i.e., (7), (9), (10), (14), (11), (13), and the

constraints in Program (6)).

It seems intuitive that adding downward deviation ρ−2 < 0 would lead to a tighter bound

on the share of competitive histories. If estimated counterfactual demand (D̂n(H))n increases

fast as we move from ρ0 = 0 to ρ−2 < 0, bidders might find it attractive to decrease their

bids to raise their chances of winning. For such a deviation to not be profitable, firms’ costs

must be sufficiently large. But firms’ incentives to raise their bids increase when costs are

large; see equation (11). Hence, adding constraints (14) and (11) should lead to a lower

estimate of the share of competitive histories.

However, in the absence of additional restrictions on beliefs, IC constraint (14) is not

binding. Indeed, for all histories hi at which bidder i won the auction, we can set ch ≤ bh
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and dh,n = 1(1+ρn)bhi,t<∧b−i,hi,t
= 1 for n = 0,−2. And for all histories hi at which bidder

i lost the auction, we can again set dh,n = 1(1+ρn)bhi,t<∧b−i,hi,t
for n = 0,−2, and ch = bh.

Note that, with these beliefs and costs, constraint (14) is satisfied at every history, and

Dn(H,ωA) = D̂n(H) for n = −2, 0.

Information constraints (10) rule out such extreme beliefs. As our estimates below show,

in the presence of constraint (10), adding a mid-sized downward deviation ρ−2 leads to tighter

estimates on the share of competitive histories.

Figure (6) presents our estimates on the share of competitive histories for our dataset

from the city of Tsuchiura, as a function of parameter k in constraint (10). For these

estimates and all the estimates that we presetnbelow, we set function T (|H|) to satisfy

2|N | exp(−1
2
T (|H|)2|H|) = 5%, so that our tests have a robust confidence level of 5%.
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Figure 6: Estimated share of competitive auctions, city-level data.

7.2 Consistency between safe tests and proxies for collusion

We now show that our estimates on the share of competitive histories are consistent with

different proxies of collusive behavior. For computational tractability, in the analysis that
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follows we focus on estimating the share of competitive histories only using the three devia-

tions described above.

High vs. low bids. In Figure 4, we divide the histories in our national sample according

to the bid level relative to the reserve price, and plot the distribution of ∆ for the different

subsamples. As the figure shows, the pattern of missing bids is more prevalent when we

focus on histories at which bidders placed high bids. To the extent that missing bids are a

marker of non-competitive behavior, Figure 4 suggests that histories at which firms placed

lower bids are more likely to be competitive.

Figure 7 plots our estimates for the share of competitive histories for the different sets

of histories in Figure 4.17 The fraction of competitive histories is lower at histories at which

bids are high relative to the reserve price, a finding that is consistent with the idea that

collusion is more likely at periods at which bidders place higher bids.
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Figure 7: Estimated share of competitive auctions by bid level, national-level data.

17Note that the set of histories with bids at some range x% − y% of the reserve price is adapted to the
bidders’ information.
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Before and after prosecution. Figure 8 shows our estimates on the share of competitive

histories for the four groups of firms that were investigated by the JFTC in Figure 5. Our

estimates suggests non-competitive behavior in the before period across the four groups of

firms. Moreover, with the exception of firms producing prestressed concrete, our estimates

show essentially no collusion in the after period.
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Figure 8: Estimated share of competitive auctions, before and after FTC investigation,
national-level data.

7.3 Zeroing-in on specific firms

[TODO DATA: test outcomes for 3 largest firms in a given industry/in known cartelized

industries]
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8 Why Do Cartels Exhibit Missing Bids?

We conclude with an open ended discussion of why missing bids may be occurring in the

first place.

This section has two objectives. First, we want to highlight that the bidding behavior

we observe in our data is not easily explained by standard models of collusion. Second, we

put forward an explanation for the bidding patterns we observe in these two datasets.

[XXX update text below] Finally, we propose a tentative explanation for missing bids,

and why they could plausibly arise as an implication of collusive behavior. This is not entirely

obvious because missing bids are not rationalized by standard models of tacit collusion (i.e.,

Rotemberg and Saloner (1986), Athey and Bagwell (2001, 2008)). In these models, the

cartel’s main concern is to incentivize losers not to undercut the winning bid. The behavior

of designated winners is stage game optimal. We show that missing bids arise as an optimal

repsonse to noise. Keeping the designated winner’s bid isolated ensures that small trembles

in play do not cause severe misallocations.

Missing bids is not a natural prediction of standard models.

Missing bids as coordination challenges.

Missing bids as a side effect of regulatory oversight.
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Appendix

A Proofs

A.1 Proofs of Section 3

Proof of Lemma 1. Let H be a set of histories, and fix ρ ∈ (−1,∞). For each history

hi,t = (ht, zi,t) ∈ H, define

εi,t ≡ Eσ,µ[1∧b−i,t>bi,t(1+ρ)|hi,t]− 1∧b−i,t>bi,t(1+ρ)

= probσ,µ(∧b−i,t > bi,t(1 + ρ)|hi,t)− 1∧b−i,t>bi,t(1+ρ).

Note that D̂(ρ|H)−D(ρ|H) = 1
|H|
∑

hi,t∈H εi,t.

Note further that, by the law of iterated expectations, for all histories hj,t−s ∈ H with

s ≥ 0, Eσ,µ[εi,t|hj,t−s] = Eσ,µ[Eσ,µ[1∧b−i,t>bi,t(1+ρ)|ht, zi,t]− 1∧b−i,t>bi,t(1+ρ)|ht−s, zj,t−s] = 0.18

Number the histories inH as 1, ..., |H| such that, for any pair of histories k = (hs, zi,s) ∈ H

and k′ = (hs′ , zj,s′) ∈ H with k′ > k, s′ ≥ s. For each history k = (ht, zi,t), let εk = εi,t, so

that

D̂(ρ|H)−D(ρ|H) =
1

|H|

|H|∑
k=1

εk.

Note that, for all k̂ ≤ |H|, Sk̂ ≡
∑k̂

k=1 εk is a Martingale, with increments εk̂ whose

absolute value is bounded above by 1. By the Azuma-Hoeffding Inequality, for every

α > 0, prob(|S|H|| ≥ |H|α) ≤ 2 exp{−α2|H|/2}. Therefore, with probability 1, 1
|H|S|H| =

D̂(ρ|H)−D(ρ|H) converges to zero as |H| → ∞. �

18This holds since, in a perfect public Bayesian equilibrium, bidders’ strategies at any time t depend solely
on the public history and on their private information at time t.
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A.2 Proofs of Section 4

Proof of Corollary 1. Suppose scomp ≥ 1− κ for some κ > 0. Then, for all ρ > 0,

1

ρ
[R̂(ρ|H)− R̂(0|H)] =

1

ρ
[R(ρ|H)−R(0|H) + R̂(ρ|H)−R(ρ|H) + R̂(0|H)−R(0|H)]

≤ 1− scomp +
1

ρ
[R̂(ρ|H)−R(ρ|H)− R̂(0|H) +R(0|H)]

≤ κ+
1

ρ
[R̂(ρ|H)−R(ρ|H)− R̂(0|H) +R(0|H)], (15)

where the first inequality follows from Proposition 2 and the second follows since scomp ≥

1− κ.

Next, note that for any scalar ρ′ ∈ (−1,∞),

R(ρ′|H)− R̂(ρ′|H) =
∑
hi,t∈H

εi,t,

where

εi,t = Eσ,µ[(1 + ρ′)bi,t1∧b−i,t>bi,t(1+ρ′)|hi,t]− (1 + ρ′)bi,t1∧b−i,t>bi,t(1+ρ′)].

By the law of iterated expectations, for all hj,t−s ∈ H with s ≥ 0,

Eσ,µ[εi,t|hj,t−s] = Eσ,µ[Eσ,µ[(1+ρ′)bi,t1∧b−i,t>bi,t(1+ρ′)|ht, zi,t]−(1+ρ′)bi,t1∧b−i,t>bi,t(1+ρ′)|ht−s, zj,t−s] = 0.

As in the proof of Theorem 1, number the histories in H as 1, ..., |H| such that, for any

pair of histories k = (hs, zi,s) ∈ H and k′ = (hs′ , zj,s′) ∈ H with k′ > k, s′ ≥ s. For each

history k = (ht, zi,t), let εk = εi,t, so that

R(ρ′|H)− R̂(ρ′|H) =
1

|H|

|H|∑
k=1

εk.

Note that, for all k̂ ≤ |H|, Sk̂ ≡
∑k̂

k=1 εk is a Martingale, with increments εk̂ whose ab-
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solute value is bounded above by 1.19 By the Azuma-Hoeffding Inequality, for all α > 0,

prob(|S|H|| ≥ |H|α) = prob(|R(ρ′|H)− R̂(ρ′|H)| ≥ α) ≤ 2 exp(−α2|H|/2).

Fix any ρ ≥ ρ∗. Since this bound holds for all ρ′ ∈ (−1,∞), it follows that

prob(|R(ρ|H)− R̂(ρ|H)| ≥ ρκ

2
and |R(0|H)− R̂(0|H)| ≥ ρκ

2
) ≤ 4 exp(−(ρκ)2|H|/2)

≤ 4 exp(−(ρ∗κ)2|H|/2).

Combining this with equation (15), it follows that with probability at least 1−4 exp(−(ρ∗κ)2|H|/2),

1
ρ
[R̂(ρ|H)− R̂(0|H)] ≤ 2κ. �

Proof of Proposition 3. By Lemma 1, under the true environment ωA, prob(|D̂n(H(ωA))−

Dn(ωA, H(ωA))| ≥ T (|H(ωA)|) ≤ 2 exp(−T (|H(ωA)|)2|H(ωA)|/2) for each deviation n. It

then follows that

prob(∀n, |D̂n(H(ωA))−Dn(ωA, H(ωA))| ≥ T (|H(ωA)|) ≤ 2|N | exp(−T (|H(ωA)|)2|H(ωA)|/2).

This implies that, with probability at least 1− 2|N | exp(−T (|H(ωA)|)2|H(ωA)|/2), the con-

straints in Program (6) are satisfied when we set the environment equal to ωA. Hence, with

probability at least 1− 2|N | exp(−T (|H(ωA)|)2|H(ωA)|/2), Û ≥ U(ωA). �

Proof of Corollary 3. Suppose ωA is such that the industry (or the firms who placed

bids in histories H) is competitive. Then H(ωA) = H, and so the true share of compet-

itive histories (or competitive auctions) is scomp = 1. By Corollary 2, with probability at

least 1− 2|N | exp(−T (|H|)2|H|/2), Û ≥ scomp = 1. Since 2|N | exp(−T (|H|)2|H|/2)→ 0 as

|H| → ∞, firms in this industry pass test τ safe with probability approaching 1 as |H| → ∞.

�

19This follows since we normalized reserve price to 1.
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A.3 Proofs of Section 6

Proof of Proposition 4. We start by showing that, when penalty K is sufficiently large,

any σ ∈ Σ(K) has the property that all firms pass the test with probability 1, both on and

off the path of play. To see why, note first that for every i ∈ N and every strategy profile σ−i

of i’s opponents, firm i can guarantee to pass the test by playing a stage-game best reply to

σi at every history. This implies that each firm’s equilibrium payoff cannot be lower than 0

at any history.

Let K = 1
1−δr = 1

1−δ (recall that the reserve price r is normalized to 1). Suppose K > K,

and let σ ∈ Σ(K). Towards a contradiction, suppose that there exists a history ht (on

or off path) such that, at this history, firm i expects to fail the test with strictly positive

probability. Then, for every ε > 0 small, there must exist a history hs with s ≥ 0 such

that, at the concatenated history ht t hs, firm i expects to fail the test with probability

at least K
K

+ ε < 1. At history ht t hs, firm i’s continuation payoff is bounded above by

1
1−δ −

(
K
K

+ ε
)
K = −εK < 0, a contradiction.

For any strategy profile σ and any history hi,t = (ht, zi,t), let Vi(σ, hi,t) = Eσ[
∑

s≥t ui,s|ht]

denote firm i’s continuation payoff excluding penalties under σ at history hi,t. Firm i’s total

payoff from under σ given history hi,t is Vi(σ, hi,t) − Eσ[τi|hi,t]K. Recall that a one-shot

deviation by player i from a strategy σi is a strategy σ̃i 6= σi such that there exists a unique

history hi,τ such that σi(hi,t) = σ̃i(hi,t) for all hi,t 6= hi,τ .

Suppose K > K and fix σ ∈ Σ(K). Since σ is an equilibrium, there cannot be profitable

deviations; in particular, there cannot be profitable one shot deviations:20 for every i ∈ N ,

every history hi,τ , and every one-shot deviation σ̃i 6= σi with σi(hi,t) = σ̃i(hi,t) for all hi,t 6=

20Note that we are not using the one-shot deviation principle here (which may not hold since the game
is not continuous at infinity); we are only using the fact that, in any equilibrium, no player can have a
profitable deviation.

40



hi,τ ,

Vi((σ̃i, σ−i), hi,τ )− E(σ̃i,σ−i)[τi|hi,τ ]K ≤ Vi(σ, hi,τ )− Eσ[τi|hi,τ ]K

⇐⇒ Vi((σ̃i, σ−i), hi,τ ) ≤ Vi(σ, hi,τ ), (16)

where the second line in (17) follows since, under equilibrium σ, all firms pass the test with

probability 1 at every history. By the second line in (17), in the game with K = 0 (i.e., no

regulator) no firm has a profitable one shot deviation under strategy profile σ. Hence, by

the one-shot deviation principle, σ ∈ Σ(0). �

The following Lemma establishes establishes a weaker version of the one-shot revelation

principle for the game with a regulator.

Lemma A.1. Let σ be a strategy profile with the property that all firms pass the test with

probability 1 at every history. Then, σ ∈ Σ(K) if and only if there are no profitable one-shot

deviations.

Proof. Clearly, if σ ∈ Σ(K), then are no profitable one-shot deviations. Suppose next that

there are no profitable one-shot deviations, but σ /∈ Σ(K). Then, there exists a player i ∈ N

a history hi,t and a strategy σ̃ such that

Vi((σ̃i, σ−i), hi,t) ≥ Vi((σ̃i, σ−i), hi,t)−E(σ̃i,σ−i)[τi|hi,t]K > Vi(σ, hi,t)−Eσ[τi|hi,τ ]K = Vi(σ, hi,t),

where the last equality follows since σ is such that all firms pass the test with probability 1

at every history.

The proof now proceeds as in the proof of the one-shot deviation principle in games that

are continuous at infinity. Let ε ≡ Vi((σ̃i, σ−i), hi,t) − Vi(σ, hi,t). Let T > 0 be such that

δT

1−δ × r = δT

1−δ < ε/2. Let σ̂i be a strategy for firm i that coincides with σ̃i for all histories

of length t + T or less, and coincides with σi for all histories of length strictly longer than
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t+ T .

Since σ is such that all firms pass the test with probability 1 at all histories, and since

σ̂i differs from σi at finitely many periods, all firms also pass the test under (σ̂i, σ−i). Then,

it must be that Vi((σ̂i, σ−i), hi,t)− Vi(σ, hi,t) ≥ ε/2, where the strict inequality follows since

firms’ flow payoffs are bounded above by r = 1.

Next, look at histories of length t + T . If there exists a history hi,t+T of length t + T

that is consistent with hi,t and such that Vi((σ̂i, σ−i), hi,t+T ) > Vi(σ, hi,t+T ), then there exists

a profitable one shot deviation from σ (since σ̂i and σi coincide for all histories of length

t+ T + 1).

Otherwise, let σ̂1
i be a strategy that coincides with σ̃i at all histories of length t+T −1 or

less, and that coincides with σi at all histories of length strictly longer than t+ T − 1. Note

that it must be that Vi((σ̂
1
i , σ−i), hi,t) − Vi(σ, hi,t) ≥ ε/2. We can now look at histories of

length t+T − 1 that are consistent with hi,t. If there exists such a history hi,t+T−1 such that

Vi((σ̂
1
i , σ−i), hi,t+T−1) > Vi(σ, hi,t+T−1), then there exists a profitable one shot deviation from

σ. Otherwise, we can continue in the same way. Since Vi((σ̂i, σ−i), hi,t) − Vi(σ, hi,t) ≥ ε/2,

eventually we will find a profitable one shot deviation by player i, a contradiction. �

Proof of Corollary 4. Fix K > K. The proof of Proposition 4 shows that, in all equilibria

in Σ(K), all firms pass the test with probability 1 at every history. Since Σ(K) ⊂ Σ(0), it

follows that Σ(K) ⊂ ΣP (K).

We now show that ΣP (0) ⊂ ΣP (K). Fix σ ∈ ΣP (0). Since σ is an equilibrium of the game

without a regulator, there cannot be profitable one shot deviations: for every i ∈ N , every

history hi,τ , and every one-shot deviation σ̃i 6= σi with σi(hi,t) = σ̃i(hi,t) for all hi,t 6= hi,τ ,

Vi((σ̃i, σ−i), hi,τ ) ≤ Vi(σ, hi,τ )

⇐⇒ Vi((σ̃i, σ−i), hi,τ )− E(σ̃i,σ−i)[τi|hi,τ ]K ≤ Vi(σ, hi,τ )− Eσ[τi|hi,τ ]K
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where the second line follows since, under σ, all firms pass the test with probability 1 at

every history. Lemma A.1 then implies that σ ∈ Σ(K). �

Proof of Proposition 5. The proof is similar to the proof of Proposition 4. We first

show that, when penalty K is sufficiently large, any σ ∈ ΣRP (K) has the property that all

firms pass the test with probability 1, both on and off the path of play. Recall that, at any

equilibrium in ΣRP (K), firms’ payoffs at every history ht are bounded below by their Nash

equilibrium profits V NE
i (θt−1).

Let K̂ ≡ supi,θ
1

1−δ − V NE
i (θ). Suppose K > K̂, and let σ ∈ ΣRP (K). Towards a

contradiction, suppose that there exists a history ht (on or off path) such that, at this

history, firm i expects to fail the test with strictly positive probability. Then, for every

ε > 0 small, there must exist a history hs with s ≥ 0 such that, at the concatenated history

ht t hs, firm i expects to fail the test with probability at least K̂
K

+ ε < 1. At history ht t hs,

firm i’s continuation payoff is bounded above by 1
1−δ −

(
K̂
K

+ ε
)
K = infj,θ V

NE
j (θ) − εK <

V NE
i (θt+s−1), a contradiction.

Suppose K > K̂ and fix σ ∈ ΣRP (K). Since σ is an equilibrium, there cannot be

profitable deviations; in particular, there cannot be profitable one shot deviations: for every

i ∈ N , every history hi,τ , and every one-shot deviation σ̃i 6= σi with σi(hi,t) = σ̃i(hi,t) for all

hi,t 6= hi,τ ,

Vi((σ̃i, σ−i), hi,τ )− E(σ̃i,σ−i)[τi|hi,τ ]K ≤ Vi(σ, hi,τ )− Eσ[τi|hi,τ ]K

⇐⇒ Vi((σ̃i, σ−i), hi,τ ) ≤ Vi(σ, hi,τ ), (17)

where the second line in (17) follows since, under equilibrium σ, all firms pass the test with

probability 1 at every history. By the second line in (17), in the game with K = 0 (i.e., no

regulator) no firm has a profitable one shot deviation under strategy profile σ. Hence, by

the one-shot deviation principle, σ ∈ Σ(0). �
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