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1 Introduction

At least since the seminal paper by Krusell and Smith [11] there has been a long literature analyzing

the effects of exogenous borrowing constraints on aggregate fluctuations. The purpose of this paper

is to take a more primitive approach by exploring the effects of restrictions to perfect risk sharing

but when these restrictions arise from the presence of private information. To this end the paper

solves the mechanism design problem of a real business cycle (RBC) economy subject to private

information and compares its aggregate fluctuations with those of the same economy with full

information. The paper is not only interested in evaluating the effects of private information on

aggregate fluctuations, but in characterizing the behavior of the optimal contracts and in exploring

their implications for the cyclical behavior of consumption and employment inequality.

The model that I use is a simple RBC model with private information. Agents value consump-

tion and leisure and receive idiosyncratic shocks to their value of leisure. These shocks, which are

i.i.d. over time and across individuals, are assumed to be private information. The production

technology is standard. Output, which can be consumed or invested, is produced with capital and

labor using a Cobb-Douglas production function subject to an aggregate productivity shock. The

aggregate shock follows an AR(1) process.

Following the literature, a dynamic contract is given a recursive formulation in which its state

is given by a promised value to the agent. Given the current state, the contract specifies current

consumption, current hours worked and next-period promised values as a function of the value of

leisure reported by the agent. Since the model has a large number of agents and the shocks to

the value of leisure are idiosyncratic, the social planner needs to keep track as a state variable

the whole distribution of promised values across individuals. Given this distribution, the aggregate

stock of capital and the current level of aggregate productivity, the social planner seeks to maximize

the present discounted utility of agents subject to incentive compatibility, promise keeping and

aggregate resource feasibility constraints.

For the case in which the utility of consumption and leisure are logarithmic, the paper provides

a sharp analytical characterization of the solution to the mechanism design problem. Consumption,

hours worked and next-period promised values are decreasing functions of the reported value of

leisure. Moreover, the utility of consumption, utility of leisure and next-period promised values

are all linear, strictly increasing functions of the current promised value. The slopes of these func-

tions are all independent of the reported value of leisure, and while the utilities of consumption
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and leisure have a common slope less than one, the slope of next-period promised values is equal

to one. Over the business cycle all of these functions shift vertically while maintaining constant

the differences between the high and low values of leisure. In turn, the distribution of promised

values shifts horizontally over the business cycle while maintaining its shape. Since promised values

increase during an expansion, this means that the dispersion of the distribution of consumption

levels behaves procyclically while the dispersion of the distribution of hours worked behaves coun-

tercyclically. In terms of aggregate dynamics I get a strong irrelevance result: That the stationary

business cycle fluctuations of all macroeconomic variables (i.e. aggregate output, consumption,

investment, hours worked and capital) are exactly the same under private information as under full

information. That is, once the information frictions are dealt with in an optimal way they have no

implications for the stationary aggregate dynamics of the economy.

For preferences other than the log-log case, analytical results are no longer available and the

model must be analyzed numerically. The high dimensionality of the state space, which includes

the distribution of promised values across individuals, makes computations difficult. However, an

important contribution of the paper is to develop a strategy that makes this problem tractable. In

fact, the computational method described here is not only applicable to the model in this paper

but to a wide class of economies with heterogeneous agents and aggregate uncertainty.1 The basic

strategy is to parametrize individual decision rules as spline approximations and to keep long

histories of the spline coefficients as state variables. Starting from the deterministic steady state

distribution, the history of decision rules implied by the spline coefficients is then used to obtain

the current distribution of individuals across individual states. This is done performing a large

number of Monte Carlo simulations. I then linearize the first order conditions with respect to the

coefficients of the spline approximations and solve the resulting linear rational expectations model

using standard methods.

Applying this computational method to the economy with logarithmic preferences recovers all

of the analytical results proved earlier. Since nothing in the computational method takes advantage

of the particular functional form of the utility function, this provides considerable evidence about

the accuracy of the method. Having established its accuracy the method is then used to analyze

more general preferences. However, for all the CRRA preferences considered the same basic result

is obtained: The stationary behavior of all macroeconomic variables in an economy with private

1The computational method should be applicable to any model in which agents have smooth decision rules, are

subject to idiosyncratic uncertainty, and in which the aggregate shocks are small and follow autorregressive processes.
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information are numerically indistinguishable from the same economy with full information.

Dynamic optimal contracts under private information have been used to study a variety of issues

in macroeconomics. For example, they have been used to study optimal consumption inequality

(e.g. Atkeson and Lucas [2], Green [8], etc.), optimal unemployment insurance (e.g. Hopenhayn

and Nicolini [9], Kocherlakota [10], etc.), and taxation (e.g. Golosov et al. [6], Fahri and Werning

[5], etc.). However, any interactions with aggregate fluctuations have been mostly neglected. A

notable exception is Phelan [12] who considered a model in which agents take hidden actions

that, together with the realization of a public i.i.d. aggregate shock and an unobservable i.i.d.

idiosyncratic shock, determine their observed output levels. Assuming that actions are taken prior

to the realization of the aggregate shock, that agents have CARA preferences and that agents have

a constant probability of dying, he was able to characterize the model analytically. He found two

important results: that the cross-sectional distribution of consumption levels depends on the entire

history of aggregate shocks and that there is a well defined long-run distribution over cross-sectional

consumption distributions.

My model differs from Phelan [12], not only because it has hidden types (adverse selection)

instead of hidden actions (moral hazard), but because it has a neoclassical production function

with persistent aggregate shocks. Besides these differences, an apparent similarity is that even in

my model with logarithmic preferences the cross-sectional distributions of consumption and leisure

depends on the entire history of aggregate shocks. However, this is only due to the presence of

capital. Without it I would get that these cross-sectional distributions only depend on the current

realization of aggregate productivity.

In fact the lack of memory in the case of no capital and logarithmic preferences has already

been shown by Da Costa and Luz [4] in a related setting. In that paper Da Costa and Luz consider

a finite horizon version of Phelan’s economy in which actions are taken after the realization of

aggregate productivity, agents have CRRA preferences, and agents live as long as the economy.

Contrary to Phelan [12], their cross-sectional distribution of consumption becomes degenerate as

the time horizon of the economy becomes large. Interestingly, Da Costa and Luz find that when

log preferences are used that the cross-sectional distribution of consumption does not depend on

the entire history of aggregate shocks but on the current realization. However, when the elasticity

of intertemporal substitution is different than one, the cross-sectional distribution of consumption

has memory of the past history. A major contribution of this paper over Da Costa and Luz [4]

for the case of logarithmic preferences is that, aside from analyzing an economy with capital and
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persistent aggregate shocks, I provide a tight analytical characterization of the optimal contracts

and an equivalence result with the full information economy. For preferences different from the

logarithmic case, I am able to compute solutions for infinite horizon economies instead of two-

periods cases.

The equivalence with the full information economy in terms of aggregate variables is related

to a result in Fahri and Werning [5]. In that paper Fahri and Werning also consider a Mirlees

economy similar to the one in this paper except that it has no aggregate productivity shocks,

idiosyncratic shocks are persistent and the social planner is only allowed to optimize with respect to

the consumption allocations (labor allocations are taken to be beyond his control). Starting from the

steady state of a Bewley economy they perform the dynamic public finance experiment of evaluating

the welfare gains of moving to an optimal consumption plan. They show that when preferences are

logarithmic, along the transitionary dynamics of the model all aggregate variables behave exactly

the same as in the full information case. Interestingly, I obtain a similar equivalence result when

optimizing with respect to labor as well as consumption and when the economy is subject to

aggregate productivity shocks. However, contrary to Fahri and Werning [5], my equivalence result

only holds for the long-run stationary equilibrium of the model. The transitionary dynamics from

an arbitrary initial capital and distribution of promised values will generally differ from the full

information case.

The paper is organized as follows. Section 2 describes the economy. Section 3 describes the

mechanism design problem. Section 4 characterizes the optimal allocations. Section 5 provides the

irrelevance result for the log-log case. Section 6 describes the computational method for solving the

mechanism design problem with aggregate fluctuations. Section 7 presents the numerical results.

Finally, Section 8 concludes the paper.

2 The economy

The economy is populated by a unit measure of agents subject to stochastic lifetimes. Whenever

an agent dies he is immediately replaced by a newborn, leaving the aggregate population level

constant. The preferences of an individual born at date  are given by



( ∞X
=

−− [ln  +  ln (1− )]

)
 (1)
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where  is consumption,  is hours worked,  is the idiosyncratic value of leisure,  is the

survival probability, and 0    1 is the discount factor.2 The idiosyncratic value of leisure 

takes two possible values:  and  , with    . Realizations of  are i.i.d. across time

and across individuals and are distributed according to a distribution function  = ( ). A

key assumption maintained throughout most of the paper is that  is private information of the

individual.

Output, which can be consumed or invested, is produced with the following aggregate production

function:

 = 

−1

1−


where  is output,  is aggregate productivity, −1 is capital and  is hours worked. The

aggregate productivity level  follows a standard AR(1) process given by:

+1 =  + +1

where 0    1 and +1 is normally distributed with mean zero and standard deviation .

Capital is accumulated using a standard linear technology given by

 = (1− )−1 + 

where  is gross investment and 0    1.

3 Mechanism Design

In this section I provide a recursive formulation to the problem of a social planner that seeks to

maximize utility subject to incentive compatibility and resource feasibility constraints. In order to

do this it will be important to distinguish between two types of agents: young and old. A young

agent is one that has been born at the beginning of the current period. An old agent is one that

has been born in some previous period.

The social planner decides recursive plans for both types of agents. The state of a recursive plan

is the value (i.e. discounted expected utility) that the agent is entitled to at the beginning of the

period. Given this promised value, the recursive plan specifies the current utility of consumption,

the current utility of leisure and next period promised values as functions of the value of leisure

2Later on, preferences will be generalized to be of the CRRA type.
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currently reported by the agent.3 A key goal of the social planner is to structure the recursive plans

in such a way that the agents truthfully reveal their private information. Another, conflicting goal,

is to structure the plans so that they provide as much insurance as possible. Throughout the paper

I will assume that the social planner is fully committed to the recursive plans that he chooses and

that the agents have no outside opportunities available.

A key difference between the young and the old is in terms of promised values. Since during

the previous period the social planner has already decided on some recursive plan for a currently

old agent, he is restricted to deliver the corresponding promised value during the current period.

On the contrary, the social planner is free to deliver any value to a currently young agent since this

is the first period that he is alive. Reflecting this difference, I will specify the individual state of

an old agent to be his promised value  and his current value of leisure . His current utility of

consumption, utility of leisure and next-period promised values are denoted by  (),  () and

 ( 
0), respectively. In turn, the individual state of a young agent is solely given by his current

value of leisure . His current utility of consumption, utility of leisure and next-period promised

values are denoted by ,  and  (
0), respectively. Observe that next-period promised values

of young and old agents are allowed to be contingent on the realization of next-period aggregate

productivity 0.

The aggregate state of the economy is given by the triplet ( ), where  is the aggregate

productivity level,  is the stock of capital, and  is a measure describing the number of old agents

across individual promised values . The social planner seeks to maximize the weighted sum of

welfare levels of current and future generations of young agents.4 In recursive form, the social

planner problem is described by the following Bellman equation:

 ( ) = max

(
(1− )

X


£
 +  + 

¡


¡
0
¢¢¤

 + 
¡
0 0 00

¢)
(2)

subject to:

(1− )
X


 +

Z X


()+  ≤ 1−  (3)

3 I formulate the recursive plans in terms of the utility of consumption and leisure (insteady of consumption and

leisure levels) in order to obtain a convex feasible set to the social planner’s problem. This is crucial for characterizing

the solution using first order conditions.

4Observe that the welfare level of old agents are predetermined by their promised values at the beginning of the

period.
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 ≤ (1− )
X


(1− ) +

Z X


³
1− ()

´
 (4)

 +  + 

£


¡
0
¢¤ ≥ ̂ + ̂ + 

£
̂

¡
0
¢¤

(5)

 () +  () + 

£


¡
 0

¢¤ ≥ ̂ () + ̂ () + 

£
̂

¡
; 0

¢¤
 (6)

 =
X


©
 () +  () + 

£


¡
 0

¢¤ª
 (7)

 0 = (1− ) +  (8)

00 () = 
X


Z
{(): (0)∈}

+ (1− )
X

: (0)∈
 (9)

0 =  + 0 (10)

where 0    1 is the welfare weight of the next-period generation relative to the current-period

generation.5 Equation (3) describes the aggregate feasibility constraint for the consumption good.

It states that the total consumption of young and old agents, plus aggregate investment cannot

exceed aggregate output.6 Equation (4) is the aggregate labor feasibility constraint. It states that

the input of hours into the production function cannot exceed the total hours worked by young

and old agents. Equation (5), which holds for every ( ̂), is the incentive compatibility constraint

of young agents. It states that the value of truthfully reporting  provides a higher utility level

than reporting the alternative ̂. Similarly, equation (6) is the incentive compatibility constraint

for old agents. Equation (7) is the promise keeping constraint. It states that the recursive plan for

an old agent with promised value  must provide him an expected utility equal to that promised

value. Equation (8) is the law of motion for the stock of capital. Equation (9) is the law of motion

for the measure of old agents across promised values. It states that the number of old agents that

at the beginning of the following period will have a promised value in the Borel set  is given

by the sum of two terms. The first term sums all currently old agents that receive a next-period

promised value in the set  and do not die. The second term does the same for all currently young

agents. Observe that since next-period promised values  ( 
0) and  (

0) are contingent on

the realization of next-period aggregate productivity 0, that the same is true for the measure 00 .

Finally, equation (10) describes the stochastic process for aggregate productivity.

5Observe that if  and  are the utility of consumption and leisure, respectively, then consumption and hours

worked are given by  and 1− , respectively.

6Observe that, given the constant probability of dying 1−  and the immediate replacement with newborns, the

number of young agents in the economy is always equal to 1− .
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Since the objective function in equation (2) is linear and increasing and equations (3)-(9) define

a convex feasible set, the solution to the social planning problem is unique.7

4 Characterization of optimal allocations

In this section I characterize the solution to the mechanism design problem as the solution to

two simpler planning problems and some side conditions. The two planning problems solve the

allocations of the old agents and the young agents, respectively, while the side conditions represent

aggregate feasibility constraints.

4.1 Planning problem for old agents

Consider the problem of maximizing the expected discounted “social profits” of providing a recursive

plan to an old agent, subject to incentive compatibility and promise keeping constraints. Given

a promised value to the old agent , this planning problem is described by the following Bellman

equation:

 (  ) (11)

= max
X




⎧⎨⎩ ( ) (1− )−  + 

⎡⎣
³
0 0 0


0

´
 ( )


³


¡
0
¢
 0 0 0


0

´⎤⎦⎫⎬⎭
subject to

 () +  () + 

£


¡
 0

¢¤ ≥ ̂ () + ̂ () + 

£
̂

¡
; 0

¢¤
 (12)

 =
X


©
 () +  () + 

£


¡
 0

¢¤ª
 (13)

where  is the social value of labor and  is the social value of consumption. Observe that the

“social profits” are given by the social value of the hours worked by the old agent, net of the

consumption goods that are transferred to him. Also observe that the planner discounts future

social profits using the social discount rate  and the survival probability . The planner takes the

functions , , and the law of motion for
³
0 0 0


0

´
as given.

It is possible to show that  is strictly decreasing, strictly concave, and differentiable in .

These properties allow me to establish the following lemmas.8

7For a proof, see Section 1 in the Technical Appendix.

8 In what follows, a variable  will be denoted  when  =  and  when  =  .
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Lemma 1 At the optimal allocation,

 () +  () + 

£


¡
 0

¢¤
  () +  () + 

£


¡
 0

¢¤
(14)

and

 () +  () + 

£


¡
 0

¢¤
=  () +  () + 

£


¡
 0

¢¤
 (15)

Proof: It follows from an analysis of the first order conditions and from the fact that  is

strictly concave in .9¥

This lemma is quite intuitive. It states that at the optimal plan it is easy to convince an old

agent with a high value of leisure not to report the low value of leisure, but that it is hard to

convince an old agent with a low value of leisure not to report the high one.

Using Lemma 1 the first order conditions to the planning problem for old agents are simplified

to the following:

0 = −() +  () +  () (16)

0 = −() −  () +  ()  (17)

0 = −() +  () +  ()  (18)

0 = −() −  () +  ()   (19)

0 =  () +  () − +1+1 [+1 ()]  (20)

0 = − () +  () − +1+1 [+1 ()]  (21)

 () +  () +  [+1 ()] =  () +  () +  [+1 ()]  (22)

 = { () +  () +  [+1 ()]} (23)

+ { () +  () +  [+1 ()]} 

where, for simplicity, I have switched from state-dependence notation to time-dependence notation

under the convention that a variable is dated  if it becomes known at date . In equations (16)-

(21)  () and  () are the Lagrange multipliers to equations (22) and (23), respectively. Since,

 () = − ( −1 )  and  is strictly concave in  it follows that  () is strictly

increasing in . This property allows me to provide the following partial characterization:

9See Section 2 in the Technical Appendix for the details.
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Lemma 2 At the optimal plan,

 ()   () 

 ()   () 

+1 ()  +1 () , almost surely.

Proof: It follows from a simple analysis of the first order conditions (16)-(21) and the fact that

+1 is a strictly increasing function.
10¥

This lemma is also quite intuitive. It says that when an old agent reports a high value of leisure,

the planner allows him to enjoy more leisure but, in compensation, he receives less consumption

and is promised a worse treatment in the future.

4.2 Planning problem for young agents

Now consider the problem of maximizing the expected discounted “social surplus” of providing a

recursive plan to a young agent, subject to incentive compatibility constraints. The problem is the

following:

max
X


½
 +  + 

 ( )
+  ( ) (1− )− 

+

⎡⎣
³
0 0 0


0

´
 ( )


³


¡
0
¢
 0 0 0


0

´⎤⎦

⎫⎬⎭
subject to

 +  + 

£


¡
0
¢¤ ≥ ̂ + 


̂ + 

£
̂

¡
0
¢¤


where the planner takes not only the functions , , and the law of motion for
³
0 0 0


0

´
as

given, but the value function  that solves the planning problem for the old agents. Observe that

the social surplus is the lifetime utility level of the young agent (in current consumption units),

plus the expected discounted social value of the hours that will be worked by the agent, net of the

consumption goods that will be transferred to him.

Using the strict concavity of  with respect to , it is possible to show a similar result as in

Lemma 1 but for the young agents. The first order conditions to the planning problem for young

agents then become the following:

0 =  − 
 +  (24)

10See Section 2 in the Technical Appendix for the details.
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0 =  − 
 −  (25)

0 =  − 
 +  (26)

0 =  − 
 −  (27)

0 =  +  − +1+1 (+1)  (28)

0 =  −  − +1+1 (+1)  (29)

 +  +  [+1] =  +  +  [+1]  (30)

where  is the Lagrange multiplier to equation (30).

I can now provide a result analogous to Lemma 2.

Lemma 3 At the optimal plan,

  

  

+1  +1, almost surely.

Proof: It follows from a simple analysis of the first order conditions (24)-(29) and the fact that

+1 is a strictly increasing function.
11¥

4.3 Side conditions

The following lemma states conditions under which the solutions to the planning problems for the

old agents and the young agents solve the economy-wide mechanism design problem.

Lemma 4 Suppose that { ()   ()  +1 ()   ()   ()}∞=0 solve equations (16)-(23)
and that

©
  +1   ()

ª∞
=0

solve equations (24)-(30) for some stochastic process

{ }∞=0.
Additionally, suppose that there exists a stochastic process {−1  }∞=0 such that { 

−1  }∞=0 satisfies the following equations (almost surely):

0 =  − 

−1 (1− )

−
  (31)

0 = − + 

n
+1

h
+1

−1
 

1−
+1 + 1− 

io
 (32)

11See Section 2 in the Technical Appendix for the details.
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0 =  − (1− )−1 −  (33)

(1− )
X


 +

Z X


() +  = 

−1

1−
  (34)

 = (1− )
X


(1− ) +

Z X


³
1− ()

´
 (35)

+1 () = 
X


Z
{: +1()∈}

 + (1− )
X

: +1∈
 (36)

+1 =  + +1 (37)

with (0−1 0) given.

Then, { ()   ()  +1 ()    +1−1  }∞=0 is the optimal plan gen-
erated by the solution to the economy-wide mechanism design problem (equations 2-10) and the

initial condition (0−1 0).

Proof : It follows from verifying that the first order conditions to the sequential formulation of

problem (2)-(10) are given by equations (16)-(23), (24)-(30) and (31)-(37).12¥

Given the equivalence of first order conditions mentioned in the proof to the above lemma, it

follows that the converse is also true: A solution to the economy-wide mechanism design problem

solves the planning problems for the old and young agents and the side conditions (31)-(37).

5 An irrelevance result

In this section I provide a striking result: Under the optimal plan, the stationary behavior of all

aggregate variables (i.e. aggregate consumption, capital, investment and hours worked) is exactly

the same as in the case of public information. In particular, the stationary behavior of all aggregate

variables is the same as in a representative agent economy with identical preference and technology

parameters (but where the value of leisure is public information). This establishes that, at least for

the functional forms for preferences and technology considered so far, that the information frictions

introduced play no role on aggregate fluctuations.

5.1 Linear allocation rules

In this section I characterize the functional forms for the allocation rules of old agents.

12See Sections 1 and 2 in the Technical Appendix for the details.
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Lemma 5 The allocation rules for old agents have the following functional forms:

 () =  +  (38)

 () =  +  (39)

+1 () = +1 +  (40)

ln  () =  +  (41)

ln  () =  +  (42)

where

0   =
1− 

1 + ̄
 1

and

̄ =  + 

Proof: It is straightforward to verify that these functional forms satisfy equations (16)-(23),

(24)-(30) and (31)-(37), and that these equations become the following:

0 = − +  +  (43)

0 = − −  +   (44)

0 = − + 
 +  (45)

0 = − − 
 +   (46)

0 = 
 + 

 − +1
+1++1  (47)

0 = − + 
 − +1

+1++1  (48)

 +  +  [+1] =  +  +  [+1]  (49)

0 = { +  +  [+1]} + { +  +  [+1]}  (50)

0 =  − 
 +  (51)

0 =  − 
 −  (52)

0 =  − 
 +  (53)

0 =  − 
 −  (54)

0 =  +  − +1
+1++1  (55)
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0 =  −  − +1
+1++1  (56)

 +  +  [+1] =  +  +  [+1]  (57)

0 =  − 

−1 (1− )

−
 (58)

0 = − + 

n
+1

h
+1

−1
 

1−
+1 + 1− 

io
(59)

0 =  − (1− )−1 −  (60)

(1− )
X


 + 
X


 +  = 

−1

1−
  (61)

 = (1− )
X


(1− ) +  − 
X


 (62)

+1 = 
X


+1 + (1− )
X


+1 (63)

+1 =  + +1 (64)

with (0−1 0) given, and where

 =

Z
 (65)

¥

This establishes not only that the functional forms given by equations (38)-(42) are satisfied but

that the dependence of the solution on promised values is completely summarized by the moment

 in equation (65).

Observe that the deterministic steady state conditions can be obtained from equations (43)-(63)

by setting the aggregate productivity level  to zero and imposing that all variables are constant

over time. The appendix provides such conditions.

5.2 Fluctuations of optimal allocation rules

This section provides tight cross-restrictions on the stationary fluctuations of key variables of the

model. To this end, for any variable  I define

∆ =  −  (66)

where  is the deterministic steady state value of variable .

Lemma 6 At the stationary optimal plan,

∆ ≡ ∆ = ∆ (67)
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∆ ≡ ∆ = ∆ (68)

∆+1 ≡ ∆+1 = ∆+1 (69)

∆ ≡ ∆ = ∆ (70)

∆ ≡ ∆ = ∆ (71)

∆+1 ≡ ∆+1 = ∆+1 (72)

Moreover,

∆ ln  = −∆ ln (73)

∆ = −∆ ln (74)

∆ = ∆ −∆ ln  (75)

∆ ln+1 +∆+1 + ∆+1 = 0 (76)

∆ = ∆ = ∆ (77)

∆ = ∆ −∆ ln  (78)

∆ ln +∆ = ∆ ln+1 +∆+1 + ∆+1 (79)

∆ + ̄∆ +  [∆+1] = 0 (80)

∆ ln = −∆ ln −∆ (81)

Proof: Using equations (66), (67)-(81) and (141)-(161) it is straightforward to verify that equations

(43)-(57) and equation (63) are satisfied.13 Also, equations (58)-(62) become the following:

0 = ∆ ln +ln  − 

−1 (1− )

− (82)

0 = −∆ ln + 

n
∆ ln+1

h
+1

−1
 +1

1− + 1− 
io

(83)

0 =  − (1− )−1 −  (84)

13For instance, using equation (66), equation (48) can be rewritten as follows:

0 = −∆ ln+ln
∆+ + 

∆ ln+ln
∆+ − 

∆ ln+1+ln
∆+1++(∆+1+)

Using equations (77) and (79), this equation becomes

0 = 
∆ ln+∆

ln

− + 


 − 

+




which is satisfied because of the steady state condition (146).
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−∆ ln (1− )
1





 − 
+  = 


−1

1−
  (85)

 = 1− −∆ ln−∆ ln  (1− )
̄





 − 
(86)

+1 =  + +1 (87)

A proof that a stationary solution to equations (82)-(87) exists will be provided in Section 5.4.

A stationary process for  and  uniquely determines a stationary process for ∆, ∆ and

∆+1 from equations (78)-(80). In particular, they are given by

∆ = −∆ ln + (1− )

∞X
=1

()  [∆ ln+ ] + ̄

∞X
=1

()  [∆ ln + ] 

∆+1 =
∆ ln +∆ −∆ ln+1 −∆+1




∆ = ∆ −∆ ln 

Corresponding realizations for ∆ ln , ∆, ∆+1, ∆, ∆ and ∆ ln are then determined

from equations (73)-(77) and (81).14¥

As the following Corollary states, Lemma 6 provides a greatly simplified method for solving a

stationary solution to the original mechanism design problem.

Corollary 7 Finding a stationary solution to equations (16)-(23), (24)-(30) and (31)-(37) is equiv-

alent to finding a stationary solution to equations (82)-(87).

For future reference, I summarize the following results from equations (38)-(42), (66) and (70)-

(72):

 () =  +  +∆ (88)

 () =  +  +∆ (89)

 () =  +  +∆ (90)

 () =  +  +∆ (91)

+1 () =  +  +∆+1 (92)

+1 () =  +  +∆+1 (93)

14See Section 3 in the Technical Appendix for the details.
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Equations (88)-(89) indicate that  () and  () are linear parallel functions with slope less

than one that shift vertically over the business cycle by exactly the same amounts. Equations

(90)-(91) indicate that the same is true for  () and  (). Equations (92)-(93) indicate that

+1 () and +1 () also are linear parallel functions that shift vertically over the business

cycle by exactly the same amounts. However, the slope of these functions is equal to one. Thus,

promised values follow a random walk process with innovations that depend on the realization of

the idiosyncratic and aggregate shocks.15

5.3 Fluctuations in the optimal amount of inequality

In this section I characterize the fluctuations in the distributions of promised values, consumption

levels and hours worked implied by the fluctuations in the optimal allocation rules.

Observe, from equations (36) and (40) that for every interval (1 2) the steady state distribu-

tion  satisfies that:

 [(1 2)] = 
X


 [(1 − 2 −)] + (1− )
X

: ∈(12)
 (94)

Define

∆ =
∆ ln +∆


 (95)

From equations (36), (40), (76) and (79) we then have that for every (1 −∆+1 2 −∆+1):

+1 [(1 −∆+1 2 −∆+1)] = 
X


 [(1 −∆ −  2 −∆ − )]

+ (1− )
X

: ∈(12)
 (96)

From equations (94) and (96) it then follows that for every (1 2):

 [(1 2)] =  [(1 −∆ 2 −∆)]  (97)

That is,  is just a ∆ horizontal translation of the invariant distribution . In particular, since

promised values increase during a boom,  shifts to the right during such an episode.

15Even with no aggregate fluctuations (i.e. with ∆+1 identical to zero) promised values follow a random walk.

However, contrary to Atkeson and Lucas [2] an immizerizing result is not obtained because of the stochastic lifetimes.

As people die and are replaced by young agents, there is enough “reversion to the mean” in promised values that an

invariant distribution is obtained (see Phelan [12]). The immizerizeing result actually applies within each cohort of

agents: Within each cohort the distribution of promised values keeps spreading out more and more over time.
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Observe from equations (38), (74) and (77) that

 =  −∆ ln

 () =  +  +∆

Then, the distribution of the utility of consumption  satisfies that for every Borel set  :

 () =
X


Z
{:++∆∈}

 +
X

:−∆ ln∈


It follows that for every (1 2),

 [(1 2)] =
X




∙µ
1 − 



2 − 



¶¸
+

X
:∈(12)



and

 [(1 −∆ ln 2 −∆ ln)]

=
X




∙µ
1 −∆ ln −  −∆



2 −∆ ln −  −∆



¶¸
+

X
:∈(12)



Using equations (95) and (97) we then have that

 [(1 −∆ ln 2 −∆ ln)] =  [(1 2)] 

Thus,  is just a ∆ ln horizontal translation of the steady state distribution . Since the utilities

of consumption increase during a boom,  shifts to the right during such an episode.

Observe that consumption levels are related to utilities of consumption according to

 = 

Since this is a strictly increasing and strictly convex function it follows that when the distribution

of utilities of consumption shifts to the right, that the dispersion of the distribution of consump-

tion levels (measured, for example, as interdecile ranges) increases. Thus, the dispersion of the

distribution of consumption levels increases during a boom.

From equations (39), (75) and (78) we have that

 =  −∆ ln −∆ ln 

 () =  +  +∆ −∆ ln 
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Then, the distribution of utilities of leisure  satisfies that for every Borel set  :

 () =
X


Z
{:++∆−∆ ln ∈}

 +
X

:−∆ ln−∆ ln ∈


It follows that for every (1 2),

 [(1 2)] =
X




∙µ
1 − 



2 − 



¶¸
+

X
:∈(12)



and

 [(1 −∆ ln −∆ ln  2 −∆ ln −∆ ln )]

=
X




∙µ
1 −∆ ln −  −∆



2 −∆ ln −  −∆



¶¸
+

X
:∈(12)



Using equations (97) and (95) we then have that

 [(1 −∆ ln −∆ ln  2 −∆ ln −∆ ln )] =  [(1 2)] 

Thus,  is just a ∆ ln +∆ ln  horizontal translation of the steady state distribution . Since

the utilities of leisure decrease during a boom, it follows that  shifts to the left during such an

episode.

Observe that hours worked are related to utilities of leisure according to:

 = 1− 

Since this is a strictly decreasing and strictly concave function it follows that when the distribution

of utilities of leisure shifts to the left, that the dispersion of the distribution of hours (measured, for

example, as interdecile ranges) decreases. Thus, the dispersion of the distribution of hours worked

decreases during a boom.

5.4 Full information economy

In this section I consider a representative agent economy with full information. The social planning

problem for this economy is the following:

 () = max
©
+ ̄+ 

£
 (0 0¤ª (98)

subject to:

 +  ≤ 1− (99)
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 ≤ 1−  (100)

 0 ≤ (1− ) +  (101)

0 =  + 0 (102)

where ̄ =  + . All parameters are assumed to have the same values as in the private

information economy.

Using dated variables, the first order conditions to this problem are the following:

 = 

−1 (1− )

−
 (103)

̂ = 

n
̂+1

h
+1

−1
 

1−
+1 + 1− 

io
(104)

 = (1− )−1 +  (105)

1

̂
+  = 


−1

1−
 (106)

 = 1− ̄

̂
(107)

+1 =  + +1 (108)

where ̂ and  are the Lagrange multipliers on equations (99) and (100), respectively.

Defining deviations from steady state values as in equation (66), we get that equations (103)-

(108) can be rewritten as:

0 = ∆ ln +ln  − 

−1 (1− )

−
 (109)

0 = −∆ ln ̂ + 

n
∆ ln ̂+1

h
+1

−1
 

1−
+1 + 1− 

io
(110)

0 =  − (1− )−1 −  (111)

−∆ ln ̂
1

̂
+  = 


−1

1−
 (112)

 = 1− −∆ ln ̂−∆ ln 
̄

̂
(113)

+1 =  + +1 (114)

I can now state the main result of this section.

Lemma 8 Equations (109)-(114) are equivalent to equations (82)-(87).

Proof: The equivalence can be verified under the following relations:

 = (1− )


 − 
̂ (115)

∆ ln = ∆ ln ̂¥ (116)
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The following corollary ties the lose end in the proof of Lemma 6.

Corollary 9 A stationary solution to equations (82)-(87) exists.

Proof: It is standard to show that a recursive solution to equations (109)-(114) exists, with

∆ ln ̂, ∆ ln ,  and  being time invariant functions of the state variables (−1), and that

these decision rules generate a stationary stochastic process for all endogenous variables.

Another direct consequence of Lemma 3 is the following:

Corollary 10 All aggregate variables, i.e. −1, ,  and  = 

−1

1−
 −, follow identical

stationary stochastic processes in the private information economy and in the representative agent

economy.

This result establishes that the information frictions introduced to the original model play no

role whatsoever on aggregate business cycle fluctuations.

I would like to point out that the equivalence result presented here only holds for stationary

allocations. The aggregate transitionary dynamics obtained from solving equations (109)-(114) for

an arbitrary initial condition (0) in general will not coincide with the aggregate transitionary

dynamics obtained from solving equations (43)-(64) for an identical initial (0), but arbitrary 0.

The reason, is that the restrictions imposed by equation (81), which is needed for the equivalence

result, will generally be violated.16 A consequence of this is that, contrary to the results obtained

in Fahri and Werning [5], the deterministic transitionary dynamics (obtained for the case of  = 0)

will generally differ in the representative agent economy and the mechanism design problem with

private information.

6 Computations

The previous section was able to provide a full characterization of the solution to the mechanism

design problem because of the particular preferences considered. However, when preferences differ

from the log-log case such characterization is no longer possible and the model must be solved

16Given the stochastic process

∆ ln ̂∆ ln    −1

∞
=0
that solves equations (109)-(114) and an

initial condition (0), equations (115)-(116) can always be used to construct the stochastic process

{∆∆∆+1}∞=0 that solves equations (78)-(80). The equivalence result along the transitionary dynam-
ics would then be obtained only for the value of 0 that satisfies equation (81) at  = 0.
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numerically. This is a nontrivial task because of the high dimensionality of the state space. In this

section I introduce a new method for computing equilibria of models with heterogeneous agents and

aggregate shocks and apply it to the model considered in this paper. An important advantage of

this computational method over existing alternatives in the literature is not only that it keeps track

of an arbitrarily good approximation to the distribution of agents over individual states, but that

the mapping from the current distribution of agents (and current individual decision rules) to the

next-period distribution of agents is almost exact.17 Thus, the method promises to be extremely

useful for computing equilibria in cases where the distribution of individual states matters.

Before proceeding to describe its details it will be useful to sketch the main ingredients of the

computational method. Instead of keeping track of the distribution of promised values  as a state

variable, what the computational method keeps track of is a long history of individual decision rules

 and . Since the individual decision rules  are parametrized as spline approximations, the

computational method only needs to keep track of a long but finite history of spline coefficients.

The current distribution of promised values is then recovered by simulating the evolution of a

large number of agents (and their descendants) over time using the history of individual decision

rules kept as state variables.18 The next period distribution of promised values is then obtained

by simply updating by one period the history of individual decision rules using the decision rules

chosen during the current period. All first order conditions and aggregate feasibility constraints are

then linearized with respect to the spline coefficients describing current and past individual decision

rules.19 This delivers a linear rational expectations model which, despite of its high dimensionality,

can be solved using standard methods.

To streamline the presentation I will describe the computational method using the equations

already derived for the log-log case. However, it is important to keep in mind that the method can

be (and will be) applied to analogous equations derived under more general preferences.

17See Algan et. al [1] for a survey of the alternatives.

18Because of the stochastic lifetimes, the truncation introduced by the finite history of decision rules generate

arbitrarily small approximation errors as the lenght of the history becomes large. In fact, when this length becomes

large the distribution used for drawing initial promised values for the simulations becomes irrelevant (although, in

practice, I use the invariant distribution of the deterministic steady state).

19This is the computationally most intensive part of the method. The reason is that we need to take numerical

derivatives with respect to each spline coefficient in the history, and each of these calculations requires simulating the

evolution of a large panel of agents over the entire history of individual decision rules kept as state variables.
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6.1 Computing the deterministic steady state

While computing the deterministic steady state of the model is completely standard, this section

describes the algorithm in detail since this will introduce objects and notation that will be needed

later on.

Observe that the shadow value of labor  is known from the steady state versions of equations

(31) and (32). In particular it is given by

 = (1− )

½
1



∙
1


− 1 + 

¸¾ 
1−



Given this value of , the steady state planning problem for old agents can be solved. To this end,

I find it convenient to use cubic spline approximations and iterate with the first order conditions

to this problem, given by the steady state versions of equations (16)-(23).20 In order to do this, I

first restrict the promised values to lie on a closed interval [min max] and define an equidistant

vector of grid points ()

=1, with 1 = min and  = max.

21 Given the function  from the

previous iteration, which is used to value next period promised values in the steady state versions

of equations (20) and (21), the values of [ ()   ()   ()   ()   ()]

=1 that satisfy

the steady state versions of equations (16)-(23) are then solved for at the grid points ()

=1.

Once these values are found, the functions are extended to the full domain [min max] using cubic

splines.22 The iterations continue until the values for [ ()   ()   ()   ()   ()]

=1

converge. Observe, that this solution does not depend on any other endogenous values, so it forms

part of the steady state.

Given the steady state solution for  the steady state planning problem for young agents can

be solved next. This problem is essentially static and has a finite number of decision variables.

However, it has the complication is that it depends on the shadow price of consumption , which is

an endogenous variable. Thus, conditional on a value for , the steady state versions of equations

(24)-(30) can be solved for
¡
   

¢
, but later on I will have to provide the side condition

that  must satisfy for this to form part of the steady state.

The steady state version of equation (36) describes the recursion that the invariant  has to

20Observe that the shadow value of consumption  does not appear in the steady state version of these equations,

21When restricting promised values to lie in the interval [min max], the first order conditions (20)-(21) and (28)-

(29) change by incorporating inequalities that check for corner solutions.

22 In practice, I use the monotonicity preserving cubic splines described by Steffen [15].
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satisfy. This equation corresponds to the case of a continuum of agents. However, I will find it

convenient to work with a large, but finite number of agents, and perform the recursion for this

case. In particular, consider a large but finite number of agents  and endow them with promised

values in the interval [min max]. Using the functions  and  obtained from the steady

state planning problem for old agents and the values  and  obtained from the steady state

planning problem for young agents, simulate the evolution of the promised values of these  agents

and their descendants for a large number of periods  . To be precise, if agent  was promised a

value  at the beginning of the current period (conditional on being alive), then his promised value

(or his descendant’s, in case the agent dies) at the beginning of the following period will be given

by:

0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

 () , with probability 

 () , with probability  

, with probability (1− )

 , with probability (1− ) 

(117)

Simulating the  agents for  periods using equation (117) we obtain a realized distribution

(̄)

=1 of promised values (conditional on being alive) across the  agents. Observe that the last

iteration of equation (117) also gives the corresponding realized values of leisure (̄)

=1 across the 

agents. The joint realized distribution of promised values and values of leisure (̄ ̄)

=1 can then be

used to compute statistics under the invariant distribution. In particular, aggregate consumption

can be obtained as:

 = 
1



X
=1

̄(̄) + (1− )
X


 (118)

To understand this expression, suppose that we are at the beginning of period  + 1. The joint

realized distribution (̄ ̄)

=1 now corresponds to agents that were alive in the previous period,

and thus a fraction  of them will have survived and a fraction (1− ) of them will have died. The

first term in equation (118) corresponds to those who have survived. It averages the consumption

of these agents and multiplies the result by the probability of surviving . The second term

corresponds to those who have died and thus have been replaced by young agents. It averages the

consumption of young agents and multiplies the result by the probability of dying (1− ).

Aggregate hours worked can be similarly computed as

 = 

P
=1

h
1− ̄(̄)

i


+ (1− )
X


(1− ) (119)
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Observe that by a law of large numbers equations (118) and (119) will become arbitrarily good

approximations to the steady state versions of equations (34) and (35) as  and  tend to infinity.

Given aggregate hours worked, aggregate capital can be then obtained from the fact that the

social planner equates the marginal productivity of capital to its shadow price. In particular, from

the steady state version of equation (32) we have that aggregate capital is given by

 =

Ã


1

− 1 + 

! 1
1−

 (120)

Then, aggregate investment is

 =  (121)

The last equation that needs to be satisfied is the feasibility condition for the consumption

good,

 +  = 1−  (122)

This is the side condition mentioned above for the shadow value of consumption . The shadow

value of consumption determines the consumption, hours worked and promised values of young

agents, and therefore each of the variables in equation (122). Therefore, it must be changed until

equation (122) holds.23

6.2 Computing business cycle fluctuations

As has already been mentioned, computing business cycle fluctuations requires linearizing the first

order conditions and aggregate feasibility constraints with respect to a convenient set of variables.

The resulting linearized system can then solved using standard methods.

6.2.1 Linearization

Linearizing equations (16)-(23), (24)-(30) and (31)-(37) present different types of issues. As a

consequence, I classify them into different categories.

The first category is constituted by equations that only involve scalar variables. Equations

(24)-(27), (30), and (31)-(24) fall into this category. For example, consider equation (25):

0 =  − 
 − 

23 In practice, this is done using a bisection root finding method.
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This equation is a function of
©
  

ª
, which are all scalars. Linearizing this equation around

the deterministic steady state values
©
̄ ̄ ̄

ª
poses no difficulty.24

The second category is constituted by a continuum of equations that only involve scalar vari-

ables. Equations (16)-(19) and (22)-(23) fall into category. Consider, for example, equation (17):

0 = −() −  () +  () 

This equation depends on { ()   ()   ()} which are all scalars. The problem is that there
is one of these equations for every value of  in the interval [min max]. In this case the “curse of

dimensionality” is solved by considering this equation only at the grid points ()

=1

that were used

in the computation of the deterministic steady state. It is now straightforward to linearize each

of these  equations with respect to { ()   ()   ()} at their deterministic steady state
values

©
̄ ()  ̄ ()  ̄ ()

ª
. Extending { ()   ()   ()} to the full domain [min max]

using cubic splines will make equation (17) hold only approximately outside of the grid points

()

=1. The quality of this approximation will depend on how many grid points  we work with.

The third category is constituted by equations that involve both scalars and functions. Equa-

tions (28) and (29) fall in this category. For example, consider equation (29):

0 =  −  − +1+1 (+1) 

This equation depends on , , +1, +1 and on the function +1, which is a high di-

mensional object. In this case the “curse of dimensionality" is broken by considering that +1

is a spline approximation and, therefore, is completely determined by the finite set of values©
+1 ()

ª
=1
, i.e. the value of the function at the grid points. The equation can then be lin-

earized with respect to
h
  +1 +1

©
+1 ()

ª
=1

i
at the deterministic steady state val-

ues
h
̄ ̄ ̄ ̄  {̄ ()}=1

i
.

The fourth category is a combination of the previous two: it is constituted by a continuum of

equations that involve both scalars and functions. Equations (20) and (21) fall in this category.

For example, consider equation (21),

0 = − () +  () − +1+1 [+1 ()] 

Similarly to the third category, this equation depends on the scalars ,  (), +1, +1 ()

and on the function +1. Similarly to the second category there is one of these equations for every

24Although in this case derivatives can be taken analytically, throughout the section derivatives are assumed to be

numerically obtained.
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value of  in the interval [min max]. Given these similarities we can use the same strategy. In

particular, we can consider this equation only at the grid points ()

=1 and linearize each of these

 equations with respect to
h
  ()  +1 +1 () 

©
+1 ()

ª
=1

i
at the deterministic

steady state values
h
̄ ̄ ()  ̄ ̄ ()  {̄ ()}=1

i
.

The fifth category is much more involved. It is constituted by equations that involve scalars

and integrals of variables with respect to the distribution . Equations (34) and (35) fall in this

category. For example, consider equation (34):

0 = (1− )  + (1− )  +

Z
()

+

Z
() +  − 


−1

1−
 

This equation depends on the real numbers , , , , −1, and , and on the integralsR
 and

R
. To make progress it will be important to represent these integrals with

a convenient finite set of variables. In order to do this, I will follow a strategy that is closely related

to the one that was used in Section 6.1 for computing statistics under the invariant distribution.

In particular, consider the same large but finite number of agents  that was used in that section

and endow them with the same realized distribution of promised values (̄)

=1 that was obtained

when computing the steady state. Now, assume that these agents populated the economy  time

periods ago and consider the history

{− − − −}=0 

which describes the allocation rules for next-period promised values that were chosen during the

last  periods (where  is considered to be the current period). Observe that since − and

− are spline approximations, this history can be represented by the following finite list of

values: n
[− ()]


=1

 [− ()]

=1

 − −
o
=0

 (123)

Using the history of allocation rules for next-period promised values, we can simulate the evo-

lution of promised values for the  agents and their descendants during the last  time periods to

update the distribution of promised values from the initial (̄)

=1 to a current distribution ()


=1.

In particular, we can initialize the distribution of promised values at the beginning of period

− − 1 as follows:
−−1 = ̄
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for  = 1  . Given a distribution of promised values at the beginning of period  − − 1, the
distribution of promised values at period − is then obtained as follows:

− =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− (−−1) , with probability 

− (−−1) , with probability  

−, with probability (1− )

−, with probability (1− ) 

(124)

for  = 1  . Proceeding recursively for  = − 1  0 we obtain a realized distribution of
promised values ()


=1 at the beginning of period .

Observe that the last iteration of equation (124) also gives the corresponding realized values of

leisure ()

=1 across the  agents. The joint realized distribution of promised values and values of

leisure ( )

=1 can then be used to compute statistics under the distribution . In particular,

equation (34) can be re-written as:

0 = (1− ) [ +  ] + 
1



X
=1

() +  − 

−1

1−
  (125)

Since  and  are splines approximations, they can be summarized by their values at the

grid points ()

=1. Therefore, equation (125) can be linearized with respect to

 −1   [ ()]

=1

 [ ()]

=1

 (126)n
[− ()]


=1

 [− ()]

=1

 − −
o
=0

at their steady state values

̄  0 ̄ ̄ ̄ ̄  [̄ ()]

=1  [̄ ()]


=1 

n
[̄ ()]


=1  [̄ ()]


=1  ̄ ̄

o
=0



Observe that equation (126) provides a large but finite list of variables. In particular, there are

 (2 + 2) variables in the second line of equation (126). Taking numerical derivatives with respect

to each of these variables requires simulating  agents over periods. As a consequence, linearizing

equation (125) requires performing a massive number of Monte Carlo simulations. While this seems

a daunting task it is easily parallelizable. Thus, using massively parallel computer systems can play

an important role in reducing computing times and keeping the task manageable.25

The last category of equations has only one element: equation (36), which describes the law of

motion for the distribution . While daunting at first sight, this equation is greatly simplified by our

25 In practice, I heavily rely on GPU computing for performing the Monte Carlo simulations.
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approach of representing the distribution  using the history of values given by equation (123). In

fact, updating the distribution  is merely reduced to updating this history. In particular, the date-

(+ 1) history can be obtained from the date- history and the current values of [+1 ()]

=1
,

[+1 ()]

=1
, +1 and +1 using the following equations:£

(+1)− ()
¤
=1

=
£
−(−1) ()

¤
=1

(127)£
(+1)− ()

¤
=1

=
£
−(−1) ()

¤
=1

(128)

(+1)− = −(−1) (129)

(+1)− = −(−1) (130)

for  = 1  . Observe that the law of motion described by equations (127)-(130) is already

linear, so no further linearization is needed. Also observe that the variables that are  periods old

in the date- history are dropped from the date-(+ 1) history. Thus, the law of motion described

by equations (127)-(130) introduces a truncation. However, the consequences of this truncation

are expected to be negligible. The reason is that the truncation only affects the agents that had

survived for  consecutive periods, and given a sufficiently small survival probability  and/or a

sufficiently large  there will be very few of these agents. Aside from this negligible truncation

there are no further approximations errors in the representation of the law of motion given by

equation (36).

6.2.2 Linearized system

Define the vector of endogenous state variables as follows:

−1 =
µ
4 ln−1

n
4−4− [4− (̄)]


=1

 [4− (̄)]

=1

o
=0

¶


and the vector of decision variables and Lagrange multipliers as follows:

 =
³
4+14+1 [4+1 (̄)]


=1

 [4+1 (̄)]

=1

444 44 ln 4 ln4 ln 

[4 ln  (̄)]=1  [4 (̄)]

=1

 [4 (̄)]

=1

 [4 (̄)]

=1



[4 (̄)]

=1

 [4 ln  (̄)]=1 4 ln4 ln 
´


Then, using the approach described in the previous section, the linear approximation to equations

(16)-(23), (24)-(30) and (31)-(37) can be written as follows:

0 =  +−1 +  + (131)
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0 =  + +1 + + +1 (132)

+1 =  (133)

where I have applied the certainty equivalence principle.

We seek a linear solution to equations (131)-(133) of the following form:

 = −1 + (134)

 = −1 +  (135)

Equations (131)-(135) have exactly the same structure as in Uhlig [17], so his methods can be

directly applied. Alternatively, one could iterate with equations (134)-(135) as follows. Suppose

that at iteration  we have that

 =  −1 + (136)

 = −1 +  (137)

and that we want to find

 =  +1−1 ++1 (138)

 = +1−1 + +1 (139)

for iteration +1. Substituting equations (136)-(139) into equations (131)-(132), it is easy to show

that  +1, +1, +1, and +1 are the solution to the following system of linear equations:

⎡⎣  ¡
 +

¢


⎤⎦⎡⎣  +1 +1

+1 +1

⎤⎦ = −
⎡⎣  

0
¡
 + 

¢


⎤⎦  (140)

which can be solved using a LU decomposition. Iterating with equation (140) until convergence is

an alternative way of obtaining the solution  , ,  and  that we seek.

The important thing is that whatever method one chooses to use, the linear rational expectations

model given by equations (131)-(135) can be solved using standard methods. The only difficulty is

its high dimensionality. Once equations (134)-(135) are obtained, they can be used to simulate the

economy.

7 Numerical results

This section uses the computational method just described to explore the quantitative properties

of different private information economies and compare them to those of their full information
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counterparts. In order to do this I first select parameter values for the benchmark economy with

log-log preferences. Economies with more general preferences will be considered later on.

7.1 Parametrization

Except for the private information, the basic structure of the model corresponds to a standard real

business cycle model. In fact, under log-log preferences the basic structure of the model is identical

to the one in Cooley and Prescott [3]. For this reason, I calibrate all parameters associated with the

neoclassical growth model to the same observations as theirs. In order to simplify computations,

the model time period is selected to be one year.

Following Cooley and Prescott [3] the labor share parameter 1− is set to 0.60, the depreciation
rate  is chosen to reproduce an investment-capital ratio  equal to 0.076, and the social discount

factor  is chosen to reproduce a capital-output ratio  equal to 3.32. The values of leisure 

and  are chosen to satisfy two criteria: that aggregate hours worked  equal to 0.31 (another

observation from Cooley and Prescott [3]) and that the hours worked by old agents with the high

valuation of leisure and the highest possible promised value  (max) be a small but positive

number. The rationale for this second criterion is that I want to maximize the relevance of the

information frictions while keeping an internal solution for hours worked. The probability of drawing

a high value of leisure  is chosen to maximize the standard deviation of the invariant distribution

of promised values. It turns out that a value of  = 050 achieves this. The survival probability

 is chosen to generate an expected lifespan of 40 years. In turn, the individual discount factor

 is chosen to be the same as the social discount factor . In terms of the parameters for the

aggregate productivity stochastic process,  is chosen to be 095 (since Cooley and Prescott report

that aggregate productivity is close to a random walk) and the variance of the innovations to

aggregate productivity 2 is chosen to be 4× 00072 (another estimate from Cooley and Prescott

[3]).

While the above parameters are structural, there are a number of computational parameters

to be determined. The number of grid points in the spline approximations  , the total number of

agents simulated , the length of the simulations for computing the invariant distribution  , and

the length of the histories kept as state variables when computing the business cycles  are all

chosen to be as large as possible, while keeping the computational task manageable and results
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being robust to non-trivial changes in their values.26 The lower and upper bounds for the range

of possible promised values min and max in turn were chosen so that the fraction of agents in

the intervals [1 2] and [−1  ] are each less than 0.1%. Thus, truncating the range of possible

values at min and max should not play an important role in the results.

Table1 describes all parameter values. It turns out that under the computational parameters

specified in this table the dimensionality of the linear system described by equations (131)-(135) is

about 12 000× 12 000, a large system indeed.

7.2 Results under log-log preferences

Before turning to business cycle dynamics I illustrate different features of the model at its deter-

ministic steady state. Figure 1 shows the invariant distribution of promised values across the  − 1
intervals [  +1]

−1
=1 defined by the grid points of the spline approximations. While it is hard to

see at this coarseness level, the distribution is approximately symmetrical. More importantly, we

see that the invariant distribution puts very little mass at extreme values. As a consequence, in

what follows I will report allocation rules only between the 7th and 15th ranges of the histogram.

The reason is not only that there are very few agents at the tails of the distribution for them to

matter, but being close to the artificial bounds min and max greatly distorts the shape of the

allocation rules.

Figure 2 reports the utility of consumption for old agents  () and  () across promised

values , as well as those of young agents  and  (which are independent of ). We see that,

in all cases the utility of consumption is higher when the value of leisure is low. Both  and 

are strictly increasing in the promised value , are linear (with slope less than one) and parallel to

each other. Moreover, the vertical difference between  and  is the same as between  and

 . Figure 3 reports the utility of leisure for old agents  () and  () across promised values

, as well as those of young agent  and  . We see that in all cases leisure is lower when the

value of leisure is low. Both  and  are strictly increasing in the promised value , are linear

(with slope less than one) and parallel to each other. Moreover, the vertical difference between 

and  is the same as between  and  . In turn, Figure 4 reports the next-period promised

values for old agents  () and  () across promised values , as well as those of young agent

26Given the value selected for the survival probability , less than 0.1% of individuals survive more than periods.

Thus, the truncation imposed by keeping track of a finite history of decision rules introduces a small approximation

error.
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 and  . We see that in all cases next-period promised values are higher when the value of

leisure is low. Both  and  are strictly increasing in the promised value , are linear (with

slope equal to one) and parallel to each other. We also see that the vertical difference between 

and  is the same as between  and  . Thus, Figures 2-4 verify the analytical steady state

results of Lemmas 2, 3 and 5.

The discussion of business cycle dynamics that follows will be centered around the analysis

of the impulse responses of different variables to a one standard deviation increase in aggregate

productivity. Figure 5 shows the impulse responses of the utility of consumption of young agents

 and  . We see that both impulse responses are identical and that their shape qualitatively

resembles one for aggregate consumption in a standard RBC model.

Figure 6 shows the impulse response of the utility of consumption of old agents with a low value

of leisure  (), at each of the eleven grid points ()
16
=6. While the figure shows eleven impulse

responses, only one of them is actually seen because they happen to overlap perfectly. This means

that, in response to the aggregate productivity shock, the function  depicted in Figure 2 shifts

vertically over time. Figure 7, which does the same for  , is identical to Figure 6. Thus, 

also shifts vertically over time and its increments are the same as those of .

Figures 8-10 are analogous to Figures 5-7, except that they depict the behavior of the utility

of leisure. Figure 8 shows that the impulse responses of  and  are identical and that they

resemble the response of leisure in a standard RBC model, while Figures 9 and 10 indicate identical

vertical shifts of the functions  and  in response to the aggregate productivity shock.

Turning to promised values, Figure 11 shows that the impulse responses of  and  co-

incide. In turn, Figures 12 and 13 show that  and  shift vertically by identical amounts

in response to an aggregate productivity shock. Thus, taken together, we see that Figures 6 -13

reproduce the analytical results of equations (67)-(69) and (88)-(93).

Figure 14 shows the impulse responses of the cross sectional standard deviations of promised

values, consumption and hours worked. We see that in response to a positive aggregate produc-

tivity shock the standard deviation of promised values remains flat while the standard deviation

of consumption increases and the standard deviation of hours worked decreases. Thus, Figure 14

reproduces the analytical results of Section 5.3.

Finally, Figure 15 shows the impulse responses of aggregate output  , aggregate consumption

, aggregate investment , aggregate hours worked  and aggregate capital  in the benchmark

economy with private information. Figure 16 reports the impulse responses for the same variables
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but for the full information economy given by equations (98)-(102). We see that both sets of impulse

responses are identical. Thus, Figures 15 and 16 reproduce the analytical result of Corollary 10.

We have verified that while the computational method was not designed to exploit any of the

properties of the log-log case, it is able to exactly reproduce the analytical results derived for this

case. This suggests that the computational method introduced in this paper could be quite useful

not only for analyzing other functional forms, but as a general method for computing aggregate

fluctuations of economies with heterogenous agents.

7.3 Extension to other preferences

This section generalizes the preferences of equation (1) to the following form:



( ∞X
=

−−
"
1− − 1
1− 

+ 
(1− )

1− − 1
1− 

#)


where  6= 1 and  6= 1. Since under this general functional form analytical results are no longer

available the computational method becomes essential to evaluate these preferences.

Without recalibrating other parameters different values for  and  have been considered.

However, in all cases similar results were obtained. For concreteness I here report results for

unit deviations from the  = 1 and  = 1 case. For each of these cases Table 2 reports the

steady state values of all macroeconomic variables for the economies with private information and

full information. We see that in each parametrization all variables are nearly identical in both

information scenarios.

In order to streamline the analysis of business cycle dynamics I consider the  = 2 and  = 2

as a representative case. Figure 17 reports that, contrary to the log-log case, the cross sectional

distribution of promised values follows a non-trivial dynamics: Instead of being constant, the

standard deviation of promised values decreases significantly in response to a positive aggregate

productivity shock. Despite of this the information frictions still turn out to be irrelevant for

aggregate dynamics. Figure 18 reports the impulse responses of all macroeconomic variables in

the economy with private information while Figure 19 does the same for the economy with full

information. We see that both sets of impulse responses are identical. Thus, similarly to the log-

log case, the stationary behavior of the aggregate variables of the economy is not affected by the

presence of information frictions.
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8 Conclusions

The paper considered a RBC model in which agents are subject to i.i.d. idiosyncratic shocks to

their value of leisure. A key assumption of the model is that these shocks are private information

of the agents. In this framework the paper analyzed the mechanism design problem of maximizing

utility subject to incentive compatibility, promise keeping and aggregate feasibility constraints. For

the case of log-log preferences the paper obtained sharp analytical characterizations. In particular,

the utility of consumption, the utility of leisure and next-period promised values are all linear

functions of current promised values. Over the business cycle these functions shift vertically in

such a way that the distribution of promised values shifts horizontally while maintaining its shape.

However, the cross-sectional dispersion of consumption levels turns out to be procyclical while the

cross-sectional dispersion of hours worked is countercyclical. A key result of the paper is that the

stationary business cycle fluctuations of all macroeconomic variables are exactly the same under

private information as under full information.

For preferences other than the log-log case analytical results are no longer available. To analyze

these other cases the paper developed a novel method for computing equilibria of economies with

heterogeneous agents. Its basic strategy is to parametrize individual decision rules as spline approx-

imations and to keep long histories of the spline coefficients as state variable. The model is then

linearized with respect to these variables and solved. Two advantages of the computational method

over alternatives is that it approximates the current distribution of promised values arbitrarily well

and that the law of motion for this distribution is almost exact. Applying this method to other

preference specifications produces a similar irrelevance result for aggregate dynamics. While the

distribution of promised values may now change its shape over the business cycle, the business

cycle fluctuations of all macroeconomic variables are still unaffected by the presence of private

information.

The paper opens wide possibilities for future research. While the irrelevance result for the

general CRRA preferences was obtained numerically, it is an open question if it could be established

analytically. While I ignore the answer to this question I speculate that if it could the proof would

be much more involved than in this paper because of fluctuations in the shape of the distribution of

promised values. Also, the irrelevance of private information for aggregate dynamics was obtained

under a very particular framework (although a very interesting one, since the Mirlees structure

considered constitutes a benchmark case in the dynamic public finance literature). It is an open
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question if information frictions could play an important role in aggregate dynamics in alternative

settings, as in economies with moral hazard in unemployment insurance. In fact, the computational

method developed here should prove extremely useful not only to evaluate these alternatives but to

compute equilibria of more general models with aggregate fluctuations and heterogeneous agents.

9 Appendix

Assuming that the aggregate productivity level  is identical to zero and imposing the condition

that all variables are constant over time, equations (43)-(63) become the following:

0 = − +  +  (141)

0 = − −  +   (142)

0 = − + 
 +  (143)

0 = − − 
 +   (144)

0 =  +  − 
+  (145)

0 = − +  − 
+  (146)

 +  +  =  +  +   (147)

0 = { +  + } + { +  + }  (148)

0 =  −  +  (149)

0 =  −  −  (150)

0 =  −  +  (151)

0 =  −  −  (152)

0 =  +  − 
+  (153)

0 =  −  − 
+  (154)

 +  +  =  +  +   (155)

0 =  − (1− )− (156)

0 = −1 + 
£
−11− + 1− 

¤
(157)

0 =  −  (158)
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(1− )
X


 + 
X


 +  = 1−  (159)

 = (1− )
X


(1− ) +  − 
X


 (160)

 = 
X


 + (1− )
X


 (161)

It is straightforward to show that equations (159)-(161) actually reduce to the following equa-

tions:27

(1− )
1





 − 
+  = 1−  (162)

 = 1− (1− )
̄





 − 
 (163)

 = (1− )



1

( − )
 (164)
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Table 1

Parameter values

Structural Computational

 = 1513 min = −285
 = 2047 max = −11
 = 050  = 1 000

 = 09574  = 273

 = 09574  = 8 388 608

 = 0975  = 20

 = 040

 = 0076

 = 095

 = 0014



Table 2

Steady state macroeconomic variables

( ) Information     

(1 1) Private 0.69155 0.51706 0.17449 0.31074 2.2959

Full 0.69155 0.51706 0.17449 0.31074 2.2959

(1 2) Private 0.56302 0.42096 0.14206 0.25299 1.8692

Full 0.56305 0.42098 0.14207 0.25300 1.8693

(2 1) Private 0.89539 0.66947 0.22592 0.40234 2.9727

Full 0.89551 0.66956 0.22595 0.40239 2.9731

(2 2) Private 0.76319 0.57062 0.19257 0.34293 2.5338

Full 0.76327 0.57068 0.19259 0.34297 2.5341
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Figure 1: Frequency distribution
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Figure 9: Utility of leisure, old agents with low value of leisure
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Figure 10: Utility of leisure, old agents with high value of leisure
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Figure 11: Promised values for young agents
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Figure 14: Cross sectional standard deviations
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Figure 15: Impulse responses of macroeconomic variables
(private information economy) 
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Figure 16: Impulse responses  of macroeconomic variables
(full information economy)
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Figure 17: Cross sectional standard deviations
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Figure 18: Impulse responses of macroeconomic variables
(private information economy) 
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Figure 19: Impulse responses  of macroeconomic variables
(full information economy)
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